
DRAFT	C++	ANNEX	OUTLINE
C	annex	
section

Title Identifi
er

Status

D.3 Type	System [IHN] As	C,	plus…

D.4 Bit	Representations [STR] As	C

D.5 Floating-point	Arithmetic [PLF] As	C
D.6 Enumerator	Issues [CCB] As	C,	plus…

D.7 Numeric	Conversion	Errors [FLC] As	C
D.8 String	Termination [CJM] As	C,	plus…

D.9 Buffer	Boundary	Violation	
(Buffer	Overflow)

[HCB] As	C,	plus…

D.10 Unchecked	Array	Indexing [XYZ] As	C,	plus…
D.11 Unchecked	Array	Copying [XYW] As	C,	plus…



D.12 Pointer	Casting	and	Pointer	
Type	Changes

[HFC] As	C

D.13 Pointer	Arithmetic [RVG] As	C

D.14 Null	Pointer	Dereference [XYH] As	C

D.15 Dangling	Reference	to	Heap [XYK] As	C,	plus…

D.16 Arithmetic	Wrap-around	
Error

[FIF] As	C,	plus…

D.17 Using	Shift	Operations	for	
Multiplication	and	Division

[PIK] As	C

D.18 Sign	Extension	Error [XZI] As	C
D.19 Choice	of	Clear	Names [NAI] As	C,	plus…

D.20 Dead	Store [WXQ] As	C

D.21 Unused	Variable [YZS] As	C
D.22 Identifier	Name	Reuse [YOW] As	C,	plus…

D.23 Namespace	Issues [BJL] Not	covered	by	
C

D.24 Initialization	of	Variables [LAV] As	C,	plus…



D.25 Operator	Precedence/Order	
of	Evaluation

[JCW] As	C,	plus…

D.26 Side-effects	and	Order	of	
Evaluation

[SAM] As	C

D.27 Likely	Incorrect	Expression [KOA] As	C

D.28 Dead	and	Deactivated	Code [XYQ] As	C,	plus…

D.29 Switch	Statements	and	Static	
Analysis

[CLL] As	C,	plus…

D.30 Demarcation	of	Control	Flow [EOJ] As	C
D.31 Loop	Control	Variables [TEX] As	C,	plus…

