
ISO/IEC JTC 1/SC 22/OWGV N 0228
Programming languages – C –Designated constructs, by Olwen Morgan and Metriqa,
Ltd

Date 16 October 2009
Contributed by Steve Michell (Canada)
Original file name Microsoft Word - Metriqa C Coding Standard.pdf
Notes

1

Moore, Jim

From: Olwen Morgan [olwen.morgan@btinternet.com]
Sent: Friday, October 16, 2009 7:58 AM
To: Moore, Jim
Subject: RE: [SC22-OWGV] Metriqa C Coding Standard

Jim,

As you suggested:

"The author and owner, Olwen Morgan, of the attached document,
"Programming languages – C – Designated constructs", hereby grants
permission for ISO/IEC JTC1/SC22/WG23 to post the document on its
website and to adapt the text of the document for use in standards and
other documents."

Regards,
Olwen Morgan

WD/MS1

Working Draft

Programming languages – C –

Designated constructs

Copyright © 1992-2007 Olwen Morgan and Metriqa Ltd.

All rights reserved

Contents

0 Foreword .. 10

0.1 Language restriction .. 10

0.2 Characterising constructs needing to be restricted in C ... 10

0.3 Basis for construction of coding manuals .. 11

0.4 Relation to other coding manuals Error! Bookmark not defined.

1 Scope ... 12

2 References ... 12

2.1 Normative references ... 12

2.2 Informative references ... 12

3 Definitions and conventions .. 14

3.1 Terms, abbreviations and acronyms .. 14

3.2 Conventions for syntactic description ... 18

3.2.1 Orthosyntax.. 18

3.2.2 Parasyntax .. 19

3.2.3 Prose conventions .. 19

3.3 Editorial presentation ... 19

3.4 Designated constructs .. 20

3.4.1 Definitions ... 20

3.4.2 Numbering ... 20

3.4.3 Rationales .. 20

B.1 Non-functional attributes of software Error! Bookmark not defined.

B.2 Dependability attributes ... 20

B.3 Relationship of non-functional attributes and language usage 21

B.4 Basis for identification of designated constructs Error! Bookmark not defined.

B.5 Analysability and predictable execution .. 21

4 Compliance ... 22

4.1 Coding manuals ... 22

4.1.1 Criteria ... 22

4.2 Diagnostic processors .. 22

4.2.1 Criteria ... 22

4.2.2 Claims .. 22

5 Environment ... 23

5.1 Conceptual models (NR) .. 23

5.1.1 Translation environment .. 23

5.1.2 Execution environments .. 23

5.2 Environmental considerations ... 25

5.2.1 Character sets ... 25

5.2.2 Character display semantics (NR) .. 26

5.2.3 Signals and interrupts (NR) .. 26

5.2.4 Environmental limits ... 26

6 Language .. 29

6.1 Notation (NR) ... 29

6.2 Concepts .. 29

6.2.1 Scopes of identifiers .. 29

6.2.2 Linkages of identifiers ... 29

6.2.3 Name spaces of identifiers ... 29

6.2.4 Storage durations of identifiers .. 30

6.2.5 Types (NR) ... 30

6.2.6 Representations of types .. 30

6.2.7 Compatible and composite types ... 30

6.3 Conversions ... 30

6.3.1 Arithmetic operands (NR) .. 30

6.3.2 Other operands ... 31

6.4 Lexical elements .. 32

6.4.1 Keywords ... 32

6.4.2 Identifiers ... 33

6.4.3 Universal character names (NR) ... 34

6.4.4 Constants ... 34

6.4.5 String literals .. 38

6.4.6 Punctuators .. 39

6.4.7 Header names... 40

6.4.8 Preprocessing numbers .. 41

6.4.9 Comments .. 41

6.5 Expressions .. 43

6.5.1 Primary expressions ... 43

6.5.2 Postfix operators .. 44

6.5.3 Unary operators ... 49

6.5.4 Cast operators .. 52

6.5.5 Multiplicative operators ... 53

6.5.6 Additive operators ... 54

6.5.7 Bitwise shift operators ... 56

6.5.8 Relational operators ... 56

6.5.9 Equality operators .. 58

6.5.10 Bitwise AND operator ... 59

6.5.11 Bitwise exclusive OR operator .. 59

6.5.12 Bitwise inclusive OR operator ... 60

6.5.13 Logical AND operator ... 60

6.5.14 Logical OR operator .. 61

6.5.15 Conditional operator .. 62

6.5.16 Assignment operator .. 63

6.5.17 Comma operator .. 69

6.6 Constant expressions ... 69

6.7 Declarations ... 71

6.7.1 Storage-class specifiers .. 73

6.7.2 Type specifiers ... 73

6.7.3 Type qualifiers ... 78

6.7.4 Function specifiers ... 78

6.7.5 Declarators ... 79

6.7.6 Type names .. 83

6.7.7 Type definitions ... 84

6.7.8 Initialisation ... 84

6.8 Statements and blocks.. 87

6.8.1 Labelled statement ... 87

6.8.2 Compound statement ... 88

6.8.3 Expression and null statements .. 88

6.8.4 Selection statements ... 88

6.8.5 Iteration statements .. 91

6.8.6 Jump statements ... 93

6.9 External definitions .. 96

6.9.1 Function definitions ... 96

6.9.2 External object definitions ... 97

6.10 Preprocessing directives .. 98

6.10.1 Conditional inclusion ... 99

6.10.2 Source file inclusions ... 101

6.10.3 Macro replacement .. 101

6.10.4 Line control .. 105

6.10.5 Error directive .. 106

6.10.6 Pragma directive .. 106

6.10.7 Null directive ... 107

6.10.8 Predefined macro names .. 107

6.10.9 Pragma operator ... 108

6.11 Future language directions ... 109

6.11.1 Floating types (NR) .. 109

6.11.2 Linkages of identifiers (NR) ... 109

6.11.3 External names (NR) .. 109

6.11.4 Character escape sequences (NR) ... 109

6.11.5 Storage-class specifiers (NR) ... 109

6.11.6 Function declarators (NR) .. 109

6.11.7 Function definitions (NR) ... 109

6.11.8 Pragma directives (NR) .. 109

6.11.9 Predefined macro names (NR) .. 109

7 Library .. 110

7.1 Introduction ... 110

7.1.1 Definitions of terms (NR) ... 110

7.1.2 Standard headers (NR) .. 110

7.1.3 Reserved identifiers (NR) ... 110

7.1.4 Use of library functions (NR) ... 110

7.2 Diagnostics <assert.h> ... 111

7.2.1 Program diagnostics ... 111

7.3 Complex arithmetic <complex.h> ... 112

7.3.1 Introduction (NR) ... 112

7.3.2 Conventions (NR) ... 112

7.3.3 Branch cuts (NR) .. 112

7.3.4 The CX_LIMITED_RANGE pragma ... 112

7.3.5 Trigonometric functions .. 112

7.3.6 Hyperbolic functions ... 113

7.3.7 Exponential and logarithmic functions .. 114

7.3.8 Power and absolute-value functions .. 114

7.3.9 Manipulation functions .. 114

7.4 Character handling <ctype.h> .. 116

7.4.1 Character classification functions .. 116

7.4.2 Character case mapping function ... 116

7.5 Errors <errno.h> .. 117

7.6 Floating-point environment <fenv.h> ... 118

7.6.1 The FENV_ACCESS pragma ... 118

7.6.2 Floating-point exceptions .. 119

7.6.3 Rounding ... 119

7.6.4 Environment .. 119

7.7 Characteristics of floating types <float.h> (NR) .. 120

7.8 Format conversion of integer types <inttypes.h> .. 121

7.8.1 Macros for format specifiers .. 121

7.8.2 Functions for greatest-width integer types ... 123

7.9 Alternative spellings <iso646.h> ... 124

7.10 Sizes of integer types <limits.h> (NR) .. 125

7.11 Localisation ... 126

7.11.1 Locale control .. 126

7.11.2 Numeric formatting convention enquiry .. 126

7.12 Mathematics <math.h> .. 127

7.12.1 Treatment of error conditions (NR) .. 127

7.12.2 The FP_CONTRACT pragma ... 127

7.12.3 Classification macros ... 128

7.12.4 Trigonometric functions .. 128

7.12.5 Hyperbolic functions ... 129

7.12.6 Exponential and logarithmic functions .. 129

7.12.7 Power and absolute value functions... 131

7.12.8 Error and gamma functions ... 131

7.12.9 Nearest integer functions ... 132

7.12.10 Remainder functions .. 133

7.12.11 Manipulation functions .. 133

7.12.12 Maximum, minimum and positive difference functions 134

7.12.13 Floating multiply-add .. 134

7.12.14 Comparison macros ... 134

7.13 Nonlocal jumps <setjmp.h> ... 135

7.13.1 Save calling environment .. 135

7.13.2 Restore calling environment .. 135

7.14 Signal handling functions <signal.h> .. 136

7.14.1 Specify signal handling .. 136

7.14.2 Send signal ... 136

7.15 Variable arguments <stdarg.h> .. 137

7.15.1 Variable argument list access macros .. 137

7.16 Boolean type and values <stdbool.h> .. 138

7.17 Common definitions <stddef.h> .. 139

7.18 Integer types <stdint.h> ... 140

7.18.1 Integer types... 140

7.18.2 Limits of specified-width integer types ... 141

7.18.3 Limits of other integer types .. 142

7.18.4 Macros for integer constants .. 142

7.19 Input/output <stdio.h> ... 143

7.19.1 Introduction.. 143

7.19.2 Streams (NR) .. 144

7.19.3 Files (NR) ... 144

7.19.4 Operations on files ... 144

7.19.5 File access functions .. 144

7.19.6 Formatted input/output functions... 145

7.19.7 Character input/output functions ... 146

7.19.8 Direct input/output functions ... 147

7.19.9 File positioning functions .. 147

7.19.10 Error-handling functions .. 147

7.20 General utilities <stdlib.h> .. 149

7.20.1 Numeric conversion functions ... 149

7.20.2 Pseudo-random sequence generation functions ... 150

7.20.3 Memory management functions .. 150

7.20.4 Communication with the environment .. 150

7.20.5 Searching and sorting utilities.. 150

7.20.6 Integer arithmetic functions ... 151

7.20.7 Multibyte/wide character conversion functions ... 151

7.20.8 Multibyte/wide string conversion functions .. 151

7.21 String handling <string.h> ... 152

7.21.1 String function conventions (NR) ... 152

7.21.2 Copying functions .. 152

7.21.3 Concatenation functions .. 152

7.21.4 Comparison functions .. 153

7.21.5 Search functions... 153

7.21.6 Miscellaneous functions .. 154

7.22 Type-generic math <tgmath.h> ... 155

7.23 Date and time <time.h> ... 158

7.23.1 Components of time ... 158

7.23.2 Time manipulation functions ... 158

7.23.3 Time conversion functions .. 158

7.24 Extended multibyte and wide character utilities <wchar.h> 159

7.24.1 Introduction.. 159

7.24.2 Formatted wide character input/output functions .. 159

7.24.3 Wide character input/output functions ... 160

7.24.4 General wide string utilities ... 160

7.24.5 Wide character time conversion functions ... 162

7.24.6 Extended multibyte/wide character conversion utilities 162

7.25 Wide character classification functions <wctype.h> ... 163

7.25.1 Introduction.. 163

7.25.2 Wide character classification utilities .. 163

7.25.3 Wide character case mapping utilities ... 164

7.26 Future library directions .. 165

7.26.1 Complex arithmetic <complex.h> .. 165

7.26.2 Character handling <ctype.h> .. 166

7.26.3 Errors <errno.h> ... 166

7.26.4 Format conversion of integer types <inttypes.h> 166

7.26.5 Localisation <locale.h> ... 166

7.26.6 Signal handling <signal.h> ... 167

7.26.7 Boolean types and values <stdbool.h> ... 167

7.26.8 Integer types <stdint.h> .. 167

7.26.9 Input/output <stdio.h> ... 167

7.26.10 General utilities <stdlib.h> ... 168

7.26.11 String handling <string.h> .. 168

7.26.12 Extended multibyte and wide character utilities <wchar.h> 168

7.26.13 Wide character classification and mapping utilities <wctype.h> 168

8 Annex A – Orthosyntax and Parasyntax Summary ... 169

8.1 Lexical grammar .. 169

8.1.1 Lexical elements .. 169

8.1.2 Keywords ... 169

8.1.3 Identifiers ... 169

8.1.4 Universal character names ... 170

8.1.5 Constants ... 170

8.1.6 String literals .. 172

8.1.7 Punctuators .. 173

8.1.8 Header names... 173

8.1.9 Preprocessing numbers .. 174

8.2 Phrase structure grammar .. 174

8.2.1 Expressions .. 174

8.2.2 Declarations ... 180

8.2.3 Statements .. 184

8.2.4 External definitions .. 186

8.3 Preprocessing directives .. 187

9 Annex B – Library summary (NR) ... 190

10 Annex C – Sequence points ... 191

11 Annex D - Universal character names for identifiers ... 192

12 Annex E – Implementation limits ... 193

13 Annex F – IEC 60559 floating-point arithmetic .. 194

14 Annex G – IEC 60559-compatible complex arithmetic .. 195

15 Annex H – Language-independent arithmetic .. 196

16 Annex I – Common warnings ... 197

17 Annex J – Portability issues .. 198

Annex P (informative) – Style Conventions Error! Bookmark not defined.

0 Foreword

0.1 Language restriction

In critical software applications, it is often desirable to restrict the use of certain programming

language constructs. This standard defines constructs (called herein “designated constructs”) in

the C programming language whose use may need to be restricted to meet dependability

requirements in critical applications.

The use of a construct may be restricted for any of several reasons among which commonly

cited ones are that it:

• is non-standard (S)

• has unspecified behaviour or yields an unspecified value (S)

• is likely to be misunderstood by programmers (E),

• has different meanings in closely related languages (S),

• may be prone to be implemented incorrectly (E),

• may impair important non-functional characteristics, including among others: analysability

(SE), portability (S), interoperability (SE), security (E) or reliability (E),

• may impair internationalisation (SE),

For reasons marked “(S)”, relevant constructs can be determined from the language standard

alone. For those marked “(E)” determination is on empirical grounds. For those marked “(SE)“,

the determination has both and theoretical and an empirical basis. Constructs exhibiting such

characteristics may be identified in all programming languages.

Ideally any empirical basis of restriction should be founded on clear evidence that a construct is

associated with undesirable external attributes of software, particularly dependability

attributes. In practice, however, little hard evidence of this nature is generally available and

restrictions on some constructs are based on cogent reasoning or even just widely held beliefs

about effects on the external attributes of code.

This standard sets out a rationale for the identification of each designated construct that it

defines, whether based on evidence, reasoning or belief. It is hoped that codification of both

constructs and associated rationales will permit hypotheses regarding usage and dependability

to be stated clearly and subjected to rigorous tests.

0.2 Characterising constructs needing to be restricted in C

Usage restrictions typically comprise prohibitions of or limitations on the use of particular

kinds of construct in context. In specifying such restrictions three distinct tasks arise:

• determining which constructs should be restricted in which contexts,

• characterising them unambiguously so that they can be identified in context by human

reviewers or static checking tools,

• making the characterisations traceable to the language standard.

Among these tasks, characterisation is by far the most demanding. The easiest way to do it is

with an appropriate metanotation. This standard uses the SYMELAR metanotation, which has

been designed specifically for the purpose of defining language restrictions. SYMELAR is

based on BNF and allows restricted constructs to be specified by reference to the C syntax as

given in the standard, thus also providing suitable traceability.

The designated constructs identified in this standard are based on the diagnostics issued by a

range of commercial C compilers and static analysis tools. Users of this standard should

therefore have little difficulty in obtaining tools that will diagnose practically useful subsets of

those constructs.

0.3 Basis for construction of coding manuals

The degree of language restriction appropriate to an application is generally related to its

software integrity level [3]. Very high integrity applications may warrant the most severe

restrictions [4]. Less critical applications may require only a few basic coding rules.

Recognising this breadth of application, this standard identifies a wide range of designated

constructs but does not specify any particular language subset based on restriction of any

particular set of such constructs.

Within this standard each designated construct is identified by a designated construct reference

number (DCRN). A user wishing to construct a coding manual by reference to this standard can

do so by citing the DCRN of any construct he wishes to control and stating that nature of the

restriction to which it is subject. Hence this standard serves as a meta-standard for the

production of coding manuals.

1 Scope

This standard specifies:

• C language constructs, called “designated constructs” whose use it may be desirable to

restrict in certain application domains,

• requirements for compliant coding manuals

• requirements for compliant diagnostic processors,

• requirements for canonically conforming implementations of the C programming

language.

This standard does not specify:

• any particular set of designated constructs whose use is to be:

- restricted in any particular application domain or

- defined in any particular coding manual or

- diagnosed by any particular diagnostic processor.

• any particular capabilities required of diagnostic processors such as:

- the syntactic form of their diagnostic messages,

- the manner in which such messages are presented to the user of the processor,

- the manner in which such messages are associated with the language constructs to

which they refer

- rules of precedence among diagnostic messages whereby, for example, messages

relating to contained constructs are presented before or after messages relating to their

containing constructs,

- rules governing the suppression of diagnostic messages for a construct when several

could be issued.

• constructs for which the relation between usage and external attributes depends or is

supposed to depend on the attributes of graph-theoretic models of source code, such as

control flow graphs, data flow graphs and function-call trees.

2 References

2.1 Normative references

The following sources express requirements of this standard by virtue of reference to them

within this standard:

[1] ISO/IEC 9899:1999 Programming Languages – C < add TC data >

Note: Reference [1] is commonly called “C99”.

[2] ISO/IEC 9899:1990 Programming Languages – C < add TC data>

Note: Reference [2] is commonly called “C90”.

2.2 Informative references

The following sources do not express requirements of this standard by virtue of reference to

them within this standard (note that item numbering continues from clause 2.1 to ensure

uniqueness of referencing):

[3] ISO/IEC 15026:1998 Information technology – System and software integrity levels

[4] ISO/IEC 61508 – <full title tbp >

[5] ISO/IEC 9126-1:2001 Software engineering – Product quality – Part 1: Quality model

[6] MISRA-C 2004: Guidelines for the Use of C in Critical Systems, MIRA Ltd., 2004, ISBN

0952415623

[7] Hatton, L., Safer C, McGraw-Hill, 1995, ISBN 0-07-707640-0

[8] Koenig,A., C Traps and Pitfalls, Addison-Wesley, 1989, ISBN 0-201-17928-8

[9] Plum, T., C Programming Guidelines, Plum-Hall Inc., 1989, ISBN 0-911537-07-4.

3 Definitions and conventions

3.1 Terms, abbreviations and acronyms

Terms abbreviations and acronyms used in this standard have the meanings given for them in

this clause. Where a standard is cited against the definition of a term, it indicates that the

definition given here is derived or adapted from that given in the cited standard. In case of

discrepancy between this standard and the cited standard, e.g. owing to updating of the source,

the definition given in this standard takes precedence.

The symbol ≈≈≈≈ next to the citation of a standard denotes that the definition given here is

technically equivalent (though possibly of different grammatical form) to that given in the cited

standard. The symbol ≠≠≠≠ next to the citation of a standard denotes that the definition given here is

not technically equivalent to that given in the cited standard.

accuracy n. (of a software product) the capability of the product to provide the right or

agreed results with the needed degree of precision (≈ ISO 9126)

adaptability n. (of a software product) the capability of the product to be adapted for different

specified environments without applying actions or means other than those

provided for this purpose in the product considered (≈ ISO 9126)

analysability n. (of a software product) the capability of the product to be diagnosed for

deficiencies or causes of failures in the software, or for parts to be modified to be

identified (≈ ISO 9126)

base language standard n. the version of the C language standard, by reference to which this standard

states definitions of designated constructs.(Note: For the current revision of this

standard, the base-language standard is C99+TC1 – see Clause 3.1 Normative
references)

BNF abbr. Backus-Naur form

bounded adj. (of a string manipulation function) having the property that it processes only

a finite initial portion of any of its string arguments according to the value of an

integer argument,

C++ style comment n. a comment of the form beginning with two slashes // as permitted in the C++

programming language,

changeability n. (of a software product) the capability of the product to enable modification to

be implemented (≈ ISO 9126)

coding manual n. a document specifying constructs in a programming language and controls that

are applied to their use in specified circumstances.

constraint n. restriction, either syntactic or semantic, by which the exposition of language

elements is to be interpreted (≈ ISO/IEC 9899:1999)

construct n. a sequence of one or more preprocessing tokens or lexical tokens.

corresponding parameter n. of an ARGUMENt,

DCRN abbr. designated construct reference number

designated construct n. a construct defined in this standard and identified by a DCRN for the purpose

of simplifying the construction of a coding manual.

diagnosed construct n. a construct for each occurrence of which in a program a diagnostic processor

provides a diagnostic message.

diagnostic processor n. a processor that analyses source code and identifies occurrences of designated

constructs within it by means of diagnostic messages.

E-behaviour n. the behaviour that the implementation provides for a construct in its execution
environment

efficiency n. (of a software product) the capability of the product to provide appropriate

performance, relative to the amount of resources used, under stated conditions (≈

ISO 9126)

fault-tolerance n. (of a software product) the capability of the product to maintain a specified
level of performance in cases of software faults of of infringement of its specified

interface (≈ ISO 9126)

format string n. an argument to a formatted I/O function that specifies the format conventions

to be applied to subsequent arguments.

functionality n. (of a software product) the capability of the product to provide functions which

meet stated and implied needs when the product is used under specified

conditions (≈ ISO 9126)

implementation-defined

behaviour

n. unspecified behaviour where each implementation documents how the choice

is made (≈ ISO/IEC 9899:1999)

implementation-defined value n. an unspecified value where each implementation document how the choice is

made (≈ ISO/IEC 9899:1999)

implementation-dependent adj. (of the behaviour of a construct) unspecified and not necessarily defined.

implementation limit n. restriction imposed upon programs by the implementation (≈ ISO/IEC

9899:1999)

indeterminate value n. an unspecified value or a trap representation (≈ ISO/IEC 9899:1999)

initialising access n. an access to an object that establishes a value for the object by the behaviour of

its initializer,

integrity level n. A denotation of a range of values of a property of an item necessary to maintain

system risks within tolerable limits. For items that perform mitigating functions,

the property is the reliability with which the item must perform the mitigating

function. For items whose failure can lead to a threat, the property id the limit on

the frequency of that failure (≈ISO/IEC 15026:1998)

internationalisation n. adaptation of a system for use in different countries or by people of different

cultures having different conventions for the interpretation of human-readable
output (e.g. formatting of dates, currency amounts, direction of reading)

maintainability n. (of a software product) the capability of the product to be modified (≈ ISO

9126)

maturity n. (of a software product) the capability of the product to avoid failure as a result

of faults in the software (≈ ISO 9126)

minimal epsilon n. for a floating type, the floating-point value denoted by a representation in
which all but the least significant bit of the mantissa are zero and the exponent is

the least value for the type permitted in the <float.h> header. (Note: Such a

number is necessarily subnormalised and is not necessarily within the

implementation-defined range of representable floating-point values for the type
concerned.)

modifying access n. an access to an object, other than an initialising access, that establishes a value

for the object,

non-modifying access n. an access that is neither an initialising access nor a modifying access,

non-standard adj. generally, not having a form or not satisfying constraints given in the base

language standard; specifically, in the context “a non-standard x” where x denotes
an orthoclass, a construct that an implementation treats as an x but does not have a

syntactic form derivable from x or whose behaviour violates a constraint of the

standard.

non-standard preprocessor

directive

n. a source line whose first non-white-space character is hash # but that does not

have the form of a DIRECTIVE.

null string n. a string containing no characters,

orthoclass n. a class of constructs represented by a non-terminal of the orthosyntax

orthorule n. a syntactic rule of the form specified in clause 4.1 of this specification.

orthosyntactic metasymbol n. any of the metasymbols specified in clause 4.1 of this specification.

orthosyntax n. a set of orthorules by which a C language construct is defined in this standard.

pairwise-confusable adj. (of identifiers) differing in corresponding character positions in the

alphabetic case of characters or having in such corresponding positions

respectively 0 and O, 1 and l, 2 and Z, or 5 and S.

pararule n. a syntactic rule of the form specified in clause 4.2 of this specification.

parasyntactic metasymbol n. any of the metasymbols specified in clause 4.2 of this specification.

parasyntax n. a set of pararules by which a construct is defined in this standard.

portability n. (of a software product) the capability of the product to be transferred from one

environment to another (≈ ISO 9126)

proscribed adj. (of an identifier) having a spelling that is pairwise-confusable with that of a

keyword or another identifier, the spelling of the name of a standard function the

spelling of a predefined macro name or identifier or a reserved spelling.

recursive adj. (of a function) having the property that its E-behaviour may contain one or

more E-behaviours of itself; (of a macro) having the property that its T-behaviour

may contain one or more T-behaviours of itself

redundant adj. (of a construct) capable of being removed without affecting the value of an

expression or the occurrence of side effects,

reliability n. (of a software product) the capability of the product to maintain a specified

level of performance when used under specified conditions (≈ ISO 9126)

resource utilisation n. (of a software product) the capability of the product to use appropriate amounts
and types of resources when the product performs its function under stated

conditions (≈ ISO 9126)

scalar expression n. an expression whose value is of scalar type,

security n. (of a software product) the capability of the product to protect information and

data so that unauthorised persons or systems cannot read or modify them and

authorised persons or system are not denied access to them (≈ ISO 9126)

software integrity level n. the integrity level of a software item (≈ISO/IEC 15026:1998)

SYMELAR acr. SYntactic MEtanotation for LAnguage Restriction – the syntactic

metanotation used in this standard for defining pararules.

T-behaviour n. the behaviour that the implementation provides for a construct in its translation

environment

time behaviour n. (of a software product) the capability of the product to provide appropriate
response and processing times and throughput rates when performing its function

under stated conditions (≈ISO 9126)

undefined behaviour n. behaviour upon use of a nonportable or erroneous program construct or of

erroneous data, for which (ISO/IEC 9899:1999) imposes no requirements

(≈ISO/IEC 9899:1999)

Note: Possible undefined behaviour ranges from ignoring the situation completely with
unpredictable results, to behaving during translation or program execution in a documented

manner characteristic of the implementation (with or without issuance of a diagnostic

message), to terminating a translation or execution (with the issuance of a diagnostic

message).

understandability n. (of a software product) the capability of the product to enable the user or
developer to understand whether the software is suitable, and how it can be used

for particular tasks and conditions of use (≠ ISO 9126)

unexecutable construct n. a construct for which the implementation can provide a T-behaviour but no

E-behaviour.

unrepresentable adj. (of the value of an expression) not capable of being converted to the result

type of the expression without loss of information.

unspecified behaviour n. behaviour where (ISO/IEC 9899:1999) provides two or more possibilities and

imposes no further requirements on which is chosen in any instance (≈ ISO/IEC

9899:1999)

unspecified value n. a valid value of the relevant type where (ISO/IEC 9899:1999) imposes no

requirements on which value is chosen in any instance (≈ ISO/IEC 9899:1999)

3.2 Conventions for syntactic description

This standard defines some (but not all) designated constructs by means of syntactic

metanotation. For clarity of exposition syntactic rules are segregated into two groups called

respectively orthorules and pararules. Orthorules are transliterated versions of the syntax rules

given in the base language standard [1]. Pararules supplement the orthorules and are written in

the SYMELAR notation. They define designated constructs only in conjunction with and by

reference to the orthorules.

Notes: The prefix ortho- is from the Greek ορθος meaning straight, right, or proper. It is used here to emphasise the

definitive character of orthosyntax, which is transliterated directly from the base language standard. The prefix para-

is from the Greek παρα, meaning beside, and emphasises the supplementary character of the parasyntax.

3.2.1 Orthosyntax

The orthosyntactic metanotation used in this standard to specify the syntax of C language

constructs is based on Backus-Naur Form (BNF). The notation has been modified from the

original to permit greater convenience of description. Table 3.1 lists the meanings of the

various metasymbols.

Table 3.1: Metasymbols in orthorules

Metasymbol Meaning

= shall be defined to be

< direct concatenation (i.e. without an intervening white-space characters)

� spaced concatenation (i.e. with an intervening white space character).

| alternatively, i.e. disjunction

; end of definition

[x] 0 or 1 instances of x

xyz the terminal symbol xyz (represented throughout in this standard by the use of bold

courier typeface)

meta-identifier in

lower-case italics

a nonterminal symbol of the orthosyntax

Except as indicated by the direct concatenation metasymbol or as provided by the base

language standard, a sequence of terminal and nonterminal symbols in an orthorule implies the

concatenation of the text that they ultimately represent with or without intervening white space

characters. The orthosyntax in this standard differs from the syntax in the base language

standard solely in the use of different metasymbols. Table 3.2 sets out the correspondence

between the two syntaxes.

Table 3.2: Correspondence between orthosyntax and base language syntax

Orthosyntax metasymbol Base language syntax metasymbol

= :

< No explicit symbol. The nature of concatenation is inferred from the

context in the base language standard.

| No explicit symbol. Alternatives start on a new line.

; New line

[x] xopt

xyz xyz (conventions are identical)

meta-identifier in lower-case-italics meta-identifier in lower-case italics (conventions are identical)

3.2.2 Parasyntax

The parasyntactic metanotation used in this standard to specify designated constructs is also

based on Backus-Naur Form (BNF). It uses all of the metasymbols of the orthosyntax except

that meta-identifiers for paraclasses are written in italic small capitals. Nonterminal symbols of

both the orthosyntax and parasyntax may appear in pararules. There are also curly brace

metasymbols that allow recursive productions to be replaced with iterative ones. The

metasymbols of the parasyntax are listed in Table 3.3.

Table 3.3: Metasymbols in pararules

Metasymbol Meaning

{ x } { Y } 0 or more instances of x, one of more instances of Y

{ x | Y } grouping: either x or Y

~ relative complement

& Conjunction

meta-identifier in ITALIC-SMALL-CAPITALS a nonterminal symbol of the parasyntax

3.2.3 Prose conventions

Use of the words of, containing, and closest-containing, when expressing a relationship

between terminal or nonterminal symbols shall have the following meanings:

• the x of a y means the x occurring directly in a production defining y,

• the x in a y is synonymous with “the x of a y”,

• a y containing an x means any y from which an x is directly or indirectly derived,

• the y closest-containing an x means that y containing an x that does not contain another y

containing that x,

• the y1, y2, …, or yn closest-containing an x means that yi for some i in [1,n],

closest-containing an x such that for all j in [1,n] –[i], if a yj contains that x, then that yj

contains that yi.

In addition to the normal English rules for hyphenation, hyphenation is used in this standard to

form compound words that represent meta-identifiers. All meta-identifiers that contain more

than one word are written as a unit with hyphens joining the parts.

The meanings of forms that are literally different from but are grammatically entailed by the

above forms shall correspond to the meaning of the forms by which they are entailed. For

example, “an x whose y …” means “an x where a y is the y of that x …”.

Note: These prose conventions have been adapted from those used in ISO/IEC 7185 for the definition of the Pascal

programming language.

3.3 Editorial presentation

From clause 5 onward, the structure and clause numbering of this standard follow those of the

base language standard [1]. Subclauses within Clause 5 and succeeding clauses either state

definitions or requirements or else have clause titles suffixed with “(NR)” to denote that they

state no requirements. Except as explicitly provided otherwise in this standard, all clauses of the

base language standard have corresponding clauses in this standard.

3.4 Designated constructs

3.4.1 Definitions

As far as possible, the definition of designated constructs is expressed using terms identical to,

consistent with those of the base language standard. Where prose description would be unduly

prolix, syntactic metanotation is used to help simplify the specifications. As far as possible such

use is confined to the orthosyntax and pararules are used only where it is adjudged that no

satisfactory alternative would be possible without them.

3.4.2 Numbering

Definitions for designated constructs are presented in tables. Each construct has an entry

containing its unique designated construct reference number (DCRN), its definition and a

rationale for its identification. The prefix of each DCRN identifies the clause in the base

language standard which the relevant construct is specified.

3.4.3 Rationales

Where the behaviour for a designated construct is undefined, unspecified or

implementation-defined, this is noted is bold type in the rationale entry for the construct. Where

there is an obvious relationship of undefined, unspecified or implementation-defined aspects of

behaviour to some non-functional attribute, the nature of the attribute is stated in bold small

capitals.

For some constructs there is a significant consensus that programmers may be prone to make

errors if they use them. In these circumstances the rationale for designating the construct is

stated as defensive programming in bold type. Generally in this standard the term defensive

programming refers to any convention aimed at reducing programmer error by controlling the

use of constructs whose use is or may be considered to be conducive to programmer error.

Some designated constructs do not lead to undefined, unspecified or implementation defined

behaviour but are designated on one or more of the following bases:

• they may not be portable to implementations conforming to earlier versions of the base

language standard or to pre-standard implementations.

• their interpretation in C may differ from their interpretation in related languages based on

C, such as C++,

• they may be some benefit in segregating them into particular parts of a translation unit,

• there is past evidence that C implementations have handled them incorrectly,

• there is reason to believe that their occurrence is indicative of programmer error,

Other than stating the basis on which a designated construct has been identified, this standard

does not discuss the evidential or rational basis of what users may believe about the use of

designated constructs.

3.5 Dependability attributes

Some practitioners use the term “dependability attributes” to refer to all non-functional

attributes while others use the latter term to refer to specific kinds of non-functional attributes.

Which particular sets of attributes are called dependability attributes varies from context to

context but such sets commonly include the following:

• reliability

• maintainability

• availability

• security

• safety

Among these attributes security and safety are properties of the system as a whole rather than

the software component considered in isolation. In this standard the term “dependability

attribute” refers to the set of the above five non-functional attributes.

3.6 Relationship of non-functional attributes and language usage

Users of this standard should note, however, that relationships to non-functional attributes are

stronger for code in development than for code in operational use. They should also appreciate

the indirectness of the relationship between internal and external attributes of software. Coding

conventions can facilitate the elimination of undesirable non-functional attributes but they

cannot guarantee the presence of desirable ones.

Moreover, such facilitation is the only way in which they can contribute to external quality.

Whether the surrounding practices actually exploit the facilitation is a matter of process quality,

not internal product quality. Since process quality varies markedly among different

development groups, it is not surprising if difficulties in controlling for process quality may to

date have defeated attempts to demonstrate reproducible correlations between internal and

external product quality.

3.7 Analysability

In any software engineering process, it is good practice to seek to detect faults in life cycle

products at the earliest possible opportunity. In the current state of the art the best feasible

practices in detecting programming errors are, in the order in which they can be most

productively applied: static checking of code to remove problematic constructs, dynamic

checking without execution (e.g. by abstract interpretation) and finally testing. In worst-case

circumstances, the cost of detecting an error by testing may be two orders of magnitude greater

than that of detecting it by static checking or dynamic analysis.

The use of dynamic analysis is a particularly powerful technique since it is commonly able to

examine the potential behaviour of a program for all possible input conditions. In favourable

circumstances, a dynamic analyser may be able to accomplish an analysis that is effectively

equivalent to a program proof. In particular it may be possible to demonstrate that a program

exhibits all and only those functions allocated to it in its specification.

The property of providing all and only specified functions is critical in attaining appropriate

levels of certain dependability attributes, notably those of reliability and security. Accordingly

it can be both desirable and cost-effective to ensure that program source code does not exhibit

attributes that hinder the use of dynamic analysis techniques. In practice, this requires the

systematic elimination of all constructs that impair the analysability of the code. Hence this

standard identifies many constructs that impair such analysability.

4 Compliance

4.1 Coding manuals

4.1.1 Criteria

A coding manual shall comply with this standard if and only, wherever it cites a designated

construct for which a definition exists in this standard, it cites the DCRN of that construct

within this standard and states that the definition given in this standard is normative.

