
CHP comments on ISO-IECJTC1-SC22-WG23_N1413-24772-3-C-vulnerabilities-prep-for-
with-editing-convenor-20240909.docx

Technical comments:

p151: Table 1 – Top avoidance mechanisms in C

I have problems with the first two entries:
• 1) The use of macros when allocating memory. I’ve never seen problems with

allocated memory – possibly because none of our customers use dynamic
memory. I can see this could be useful advise, but not the most important.

• 2) The use of Annex K, is in theory good advice, but WG14 is very sceptical about
the eJectiveness of Annex K – both in terms of the way its defined and the quality
of its implementations. Every few meetings there is a move to drop it

SM – Understand, but this was wording from the C specialists. Changing it requires a bigger
committee.

p35 6.20.1 1st para: “… can result in the variable operating on an entity other…”

Variables don’t operate on anything!
Suggest “… can result in the variable found not being the one expected”

SM – Thx.

P62 6.65.1 the code examples:

There is no #define example with the first bullet, so the example “my_age = my_age + 1;”
is confusing, as the only ‘my_age’ is in the int example for bullet 2.

 You could say:
 #define your_age 42
 your_age = your_age + 1;
 and point out that it doesn’t compile, but:

 #define your_age 42
 printf("%d\n", your_age);

 #define your_age 21
 printf("%d\n", your_age);

 does compile (with a redefinition warning), and prints “42” and “21”

For the example using int declarations:

int const my_age = 42;
int *variable_age = &my_age;
*variable_age = 75; //will also set my_age to 75

This does not compile (Visual Studio 2010) ‘loss of const qualification’ when address of
my_age taken. If variable_age is made a const int *, then the assignment fails.

1 p13 etc. are page numbers in the marked up Word/PDF document

For the second int example:

int const my_age = 42;
const int * const some_age(&my_age);
int *variable_age = some_age;
*variable_age = 75; // sets my_age to 75.

This also fails to compile, for the same reason

I’m not sure is the C standard requires this behaviour, and if so, for how long. If it’s a
guaranteed compiler error, these discussions need to be deleted, else a caveat needs
adding, like ‘… may unexpectedly be compiled”

SM – This is where I need help. I cribbed this material from C++ and tried to leave out the
C++ specific pieces. This is brand new material. I don’t want to touch it without help. If
we could spend ½ hour on Zoom we could likely fix it.

Layout/Typos

p15: Table 1 – Top avoidance mechanisms in C

This section is introduced as: “5. Top avoidance mechanisms”, but has been preceded
by “5.General language concepts and primary avoidance mechanisms” and “5.1
General C language concepts”. Should it be 5.2?

Good catch. Indeed. Thank you. Made it 5.2.

p19 para 3&4 (and multiple other places): “… can or might not..” seems an odd phrase.
‘…can or cannot…’ or ‘…might or might not…’ seem more natural

SM – Good catch. Changed to “It is not certain that the loop terminates …”

p21 6.6.1 1st para: “…2024 6.46is applicable to C…” missing ‘ ‘ before ‘is’

This seems to be a recurring issue, modifications highlighted in the markup introduce
errors in the document when accepted. I’ve noted a number – but no guarantee that
these are the only ones.
SM - Thanks.

p36 6.21.1 1st para: “…ISO/IEC 24772-1:2024 6.21ndoes not apply…” redundant ‘n’ before ‘does’
SM - Thx

p37 6.24.1 2nd line of code: ‘i’ has been corrected to ‘I’ – invalidating the code
also para 3 last bullet: ‘…clause 6.7.9, “Initializatio”").’ Missing ‘n’ and extra ‘”’
 SM - thx

p59 6.60.1 line: “…C does not implement a such mechanisms..” The “a” is redundant.
 SM - thx

p62 headline: “6.645 Modifying constants [UJO]” should be 6.65 M…”

Question:

p13: 4 para 2:
“Organizations following this document meet the expectations of 4.2 of ISO/IEC 24772-1…”
Does following this document meet all the requirements of 24772-1 4.2?

SM – We believe yes. The list is a direct copy of the list from 24772-1.

p13: 4 para after bulleted list:
Why no mentions of MISRA C? Its in the bibliography as [11] and isn’t referenced anywhere else.

 SM – Great catch. Thank you! I put a reference to MISRA in clause 4 before MITRE or CWE