D.32 Off-by-one	Error [XZH] As	C,	plus…

D.33 Structured	Programming [EWD] As	C,	plus…

D.34 Passing	Parameters	and	
Return	Values

[CSJ] As	C,	plus…

D.35 Dangling	References	to	Stack	
Frames

[DCM] As	C



D.36 Subprogram	Signature	
Mismatch

[OTR] As	C,	minus…

D.37 Recursion [GDL] As	C
D.38 Ignored	Error	Status	and	

Unhandled	Exceptions
[OYB] As	C,	plus…

D.39 Termination	Strategy [REU] As	C

D.40 Type-breaking	
Reinterpretation	of	Data

[AMV] As	C



D.41 Memory	Leak [XYL] As	C,	plus…

D.42 Templates	and	Generics [SYM] Not	covered	by	
C

D.43 Inheritance [RIP] Not	covered	by	
C

D.44 Extra	Intrinsics [LRM] As	C
D.45 Argument	Passing	to	Library	

Functions
[TRJ] As	C

D.46 Inter-language	Calling [DJS] As	C
D.47 Dynamically-linked	Code	and	

Self-modifying	Code
[NYY] As	C

D.48 Library	Signature [NSQ] As	C

D.49 Unanticipated	Exceptions	
from	Library	Routines

[HJW] As	C

D.50 Pre-processor	Directives [NMP] As	C,	plus…



D.51 Suppression	of	Language-
defined	Run-time	Checking

[MXB] As	C

D.52 Provision	of	Inherently	
Unsafe	Operations

[SKL] As	C

D.53 Obscure	Language	Features [BRS] As	C,	plus…

D.54 Unspecified	Behaviour [BQF] As	C
D.55 Undefined	Behaviour [EWF] As	C,	plus…

D.56 Implementation-defined	
Behaviour

[FAB] As	C

D.57 Deprecated	Language	
Features

[MEM] As	C

D.58 Concurrency	–	Activation [CGA]
Not	covered	by	
C

D.59 Concurrency	–	Directed	termination[CGT]
Not	covered	by	
C

D.60 Concurrent	Data	Access [CGX]
Not	covered	by	
C

D.61 Concurrency	–	Premature	Termination[CGS]
Not	covered	by	
C

D.62 Protocol	Lock	Errors [CGM]
Not	covered	by	
C

D.63 Inadequately	Secure	Communication	of	Shared	Resources[CGY]
Not	covered	by	
C

D.64 Use	of	unchecked	data	from	an	uncontrolled	or	tainted	source[EFS]
Not	covered	by	
C

D.65 Uncontrolled	Format	String [SHL]

Not	covered	by	
C



JTC	1/SC	22/WG	23	Document	N0563
Additional	notes

C++	adds	classes,	namespaces	and	an	explicit	bool	type.	Vulnerabilities	relating	to	
these	are	addressed	later
Type	related	issues	are:
-	C++	adds	the	ability	to	implicitly	create	an	anonymous	class	objects	if	a	value	is	used	
as	a	function	parameter	at	a	point	where	a	class	object	is	expected	(if	the	value	is	not	
itself	of	the	correct	class	type),	and	the	class	has	a	constructor	that	can	take	a	single	
parameter	of	the	value's	type.	Programmers	frequently	find	this	behaviour	confusing	
and	it	effectively	breaks	strong	typing,	so	its	recommended	that	it	is	precluded	by	
using	the	'explicit'	keyword	on	any	constructor	capable	of	taking	a	single	parameter	
(other	than	the	copy	constructor)
-	C++	adds	a	second	use	of	the	keyword	'static'	(compared	to	C).	A	static	class	
member	is	a	single	value,	accessible	by	all	objects	of	that	class	type.	Similarly	static	
member	functions	are	class	member	functions	that	don't	access	any	non-static	class	
members.	A	static	member	functions	can	be	called	without	creating	a	class		object.	
C++	also	extends	the	use	of	the	'const'	keyword,	so	a	const	member	function	does	not	
modify	any	non-static	class	members.	It	is	recommended	that
-	const	functions	shall	not	return	non-const	pointers	or	references	to	class	members	
(breaks	encapsulation	by	allowing		modification	of	non-static	members)
-	member	functions	that	can	be	static	shall	be	static
					otherwise,	if	they	can	be	const	they	shall	be	const	

Not	a	C++	issue,	but	missing	from	the	C	advice
If	you	have	a	switch	statement	on	an	enum	type	with	cases	for	each	of	the	enum	
members,	don't	add	a	default	clause	with	the	aim	of	catching	any	corrupted	values	-	
the	compiler	is	likely	to	optimise	it	away

Rather	than	raw	arrays	of	characters,	use	the	string	class	from	the	standard	library

The	C	advice	includes	checking	that	array/buffer	bounds	are	respected.	One	way	of	
ensuring	this	in	C++	is	to	encapsulate	the	data	array	in	a	class,	and	only	have	access	
via	member	functions	that	ensure	the	legality	of	indexing	-	though	this	raise	a	
strategic	issue	of	what	to	do	if	an	attempt	to	access	outside	the	permitted	range	is	
detected.		In	many	cases,	use	of	an	STL	template,	such	as	vector,	will	provide	the	
required	functionality
as	[HCB]	D.9
as	[HCB]	D.9