A coding manual complying with this standard shall be designated as strictly compliant if and

only all of its designated constructs are cited by reference to their DCRNs in this standard.

4.2 Diagnostic processors

4.2.1 Criteria

A diagnostic processor shall comply with this standard if and only if it:

(a) is capable of analysing a C translation unit and identifying all occurrences within it of at

least one class of designated constructs defined in this standard, and

(b) identifies such occurrences to its user by means of diagnostic messages that cite the DCRN

of any construct so identified.

A diagnostic processor complying with this standard shall be designated as strictly compliant if

and only if all of its diagnosed constructs are designated constructs defined in this standard.

4.2.2 Claims

A diagnostic processor purporting to comply with this standard shall be accompanied by a

document that:

(a) identifies by means of a list of DCRNs, which of its diagnosed constructs are designated

constructs defined in this standard,

(b) wherever it cannot identify all instances of a designated construct states a characterisation

of the subclass of instances that it can identify.

Note: Clause 4.2.2(b) is intended to allow legitimate claims of conformance for diagnostic processors that perform

no or only limited dynamic analysis and may therefore be able to identify only those occurrences of designated

constructs that are identifiable by purely static methods.

5 Environment

5.1 Conceptual models (NR)

5.1.1 Translation environment

5.1.1.1 Program structure (NR)

5.1.1.2 Translation phases

Designated constructs:

DCRN Definition Rationale

5.1.1.2-1

A nonempty source file ending in a new-line

character that is immediately preceded by a
backslash character.

Behaviour for such a construct is undefined.

5.1.1.2-2
A nonempty source file ending in a partial
preprocessing token or a partial comment.

Behaviour for such a construct is undefined.

5.1.1.2-3
A new-line character that is preceded by a white

space character.

Some users prefer to suppress trailing white space

characters for ergonomic convenience when

using editors. Insofar as this makes it easier to

amend code, it may contribute marginally to

MAINTAINABILITY.

5.1.1.2-4

A character sequence that results from token

concatenation and is a

universal-character-name.

Behaviour for such a character sequence is

undefined.

5.1.1.2-5
A source character for which there is no

corresponding execution character.

Behaviour for such a character sequence is

implementation-defined.

5.1.1.2-6 A sequence of two adjacent identifiers.

 Such a construct was tolerated by some
pre-standard implementations but behaviour is

undefined for conforming implementations.

5.1.1.2-7 A tab character used to provide indentation

Expansion of tab characters is

implementation-dependent. Consistent

indentation style may be lost if source code

relying on such expansion is ported between

systems. Hence the use of tab characters for

indentation impairs a (fairly minor) aspect of

PORTABILITY.

5.1.1.2-8 A construct exhibiting different brace styles.
Some users believe that the use of a single brace
style promotes the UNDERSTANDABILITY of code.

5.1.1.3 Diagnostics (NR)

Note: Some of the designated constructs defined in this standard can be detected by exclusively static methods. For

many constructs, however, static methods may not be able to detect all cases of the construct that satisfy its

definition. Where a diagnostic processor cannot detect all cases, this does not in itself render that processor

noncompliant with this standard, provided that the processor is accompanied by documentation stating, for each
relevant DCRN, criteria that discriminate between detected and undetected cases and state any differences in

diagnostic messages corresponding to different forms of the detected subcases.

5.1.2 Execution environments

Designated constructs:

DCRN Definition Rationale

5.1.2-1

A construct for which behaviour may vary

according to the manner and timing of static

initialization.

The manner and timing of static initialization are

unspecified.

5.1.2.1 Freestanding environment (NR)

Note: Both C90 and C99 define the notion of a freestanding implementation. The purpose in so doing was to provide
for compliance of implementations whose execution environments are embedded processors for which provision of

all standard libraries would be either unnecessary or unduly onerous. Most compilers for embedded targets do,

however, provide library facilities surpassing the minimal set required of freestanding implementations. A coding
manual for the use of C under such an implementation may therefore be significantly more restrictive than one for a

hosted implementation. Users of this standard who code for both types of implementation may therefore wish to

consider whether they need separate coding manuals for freestanding and hosted environments.

5.1.2.2 Hosted environment

5.1.2.2.1 Program startup

Parasyntax:

STD-MAIN-FUNC-DEC = FUNCTION-PROTOTYPE

&
int main (void)

 | FUNCTION-PROTOTYPE

&

int main (int argc, char *argv[]) ;

Designated constructs:

DCRN Definition Rationale

5.1.2.2-1
A FUNCTION-PROTOTYPE for main that is not

equivalent to a STD-MAIN-FUNC-DEC.
Behaviour is undefined.

5.1.2.2-2
A FUNCTION-PROTOTYPE for main that is not a

STD-MAIN-FUNC-DEC.

Some users believe that adherence to the standard

form promotes UNDERSTANDABILITY.

5.1.2.2-3
A translation-unit containing no

function-definition for main.
Behaviour is undefined.

5.1.2.2.2 Program execution (NR)

5.1.2.2.3 Program termination

Designated constructs:

5.1.2.2.3-1
A FUNCTION-PROTOTYPE for main in which the

return type is not compatible with int.

The termination status returned to the host
environment is unspecified.

5.1.2.3 Program execution

Designated constructs:

DCRN Definition Rationale

5.1.2.3-1 An unexecutable construct (see note 1 below).

Wherever such constructs occur they are highly

likely to have resulted from programmer error and

the program’s behaviour may not be what the
programmer intends and the program may not

provide its specified FUNCTIONALITY.

5.1.2.3-2

A construct whose E-behaviour contains both a

modifying and a non-modifying access to an

object between consecutive sequence points.

The order of occurrence of the accesses is

unspecified (see note 2 below).

5.1.2.3-3

A construct whose E-behaviour contains more
than one side effect between consecutive

sequence points.

The order of occurrence of the side effects is

unspecified (see note 2 below).

Note 1: Not all unexecutable constructs can be detected by purely static means.

For example, if in the code fragment:

if (x < 0) foo_a() else foo_b();

the variable x is of unsigned integral type, then foo_a() is an unexecutable construct and its unexecutability is

determinable solely from the type of x and the value of zero against which x is compared.

In contrast, in the code fragment:

int i = 1;

while (i != 3)

{

 i = (i+i) % 7;

}

foo();

foo() is unexecutable because the loop causes i to cycle through the quadratic residues modulo 7 but, since 3 is not

such a quadratic residue, the loop never terminates. This condition is impossible to detect without dynamic analysis

and even then some methods of dynamic analysis may fail to detect it.

Note 2: The order of occurrence of accesses and side effects depends on the orders of evaluation of the operands of

expression, which are unspecified.

5.2 Environmental considerations

5.2.1 Character sets

Designated constructs:

DCRN Definition Rationale

5.2.1-1
A character not in the basic source character set.

Behaviour may be undefined or locale-specific..

5.2.1.1 Trigraph sequences

Designated constructs:

DCRN Definition Rationale

5.2.1.1-1 A trigraph sequence.

Some users believe that trigraphs impair the

UNDERSTANDABILITY of code. Also, they may not
supported by pre-standard implementations.

5.2.1.2 Multibyte characters

Designated constructs:

DCRN Definition Rationale

5.2.1.2-1 A multibyte character.
Support for multibyte characters is

locale-specific.

5.2.1.2-2
A byte with all bits zero occurring as the second

or a subsequent byte of a multibyte character. Behaviour is undefined.

5.2.1.2-3

A comment, string-literal, character-constant

or header-name that does not begin in the initial
shift state.

Behaviour is undefined.

5.2.1.2-4

A comment, string-literal, character-constant

or header-name that does not consist of a

sequence of valid multibyte characters.
Behaviour is undefined.

5.2.2 Character display semantics (NR)

5.2.3 Signals and interrupts (NR)

5.2.4 Environmental limits

5.2.4.1 Translation limits

Designated constructs:

DCRN Definition Rationale

5.2.4.1-1

An external-definition in which an occurrence

of any iteration-statement or

selection-statement causes the depth of nesting
of such statements to exceed 127 (C90 = 15).

Such an external-definition exceeds minimum

implementation limits.

5.2.4.1-2

A preprocessing-file in which an occurrence of

any IF-DIRECTIVE, IFDEF-DIRECTIVE or

IFNDEF-DIRECTIVE causes the depth of nesting of

such directives to exceed 63 (C90 = 8).

Such a preprocessing-file exceeds minimum

implementation limits.

5.2.4.1-3
A declarator containing more than 12 (C90 =

12) modifiers.

Such a declarator exceeds minimum

implementation limits.

5.2.4.1-4
A declarator in which the nesting of

parentheses exceeds 63 (C90 = 31).

Such a declarator exceeds minimum

implementation limits.

5.2.4.1-5 An expression in which the nesting of

parentheses exceeds 63 (C90 = 32) levels.

Such an expression exceeds minimum

implementation limits.

5.2.4.1-6

A translation-unit containing more than 4095

(C90 = 511) distinct identifier having external
linkage.

Such a translation-unit exceeds minimum

implementation limits.

5.2.4.1-7
A compound-statement that is the scope of more

than 511 (C90 = 127) distinct identifier.

Such a compound-statement exceeds minimum

implementation limits.

5.2.4.1-8

A preprocessing-translation-unit containing

more than 4095 (C90 = 1024) macro

definitions.

Such a preprocessing-translation-unit exceeds

minimum implementation limits.

5.2.4.1-9
A function-definition closest-containing more

than 127 (C90 = 31) PARAMETER-DECLARATOR.

Such a function-definition exceeds minimum

implementation limits.

5.2.4.1-10

A FUNCTION-CALL-EXPRESSION
closest-containing more than 127 (C90 = 31)

ARGUMENT.

Such a FUNCTION-CALL-EXPRESSION exceeds

minimum implementation limits.

5.2.4.1-11
A FLIKE-DEFINE-DIRECTIVE whose identifier-list

closets-contains more than 127 (31) identifier.

Such a FLIKE-DEFINE-DIRECTIVE exceeds

minimum implementation limits.

5.2.4.1-12

A MACRO-INVOCATION whose identifier-list

closest-contains more than 127 (C90 = 31)
identifier.

Such a MACRO-INVOCATION exceeds minimum

implementation limits.

5.2.4.1-13
A logical line that exceeds 4095 (C90 = 509)

characters.

Such a logical line exceeds minimum

implementation limits.

5.2.4.1-14
A character-string-literal or wide-string-literal

that contains more than 4095 (509) characters.

Such a literal exceeds minimum implementation

limits.

5.2.4.1-15
A declaration of an object whose size exceeds

65535 (C90 = 32767) bytes.

Such an object exceeds minimum implementation

limits.

5.2.4.1-16

An INCLUDE-DIRECTIVE for which an

implementation causes the depth of nesting of

included files to exceed 15 (C90 = 8).
Behaviour is undefined.

5.2.4.1-17
A SWITCH-BODY that closest-contains more than

1023 (C90 = 257) CASE-CLAUSE.

Such a SWITCH-BODY exceeds minimum

implementation limits.

5.2.4.1-18
A struct-declaration that closest-contains more
than 1023 (C90 = 127) declarator.

Such a struct-declaration exceeds minimum
implementation limits.

5.2.4.1-19
An enumerator-list containing more than 1023

(C90 = 127) enumeration-constant.

Such an enumerator-list exceeds minimum

implementation limits.

5.2.4.1-20

A struct-declaration-list whose occurrence

causes the depth of nesting of

struct-declaration-list to exceed 63 (C90 = 15).

Such a struct-declaration-list exceeds minimum

implementation limits.

Note: In this clause parenthesised items in the definitions of designated constructs denote corresponding limits in

C90.

5.2.4.2 Numerical limits

5.2.4.2.1 Sizes of integer types <limits.h> (NR)

5.2.4.2.2 Characteristics of floating types <float.h> (NR)

Designated constructs:

DCRN Definition Rationale

5.2.4.2.2-1

A preprocessing-file in which the

MACRO-NAME FLT_ROUNDS expands to a

constant-expression whose value is –1.

The implementation-defined rounding mode is

not determinable, which impairs ANALYZABILITY

of codes for numerical processes.

5.2.4.2.2-2

A preprocessing-file in which the

MACRO-NAME FLT_EVAL_METHOD expands

to a constant-expression whose value is –1.

The implementation-defined evaluation method
is not determinable, which impairs

ANALYZABILITY of codes for numerical processes.

5.2.4.2.2-3

A preprocessing-file in which the

MACRO-NAME FLT-EPSILON expands to a

constant-expression whose value is not a

minimal epsilon for the float type.

A value that is not a minimal epsilon may be

indicative of a crude implementation of

floating-point arithmetic, which may impair the

ACCURACY of floating-point computation.

5.2.4.2.2-4

A preprocessing-file in which the

MACRO-NAME DBL-EPSILON expands to a

constant-expression whose value is not a

minimal epsilon for the double type.

A value that is not a minimal epsilon may be

indicative of a crude implementation of

floating-point arithmetic, which may impair the

ACCURACY of floating-point computation.

5.2.4.2.2-5

A preprocessing-file in which the

MACRO-NAME LDBL-EPSILON expands to a

constant-expression whose value is not a

minimal epsilon for the long double type.

A value that is not a minimal epsilon may be

indicative of a crude implementation of

floating-point arithmetic, which may impair the

ACCURACY of floating-point computation.

Note: The value to which a MACRO-NAME in <float.h> expands may not be the same as a value determined for the

corresponding quantity by direct computation.

6 Language

6.1 Notation (NR)

6.2 Concepts

6.2.1 Scopes of identifiers

Designated constructs:

DCRN Definition Rationale

6.2.1-1
An identifier having no part of its scope outside

a FUNCTION-PROTOTYPE.

Either the FUNCTION-PROTOTYPE in which the

identifier occurs differs from the

FUNCTION-PROTOTYPE of the corresponding
function-definition, or there is no corresponding

function-definition. Some users believe that such

usage impairs UNDERSTANDABILITY.

6.2.1-2

An identifier having block scope where that

block scope is enclosed by the scope of another

identifier having the same spelling.

Some users believe that the presence of such

identifiers impairs UNDERSTANDABILITY.

6.2.1-3

An identifier that is not the identifier of at least

one direct-declarator within the

translation-unit in which it occurs.

Such an identifier is undeclared and will be

treated as if it had been declared with type int.

Some users believe that allowing types to default

to int impairs the UNDERSTANDABILITY of ode.

6.2.2 Linkages of identifiers

Designated constructs:

DCRN Definition Rationale

6.2.2-1
An identifier appearing with both internal and

external linkage in a single translation-unit.
Behaviour is undefined.

6.2.2-2

An identifier with internal linkage or a

MACRO-NAME that does not differ from a distinct

identifier with internal linkage or MACRO-NAME

names that do not differ within the first 63 (C90

= 31) characters, regardless of alphabetic case.

Behaviour is undefined.

6.2.2-3

An identifier with external linkage or a

MACRO-NAME that does not differ from a distinct

identifier with external linkage or MACRO-NAME

names that do not differ within the first 31 (C90

= 6) characters, regardless of alphabetic case.

Behaviour is undefined.

6.2.2-4

An identifier that has block scope and that is

declared with the storage-class-specifier

extern.

The behaviour provided by pre-standard

implementations may differ from that provided by

a conforming implementation thus impairing
PORTABILITY.

6.2.3 Name spaces of identifiers

Designated constructs:

DCRN Definition Rationale

6.2.3-1
An identifier that is declared in one more than

one of the name spaces of a translation-unit.

Some users believe that the presence of such

identifiers impairs UNDERSTANDABILITY.

6.2.4 Storage durations of identifiers

Designated constructs:

DCRN Definition Rationale

6.2.4-1 An access to an object outside its lifetime. Behaviour is undefined.

6.2.4-2
A non-modifying access to an object whose
value is indeterminate.

Behaviour may be undefined depending on the
context of usage.

6.2.4-3

A FUNCTION-BLOCK containing an expression

that denotes the lvalue of an object whose

lifetime is not contained in that
FUNCTION-BLOCK.

Some users believe that access by a function to

objects not local to its FUNCTION-BLOCK impairs

the UNDERSTANDABILITY and MAINTAINABILITY

of the code. Non-local accesses also contravene
certain special-purpose conventions such as

data-flow programming.

6.2.5 Types (NR)

6.2.6 Representations of types

6.2.6.1 General (NR)

6.2.6.2 Integer types (NR)

6.2.7 Compatible and composite types

6.3 Conversions

6.3.1 Arithmetic operands (NR)

6.3.1.1 Boolean, character, and integers (NR)

6.3.1.2 Boolean type (NR)

6.3.1.3 Signed and unsigned integers

Designated constructs:

DCRN Definition Rationale

6.3.1.3-1

A construct whose behaviour converts a value

of integral type to an integral type in which its
value cannot be represented.

The effects of such a conversion are

implementation-defined.

Note: Several sub-cases can be identified for DCRN 6.3.1.3-1 and a diagnostic processor may distinguish among
them by issuing different diagnostic messages. In particular a diagnostic processor may distinguish cases in which

the construct concerned is an EXPLICIT-CAST-EXPR, where the explicit nature of the conversion may indicate a

particular intention of the programmer.

6.3.1.4 Real, floating and integer (NR)

6.3.1.5 Real floating types

Designated constructs:

DCRN Definition Rationale

6.3.1.5-1

A construct whose behaviour converts other a
value of floating type to a value of a shorter

floating type.

The effects of the conversion may be undefined
or implementation-defined depending on the

value concerned.

6.3.1.5-2
A construct whose behaviour converts a value

of floating type to a value of integral type.

The effects of the conversion may be undefined

or implementation-defined depending on the

value concerned.

6.3.1.5-3
A construct whose behaviour converts a value

of integral type to a value of floating type.

The effects of the conversion may be undefined
or implementation-defined depending on the

value concerned.

Note: Several sub-cases can be identified for each of DCRNs 6.3.1.5-1, 6.3.1.5-2 and 6.3.1.5-3. A diagnostic

processor may distinguish among them by issuing different diagnostic messages. . In particular a diagnostic

processor may distinguish cases in which the construct concerned is an EXPLICIT-CAST-EXPR, where the explicit nature

of the conversion may indicate a particular intention of the programmer.

6.3.1.6 Real and complex (NR)

6.3.1.7 Usual arithmetic conversions (NR)

6.3.2 Other operands

6.3.2.1 Lvalues, arrays and function designators

Designated constructs

DCRN Definition Rationale

6.3.2.1-1
An lvalue that does not denote an object when

evaluated.
E-behaviour is undefined.

6.3.2.2 Void

Designated constructs

DCRN Definition Rationale

6.3.2.2-1
An expression that is not an

expression-statement and whose type is void.

Some users, believing such constructs likely to

have resulted from programmer error, regard their

prohibition as defensive programming.

Note: Particular sub-cases can be identified for DCRN 6.3.2.2-1, e.g. when the construct concerned is the expression

of an EXPLICIT- COMMA-EXPRESSION or when it is an EXPLICIT-CAST-EXPR that casts to void. A diagnostic processor

may distinguish among sub-cases by issuing different diagnostic messages.

6.3.2.3 Pointers (NR)

6.4 Lexical elements

Orthosyntax:

token = keyword

 | identifier

 | constant

 | string-literal

 | punctuator ;

preprocessing-token = header-name

| identifier

| pp-number

| character-constant

| string-literal

| operator

| punctuator

| each non-white-space character that cannot be one of the

above ;

Designated constructs:

DCRN Definition Rationale

6.4-1
A preprocessing-token that cannot be converted

to an actual token.

T-behaviour of the preprocessing-token is

undefined which impairs analysability.

6.4-2
A identifier that is not a keyword but that an

implementation does not treat as an identifier.

Such a construct is likely to be a non-standard

keyword supported by the implementation. Its
presence in code will impair analysability.

6.4-3

A ‘ or “ that is not a header-name, an

identifier, a pp-number, a character-constant, a

string-literal, an operator or a punctuator
T- behaviour is undefined.

Note: Examples of DCRN 6.4-2 are common, for example in C compilers provided as part of C++ implementations

or in cross-compilers for embedded targets. A diagnostic processor may distinguish among different sub-cases by

issuing different diagnostic messages.

6.4.1 Keywords

Orthosyntax:

keyword = auto | break | case | char | const | continue |

default | do | double | else | enum | extern |

float | for | goto | if | inline | int | long |

register | restrict | return | short | signed |

sizeof | static | struct | switch | typedef |

union | unsigned | void | volatile | while | _Bool |

_Complex | _Imaginary ;

Parasyntax:

NON-C90-KEYWORD = inline | restrict | _Bool

| _Complex | _Imaginary ;

Designated constructs:

DCRN Definition Rationale

6.4.1-1 A NON-C90-KEYWORD.

The presence of such keywords impairs

PORTABILITY of code among implementations
conforming to earlier version of the base language

standard.

6.4.2 Identifiers

6.4.2.1 General

Orthosyntax:

identifier = identifier-nondigit

| identifier < identifier-nondigit

| identifier < digit

identifier-nondigit = nondigit

 | universal character-name

 | other implementation-defined characters ;

non-digit = _ | a | b | c | d | e | f | g | h | i | j | k | l | m

| n | o | p | q | r | s | t | u | v | w | x | y | z

| A | B | C | D | E | F | G | H | I | J | K | L | M

| N | O | P | Q | R | S | T | U | V | W | X | Y | Z

digit = 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 ;

Designated constructs:

DCRN Definition Rationale

6.4.2.1-1 A proscribed identifier.

Some users believe that the presence of proscribed

identifiers impairs the understandability and thence

the maintainability of the code.

6.4.2.1-2
An identifier that contains a

universal-character-name.

The presence of a universal-character-name in an

identifier impairs PORTABILITY of code among
implementations conforming to earlier version of the

base language standard.

6.4.2.1-3

An identifier that contains an

identifier-non-digit that is neither a non-digit

nor universal-character-name.
Behaviour is implementation-defined.

Note: Diagnostic processors identifying occurrences of DCRN 6.4.2.1-1 may distinguish between occurrences in

standard headers and elsewhere in a preprocessing-file. They may also distinguish instances of pairwise

confusability from other instances.

6.4.2.2 Predefined identifiers (NR)

6.4.3 Universal character names (NR)

Orthosyntax:

universal-character-name = \u < hex-quad

 | \U < hex-quad ;

hex-quad = hexadecimal-digit < hexadecimal-digit <

hexadecimal-digit < hexadecimal-digit ;

Designated constructs:

DCRN Definition Rationale

6.4.2.1-1 A universal-character-name.

Correct use of universal character-names is critical in

internationalisation of software. Some users consider

it useful for a diagnostic processor to identify all

occurrences of such characters to facilitate manual

review.

6.4.2.1-2

A universal-character-name that specifies a
character whose short identifier is less than

00A0 (other than 0024, 0040, or 0060) or in

the range D800 to DFFF inclusive.

Behaviour is undefined.

6.4.4 Constants

Orthosyntax:

constant = floating-constant

 | integer-constant

 | enumeration-constant

 | character-constant ;

Designated constructs:

DCRN Definition Rationale

6.4.4-1
A constant whose value is unrepresentable in

an object of arithmetic type.

Behaviour of an unrepresentable value is

undefined.

6.4.4.1 Integer constants

Orthosyntax:

integer-constant = decimal-constant < [integer-suffix]

 | octal-constant < [integer-suffix]

 | hexadecimal-constant < [integer-suffix] ;

decimal-constant = nonzero-digit

 | decimal-constant < digit ;

octal-constant = 0

 | octal-constant < octal-digit ;

hexadecimal-constant = hexadecimal-prefix < hexadecimal-digit

 | hexadecimal-constant < hexadecimal-digit ;

hexadecimal-prefix = 0x | 0X ;

nonzero-digit = 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 ;

octal-digit = 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 ;

hexadecimal-digit = 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

 | a | b | c | d | e | f

 | A | B | C | D | E | F ;

integer-suffix = unsigned-suffix < [long-suffix]

 | unsigned-suffix < long-long suffix

 | long-suffix < [unsigned-suffix]

| long-long-suffix < [unsigned-suffix] ;

unsigned-suffix = u | U ;

long-suffix = l | L ;

long-long-suffix = ll | LL ;

DCRN Definition Rationale

6.4.4.1-1

An integer-constant that denotes a value of a

type other than int but does not contain an

integer-suffix.

Some users believe that failure to use an explicit

suffix for such an integer-constant impairs

UNDERSTANDABILITY.

6.4.4.1-2

An integer-constant that:

(a) has not resulted from expansion of a macro,

and

(b) is not contained by an initializer, and

(c) denotes a value that is neither zero nor one.

Such an integer-constant (often called a “magic

constant”) may represent a configuration

parameter. Some users believe that failure to give
it a symbolic definition, either as a macro or a

value of const-qualified type, impairs

MAINTAINABILITY.

6.4.4.1-3 A long-long-suffix.

The presence of such suffices may impair

PORTABILITY among implementations

conforming to earlier versions of the base

language standard.

Note: A diagnostic processor may identify constructs similar to DCRN 6.4.4.1-2 such as a integer-constant that

denotes a value other than zero or one, e.g. two. The values zero and one are excluded from the definition of DCRN

6.4.4.1-2 because most uses of them are not magic numbers.

6.4.4.2 Floating constants

Orthosyntax:

floating-constant = decimal-floating-constant

 | hexadecimal-floating-constant ;

decimal-floating-constant = fractional-constant

< [exponent-part] < [floating-suffix]

| digit-sequence < exponent-part < [floating-suffix] ;

hexadecimal-floating-constant = hexadecimal-prefix

< hexadecimal-fractional-constant

< binary-exponent-part

< [floating-suffix]

| hexadecimal-prefix

< hexadecimal-digit-sequence

< binary-exponent-part

< [floating-suffix] ;

fractional-constant = [digit-sequence] < . < digit-sequence

 | digit-sequence ;

exponent-part = e < [sign] < digit-sequence

 | E < [sign] < digit-sequence ;

sign = + | - ;

digit-sequence = digit

 | digit-sequence < digit ;

hexadecimal-fractional-constant = [hexadecimal-digit-sequence] < .

 < hexadecimal-digit-sequence

 | hexadecimal-digit-sequence < . ;

binary-exponent-part = p < [sign] < digit-sequence

 | P < [sign] < digit-sequence ;

hexadecimal-digit-sequence = hexadecimal-digit

 | hexadecimal-digit-sequence < hexadecimal-digit ;

floating-suffix = f | l | F | L ;

Designated constructs:

DCRN Definition Rationale

6.4.4.2-1
A floating-constant containing a

floating-suffix that is f or F.

Some users believe that failure to use an explicit

suffix for such a floating-constant impairs

UNDERSTANDABILITY.

6.4.4.2-2

A floating-constant that:

(a) has not resulted from expansion of a

macro, and

(b) is not an initializer, and

(c) denotes a value that is neither zero nor

one.

Such a floating-constant (often called a “magic

constant”) may represent a configuration

parameter. Some users believe that failure to give it

a symbolic definition, either as a macro or a value

of const-qualified type, impairs MAINTAINABILITY.

6.4.4.2-3 A hexadecimal-floating-constant.

The use of such constants may impair PORTABILITY

of code among implementations conforming to
earlier versions of the base language standard.

Note: A diagnostic processor may identify constructs similar to DCRN 6.4.4.2-2 such as a floating-constant that

denotes a value other than zero or one, e.g. two. The values zero and one are excluded from the definition of DCRN

6.4.4.1-2 because most uses of them are not magic numbers.

6.4.4.3 Enumeration constants (NR)

6.4.4.4 Character constants

Orthosyntax:

character-constant = ‘ < c-char-sequence < ' ;

| L < ' < c-char-sequence < ' ;

character-constant = ' < c-char-sequence < '

 | L < ' < c-char-sequence < ' ;

c-char-sequence = c-char

 | c-char-sequence < c-char ;

c-char = escape-sequence

| any member of the source character set except the

single-quote ', backslash \, or new-line character ;

escape-sequence = simple-escape-sequence

 | octal-escape-sequence

 | hexadecimal-escape-sequence

| universal-character-name ;

simple-escape-sequence = \' | \" | \? | \\ | \a | \b

| \f | \n | \r | \t | \v ;

octal-escape-sequence = \ < octal-digit

 | \ < octal-digit < octal-digit

 | \ < octal-digit < octal-digit < octal-digit ;

hexadecimal-escape-sequence = \x < hexadecimal-digit

 | hexadecimal-escape-sequence < hexadecimal-digit ;

Parasyntax:

character-constant = INTEGER-CHARACTER-CONSTANT

| WIDE-CHARACTER-CONSTANT ;

INTEGER-CHARACTER-CONSTANT = ‘ < c-char-sequence < ' ;

WIDE-CHARACTER-CONSTANT = L < ' < c-char-sequence < ' ;

VALUE-ESCAPE-SEQUENCE = escape-sequence

& OCT-OR-HEX-ESCAPE-SEQUENCE ;

OCT-OR-HEX-ESCAPE-SEQUENCE = \ < OCTAL-ESC-DIGITS

 | \ < HEXADECIMAL-ESC-DIGITS ;

OCTAL-ESC-DIGITS = octal-digit

 | octal-digit < octal-digit

 | octal-digit < octal-digit < octal-digit ;

HEXADECIMAL-ESC-DIGITS = hexadecimal-digit

 | HEXADECIMAL-ESC-DIGITS < hexadecimal-digit ;

Designated constructs:

DCRN Definition Rationale

6.4.4.4-1 A character-constant beginning with L.
Support for wide characters is implementation-defined.

6.4.4.4-2
A INTEGER-CHARACTER-CONSTANT that

contains more than one c-char.

The number of characters permitted in a

character-constant is implementation-defined.

6.4.4.4-3 A non-standard character-constant. Behaviour is undefined.

6.4.4.4-4 A non-standard escape sequence.
Support for non-standard escape sequences is

implementation-defined.

6.4.4.4-5

An VALUE-ESCAPE-SEQUENCE that is

contained by an
INTEGER-CHARACTER-CONSTANTand

whose OCTAL-ESC-DIGITS or

HEXADECIMAL-ESC-DIGITS denote a value
that is outside the range of representable

values for the type unsigned char.

A constraint is violated if the value lies outside the

range of the relevant type.

6.4.4.4-6

A VALUE-ESCAPE-SEQUENCE that is

contained by a

WIDE-CHARACTER-CONSTANT and whose
OCTAL-ESC-DIGITS or

HEXADECIMAL-ESC-DIGITS denote a value

that is outside the range of representable

values for the type wchar_t.

A constraint is violated if the value lies outside the
range of the relevant type.

6.4.4.4-7

A character-constant that has not

resulted from expansion of a macro, and

is not an initializer.

Such a character-constant (often called a “magic

constant”) may represent a configuration parameter.

Some users believe that failure to give it a symbolic

definition, either as a macro or as a value of

const-qualified type, impairs MAINTAINABILITY.

6.4.5 String literals

Orthosyntax:

string-literal = " < [s-char-sequence] < "

| L" < [s-char-sequence] < " ;

s-char-sequence = s-char

 | s-char-sequence < s-char ;

s-char = escape-sequence

 | any member of the source character set except the

double-quote ", backslash \, or new-line character ;

Parasyntax:

CHARACTER-STRING-LITERAL = " < [s-char-sequence] < " ;

WIDE-STRING-LITERAL = L" < [s-char-sequence] < " ;

Designated constructs:

DCRN Definition Rationale

6.4.5-1 A string-literal beginning with L.
Support for wide character strings is
locale-specific.

6.4.5-2
Adjacent occurrences of a

CHARACTER-STRING-LITERAL and a

WIDE--STRING-LITERAL.

Support for wide character strings is

locale-specific.

6.4.5-3
A string-literal containing non-standard escape

sequence.

Support for non-standard escape sequences is

unspecified.

6.4.5-4
A null character that is not the last s-char

contained in a string-literal.

Such occurrences of null characters may lead to

unexpected results if the string is an argument to
an unbounded string processing functions. Some

users therefore consider that they impair

UNDERSTANDABILITY.

6.4.5-5
A string-literal containing a

simple-escape-sequence.

Some users believe that embedding such escape

sequences in strings impairs
UNDERSTANDABILITY.

6.4.5-6

A string-literal appearing in a context such that

its stored representation is subject to a

modifying access.
The effect of such an access is undefined.

6.4.5-7
A string-literal that has not resulted from

expansion of a macro, and is not an initializer.

Such a string-literal (often called a “magic

constant”) may represent a configuration
parameter. If it does, some users believe that

failure to give it a symbolic definition, either as a

macro or as a value of const-qualified type,
impairs maintainability.

6.4.6 Punctuators

Orthosyntax:

punctuator = [|] | (|) | { | } | . | -> | ++ | -- | & | * | + | -

| ~ | ! | / | % | << | >> | < | > | <= | >= | == | ^ | | | &&

| || | ? | : | ; | ... | = | *= | /= | %= | += | -= | <<=

| >>= | &= | ^= | |= | , | # | ## | <: | :> | <% | %> | %:

| %:%: ;

Parasyntax:

SUBSTITUTE-PUNCTUATOR = <: | :> | <% | %> | %: | %:%: ;

Designated constructs:

DCRN Definition Rationale

6.4.6-1 A SUBSTITUTE-PUNCTUATOR.

The presence of a SUBSTITUTE-PUNCTUATOR may

impair PORTABILITY among implementations
conforming to earlier versions of the base language

standard.

6.4.7 Header names

Orthosyntax:

header-name = < < h-char-sequence < >

 | " < q-char-sequence < " ;

h-char-sequence = h-char

 | h-char-sequence < h-char ;

h-char = any member of the source character set

except the new-line character and >

q-char-sequence = q-char

 | q-char-sequence < q-char

q-char = any member of the source character set

except the new-line character and "

Parasyntax:

STD-HEADER-NAME = < < STD-HU-CHAR-SEQUENCE < > ;

USER-HEADER-NAME = " < STD-HU-CHAR-SEQUENCE < " ;

STD-HU-CHAR-SEQUENCE = STD-HU-BEFORE-PERIOD < . < LETTER ;

STD-HU-BEFORE-PERIOD = STD-HU-CHAR & LETTER

 | STD-HU-BEFORE-PERIOD < STD-HU-CHAR ;

STD-HU-CHAR = LETTER

 | digit ;

Designated constructs:

DCRN Definition Rationale

6.4.7-1
A header-name that is neither a

STD-HEADER-NAME nor a

USER-HEADER-NAME.

The mapping from header names to corresponding

source file names is undefined if non-standard forms

of header name are used but is unique (although

implementation-defined) if a standard form is used.

6.4.7-2
A STD-HU-CHAR-SEQUENCE containing more
than 8 (C90 = 6) STD-HU-CHARs.

The mapping from header names to corresponding

source file names is undefined if non-standard forms

of header name are used but is unique (although

implementation-defined) if a standard form is used.

6.4.7-3
A header-name whose h-char-sequence

contains ‘ , \ , “ , // , or /*
T-behaviour is undefined.

6.4.7-4
A header-name whose q-char-sequence

contains ‘ , \ , // , or /*
T-behaviour is undefined.

6.4.7-5
A header-name that is not contained by an

INCLUDE-DIRECTIVE.
Behaviour is undefined.

Note: Several sub-cases of DCRNs 6.4.7-1 and 6.4.7-2 may be identified. A diagnostic processor may distinguish

among them by issuing different diagnostic messages.

6.4.8 Preprocessing numbers

Orthosyntax:

pp-number = digit

 | . < digit

 | pp-number < digit

 | pp-number < identifier-nondigit

 | pp-number < e < sign

 | pp-number < E < sign

 | pp-number < p < sign

 | pp-number < P < sign

 | pp-number < . ;

Parasyntax:

ALL-DIGIT-PP-NUMBER = digit

 | ALL-DIGIT-PP-NUMBER < digit ;

Designated constructs:

DCRN Definition Rationale

6.4.8-1
An ALL-DIGIT-PP-NUMBER that begins with 0 and

contains a nonzero-digit that is either 8 or 9.

