[bookmark: _Toc358896439][bookmark: _Ref411808187][bookmark: _Ref411808224][bookmark: _Ref411809438][bookmark: _Toc514522060][bookmark: _Toc196097071][bookmark: _Toc196098177][bookmark: _Toc196098355][bookmark: _Toc196098533][bookmark: _Toc196110498][bookmark: _Toc196367567]The following ThreadGroup information may be helpful when addressing the comment "review of the non-deprecated parts still needed" in Section 6.62 Concurrency – Premature termination [CGS].

Thread safety in Java ensures that a class or method performs correctly when accessed by multiple threads concurrently, preventing data corruption and race conditions. In the context of the ThreadGroup class (which is now considered legacy and its use is discouraged), only a few methods can be considered inherently thread-safe. Most operations on ThreadGroup require external synchronization to maintain data consistency.
Thread-Safe Methods in ThreadGroup
· getName(): This method is inherently thread-safe as it only reads the name of the thread group, which is immutable after the ThreadGroup is created.
· isDaemon(): Similar to getName(), this method only reads the daemon status of the thread group, which is also immutable, making it thread-safe.
· activeCount(): This method returns an approximate number of active threads in the thread group and its subgroups. While the value is not guaranteed to be perfectly accurate at any given instant due to concurrent thread activity, it provides an atomic read of an integer value, making it thread-safe in terms of data access.
Methods Requiring External Synchronization
The following methods of ThreadGroup are not inherently thread-safe and require external synchronization if used in a multi-threaded environment:
· enumerate(Thread[] list) and enumerate(Thread[] list, boolean recurse): These methods populate an array with the active threads in the thread group. Since they involve reading and writing to the provided array, concurrent access can lead to data corruption or inconsistencies.
· stop(), suspend(), and resume(): These methods affect the state of the threads within the group. Their use is strongly discouraged as they are inherently unsafe and can lead to deadlocks. Moreover, they are deprecated.
· destroy(): This method destroys the thread group and should be used with caution. Concurrent modification of the thread group while it is being destroyed can lead to unpredictable behavior.
· uncaughtException(Thread t, Throwable e): This method is invoked when a thread in the group terminates due to an uncaught exception. While the method itself is synchronized, any actions performed within it (e.g., logging or error handling) might require additional synchronization depending on the resources they access.
· Methods that modify the thread group's properties or the state of its threads (other than the thread-safe methods listed above)

Example Demonstrating the Need for Synchronization when using ThreadGroup:
public class ThreadGroupExample {
 public static void main(String[] args) {
 ThreadGroup group = new ThreadGroup("myGroup");

 // Creating threads
 Thread thread1 = new Thread(group, () -> {
 System.out.println("Thread 1");
 });
 Thread thread2 = new Thread(group, () -> {
 System.out.println("Thread 2");
 });

 thread1.start();
 thread2.start();

 // Safely enumerating threads
 Thread[] threads;
 synchronized (group) {
 threads = new Thread[group.activeCount()];
 group.enumerate(threads);
 }

 // Processing threads
 for (Thread thread : threads) {
 if (thread != null) {
 System.out.println("Thread: " + thread.getName());
 }
 }
 }
}

Output:
Thread 2
Thread 1
Thread: Thread-0
Thread: Thread-1

In the example above, the enumerate method is called within a synchronized block to prevent race conditions. Without synchronization, multiple threads could potentially modify the thread group's state while it is being enumerated, leading to errors.
Avoidance mechanisms for language users:
· Avoid using ThreadGroup if possible. Modern alternatives like ExecutorService and thread pools offer better control and management of threads.
· If you must use ThreadGroup, always synchronize access to its methods that are not inherently thread-safe.
· Be cautious with methods like stop(), suspend(), and resume(), as they are deprecated and unsafe.
· Ensure that any actions performed in uncaughtException() are also thread-safe.
· By following these guidelines, you can mitigate the risks associated with using ThreadGroup in a multi-threaded environment and ensure the correctness and stability of your Java applications.

The ThreadGroup Deprecated Methods are:
[image:]
image1.png
© ThreadGroup (Java Platform SE X

methods in Thread. X | +

Method Summary

All Methods Instance Methods Concrete Methods _

Modifier and Type Method

boolean allowThreadSuspension(boolean b)
void resume ()

void stop()

void suspend()

Methods inherited from class java.lang.Object

Description

Deprecated.
The definition of this call depends on suspend(), which is deprecated.
Further, the behavior of this call was never specified.

Deprecated.

This method is used solely in conjunction with Thread. suspend and
ThreadGroup.suspend, both of which have been deprecated, as they are
inherently deadlock-prone. See Thread.suspend() for details.

Deprecated.
This method is inherently unsafe. See Thread.stop() for details.

Deprecated.
This method is inherently deadlock-prone. See Thread.suspend() for
details.

clone, equals, finalize, getClass, hashCode, notify, notifyAll, wait, wait, wait