Consider	encapsulating	the	memory	to	be	dynamically	allocated	in	a	class,	that	
handles	freeing	in	the	class	destructor	-	ensuring	that	it	can	only	be	released	once	
(e.g.	have	a	non-public	member	pointer	for	the	array,	initialised	to	NULL	-	reset	to	
NULL	if	it	is	necessary	to	delete	allocated	memory,	and	with	any	allocated	memory	
deleted	if	not	NULL	in	destructor).	This	can	also	help	with	memory	leaks.		See	[REU]	
D.39	for	ensuring	the	destructor	is	called
Not	a	C++	issue,	but	not	mentioned	in	the	C	annex	-	both	C	and	C++	define	different	
behaviours	for	signed	and	unsigned	arithmetic.	Underflow/Overflow	for	signed	
operations	is	undefined	behaviour.	For	unsigned	arithmetic,	the	behaviour	is	well	
defined	-	but	may	be	unexpected	(255+1	==	0	for	unsigned	char)	-	so	both	cases	are	
better	avoided

<This	item	to	be	dropped>
An	additional	problem	can	arise	in	C++	with	objects	having	similar	names	appearing	in	
multiple	scopes.	Where	a	fully	qualified	name	is	used,	the	intention	is	clear,	but	in	a	
member	function	or	after	a	using	statement	it	may	be	unclear	whether	a	non-local	
name	refers	to	an	object	in	file,	class	or	namespace	scope.	See	[YOW]	D.22	and	[BJL]	
D.23	for	ADL	comments

As	[NAI]	D.19,	further	confusion	can	arise	where	the	same	name	is	used	in	multiple	
namespace	scopes.	The	rules	for	deciding	which	candidate	object	is	to	be	used	are	
complex	and	often	not	well	understood,	in	particular	the	(implicit)	use	of	Argument	
Dependant	Lookup	can	cause	an	object	to	be	selected	from	a	namespace	other	than	
the	one	the	programmer	expects	(banned	by	MISRA)
See	[NAI]	&	[YOW]		D.19/22.		In	addition,	C++	allows	anonymous	namespaces	-	which	
in	effect	give	their	members	C	static	linkage.	For	this	reason,	an	anonymous	
namespace	should	not	occur	in	a	header	file	included	in	multiple	translation	units.	
Each	inclusion	will	generate	a	separate	copy	of	its	contents
For	class	objects,	members	should	be	initialised	by	the	class	constructor



I	think	we've	added	to	confusion	here	by	combining	operator	precedence	with	order	
of	evaluation.	This	leads	to	a	statement	in	the	C	annex	that's	just	plain	wrong	"The	
order	of	evaluation	of	the	operations	in	C	is	clearly	defined,	as	is	the	order	of	
evaluation".		Its	operator	precedence	that	is	well	defined.	Order	of	evaluation	is	
explicitly	unspecified	-	but	isn't	relevant	until	you	consider	side	effects	[SAM]	D.26

The	first	bullet	of	the	advice	in	the	body	of	the	TR	is	"The	developer	should	endeavour	
to	remove	dead	code	from	an	application	unless	its	presence	serves	a	purpose".		One	
of	the	purposes	we	mention	is	as	defensive	code	-	however	we	should	point	out	that	
compilers	may	recognise	the	dead	code	and	optimise	it	away,	so	the	defensive	code	
the	programmer	thinks	they	have	may	not	actually	exist	-	see	note	on	[CCB]	D.6

See	Notes	on	[CCB]D.6	and	[XYQ]	D.28

We	should	probably	say	don't	use	a	float	as	a	control	loop	variable	-	certainly	not	with	
a	test	for	equality

We	could	recommend	using	STL	container	classes,	and	iterators	based	on	
begin()/end()			…		but	any	programmer	sophisticated	enough	to	do	that	could	
probably	get	the	loop	right	anyway!
Control	can	be	incorrectly	transferred	into	an	exception	try	or	catch	block	by	a	goto	or	
poorly	structured	switch	statement.	Such	transfers	should	be	avoided