Such a construct may have been intended to be

an octal-constant but is very likely to be the

result of a programmer’s error. Behaviour is

undefined.

6.4.8-2 A pp-number containing p or P.

The presence of such a pp-number may impair

PORTABILITY among implementations

conforming to earlier versions of the base

language standard.

6.4.9 Comments

Designated constructs:

DCRN Definition Rationale

6.4.9-1 A comment containing /*

Such a construct may be indicative of an

attempt to write a nested comment and

T-behaviour is undefined.

6.4.9-2 The characters */ occurring outside a comment.

Such a construct may be indicative of an

attempt to write a nested comment and

T-behaviour is undefined.

6.4.9-3 A comment beginning with the characters //.

The presence of such comments may impair

PORTABILITY among implementations
conforming to earlier versions of the base

language standard.

6.5 Expressions

Parasyntax:

SIDE-EFFECTIVE-OPERATOR = ++ | -- | == | *= | /= | %= | += |

-= | <<= | >>= | &= | ^= | |= ;

OLD-STYLE-COMP-ASSGN-OP = =* | =/ | =% | =+ | =- | =<< | =>> | =& ;

Designated constructs:

DCRN Definition Rationale

6.5-1

An expression in which the stored value of an

object is accessed by an lvalue that does not

have one of the following types:

(a) a type compatible with the effective

declared type of the object, or

(b) a qualified version of a type compatible
with the effective type of object, or

(c) a type that is the signed or unsigned

type corresponding to the effective type
of the object, or

(d) a type that is the signed or unsigned

type corresponding to a qualified

version of the effective type of the

object, or

(e) an aggregate or union type that

(recursively) includes one of the

aforementioned types among its
members, or

(f) a character type.

The effect of such an access is undefined.

6.5-2

An expression whose E-behaviour causes an

object to have its stored value modified more

than once between sequence points.

The effect of such multiple modifications is

undefined.

6.5-3

An expression whose value is dependent on the
order of evaluation of the operands of any

expression that it contains..

The value of such an expression is undefined or
implementation-defined depending on the

expression.

6.5-4
An expression in whose E-behaviour an

exceptional condition arises.
Subsequent E-behaviour is undefined.

6.5-5 An OLD-STYLE-COMP-ASSGN-OP

Some pre-standard implementations supported

these as alternative ways of writing compound

assignment operators but they were not included

in C90. Corresponding behaviour under a

conforming implementation is undefined.

6.5-6
An expression containing operators of different

precedence without intervening parentheses.

Some users believe that such usage impairs thye

UNDERSTANDABILITY of code.

6.5-7
An expression in which lack of spacing makes

the expression difficult to read.

Some users believe that such usage impairs thye

UNDERSTANDABILITY of code.

6.5.1 Primary expressions

Orthosyntax:

primary-expr = identifier

 | constant

 | string-literal

 | (expression)

6.5.2 Postfix operators

Orthosyntax:

postfix-expression = primary-expression

 | postfix-expression [expression]

 | postfix-expression ([argument-expression-list])

 | postfix-expression identifier

 | postfix-expression -> identifier

 | postfix-expression ++

 | postfix-expression –

| (type-name) { initializer-list }

| (type-name) { initializer-list , } ;

argument-expression-list:

assignment-expr

argument-expression-list , assignment-expr

Parasyntax:

postfix-expression = primary-expr

 | SUBSCRIPT-EXPRESSION

 | FUNCTION-CALL-EXPRESSION

 | DIRECT-ACCESS-EXPRESSION

 | INDIRECT-ACCESS-EXPRESSION

 | POST-INCREMENT-EXPRESSION

 | POST-DECREMENT-EXPRESSION

| COMPOUND-LITERAL ;

SUBSCRIPT-EXPRESSION = postfix-expression [expression] ;

FUNCTION-CALL-EXPRESSION = FUNCTION-DESIGNATOR

([argument-expression-list]) ;

FUNCTION-DESIGNATOR = postfix-expression ;

DIRECT-ACCESS-EXPRESSION = postfix-expression identifier ;

INDIRECT-ACCESS-EXPRESSION = postfix-expression -> identifier ;

POST-INCREMENT-EXPRESSION = postfix-expression ++ ;

POST-DECREMENT-EXPRESSION = postfix-expression -- ;

COMPOUND-LITERAL = (type-name) { initializer-list }

| (type-name) { initializer-list , } ;

argument-expression-list = ARGUMENT

| argument-expression-list , ARGUMENT ;

ARGUMENT = assignment-expr ;

6.5.2.1 Array subscripting

Designated constructs:

DCRN Definition Rationale

6.5.2.1-1

A SUBSCRIPT-EXPRESSION whose

postfix-expression does not have pointer to

object type.
Such a construct violates a constraint.

6.5.2.1-2
An SUBSCRIPT-EXPRESSION whose expression

does not have integer type.
Such a construct violates a constraint.

6.5.2.2 Function calls

Designated constructs:

DCRN Definition Rationale

6.5.2.2-1

A FUNCTION-CALL-EXPRESSION whose

FUNCTION-DESIGNATOR does not have type

pointer to function returning void or returning

an object type other than array type.

Such a construct violates a constraint.

6.5.2.2-2
A FUNCTION-CALL-EXPRESSION whose

FUNCTION-DESIGNATOR is not a
PARENTHESISED-IDENTIFIER.

Other forms of function-designator in this context

may render code that contains them less tractable

to analysis thus impairing ANALYSABILITY.

6.5.2.2-3

A FUNCTION-CALL-EXPRESSION whose

FUNCTION-DESIGNATOR denotes a function for

which the containing translation-unit contains

no corresponding FUNCTION-PROTOTYPE.

The semantics of calls to such functions permit

only limited type-checking thus impairing the

ANALYSABILITY of any translation unit that

contains them.

6.5.2.2-4

A FUNCTION-CALL-EXPRESSION
closest-containing an ARGUMENT that denotes a

value that is not of object type.

Passing arguments of non-object (i.e. function)

type impairs the ANALYSABILITY of code.

6.5.2.2-5

A FUNCTION-CALL-EXPRESSION whose

FUNCTION-DESIGNATOR denotes a function for
which the containing translation-unit contains a

corresponding FUNCTION-PROTOTYPE that does

not contain , ... and whose

argument-expression-list does not contain
exactly as many ARGUMENT as there are

declarator in the parameter-type-list of that

FUNCTION-PROTOTYPE.

The effect of such a function-call is undefined.

6.5.2.2-6

A FUNCTION-CALL-EXPRESSION whose

FUNCTION-DESIGNATOR denotes a function for
which the containing translation-unit contains a

corresponding FUNCTION-PROTOTYPE that does

contain , ... and whose

argument-expression-list does not contain at

least as many ARGUMENT as there are declarator

in the parameter-type-list of that

FUNCTION-PROTOTYPE.

The effect of such a function-call is undefined.

6.5.2.2-7

A FUNCTION-CALL-EXPRESSION whose
FUNCTION-DESIGNATOR denotes a function for

which the containing translation-unit contains a

corresponding K-AND-R-FUNCTION-DECLARATOR

and whose argument-expression-list does not

contain exactly as many ARGUMENT as there are

identifier in the identifier-list of that

K-AND-R-FUNCTION-DECLARATOR.

The effect of such a function-call is undefined.

6.5.2.2-8

A FUNCTION-CALL-EXPRESSION whose

FUNCTION-DESIGNATOr denotes a function for
which the containing translation unit contains a

corresponding FUNCTION-PROTOTYPE and in

which the type of each closest-contained
ARGUMENT is not compatible, after promotion,

with the type of the corresponding parameter in

the corresponding FUNCTION-PROTOTYPE.

The effect of such a function-call is undefined.

6.5.2.2-9

A FUNCTION-CALL-EXPRESSION whose

FUNCTION-DESIGNATOR denotes a function for
which the containing translation unit contains a

corresponding

K-AND-R-FUNCTION-DECLARATOR.and in which
the type of each closest-contained ARGUMENT is

not compatible, after promotion, with the type

of the corresponding parameter in the
corresponding

K-AND-R-FUNCTION-DECLARATOR., unless one of

the following is true of the type of the

ARGUMENT and the type of the parameter:

(a) one promoted type is a signed integer type
and the other promoted type is the

corresponding unsigned integer type, and

the value of the argument is representable

in both types, or

(b) both types are pointers to qualified or
unqualified versions of a character type or

void.

The effect of such a function-call is undefined.

6.5.2.2-10

A FUNCTION-CALL-EXPRESSION whose
FUNCTION-DESIGNATOR denotes a function that

accepts a variable number of arguments.

The semantics of calls to such functions permit

only limited type-checking thus impairing the

ANALYSABILITY of any translation unit that
contains them.

6.5.2.2-11

A FUNCTION-CALL-EXPRESSION

closest-containing an ARGUMENT whose
E-behaviour contains a side effect.

The order of evaluation for the

argument-expression-list is unspecified.

6.5.2.2-12
A FUNCTION-CALL-EXPRESSION whose
FUNCTION-DESIGNATOR denotes the function

main.

Behaviour is undefined if the result is a recursive

call of main.

6.5.2.2-13
A FUNCTION-CALL-EXPRESSION whose

FUNCTION-DESIGNATOR denotes a recursive

function.

The amount of memory required to run any

possible instance of such a call may not be

tractable to determination by static or dynamic
analysis, thus impairing ANALYZABILITY.

6.5.2.2-14

A FUNCTION-CALL-EXPRESSION the E-behaviour

of whose function-designator contains a side

effect.

Some users believe that such usage impairs the

UNDERSTANDABILITY of code.

Note: Coding manuals for high-integrity applications may prohibit recursive functions outright because it is

typically infeasible to predict the maximum amount of memory that they may require at execution time.

6.5.2.3 Structure and union members

Designated constructs:

DCRN Definition Rationale

6.5.2.3-1

A DIRECT-ACCESS-EXPRESSION whose

postfix-expression does not have structure or

union type.
Such a construct violates a constraint.

6.5.2.3-2

An INDIRECT-ACCESS-EXPRESSION whose
postfix-expression does not have structure or

union type.
Such a construct violates a constraint.

6.5.2.3-3

A DIRECT-ACCESS-EXPRESSION whose identifier

does not denote a member of the structure or

union type object of its postfix-expression.
Such a construct violates a constraint.

6.5.2.3-4

An INDIRECT-ACCESS-EXPRESSION whose

identifier does not denote a member of the
structure or union type object of its

postfix-exrpession.

Such a construct violates a constraint.

6.5.2.4 Postfix increment and decrement operators

Designated constructs:

DCRN Definition Rationale

6.5.2.4-1

A POST-INCREMENT-EXPRESSION whose

postfix-expression does not have qualified or

unqualified real or pointer type or is not a

modifiable lvalue.

Such a construct violates a constraint.

6.5.2.4-2

A POST-DECREMENT-EXPRESSION whose

postfix-expression does not have qualified or

unqualified real or pointer type or is not a

modifiable lvalue.

Such a construct violates a constraint.

6.5.2.4-3
A POST-INCREMENT-EXPRESSION whose

postfix-expression has enumerated type.

Some users believe that application of increment

and decrement operators to values of enumerated
types is a common cause of programming errors

and view prohibition of such usage as defensive

programming.

6.5.2.4-4
A POST-DECREMENT-EXPRESSION whose

postfix-expression has enumerated type.

Some users believe that application of increment

and decrement operators to values of enumerated
types is a common cause of programming errors

and view prohibition of such usage as defensive

programming.

6.5.2.4-5
A POST-INCREMENT-EXPRESSION whose

postfix-expression does not have integer type.

Some users believe that application of increment

and decrement operators to values of anything

other than integer types is a common cause of

programming errors and view prohibition of such

usage as defensive programming.

6.5.2.4-6
A POST-INCREMENT-EXPRESSION whose

postfix-expression does not have integer type.

Some users believe that application of increment

and decrement operators to values of anything

other than integer types is a common cause of

programming errors and view prohibition of such

usage as defensive programming.

6.5.2.4-7
A POST-INCREMENT-EXPRESSION whose

postfix-expression is not an IDENTIFIER.

Some users believe that application of increment

and decrement operators to values of anything
other than expression that are identifier is a

common cause of programming errors and view

prohibition of such usage as defensive

programming.

6.5.2.4-8
A POST-INCREMENT-EXPRESSION whose

postfix-expression is not an IDENTIFIER.

Some users believe that application of increment

and decrement operators to values of anything

other than expression that are identifier is a

common cause of programming errors and view
prohibition of such usage as defensive

programming.

6.5.2.5 Compound literals

Designated constructs:

DCRN Definition Rationale

6.5.2.5-1

A COMPOUND-LITERAL whose type-name

specifies neither an object type nor an array of

unknown size.
Such a construct violates a constraint.

6.5.2.5-2
A COMPOUND-LITERAL whose type-name

specifies a variable length array type.
Such a construct violates a constraint.

6.5.2.5-3

An initializer-list of a COMPOUND-LITERAL that

attempts to provide a value for an object not

contained within the entire unnamed object

specified by the COMPOUND-LITERAL.

Such a construct violates a constraint.

6.5.2.5-4

A COMPOUND-LITERAL that is contained by a

FUNCTION-BLOCK and whose initializer-list

contains an expression that is not a

constant-expression.

Such a construct violates a constraint.

6.5.3 Unary operators

Orthosyntax:

unary-expression = postfix-expression

 | ++ unary-expression

 | -- unary-expression

 | unary-operator cast-expression

 | sizeof unary-expression

 | sizeof (type-name) ;

unary-operator = & | * | + | - | ~ | ! ;

Parasyntax:

unary-expr = postfix-expression

 | PRE-INCREMENT-EXPRESSION

 | PRE-DECREMENT-EXPRESSION

 | UNARY-OP-EXPR

 | SIZEOF-UNARY-EXPR

 | SIZEOF-TYPE-NAME ;

PRE-INCREMENT-EXPRESSION = ++ unary-expression ;

PRE-DECREMENT-EXPRESSION = -- unary-expression ;

UNARY-OP-EXPR = AMPERSAND-EXPR

 | ASTERISK-EXPR

 | UPLUS-EXPR

 | UMINUS-EXPR

 | TILDE-EXPR

 | SHRIEK-EXPR ;

SIZEOF-UNARY-EXPR = sizeof unary-expression ;

SIZEOF-TYPE-EXPR = sizeof (type-name) ;

AMPERSAND-EXPR = & cast-expression ;

ASTERISK-EXPR = * cast-expression;

UPLUS-EXPR = + cast-expression ;

UMINUS-EXPR = - cast-expression ;

TILDE-EXPR = ~ cast-expression ;

SHRIEK-EXPR = ! cast-expression ;

6.5.3.1 Prefix increment and decrement operators

Designated constructs:

DCRN Definition Rationale

6.5.3.1-1

A PRE-INCREMENT-EXPRESSION whose
unary-expression does not have qualified or

unqualified real or pointer type or is not a

modifiable lvalue.

Such a construct violates a constraint.

6.5.3.1-2

A PRE-DECREMENT-EXPRESSION whose

unary-expression does not have qualified or

unqualified real or pointer type or is not a

modifiable lvalue.

Such a construct violates a constraint.

6.5.3.1-3
A PRE-INCREMENT-EXPRESSION whose

postfix-expression has enumerated type.

Some users believe that application of increment

and decrement operators to values of enumerated

types is a common cause of programming errors
and view prohibition of such usage as defensive

programming.

6.5.3.1-4
A PRE-DECREMENT-EXPRESSION whose

postfix-expression has enumerated type.

Some users believe that application of increment

and decrement operators to values of enumerated

types is a common cause of programming errors

and view prohibition of such usage as defensive

programming.

6.5.2.4-5
A PRE-INCREMENT-EXPRESSION whose

postfix-expression does not have integer type.

Some users believe that application of increment

and decrement operators to values of anything

other than integer types is a common cause of

programming errors and view prohibition of such

usage as defensive programming.

6.5.2.4-6
A PRE-INCREMENT-EXPRESSION whose

postfix-expression does not have integer type.

Some users believe that application of increment

and decrement operators to values of anything
other than integer types is a common cause of

programming errors and view prohibition of such

usage as defensive programming.

6.5.3.2 Address and indirection operators

Designated constructs:

DCRN Definition Rationale

6.5.3.2-1

An AMPERSAND-EXPR whose cast-expression is

not a FUNCTION-DESIGNATOR or whose value is

not the result of a SUBSCRIPT EXPRESSION or an

ASTERISK-EXPR, or is an lvalue that designates an
object that is bit-field or is declared with the

storage-class-specifier register.

Such a construct violates a constraint.

6.5.3.1-2
An AMPERSAND-EXPR whose cast-expression

denotes the function main.

Some users believe that there is no useful purpose

in taking the address of main and prefer to ban the

practice as a rule of defensive programming.

6.5.3.1-3
An ASTERISK-EXPR whose cast-expression does

not have pointer type.
Such a construct violates a constraint.

6.5.3.3 Unary arithmetic operators

Designated constructs:

DCRN Definition Rationale

6.5.3.3-1
A UPLUS-EXPR whose cast-expression does not

have arithmetic type.
Such a construct violates a constraint.

6.5.3.3-2
A UMINUS-EXPR whose cast-expression does

not have arithmetic type.
Such a construct violates a constraint.

6.5.3.3-3
A TILDE-EXPR whose cast-expression does not

have integer type.
Such a construct violates a constraint.

6.5.3.3-4
A SHRIEK-EXPR whose cast-expression does

not have scalar type or is a constant.
Such a construct violates a constraint.

6.5.3.3-5
A TILDE-EXPR whose cast-expression does not
have unsigned type.

The result of applying the tilde operator to a signed
operand is unspecified.

6.5.3.3-6
A SHRIEK-EXPR whose cast-expression does

not have unsigned type.

The result of applying the tilde operator to a signed

operand is unspecified.

6.5.3.3-7
A SHRIEK-EXPR whose cast-expression is not

an EXPLICIT-LOGICAL-EXPR.

Some users believe that it aids understandability

if logical operators are applied only to expressions

that are of ostensively logical form.

6.5.3.3-8
A UMINUS-EXPR whose cast-expression does

not denote a value of a signed type.

The result of a uminus-expr is the negative of its

promoted operand. Some users believe that

programmers are prone to make errors by

misunderstanding the effects of the entailed

promotion on an unsigned operand and therefore

choose to ban such constructs in aid of defensive

programming.

6.5.3.3-9 A UPLUS-EXPR.

In many cases a UPLUS-EXPR can be replaced by its

cast-expression without altering the effect of the

program. Some users consider that the use of
redundant constructs impairs understandability.

6.5.3.4 The sizeof operator

Designated constructs:

DCRN Definition Rationale

6.5.3.4-1

A SIZEOF-UNARY-EXPR whose unary-expression

has function type or an incomplete type or that
designates a bit-field.

Such a construct violates a constraint.

6.5.3.4-2
A SIZEOF-UNARY-EXPR whose result exceeds

65535 (C90 = 32787).
Behaviour is undefined.

6.5.3.4-3
A SIZEOF-TYPE-EXPR whose result exceeds

65535 (C90 = 32787).
Behaviour is undefined.

6.5.3.4-4
A SIZEOF-UNARY-EXPR whose unary-expression

contains a SIDE EFFECTIVE-OPERATOR.

Since the operand of sizeof is evaluated only if

it denotes a variable-length array, side effects of

any SIDE-EFFECTIVE-OPERATOR in its
unary-expression may not occur. Some users

believe that the occurrence of such a

unary-expression that does contain a
SIDE-EFFECTIVE-OPERATOR is likely to indicate an

error on the part of the programmer. Accordingly

they may wish to ban or control such use in aid of
defensive programming.

6.5.3.4-5 A SIZEOF-UNARY-EXPR.

Some users believe that programmers are prone to
make errors by misunderstanding the effects of

the sizeof operator and there fore choose to ban

or control such constructs in aid of defensive

programming.

6.5.3.4-6 A SIZEOF-TYPE-EXPR.

Some users believe that programmers are prone to
make errors by misunderstanding the effects of

the sizeof operator and therefore choose to ban

of control such constructs in aid of defensive

programming.

6.5.4 Cast operators

Orthosyntax:

cast-expression = unary-expression

 | (type-name) cast-expression ;

Parasyntax:

cast-expression = unary-expression

 | EXPLICIT-CAST-EXPR ;

EXPLICIT-CAST-EXPR = (type-name) cast-expression ;

Designated constructs:

DCRN Definition Rationale

6.5.4-1

An EXPLICIT-CAST-EXPR whose type-name does

not specify the void type or a qualified or

unqualified scalar type.
Such a construct violates a constraint.

6.5.4-2
An EXPLICIT-CAST-EXPR that converts a value of

const-qualified type to a type that is not

const-qualified.
Undefined behaviour can result.

6.5.4-3
An EXPLICIT-CAST-EXPR that converts a value of
one type to a type of stricter alignment.

Undefined behaviour can result.

6.5.4-4
An EXPLICIT-CAST-EXPR that converts a value of

one type to another type in which that value is

unrepresentable.
The result may have an unspecified value.

6.5.4-5
An EXPLICIT-CAST-EXPR whose cast-expression

has pointer type.

Some users believe that programmers are

particularly prone to make errors when casting
pointer types. Accordingly they may ban or

control such usage in aid of defensive

programming.

6.5.4-6
An EXPLICIT-CAST-EXPR whose behaviour

converts a value of one type to the same type.

Such a construct is redundant. Some users believe

that redundant constructs should be eliminated in
aid of understandability.

6.5.5 Multiplicative operators

Orthosyntax:

multiplicative-expression = cast-expression

 | multiplicative-expression * cast-expression

 | multiplicative-expression / cast-expression

 | multiplicative-expression % cast-expression ;

Parasyntax:

multiplicative-expression = cast-expression

 | EXPLICIT-MULT-EXPR ;

EXPLICIT-MULT-EXPR = EXPLICIT-TIMES-EXPR

| EXPLICIT-DIVIDE-EXPR

 | EXPLICIT-MOD-EXPR ;

EXPLICIT-TIMES-EXPR = multiplicative-expression * cast-expression ;

EXPLICIT-DIVIDE-EXPR = multiplicative-expression / cast-expression ;

EXPLICIT-MOD-EXPR = multiplicative-expression % cast-expression ;

Designated constructs:

DCRN Definition Rationale

6.5.5-1

An EXPLICIT-MULT-EXPR whose cast-expression

or multiplicative-expression does not have
arithmetic type.

Such a construct violates a constraint.

6.5.5-2

An EXPLICIT-MOD-EXPR whose cast-expression

or multiplicative-expression does not have

integer type.
Such a construct violates a constraint.

6.5.5-3 An EXPLICIT-DIVIDE-EXPR whose

cast-expression denotes a numerical value of
zero.

The result is undefined.

6.5.5-4 An EXPLICIT-MOD-EXPR whose cast-expression

denotes a numerical value of zero.
The result is undefined.

6.5.5-5 An EXPLICIT-MULT-EXPR either of whose

cast-expression or multiplicative-expression is

an EXPLICIT-LOGICAL-EXPR.

Some users believe that mixing arithmetic and

logical operators in the same expression impairs

the understandability of code.

6.5.5-6 An EXPLICIT-MULT-EXPR either of whose

cast-expression or multiplicative-expression is
an EXPLICIT-BITWISE-EXPR.

Some users believe that mixing arithmetic and

bitwise operators in the same expression impairs
the understandability of code.

6.5.6 Additive operators

Orthosyntax:

additive-expression = multiplicative-expression

 | additive-expression + multiplicative-expression

 | additive-expression - multiplicative-expression ;

Parasyntax:

additive-expression = multiplicative-expression

 | EXPLICIT-ADDITIVE-EXPR ;

EXPLICIT-ADDITIVE-EXPR = EXPLICIT-PLUS-EXPR

 | EXPLICIT-MINUS-EXPR ;

EXPLICIT-PLUS-EXPR = additive-expression + multiplicative-expression ;

EXPLICIT-MINUS-EXPR = additive-expression - multiplicative-expression ;

Designated constructs:

DCRN Definition Rationale

6.5.6-1

An EXPLICIT-PLUS-EXPR for which none of the

following holds:

(a) both its additive-expression or

multiplicative-expression have arithmetic

type, or

(b) its additive-expression has pointer to object

type and its multiplicative-expression has

integer type, or

(c) its multiplicative-expression has pointer to

object type and its additive-expression has
integer type.

Such a construct violates a constraint.

6.5.6-2

An EXPLICIT-SUB-EXPR for which none of the

following holds:

(a) both its additive-expression or

multiplicative-expression have arithmetic

type, or

(b) both its additive-expression or
multiplicative-expression have qualified or

unqualified versions of compatible types,

or

(c) its additive-expression has pointer to object

type and its multiplicative-expression has
integer type.

Such a construct violates a constraint.

6.5.6-3

An EXPLICIT-ADDITIVE-EXPR whose

additive-expression or
multiplicative-expression has pointer to object

type but points to an object that is not an

element of an array.

Undefined behaviour may result.

6.5.6-4

An EXPLICIT-ADDITIVE-EXPR:

(a) whose additive-expression (resp.

multiplicative-expression) has pointer-to
object type and points to or one past the last

element of an array, and

(b) whose multiplicative-expression (resp.

additive-expression) has integer type, and

(c) whose result points to an element or one

past the last element of the same array, and

(d) for which evaluation would produce an
overflow

Behaviour is undefined.

6.5.6-5

An EXPLICIT-ADDITIVE-EXPR that is the

cast-expression of an ASTERISK-EXPR and whose

result points one past the last element of an

array and is

Behaviour is undefined.

6.5.6-6

An EXPLICIT-SUB-EXPR whose
additive-expression and

multiplicative-expression both have pointer

type but do not point to elements of the same

array object or one past the last element of the

same array object.

Behaviour is undefined.

6.5.6-7

An EXPLICIT-SUB-EXPR whose

additive-expression and

multiplicative-expression both have pointer
type but for which the result of the subtraction

is not representable in an object of type

ptrdiff_t.

Behaviour is undefined.

6.5.6-8

An EXPLICIT-SUB-EXPR whose

additive-expression and

multiplicative-expression both have pointer

type.

The result type, ptrdiff_t is

implementation-defined.

6.5.6-9

An EXPLICIT-ADDITIVE-EXPR whose

additive-expression or

multiplicative-expression denotes a value of

pointer type.

The use of pointer arithmetic can in certain

circumstances impair the analyzability of code.

Also some users believe that programmers are

prone to make errors when using pointer
arithmetic and therefore ban or control such

constructs in aid of defensive programming.

6.5.6-10

An EXPLICIT-ADDITIVE-EXPR either of whose

additive-expression or

multiplicative-expression is an

EXPLICIT-LOGICAL-EXPR.

Some users believe that mixing arithmetic and

logical operators in the same expression impairs

the understandability of code.

6.5.6-11 An EXPLICIT-ADDITIVE-EXPR either of whose

additive-expression or

multiplicative-expression is an
EXPLICIT-BITWISE-EXPR.

Some users believe that mixing arithmetic and

bitwise operators in the same expression impairs

the understandability of code.

6.5.7 Bitwise shift operators

Orthosyntax:

shift-expression = additive-expression

 | shift-expression << additive-expression

 | shift-expression >> additive-expression ;

Parasyntax:

shift-expression = additive-expression

 | EXPLICIT-SHIFT-EXPR ;

EXPLICIT-SHIFT-EXPR = EXPLICIT-LSHIFT-EXPR

 | EXPLICIT-RSHIFT-EXPR ;

EXPLICIT-LSHIFT-EXPR = shift-expression << additive-expression ;

EXPLICIT-RSHIFT-EXPR = shift-expression >> additive-expression ;

Designated constructs:

DCRN Definition Rationale

6.5.7-1

An EXPLICIT-SHIFT-EXPR whose shift-expression

or additive-expression does not have integer

type.
Such a construct violates a constraint.

6.5.7-2
An EXPLICIT-SHIFT-EXPR whose

additive-expression denotes a negative value.
Behaviour is undefined.

6.5.7-3

An EXPLICIT-SHIFT-EXPR whose

additive-expression denotes a value greater than

or equal to the width of the promoted value of

its shift-expression.

Behaviour is undefined.

6.5.7-4

An EXPLICIT-LSHIFT-EXPR whose

shift-expression has a signed type and whose

result is not representable in its result type.
Behaviour is undefined.

6.5.7-5

An EXPLICIT-RSHIFT-EXPR whose

shift-expression has a signed type and denotes a

negative value.
The result is implementation-defined.

6.5.7-6
An EXPLICIT-SHIFT-EXPR whose shift-expression

does not have unsigned type.

Many users favour restriction of the

shift-expression to unsigned type as a simple way

to avoid both the undefined and

implementation-defined behaviour that might

otherwise result.

6.5.8 Relational operators

Orthosyntax:

relational-expr = shift-expr

 | relational-expr < shift-expr

 | relational-expr > shift-expr

 | relational-expr <= shift-expr

 | relational-expr >= shift-expr ;

Parasyntax:

relational-expression = shift-expression

 | EXPLICIT-REL-EXPR ;

EXPLICIT-REL-EXPR = EXPLICIT-LT-EXPR

 | EXPLICIT-GT_EXPR

 | EXPLICIT-LE-EXPR

 | EXPLICIT-GE-EXPR ;

EXPLICIT-LT-EXPR = relational-expression < shift-expression ;

EXPLICIT-GT_EXPR = relational-expression > shift-expression ;

EXPLICIT-LE-EXPR = relational-expression <= shift-expression ;

EXPLICIT-GE-EXPR = relational-expression >= shift-expression ;

Designated constructs:

DCRN Definition Rationale

6.5.8-1

An EXPLICIT-REL-EXPR for which none of the
following holds:

(a) both its relational-expression or

shift-expression have real type,

(b) both its relational-expression or

shift-expression have pointer types that are

pointers to qualified or unqualified version

of compatible object types,

(c) both its relational-expression or

shift-expression have pointer types that are

pointers to qualified or unqualified version
of incomplete types.

Such a construct violates a constraint.

6.5.8-2

An EXPLICIT-REL-EXPR whose
relational-expression and shift-expression both

have pointer type but do not both point to the

same object or both point one past the last
element of the same array object,

Behaviour is undefined.

6.5.8-3

An EXPLICIT-REL-EXPR whose

relational-expression or shift-expression is an

EXPLICIT-LOGICAL-EXPR.

Some users believe that mixing relational and

logical operators in the same expression impairs

the UNDERSTANDABILITY of code.

6.5.8-4

An EXPLICIT-LT-EXPRESSION whose

shift-expression denotes a non-negative value
and whose relational-expression denotes a

value of unsigned type.

Such an expression always evaluates to 0 and is

likely to be the result of a programming error that
may in turn impair the FUNCTIONALITY of the

code.

6.5.8-5
An EXPLICIT-REL-EXPR whose

relational-expression or shift-expression is a
string-literal.

Some users believe that programmers are prone to

make errors using such constructs (mistakenly
believing that they gives lexicographical

comparison of the strings themselves) and may

wish to ban on control them in aid of defensive

programming.

6.5.9 Equality operators

Orthosyntax:

equality-expression = relational-expression

 | equality-expression == relational-expression

 | equality-expression != relational-expression ;

Parasyntax:

equality-expression = relational-expression

 | EXPLICIT-EQUALITY-EXPR ;

EXPLICIT-EQUALITY-EXPR | equality-expression == relational-expression

 | equality-expression != relational-expression ;

Designated constructs:

DCRN Definition Rationale

6.5.9-1

An EXPLICIT-EQUALITY-EXPR for which none of

the following holds:

(a) its equality-expression and

relational-expression both have arithmetic

type,

(b) its equality-expression and

relational-expression both have pointer

types that are qualified on unqualified

versions of compatible types,

(c) its equality-expression (resp. relational

expression) denotes a pointer to an object

or incomplete type and its

relational-expression (resp.

equality-expression) denotes a pointer to a

qualified of unqualified version of void.

(d) its equality-expression (resp. relational

expression) has pointer type and its

relational-expression (resp.

equality-expression) denotes a null pointer

constant.

Such a construct violates a constraint.

6.5.9-2

An EXPLICIT-EQUALITY-EXPR whose

equality-expression and relational-expression
are such that both have arithmetic types but

none of the following holds:

(a) both have integer types,

(b) both have floating types,

(c) both have real types

(d) both have imaginary types,

(e) both have complex types.

Some users believe that programmers are prone to

make errors when using equality operators whose
operands have different kinds of arithmetic type;

accordingly they may wish to ban or control such

usage in aid of defensive programming.

6.5.9-3

An EXPLICIT-EQUALITY-EXPR whose
equality-expression or relational-expression

denotes a value of a floating type.

Exact comparison of values of floating type is a

well known cause of error in numerical

computations and may impair the

FUNCTIONALITY of code.

6.5.10 Bitwise AND operator

Orthosyntax:

AND-expression = equality-expression

 | AND-expression & equality-expression ;

Parasyntax:

AND-expression = equality-expression

 | EXPLICIT-AND-EXPR ;

EXPLICIT-AND-EXPR | AND-expression & equality-expression ;

Designated constructs:

DCRN Definition Rationale

6.5.10-1

An EXPLICIT-AND-EXPR whose and-expression

and equality-expression do not both have

integer type.
Such a construct violates a constraint.

6.5.10-2

An EXPLICIT-AND-EXPR whose and-expression
and equality-expression does not both have

unsigned type.

Some users believe that programmers are prone to

make errors when using bitwise operators with
signed operands; accordingly they may ban or

control such usage in aid of defensive

programming.

6.5.11 Bitwise exclusive OR operator

Orthosyntax:

exclusive-OR-expression = AND-expression

 | exclusive-OR-expression ^ AND-expression ;

Parasyntax:

exclusive-OR-expression = AND-expression

 | EXPLICIT-XOR-EXPR ;

EXPLICIT-XOR-EXPR | exclusive-OR-expression ^ AND-expression ;

Designated constructs:

DCRN Definition Rationale

6.5.11-1

An EXPLICIT-XOR-EXPR whose
exclusive-or-expression and AND-expression

does not both have integer type.
Such a construct violates a constraint.

6.5.11-2

An EXPLICIT-XOR-EXPR ewhose
exclusive-or-expression or AND-expression

does not both have unsigned type.

Some users believe that programmers are prone to

make errors when using bitwise operators with

signed operands; accordingly they may ban or

control such usage in aid of defensive

programming.

6.5.12 Bitwise inclusive OR operator

Orthosyntax:

inclusive-OR-expression = exclusive-OR-expression

 | inclusive-OR-expression | exclusive-OR-expression ;

Parasyntax:

inclusive-OR-expression = exclusive-OR-expression

 | EXPLICIT-IOR-EXPR ;

EXPLICIT-IOR-EXPR | inclusive-OR-expression | exclusive-OR-expression ;

Designated constructs:

DCRN Definition Rationale

6.5.12-1

An EXPLICIT-IOR-EXPR whose

inclusive-OR-expression or

exclusive-OR-expression do not both have
integer type.

Such a construct violates a constraint.

6.5.12-2

An EXPLICIT-IOR-EXPR whose

inclusive-OR-expression or

exclusive-OR-expression do not both have
unsigned type.

Some users believe that programmers are prone to

make errors when using bitwise operators with

signed operands; accordingly they may ban or

control such usage in aid of defensive

programming.

6.5.13 Logical AND operator

Orthosyntax:

logical-AND-expression = inclusive-OR-expression

 | logical-AND-expression && inclusive-OR-expression ;

Parasyntax:

logical-AND-expression = inclusive-OR-expression

 | EXPLICIT-LAND-EXPR ;

EXPLICIT-LAND-EXPR | logical-AND-expression && inclusive-OR-expression ;

Designated constructs:

DCRN Definition Rationale

6.5.13-1

An EXPLICIT-LAND-EXPR whose

logical-AND-expression and

inclusive-OR-expression do not both have

scalar type.

