1 ISO/IEC JTC 1/SC 22/WG 23 N 0332

2 Revised proposal for separation of XYY into two descriptions

3	Date Contributed by Original file name	25 March 2011 Jim Moore	
	Notes	Replaces N0321, Action Item #17-07	
4 5 6 7	Meeting #17 marked up my original proposal. Action Item #17-07 instructs me to revise the proposal accordingly and submit it for inclusion in the baseline.		
8 9	6.x Arithmetic Wrap-around Error [FIF]		
10 11	6.x.1 Description of application vulnerability		
12 13 14 15 16	 Wrap-around errors can occur whenever a value is incremented past the maximum or decremented past the minimum value representable in its type and, depending upon whether the type is signed or unsigned, the specification of the language semantics and/or implementation choices 		
17	"wraps around" to an unexpected value. This vulnerability is related to Logical Wrap-around Error [PIK].		
18 19 20	= = = Footnote: This description is derived from Wrap-Around Error [XYY], which appeared in Edition 1 of this international technical report.		
21	6.x.2 Cross reference		
23	CIVE		
24	CWE:		
25	128. Wrap-around Error		
20	ISE AV Pulse: 164 and 15		
27	MISRA C 2004: 10.1 to 10.6 12.8 and 12.11		
29	MISRA $C ++ 2008: 2-13-3: 5-0-3 \text{ to } 5-0-10 \text{ and } 5-19-1$		
30 31	CERT C guidelines: INT30-C, INT32-C, and INT34-C		
32 33	6.x.3 Mechanism of failure		
34 35 36 37 38	Due to how arithmetic is performed by computers, if a variable's value is increased past the maximum value representable in its type, the system may fail to provide an overflow indication to the program. One of the most common processor behaviour is to "wrap" to a very large negative value, or set a condition flag for overflow or underflow, or saturate at the largest representable value.		
40	Wrap-around ofter	generates an unexpected negative value; this unexpected value may cause a	

41 loop to continue for a long time (because the termination condition requires a value greater than

- 42 some positive value) or an array bounds violation. A wrap-around can sometimes trigger buffer
- 43 overflows that can be used to execute arbitrary code.
- 44

45 It should be noted that the precise consequences of wrap-around differ depending on:

- Whether the type is signed or unsigned
- Whether the type is a modulus type
- Whether the type's range is violated by exceeding the maximum representable value or falling short of the minimum representable value
- 50 The semantics of the language specification
 - Implementation decisions
- 52 However, in all cases, the resulting problem is that the value yielded by the computation may be 53 unexpected.
- 54

59

60

62

68

69

73

74

75

51

- 55 6.x.4 Applicable language characteristics
- This vulnerability description is intended to be applicable to languages with the following
 characteristics:
 - Languages that do not trigger an exception condition when a wrap-around error occurs.
- 61 6.x.4 Avoiding the vulnerability or mitigating its effects
- 63 Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:
- Determine applicable upper and lower bounds for the range of all variables and use
 language mechanisms or static analysis to determine that values are confined to the
 proper range.
 Analyze the software using static analysis looking for unexpected consequences of
 - Analyze the software using static analysis looking for unexpected consequences of arithmetic operations.
- 6.x.6 Implications for standardization
- 72 In future standardization activities, the following items should be considered:
 - Language standards developers should consider providing facilities to specify either an error, a saturated value, or a modulo result when numeric overflow occurs. Ideally, the selection among these alternatives could be made by the programmer.
- 7677 6.y Using Shift Operations for Multiplication and Division [PIK]
- 7879 6.y.1 Description of application vulnerability
- 80
- 81 Using shift operations as a surrogate for multiply or divide may produce an unexpected value
- 82 when the sign bit is changed or when value bits are lost. This vulnerability is related to
- 83 Arithmetic Wrap-around Error [FIF].
- 84 ===
- 85 Footnote: This description is derived from Wrap-Around Error [XYY], which appeared in Edition 1 of
- 86 this international technical report.
- 87 ===

88	6.x.2 Cross reference		
89			
90	CWE:		
91	128. Wrap-around Error		
92	190: Integer Overflow or Wraparound		
93	JSF AV Rules: 164 and 15		
94	MISRA C 2004: 10.1 to 10.6, 12.8 and 12.11		
95	MISRA C++ 2008: 2-13-3, 5-0-3 to 5-0-10, and 5-19-1		
96	CERT C guidelines: INT30-C, INT32-C, and INT34-C		
97			
98	6.y.3 Mechanism of failure		
99			
100	Shift operations intended to produce results equivalent to multiplication or division fail to		
101	produce correct results if the shift operation affects the sign bit or shifts significant bits from the		
102	value.		
103			
104	Such errors often generate an unexpected negative value; this unexpected value may cause a loop		
105	to continue for a long time (because the termination condition requires a value greater than some		
106	positive value) or an array bounds violation. The error can sometimes trigger buffer overflows		
107	that can be used to execute arbitrary code.		
108			
109	6.y.4 Applicable language characteristics		
110			
111	This vulnerability description is intended to be applicable to languages with the following		
112	characteristics:		
113	• Languages that permit logical shift operations on variables of arithmetic type.		
114			
115	6.y.4 Avoiding the vulnerability or mitigating its effects		
116			
117	Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:		
118	• Determine applicable upper and lower bounds for the range of all variables and use		
119	language mechanisms or static analysis to determine that values are confined to the		
120	proper range.		
121	• Analyze the software using static analysis looking for unexpected consequences of shift		
122	operations.		
123	• Avoid using shift operations as a surrogate for multiplication and division. Most		
124	compilers will use the correct operation in the appropriate fashion when it is applicable.		
125			
126	6.y.6 Implications for standardization		
127			
128	In future standardization activities, the following items should be considered:		
129	• Not providing logical shifting on arithmetic values or flagging it for reviewers.		
130			