
SC22/WG14/N1332

August 6, 2008

Reply to: Thomas Plum, tplum@plumhall.com
 Arjun Bijanki, Arjun.Bijanki@microsoft.com

Encoding and Decoding Function
Pointers
In many systems and applications, pointers to functions are stored un-encrypted in
locations addressable by exploit code. A hacker exploiting a vulnerability in a program
could potentially overwrite the function pointer and thereby hijack the process when the
function is called. Note that this attack can even occur on systems where the stack is not
executable.

Instead of storing a function pointer, the program can store an encrypted version of the
pointer. An attacker would need to break the encryption in order to redirect the pointer to
other code. This is similar to what’s recommended when dealing with other sensitive data
(e.g. passwords).

We propose to add to the C1x standard library two functions whose names might be
encode_pointer and decode_pointer. These functions are similar in purpose, but slightly
different in details, from two functions in Microsoft Windows (EncodePointer and
DecodePointer), which are used by Visual C++’s C runtime libraries.

Note that this process of pointer-encoding does not prevent buffer overruns or arbitrary-
memory-write attacks, but it does make such attacks more difficult to exploit.

First draft of proposed wording:

7.20.9 Pointer encoding and decoding functions

7.20.9.1 The encode_pointer function

Synopsis

#include <stdlib.h>
void (*)() encode_pointer(void(*pf)());

Description

The encode_pointer function shall perform a transformation on the pf argument,
such that the decode_pointer function shall reverse that transformation. Thus, for

any pointer to function pfn, decode_pointer(encode_pointer((void(*)())pfn),
when converted to the type of pfn, shall equal pfn.

However, this inverse relationship between encode_pointer and
decode_pointer shall not be valid if the invocations of encode_pointer and
decode_pointer take place under certain implementation-defined conditions.

[Footnote: For example, if the invocations take place in different execution processes,
then the inverse relationship is not valid. In that implementation, the transformation
method could encode the process number in the encode/decode algorithm.]

Returns

The result of the transformation.

7.20.9.2 The decode_pointer function

Synopsis

#include <stdlib.h>
void (*)() decode_pointer(void(*epf)());

Description

The decode_pointer function shall perform a transformation on the epf argument,
such that it shall reverse the transformation performed by the encode_pointer
function. Thus, for any pointer to function pfn,
decode_pointer(encode_pointer((void(*)())pfn), when converted to the type of
pfn, shall equal pfn.

However, this inverse relationship between encode_pointer and
decode_pointer shall not be valid if the invocations of encode_pointer and
decode_pointer take place under certain implementation-defined conditions.

[Footnote: For example, if the invocations take place in different execution processes,
then the inverse relationship is not valid. In that implementation, the transformation
method could encode the process number in the encode/decode algorithm.]

Returns

The result of the inverse transformation.