Such a construct violates a constraint.

6.5.13-2

An EXPLICIT-LAND-EXPR whose

inclusive-OR-expression contains a

SIDE-EFFECTIVE-OPERATOR.

The inclusive-OR-expression is evaluated only if

the logical-AND-expression yields true. Some

users believe that programmers are prone to

forget this partial evaluation and hence make

errors if they use DC 6.5.13-2. Accordingly, they

may wish to ban or control it in aid of defensive

programming.

6.5.13-3

An EXPLICIT-LAND-EXPR whose

logical-AND-expression and

inclusive-OR-expression are not both

EXPLICIT-LOGICAL-EXPR.

Some users believe that combining logical and

non-logical operators in an expression impairs

UNDERSTANDABILITY.

6.5.14 Logical OR operator

Orthosyntax:

logical-OR-expression = logical-AND-expression

 | logical-OR-expression || logical-AND-expression

Parasyntax:

logical-OR-expression = logical-AND-expression

 | EXPLICIT-LOR-EXPR ;

EXPLICIT-LOR-EXPR = logical-OR-expression || logical-AND-expression ;

Designated constructs:

DCRN Definition Rationale

6.5.14-1

An EXPLICIT-LOR-EXPR whose

logical-OR-expression and

logical-AND-expression do not have scalar

type.

Such a construct violates a constraint.

6.5.14-2
An EXPLICIT-LOR-EXPR the behaviour of whose

logical-AND-expression contains a side effect.

The logical-AND-expression is evaluated only if

the logical-OR-expression yields false. Some

users believe that programmers are prone to
forget this partial evaluation and hence make

errors if they use the DC. Accordingly, they may

wish to ban or control it in aid of defensive

programming.

6.5.14-3

An EXPLICIT-LOR-EXPR whose

logical-OR-expression and
logical-AND-expression are not both

EXPLICIT-LOGICAL-EXPR.

Some users believe that combining logical and

non-logical operators in an expression impairs
UNDERSTANDABILITY.

6.5.15 Conditional operator

Orthosyntax:

conditional-expression = logical-OR-expression

 | logical-OR-expression

? expression

: conditional-expression ;

Parasyntax:

conditional-expression = logical-OR-expression

 | EXPLICIT-COND-EXPR ;

EXPLICIT-COND-EXPR = logical-OR-expression

? expression

: conditional-expression ;

Designated constructs:

DCRN Definition Rationale

6.5.15-1
An EXPLICIT-COND-EXPR whose

logical-OR-expression does not have scalar

type.

Such a construct violates a constraint.

6.5.15-2

An EXPLICIT-COND-EXPR for whose expression

and conditional-expression none of the
following holds:

(a) both have arithmetic type,

(b) both have the same structure or union type,

(c) both have void type,

(d) both have pointer type and point to

qualified or unqualified versions of

compatible types,

(e) one has pointer type and the other is a null

pointer constant

(f) one has pointer type and points to an object

or incomplete type and the other has
pointer type and points to a qualified or

unqualified version of void.

Such a construct violates a constraint.

6.5.15-3
An EXPLICIT-COND-EXPR whose

logical-OR-expression has a pointer type.

In certain circumstances the use of pointer types

impairs the ANALYSABILITY of code.

6.5.15-4

An EXPLICIT-COND-EXPR whose expression and

conditional-expression do note denote values of

the same type.

Some users believe that when the expression and

conditional-expression have different types this

impairs the UNDERSTANDABILITY of code.

6.5.15-5
An EXPLICIT-COND-EXPR either of whose

expression or conditional-expression contains a
SIDE-EFFECTIVE-OPERATOR.

Some users believe that side effects in the

expression or conditional-expression impair the
UNDERSTANDABILITY of code.

Note: Banning DC 6.5.15-3 removes the risk that the result of an EXPLICIT-COND-EXPR may be modified or accessed

after the next sequence point, thereby resulting in undefined behaviour.

6.5.16 Assignment operator

Orthosyntax:

assignment-expression = conditional-expression

 | unary-expression assignment-operator

assignment-expression ;

assignment-operator = = | *= | /= | %= | += | -=

| <<= | >>= | &= | ^= | |= ;

Parasyntax:

assignment-expression = conditional-expression

 | EXPLICIT-ASSIGN-EXPR ;

EXPLICIT-ASSIGN-EXPR = EXPLICIT-SIMPLE-ASSIGN-EXPR

 | EXPLICIT-MULT-ASSIGN-EXPR

 | EXPLICIT-DIVIDE-ASSIGN-EXPR

 | EXPLICIT-MOD-ASSIGN-EXPR

 | EXPLICIT-PLUS-ASSIGN-EXPR

 | EXPLICIT-MINUS-ASSIGN-EXPR

 | EXPLICIT-LSHIFT-ASSIGN-EXPR

 | EXPLICIT-RSHIFT-ASSIGN-EXPR

 | EXPLICIT-BITWISE-ASSIGN-EXPR ;

EXPLICIT-SIMPLE-ASSIGN-EXPR = unary-expression = assignment-expression ;

EXPLICIT-MULT-ASSIGN-EXPR = unary-expression *= assignment-expression ;

EXPLICIT-DIVIDE-ASSIGN-EXPR = unary-expression /= assignment-expression ;

EXPLICIT-MOD-ASSIGN-EXPR = unary-expression %= assignment-expression ;

EXPLICIT-PLUS-ASSIGN-EXPR = unary-expression += assignment-expression ;

EXPLICIT-MINUS-ASSIGN-EXPR = unary-expression -= assignment-expression ;

EXPLICIT-SHIFT-ASSIGN-EXPR = EXPLICIT-LSHIFT-ASSIGN-EXPR

 | EXPLICIT-RSHIFT-ASSIGN-EXPR ;

EXPLICIT-LSHIFT-ASSIGN-EXPR = unary-expression <<= assignment-expression ;

EXPLICIT-RSHIFT-ASSIGN-EXPR = unary-expression >>= assignment-expression ;

EXPLICIT-BITWISE-ASSIGN-EXPR = EXPLICIT-AND-ASSIGN-EXPR

 | EXPLICIT-XOR-ASSIGN-EXPR

 | EXPLICIT-IOR-ASSIGN-EXPR ;

EXPLICIT-AND-ASSIGN-EXPR = unary-expression &= assignment-expression ;

EXPLICIT-XOR-ASSIGN-EXPR = unary-expression ^= assignment-expression ;

EXPLICIT-IOR-ASSIGN-EXPR = unary-expression |= assignment-expression ;

Expanded forms:

EXPLICIT-MULT-ASSIGN-EXPR(α)

=

unary-expression(β) *= assignment-expression(γ)

:

expand(α) = β = β * γ ;

EXPLICIT-DIVIDE-ASSIGN-EXPR(α)

 =

unary-expression(β) /= assignment-expression(γ)

 :

 expand(α) = β = β / γ ;

EXPLICIT-MOD-ASSIGN-EXPR(α)

=

unary-expression(β) %= assignment-expression(γ)

:

expand(α) = β = β % γ ;

EXPLICIT-PLUS-ASSIGN-EXPR(α)

=

unary-expression(β) += assignment-expression(γ)

:

expand(α) = β = β + γ ;

EXPLICIT-MINUS-ASSIGN-EXPR(α)

=

unary-expression(β) -= assignment-expression(γ)

:

expand(α) = β = β - γ ;

EXPLICIT-LSHIFT-ASSIGN-EXPR(α)

 =

unary-expression(β) <<= assignment-expression(γ)

:

expand(α) = β = β << γ ;

EXPLICIT-RSHIFT-ASSIGN-EXPR(α)

 =

 unary-expression(β) >>= assignment-expression(γ)

:

expand(α) = β = β >> γ ;

EXPLICIT-AND-ASSIGN-EXPR(α)

 =

 unary-expression(β) &= assignment-expression(γ)

:

expand(α) = β = β & γ ;

EXPLICIT-XOR-ASSIGN-EXPR(α)

 =

 unary-expression(β) ^= assignment-expression(γ)

:

expand(α) = β = β ^ γ ;

EXPLICIT-IOR-ASSIGN-EXPR(α)

 =

 unary-expression(β) |= assignment-expression(γ)

:

expand(α) = β = β | γ ;

Designated constructs:

DCRN Definition Rationale

6.5.16-1

An EXPLICIT-ASSIGN-EXPR whose

unary-expression does not denote a modifiable

lvalue..
Such a construct violates a constraint.

6.5.16-2

An EXPLICIT-ASSIGN-EXPR that is any of the

following:

(a) the postfix-expression of a

POST-INCREMENT-EXPRESSION or a

POST-DECREMENT-EXPRESSION,

(b) the unary-expression of a

PRE-INCREMENT-EXPRESSION or a

PRE-DECREMENT-EXPRESSION.

Since such a construct would attempt to modify

the result of an EXPLICIT-ASSIGN-EXPR, the

behaviour is undefined.

6.5.16-3

An EXPLICIT-ASSIGN-EXPR that is not an
EXPLICIT-SHIFT-ASSIGN-EXPR and whose

unary-expression and assignment-expression

do not have identical types.

Some users believe that programmers are prone to

make errors if they mix different types in

assignment expressions. Accordingly they may

wish to ban or control such usage in aid of

defensive programming.

6.5.16.1 Simple assignment (NR)

Designated constructs:

DCRN Definition Rationale

6.5.16.1-1

An EXPLICIT-SIMPLE-ASSIGN-EXPR for which none

of the following holds:

(a) its unary-expression has qualified or
unqualified arithmetic type and its

assignment-expression has arithmetic

type,

(b) its unary-expression has a qualified or

unqualified version of a structure or union

type compatible with the type of its

assignment-expression,

(c) both its unary-expression and its

assignment expression have pointer types

that point to qualified or unqualified

versions of compatible types and the type

pointed to by the unary-expression has all

the qualifiers of the type pointed to by the

assignment-expression,

(d) its unary-expression (resp.

assignment-expression) has a pointer type

that points to an object or incomplete type
and its assignment-expression (resp.

unary-expression) has a pointer type that

points to a qualified or unqualified version

of void, and the type pointed to by its

unary-expression has all the qualifiers of

the type pointed to by its

assignment-expression,

(e) its unary-expression has pointer type and

its assignment-expression is a null pointer

constant,

(f) its unary-expression has type _Bool and

its assignment-expression has pointer type.

Such a construct violates a constraint.

6.5.16.1-2

An EXPLICIT-SIMPLE-ASSIGN-EXPR such that both

of the following hold:

(a) both its unary-expression and its

assignment-expression have qualified or
unqualified version of compatible types,

and

(b) the lvalue of its unary-expression refers to

an object part but not all of which is
accessed by its assignment-expression.

Behaviour is undefined

6.5.16.2 Compound assignment

Designated constructs:

DCRN Definition Rationale

6.5.16.2-1

An EXPLICIT-PLUS-ASSIGN-EXPR for which none

of the following holds:

(a) its unary-expression has a pointer to object
type and its assignment-expression has

integer type,

(b) its unary-expression has qualified or

unqualified arithmetic type and its

assignment-expression has arithmetic
type.

Such a construct violates a constraint.

6.5.16.2-2

An EXPLICIT-MINUS-ASSIGN-EXPR for which none

of the following holds:

(c) its unary-expression has a pointer to object

type and its assignment-expression has

integer type,

(d) its unary-expression has qualified or
unqualified arithmetic type and its

assignment-expression has arithmetic

type.

Such a construct violates a constraint.

6.5.16.2-3

An EXPLICIT-MULT-ASSIGN-EXPR α such that

expand(α) contains any of the following DCs:

6.5.5-1, 6.5.5-2, 6.5.5-3, 6.5.5-4, 6.5.5-5,

6.5.5-6

Reasons as for listed DCs respectively.

6.5.16.2-4

An EXPLICIT-DIVIDE-ASSIGN-EXPR α such that

expand(α) contains any of the following DCs:

6.5.5-1, 6.5.5-2, 6.5.5-3, 6.5.5-4, 6.5.5-5,

6.5.5-6

Reasons as for listed DCs respectively.

6.5.16.2-5

An EXPLICIT-MOD-ASSIGN-EXPR α such that

expand(α) contains any of the following DCs:

6.5.5-1, 6.5.5-2, 6.5.5-3, 6.5.5-4, 6.5.5-5,

6.5.5-6

Reasons as for listed DCs respectively.

6.5.16.2-6

An EXPLICIT-LSHIFT-ASSIGN-EXPR α such that

expand(α) contains any of the following DCs:

6.5.7-1, 6.5.7-2, 6.5.7-3, 6.5.7-4, 6.5.7-5,

6.5.7-6

Reasons as for listed DCs respectively.

6.5.16.2-7

An EXPLICIT-RSHIFT-ASSIGN-EXPR α such that

expand(α) contains any of the following DCs:

6.5.7-1, 6.5.7-2, 6.5.7-3, 6.5.7-4, 6.5.7-5,

6.5.7-6

Reasons as for listed DCs respectively.

6.5.16.2-8

An EXPLICIT-AND-ASSIGN-EXPR α such that

expand(α) contains any of the following DCs:

6.5.10-1, 6.5.10-2
Reasons as for listed DCs respectively.

6.5.16.2-9

An EXPLICIT-XOR-ASSIGN-EXPR α such that

expand(α) contains any of the following DCs:

6.5.11-1, 6.5.11-2
Reasons as for listed DCs respectively.

6.5.16.2-10

An EXPLICIT-IOR-ASSIGN-EXPR α such that

expand(α) contains any of the following DCs:

6.5.12-1, 6.5.12-2
Reasons as for listed DCs respectively.

6.5.16.2-11

An EXPLICIT-PLUS-ASSIGN-EXPR whose

unary-expression does not have the lvalue of an

object of integer type.

Some users believe that confining the use of these

expression to integer operands promotes the

UNDERSTANDABILITY of code.

6.5.16.2-12

An EXPLICIT-MINUS-ASSIGN-EXPR whose

unary-expression does not have the lvalue of an
object of integer type.

Some users believe that confining the use of these

expression to integer operands promotes the
UNDERSTANDABILITY of code.

6.5.17 Comma operator

Orthosyntax:

comma-expression = assignment-expression

 | expression , assignment-expression ;

Parasyntax:

comma-expression = assignment-expression

 | EXPLICIT-COMMA-EXPR ;

EXPLICIT-COMMA-EXPR = expression , assignment-expression ;

Designated constructs:

DCRN Definition Rationale

6.5.17-1 An EXPLICIT-COMMA-EXPR.

Some user believe that programmers are prone to

make errors when using a comma-expression and

may wish to ban or control such usage in aid of
defensive programming.

6.5.17-2

An EXPLICIT-COMMA-EXPR that is any of the

following:

(a) the postfix-expression of a

POST-INCREMENT-EXPRESSION or a
POST-DECREMENT-EXPRESSION,

(b) the unary-expression of a

PRE-INCREMENT-EXPRESSION or a

PRE-DECREMENT-EXPRESSION.

Since such a construct would attempt to modify

the result of an EXPLICIT-COMMA-EXPRESSION, the
behaviour is undefined.

6.5.17-3
An expression of an

EXPLICIT-COMMA-EXPRESSION the E-behaviour

for whose expression has no side-effect.

Since the expression has no side effect, it is

redundant and the EXPLICIT-COMMA-EXPR may be

replaced by its assignment-expression without

effect on the behaviour of the program. Some

users believe that elimination of such redundant

usage promotes the UNDERSTANDBILITY of code.

6.6 Constant expressions

Orthosyntax:

constant-expression = conditional-expression ;

Designated constructs:

DCRN Definition Rationale

6.6-1

A constant-expression that is not the

unary-expression of a SIZEOF-UNARY-EXPR but

that contains any of the following:

(a) a SIDE-EFFECTIVE-OPERATOR, or

(b) a FUNCTION-CALL-EXPRESSION, or

(c) an EXPLICIT-COMMA-EXPRESSION.

Such a construct violates a constraint.

6.6-2

A constant-expression denoting a value that is

not in the range of representable values for its

type.
Such a construct violates a constraint.

6.7 Declarations

Orthosyntax:

declaration = declaration-specifiers [init-declarator-list] ;

declaration-specifiers = storage-class-specifier [declaration-specifiers]

 | type-specifier [declaration-specifiers]

 | type-qualifier [declaration-specifiers]

| function-specifier [declaration-specifiers] ;

init-declarator-list = init-declarator

 | init-declarator-list , init-declarator ;

init-declarator = declarator

 | declarator = initializer ;

Designated constructs:

DCRN Definition Rationale

6.7-1
A declaration that does not contain an

init-declarator-list.
Such a construct violates a constraint.

6.7-2

A declaration of an identifier with no linkage
where that declaration is in the same scope as

another declaration of the same identifier in the

same name space, unless the identifier is a tag.

Such a construct violates a constraint.

6.7-3

A declaration of an identifier where that

declaration in the same scope as another

declaration of the same identifier in the same

name space but the two declaration specify

types that are not compatible..

Such a construct violates a constraint.

6.7-4
A declaration-specifiers that contains more than

one storage-class-specifier.
Such a construct violates a constraint.

6.7-5

A declaration whose declaration-specifiers

contain a function-specifier but that does not

declare an identifier for a function.
Such a construct violates a constraint.

6.7-6

A declaration for which all of the following

hold:

• its declaration-specifiers contain a

storage-class-specifier other than

extern, and

• it declares an identifier for a function,

• the declared identifier has block scope.

Such a construct violates a constraint.

6.7-7

A declaration whose declaration-specifiers

contain more than one
STANDARD-TYPE-SPECIFIER-LIST.

Such a construct may violate a constraint.

6.7-8 A declaration of an identifier such that its type is
not complete by the end of the init-declarator in

which it occurs.

Behaviour is undefined.

6.7-9 A declaration that declares an object with

incomplete type and no linkage.
Behaviour is undefined.

6.7-10
An init-declarator that does not contain an

initializer.

Initialization at the point of declaration

eliminates the risk of accessing an object whose
value is undefined. Some users believe that this

practice promotes RELIABILITY.

6.7-11
An init-declarator-list that has more than one

init-declarator.

Some users find it convenient to declare one

object or function per declaration, thus enabling

the line number of the declaration to serve as a

an additional means of identifying the object.

Insofar as this facilitates easier configuration

management, such a practice may promote

MAINTAINABILITY.

6.7-12
A declaration whose declaration-specifiers

specify the plain char type.

It is implementation-defined whether plain

char is a signed or an unsigned type.

6.7-13
A declaration whose declaration-specifiers

specify an extended integer type.

Such types may not be supported by

implementations conforming to earlier version

of the base language standard and their use

impairs PORTABILITY.

6.7-14

A declaration that is contained in a BLOCK and

whose declaration-specifiers contain the

storage-class-specifier typedef.

Behaviour for such a construct is undefined for
implementations conforming to earlier versions

of the base language standard, thus imparing

PORTABILITY.

6.7-15

A declaration that is contained in a BLOCK and

whose declaration-specifiers contain the

storage-class-specifier extern.

Behaviour for such a construct is undefined for

implementations conforming to earlier versions

of the base language standard, thus imparing

PORTABILITY.

6.7-16
A declaration whose declaration-specifiers

have no type-specifier.

When no type-specifier is given, the type

defaults to int. Some users believe that failure

to state the type explicitly impairs the

UNDERSTANDABILITY of code.

6.7-17
A declaration whose declaration-specifiers

specify a floating type.

Some users consider it prudent to ban the use of
floating types in critical applications, believing

such a ban to promote RELIABILITY.

6.7-18
A declaration-specifiers containing more than
one occurrence of the same type-qualifier.

Repetition of a type-qualifier is redundant. Some

users believe that elimination of such

redundancy promotes the UNDERSTANDABILITY
of code.

6.7-19

A source file containing a function declaration

with the storage class specifier static but no

definition for the declared function.

Use of such a construct leaves the function

without a definition. This is so often a

programming error that some users may wish to

ban or control it in aid of defensive

programming.

6.7-20
A source line containing more than one

declaration.

Some users believe that programmers are prone

to make errors when amending declarations if

there are more than one per line and may wish to
ban or control them in aid of MAINTAINABILITY.

6.7.1 Storage-class specifiers

Orthosyntax:

storage-class-specifier = typedef

| extern

| static

| auto

| register ;

Designated constructs:

DCRN Definition Rationale

6.7.1-1 A non-standard storage-class-specifier. The semantics of such constructs are undefined.

6.7.1-2 The storage-class-specifier register.

The extent to which a translator takes any notice

of register is implementation-defined. Hence,

some users believe that any function-specifier is

misleading and impair the UNDERSTANDABILITY

of code.

6.71-3 The storage-class-specifier auto.

There is a widespread convention of not using this

storage-class-specifier and some users consider
that using it impairs the UNDERSTANDABILITY of

code.

6.7.2 Type specifiers

Orthosyntax:

type-specifier = void

 | char

 | short

 | int

| long

| float

| double

| signed

| unsigned

| _Bool

| _Complex

| _Imaginary

| struct-or-union-specifier

| enum-specifier

| typedef-name ;

Parasyntax:

STANDARD-TYPE-SPECIFIER-LIST

= void | char

 | signed char | unsigned char

 | short | signed short

 | short int | signed short int

| unsigned short | unsigned short int

| int | signed

| signed int | unsigned

| unsigned int | long

| signed long | long int

| signed long int | unsigned long

| unsigned long int | long long

| long long int | signed long long

| signed long long int | unsigned long long

| unsigned long long int

| float

| double | long double

| float _Complex | float _Imaginary

| double _Complex | double _Imaginary

| long double _Complex | long double _Imaginary

| _Bool

| struct-or-union-specifier

| enum-specifier

| typedef-name ;

Designated constructs:

DCRN Definition Rationale

6.7.2-1 A type-specifier that is an enum-specifier. The integral type used to represent an enumerated

type is implementation-defined.

6.7.2-2 A non-standard type-specifier. The semantics of such constructs are undefined.

6.7.2-4 The type-specifier _Complex

Implementations are not required to support

complex types and their use impairs

PORTABILITITY

6.7.2-5 The type-specifier _Imaginary

Implementations are not required to support

imaginary types and their use impairs

PORTABILITY.

6.7.2-3 The type-specifier _Bool

Implementations conforming to earlier version of

the base language standard may not support

_Bool, hence its use may impair PORTABILITY.

6.7.2.1 Structure and union specifiers

Orthosyntax:

struct-or-union-specifier = [struct-or-union identifier] { struct-declaration-list }

 | struct-or-union identifier ;

struct-or-union = struct

 | union ;

struct-declaration-list = struct-declaration

 | struct-declaration-list struct-declaration ;

struct-declaration = specifier-qualifier-list struct-declarator-list ;

specifier-qualifier-list = type-specifier [specifier-qualifier-list]

 | type-qualifier [specifier-qualifier-list] ;

struct-declarator-list = struct-declarator

 | struct-declarator-list , struct-declarator ;

struct-declarator = declarator

 | [declarator] : constant-expr ;

Parasyntax:

struct-or-union-specifier = [struct-or-union SU-IDENTIFIER] { struct-declaration-list }

 | struct-or-union SU-IDENTIFIER ;

SU-IDENTIFIER = identifier ;

Note: An SU-IDENTIFIER is also referred to as a struct or union tag.

struct-declarator = declarator

 | BIT-FIELD-DECLARATOR ;

BIT-FIELD-DECLARATOR = [declarator] : constant-expr ;

Designated constructs:

DCRN Definition Rationale

6.7.2.1-1

A struct-declaration whose

specifier-qualifier-list specifies an incomplete
type or a function type unless it specifies an

incomplete array type for the last member of a

structure that has more than one named member

Such a construct violates a constraint.

6.7.2.1-2
A BIT-FIELD-DECLARATOR whose

constant-expression is not an integer constant

expression.

Such a construct violates a constraint.

6.7.2.1-3

A BIT-FIELD-DECLARATOR whose
constant-expression does not denote a

nonnegative value of integer type.
Such a construct violates a constraint.

6.7.2.1-4

A BIT-FIELD-DECLARATOR whose

constant-expression does not denote a

nonnegative value of integer type whose value
does not exceed the number of bits in an object

of the type specified in the

specifier-qualifier-list of its closest-containing
struct-declaration..

Such a construct violates a constraint.

6.7.2.1-5

A BIT-FIELD-DECLARATOR whose

constant-expression denotes the value zero and

that does not closest-contain a declarator.
Such a construct violates a constraint.

6.7.2.1-6

A BIT-FIELD-DECLARATOR such that the

specifier-qualifier-list of its closest-containing
struct-declaration specifies a type that is not

implementation-defined and is other than a

qualified version of _Bool, signed int, or
unsigned int

Such a construct violates a constraint

6.7.2.1-7 A struct-declarator that contains no identifier. Behaviour is undefined.

6.7.2.1-8
A struct-or-union-specifier that has no

struct-declaration-list.
Behaviour is undefined.

6.7.2.1-9
A specifier-qualifier-list containing a

storage-class-specifier.

Some pre-standard compilers tolerated a

storage-class-specifier in this context but such

usage is non-standard and behaviour is

undefined.

6.7.2.1-10

A specifier-qualifier-list that specifies a type

other than an object type that is not variably

modified.
Behaviour is undefined.

6.7.2.1-11

A BIT-FIELD-DECLARATOR such that the

specifier-qualifier-list of its closest-containing

struct-declaration specifies a type that is

implementation-defined.

The semantics of the type are

implementation-defined.

6.7.2.1-12
A construct whose behaviour may vary

according to the packing of bits in a bit-field.

The packing of bits in a bit-field. Is

implementation-defined.

6.7.2.1-13

A construct whose behaviour may vary

according to the order of allocation of bits in a

bit-field.

The order of allocation of bits in a bit-field is

implementation-defined.

6.7.2.1-14

A construct whose behaviour may vary
according to the alignment of the addressable

storage unit allocated to hold a bit-field.

The alignment of addressable storage units

allocated to hold bit-fields is unspecified.

6.7.2.1-15

A construct whose behaviour may vary

according to the alignment of a member of a

structure.

The alignment of members of structures is

implementation-defined.

6.7.2.1-16 A struct-or-union that is union.

Some users believe that programmers are prone to
make errors when using union types and may

wish to ban or control their use in aid of defensive

programming.

6.7.2.1-17 A BIT-FIELD-DECLARATOR.

Some users believe that programmers are prone to

make errors when using bit-fields and may wish
to ban or control them in aid of defensive

programming.

6.7.2.1-18

A BIT-FIELD-DECLARATOR such that the

specifier-qualifier-list of its closest-containing

struct-declaration specifies a type other than

signed int or unsigned int

Such usage may not be supported by

implementations conforming to earlier versions

of the base language standard, and its occurrence

thus impairs PORTABILITY.

6.7.2.1-19

A BIT-FIELD-DECLARATOR such that the
specifier-qualifier-list of its closest-containing

struct-declaration specifies a type other than
unsigned int

Believing that programmers are less prone to
make errors under such a restriction, some users

prefer to restrict bit-fields to unsigned int

type in the in aid of defensive programming.

6.7.2.1-20
An SU-IDENTIFIER whose scope is not the

translation-unit in which it appears.

Some users believe that declaring tags other than

at file scope impairs the understandability of
code.

6.7.2.2-21

An SU-IDENTIFIER whose scope has a non-empty
intersection with the scope of a distinct

SU-IDENTIFIER of the same spelling.

Some users believe that use of non-unique tags

impairs the understandability of code.

6.7.2.2 Enumeration specifiers

Orthosyntax:

enum-specifier = enum [identifier] { enumerator-list }

 | enum [identifier] { enumerator-list , }

 | enum identifier ;

enumerator-list = enumerator

 | enumerator-list , enumerator ;

enumerator = enumeration-constant

 | enumeration-constant = constant-expression ;

Parasyntax:

enum-specifier = enum [ENUM-IDENTIFIER] { enumerator-list }

 | enum [ENUM-IDENTIFIER] { enumerator-list , }

 | enum ENUM- IDENTIFIER ;

ENUM-IDENTIFIER = identifier ;

Note: An ENUM-IDENTIFIER is also referred to as a tag.

Designated constructs:

DCRN Definition Rationale

6.7.2.2-1

An enum-specifier that does not have an

enumerator-list occurring in a context where

the type that it specifies is not complete.
Such a construct violates a constraint.

6.7.2.2-2

An enumerator whose constant-expression is

not an integer constant expression whose value

is representable as an int.
Such a construct violates a constraint.

6.7.2.2-3 An enum-specifier.

It is implementation-defined whether an

enumerated type is compatible with char, a

signed integer type or an unsigned integer type.

6.7.2.2-4

An enumerator whose constant-expression
does not denote a non-negative value of integral

type that does not exceed the value of

SCHAR_MAX.

Reliance on any type other than char impairs

PORTABILITY.

6.7.2.2-5
An enum-specifier that does not have an

identifier.

Some users believe that not declaring tags impairs

the UNDERSTANDABILITY of code.

6.7.2.2-6 An enumerator that has a constant-expression.

Some user believe that programmers are prone to

make errors when using constant-expression in an
enumerator. Accordingly they may ban or control

such usage in aid of defensive programming.

6.7.2.2-7
An ENUM-IDENTIFIER whose scope is not the

translation-unit in which it appears.

Some users believe that declaring tags other than

at file scope impairs the UNDERSTANDABILITY of

code.

6.7.2.2-8

An ENUM-IDENTIFIER whose scope has a

non-empty intersection with the scope of a

distinct ENUM-IDENTIFIER of the same spelling.

Some users believe that use of non-unique tags

impairs the understandability of code.

6.7.2.3 Tags (NR)

Designated constructs:

See 6.7.2.1 and 6.7.2.2.

6.7.3 Type qualifiers

Orthosyntax:

type-qualifier = const

 | restrict

 | volatile ;

6.7.3.1 Formal definition of restrict (NR)

Designated Constructs:

DCRN Definition Rationale

6.7.3.1-1

A specifier-qualifier-list that contains

restrict but does not specify a pointer type. Such a construct violates a constraint.

6.7.3.1-2

A construct for which the behaviour attempts to
modify an object-defined with a const-qualified

type through use of an lvalue with

non-const-qualified type.

Behaviour is undefined.

6.7.3.1-3

A construct for which the behaviour attempts to

modify an object-defined with a
volatile-qualified type through use of an lvalue

with non-volatile-qualified type.

Behaviour is undefined.

6.7.3.1-4

A construct for which the behaviour attempts to
access an object that has volatile-qualified type.

What behaviour constitutes such an access is

implementation-defined and the presence of a

construct attempting such access may impair the

ANALYZABILITY of code.

6.7.3.1-5 The type-qualifier restrict.

This type qualifier may not be supported by
implementations conforming to earlier version of

the base language standard, hence its use impairs

PORTABILITY.

6.7.4 Function specifiers

Orthosyntax:

function-specifier = inline ;

Designated Constructs:

DCRN Definition Rationale

6.7.4-1

The function-specifier inline appearing in

the specifier-qualifier-list of a declaration of an

identifier that is not the identifier of a function. Such a construct violates a constraint.

6.7.4-2

An inline definition of a function with external
linkage that contains a definition of a

modifiable object with static storage duration or

contains a reference to an identifier with
external linkage.

Such a construct violates a constraint.

6.7.4-3 An inline definition of a function.

By providing an alternative to an external

definition the presence of such a construct may

impair the ANALYZABILITY of code, since it is

unspecified which definition an implementation
uses.

6.7.4-4 The function-specifier inline.

The extent to which an implementation takes any

notice of inline is implementation-defined.

Hence, some users believe that any

function-specifier is misleading and impair the
UNDERSTANDABILITY of code

6.7.5 Declarators

Orthosyntax:

declarator = [pointer] direct-declarator ;

direct-declarator = identifier

 | (declarator)

 | direct-declarator [[type-qualifier-list]

 [assignment-expression]]

 | direct-declarator

[static [type-qualifier-list]

 assignment-expression]

| direct-declarator [type-qualifier-list static

 assignment-expression]

 | direct-declarator [[type-qualifier-list] *]

 | direct-declarator (parameter-type-list)

 | direct-declarator ([identifier-list]) ;

Parasyntax:

declarator = POINTER-DECLARATOR

 | NON-POINTER-DECLARATOR ;

POINTER-DECLARATOR = pointer direct-declarator ;

NON-POINTER-DECLARATOR = direct-declarator ;

direct-declarator = DD-IDENTIFIER

 | DEC-IN-PAREN

 | ARRAY-DECLARATOR

 | FUNCTION-DECLARATOR ;

DD-IDENTIFIER = identifier ;

DEC-IN-PAREN = (declarator) ;

Designated constructs:

DCRN Definition Rationale

6.7.5-1 A declarator that has a pointer.

The use of pointers can impair the

ANALYZABILITY of code, for which reason some

users may choose to ban them altogether in

critical applications.

6.7.5-2

A declarator, the scope of whose DD-IDENTIFIER
is a compound-statement, where that declarator

is closest-contained by a declaration whose

declaration-specifiers contain the

storage-class-specifier extern.

Such a construct violates a constraint for

implementations conforming to earlier versions

of the base language standard and thereby

impairs PORTABILITY.

6.7.5-3
A direct-declarator whose identifier appears
nowhere else in its scope.

Such a declarator occurring in user-written code
indicates a definition that is unused and may be

eliminated, thereby reducing the volume of code

under maintenance and hence promoting

MAINTAINABILITY.

6.7.5-4

A direct-declarator whose DD-IDENTIFIER occurs

in the same name space as a DD-IDENTIFIER of the

same spelling contained by a distinct

direct-declarator.

Some users believe that use of the same name in

different name spaces impairs the

UNDERSTANDABILITY of code.

6.7.5-5

A direct-declarator whose DD-IDENTIFIER has a

scope that has a non-empty intersection with the

scope of a DD-IDENTIFIER of the same spelling
contained by a distinct direct-declarator.

Such a construct entails that the same identifier

has been declared twice. Some users believe that
programmers are prone to make errors when

using multiple declarations of the same

identifier and may wish to ban or control such

usage in aid of defensive programming.

6.7.5.1 Pointer declarator

Orthosyntax:

pointer = * [type-qualifier-list]

 | * [type-qualifier-list] pointer ;

type-qualifier-list = type-qualifier

 | type-qualifier-list type-qualifier ;

Designated constructs:

DCRN Definition Rationale

6.7.5.1-1
A pointer containing more than two occurrences

of *.

Some users believe that programmers are prone

to make errors when using many levels of
indirection and may wish to ban or control such

usage in aid of defensive programming.

6.7.5-1-2 A declarator that is a POINTER-DECLARATOR and

is closest-contained by a declaration whose

declaration-specifiers contains the

type-qualifier const or the type-qualifier

volatile.

Confusing a constant pointer to a variable value

and a variable pointer to a constant value is

sufficiently common error that some users may
wish to ban or control such usage in aid of

defensive programming.

6.7.5.2 Array declarators

Parasyntax:

ARRAY-DECLARATOR = PLAIN-ARRAY-DECLARATOR

 | STATIC-ARRAY-DECLARATOR

 | UNSPEC-SIZE-ARRAY-DECLARATOR ;

PLAIN-ARRAY-DECLARATOR | direct-declarator [[type-qualifier-list]

[ARRAY-BOUND]] ;

STATIC-ARRAY-DECLARATOR | direct-declarator

[static [type-qualifier-list]

ARRAY-BOUND]

| direct-declarator

[type-qualifier-list static

 ARRAY-BOUND] ;

UNSPEC-SIZE-ARRAY-DECLARATOR | direct-declarator

[[type-qualifier-list] *] ;

ARRAY-BOUND ..

 ...

 = .. assignment-expression ;

Designated constructs:

DCRN Definition Rationale

6.7.5.2-1
An ARRAY-BOUND that does not have integer

type.
Such a construct violates a constraint.

