
Time	 Vulnerabilities	 ISO/IEC/JTC1/SC22/WG23	 	 N0646	 11	 April	 2016	

6.XX	 Clock	 Issues	

6.XX.1	 Description	 of	 application	 vulnerability	

All processors and operating systems maintain multiple representations of time internal to the system. In a
typical system there are the following notions of time, and potentially identifiable clocks:	 	

• CPU time
• Process/task/thread execution time
• Calendar clock time, local and/or GMT
• Elapsed time - i.e. time since system inception in seconds, or in fixed portions thereof
• Network time	

These times have different representations, different scaling, and different semantics. For example, a
time-of-day clock must account for leap years, leap seconds and standard/daylight saving times. A CPU
or processor clock is a monotonic clock that must maintain time used by a task, thread, or process in a
granularity appropriate to CPU speed - possibly sub-nanosecond. A real time clock is a monotonic clock
that manages and represents time to a granularity and representation needed to correctly manage the
algorithms of the system, usually associated with inputs from external devices or systems and outputs to
initiate events in connected systems.

Some of these clocks are manifested in programming languages. For example, most languages have time
of day clock lookup, while real time languages often include monotonic clocks for various purposes.
Alternatively, some languages provide library services to access and manipulate time bases, and to
schedule activity based upon one of the time bases.

Time Conversion

When multiple time bases are supported, there are mechanisms to convert from one time format to
another to support calculations done. Conversion errors, rounding errors or cumulative errors can
develop:

• If the conversion is not done from the most precise time formats to less precise time formats, 	
• If conversions are done from one format to another and then back for comparison, or 	
• If iterative calculations are done using less than the most precise time base possible.	

This can lead to missed deadlines or wrong calculations that depended on accurate time representation
and can result in catastrophic loss of the application or the parent system. A classic example of this is the
common (wrong) paradigm to use the calendar clock to derive values to be programmed into the
monotonic clock.

Synchronicity

When code is written for an application, the developer usually assumes that there is a common time base
for all portions of the application that are in communication with each other. When the system is spread
over multiple processors, it the time base used by each processor will either drift from each other, or the
time delay in communicating between these partitions will cause apparent drift. 	

Deleted: /
Deleted: /

Deleted: .

Deleted: o

Deleted: ,

Formatted: Font:Bold

Formatted: Font:(Default) Times New Roman, 12 pt

Time	 Vulnerabilities	 ISO/IEC/JTC1/SC22/WG23	 	 N0646	 11	 April	 2016	

Time Roll-over

Because each clock has a fixed internal representation of time which is updated periodically by some
amount, eventually, if the system is long-enough lived, the time representation will completely fill the
storage and will roll-over and return to zero, or the initial time.	 This	 can	 also	 happen	 if	 the	 time	 base	 is	
external,	 such	 as	 the	 global	 positioning	 satellite	 time	 base.	 Code that relies upon the time-base constantly
increasing will fail if/when a rollover occurs, leading to failure of the computational system and possible
catastrophic loss of the parent system, unless the application is programmed to account for this rollover.	

Most systems create a real-time time base such that the system will never roll over within the expected
operational time of the system. Modifications to the system, however, such as speeding up the clock that
feeds the time base or dramatically increasing the expected operational lifetime of the system can make
such errors happen, with potential catastrophic loss of the system and any systems that depend upon it.

	

6.XX.3	 Mechanism	 of	 failure	 	
	

The	 time	 of	 day	 clock	 is	 adjusted	 internally	 to	 jump	 or	 to	 be	 set	 backwards	 when	 going	 to	 or	 leaving	
summer	 time,	 inserting	 leap	 seconds,	 switching	 time	 zones	 or	 correcting	 time	 to	 synchronize	 the	 clock	
with	 a	 time	 base	 or	 another	 clock.	 Using	 the	 wrong	 clock,	 especially	 the	 time-‐of-‐day	 clock,	 to	 schedule	
events	 can	 result	 in	 jitter	 in	 the	 system,	 events	 being	 scheduled	 early,	 or	 the	 event	 being	 late.	 The	 mis-‐
scheduling	 of	 events	 can	 have	 real	 world	 applications	 up	 to	 and	 including	 catastrophic	 loss	 of	 the	 parent	
system.	

Converting	 from	 one	 time-‐base	 to	 another	 time-‐base	 can	 result	 in	 loss	 of	 precision,	 rounding	 errors,	 and	
conversion	 errors	 which	 can	 lead	 to	 complete	 jitter	 in	 the	 application	 behavior	 or	 complete	 failure	 of	 the	
application	 	

Roll-‐over	 of	 a	 clock	 can	 cause	 failure	 of	 applications	 that	 are	 expecting	 uniformly	 increasing	 time,	 which	
can	 lead	 to	 complete	 loss	 of	 the	 application	 and	 possibly	 the	 parent	 system.	

6.XX.4	 Applicable	 language	 characteristics	

The	 vulnerability	 is	 intended	 to	 be	 applicable	 to	 languages	 with	 the	 following	 characteristics:	

Languages	 that	 support	 a	 model	 of	 time.	