C++	has	passing	by	pointers	or	references	(syntactically	different,	but	logically	almost	
identical)
Additional	advice	for	pointer/reference	parameters	-	not	mentioned	by	the	C	annex,	
but	equally	relevant	for	pointers:
-	where	a	value	is	passed	by	pointer/reference	because	its	too	big	to	copy	efficiently,	
and	there	is	no	intention	to	modify	it,	make	the	parameter	const
-	consider	documenting	the	intended	use	of	pointer/reference	parameters	with	
'pseudo	keywords'	such	as	_IN	_OUT	or	_INOUT		(#defined	to	map	to	nothing)



The	issue	of	incorrect	number	of	parameters	isn't	relevant	to	C++,	as	use	before	
declaration	isn't	permitted.	However,	the	advice	on	limiting	the	use	of	functions	with	
ellipsis	(…)	is	still	relevant
Probably	need	to	say	something	about	being	careful	with	overloading,	and	not	
permitting	explicit	class	construction

C	annex	advice	on	the	use	of	errno	still	applies.	
C++	adds	an	exception	mechanism.	Some	of	the	issues	with	exceptions	are		(see	also	
[REU]	D.39):
-		(to	ensure	the	correct	handler	is	used)		an	exception	object	should	not	have	pointer	
type
-	an	exception	of	class	type	should	be	caught	by	reference
-	NULL	should	not	be	thrown	explicitly	(its	caught	as	an	int,	not	a	pointer)
-	where	there	are	multiple	handlers	for	exceptions	of	a	class	type	and	some	of	its	
bases,	these	should	be	ordered	from	most-derived	to	base	(otherwise	the	wrong	
handler	will	be	used)
-	where	there	are	multiple	handlers	including	a	'catch-all'	(...),	the	catch-all	must	
always	be	last	

A	common	programming	strategy	in	C++	is	to	release	resource/free	memory	during	
the	destruction	of	class	objects.	If	the	program	exits	'normally',	by	main	returning,	
then	the	destructors	of	all	static	class	objects	will	be	called,	and	(in	getting	back	to	
main),	as	each	function	is	removed	from	the	stack,	the	destructor	of	all	local	class	
objects	also	gets	called.	This	is	also	true	if	a	function	exits	due	to	an	exception,	the	
stack	is	unwound	from	the	point	the	exception	is	thrown	to	the	point	where	it	is	
handled.	However,	there	are	a	number	of	fault	conditions	associated	with	exception	
handling	-	such	as	not	having	an	appropriate	handler	or	throwing	an	exception	in	a	
destructor	that	is	called	during	the	stack	unwinding	as	a	previous	exception	is	being	
handled,	that	lead	to	the	call	of	library	function	terminate().	This	closes	the	program	
immediately,	without	unwinding	the	stack	and	destroying	class	objects.	This	should	
be	avoided.	Either:
-	Don't	use	exception	handling	or	libraries	that	may	throw	exceptions,	or	all	of	the	
following:
-	ensure	that	every	exception	explicitly	thrown	in	the	program		has	a	handler
-	ensure	the	program	has	a	catch	all	handler	in	main
-	don't	throw	exceptions	in	class	destructors
-	don't	throw	exceptions	in	class	constructors,	unless	it	can	be	shown	that	no	static	
instances	of	the	class	are	ever	constructed		(static	construction	happens	before	main,	
so	an	exception	from		the	construction	of	a	static	class	object	cannot	be	caught	-	note	
that	its	only	exceptions	that	propagate	from	the	function		that	need	to	be	banned.	Its	
OK	if	they	are	handled	locally)
-	generating	the	object	to	be	thrown	should	not	itself	cause	an	exception	to	be	
thrown
-	a	rethrow	statement	(throw;)	shall	only	be	used	in	a	catch	handler