6.7.5.2-2
An ARRAY-BOUND that is a constant-expression

but does not have a value that exceeds zero..
Such a construct violates a constraint.

6.7.5.2-3
An ARRAY-BOUND whose value does not exceed

zero..
Such a construct violates a constraint.

6.7.5.2-4

An identifier denoting an object of a variably

modified type but that does not have either

block or function prototype scope and no

linkage.

Such a construct violates a constraint.

6.7.5.2-5

An identifier denoting an object that has static

storage duration and is a variable length array
type.

Such a construct violates a constraint.

6.7.5.2-6

An declarator that is an ARRAY-DECLARATOR and
is a declarator of a declaration whose

declaration-specifiers specify an incomplete

type or a function type.

Such a construct violates a constraint.

6.7.5.2-7 An UNSPEC-SIZE-ARRAY-DECLARATOR.

Use of arrays whose size is not known at

translation time impairs the ANALYZABILITY of

code.

6.7.5.2-8
An ARRAY-BOUND that is not a

constant-expression.

Use of arrays whose size is not known at

translation time impairs the ANALYZABILITY of

code.

6.7.5.2-9

An ARRAY-DECLARATOR whose direct-declarator

is neither a DD-IDENTIFIER nor a DEC-IN-PAREN

whose declarator is an DD-IDENTIFIER r.

Use of such a construct impairs the

ANALYSABILITY of code.

6.7.5.3 Function declarators (including prototypes)

Orthosyntax:

parameter-type-list = parameter-list

| parameter-list , ... ;

parameter-list = parameter-declaration

 | parameter-list , parameter-declaration ;

parameter-declaration = declaration-specifiers declarator

 | declaration-specifiers [abstract-declarator] ;

identifier-list = identifier

 | identifier-list , identifier ;

Parasyntax:

FUNCTION-DECLARATOR = FUNCTION-PROTOTYPE

 | K-AND-R-FUNCTION-DECLARATOR ;

FUNCTION-PROTOTYPE = direct-declarator (parameter-type-list) ;

K-AND-R-FUNCTION-DECLARATOR = direct-declarator ([identifier-list]) ;

parameter-declaration = PARAM-DEC-SPECIFIERS PARAMETER-DECLARATOR

 | PARAM-DEC-SPECIFIERS [abstract-declarator] ;

PARAM-DEC-SPECIFIERS = declaration-specifiers ;

PARAMETER-DECLARATOR = declarator ;

parameter-type-list = parameter-list

| ELLIPSIS-PARAMETER-LIST ;

ELLIPSIS-PARAMETER-LIST = parameter-list , ... ;

Designated constructs:

DCRN Definition Rationale

6.7.5.3-1

An declarator that is an FUNCTION-DECLARATOR

and is a declarator of a declaration whose
declaration-specifiers specify an array type or a

function type.

Such a construct violates a constraint.

6.7.5.3-2

A parameter-declaration whose

declaration-specifiers contain a

storage-class-specifier other than register.
Such a construct violates a constraint.

6.7.5.3-3

A K-AND-R-FUNCTION-DECLARATOR whose

identifier-list is not contained by the
corresponding function definition.

Such a construct violates a constraint.

6.7.5.3-4

A PARAM-DEC-SPECIFIERS that:

(a) is closest-contained by a

FUNCTION-DECLARATOR that is contained by

the function-definition of the corresponding

function, and that

(b) specifies a type that is an incomplete type
after adjustment.

Such a construct violates a constraint.

6.7.5.3-5 An ELLIPSIS-PARAMETER-LIST.
Use of functions that take variable numbers of

arguments impairs the ANALYSABILITY of code.

6.7.5.3-6
A PARAMETER-DECLARATOR that is not an

identifier.

Use of parameters that have pointer type can

impair the ANALYSABILITY of code.

6.7.5.3-7

A FUNCTION-PROTOTYPE whose direct-declarator

is neither an identifier nor a DEC-IN-PAREN whose

declarator is an identifier.

The use of such constructs can impair the

ANALYZABILITY of code.

6.7.5.3-8 A K-AND-R-FUNCTION-DECLARATOR.

The use of such constructs limits the ability of
static checking tools to perform type checking,

thus impairing the ANALYZABILITY of code.

6.7.5.3-9
A parameter-declaration whose

PARAM-DEC-SPECIFIERS specify an incomplete

type.

The use of such contructs can severely impair

the ANALYZABILITY of code.

6.7.5-10

A declarator that is a FUNCTION-DECLARATOR and
is a declarator closest-contained by a

declaration whose declaration-specifiers

specify a function type, an array type, a struct or

union type or an incomplete type other than

void.

Such a construct may not be supported by

implementations conforming to earlier versions

of the base language standard, thereby impairing

PORTABILITY.

6.7.5-11

A parameter-declaration whose

PARAM-DEC-SPECIFIERS specify a type that is a
function type or a struct or union type..

Such a construct may not be supported by
implementations conforming to earlier versions

of the base language standard, thereby impairing

PORTABILITY.

6.7.6 Type names

Orthosyntax:

type-name = specifier-qualifier-list [abstract-declarator] ;

abstract-declarator = pointer

 | [pointer] direct-abstract-declarator ;

direct-abstract-declarator = (abstract-declarator)

 | [direct-abstract-declarator]

[assignment-expression]

 | [direct-abstract-declarator] [*]

 | [direct-abstract-declarator]

 ([parameter-type-list]) ;

Designated constructs:

DCRN Definition Rationale

6.7.6-1
A type-name whose abstract-declarator

closest-contains a pointer.

Uncontrolled use of pointer types can impair the

ANALYSABILITY of code.

6.7.7 Type definitions

Orthosyntax:

typedef-name = identifier ;

Designated constructs:

DCRN Definition Rationale

6.7.7-1
A typedef-name that specifies a variably

modified type but does not have block scope.
Such a construct violates a constraint.

6.7.7-2
A typedef-name that specifies a type of unknown

size.

Some users believe that programmers are prone

to make errors when using such a typedef-name

and may wish to ban or control such usage in aid
of defensive programming.

6.7.7-3

An identifier that is a typedef-name and whose
scope is not the translation-unit in which it

appears.

Some users believe that it impairs the

UNDERSTANDABILITY of code if such an

identifier does not have a scope that is not the

translation-unit in which it appears.

6.7.8 Initialisation

Orthosyntax:

initializer = assignment-expr

 | { initializer-list }

 | { initializer-list , } ;

initializer-list = [designation] initializer

 | initializer-list , [designation] initializer ;

designation = designator-list = ;

designator-list = designator

 | designator-list designator ;

designator = [constant-expression]

 | . identifier ;

Parasyntax:

initializer = assignment-expr

 | { initializer-list }

 | { COMMA-TERMINATED-INIT-LIST } ;

COMMA-TERMINATED-INIT-LIST = { initializer-list , } ;

designator = ARRAY-ELEMENT-DESIG

 | STRUCT-MEMBER-DESIG ;

ARRAY-ELEMENT-DESIG = [constant-expression] ;

STRUCT-MEMBER-DESIG = . identifier ;

Designated constructs:

DCRN Definition Rationale

6.7.8-1

An initializer that attempts to provide a value for

an object not contained within the entity being

initialized.
Such a construct violates a constraint.

6.7.8-2

An initializer for an entity that is not one of the

following:

(a) an array of unknown size, or

(b) an object that is not a variable length array
type.

Such a construct violates a constraint.

6.7.8-3 An initializer for an object of unknown size that

is not an array object.
Such a construct violates a constraint.

6.7.8-4

An initializer for an object of static storage

duration that contains an expression that is

neither a constant-expression nor a
string-literal.

Such a construct violates a constraint.

6.7.8-5
An initializer for an object whose identifier has

block scope and external or internal linkage.
Such a construct violates a constraint.

6.7.8-6 An ARRAY-ELEMENT-DESIG for part of a current

object that is an array.
Such a construct violates a constraint.

6.7.8-7
An STRUCT-MEMBER-DESIG for part of a current

object that is not a struct or union.
Such a construct violates a constraint.

6.7.8-8
An initializer for an object of array, struct or

union type that has automatic storage duration.

Such a construct may not be supported by some

implementations that conform to earlier version

of the base language standard, under which their
use may result in undefined behaviour.

6.7.8-9

An initializer in which the numbers, types and

sizes of every contained assignment-expr do not

exactly match those of the object that it

initializes.

Such can be highly confusing to readers of
programs and is likely to impair the

understandability of code.

6.7.8-10 A COMMA-TERMINATED-INIT-LIST.

Some users deprecate such usage believing it to

be poor style and possibly to impair

UNDERSTANDABILITY.

6.8 Statements and blocks

Orthosyntax:

statement = labeled-statement

 | compound-statement

 | expression-statement

 | selection-statement

 | iteration-statement

 | jump-statement ;

Designated constructs:

DCRN Definition Rationale

6.8-1
A statement whose E-behaviour contains no side

effect.

Such a styatement may be redundant in which

case it can be removed without effect on the

behaviour of the program.

6.8-2
A source line containing more than one

statement.

Some users believe that adhering to one
statement per line promotes the

UNDERSTANDABILITY of code.

6.8.1 Labelled statement

Orthosyntax:

labeled-statement = identifier : statement

 | case constant-expr : statement

 | default : statement ;

Parasyntax:

labeled-statement = IDENTIFIER-LABELED-STATEMENT

| CASE-LABELED-STATEMENT

| DEFAULT-LABELED-STATEMENT ;

IDENTIFIER-LABELED-STATEMENT = identifier : statement ;

CASE-LABELED-STATEMENT = case constant-expr : statement ;

DEFAULT-LABELED-STATEMENT = default : statement ;

Designated constructs:

DCRN Definition Rationale

6.8.1-1
A CASE-LABELLED-STATEMENT that is not

contained by a SWITCH-STATEMENT.
Such a construct violates a constraint.

6.8.1-2
A DEFAULT-LABELLED-STATEMENT that is not

contained by a SWITCH-STATEMENT.
Such a construct violates a constraint.

6.8.1-3
A labeled-statement that contains more than one

labelled-statement.

Some users consider that giving a statement

more than one label may impair the

UNDERSTANDABILITY of code.

6.8.1-4 An IDENTIFIER-LABELLED-STATEMENT.

Such a statement is required only to provide a

destination for a GOTO-STATEMENT. If the latter

are banned, then there is no need for any

IDENTIFIER-LABELLED-STATEMENT.

6.8.2 Compound statement

Orthosyntax:

compound-statement = { [block-item-list] } ;

block-item-list = block-item

| block-item-list block-item ;

block-item = declaration

 | statement ;

Designated constructs:

DCRN Definition Rationale

6.8.2-1

A compound-statement closest-containing a

declaration and a statement such that the

declaration appears after the statement.

Such a construct may not be supported by

implementations conforming to earlier version
of the base language standard and their use

impairs PORTABILITY.

6.8.2-2

A compound-statement containing more than

one IDENTIFIER-LABELED-STATEMENT whose

identifiers have the same spelling.
Such a construct violates a constraint.

6.8.3 Expression and null statements

Orthosyntax:

expression-statement = [expression] ;

Designated constructs:

DCRN Definition Rationale

6.8.3-1

An expression-statement that is a FUNCTION-CALL

EXPRESSION whose FUNCTION-DESIGNATOR denotes a

function whose return type is not void.

In this context the value returned by the

function is discarded. Some users believe that

discarding of function values is associated
with programmer error and may wish to ban

or control such usage in aid of defensirve

programming.

6.8.3-2 An expression-statement that has no expression.

Some users believe that such usage is

confusing and impairs understandability.

Others regard it as a useful defensive

programming practice in selection

statements.

6.8.4 Selection statements

Orthosyntax

selection-statement = if (expression) statement

| if (expression) statement else statement

| switch (expression) statement ;

Parasyntax

selection-statement = BINARY-SELECTION

| SWITCH-STMT ;

BINARY-SELECTION = PLAIN-IF-STMT

 | IF-ELSE-STMT ;

PLAIN-IF-STMT = if (IF-EXPR) TRUE-STMT ;

IF-ELSE-STMT = if (IF-EXPR) TRUE-STMT else FALSE-STMT ;

IF-EXPR = expression ;

EXPLICIT-LOGICAL-EXPR = EXPLICIT-REL-EXPR

 | EXPLICIT-EQUALITY-EXPR

 | EXPLICIT-LAND-EXPR

 | EXPLICIT-LOR-EXPR

 | ! (EXPLICIT-LOGICAL-EXPR) ;

TRUE-STMT = statement ;

FALSE-STMT = statement ;

SWITCH-STMT = switch (SWITCH-EXPR) SWITCH-BODY ;

SWITCH-EXPR = expression ;

SWITCH-BODY = statement ;

STRUC-SWITCH-STMNT = switch (SWITCH-EXPR) STRUC-SWITCH-BODY ;

STRUC-SWITCH-BODY = { CASE-CLAUSES ; DEFAULT-CLAUSE } ;

CASE-CLAUSES = CASE-CLAUSE

 | CASE-CLAUSES ; CASE-CLAUSE ;

CASE-CLAUSE = case constant-expr : CASE-GROUP ;

DEFAULT-CLAUSE = default : CASE-GROUP ;

CASE-GROUP = { statement-list ; break } ;

6.8.4.1 The if statement

Designated constructs:

DCRN Definition Rationale

6.8.4.1-1 An IF-EXPR that does not have scalar type. Such a construct violates a constraint.

6.8.4.1-2
An IF-EXPR that is an

EXPLICIT-SIMPLE-ASSIGNMENT-EXPR.

The programmer may have written = when ==

was intended. This error is sufficiently

common that the construct warrants being
diagnosed in aid of defensive programming.

6.8.4.1-3
An IF-EXPR that contains a

SIDE-EFFECTIVE-OPERATOR.

Some users believe that programmers are

prone to make errors when using such a

construct. Accordingly they may wish to ban

or control them in aid of defensive

programming.

6.8.4.1-4
An IF-EXPR that is constant-expression or is

deduced to have a value that never changes.

Such constructs are often the result of

programming errors and are sufficiently

common to warrant being diagnosed in aid of
defensive programming.

6.8.4.1-5 An IF-EXPR that is not an EXPLICIT-LOGICAL-EXPR.

Some users believe making logical operations

explicit in selection statements promoes

UNDERSTANDABILITY and is a useful

defensive programming technique that may
help programmers to detect logical errors to

during coding.

6.8.4.1-6 A TRUE-STMT that is not a compound-statement.

Some users consider that prohibition of this

construct enhances the understandability of

code.

6.8.4.1-7 A FALSE-STMT that is not a compound-statement.

Some users consider that prohibition of this

construct enhances the understandability of
code.

6.8.4.1-8 A PLAIN-IF-STMT.

Some users believe that writing else cases

explicitly is a useful defensive programming

technique that helps programmers to find

logical errors to during coding.

6.8.4.1-9

An IF-ELSE-STMT whose FALSE-STMT is a

BINARY-SELECTION that does not begin on the same

line as the else of the IF-ELSE-STMT.

Some users consider that prohibition of this

construct enhances the understandability of

code.

6.8.4.2 The switch statement

Designated constructs:

DCRN Definition Rationale

6.8.4.2-1 A SWITCH-EXPR that does not have integer type. Such a construct violates a constraint.

6.8.4.2-2

A SWITCH-STMNT closest-containing case or

default where either is within the scope of an

identifier with a variably-modified type but where

the SWITCH-STMNT is not itself within the scope of

that identifier.

Such a construct violates a constraint.

6.8.4.2-3
A constant-expr of a CASE-LABELED-STATEMENT

that is not an integer constant expression.
Such a construct violates a constraint.

6.8.4.2-4

A SWITCH-STMNT closest-containing two distinct

CASE-LABELED-STATEMENT whose constant-expr

have the same value after conversion.
Such a construct violates a constraint.

6.8.4.2-5
A SWITCH-STMNT closest-containing more than one

default.
Such a construct violates a constraint.

6.8.4.2-6 A SWITCH-EXPR that is an EXPLICIT-LOGICAL-EXPR.

Such constructs are often the result of

programming errors and are sufficiently
common to warrant being diagnosed in aid of

defensive programming.

6.8.4.2-7
A SWITCH-EXPR that is a constant-expression or is

deduced to have a value that never changes.

Such constructs are often the result of

programming errors and are sufficiently

common to warrant being diagnosed in aid of
defensive programming.

6.8.5 Iteration statements

Orthosyntax:

iteration-statement = while (expression) statement

 | do statement while (expression) ;

 | for ([expression] ;

 [expression] ;

 [expression]) statement

| for (declaration [expression] ;

[expression]) statement ;

Parasyntax:

iteration-statement = WHILE-STATEMENT

 | DO-WHILE-STATEMENT

 | FOR-STATEMENT ;

WHILE-STATEMENT = while (WHILE-EXPRESSION) BODY ;

DO-WHILE-STATEMENT = do BODY while (WHILE-EXPRESSION) ;

FOR-STATEMENT = C90-FOR-STATEMENT

 | C99-FOR-STAMEMENT ;

C90-FOR-STATEMENT = for ([expression] ;

 [WHILE-EXPRESSION] ;

 [expression]) BODY ;

C99-FOR-STAMEMENT = for (declaration [WHILE-EXPRESSION] ;

[expression]) BODY ;

WHILE-EXPRESSION = expression ;

BODY = statement ;

Designated constructs:

DCRN Definition Rationale

6.8.5-1
An WHILE-EXPRESSION that does not have scalar

type.
Such a construct violates a constraint.

6.8.5-2
An WHILE-EXPRESSION that does not have

arithmetic type.

Some users believe that use of non-arithmetic

types impairs the UNDERSTANDABILITY of
code.

6.8.5-3
An WHILE-EXPRESSION that is not an

EXPLICIT-LOGICAL-EXPR.

Some users believe that not using an
EXPLICIT-LOGICAL-EXPR impairs the

UNDERSTANDABILITY of code.

6.8.5-4
A WHILE-EXPRESSION that is an

EXPLICIT-SIMPLE-ASSIGNMENT-EXPR.

Such constructs are often the result of

programming errors and are sufficiently

common to warrant being diagnosed in aid of

defensive programming.

6.8.5-5 An WHILE-EXPRESSION that is constant-expr.

Such constructs are often the result of

programming errors and are sufficiently

common to warrant being diagnosed in aid of
defensive programming.

6.8.5-6
An WHILE-EXPRESSION that is not a constant-expr

but is statically deduced to have a constant value.

Such constructs are often the result of

programming errors and are sufficiently

common to warrant being diagnosed in aid of

defensive programming.

6.8.5-7
An WHILE-EXPRESSION that is a

SIDE-EFFECTIVE-EXPR.

Some users believe that using a
SIDE-EFFECTIVE-EXPR impairs the

UNDERSTANDABILITY of code.

6.8.5-8 A BODY that is not a compound-statement.

Some users believe that not using a

compound-statement impairs the

UNDERSTANDABILITY of code.

Note: A loop for which the WHILE-EXPRESSION takes a constant value is sometimes required for implementation of

idle-wait states. It is important to ensure that such loops are not removed by code optimisers. If an idle-wait loop is
required, the following form may be found useful:

{

 volatile int i = 2;

 while (i != 3)

 {

 i = (i+i) % 7;

 }

}

The effect of this construct is to cycle the value of i indefinitely through the quadratic residues mod 7. The

assignment to i has the effect of multiplying it by 2 mod 7 and since 2 is a quadratic residue mod 7, i never attains

the value 3, which is a non-quadratic residue mod 7. The presence of a side effect on i (both by assignment and

because i is declared volatile) is intended to defeat an incautious optimiser that might otherwise attempt to

remove the loop. It is believed that few optimisers can make the inferences in elementary number theory required to

prove that the loop is infinite. This may not, however, be beyond the power of a dynamic analysis tool.

6.8.5.1 The while statement (NR)

6.8.5.2 The do statement

Designated constructs:

DCRN Definition Rationale

6.8.5.2-1
A DO-WHILE-STATEMENT whose BODY and while are

not separated by a single space.

Some users believe that a single separating

space is a usage that promotes using a the

UNDERSTANDABILITY of code.

6.8.5.3 The for statement

Designated constructs:

DCRN Definition Rationale

6.8.5.3-1

A declaration of a C99-FOR-STATEMENT that
declares an identifier for an object that does

not either have automatic storage duration or

have register storage class.

Such a construct violates a constraint.

6.8.5.3-2 A C99-FOR-STATEMENT.

The use of such a construct may impair PORTABILITY

to implementations conforming to earlier version of
the base language standard.

6.8.5.3-3
A FOR-STATEMENT that does not

closest-contain a WHILE-EXPRESSION.

Such usage is treated as if the WHILE-EXPRESSION had a

constant-value (c.f. DCRN 6.8.5-5

6.8.5.3-4
A FOR-STATEMENT for whose BODY the

E-behaviour contains a modifying access to

an object and for whose WHILE-EXPRESSION
the E-behaviour contains any access to the

same object.

Some users prefer to modify loop control variables

only in the third expression of a for-statement and

consider that such usage promotes

UNDERSTANDABILITY.

6.8.5.3-5
A loop-control variable that has floating
type.

Some users consider that use of such variables is prone

to error and prefer to ban or control them in aid of

defensive programming.

6.8.5.3-6
A FOR-STATEMENT for which there is more

than one loop-control variable.

Some users consider that use of more than one such

variables is prone to error and prefer to ban or control
them in aid of defensive programming.

Note: Since the notion of a loop-control variable is not syntactically defined, diagnostic processors may use heuristic

methods to identify such variables and hence their capacity for such identification may exhibit wide variation.

6.8.6 Jump statements

Orthosyntax:

jump-statement = goto identifier ;

 | continue ;

 | break ;

 | return [expression] ; ;

Parasyntax:

jump-statement = GOTO-STATEMENT

| CONTINUE-STATEMENT

| BREAK-STATEMENT

| RETURN-STATEMENT ;

GOTO-STATEMENT = goto identifier ; ;

CONTINUE-STATEMENT = continue ; ;

BREAK-STATEMENT = break ; ;

RETURN-STATEMENT = PLAIN-RETURN-STMNT

 | EXPR-RETURN-STMNT ;

PLAIN-RETURN-STMNT = return ; ;

EXPR-RETURN-STMNT = return [expression] ; ;

6.8.6.1 The goto statement

Designated constructs:

DCRN Definition Rationale

6.8.6.1-1

A GOTO-STATEMENT whose identifier is not

the identifier of an

IDENTIFIER-LABELED-STATEMENT contained in

the same compound-statement as that

GOTO-STATEMENT

Such a construct violates a constraint.

6.8.6.1-2

A GOTO-STATEMENT that is within the scope
of an identifier I having a variably-modified

type but such that its own identifier is the

identifier of an
IDENTIFIER-LABELLED-STATEMENT that is

outside that scope of I.

Such a construct violates a constraint.

6.8.6.1-3 A GOTO-STATEMENT.

Some users believe that programmers are

prone to make errors when using the

GOTO-STATEMENT and may therefore wish to
ban or control its use in aid of defensive

programming.

6.8.6.2 The continue statement

Designated constructs:

DCRN Definition Rationale

6.8.6.2-1
A CONTINUE-STATEMENT that is not contained

by a BODY.
Such a construct violates a constraint.

6.8.6.2-2 A CONTINUE-STATEMENT.

Some users believe that programmers are
prone to make errors when using the

CONTINUE-STATEMENT and may therefore

wish to ban or control its use in aid of
defensive programming.

6.8.6.3 The break statement

Designated constructs:

DCRN Definition Rationale

6.8.6.3-1
A BREAK-STATEMENT that is not contained by

a BODY.
Such a construct violates a constraint.

6.8.6.3-2
A BREAK-STATEMENT that is contained by the

BODY of an ITERATION-STATEMENT.

Some users believe that programmers are

prone to make errors when using the

BREAK-STATEMENT within loops and may

therefore wish to ban or control its use in aid

of defensive programming.

6.8.6.4 The return statement

Designated constructs:

DCRN Definition Rationale

6.8.6.4-1

An EXPR-RETURN-STATEMENT contained by
the compound-statement of the

function-definition of a function whose

return type is void.

Such a construct violates a constraint.

6.8.6.4-2

An PLAIN-RETURN-STATEMENT contained by

the compound-statement of the

function-definition of a function whose

return type is not void.

Such a construct violates a constraint.

6.8.6.4-3

A RETURN-STATEMENT whose expression

denotes a value of pointer-type that points to

an object whose scope is the

compound-statement containing that

RETURN-STATEMENT..

Dereferencing such a returned value will

lead to undefined behaviour. Accordingly

some users may wish to ban or control use of

this construct in aid of defensive

programming.

6.8.6.4-4
A RETURN-STATEMENT whose expression
does not denote a value of arithmetic type.

Some users believe that programmers are
prone to make errors when using such a

construct and may therefore wish to ban or

control its use in aid of defensive

programming.

6.8.6.4-5 An EXPR-RETURN-STATEMENT whose

expression does not denote a value of a type

identical to the return type of the

function-definition in whose
compound-statement it is contained.

Some users believe that programmers are

prone to make errors when using such a

construct and may therefore wish to ban or

control its use in aid of defensive

programming.

6.9 External definitions

Orthosyntax:

translation-unit = external-declaration

 | translation-unit external-declaration ;

external-declaration = function-definition

 | declaration

Designated constructs:

DCRN Definition Rationale

6.9-1
An external-declaration that contains either of the

storage-class-specifier auto or register.
Such a construct violates a constraint.

6.9-2

A translation-unit containing more than one
external-declaration that is an external definition for

a given identifier with internal linkage.
Such a construct violates a constraint.

6.9-3

Distinct declarations that refer to the same object or

function but that specify incompatible types. Behaviour is undefined.

6.9-4
A construct provided to support T-behaviour of

assembly code appearing within a translation-unit.

Behaviour for such a construct is

implementation-dependent.

6.9-5

A translation-unit containing a construct whose

interpretation in C++ differs from the interpretation
of a syntactically identical construct in C.

Such a construct impairs the PORTABILITY of

code between C and C++ implementations.

6.9-6
A source file not that does not contain a

translation-unit.

In certain circumstances preprocessing of a

source file may result in a file that contains no

external declarations (e.g. owing to the effects of

conditional compilation). Some users like to be

warned if this occurs and a diagnostic processor

may flag the condition if it arises.

6.9.1 Function definitions

Orthosyntax:

function-definition = [declaration-specifiers] declarator [declaration-list]

compound-statement ;

declaration-list = declaration

| declaration-list declaration;

Parasyntax:

function-definition = [declaration-specifiers] declarator [declaration-list]

FUNCTION-BLOCK ;

FUNCTION-BLOCK = compound-statement ;

Designated constructs:

DCRN Definition Rationale

6.9.1-1
A function-definition whose declared identifier

does not have function type.
Such a construct violates a constraint.

6.9.1-2

A function-definition the return type of whose

declared function is neither the void type nor an

object type other than an array type.
Such a construct violates a constraint.

6.9.1-3

A function-definition whose
declaration-specifiers contain a

storage-class-specifier other that extern or

static.

Such a construct violates a constraint.

6.9.1-4

A function-definition whose declarator is a

FUNCTION-PROTOTYPE and that itself has a

declaration-list.
Such a construct violates a constraint.

6.9.1-5

A function-definition whose declarator is a

K-AND-R-FUNCTION-DECLARATOR whose

identifier-list does not correspond to the

declaration-list of the function-definition.

Such a construct violates a constraint.

6.9.1-6
A FUNCTION-BLOCK that contains both a

PLAIN-RETURN-STMNT and an EXPR-RETURN-STMNT.
Behaviour for one or the other is undefined.

6.9.1-7
A FUNCTION-BLOCK that does not contain a

RETURN-STATEMENT.

For such a construct the possibility exists that

the terminating } of the function-block may be

reached and that the value of the function call

will be used in the calling environment. In this

occurs, the behaviour is undefined.

6.9.1-8
A function-definition whose declarator does not

contain a FUNCTION-PROTOTYPE.

The use of such function-definitions impairs the

ANALYSABILITY of code.

6.9.1-9
A FUNCTION-BLOCK that contains more than one

RETURN-STATEMENT.

Some users believe that adherence to a

single-entry, single-exit convention promotes

the UNDERSTANDABILITY of code.

6.9.1-10

A construct whose E-behaviour may vary

according to the layout of storage for function

parameters.

The layout of storage for parameters is

unspecified.

6.9.1-11

A function-definition that declares a parameter but

whose function block contains no access to that

parameter.

Some users believe that the presence of such

unused parameters impair the

UNDERSTANDABILITY of code.

6.9.2 External object definitions

DCRN Definition Rationale

6.9.2-1
A tentative definition of an object that has internal

linkage and incomplete type.
Behaviour is undefined.

6.10 Preprocessing directives

Orthosyntax:

preprocessing-file = [group] ;

group = group-part

 | group group-part ;

group-part = [pp-tokens] new-line

 | if-section

 | control-line ;

if-section = if-group [elif-groups] [else-group] endif-line ;

if-group = # if constant-expression new-line [group]

 | # ifdef identifier new-line [group]

 | # ifndef identifier new-line [group] ;

elif-groups = elif-group

 | elif-groups elif-group ;

elif-group = # elif constant-expression new-line [group] ;

else-group = # else new-line [group] ;

endif-line = # endif new-line ;

control-line = # include pp-tokens new-line

 | # define identifier replacement-list new-line

 | # define identifier lparen [identifier-list]

 replacement-list new-line

| # define identifier lparen . . .)

 replacement-list new-line

 | # define identifier lparen identifier-list , . . .)

 replacement-list new-line

 | # undef identifier new-line

 | # line pp-tokens new-line

 | # error [pp-tokens] new-line

 | # pragma [pp-tokens] new-line

 | # new-line ;

lparen = a left-parentheses without preceding white space ;

replacement-list = [pp-tokens] ;

pp-tokens = preprocessing-token

 | pp-tokens preprocessing-token ;

new-line = the new-line character ;

Parasyntax:

control-line = INCLUDE-DIRECTIVE

 | PLAIN-DEFINE-DIRECTIVE

 | FLIKE-DEFINE-DIRECTIVE

 | UNDEF-DIRECTIVE

 | LINE-DIRECTIVE

 | ERROR-DIRECTIVE

 | PRAGMA-DIRECTIVE

 | NULL-DIRECTIVE ;

DIRECTIVE = IF-DIRECTIVE

 | IFDEF-DIRECTIVE

| IFNDEF-DIRECTIVE

| ELIF-DIRECTIVE

| ELSE-DIRECTIVE

| ENDIF-DIRECTIVE

| INCLUDE-DIRECTIVE

 | PLAIN-DEFINE-DIRECTIVE

 | FLIKE-DEFINE-DIRECTIVE

 | EMPTY-VAR-FLIKE-DEFINE-DIRECTIVE

 | VAR-FLIKE-DEFINE-DIRECTIVE

 | UNDEF-DIRECTIVE

 | LINE-DIRECTIVE

 | ERROR-DIRECTIVE

 | PRAGMA-DIRECTIVE

 | NULL-DIRECTIVE ;

Designated constructs:

DCRN Definition Rationale

6.10-1
A DIRECTIVE whose opening hash # is

followed by a white space character.

Such a construct violates a constraint. (The #

will be treated as a # preprocessing token)

6.10-2

A directive that contains a white space

character other than space or horizontal
tab between one preprocessing-token and

another.

Such a construct violates a constraint.

6.10-3 A non-standard control-line. T-behaviour is implementation-dependent.

6.10-4 A non-standard endif-line. T-behaviour is implementation-dependent.

6.10-5 A non-standard if-group. T-behaviour is implementation-dependent.

6.10-6 A non-standard elif-group. T-behaviour is implementation-dependent.

6.10-7 A non-standard else-group. T-behaviour is implementation-dependent.

6.10-8

A DIRECTIVE whose opening hash # does

not occur in the first character position of
a source line.

Such a construct may not be treated as a

directive by pre-standard implementations

thereby impairing PORTABILITY.

6.10.1 Conditional inclusion

Parasyntax:

if-group = IF-DIRECTIVE [group] ;

 | IFDEF-DIRECTIVE [group] ;

 | IFNDEF-DIRECTIVE [group] ;

IF-DIRECTIVE = # if constant-expression new-line ;

IFDEF-DIRECTIVE = # ifdef identifier new-line ;

IFNDEF-DIRECTIVE = # ifndef identifier new-line ;

elif-group = ELIF-DIRECTIVE [group] ;

ELIF-DIRECTIVE = # elif constant-expression new-line ;

else-group = ELSE-DIRECTIVE [group] ;

ELSE-DIRECTIVE = # else new-line ;

endif-line = ENDIF-DIRECTIVE ;

ENDIF-DIRECTIVE = # endif new-line ;

Designated constructs:

DCRN Definition Rationale

6.10.1-1

An IF-DIRECTIVE , IFDEF-DIRECTIVE or

IFNDEF-DIRECTIVE whose

constant-expression is not an integer
constant expression.

Such a construct violates a constraint.

6.10.1-2

An IF-DIRECTIVE , IFDEF-DIRECTIVE or

IFNDEF-DIRECTIVE whose

constant-expression is or expands to one that

contains defined not followed by an

identifier or (identifier).

T-behaviour is undefined.

6.10.1-3

A non-standard if-group that begins with #

ifdef or # ifndef in neither case

followed by an identifier.
T-behaviour is undefined.

6.10.1-4

An IF-DIRECTIVE , IFDEF-DIRECTIVE or

IFNDEF-DIRECTIVE whose

constant-expression contains a

character-constant.

Aspects of T-behaviour are

implementation-defined.

6.10.1-5 An ELIF-DIRECTIVE.

Such a construct may not be supported by
pre-standard implementations thereby

impairing PORTABILITY.

6.10.1-6
An IF-DIRECTIVE whose constant-expression

denotes the value zero.

Some users believe that programmers are

prone to write such constructs in error and

may wish to ban or control them in aid of
defensive programming.

6.10.1-7

An IF-DIRECTIVE, IFDEF-DIRECTIVE or

IFNDEF-DIRECTIVE for which there is no

matching ELSE-DIRECTIVE, ELIF-DIRECTIVE or

ENDIF-DIRECTIVE

Some users believe that programmers are

prone to write such constructs in error and

may wish to ban or control them in aid of

defensive programming.

6.10.1-8

An ELSE-DIRECTIVE, ELIF-DIRECTIVE or

ENDIF-DIRECTIVE for which there is no

matching IF-DIRECTIVE, IFDEF-DIRECTIVE or

IFNDEF-DIRECTIVE.

Some users believe that programmers are

prone to write such constructs in error and

may wish to ban or control them in aid of

defensive programming.

6.10.2 Source file inclusions

Parasyntax:

INCLUDE-DIRECTIVE = # include pp-tokens new-line ;

Designated constructs:

DCRN Definition Rationale

6.10.2-1
An INCLUDE-DIRECTIVE that does not contain

a header-name.
T-behaviour is undefined.

6.10.2-2

An INCLUDE-DIRECTIVE whose first contained

preprocessing-token is not a header-name. T-behaviour is undefined.

6.10.2-3

An INCLUDE-DIRECTIVE whose T-behaviour

causes inclusion of the file in which it occurs

(recursive inclusion).
T-behaviour is undefined.

6.10.2-4

An INCLUDE-DIRECTIVE whose first contained

preprocessing-token is a STD-HEADER-NAME

that is not a header-name for a standard
library.

Use of non-standard headers impairs

PORTABILITY.

6.10.2-5

An INCLUDE-DIRECTIVE whose first contained
preprocessing-token is not a

STD-HEADER-NAME.

Use of user-defined headers impairs

PORTABILITY.

6.10.2-6
An INCLUDE-DIRECTIVE whose T-behaviour
contains the expansion of a macro.

Such a construct may not be supported by

pre-standard implementations and its

presence impairs PORTABILITY.

6.10.2-7

An INCLUDE-DIRECTIVE containing more than

one preprocessing-token, only the first of

which is a header-name.