6.XX.5	 Avoiding	 the	 vulnerability	 or	 mitigating	 its	 effect	

Software developers can avoid the vulnerability or mitigate its effects in the following ways:	

• Always convert time from the most precise and stable time base to less precise time bases.
• Avoid conversions from calendar clocks or network clocks to real time clocks.	

Formatted: Font:(Default) Times New Roman

Formatted: Font:11 pt

Deleted: ToD	

Formatted: Indent: Left: 0.63 cm, Hanging: 0.63 cm, Space
After: 0 pt

Time	 Vulnerabilities	 ISO/IEC/JTC1/SC22/WG23	 	 N0646	 11	 April	 2016	

• Avoid using the time of day clock to schedule events, unless the event is demonstrably connect
with real world time of day, such as setting an alarm for 7 am. 	

• Avoid resetting or reprogramming the real-time clock or execution timers, unless the complete
application is being reset. Allow	 some	 variability	 or	 error	 margin	 in	 the	 reading	 of	 time	 and	 the	
scheduling	 of	 time	 based	 on	 the	 read.

• Use	 only	 clocks	 that	 have	 known	 synchronization	 properties.
• Protect any code that uses real-time time bases with any potential of roll-over from going from a

large value to a zero or a negative value. This is done by assuming that a rollover can occur and if
it is expected that always T1<T2, but is found that T1 is nearing Time_Base'Last, then
T2<<T1 will be accepted.

6.XX.6	 Implications	 for	 standardization	 	

In	 future	 standardization	 activities,	 the	 following	 items	 should	 be	 considered:	 	 	

Deleted: r

Time	 Vulnerabilities	 ISO/IEC/JTC1/SC22/WG23	 	 N0646	 11	 April	 2016	

6.YY	 Time	 Consumption	 Measurement	 	

<<<	 wrong	 title:	 should	 be	 “Time	 Consumption	 Measurement”	 (since	 space/memory	 consumption	 is	 not	
even	 mentioned,	 but	 is	 a	 major	 issue	 as	 well.)>>>	

6.YY.1	 Description	 of	 application	 vulnerability	

All	 applications	 consume	 resources	 as	 they	 execute,	 in	 particular	 Time.	 Each	 thread,	 event,	 interrupt	 and	
OS	 service	 consume	 CPU	 time	 that	 may	 be	 separately	 measurable	 by	 the	 system.	

A	 common	 paradigm	 in	 managing	 applications	 is	 to	 monitor	 such	 resource	 usage	 by	 thread	 and	 take	
action	 to	 cease	 the	 calculation	 for	 that	 thread,	 such	 as	 abort,	 raise	 exception,	 lower	 priority	 or	
suspending	 the	 thread.	 If	 the	 calculation	 cannot	 be	 completed	 in	 time	 or	 within	 the	 resource	 constraints	
imposed	 upon	 it,	 then	 the	 application	 may	 fail.	

The	 consumption	 of	 CPU	 resources	 (execution	 time)	 can	 be	 affected	 by	 changes	 in	 the	 CPU	 itself:	 for	
example,	 CPU’s	 may	 slow	 down	 to	 manage	 heat,	 resulting	 in	 more	 execution	 time	 to	 achieve	 a	 result.	
Similarly,	 cache	 misses	 due	 to	 the	 way	 a	 program	 is	 organized	 and	 executed,	 due	 to	 multiprocessor	
effects,	 can	 increase	 the	 execution	 time	 needed	 to	 complete	 a	 calculation.	 	

6.YY.2	 Cross	 references	
6.YY.3	 Mechanism	 of	 failure	 	

Many	 applications	 measure	 resource	 consumption	 to	 detect	 failures	 of	 portions	 of	 portions	 of	 the	
algorithm	 and	 to	 make	 decisions	 about	 alternative	 actions.	 For	 example,	 excessive	 consumption	 of	 CPU	
may	 indicate	 that	 a	 thread	 is	 executing	 erroneously;	 or	 that	 other	 needed	 threads	 may	 not	 be	 able	 to	
execute	 due	 to	 excessive	 resource	 consumption.	 	

Other	 factors,	 such	 a	 CPU	 speed	 changes	 and	 cache	 misses	 can	 cause	 a	 thread	 to	 consume	 significantly	
more	 CPU	 resources	 than	 expected	 to	 perform	 the	 same	 calculations.	 	

A	 thread	 consuming	 more	 resources	 than	 planned	 can	 result	 in	 missed	 deadlines	 for	 itself,	 or	 can	 take	
resources	 needed	 by	 other	 threads,	 causing	 incorrect	 processing	 or	 missed	 deadlines	 for	 other	 threads.	
Missed	 deadlines	 are	 catastrophic	 for	 hard	 real-‐time	 systems,	 and	 cover	 the	 range	 of	 causing	 wrong	
results	 through	 to	 complete	 failure	 of	 the	 application.	