C	annex	advice	still	applies.	
In	C++	encapsulation	of	allocated	data	in	a	class	that	ensures	release	on	destruction	
can	help	mitigate	the	problem	-	but	see	[REU]	D.39	for	issues	that	can	break	this	
model
	-	A	class	(whether	or	not	it’s	a	template)	may	have	template	member	functions.	If	
there	is	a	templated	constructor	with	a	single	parameter	or	a	templated	assignment	
operator,	these	hide	the	default	copy	constructor	and	assignment	operators	
respectively.	If	these	default	functions	are	required,	they	must	be	provided	explicitly
-	For	clarity,	all	specializations	of	a	template	should	be	in	the	same	file	as	the	
template	being	specialised
-	Also	for	clarity,	whenever	a	template	class	is	instantiated	none	of	its	member	
functions	should	be	ill-formed		(if	a	function	is	not	actually	used	in	a	program,	the	
compiler	doesn't	have	to	compile	it,	so	may	contain	a	function	applied	to	the	
template	parameter	type	that	doesn't	exist.	This	is	confusing	for	maintenance.		E.g.	a	
generic	container	class	with	a	sort	function	that	uses	the	operator	>,	if	this	is	used	to	
construct	a	container	for	a	class	type	that	doesn't	have	operator>	defined	-	if	is	
strictly	legal	provided	the	sort	function	isn't	called)	E42
C++'s	class	system	allows	single	and	multiple	inheritance.	It	also	allows	'virtual	
inheritance'	where	a	single	base	class	object	is	shared	by	multiple	derived	class	
objects,	e.g.	If	class	D	is	derived	from	classes	C	and	B,	both	of	which	are	derived	from	
A.	Then	normally,	when	a	class	D	object	is	constructed,	it	will	contain	two	copies	of	
the	A	object.	Under	virtual	inheritance,	the	B	and	C	objects	is	effect	share	a	single	A	
object.	This	can	lead	to	confusion	over	member	naming,	so	its	recommended	that:
-	all	entities	in	a	multiple	inheritance	hierarchy	same	have	unique	names
-	bases	classes	shall	not	be	both	virtual	and	non-virtual	in	the	same	hierarchy

Inheritance	also	allows	the	use	of	virtual	functions	(polymorphism).	Undefined	
behaviour	occurs	if	a	program	attempts	to	make	use	of	a	virtual	function	before	the	
mechanism	that	supports	it	is	fully	established.	That	is	there	should	be	no	calls	to	a	
virtual	member	of	a	class	in	that	class'	constructor

<I	think	C++	uses	the	same	calling	strategy	as	C>

For	libraries	written	in	C++,	it	should	be	assumed	that	they	may	throw	exceptions	
(unless	they	are	explicitly	documented	as	not	doing	so).	See	[REU]	D.39

Prefer	const	value	declarations	to	#defines



The	C	annex	argues	that	it	doesn't	provide	runtime	checks,	so	you	cannot	turn	them	
off.		I	don't	think	C++	has	added	any	(unless	some	of	the	RTI	behaviour	counts	-	in	
which	case	we	should	say	don't	suppress	RTI	where	any	class	has	virtual	objects	-	
'cause	I'm	fairly	sure	its	a	compiler	option	-	at	least	for	VS)

C++	is	a	far	larger	language	than	C,	so	there's	both	the	issue	of	features	that	the	
programmer	may	be	unfamiliar	with	and	the	interaction	of	features	that	are	each	
inherently	complex.	The	referenced	C++	coding	standards	(MISRA	and	JSF	-	as	a	
minimum)	bar	the	use	of	some	features/combinations	because	experience	has	shown	
that,	whilst	the	behaviour	of	a	particular	construct	may	be	accurately	defined	and	
implemented,	programmers	don't	necessarily	understand	all	the	consequences	of	its	
use.	two	specific		examples	being	ADL	(Argument	Dependant	Lookup)	and	the	use	of	
virtual	class	hierarchies

A	specific	C++	problem	-	the	need	to	respect	the	One	Definition	Rule	(ODR	needs	
explaining	here	or	in	an	introduction)	-	this	can	be	assured	by:
-	any	entity	used	in	multiple	translation	units,	shall	be	declared	in	a	single	file
-	if	such	a	declaration	is	in	a	header	file	included	in	multiple	translation	units,	any	
preprocessor	directives	that	may	modify	the	declaration	must	be	the	same	at	all	
points	of	inclusion	(e.g.	a	field	of	struct	cannot	#ifdef'ed	out	in	some	uses	but	not	
others)



Notes	from	meeting

Put	vulnerabilities	here.	Put	
language	description	in	.4.