Such a construct may not be supported by

pre-standard implementations and its

presence impairs PORTABILITY.

6.10.3 Macro replacement

Parasyntax:

DEFINE-DIRECTIVE = PLAIN-DEFINE-DIRECTIVE

 | FLIKE-DEFINE-DIRECTIVE

 | EMPTY-VAR-FLIKE-DEFINE-DIRECTIVE

 | VAR-FLIKE-DEFINE-DIRECTIVE ;

PLAIN-DEFINE-DIRECTIVE = # define MACRO-NAME �

replacement-list new-line ;

FLIKE-DEFINE-DIRECTIVE = # define MACRO-NAME < ([identifier-list]

replacement-list new-line ;

EMPTY-VAR-FLIKE-DEFINE-DIRECTIVE = # define identifier < (. . .)

 replacement-list new-line ;

VAR-FLIKE-DEFINE-DIRECTIVE = # define identifier < (identifier-list

 , . . .) replacement-list new-line ;

Note: Use here of the direct concatenation metasymbol < obviates the need for the definition of a nonterminal lparen

defined to be a left-parentheses without preceding white space.

MACRO-NAME = identifier ;

PAREN-REPLACEMENT-LIST = (replacement-list) ;

Designated constructs:

DCRN Definition Rationale

6.10.3-1

A translation-unit containing both a

PLAIN-DEFINE-DIRECTIVE and an

FLIKE-DEFINE-DIRECTIVE such that the

identifier of one is the same as the identifier

of the other.

The presence of such constructs violates a

constraint.

6.10.3-2

Two or more distinct occurrences of an

FLIKE-DEFINE-DIRECTIVE that define the
sameidentifier as a macro but hav different

replacement lists.

The presence of such constructs violates a

constraint.

6.10.3-3

Two or more distinct occurrences of an

EMPTY-VAR-FLIKE-DEFINE-DIRECTIVE that

define the sameidentifier as a macro but hav

different replacement lists.

The presence of such constructs violates a

constraint.

6.10.3-4

Two or more distinct occurrences of a

VAR-FLIKE-DEFINE-DIRECTIVE that define the

sameidentifier as a macro but hav different
replacement lists.

The presence of such constructs violates a

constraint.

6.10.3-5

Two or more distinct occurrences of a

PLAIN-DEFINE-DIRECTIVE that define the
sameidentifier as a macro but hav different

replacement lists.

The presence of such constructs violates a

constraint.

6.10.3-6

A replacement-list of a

PLAIN-DEFINE-DIRECTIVE or an

FLIKE-DEFINE-DIRECTIVE that contains the

identifier __VA_ARGS_.

The presence of __VA_ARGS__ in such a

context violates a constraint.

6.10.3-7
An FLIKE-DEFINE-DIRECTIVE whose

replacement-list does not contain).
Behaviour is undefined.

6.10.3-8

A replacement-list containing a sequence of

pp-token that have the syntactic form of a

DIRECTIVE.
Behaviour is undefined.

6.10.3-9

A DEFINE-DIRECTIVE that contains a

preprocessing-token having the same

spelling as a keyword or is defined.
Behaviour is undefined.

6.10.3-10
A non standard DEFINE-DIRECTIVE that does
not contain an identifier.

Behaviour is undefined.

6.10.3-11

A DEFINE-DIRECTIVE that can be replaced
(possibly at a different point in a source file

by a definition of an object.

A programmer may have used an object-like

macro when an object definition could have

been used. Use of an object definition can

promote ANALYSABILITY.

6.10.3-12

A translation-unit containing two distinct

occurrences of a PLAIN-DEFINE-DIRECTIVE

such that the identifiers of both instances are

the same.

Such a construct may lead to undefined
behaviour under pre-standard

implementations or implementations that

conform to earlier version of the base
language standard. Its presence therefore

impairs PORTABILITY.

6.10.3-13

A translation-unit containing two distinct

occurrences of an FLIKE-DEFINE-DIRECTIVE
such that the identifiers of both instances are

the same.

Such a construct may lead to undefined

behaviour under pre-standard

implementations or implementations that
conform to earlier version of the base

language standard. Its presence therefore

impairs PORTABILITY.

6.10.3-14
A replacement-list that is not a

PAREN-REPLACEMENT-LIST.

Some users believe that programmers are

prone to make errors when they do not

parenthesise replacement lists. Accordingly

they may wish to ban or control such usage

in aid of defensive programming.

6.10.3-15

An FLIKE-DEFINE-DIRECTIVE whose

identifier-list contains distinct occurrences

of an identifier that have the same spelling.

Some users believe that programmers are
prone to make errors when they do not

parenthesise replacement lists. Accordingly

they may wish to ban or control such usage

in aid of defensive programming.

6.10.3-16

A macro expansion that causes the

generation of a construct containing a

SIDE-EFFECTIVE-OPERATOR.

Some users believe that programmers are

prone to make errors when using such

constructs and may wish to ban or control

their use in aid of defensive programming.

6.10.3-17

A macro expansion that causes the

generation of a construct whose E-behaviour

contains sequence point.

Some users believe that programmers are

prone to make errors when using such

constructs and may wish to ban or control

their use in aid of defensive programming.

6.10.3-18
An EMPTY-VAR-FLIKE-DEFINE-DIRECTIVE or a

VAR-FLIKE-DEFINE-DIRECTIVE

Such a construct may lead to undefined

behaviour under pre-standard

implementations or implementations that
conform to earlier version of the base

language standard. Their presence therefore

impairs PORTABILITY.

6.10.3.1 Argument substitution

Parasyntax:

MACRO-INVOCATION = MACRO-NAME [(INVOCATION-TAIL];

Designated constructs:

DCRN Definition Rationale

6.10.3.1-1

A MACRO-INVOCATION whose

INVOCATION-TAIL does not begin with an

identifier-list that contains no fewer
identifiers than occur in the identifier-list

of its corresponding

FLIKE-DEFINE-DRECITIVE, .

EMPTY-VAR-FLIKE-DEFINE-DIRECTIVE or a

VAR-FLIKE-DEFINE-DIRECTIVE.

Such a construct violates a constraint.

6.10.3.1-2

A MACRO-INVOCATION whose

INVOCATION-TAIL does not begin with an

identifier-list that contains more

identifiers than occur in the identifier-list

of its corresponding

FLIKE-DEFINE-DRECITIVE.

Such a construct violates a constraint.

6.10.3.1-3
A MACRO-INVOCATION whose

INVOCATION-TAIL does not begin with an

identifier-list.

Behaviour is undefined.

6.10.3.1-4
A MACRO-INVOCATION whose

INVOCATION-TAIL does not end with a).
Behaviour is undefined.

6.10.3.1-5

A MACRO-INVOCATION whose T-behaviour
creates a further invocation of the same

macro (recursive invocation).
Behaviour is undefined.

6.10.3.1-6
A MACRO-INVOCATION that is not enclosed

in parentheses.

Some users believe that programmers are prone to make

errors when using such constructs and may wish toe ban

or control them in aid of defensive programming.

6.10.3.2 The # operator

Designated constructs:

DCRN Definition Rationale

6.10.3.2-1

An occurrence of the # preprocessing

token other than immediately before a

pp-token contained by a replacement-list.
Such a construct violates a constraint.

6.10.3.2-2

An occurrence of the # preprocessing

token whose T-behaviour does not
generate a string-literal.

Behaviour is undefined.

6.10.3.2-3 The # preprocessing operator.

Some users believe that programmers are prone to
making errors when using this operator and may wish to

ban or control such usage in aid of defensive

programming.

6.10.3.3 The ## operator

Designated constructs:

DCRN Definition Rationale

6.10.3.3-1
An occurrence of the ## preprocessing

token as the first or last pp-token in a
replacement-list.

Such a construct violates a constraint.

6.10.3.3-2

An occurrence of the ## pre-processing

operator whose T-behaviour does not

generate a pp-token.
Behaviour is undefined.

6.10.3.3-3 The ## preprocessing operator.

Some users believe that programmers are prone to

making errors when using this operator and may wish to

ban or control such usage in aid of defensive

programming.

6.10.3.4 Rescanning and further replacement (NR)

6.10.3.5 Scope of macro definitions

Parasyntax:

UNDEF-DIRECTIVE = # undef identifier new-line ;

Designated constructs:

DCRN Definition Rationale

6.10.3.5-1

A UNDEF-DIRECTIVE that contains a

preprocessing-token having the same

spelling as a keyword or is defined.
Behaviour is undefined.

6.10.3.5-2
A non standard UNDEF-DIRECTIVE that does

not contain an identifier.
Behaviour is undefined.

6.10.3.5-3 An UNDEF-DIRECTIVE.

Some users believe that programmers are prone to
making errors when using such a construct and may

wish to ban or control such usage in aid of defensive

programming.

6.10.4 Line control

Parasyntax:

LINE-DIRECTIVE = # line LINE-PP-TOKENS new-line ;

LINE-PP-TOKENS = LINE-DIG-SEQ

 | LINE-DIG-SEQ-SCHAR-SEQ

 | pp-tokens ~ LINE-DIG-SEQ

| pp-tokens ~ LINE-DIG-SEQ-SCHAR-SEQ;

LINE-DIG-SEQ = digit-sequence ;

LINE-DIG-SEQ-SCHAR-SEQ = digit-sequence “ [s-char-sequence] “ ;

Designated constructs:

DCRN Definition Rationale

6.10.4-1
A LINE-DIG-SEQ-SCHAR-SEQ whose

s-char-sequence is not a

character-string-literal.

Such a construct violates a constraint.

6.10.4-2

A LINE-DIG-SEQ or

LINE-DIG-SEQ-SCHAR-SEQ whose

digit-sequence denotes a value outside the

range [1, 2147483647]

Behaviour is undefined.

6.10.4-3

A LINE-PP-TOKENS that does not result after

replacement in a LINE-DIG-SEQ or a

LINE-DIG-SEQ-SCHAR-SEQ.
Behaviour is undefined.

6.10.4-4 A LINE-DIRECTIVE.

Some users believe that programmers are prone to
making errors when using such a construct and may

wish to ban or control such usage in aid of defensive

programming.

6.10.5 Error directive

Parasyntax:

ERROR-DIRECTIVE = # error [pp-tokens] new-line ;

Designated constructs:

DCRN Definition Rationale

6.10.5-1 An ERROR-DIRECTIVE.

Some users believe that programmers are prone to

making errors when using such a construct and may

wish to ban or control such usage in aid of defensive

programming.

6.10.6 Pragma directive

Parasyntax:

PRAGMA-DIRECTIVE = STDC-PRAGMA-DIRECTIVE

| PLAIN-PRAGMA-DIRECTIVE ;

STDC-PRAGMA-DIRECTIVE = #pragma STDC STDC-PRAGMA-NAME

on-off-switch ;

STDC-PRAGMA-NAME = FP_CONTRACT

 | FENV_ACCESS

 | CX_LIMITED_RANGE ;

on-off-switch = ON | OFF | DEFAULT ;

PLAIN-PRAGMA-DIRECTIVE = (# pragma [pp-tokens] new-line)

~

STDC-PRAGMA-DIRECTIVE ;

Designated constructs:

DCRN Definition Rationale

6.10.6-1 A PLAIN-PRAGMA-DIRECTIVE.
The effects of such directives are

implementation-dependent.

6.10.7 Null directive

Parasyntax:

NULL-DIRECTIVE = # new-line ;

Designated constructs:

DCRN Definition Rationale

6.10.7-1 A NULL-DIRECTIVE.
Such a directive has no effect and is therefore redundant.

6.10.8 Predefined macro names

Parasyntax:

PREDEFINED-MACRO-NAME = C90-PREDEFINED-MACRO-NAME

 | C99-PREDEFINED-MACRO-NAME ;

C90-PREDEFINED-MACRO-NAME = __DATE__ | __FILE__

 ...

 ...

 | .. __LINE__ |

 __STDC__

 | __TIME__ ;

C99-PREDEFINED-MACRO-NAME = __STDC_HOSTED__

 ...

 ...

 | .. __STDC_VERSION__

| __STDC_IEC_559__

| __STDC_IEC_559_COMPLEX__

| __STDC_ISO_10646__ ;

UNDEF-DIRECTIVE = # undef identifier new-line ;

Designated constructs:

DCRN Definition Rationale

6.10.8-1
An UNDEF-DIRECTIVE whose identifier is a

PREDEFINED-MACRO-NAME.
Behaviour is undefined.

6.10.8-2
A DEFINE-DIRECTIVE whose identifier is a

PREDEFINED-MACRO-NAME.
Behaviour is undefined.

6.10.9 Pragma operator

Parasyntax:

PRAGMA-OPERATOR-EXPRESSION = _Pragma (string-literal) ;

Designated constructs:

DCRN Definition Rationale

6.10.9-1 A PRAGMA-OPERATOR-EXPRESSION.

Such constructs may not be supported by

implementations conforming to earlier versions

of the base language standard and their use

impairs PORTABILITY.

6.11 Future language directions

6.11.1 Floating types (NR)

6.11.2 Linkages of identifiers (NR)

6.11.3 External names (NR)

6.11.4 Character escape sequences (NR)

6.11.5 Storage-class specifiers (NR)

6.11.6 Function declarators (NR)

6.11.7 Function definitions (NR)

6.11.8 Pragma directives (NR)

6.11.9 Predefined macro names (NR)

7 Library

7.1 Introduction

7.1.1 Definitions of terms (NR)

7.1.2 Standard headers (NR)

7.1.3 Reserved identifiers (NR)

7.1.4 Use of library functions (NR)

7.2 Diagnostics <assert.h>

7.2.1 Program diagnostics

7.2.1.1 The assert macro

Designated constructs:

DCRN Definition Rationale

7.2.1-1 A macro-invocation whose MACRO-NAME is

assert.

Behaviour is implementation-dependent in

freestanding implementations.

7.3 Complex arithmetic <complex.h>

Designated constructs:

DCRN Definition Rationale

7.3-1
An INCLUDE-DIRECTIVE that causes

inclusion of the <complex.h> header.

The ACCURACY of function provided by this header is
implementation-dependent. For critical applications

some users may wish to use mathematical libraries for

which the accuracy is well characterised.

Note. It may be that some functions provided by the <complex.h> header of a conforming implementation are of

acceptable accuracy while some are not. Accordingly users may wish to control usage at the individual function
level. Where this is a possible rationale for other DCRN’s in this clause, it is indicated by the abbreviation FSC

ACCURACY standing for “Function-specific controls for accuracy”.

7.3.1 Introduction (NR)

7.3.2 Conventions (NR)

7.3.3 Branch cuts (NR)

7.3.4 The CX_LIMITED_RANGE pragma

Parasyntax:

CX-LIMITED-RANGE-PRAGMA = #pragma STDC CX_LIMITED_RANGE

on-off-switch ;

Designated constructs:

DCRN Definition Rationale

7.3.4-1 A CX-LIMITED-RANGE-PRAGMA.

Some users of C for numerical applications believe that

all but expert numerical programmers are prone to make

errors using this pragma and may wish to ban or control
its use in aid of defensive programming.

7.3.5 Trigonometric functions

Designated constructs:

DCRN Definition Rationale

7.3.5.1-1 The FUNCTION-DESIGNATOR cacos FSC ACCURACY

7.3.5.1-2 The FUNCTION-DESIGNATOR cacosf FSC ACCURACY

7.3.5.1-3 The FUNCTION-DESIGNATOR cacosl FSC ACCURACY

7.3.5.2-1 The FUNCTION-DESIGNATOR casin FSC ACCURACY

7.3.5.2-2 The FUNCTION-DESIGNATOR casinf FSC ACCURACY

7.3.5.2-3 The FUNCTION-DESIGNATOR casinl FSC ACCURACY

7.3.5.3-1 The FUNCTION-DESIGNATOR catan FSC ACCURACY

7.3.5.3-2 The FUNCTION-DESIGNATOR catanf FSC ACCURACY

7.3.5.3-3 The FUNCTION-DESIGNATOR catanl FSC ACCURACY

7.3.5.4-1 The FUNCTION-DESIGNATOR ccos FSC ACCURACY

7.3.5.4-2 The FUNCTION-DESIGNATOR ccosf FSC ACCURACY

7.3.5.4-3 The FUNCTION-DESIGNATOR ccosl FSC ACCURACY

7.3.5.5-1 The FUNCTION-DESIGNATOR csin FSC ACCURACY

7.3.5.5-2 The FUNCTION-DESIGNATOR csinf FSC ACCURACY

7.3.5.5-3 The FUNCTION-DESIGNATOR csinl FSC ACCURACY

7.3.5.6-1 The FUNCTION-DESIGNATOR ctan FSC ACCURACY

7.3.5.6-2 The FUNCTION-DESIGNATOR ctanf FSC ACCURACY

7.3.5.6-3 The FUNCTION-DESIGNATOR ctanl FSC ACCURACY

7.3.6 Hyperbolic functions

Designated constructs:

DCRN Definition Rationale

7.3.6.1-1 The FUNCTION-DESIGNATOR cacosh FSC ACCURACY

7.3.6.1-2 The FUNCTION-DESIGNATOR cacoshf FSC ACCURACY

7.3.6.1-3 The FUNCTION-DESIGNATOR cacoshl FSC ACCURACY

7.3.6.2-1 The FUNCTION-DESIGNATOR casinh FSC ACCURACY

7.3.6.2-2 The FUNCTION-DESIGNATOR casinhf FSC ACCURACY

7.3.6.2-3 The FUNCTION-DESIGNATOR casinhl FSC ACCURACY

7.3.6.3-1 The FUNCTION-DESIGNATOR catanh FSC ACCURACY

7.3.6.3-2 The FUNCTION-DESIGNATOR catanhf FSC ACCURACY

7.3.6.3-3 The FUNCTION-DESIGNATOR catanhl FSC ACCURACY

7.3.6.4-1 The FUNCTION-DESIGNATOR ccosh FSC ACCURACY

7.3.6.4-2 The FUNCTION-DESIGNATOR ccoshf FSC ACCURACY

7.3.6.4-3 The FUNCTION-DESIGNATOR ccoshl FSC ACCURACY

7.3.6.5-1 The FUNCTION-DESIGNATOR csinh FSC ACCURACY

7.3.6.5-2 The FUNCTION-DESIGNATOR csinhf FSC ACCURACY

7.3.6.5-3 The FUNCTION-DESIGNATOR csinhl FSC ACCURACY

7.3.6.6-1 The FUNCTION-DESIGNATOR ctanh FSC ACCURACY

7.3.6.6-2 The FUNCTION-DESIGNATOR ctanhf FSC ACCURACY

7.3.6.6-3 The FUNCTION-DESIGNATOR ctanhl FSC ACCURACY

7.3.7 Exponential and logarithmic functions

Designated constructs:

DCRN Definition Rationale

7.3.7.1-1 The FUNCTION-DESIGNATOR cexp FSC ACCURACY

7.3.7.1-2 The FUNCTION-DESIGNATOR cexpf FSC ACCURACY

7.3.7.1-3 The FUNCTION-DESIGNATOR cexpl FSC ACCURACY

7.3.7.2-1 The FUNCTION-DESIGNATOR clog FSC ACCURACY

7.3.7.2-2 The FUNCTION-DESIGNATOR clogf FSC ACCURACY

7.3.7.2-3 The FUNCTION-DESIGNATOR clogl FSC ACCURACY

7.3.8 Power and absolute-value functions

Designated constructs:

DCRN Definition Rationale

7.3.8.1-1 The FUNCTION-DESIGNATOR cabs FSC ACCURACY

7.3.8.1-2 The FUNCTION-DESIGNATOR cabsf FSC ACCURACY

7.3.8.1-3 The FUNCTION-DESIGNATOR cabsl FSC ACCURACY

7.3.8.2-1 The FUNCTION-DESIGNATOR cpow FSC ACCURACY

7.3.8.2-2 The FUNCTION-DESIGNATOR cpowf FSC ACCURACY

7.3.8.2-3 The FUNCTION-DESIGNATOR cpowl FSC ACCURACY

7.3.8.3-1 The FUNCTION-DESIGNATOR csqrt FSC ACCURACY

7.3.8.3-2 The FUNCTION-DESIGNATOR csqrtf FSC ACCURACY

7.3.8.3-3 The FUNCTION-DESIGNATOR csqrtl FSC ACCURACY

7.3.9 Manipulation functions

Designated constructs:

DCRN Definition Rationale

7.3.9.1-1 The FUNCTION-DESIGNATOR carg FSC ACCURACY

7.3.9.1-2 The FUNCTION-DESIGNATOR cargf FSC ACCURACY

7.3.9.1-3 The FUNCTION-DESIGNATOR cargl FSC ACCURACY

7.3.9.2-1 The FUNCTION-DESIGNATOR cimag FSC ACCURACY

7.3.9.2-2 The FUNCTION-DESIGNATOR cimagf FSC ACCURACY

7.3.9.2-3 The FUNCTION-DESIGNATOR cimagl FSC ACCURACY

7.3.9.3-1 The FUNCTION-DESIGNATOR conj FSC ACCURACY

7.3.9.3-2 The FUNCTION-DESIGNATOR conjf FSC ACCURACY

7.3.9.3-3 The FUNCTION-DESIGNATOR conjl FSC ACCURACY

7.3.9.4-1 The FUNCTION-DESIGNATOR cproj FSC ACCURACY

7.3.9.4-2 The FUNCTION-DESIGNATOR cprojf FSC ACCURACY

7.3.9.4-3 The FUNCTION-DESIGNATOR cprojl FSC ACCURACY

7.3.9.5-1 The FUNCTION-DESIGNATOR creal FSC ACCURACY

7.3.9.5-2 The FUNCTION-DESIGNATOR crealf FSC ACCURACY

7.3.9.5-3 The FUNCTION-DESIGNATOR creall FSC ACCURACY

7.4 Character handling <ctype.h>

Designated constructs:

DCRN Definition Rationale

7.4-1
An INCLUDE-DIRECTIVE that causes inclusion of the

<ctype.h> header.

The functions provided by this header may not

exhibit sufficient ACCURACY in reflecting the

conventions in specific locales. Accordingly
some users may wish to use a library that does

reflect local conventions.

Note. It may be that some functions provided by the <ctype.h> header of a conforming implementation do

accurately reflect local conventions while some do not. Accordingly users may wish to control usage at the

individual function level. Where this is a possible rationale for other DCRN’s in this clause, it is indicated by the

abbreviation FSC ACCURACY standing for “Function-specific controls for accuracy”.

7.4.1 Character classification functions

Designated constructs:

DCRN Definition Rationale

7.4.1.1-1 The FUNCTION-DESIGNATOR isalnum FSC ACCURACY

7.4.1.2-1 The FUNCTION-DESIGNATOR isalph FSC ACCURACY

7.4.1.3-1 The FUNCTION-DESIGNATOR isblank FSC ACCURACY

7.4.1.4-1 The FUNCTION-DESIGNATOR iscntrl FSC ACCURACY

7.4.1.5-1 The FUNCTION-DESIGNATOR isdigit FSC ACCURACY

7.4.1.6-1 The FUNCTION-DESIGNATOR isgraph FSC ACCURACY

7.4.1.7-1 The FUNCTION-DESIGNATOR islower FSC ACCURACY

7.4.1.8-1 The FUNCTION-DESIGNATOR isprint FSC ACCURACY

7.4.1.9-1 The FUNCTION-DESIGNATOR ispunct FSC ACCURACY

7.4.1.10-1 The FUNCTION-DESIGNATOR isspace FSC ACCURACY

7.4.1.11-1 The FUNCTION-DESIGNATOR isupper FSC ACCURACY

7.4.1.12-1 The FUNCTION-DESIGNATOR isxdigit FSC ACCURACY

7.4.2 Character case mapping function

Designated constructs:

DCRN Definition Rationale

7.4.2.1-1 The FUNCTION-DESIGNATOR tolower FSC ACCURACY

7.4.2.2-1 The FUNCTION-DESIGNATOR toupper FSC ACCURACY

7.5 Errors <errno.h>

Designated constructs:

DCRN Definition Rationale

7.5-1
An INCLUDE-DIRECTIVE that causes

inclusion of the <errno.h> header.

Many aspects of errno and the values to which it may be

set are sufficiently implementation-dependent that its use

can impair PORTABILITY.

7.5-2 The identifier errno. As for 7.5-1

7.5-3 The MACRO-NAME errno. As for 7.5-1

7.5-4 The MACRO-NAME EDOM. As for 7.5-1

7.5-5 The MACRO-NAME EILSEQ. As for 7.5-1

7.5-6 The MACRO-NAME ERANGE. As for 7.5-1

7.6 Floating-point environment <fenv.h>

Designated constructs:

DCRN Definition Rationale

7.6-1
An INCLUDE-DIRECTIVE that causes inclusion

of the <fenv.h> header.

Many aspects of the facilities provided by <fenv.h>

are implementation-dependent. It may also not be

supported by implementations conforming to earlier

version of the base language standard so its use

impairs PORTABILITY.

7.6-2 The typedef-name fenv_t. As for 7.6-1

7.6-3 The typedef-name fexcept_t. As for 7.6-1

7.6-4 The MACRO-NAME FE_DIVBYZERO. As for 7.6-1

7.6-5 The MACRO-NAME FE_INEXACT. As for 7.6-1

7.6-6 The MACRO-NAME FE_INVALID. As for 7.6-1

7.6-7 The MACRO-NAME FE_OVERFLOW. As for 7.6-1

7.6-8 The MACRO-NAME FE_UNDERFLOW. As for 7.6-1

7.6-9 The MACRO-NAME FE_ALL_EXCEPT. As for 7.6-1

7.6-10 The MACRO-NAME FE-DOWNWARD As for 7.6-1

7.6-11 The MACRO-NAME FE_TONEAREST As for 7.6-1

7.6-12 The MACRO-NAME FE_TOWARDZERO As for 7.6-1

7.6-13 The MACRO-NAME FE_UPWARD As for 7.6-1

7.6-14 The MACRO-NAME FE_DLF_ENV As for 7.6-1

7.6.1 The FENV_ACCESS pragma

Parasyntax:

FENV-ACCESS-PRAGMA = #pragma STDC FENV_ACCESS on-off-switch ;

Designated constructs:

DCRN Definition Rationale

7.6.1-1 An FENV_ACCESS_PRAGMA.

Some users of C for numerical applications believe

that all but expert numerical programmers are prone to

make errors using this pragma owing to the degree to

which aspects of the floating-point environment are

implementation-dependent. Such users may wish to

ban or control its use in aid of defensive

programming.

7.6.2 Floating-point exceptions

Designated constructs:

DCRN Definition Rationale

7.6.2-1 The FUNCTION-DESIGNATOR fclearexcept As for 7.6-1

7.6.2-2 The FUNCTION-DESIGNATOR fegetexceptflag As for 7.6-1

7.6.2-3 The FUNCTION-DESIGNATOR feraiseexcept As for 7.6-1

7.6.2-4 The FUNCTION-DESIGNATOR fesetexceptflag As for 7.6-1

7.6.2-5 The FUNCTION-DESIGNATOR fetestexceptflag As for 7.6-1

7.6.3 Rounding

Designated constructs:

DCRN Definition Rationale

7.6.3-1 The FUNCTION-DESIGNATOR fegetround As for 7.6-1

7.6.3-2 The FUNCTION-DESIGNATOR fesetround As for 7.6-1

7.6.4 Environment

Designated constructs:

DCRN Definition Rationale

7.6.4-1 The FUNCTION-DESIGNATOR fegetenv As for 7.6-1

7.6.4-2 The FUNCTION-DESIGNATOR feholdexcept As for 7.6-1

7.6.4-3 The FUNCTION-DESIGNATOR fesetenv As for 7.6-1

7.6.4-4 The FUNCTION-DESIGNATOR feupdateenv As for 7.6-1

7.7 Characteristics of floating types <float.h> (NR)

This page intentionally left blank.

7.8 Format conversion of integer types <inttypes.h>

Designated constructs:

DCRN Definition Rationale

7.8-1

An INCLUDE-DIRECTIVE that causes

inclusion of the <inttypes.h>

header.

The <inttypes.h> header provides further support for

features provided by the <stdint.h> header and thereby

shares many implementation dependent characteristic of
<stdint.h>.

7.8-2 The typedef-name ismaxdiv_t. As for 7.8-1

7.8.1 Macros for format specifiers

Designated constructs:

DCRN Definition Rationale

7.8.1-1 The MACRO-NAME PRIdN As for 7.8-1

7.8.1-2 The MACRO-NAME PRIdLEASTN As for 7.8-1

7.8.1-3 The MACRO-NAME PRIdFASTN As for 7.8-1

7.8.1-4 The MACRO-NAME PRIdMAX As for 7.8-1

7.8.1-5 The MACRO-NAME PRIdPTR As for 7.8-1

7.8.1-6 The MACRO-NAME PRIiN As for 7.8-1

7.8.1-7 The MACRO-NAME PRIiLEASTN As for 7.8-1

7.8.1-8 The MACRO-NAME PRIiFASTN As for 7.8-1

7.8.1-9 The MACRO-NAME PRIiMAX As for 7.8-1

7.8.1-10 The MACRO-NAME PRIiPTR As for 7.8-1

7.8.1-11 The MACRO-NAME PRIoN As for 7.8-1

7.8.1-12 The MACRO-NAME PRIoLEASTN As for 7.8-1

7.8.1-13 The MACRO-NAME PRIoFASTN As for 7.8-1

7.8.1-14 The MACRO-NAME PRIoMAX As for 7.8-1

7.8.1-15 The MACRO-NAME PRIoPTR As for 7.8-1

7.8.1-16 The MACRO-NAME PRIuN As for 7.8-1

7.8.1-17 The MACRO-NAME PRIuLEASTN As for 7.8-1

7.8.1-18 The MACRO-NAME PRIuFASTN As for 7.8-1

7.8.1-19 The MACRO-NAME PRIuMAX As for 7.8-1

7.8.1-20 The MACRO-NAME PRIuPTR As for 7.8-1

7.8.1-21 The MACRO-NAME PRIxN As for 7.8-1

7.8.1-22 The MACRO-NAME PRIxLEASTN As for 7.8-1

7.8.1-23 The MACRO-NAME PRIxFASTN As for 7.8-1

7.8.1-24 The MACRO-NAME PRIxMAX As for 7.8-1

7.8.1-25 The MACRO-NAME PRIxPTR As for 7.8-1

7.8.1-26 The MACRO-NAME PRIXN As for 7.8-1

7.8.1-27 The MACRO-NAME PRIXLEASTN As for 7.8-1

7.8.1-28 The MACRO-NAME PRIXFASTN As for 7.8-1

7.8.1-29 The MACRO-NAME PRIXMAX As for 7.8-1

7.8.1-30 The MACRO-NAME PRIXPTR As for 7.8-1

7.8.1-31 The MACRO-NAME SCNdN As for 7.8-1

7.8.1-32 The MACRO-NAME SCNdLEASTN As for 7.8-1

7.8.1-33 The MACRO-NAME SCNdFASTN As for 7.8-1

7.8.1-34 The MACRO-NAME SCNdMAX As for 7.8-1

7.8.1-35 The MACRO-NAME SCNdPTR As for 7.8-1

7.8.1-36 The MACRO-NAME SCNiN As for 7.8-1

7.8.1-37 The MACRO-NAME SCNiLEASTN As for 7.8-1

7.8.1-38 The MACRO-NAME SCNiFASTN As for 7.8-1

7.8.1-39 The MACRO-NAME SCNiMAX As for 7.8-1

7.8.1-40 The MACRO-NAME SCNiPTR As for 7.8-1

7.8.1-41 The MACRO-NAME SCNoN As for 7.8-1

7.8.1-42 The MACRO-NAME SCNoLEASTN As for 7.8-1

7.8.1-43 The MACRO-NAME SCNoFASTN As for 7.8-1

7.8.1-44 The MACRO-NAME SCNoMAX As for 7.8-1

7.8.1-45 The MACRO-NAME SCNoPTR As for 7.8-1

7.8.1-46 The MACRO-NAME SCNuN As for 7.8-1

7.8.1-47 The MACRO-NAME SCNuLEASTN As for 7.8-1

7.8.1-48 The MACRO-NAME SCNuFASTN As for 7.8-1

7.8.1-49 The MACRO-NAME SCNuMAX As for 7.8-1

7.8.1-50 The MACRO-NAME SCNuPTR As for 7.8-1

7.8.1-51 The MACRO-NAME SCNxN As for 7.8-1

7.8.1-52 The MACRO-NAME SCNxLEASTN As for 7.8-1

7.8.1-53 The MACRO-NAME SCNxFASTN As for 7.8-1

7.8.1-54 The MACRO-NAME SCNxMAX As for 7.8-1

7.8.1-55 The MACRO-NAME SCNxPTR As for 7.8-1

7.8.2 Functions for greatest-width integer types

Designated constructs:

DCRN Definition Rationale

7.8.2-1 The FUNCTION-DESIGNATOR bimaxabs As for 7.8-1

7.8.2-2 The FUNCTION-DESIGNATOR imaxdiv As for 7.8-1

7.8.2-3 The FUNCTION-DESIGNATOR strtoimax As for 7.8-1

7.8.2-4 The FUNCTION-DESIGNATOR strtoumax As for 7.8-1

7.8.2-5 The FUNCTION-DESIGNATOR wcstoimax As for 7.8-1

7.8.2-6 The FUNCTION-DESIGNATOR wcstoumax As for 7.8-1

7.9 Alternative spellings <iso646.h>

Designated constructs:

DCRN Definition Rationale

7.9-1
An INCLUDE-DIRECTIVE that causes inclusion of

the <iso646.h> header.

This header may not be supported by

implementation conforming to earlier version of the

base language standard, thereby impairing
PORTABILITY.

7.9-2 The MACRO-NAME and As for 7.9-1

7.9-3 The MACRO-NAME and-eq As for 7.9-1

7.9-4 The MACRO-NAME bitand As for 7.9-1

7.9-5 The MACRO-NAME bitor As for 7.9-1

7.9-6 The MACRO-NAME compl As for 7.9-1

7.9-7 The MACRO-NAME not As for 7.9-1

7.9-8 The MACRO-NAME not_eq As for 7.9-1

7.9-9 The MACRO-NAME or As for 7.9-1

7.9-10 The MACRO-NAME or_eq As for 7.9-1

7.9-11 The MACRO-NAME xor As for 7.9-1

7.9-12 The MACRO-NAME xor_eq As for 7.9-1

7.10 Sizes of integer types <limits.h> (NR)

This page intentionally left blank.

7.11 Localisation

Designated constructs:

DCRN Definition Rationale

7.11-1
An INCLUDE-DIRECTIVE that causes inclusion of

the <locale.h> header.

Most aspects of locales are
implementation-dependent.

7.11.1 Locale control

Designated constructs:

DCRN Definition Rationale

7.11.1.1-1 The FUNCTION-DESIGNATOR setlocale. As for 7.11-1

7.11.2 Numeric formatting convention enquiry

7.11.2.1 The localeconv function

Designated constructs:

DCRN Definition Rationale

7.11.2.1-1 The FUNCTION-DESIGNATOR localeconv. As for 7.11-1

7.12 Mathematics <math.h>

Designated constructs:

DCRN Definition Rationale

7.12-1
An INCLUDE-DIRECTIVE that causes inclusion of

the <math.h> header.

Some of the provisions of C99 make certain

aspects of the mathematical functions significantly

implementation-dependent. Further, the

mathematical functions and macros provided by

any particular implementation do not necessarily

exhibit sufficient ACCURACY for critical

applications.