6.YY.4	 Applicable	 language	 characteristics	

	

6.YY.5	 Avoiding	 the	 vulnerability	 or	 mitigating	 its	 effect	

Software developers can avoid the vulnerability or mitigate its effects in the following ways:
• Verify	 or	 test	 the	 application	 on	 systems	 that	 are	 executing	 in	 	 the	 slowest	 system	 configuration	

Deleted: Resource

Deleted:

Deleted: executing	

Time	 Vulnerabilities	 ISO/IEC/JTC1/SC22/WG23	 	 N0646	 11	 April	 2016	

• Where	 cache	 misses	 provide	 a	 significant	 potential	 hindrance,	 execute	 the	 application	 with	
cache	 disabled	

	
	
	

6.ZZ	 Missed	 Events	 or	 Deadlines	
	
6.ZZ.1	 Description	 of	 application	 vulnerability	

Many real time systems are characterized by collections of jobs waiting for a start-time for a time-based
iteration, or an event for sporadic activities. A common mistake in programming such systems is to base
the start time of the next iteration upon either a non-monotonic or a non-real time clock, or to base it upon
an offset from the start time or completion time of the last iteration. In the first case, conversion errors
and possible drift of the real time clock can cause the next iteration to be wrongly programmed. In the
second case, higher priority work may have delayed the actual start or completion of the task in an
individual iteration, resulting again in time drift.

With enough drift, an iterative task will begin missing its deadlines, and will either produce the wrong
results, or will fail completely, resulting in arbitrary failures up to catastrophic loss of the enclosing
system.

Many systems have moved to a virtualization approach to fielding systems. Sometimes the virtual system
is only an OS change, such as running Windows and Linux on the same hardware. Sometimes the virtual
system is hardware and software. Sometimes hardware is dedicated, such as 2 cores from an 8 core
system, while in others the virtual system under consideration only executes when needed. The discussion
of virtualization includes the common notions, such as VMWare™, Hypervisor™, but also include
systems as diverse as satisfying ARINC 653[ARINC 653], which uses a time-based partition approach to
schedule mixed criticality systems on a single CPU.

In any case, when a system is virtual, its connection with the real world (i.e. hardware and virtualizer)
clocks is indirect. Clocks for the virtualized system are updated when the system resumes, and time may
“jump” or may advance much faster than normal until the clocks are synchronized with the real world.
This can result in processes being mis-synchronized or missing deadlines if time jumps or progresses too
quickly for the task to get its work completed.

If an attacker is aware that an application is virtualized, or that it is depending upon a non-realtime clock,
and can determine what other applications share the same resource, they may be able to generate load for
the other virtualized applications so that the one in question can not retain enough resources to function
correctly.

Deleted: e

Deleted: virtualized

Time	 Vulnerabilities	 ISO/IEC/JTC1/SC22/WG23	 	 N0646	 11	 April	 2016	

6.ZZ.2	 Cross	 references	
6.ZZ.3	 Mechanism	 of	 failure	 	

Any	 change	 in	 the	 progression	 of	 time	 can	 result	 in	 a	 disconnect	 between	 the	 spacing	 of	 the	 delivery	 of	
time	 events	 to	 the	 application,	 and	 can	 make	 jobs	 within	 the	 application	 run	 past	 their	 deadlines	 (as	
viewed	 by	 the	 timing	 events).	

Deadline	 overrun	 is	 a	 serious	 flaw	 in	 the	 application,	 and	 usually	 results	 in	 failure	 of	 portions	 of	 the	
application	 up	 to	 catastrophic	 failure	 of	 the	 application,	 and	 may	 result	 in	 loss	 of	 the	 parent	 system.	

When	 a	 system	 is	 virtualized,	 an	 attacker	 can	 use	 influence	 over	 other	 applications	 to	 consume	
resources	 needed	 by	 the	 critical	 system	 that	 could	 trigger	 such	 systems.	 	

Programming	 mistakes,	 such	 as	 failure	 to	 use	 monotonic	 clocks	 to	 schedule	 iterations,	 or	 incorrectly	
programming	 the	 next	 iteration	 calculations	 (such	 as	 setting	 the	 next	 wake	 time	 based	 on	 the	 the	 start	
of	 the	 current	 wake	 time	 vs	 a	 fixed	 offset	 from	 the	 previous	 scheduled	 start	 time)	 result	 in	 drift	 or	 jitter	
which	 may	 result	 in	 missed	 real	 world	 inputs	 or	 loss	 of	 synchronization	 with	 external	 systems.	

6.ZZ.4	 Applicable	 language	 characteristics	
6.ZZ.5	 Avoiding	 the	 vulnerability	 or	 mitigating	 its	 effect	

Software developers can avoid the vulnerability or mitigate its effects in the following ways:

• Always set the next (absolute) start time for the iteration from the the start time of the previous
programmed iteration.

• Only use the real-time clock in scheduling tasks or events.
• Create management jobs that can monitor and detect

	