Meta-comment	-	consider	using	
exceptions	to	report	all	errors	
rather	than	silence	or	error	
values.	-	place	in	.4.

add	to	TR24772-3	6.6.2?

thought	-	advice,	when	
interfacing	through	C	strings,	do		
not	declare	and	use	variables	of	
the	C	string	type;	rather	use	C++	
functional	equivalents.
JSF	reference?	MISRA	reference.	
Vector	indexing	vs	C	array	
indexing.	Advice	to	use	X.at(i)



C++	has	own	casting	model	and	
keywords	static_cast,	…	Needs	to	
be	evaluated.
Sect	4,	C++	has	references	as	well	
as	pointers.	Avoids	change	of	
notation	in	indexing	structs	and	
pointers	to	structs.	Cannot	be	
overwritten
Consider	using	a	C++	"reference"	
type	instead	of	pointer	if	the	null	
value	does	not	need	to	be	
representable.

Add	to	-3	explicitly	test	for	wrap-
around??

Vulnerability	on	unused	fields	in	
structs/records	and	hidden	
channels?	For	-1
ditto
Virtual	hierarchies	introduce	
issues	through	declarations	of	
members	to	derived	classes,	etc.	
Check	that	overloading	of	
operators	is	handled.



Change	-3	to	be	correct.	
Operator	order	of	evaluation	
clearly	defined	but	order	of	
evaluation	of	operands	is	
explicitly	undefined.	Consider	
impact	of	complexity	to	
programmer	understanding	.

Possible	-	more	thinking	needed.			
Consider	removing,	and	maybe	
rename	as	"common	
programmer	errors"	and	maybe	
combine	with	"onscure	language	
features".
Notion	of	obviscation,	volatiles	to	
retain	apparent	dead	code	may	
be	nneded.

in	-1,	add	no	FP	loop	counter	In	-
3,	add	"in	addition	to	guidance	in	-
1"

add	MISRA	C++	
recommendations.	Consider	if	
this	applies	to	C	nested	blocks	
with	declarations.



Difference	between	f();	and	
f(void)	-	document.	For	C	and	
C++?

	Consider	Ada	annex	for	this,	and	
maybe	missing	advice	in	-2.

Dash	1	may	need	a	finalization	
vulnerability.

Consider	dynamic	casts.	
Mitigation	of	casting	between	
subclasses.



Need	a	writeup	in	.4	about	how	
templates	work.	Consider	
"concepts".	Look	at	-1	to	de-c++	
it.

Look	to	-1	and	possibly	add	cases	
to	the	discussion	in	.3.																							
Look	at	hiding	in	C++	in	this	
context.

declaration	of	extern	functions	
with	parameters.	How	do	
prototypes	affect	this?	Any	other	
mechanisms?	Mismatch	of	
sources.	Check	-1	for	all	issues.
Dash	1,	calling	strategy?

C++	has	a	self-documenting	
feature	to	document	exceptions	
that	can	be	thrown	(check?)
Not	strictly	true.			Consider	
exceptions	being	thrown.



As	C,	plus.	Can	they	be	
suppressed?	

Vector	indexing	vs	C	array	
indexing.	Advice	to	use	X.at(i)
Consider	removing,	and	maybe	
rename	as	"common	
programmer	errors"	and	maybe	
combine	with	"likely	incorrect	
expression".

Check.
Check.	Recommendation	to	
language	definers	is	to	provide	
the	same	annex	as	C	provides.

Check.

Check.

Mitigation	-	use	exclusively	C++	
IO	mechanisms	(not	the	only	
advice).