7.12-4 The type-name float_t. As for 7.12-1

7.12-5 The type-name double_t. As for 7.12-1

7.12-6 The MACRO-NAME HUGE_VAL As for 7.12-1

7.12-7 The MACRO-NAME HUGE_VALF As for 7.12-1

7.12-8 The MACRO-NAME HUGE_VALL As for 7.12-1

7.12-9 The MACRO-NAME INFINITY As for 7.12-1

7.12-10 The MACRO-NAME NAN As for 7.12-1

7.12-11 The MACRO-NAME FP_INFINITE As for 7.12-1

7.12-12 The MACRO-NAME FP_NAN As for 7.12-1

7.12-13 The MACRO-NAME FP_NORMAL As for 7.12-1

7.12-14 The MACRO-NAME FP_SUBNORMAL As for 7.12-1

7.12-15 The MACRO-NAME FP_ZERO As for 7.12-1

7.12-16 The MACRO-NAME FP_FAST_FMA As for 7.12-1

7.12-17 The MACRO-NAME FP_FAST_FMAF As for 7.12-1

7.12-18 The MACRO-NAME FP_FAST_FMAL As for 7.12-1

7.12-19 The MACRO-NAME FP_ILOGB0 As for 7.12-1

7.12-20 The MACRO-NAME FP_ILOGBNAN As for 7.12-1

7.12-21 The MACRO-NAME MATH_ERRNO As for 7.12-1

7.12-22 The MACRO-NAME MATH_ERREXCEPT As for 7.12-1

7.12-23 The MACRO-NAME math_errhandling As for 7.12-1

7.12.1 Treatment of error conditions (NR)

7.12.2 The FP_CONTRACT pragma

Parasyntax:

FP-CONTRACT-PRAGMA = #pragma STDC FP_CONTRACT on-off-switch ;

Designated constructs:

DCRN Definition Rationale

7.12.2-1 An FP_CONTRACT_PRAGMA. As for 7.12-1

7.12.3 Classification macros

Designated constructs:

DCRN Definition Rationale

7.12.3.1-1 The MACRO-NAME fpclassify As for 7.12-1

7.12.3.2-1 The MACRO-NAME isfinite As for 7.12-1

7.12.3.3-1 The MACRO-NAME isint As for 7.12-1

7.12.3.4-1 The MACRO-NAME isnan As for 7.12-1

7.12.3.5-1 The MACRO-NAME isnormal As for 7.12-1

7.12.3.6-1 The MACRO-NAME signbit As for 7.12-1

7.12.4 Trigonometric functions

Designated constructs:

DCRN Definition Rationale

7.12.4.1-1 The FUNCTION-DESIGNATOR acos As for 7.12-1

7.12.4.1-2 The FUNCTION-DESIGNATOR acosf As for 7.12-1

7.12.4.1-3 The FUNCTION-DESIGNATOR acosl As for 7.12-1

7.12.4.2-1 The FUNCTION-DESIGNATOR asin As for 7.12-1

7.12.4.2-2 The FUNCTION-DESIGNATOR asinf As for 7.12-1

7.12.4.2-3 The FUNCTION-DESIGNATOR asinl As for 7.12-1

7.12.4.3-1 The FUNCTION-DESIGNATOR atan As for 7.12-1

7.12.4.3-2 The FUNCTION-DESIGNATOR atanf As for 7.12-1

7.12.4.3-3 The FUNCTION-DESIGNATOR atanl As for 7.12-1

7.12.4.4-1 The FUNCTION-DESIGNATOR atan2 As for 7.12-1

7.12.4.4-2 The FUNCTION-DESIGNATOR atan2f As for 7.12-1

7.12.4.4-3 The FUNCTION-DESIGNATOR atan2l As for 7.12-1

7.12.4.5-1 The FUNCTION-DESIGNATOR cos As for 7.12-1

7.12.4.5-2 The FUNCTION-DESIGNATOR cosf As for 7.12-1

7.12.4.5-3 The FUNCTION-DESIGNATOR cosl As for 7.12-1

7.12.4.6-1 The FUNCTION-DESIGNATOR sin As for 7.12-1

7.12.4.6-2 The FUNCTION-DESIGNATOR sinf As for 7.12-1

7.12.4.6-3 The FUNCTION-DESIGNATOR sinl As for 7.12-1

7.12.4.7-1 The FUNCTION-DESIGNATOR tan As for 7.12-1

7.12.4.7-2 The FUNCTION-DESIGNATOR tanf As for 7.12-1

7.12.4.7-3 The FUNCTION-DESIGNATOR tanl As for 7.12-1

7.12.5 Hyperbolic functions

Designated constructs:

DCRN Definition Rationale

7.12.5.1-1 The FUNCTION-DESIGNATOR acosh As for 7.12-1

7.12.5.1-2 The FUNCTION-DESIGNATOR acoshf As for 7.12-1

7.12.5.1-3 The FUNCTION-DESIGNATOR acoshl As for 7.12-1

7.12.5.2-1 The FUNCTION-DESIGNATOR asinh As for 7.12-1

7.12.5.2-2 The FUNCTION-DESIGNATOR asinhf As for 7.12-1

7.12.5.2-3 The FUNCTION-DESIGNATOR asinhl As for 7.12-1

7.12.5.3-1 The FUNCTION-DESIGNATOR atanh As for 7.12-1

7.12.5.3-2 The FUNCTION-DESIGNATOR atanhf As for 7.12-1

7.12.5.3-3 The FUNCTION-DESIGNATOR atanhl As for 7.12-1

7.12.5.4-1 The FUNCTION-DESIGNATOR cosh As for 7.12-1

7.12.5.4-2 The FUNCTION-DESIGNATOR coshf As for 7.12-1

7.12.5.4-3 The FUNCTION-DESIGNATOR coshl As for 7.12-1

7.12.5.5-1 The FUNCTION-DESIGNATOR sinh As for 7.12-1

7.12.5.5-2 The FUNCTION-DESIGNATOR sinhf As for 7.12-1

7.12.5.5-3 The FUNCTION-DESIGNATOR sinhl As for 7.12-1

7.12.5.6-1 The FUNCTION-DESIGNATOR tanh As for 7.12-1

7.12.5.6-2 The FUNCTION-DESIGNATOR tanhf As for 7.12-1

7.12.5.6-3 The FUNCTION-DESIGNATOR tanhl As for 7.12-1

7.12.6 Exponential and logarithmic functions

Designated constructs:

DCRN Definition Rationale

7.12.6.1-1 The FUNCTION-DESIGNATOR exp As for 7.12-1

7.12.6.1-2 The FUNCTION-DESIGNATOR expf As for 7.12-1

7.12.6.1-3 The FUNCTION-DESIGNATOR expl As for 7.12-1

7.12.6.2-1 The FUNCTION-DESIGNATOR exp2 As for 7.12-1

7.12.6.2-2 The FUNCTION-DESIGNATOR exp2f As for 7.12-1

7.12.6.2-3 The FUNCTION-DESIGNATOR exp2l As for 7.12-1

7.12.6.3-1 The FUNCTION-DESIGNATOR expm1 As for 7.12-1

7.12.6.3-2 The FUNCTION-DESIGNATOR expm1f As for 7.12-1

7.12.6.3-3 The FUNCTION-DESIGNATOR expm1l As for 7.12-1

7.12.6.4-1 The FUNCTION-DESIGNATOR frexp As for 7.12-1

7.12.6.4-2 The FUNCTION-DESIGNATOR frexpf As for 7.12-1

7.12.6.4-3 The FUNCTION-DESIGNATOR frexpl As for 7.12-1

7.12.6.5-1 The FUNCTION-DESIGNATOR ilogb As for 7.12-1

7.12.6.5-2 The FUNCTION-DESIGNATOR ilogbf As for 7.12-1

7.12.6.5-3 The FUNCTION-DESIGNATOR ilogbl As for 7.12-1

7.12.6.6-1 The FUNCTION-DESIGNATOR ldexp As for 7.12-1

7.12.6.6-2 The FUNCTION-DESIGNATOR ldexpf As for 7.12-1

7.12.6.6-3 The FUNCTION-DESIGNATOR ldexpl As for 7.12-1

7.12.6.7-1 The FUNCTION-DESIGNATOR log As for 7.12-1

7.12.6.7-2 The FUNCTION-DESIGNATOR logf As for 7.12-1

7.12.6.7-3 The FUNCTION-DESIGNATOR logl As for 7.12-1

7.12.6.8-1 The FUNCTION-DESIGNATOR log10 As for 7.12-1

7.12.6.8-2 The FUNCTION-DESIGNATOR log10f As for 7.12-1

7.12.6.8-3 The FUNCTION-DESIGNATOR log10l As for 7.12-1

7.12.6.9-1 The FUNCTION-DESIGNATOR log1p As for 7.12-1

7.12.6.9-2 The FUNCTION-DESIGNATOR log1pf As for 7.12-1

7.12.6.9-3 The FUNCTION-DESIGNATOR log1pl As for 7.12-1

7.12.6.10-1 The FUNCTION-DESIGNATOR log2 As for 7.12-1

7.12.6.10-2 The FUNCTION-DESIGNATOR log2f As for 7.12-1

7.12.6.10-3 The FUNCTION-DESIGNATOR log2l As for 7.12-1

7.12.6.11-1 The FUNCTION-DESIGNATOR logb As for 7.12-1

7.12.6.11-2 The FUNCTION-DESIGNATOR logbf As for 7.12-1

7.12.6.11-3 The FUNCTION-DESIGNATOR logbl As for 7.12-1

7.12.6.12-1 The FUNCTION-DESIGNATOR modf As for 7.12-1

7.12.6.12-2 The FUNCTION-DESIGNATOR modff As for 7.12-1

7.12.6.12-3 The FUNCTION-DESIGNATOR modfl As for 7.12-1

7.12.6.13-1 The FUNCTION-DESIGNATOR scalbn As for 7.12-1

7.12.6.13-2 The FUNCTION-DESIGNATOR scalbnf As for 7.12-1

7.12.6.13-3 The FUNCTION-DESIGNATOR scalbnl As for 7.12-1

7.12.6.13-4 The FUNCTION-DESIGNATOR scalbln As for 7.12-1

7.12.6.13-5 The FUNCTION-DESIGNATOR scalblnf As for 7.12-1

7.12.6.13-6 The FUNCTION-DESIGNATOR scalblnl As for 7.12-1

7.12.7 Power and absolute value functions

Designated constructs:

DCRN Definition Rationale

7.12.7.1-1 The FUNCTION-DESIGNATOR cbrt As for 7.12-1

7.12.7.1-2 The FUNCTION-DESIGNATOR cbrtf As for 7.12-1

7.12.7.1-3 The FUNCTION-DESIGNATOR cbrtl As for 7.12-1

7.12.7.2-1 The FUNCTION-DESIGNATOR fabs As for 7.12-1

7.12.7.2-2 The FUNCTION-DESIGNATOR fabsf As for 7.12-1

7.12.7.2-3 The FUNCTION-DESIGNATOR fabsl As for 7.12-1

7.12.7.3-1 The FUNCTION-DESIGNATOR hypot As for 7.12-1

7.12.7.3-2 The FUNCTION-DESIGNATOR hypotf As for 7.12-1

7.12.7.3-3 The FUNCTION-DESIGNATOR hypotl As for 7.12-1

7.12.7.4-1 The FUNCTION-DESIGNATOR pow As for 7.12-1

7.12.7.4-2 The FUNCTION-DESIGNATOR powf As for 7.12-1

7.12.7.4-3 The FUNCTION-DESIGNATOR powl As for 7.12-1

7.12.7.5-1 The FUNCTION-DESIGNATOR sqrt As for 7.12-1

7.12.7.5-2 The FUNCTION-DESIGNATOR sqrtf As for 7.12-1

7.12.7.5-3 The FUNCTION-DESIGNATOR sqrtl As for 7.12-1

7.12.8 Error and gamma functions

Designated constructs:

DCRN Definition Rationale

7.12.8.1-1 The FUNCTION-DESIGNATOR erf As for 7.12-1

7.12.8.1-2 The FUNCTION-DESIGNATOR erff As for 7.12-1

7.12.8.1-3 The FUNCTION-DESIGNATOR erfl As for 7.12-1

7.12.8.2-1 The FUNCTION-DESIGNATOR erfc As for 7.12-1

7.12.8.2-2 The FUNCTION-DESIGNATOR erfcf As for 7.12-1

7.12.8.2-3 The FUNCTION-DESIGNATOR erfcl As for 7.12-1

7.12.8.3-1 The FUNCTION-DESIGNATOR lgamma As for 7.12-1

7.12.8.3-2 The FUNCTION-DESIGNATOR lgammaf As for 7.12-1

7.12.8.3-3 The FUNCTION-DESIGNATOR lgammal As for 7.12-1

7.12.8.4-1 The FUNCTION-DESIGNATOR tgamma As for 7.12-1

7.12.8.4-2 The FUNCTION-DESIGNATOR tgammaf As for 7.12-1

7.12.8.4-3 The FUNCTION-DESIGNATOR tgammal As for 7.12-1

7.12.9 Nearest integer functions

Designated constructs:

DCRN Definition Rationale

7.12.9.1-1 The FUNCTION-DESIGNATOR ceil As for 7.12-1

7.12.9.1-2 The FUNCTION-DESIGNATOR ceilf As for 7.12-1

7.12.9.1-3 The FUNCTION-DESIGNATOR ceill As for 7.12-1

7.12.9.2-1 The FUNCTION-DESIGNATOR floor As for 7.12-1

7.12.9.2-2 The FUNCTION-DESIGNATOR floorf As for 7.12-1

7.12.9.2-3 The FUNCTION-DESIGNATOR floorl As for 7.12-1

7.12.9.3-1 The FUNCTION-DESIGNATOR nearbyint As for 7.12-1

7.12.9.3-2 The FUNCTION-DESIGNATOR nearbyintf As for 7.12-1

7.12.9.3-3 The FUNCTION-DESIGNATOR nearbyintl As for 7.12-1

7.12.9.4-1 The FUNCTION-DESIGNATOR rint As for 7.12-1

7.12.9.4-2 The FUNCTION-DESIGNATOR rintf As for 7.12-1

7.12.9.4-3 The FUNCTION-DESIGNATOR rintl As for 7.12-1

7.12.9.5-1 The FUNCTION-DESIGNATOR lrint As for 7.12-1

7.12.9.5-2 The FUNCTION-DESIGNATOR lrintf As for 7.12-1

7.12.9.5-3 The FUNCTION-DESIGNATOR lrintl As for 7.12-1

7.12.9.5-4 The FUNCTION-DESIGNATOR llrint As for 7.12-1

7.12.9.5-5 The FUNCTION-DESIGNATOR llrintf As for 7.12-1

7.12.9.5-6 The FUNCTION-DESIGNATOR llrintl As for 7.12-1

7.12.9.6-1 The FUNCTION-DESIGNATOR round As for 7.12-1

7.12.9.6-2 The FUNCTION-DESIGNATOR roundf As for 7.12-1

7.12.9.6-3 The FUNCTION-DESIGNATOR roundl As for 7.12-1

7.12.9.7 -1 The FUNCTION-DESIGNATOR lround As for 7.12-1

7.12.9.7-2 The FUNCTION-DESIGNATOR lroundf As for 7.12-1

7.12.9.7-3 The FUNCTION-DESIGNATOR lroundl As for 7.12-1

7.12.9.7–4 The FUNCTION-DESIGNATOR llround As for 7.12-1

7.12.9.7-5 The FUNCTION-DESIGNATOR llroundf As for 7.12-1

7.12.9.7-6 The FUNCTION-DESIGNATOR llroundl As for 7.12-1

7.12.9.8-1 The FUNCTION-DESIGNATOR trunc As for 7.12-1

7.12.9.8-2 The FUNCTION-DESIGNATOR truncf As for 7.12-1

7.12.9.8-3 The FUNCTION-DESIGNATOR truncl As for 7.12-1

7.12.10 Remainder functions

Designated constructs:

DCRN Definition Rationale

7.12.10.1-1 The FUNCTION-DESIGNATOR fmod As for 7.12-1

7.12.10.1-2 The FUNCTION-DESIGNATOR fmodf As for 7.12-1

7.12.10.1-3 The FUNCTION-DESIGNATOR fmodl As for 7.12-1

7.12.10.2-1 The FUNCTION-DESIGNATOR remainder As for 7.12-1

7.12.10.2-2 The FUNCTION-DESIGNATOR remainderf As for 7.12-1

7.12.10.2-3 The FUNCTION-DESIGNATOR remainderl As for 7.12-1

7.12.10.3-1 The FUNCTION-DESIGNATOR remquo As for 7.12-1

7.12.10.3-2 The FUNCTION-DESIGNATOR remquof As for 7.12-1

7.12.10.3-3 The FUNCTION-DESIGNATOR remquol As for 7.12-1

7.12.11 Manipulation functions

Designated constructs:

DCRN Definition Rationale

7.12.11.1-1 The FUNCTION-DESIGNATOR copysign As for 7.12-1

7.12.11.1-2 The FUNCTION-DESIGNATOR copysignf As for 7.12-1

7.12.11.1-3 The FUNCTION-DESIGNATOR copysignl As for 7.12-1

7.12.11.2-1 The FUNCTION-DESIGNATOR nan As for 7.12-1

7.12.11.2-2 The FUNCTION-DESIGNATOR nanf As for 7.12-1

7.12.11.2-3 The FUNCTION-DESIGNATOR nanl As for 7.12-1

7.12.11.3-1 The FUNCTION-DESIGNATOR nextafter As for 7.12-1

7.12.11.3-2 The FUNCTION-DESIGNATOR nextafterf As for 7.12-1

7.12.11.3-3 The FUNCTION-DESIGNATOR nextafterl As for 7.12-1

7.12.11.4-1 The FUNCTION-DESIGNATOR nexttoward As for 7.12-1

7.12.11.4-2 The FUNCTION-DESIGNATOR nexttowardf As for 7.12-1

7.12.11.4-3 The FUNCTION-DESIGNATOR nexttowardl As for 7.12-1

7.12.12 Maximum, minimum and positive difference functions

Designated constructs:

DCRN Definition Rationale

7.12.12.1-1 The FUNCTION-DESIGNATOR fdim As for 7.12-1

7.12.12.1-2 The FUNCTION-DESIGNATOR fdimf As for 7.12-1

7.12.12.1-3 The FUNCTION-DESIGNATOR fdiml As for 7.12-1

7.12.12.2-1 The FUNCTION-DESIGNATOR fmax As for 7.12-1

7.12.12.2-2 The FUNCTION-DESIGNATOR fmaxf As for 7.12-1

7.12.12.2-3 The FUNCTION-DESIGNATOR fmaxl As for 7.12-1

7.12.12.2-1 The FUNCTION-DESIGNATOR fmin As for 7.12-1

7.12.12.2-2 The FUNCTION-DESIGNATOR fminf As for 7.12-1

7.12.12.2-3 The FUNCTION-DESIGNATOR fminl As for 7.12-1

7.12.13 Floating multiply-add

Designated constructs:

DCRN Definition Rationale

7.12.13.1-1 The FUNCTION-DESIGNATOR fma As for 7.12-1

7.12.13.1-2 The FUNCTION-DESIGNATOR fmaf As for 7.12-1

7.12.13.1-3 The FUNCTION-DESIGNATOR fmal As for 7.12-1

7.12.14 Comparison macros

Designated constructs:

DCRN Definition Rationale

7.12.14.1-1 The MACRO-NAME isgreater As for 7.12-1

7.12.14.2-1 The MACRO-NAME isgreaterequal As for 7.12-1

7.12.14.3-1 The MACRO-NAME isless As for 7.12-1

7.12.14.4-1 The MACRO-NAME islessequal As for 7.12-1

7.12.14.5-1 The MACRO-NAME islessgreater As for 7.12-1

7.12.14.6-1 The MACRO-NAME isunordered As for 7.12-1

7.13 Nonlocal jumps <setjmp.h>

Designated constructs:

DCRN Definition Rationale

7.13-1
An INCLUDE-DIRECTIVE that causes inclusion of the

<setjmp.h> header.

Many aspects of the facilities of <setjmp.h>

are associated with undefined behaviour or can

impairs the ANALYSABILITY of code.

7.13-2 The typedef-name jmpbuf. As for 7.13-1.

7.13.1 Save calling environment

Designated constructs:

DCRN Definition Rationale

7.13.1-1

A MACRO-INVOCATION whose MACRO-NAME is

setjmp but whose expansion does not occur as:

• an IF-EXPR or a WHILE-EXPR, or

• one operand of a RELATIONAL-EXPR or

EQUALITY-EXPR that is an IF-EXPR or a

WHILE-EXPR and where the other operand is an
integer constant expression, or

• the operand of a unary ! operator whose

closest-containing unary-expression is an
IF-EXPR or a WHILE-EXPR,

• an expression-statament.

Behaviour is undefined.

7.13.1-2 The MACRO-NAME setjmp. As for 7.13-1 (ANALYSABILITY)

7.13.1-3
A FUNCTION-DESIGNATOR that denotes setjmp

implemented as a function.. As for 7.13-1 (ANALYSABILITY)

7.13.2 Restore calling environment

Designated constructs:

DCRN Definition Rationale

7.13.2-1 The FUNCTION-DESIGNATOR longjmp. As for 7.13-1

7.14 Signal handling functions <signal.h>

Designated constructs:

DCRN Definition Rationale

7.14-1
An INCLUDE-DIRECTIVE that causes inclusion of

thee <signal.h>. header.

Many aspects of signals are
implementation-dependent..

7.14-2 The MACRO-NAME SIG_DFL As for 7.14-1.

7.14-3 The MACRO-NAME SIG_ERR As for 7.14-1.

7.14-4 The MACRO-NAME SIG_IGN As for 7.14-1.

7.14-5 The MACRO-NAME SIGABRT As for 7.14-1.

7.14-6 The MACRO-NAME SIGFPE As for 7.14-1.

7.14-7 The MACRO-NAME SIGILL As for 7.14-1.

7.14-8 The MACRO-NAME SIGINT As for 7.14-1.

7.14-9 The MACRO-NAME SIGSEG As for 7.14-1.

7.14.1 Specify signal handling

Designated constructs:

DCRN Definition Rationale

7.14.1-1 The FUNCTION-DESIGNATOR signal. As for 7.14-1.

7.14.2 Send signal

Designated constructs:

7.14.2-1 The FUNCTION-DESIGNATOR raise. As for 7.14-1.

7.15 Variable arguments <stdarg.h>

Designated constructs:

DCRN Definition Rationale

7.15-1
A INCLUDE-DIRECTIVE that causes inclusion of the

<stdarg.h>. header.

Many aspects of variable arguments are
implementation-dependent and their use

impairs the ANALYSABILITY of code.

7.15-4 The typedef-name va_list. As for 7.15-1.

7.15.1 Variable argument list access macros

7.15.1.1 The va_arg macro

Designated constructs:

DCRN Definition Rationale

7.15.1.1-1 The MACRO-NAME va_arg As for 7.15-1.

7.15.1.1-2
A construct that denotes va_arg implemented as

an external object.
As for 7.15-1.

7.15.1.2 The va_copy macro

Designated constructs:

DCRN Definition Rationale

7.15.1.2-1 The MACRO-NAME va_copy As for 7.15-1.

7.15.1.2-2
A construct that denotes va_copy implemented

as an external object.
As for 7.15-1.

7.15.1.3 The va_end macro

Designated constructs:

DCRN Definition Rationale

7.15.1.3-1 The MACRO-NAME va_end. As for 7.15-1.

7.15.1.4 The va_start macro

Designated constructs:

DCRN Definition Rationale

7.15.1.4-1 The MACRO-NAME va_start. As for 7.15-1.

7.16 Boolean type and values <stdbool.h>

Designated constructs:

DCRN Definition Rationale

7.16-1
An INCLUDE-DIRECTIVE that causes inclusion of the

<stdbool.h> header.

This header and its facilities may not
be supported by implementations

conforming to earlier version of the

base language standard thereby
impairing PORTABILITY.

7.16-2 The MACRO-NAME bool As for 7.16-1

7.16-3 The MACRO-NAME true As for 7.16-1

7.16-4 The MACRO-NAME false As for 7.16-1

7.16-5 The MACRO-NAME __bool_true_false_are_defined As for 7.16-1

7.17 Common definitions <stddef.h>

Designated constructs:

DCRN Definition Rationale

7.17-1
An INCLUDE-DIRECTIVE that causes inclusion of the

<stddef.h> header.
See note below.

7.17-2 The type-name ptrdiff_t.
ANALYSABILITY (implied by rationale
against use of pointer arithmetic).

7.17-3 The type-name size_t.
Defensive programming (implied by

similar rationale for the sizeof operator).

7.17-4 The type-name wchar_t.
Implied by rationale for

implementation-dependent aspects of

wide characters.

7.17-5 The MACRO-NAME NULL. See note below.

7.17-6 The MACRO-NAME offsetof. Defensive programming.

Note: The <stddef.h> header provides very few facilities. Depending on the application there may be reason to

control the use of all such facilities with the exception NULL macro. Accordingly some users may prefer to provide

their own definition of NULL and ban inclusion of <stddef.h>.

7.18 Integer types <stdint.h>

Designated constructs:

DCRN Definition Rationale

7.18-1
An INCLUDE-DIRECTIVE that causes the

inclusion of the <stdint.h>. header.

Many aspects of the the types provided by

<stdint.h> are implementation-dependent.

7.18.1 Integer types

Designated constructs:

DCRN Definition Rationale

7.18.1.1-1 The identifier intN_t As for 7.18-1

7.18.1.1-2 The identifier uintN_t As for 7.18-1

7.18.1.2-1 The identifier int_leastN_t (not otherwise specified) As for 7.18-1

7.18.1.2-2 The identifier int_least8_t As for 7.18-1

7.18.1.2-3 The identifier int_least16_t As for 7.18-1

7.18.1.2-4 The identifier int_least32_t As for 7.18-1

7.18.1.2-5 The identifier int_least64_t As for 7.18-1

7.18.1.2-6 The identifier uint_leastN_t (not otherwise specified) As for 7.18-1

7.18.1.2-7 The identifier uint_least8_t As for 7.18-1

7.18.1.2-8 The identifier uint_least16_t As for 7.18-1

7.18.1.2-9 The identifier uint_least32_t As for 7.18-1

7.18.1.2-10 The identifier uint_least64_t As for 7.18-1

7.18.1.3-1 The identifier int_fastN_t (not otherwise specified) As for 7.18-1

7.18.1.3-2 The identifier int_fast8_t As for 7.18-1

7.18.1.3-3 The identifier int_fast16_t As for 7.18-1

7.18.1.3-4 The identifier int_fast32_t As for 7.18-1

7.18.1.3-5 The identifier int_fast64_t As for 7.18-1

7.18.1.3-6 The identifier uint_fastN_t (not otherwise specified) As for 7.18-1

7.18.1.3-7 The identifier uint_fast8_t As for 7.18-1

7.18.1.3-8 The identifier uint_fast16_t As for 7.18-1

7.18.1.3-9 The identifier uint_fast32_t As for 7.18-1

7.18.1.3-10 The identifier uint_fast64_t As for 7.18-1

7.18.1.4-1 The identifier intptr_t As for 7.18-1

7.18.1.4-2 The identifier uintptr_t As for 7.18-1

7.18.1.5-1 The identifier intmax_t As for 7.18-1

7.18.1.5-2 The identifier uintmax_t As for 7.18-1

7.18.2 Limits of specified-width integer types

Designated constructs:

DCRN Definition Rationale

7.18.2.1-1 The MACRO-NAME INTN_MIN As for 7.18-1

7.18.2.1-2 The MACRO-NAME INTN_MAX As for 7.18-1

7.18.2.1-3 The MACRO-NAME UINTN_MAX As for 7.18-1

7.18.2.2-1 The MACRO-NAME INT_LEASTN_MIN As for 7.18-1

7.18.2.2-2 The MACRO-NAME INT_LEASTN_MAX As for 7.18-1

7.18.2.2-3 The MACRO-NAME UINT_LEASTN_MAX As for 7.18-1

7.18.2.3-1 The MACRO-NAME INT_FASTN_MIN As for 7.18-1

7.18.2.3-2 The MACRO-NAME INT_FASTN_MAX As for 7.18-1

7.18.2.3-3 The MACRO-NAME UINT_FASTN_MAX As for 7.18-1

7.18.2.4-1 The MACRO-NAME INTPTR_MIN As for 7.18-1

7.18.2.4-2 The MACRO-NAME INTPTR_MAX As for 7.18-1

7.18.2.4-3 The MACRO-NAME UINTPTR_MAX As for 7.18-1

7.18.2.5-1 The MACRO-NAME INTMAX_MIN As for 7.18-1

7.18.2.5-2 The MACRO-NAME INTMAX_MAX As for 7.18-1

7.18.2.5-3 The MACRO-NAME UINTMAX_MAX As for 7.18-1

7.18.3 Limits of other integer types

Designated constructs:

DCRN Definition Rationale

7.18.3-1 The MACRO-NAME PTRDIFF_MIN As for 7.18-1

7.18.3-2 The MACRO-NAME PTRDIFF_MAX As for 7.18-1

7.18.3-3 The MACRO-NAME SIG_ATOMIC_MIN As for 7.18-1

7.18.3-4 The MACRO-NAME SIG_ATOMIC_MAX As for 7.18-1

7.18.3-5 The MACRO-NAME SIZE_MAX As for 7.18-1

7.18.3-6 The MACRO-NAME WCHAR_MIN As for 7.18-1

7.18.3-6 The MACRO-NAME WCHAR_MAX As for 7.18-1

7.18.3-6 The MACRO-NAME WINT_MIN As for 7.18-1

7.18.3-6 The MACRO-NAME WINT_MAX As for 7.18-1

7.18.4 Macros for integer constants

Designated constructs:

DCRN Definition Rationale

7.18.4.1-1 The MACRO-NAME INTN_C As for 7.18-1

7.18.4.1-2 The MACRO-NAME UINTN_C As for 7.18-1

7.18.4.2-1 The MACRO-NAME INTMAX_C As for 7.18-1

7.18.4.2-2 The MACRO-NAME UINTMAX_C As for 7.18-1

7.19 Input/output <stdio.h>

Designated constructs:

DCRN Definition Rationale

7.19-1
An include-directive that causes inclusion of the

<stdio.h> header.

Many aspects of input and output are
implementation-dependent.

7.19.1 Introduction

Designated constructs:

DCRN Definition Rationale

7.19.1-1 The typedef-name FILE. As for 7.19-1

7.19.1-2 The typedef-name fpos_t. As for 7.19-1

7.19.1-3 The MACRO-NAME _IOFBF As for 7.19-1

7.19.1-4 The MACRO-NAME _IOLBF As for 7.19-1

7.19.1-5 The MACRO-NAME _IONBF As for 7.19-1

7.19.1-6 The MACRO-NAME BUFSIZ As for 7.19-1

7.19.1-7 The MACRO-NAME EOF As for 7.19-1

7.19.1-8 The MACRO-NAME FOPEN_MAX As for 7.19-1

7.19.1-9 The MACRO-NAME FILENAME_MAX As for 7.19-1

7.19.1-10 The MACRO-NAME L_tmpnam As for 7.19-1

7.19.1-11 The MACRO-NAME SEEK_CUR As for 7.19-1

7.19.1-12 The MACRO-NAME SEEK_END As for 7.19-1

7.19.1-13 The MACRO-NAME SEEK_SET As for 7.19-1

7.19.1-14 The MACRO-NAME TMP_MAX As for 7.19-1

7.19.1-15 The MACRO-NAME stderr As for 7.19-1

7.19.1-16 The MACRO-NAME stdin As for 7.19-1

7.19.1-17 The MACRO-NAME stdout As for 7.19-1

7.19.1-18
A construct whose E-behaviour contains an access

to part of an object of type FILE.

Effects are implementation-dependent and can
be unpredictable.

7.19.1-19
A construct that attempts to copy an object of type

FILE.

Effects are implementation-dependent and can
be unpredictable.

7.19.1-20

A FUNCTION-CALL-EXPRESSION for which the
evaluation of an argument that denotes a file

contains a side effect.
Effects are implementation-dependent.

7.19.2 Streams (NR)

7.19.3 Files (NR)

7.19.4 Operations on files

Designated constructs:

DCRN Definition Rationale

7.19.4.1-1 The FUNCTION-DESIGNATOR remove As for 7.19-1

7.19.4.1-2

A FUNCTION-CALL-EXPRESSION whose

FUNCTION-DESIGNATOR is remove and that

attempts to remove a file that is open.
Behaviour is implementation-defined.

7.19.4.2-1 The FUNCTION-DESIGNATOR rename As for 7.19-1

7.19.4.2-2

A FUNCTION-CALL-EXPRESSION whose

FUNCTION-DESIGNATOR is remame and that

attempts to rename a file to that of a file that

already exists.

Behaviour is implementation-defined.

7.19.4.3-1 The FUNCTION-DESIGNATOR tmpfile As for 7.19-1

7.19.4.4-1 The FUNCTION-DESIGNATOR tmpnam As for 7.19-1

7.19.5 File access functions

Designated constructs:

DCRN Definition Rationale

7.19.5-1 The FUNCTION-DESIGNATOR fclose As for 7.19-1

7.19.5-2 The FUNCTION-DESIGNATOR fflush As for 7.19-1

7.19.5-3 The FUNCTION-DESIGNATOR fopen As for 7.19-1

7.19.5-4

A FUNCTION-CALL-EXPRESSION whose

FUNCTION-DESIGNATOR is fopen and that attempts

to open a file when eight files are already open.
Behaviour is implementation-defined.

7.19.5-5

A FUNCTION-CALL-EXPRESSION whose

FUNCTION-DESIGNATOR is fopen and that attempts

to open a file in append mode.

Aspects of writing in append mode are

implementation-dependent.

7.19.5-6 A non-standard mode string. Behaviour is undefined.

7.19.5-7 The FUNCTION-DESIGNATOR freopen As for 7.19-1

7.19.5-8

A FUNCTION-CALL-EXPRESSION whose

FUNCTION-DESIGNATOR is freopen and that

attempts to reopen a file in mode other than that in
The effects of re-opening with a different mode

are implementation-defined.

which it was previously opened.

7.19.5-9 The FUNCTION-DESIGNATOR setbuf As for 7.19-1

7.19.5-10 The FUNCTION-DESIGNATOR setvbuf As for 7.19-1

7.19.5-11

A FUNCTION-CALL-EXPRESSION that is applied to a
wide-oriented stream but whose

FUNCTION-DESIGNATOR denotes a byte-oriented

function.

Behaviour is undefined.

7.19.5-12

A FUNCTION-CALL-EXPRESSION that is applied to a

byte-oriented stream but whose

FUNCTION-DESIGNATOR denotes a wide-oriented

function.

Behaviour is undefined.

7.19.6 Formatted input/output functions

Designated constructs:

DCRN Definition Rationale

7.19.6- A format non-standard conversion specifier. Behaviour is undefined.

7.19.6-
A format string containing a non-standard

combination of conversion specifiers and flags.
Behaviour is undefined.

7.19.6-
A multibyte format string that does not both start

and end in the initial shift state.
Such a construct violates a constraint.

7.19.6- An occurrence of the backspace character within a
format string.

Behaviour on a display device may be
unspecified.

7.19.6- An occurrence of: the horizontal tab character

within a format string.

Behaviour on a display device may be

unspecified.

7.19.6- A construct whose execution causes a printable
character to be written when the active position is

at the final position of a line.

Behaviour on a display device may be
unspecified.

7.19.6- An occurrence of: the vertical tab character within

a format string.

Behaviour on a display device may be

unspecified.

7.19.6- A FUNCTION-CALL-EXPRESSION whose

FUNCTION-DESIGNATOR denotes a formatted I/O
function and that has no argument-expression-list.

As for 7.19-1

7.19.6- A format string that denotes a null string. Defensive programming.

7.19.6-
A format string in which white space characters
immediately precede a new-line character.

Effects on writing are unspecified.

7.19.6-

A FUNCTION-CALL-EXPRESSION whose

FUNCTION-DESIGNATOR denotes a formatted I/O

function for which the conversion specifiers in the

format string and the numbers and types of

arguments do not correspond.

Behaviour is undefined.

7.19.6-

A FUNCTION-CALL-EXPRESSION whose

FUNCTION-DESIGNATOR denotes a formatted I/O

function and that attempts to write a text line

whose length exceeds 254 characters.

Behaviour is implementation-defined.

7.19.6-

A FUNCTION-CALL-EXPRESSION whose

FUNCTION-DESIGNATOR denotes a formatted read

function that attempts to assign values to

overlapping objects.

Behaviour is undefined.

7.19.6-
A scanset specifier in which the same character

occurs more than once.
The repeated character is redundant.

7.19.6-

A scanset specifier containing the – character in
which the value of the character preceding -

exceeds that of the character that follows.
Behaviour is undefined.

7.19.6- The FUNCTION-DESIGNATOR fprintf As for 7.19-1

7.19.6- The FUNCTION-DESIGNATOR fscanf As for 7.19-1

7.19.6- The FUNCTION-DESIGNATOR printf As for 7.19-1

7.19.6- The FUNCTION-DESIGNATOR scanf As for 7.19-1

7.19.6- The FUNCTION-DESIGNATOR snprintf As for 7.19-1

7.19.6- The FUNCTION-DESIGNATOR sprintf As for 7.19-1

7.19.6- The FUNCTION-DESIGNATOR sprintf As for 7.19-1

7.19.6- The FUNCTION-DESIGNATOR vfprintf As for 7.19-1

7.19.6- The FUNCTION-DESIGNATOR vfscanf As for 7.19-1

7.19.6- The FUNCTION-DESIGNATOR vprintf As for 7.19-1

7.19.6- The FUNCTION-DESIGNATOR vscanf As for 7.19-1

7.19.6- The FUNCTION-DESIGNATOR vsnprintf As for 7.19-1

7.19.6- The FUNCTION-DESIGNATOR vsprintf As for 7.19-1

7.19.6- The FUNCTION-DESIGNATOR vsscanf As for 7.19-1

7.19.7 Character input/output functions

Designated constructs:

DCRN Definition Rationale

7.19.7.1-1 The FUNCTION-DESIGNATOR fgetc As for 7.19-1

7.19.7.2-1 The FUNCTION-DESIGNATOR fgets As for 7.19-1

7.19.7.3-1 The FUNCTION-DESIGNATOR fputc As for 7.19-1

7.19.7.4-1 The FUNCTION-DESIGNATOR fputs As for 7.19-1

7.19.7.5-1 The FUNCTION-DESIGNATOR getc As for 7.19-1

7.19.7.6-1 The FUNCTION-DESIGNATOR getchar As for 7.19-1

7.19.7.7-1 The FUNCTION-DESIGNATOR gets As for 7.19-1

7.19.7.8-1 The FUNCTION-DESIGNATOR putc As for 7.19-1

7.19.7.9-1 The FUNCTION-DESIGNATOR putchar As for 7.19-1

7.19.7.10-1 The FUNCTION-DESIGNATOR puts As for 7.19-1

7.19.7.11-1 The FUNCTION-DESIGNATOR ungetc As for 7.19-1

7.19.8 Direct input/output functions

Designated constructs:

DCRN Definition Rationale

7.19.8.1-1 The FUNCTION-DESIGNATOR fread As for 7.19-1

7.19.8.2-1 The FUNCTION-DESIGNATOR fwrite As for 7.19-1

7.19.9 File positioning functions

Designated constructs:

DCRN Definition Rationale

7.19.9.1-1 The FUNCTION-DESIGNATOR fgetpos As for 7.19-1

7.19.9.2-1 The FUNCTION-DESIGNATOR fseek As for 7.19-1

7.19.9.2-2

A FUNCTION-CALL-EXPRESSION whose

FUNCTION-DESIGNATOR denotes the fseek function

and that attempts to position to SEEK_END.
Effects are undefined.

7.19.9.3-1 The FUNCTION-DESIGNATOR fsetpos As for 7.19-1

7.19.9.4-1 The FUNCTION-DESIGNATOR ftell As for 7.19-1

7.19.9.5-1 The FUNCTION-DESIGNATOR rewind As for 7.19-1

7.19.10 Error-handling functions

Designated constructs:

DCRN Definition Rationale

7.19.10.1-1 The FUNCTION-DESIGNATOR clearer As for 7.19-1

7.19.10.2-1 The FUNCTION-DESIGNATOR feof As for 7.19-1

7.19.10.3-1 The FUNCTION-DESIGNATOR ferror As for 7.19-1

7.19.10.4-1 The FUNCTION-DESIGNATOR perror As for 7.19-1

7.20 General utilities <stdlib.h>

Designated constructs:

DCRN Definition Rationale

7.20-1
An INCLUDE-DIRECTIVE that cuases

inclusion of the <stdlib.h> header.

Most features provided by this header have
characteristics that impair one or more non-functional

attributes.

7.20-4 The typedef-name div_t. By implication from 7.20.6.2-1, 7.20.6.2-2

7.20-5 The typedef-name ldiv_t. By implication from 7.20.6.2-1, 7.20.6.2-2

7.20-6 The typedef-name lldiv_t. By implication from 7.20.6.2-3

7.20-7 The MACRO-NAME EXIT_FAILURE By implication from 7.20.4-3 and 7.20.4-4

7.20-8 The MACRO-NAME EXIT_SUCCESS By implication from 7.20.4-3 and 7.20.4-4

7.20-9 The MACRO-NAME RAND_MAX By implication from 7.20.2-1.

7.20-10 The MACRO-NAME MB_CUR_MAX
Support for multibyte characters is

implementation-dependent.

7.20.1 Numeric conversion functions

Designated constructs:

DCRN Definition Rationale

7.20.1.1-1 The FUNCTION-DESIGNATOR atof

Since none of these functions is bounded they all carry

the risk of buffer overrun and thereby potentially impair

SECURITY.

7.20.1.2-1 The FUNCTION-DESIGNATOR atoi

7.20.1.2-2 The FUNCTION-DESIGNATOR atoll

7.20.1.2-3 The FUNCTION-DESIGNATOR atoll

7.20.1.3-1 The FUNCTION-DESIGNATOR strtod

7.20.1.3-2 The FUNCTION-DESIGNATOR strtof

7.20.1.3-3 The FUNCTION-DESIGNATOR strtold

7.20.1.4-1 The FUNCTION-DESIGNATOR strtol

7.20.1.4-2 The FUNCTION-DESIGNATOR strtoll

7.20.1.4-3 The FUNCTION-DESIGNATOR strtoul

7.20.1.4-4 The FUNCTION-DESIGNATOR strtoull

7.20.2 Pseudo-random sequence generation functions

Designated constructs:

DCRN Definition Rationale

7.20.2-1 The FUNCTION-DESIGNATOR rand
The FUNCTIONALITY of rand may not be fit for purpose

in critical applications.

7.20.2-2 The FUNCTION-DESIGNATOR srand As for 7.20.2-1 by implication.

7.20.3 Memory management functions

Designated constructs:

DCRN Definition Rationale

7.20.3-1 The FUNCTION-DESIGNATOR calloc
Use of dynamically allocated memory can impair the

ANALYSABILITY of code.

7.20.3-2 The FUNCTION-DESIGNATOR free As for 7.20.3-1

7.20.3-3 The FUNCTION-DESIGNATOR malloc As for 7.20.3-1

7.20.3-4 The FUNCTION-DESIGNATOR realloc As for 7.20.3-1

7.20.4 Communication with the environment

Designated constructs:

DCRN Definition Rationale

7.20.4-1 The FUNCTION-DESIGNATOR abort
Communication with the environment is

implementation-dependent.

7.20.4-2 The FUNCTION-DESIGNATOR atexit As for 7.20.4-1

7.20.4.3 The FUNCTION-DESIGNATOR exit As for 7.20.4-1

7.20.4-4 The FUNCTION-DESIGNATOR _Exit As for 7.20.4-1

7.20.4-5 The FUNCTION-DESIGNATOR getenv As for 7.20.4-1

7.20.4-6 The FUNCTION-DESIGNATOR system As for 7.20.4-1

7.20.5 Searching and sorting utilities

Designated constructs:

DCRN Definition Rationale

7.20.5-1 The FUNCTION-DESIGNATOR bsearch
If two elements of the searched array compare as equal,

wich element is matched is unspecified.

7.20.5-2 The FUNCTION-DESIGNATOR qsort
If two elements compare as equal, their order in the
resulting sorted array is unspecified.

7.20.6 Integer arithmetic functions

7.20.6.1 The abs, labs and llabs functions.

Designated constructs:

DCRN Definition Rationale

7.20.6.1-1 The FUNCTION-DESIGNATOR abs TIME BEHAVIOUR: Absolute value functions are used

very extensively in numerical software where efficiency

is at a premium. The implementation of such functions

as provided by a conforming implementation may not

fast enough for all requirements and users may wish to

control their use accordingly.

7.20.6.1-2 The FUNCTION-DESIGNATOR labs

7.20.6.1-2 The FUNCTION-DESIGNATOR llabs

7.20.6.2 The div, ldiv and lldiv functions.

Designated constructs:

DCRN Definition Rationale

7.20.6.2-1 The FUNCTION-DESIGNATOR div Aspects of div and ldiv are implementation-defined

for implementations conforming to earlier version of the

base language standard, this impairing PORTABILITY.
7.20.6.2-2 The FUNCTION-DESIGNATOR ldiv

7.20.6.2-3 The FUNCTION-DESIGNATOR lldiv

The lldiv function may not be supported by

implementations conforming to earlier version of the

base language standard, this impairing PORTABILITY.

7.20.7 Multibyte/wide character conversion functions

Designated constructs:

DCRN Definition Rationale

7.20.7-1 The FUNCTION-DESIGNATOR mblen
Support for wide and multibyte characters is

implementation-dependent.

7.20.7-2 The FUNCTION-DESIGNATOR mbtowc As for 7.20.7-1

7.20.7-3 The FUNCTION-DESIGNATOR wctomb As for 7.20.7-1

7.20.8 Multibyte/wide string conversion functions

Designated constructs:

DCRN Definition Rationale

7.20.8-1 The FUNCTION-DESIGNATOR mbstowcs
Support for wide and multibyte characters is

implementation-dependent.

7.20.8-2 The FUNCTION-DESIGNATOR wcstombs As for 7.20.8-1

7.21 String handling <string.h>

Designated constructs:

DCRN Definition Rationale

7.21-1
An INCLUDE-DIRECTIVE that cuases inclusion of the

<string.h>. header.

Many aspects of string handling are
implementation-dependent or may impair

SECURITY.

7.21.1 String function conventions (NR)

7.21.2 Copying functions

Designated constructs:

DCRN Definition Rationale

7.21.2.1-1 The FUNCTION-DESIGNATOR memcpy
Behaviour is implementation-dependent and is

not bounded thus impairing SECURITY.

7.21.2.2-1 The FUNCTION-DESIGNATOR memmove
Behaviour is bounded but may rely on memory

management functions thus potentially

impairing SECURITY.

7.21.2.3-1 The FUNCTION-DESIGNATOR strcpy
Behaviour is implementation-dependent and is

not bounded thus impairing SECURITY.

7.21.2.4-1 The FUNCTION-DESIGNATOR strncpy
Behaviour is implementation dependent.

Note: Implementations of string copying functions may rely on memory management functions. See 7.10.3.

7.21.3 Concatenation functions

Designated constructs:

DCRN Definition Rationale

7.21.3.1-1 The FUNCTION-DESIGNATOR strcat
Behaviour is implementation-dependent and is
not bounded thus impairing SECURITY.

7.21.3.2-1 The FUNCTION-DESIGNATOR strncat

Behaviour is bounded but may rely on memory

management functions thus potentially impairing

SECURITY.

Note: Implementations of string concatenation functions may rely on memory management functions. See also

7.10.3.

7.21.4 Comparison functions

Designated constructs:

DCRN Definition Rationale

7.21.4.1-1 The FUNCTION-DESIGNATOR memcmp
Behaviour is not bounded thereby impairing

SECURITY.

7.21.4.2-1 The FUNCTION-DESIGNATOR strcmp
Behaviour is not bounded thereby impairing

SECURITY.

7.21.4.3-1 The FUNCTION-DESIGNATOR strcoll The strcoll function is locale-dependent.

7.21.4.4-1
The FUNCTION-DESIGNATOR strncmp

Other things being equal the strncmp function

should be preferred to the memcmp function

because of stronger type checking.

7.21.4.5-1 The FUNCTION-DESIGNATOR strxfrm The strxfrm function is locale-dependent.

7.21.5 Search functions

Designated constructs:

DCRN Definition Rationale

7.21.5.1-1 The FUNCTION-DESIGNATOR memchr

The use of void parameters means that the

memchr function is not type-safe and its use

impairs ANALYZABILITY.

7.21.5.2-1 The FUNCTION-DESIGNATOR strchr
Behaviour is not bounded thereby potentially

impairing SECURITY.

7.21.5.3-1 The FUNCTION-DESIGNATOR strcspn
Behaviour is not bounded thereby potentially

impairing SECURITY.

7.21.5.4-1 The FUNCTION-DESIGNATOR strpbrk
Behaviour is not bounded thereby potentially
impairing SECURITY.

7.21.5.5-1 The FUNCTION-DESIGNATOR strrchr
Behaviour is not bounded thereby potentially

impairing SECURITY.

7.21.5.6-1 The FUNCTION-DESIGNATOR strspn
Behaviour is not bounded thereby potentially

impairing SECURITY.

7.21.5.7-1 The FUNCTION-DESIGNATOR strstr
Behaviour is not bounded thereby potentially

impairing SECURITY.

7.21.5.8-1 The FUNCTION-DESIGNATOR strtok
Behaviour is not bounded thereby potentially

impairing SECURITY.

7.21.6 Miscellaneous functions

Designated constructs:

DCRN Definition Rationale

7.21.6.1-1 The FUNCTION-DESIGNATOR memset

The use of void parameters means that the

memchr function is not type-safe and its use

impairs ANALYZABILITY.

7.21.6.2-1 The FUNCTION-DESIGNATOR strerror
The strerror function is

implementation-dependent.

7.21.6.3-1 The FUNCTION-DESIGNATOR strlen
Behaviour is not bounded thereby potentially

impairing SECURITY.

7.22 Type-generic math <tgmath.h>

Designated constructs:

DCRN Definition Rationale

7.22-1
An INCLUDE-DIRECTIVE that causes inclusion of the

<tgmath.h> header.

Several aspects of mathematical functions are
implementation-defined and mathematical

functions may not exhibit sufficient

ACCURACY for critical numerical applications.

7.22-2 The MACRO-NAME acos As for 7.22-1

7.22-3 The MACRO-NAME asin As for 7.22-1

7.22-4 The MACRO-NAME atan As for 7.22-1

7.22-5 The MACRO-NAME acosh As for 7.22-1

7.22-6 The MACRO-NAME asinh As for 7.22-1

7.22-7 The MACRO-NAME atanh As for 7.22-1

7.22-8 The MACRO-NAME cos As for 7.22-1

7.22-9 The MACRO-NAME sin As for 7.22-1

7.22-10 The MACRO-NAME tan As for 7.22-1

7.22-11 The MACRO-NAME cosh As for 7.22-1

7.22-12 The MACRO-NAME sinh As for 7.22-1

7.22-13 The MACRO-NAME tanh As for 7.22-1

7.22-14 The MACRO-NAME exp As for 7.22-1

7.22-15 The MACRO-NAME log As for 7.22-1

7.22-16 The MACRO-NAME pow As for 7.22-1

7.22-17 The MACRO-NAME sqrt As for 7.22-1

7.22-18 The MACRO-NAME fabs. As for 7.22-1

7.22-19 The MACRO-NAME atan2 As for 7.22-1

7.22-20 The MACRO-NAME cbrt As for 7.22-1

7.22-21 The MACRO-NAME ceil As for 7.22-1

7.22-22 The MACRO-NAME copysign As for 7.22-1

7.22-23 The MACRO-NAME erf As for 7.22-1

7.22-24 The MACRO-NAME exp2 As for 7.22-1

7.22-25 The MACRO-NAME expml As for 7.22-1

7.22-26 The MACRO-NAME fdim As for 7.22-1

7.22-27 The MACRO-NAME floor As for 7.22-1

7.22-28 The MACRO-NAME fma As for 7.22-1

7.22-29 The MACRO-NAME fmax As for 7.22-1

7.22-30 The MACRO-NAME fmin As for 7.22-1

7.22-31 The MACRO-NAME fmod As for 7.22-1

7.22-32 The MACRO-NAME frexp As for 7.22-1

7.22-33 The MACRO-NAME hypot As for 7.22-1

7.22-34 The MACRO-NAME ilogb As for 7.22-1

7.22-35 The MACRO-NAME ldexp As for 7.22-1

7.22-36 The MACRO-NAME lgamma As for 7.22-1

7.22-37 The MACRO-NAME llrint As for 7.22-1

7.22-38 The MACRO-NAME llround As for 7.22-1

7.22-39 The MACRO-NAME log10 As for 7.22-1

7.22-40 The MACRO-NAME log1p As for 7.22-1

7.22-41 The MACRO-NAME log2 As for 7.22-1

7.22-42 The MACRO-NAME logb As for 7.22-1

7.22-43 The MACRO-NAME lrint As for 7.22-1

7.22-44 The MACRO-NAME lround As for 7.22-1

7.22-45 The MACRO-NAME nearbyint As for 7.22-1

7.22-46 The MACRO-NAME nextafter As for 7.22-1

7.22-47 The MACRO-NAME nexttoward As for 7.22-1

7.22-48 The MACRO-NAME remainder As for 7.22-1

7.22-49 The MACRO-NAME remquo As for 7.22-1

7.22-50 The MACRO-NAME rint As for 7.22-1

7.22-51 The MACRO-NAME round As for 7.22-1

7.22-52 The MACRO-NAME scalbn As for 7.22-1

7.22-53 The MACRO-NAME scalbln As for 7.22-1

7.22-54 The MACRO-NAME tgamma As for 7.22-1

7.22-55 The MACRO-NAME trunc As for 7.22-1

7.23 Date and time <time.h>

Designated constructs:

DCRN Definition Rationale

7.23-1
An INCLUDE-DIRECTIVE that causes inclusion of the

<time.h> header.

Time measurement is

implementation-dependent.

7.23.1 Components of time

Designated constructs:

DCRN Definition Rationale

7.23-1 The MACRO-NAME CLOCKS_PER_SEC As for 7.23-1

7.23-2 The typedef-name clock_t As for 7.23-1

7.23-3 The typedef-name time_t As for 7.23-1

7.23-4 The struct-or-union-specifier struct tm As for 7.23-1

7.23.2 Time manipulation functions

Designated constructs:

DCRN Definition Rationale

7.23.2.1-1 The FUNCTION-DESIGNATOR clock As for 7.23-1

7.23.2.2-1 The FUNCTION-DESIGNATOR difftime As for 7.23-1

7.23.2.3-1 The FUNCTION-DESIGNATOR mktime As for 7.23-1

7.23.2.4-1 The FUNCTION-DESIGNATOR time As for 7.23-1

7.23.3 Time conversion functions

Designated constructs:

DCRN Definition Rationale

7.23.3.1-1 The FUNCTION-DESIGNATOR asctime As for 7.23-1

7.23.3.2-1 The FUNCTION-DESIGNATOR ctime As for 7.23-1

7.23.3.3-1 The FUNCTION-DESIGNATOR gmtime As for 7.23-1

7.23.3.4-1 The FUNCTION-DESIGNATOR localtime As for 7.23-1

7.23.3.5-1 The FUNCTION-DESIGNATOR strftime

7.24 Extended multibyte and wide character utilities <wchar.h>

Designated constructs:

DCRN Definition Rationale

7.24-1
An INCLUDE-DIRECTIVE that cuases inclusion of the

<wchar.h>. header.

Wide character support is

implementation-dependent.

7.24.1 Introduction

Designated constructs:

DCRN Definition Rationale

7.24.1-1 The typedef-name mbstate_t As for 7.24-1

7.24.1-2 The typedef-name wint_t As for 7.24-1

7.24.1-3 The MACRO-NAME weof As for 7.24-1

7.24.2 Formatted wide character input/output functions

Designated constructs:

DCRN Definition Rationale

7.24.2-1 The FUNCTION-DESIGNATOR fwprintf As for 7.24-1

7.24.2-2 The FUNCTION-DESIGNATOR fwscanf As for 7.24-1

7.24.2-3 The FUNCTION-DESIGNATOR swprintf As for 7.24-1

7.24.2-4 The FUNCTION-DESIGNATOR swscanf As for 7.24-1

7.24.2-5 The FUNCTION-DESIGNATOR vfwprintf As for 7.24-1

7.24.2-6 The FUNCTION-DESIGNATOR vfwscanf As for 7.24-1

7.24.2-7 The FUNCTION-DESIGNATOR vswprintf As for 7.24-1

7.24.2-8 The FUNCTION-DESIGNATOR vswscanf As for 7.24-1

7.24.2-9 The FUNCTION-DESIGNATOR vwprintf As for 7.24-1

7.24.2-10 The FUNCTION-DESIGNATOR vwscanf As for 7.24-1

7.24.2-11 The FUNCTION-DESIGNATOR wprintf As for 7.24-1

7.24.2-12 The FUNCTION-DESIGNATOR wscanf As for 7.24-1

7.24.3 Wide character input/output functions

Designated constructs:

DCRN Definition Rationale

7.24.3-1 The FUNCTION-DESIGNATOR fgetwc As for 7.24-1

7.24.3-2 The FUNCTION-DESIGNATOR fgetws As for 7.24-1

7.24.3-3 The FUNCTION-DESIGNATOR fputwc As for 7.24-1

7.24.3-4 The FUNCTION-DESIGNATOR fputws As for 7.24-1

7.24.3-5 The FUNCTION-DESIGNATOR fwide As for 7.24-1

7.24.3-6 The FUNCTION-DESIGNATOR getwc As for 7.24-1

7.24.3-7 The FUNCTION-DESIGNATOR getwchar As for 7.24-1

7.24.3-8 The FUNCTION-DESIGNATOR putwc As for 7.24-1

7.24.3-9 The FUNCTION-DESIGNATOR putwchar As for 7.24-1

7.24.3-10 The FUNCTION-DESIGNATOR ungetwc As for 7.24-1

7.24.4 General wide string utilities

7.24.4.1 Wide string numeric conversion functions

Designated constructs:

DCRN Definition Rationale

7.24.4.1-1 The FUNCTION-DESIGNATOR wcstod As for 7.24-1

7.24.4.1-2 The FUNCTION-DESIGNATOR wcstof As for 7.24-1

7.24.4.1-3 The FUNCTION-DESIGNATOR wcstold As for 7.24-1

7.24.4.1-4 The FUNCTION-DESIGNATOR wcstol As for 7.24-1

7.24.4.1-5 The FUNCTION-DESIGNATOR wcstoll As for 7.24-1

7.24.4.1-6 The FUNCTION-DESIGNATOR wcstoul As for 7.24-1

7.24.4.1-7 The FUNCTION-DESIGNATOR wcstoull As for 7.24-1

7.24.4.2 Wide string copying functions

Designated constructs:

DCRN Definition Rationale

7.24.4.2-1 The FUNCTION-DESIGNATOR wcscpy As for 7.24-1

7.24.4.2-2 The FUNCTION-DESIGNATOR wcsncpy As for 7.24-1

7.24.4.2-3 The FUNCTION-DESIGNATOR wmemcpy As for 7.24-1

7.24.4.2-4 The FUNCTION-DESIGNATOR wmemmove As for 7.24-1

7.24.4.3 Wide string concatenation functions

Designated constructs:

DCRN Definition Rationale

7.24.4.3-1 The FUNCTION-DESIGNATOR wcscat As for 7.24-1

7.24.4.3-2 The FUNCTION-DESIGNATOR wcsncat As for 7.24-1

7.24.4.4 Wide string comparison functions

Designated constructs:

DCRN Definition Rationale

7.24.4.4-1 The FUNCTION-DESIGNATOR wcscmp As for 7.24-1

7.24.4.4-2 The FUNCTION-DESIGNATOR wcscoll As for 7.24-1

7.24.4.4-3 The FUNCTION-DESIGNATOR wcsncmp As for 7.24-1

7.24.4.4-4 The FUNCTION-DESIGNATOR wcsxfrm As for 7.24-1

7.24.4.4-5 The FUNCTION-DESIGNATOR wmemcmp As for 7.24-1

7.24.4.5 Wide string search functions

Designated constructs:

DCRN Definition Rationale

7.24.4.5-1 The FUNCTION-DESIGNATOR wcschr As for 7.24-1

7.24.4.5-2 The FUNCTION-DESIGNATOR wcscspn As for 7.24-1

7.24.4.5-3 The FUNCTION-DESIGNATOR wcsrchr As for 7.24-1

7.24.4.5-4 The FUNCTION-DESIGNATOR wcsspn As for 7.24-1

7.24.4.5-5 The FUNCTION-DESIGNATOR wcsstr As for 7.24-1

7.24.4.5-6 The FUNCTION-DESIGNATOR wcstok As for 7.24-1

7.24.4.5-7 The FUNCTION-DESIGNATOR wmemchr As for 7.24-1

7.24.4.6 Miscellaneous functions

Designated constructs:

DCRN Definition Rationale

7.24.4.6-1 The FUNCTION-DESIGNATOR wcslen As for 7.24-1

7.24.4.6-2 The FUNCTION-DESIGNATOR wmemset As for 7.24-1

7.24.5 Wide character time conversion functions

Designated constructs:

DCRN Definition Rationale

7.24.5-1 The FUNCTION-DESIGNATOR wcsftime As for 7.24-1

7.24.6 Extended multibyte/wide character conversion utilities

7.24.6.1 Single byte/wide character conversion utilities

Designated constructs:

DCRN Definition Rationale

7.24.6.1-1 The FUNCTION-DESIGNATOR btowc As for 7.24-1

7.24.6.1-2 The FUNCTION-DESIGNATOR wctob As for 7.24-1

7.24.6.2 Conversion state functions

Designated constructs:

DCRN Definition Rationale

7.24.6.2-1 The FUNCTION-DESIGNATOR mbsinit As for 7.24-1

7.24.6.3 Restartable multibyte/wide character conversion functions

Designated constructs:

DCRN Definition Rationale

7.24.6.3-1 The FUNCTION-DESIGNATOR mbrlen As for 7.24-1

7.24.6.3-2 The FUNCTION-DESIGNATOR mbrtowc As for 7.24-1

7.24.6.3-3 The FUNCTION-DESIGNATOR wcrtomb As for 7.24-1

7.24.6.4 Restartable multibyte/wide string conversion functions

Designated constructs:

DCRN Definition Rationale

7.24.6.4-1 The FUNCTION-DESIGNATOR mbsrtombs As for 7.24-1

7.24.6.4-2 The FUNCTION-DESIGNATOR wcsrtombs As for 7.24-1

7.25 Wide character classification functions <wctype.h>

Designated constructs:

DCRN Definition Rationale

7.25-1
An INCLUDE-DIRECTIVE that causes inclusion of the

<wctype.h> header.

Support for wide characters is

implementation-dependent.

7.25.1 Introduction

Designated constructs:

DCRN Definition Rationale

7.25.1-1 The typedef-name wctrans_t As for 7.25-1

7.25.1-2 The typedef-name wctype_t As for 7.25-1

7.25.2 Wide character classification utilities

7.25.2.1 Wide character classification functions

Designated constructs:

DCRN Definition Rationale

7.25.2.1.1-1 The FUNCTION-DESIGNATOR iswalnum As for 7.25-1

7.25.2.1.2-1 The FUNCTION-DESIGNATOR iswalpha As for 7.25-1

7.25.2.1.3-1 The FUNCTION-DESIGNATOR iswblank As for 7.25-1

7.25.2.1.4-1 The FUNCTION-DESIGNATOR iswcntrl As for 7.25-1

7.25.2.1.5-1 The FUNCTION-DESIGNATOR iswdigit As for 7.25-1

7.25.2.1.6-1 The FUNCTION-DESIGNATOR iswgraph As for 7.25-1

7.25.2.1.7-1 The FUNCTION-DESIGNATOR iswlower As for 7.25-1

7.25.2.1.8-1 The FUNCTION-DESIGNATOR iswprint As for 7.25-1

7.25.2.1.9-1 The FUNCTION-DESIGNATOR iswpunct As for 7.25-1

7.25.2.1.10-1 The FUNCTION-DESIGNATOR iswspace As for 7.25-1

7.25.2.1.11-1 The FUNCTION-DESIGNATOR iswupper As for 7.25-1

7.25.2.1.12-1 The FUNCTION-DESIGNATOR iswxdigit As for 7.25-1

7.25.2.2 Extensible wide character classification functions

Designated constructs:

DCRN Definition Rationale

7.25.2.2.1-1 The FUNCTION-DESIGNATOR iswctype As for 7.25-1

7.25.2.2.2-1 The FUNCTION-DESIGNATOR wctype As for 7.25-1

7.25.3 Wide character case mapping utilities

7.25.3.1 Wide character case mapping functions

Designated constructs:

DCRN Definition Rationale

7.25.3.1.1-1 The FUNCTION-DESIGNATOR towlower As for 7.25-1

7.25.3.1.2-1 The FUNCTION-DESIGNATOR towupper As for 7.25-1

7.25.3.2 Extensible wide character case mapping functions

Designated constructs:

DCRN Definition Rationale

7.25.3.2.1-1 The FUNCTION-DESIGNATOR towctrans As for 7.25-1

7.25.3.2.2-1 The FUNCTION-DESIGNATOR wctrans As for 7.25-1

7.26 Future library directions

7.26.1 Complex arithmetic <complex.h>

Designated constructs:

An identifier that is any of the following:

DCRN Identifier Rationale

7.26.1-1 cerf

This name may be added to the declarations in the <complex.h> header.

By avoiding its use in user-written code, users reduce the risk that programs

will behave differently under implementations that comply with future
revisions of the language standard. PORTABILITY

7.26.1-2 cerff As for 7.26.1-1

7.26.1-3 cerfl As for 7.26.1-1

7.26.1-4 cerfc As for 7.26.1-1

7.26.1-5 cerfcf As for 7.26.1-1

7.26.1-6 cerfcl As for 7.26.1-1

7.26.1-7 cexp2 As for 7.26.1-1

7.26.1-8 cexp2f As for 7.26.1-1

7.26.1-9 cexp2l As for 7.26.1-1

7.26.1-10 cexpm1 As for 7.26.1-1

7.26.1-11 cexpm1f As for 7.26.1-1

7.26.1-12 cexpm1l As for 7.26.1-1

7.26.1-13 clog10 As for 7.26.1-1

7.26.1-14 clog10f As for 7.26.1-1

7.26.1-15 clog10l As for 7.26.1-1

7.26.1-16 clog1p As for 7.26.1-1

7.26.1-17 clog1pf As for 7.26.1-1

7.26.1-18 clog1pl As for 7.26.1-1

7.26.1-19 clog2 As for 7.26.1-1

7.26.1-20 clog2f As for 7.26.1-1

7.26.1-21 clog2l As for 7.26.1-1

7.26.1-22 clgamma As for 7.26.1-1

7.26.1-23 clgammaf As for 7.26.1-1

7.26.1-24 clgammal As for 7.26.1-1

7.26.1-25 ctgamma As for 7.26.1-1

7.26.1-26 ctgammaf As for 7.26.1-1

7.26.1-27 ctgammal As for 7.26.1-1

7.26.2 Character handling <ctype.h>

Designated constructs:

DCRN Definition Rationale

7.26.2-1
An identifier that begins with

is or to followed by a

lowercase letter.

Function names that begin in this manner may be added to the

<ctype.h> header. By avoiding use of the specified identifiers in

user-written code, users reduce the risk that programs will behave

differently under implementations that comply with future revisions

of the language standard. (PORTABILITY)

Note: Since, similar functions whose names begin in a similar manner may also be added to the <wctype.h>

header (7.26.13), DCRN 7.26.2-1 serves for both cases.

7.26.3 Errors <errno.h>

Designated constructs:

DCRN Definition Rationale

7.26.3-1
An identifier that begins with

E and a digit or E and an

uppercase letter.

Macro names that begin in this manner may be added to the

<errno.h> header. By avoiding use of the specified identifiers in

user-written code, users reduce the risk that programs will behave

differently under implementations that comply with future revisions

of the language standard. (PORTABILITY)

7.26.4 Format conversion of integer types <inttypes.h>

Designated constructs:

DCRN Definition Rationale

7.26.4-1
An identifier that begins with

PRI or SCN followed by any

lowercase letter or X.

Macros names that begin in this manner may be added to the

<inttypes.h> header. By avoiding use of the specified

identifiers in user-written code, users reduce the risk that programs

will behave differently under implementations that comply with

future revisions of the language standard. (PORTABILITY)

7.26.5 Localisation <locale.h>

Designated constructs:

DCRN Definition Rationale

7.26.5-1
An identifier that begins with

LC_ followed by an uppercase

letter.

Macro names that begin in this manner may be added to the

<locale.h> header. By avoiding use of the specified identifiers

in user-written code, users reduce the risk that programs will behave

differently under implementations that comply with future revisions

of the language standard. (PORTABILITY)

7.26.6 Signal handling <signal.h>

Designated constructs:

DCRN Definition Rationale

7.26.6-1

An identifier that begins with

SIG or SIG_ followed by an

uppercase letter.

Macro names that begin in this manner may be added to the

<locale.h> header. By avoiding use of the specified identifiers

in user-written code, users reduce the risk that programs will behave

differently under implementations that comply with future revisions

of the language standard. (PORTABILITY)

7.26.7 Boolean types and values <stdbool.h>

Designated constructs:

DCRN Definition Rationale

7.26.7-1
Any of the MACRO-NAME

bool, true or false.

The ability to define and perhaps then redefine the macros bool,

true and false is an obsolescent feature. Avoidance of

constructs that effect such definitions or redefinitions reduces the

risk that a program will behave differently under implementations

that comply with future revisions of the standard. (PORTABILITY)

7.26.8 Integer types <stdint.h>

Designated constructs:

DCRN Definition Rationale

7.26.8-1
An identifier that begins with

int or uint and ends in _t.

Typedef names that begin and end in this manner may be added to

the <stdint.h> header. By avoiding use of the specified

identifiers in user-written code, users reduce the risk that programs

will behave differently under implementations that comply with

future revisions of the language standard. (PORTABILITY)

7.26.8-2

An identifier that begins with

INT or UINT and ends with

_MAX, _MIN or _C.

Macro names that begin and end in this manner may be added to the

<stdint.h> header. By avoiding use of the specified identifiers

in user-written code, users reduce the risk that programs will behave

differently under implementations that comply with future revisions

of the language standard. (PORTABILITY)

7.26.9 Input/output <stdio.h>

Designated constructs:

DCRN Definition Rationale

7.26.9-1

A FUNCTION-DESIGNATOR

denoting the ungetc function

at a point where the file

position indicator is zero.

Such usage has been designated an obsolescent feature. Its

occurrence in user-written code increases the risk that a program

may fail under implementations that conform to future revisions of

the language standard. (PORTABILITY)

7.26.10 General utilities <stdlib.h>

Designated constructs:

DCRN Definition Rationale

7.26.10-1

An identifier that begins with

str, followed by a lowercase

letter.

Function names that begin in this manner may be added to the

<stdlib.h> header. By avoiding use of the specified identifiers

in user-written code, users reduce the risk that programs will behave

differently under implementations that comply with future revisions

of the language standard. (PORTABILITY)

Note: Since, similar functions whose names begin in a similar manner may also be added to the <string.h>

header, DCRN 7.26.10-1 serves for both cases.

7.26.11 String handling <string.h>

Designated constructs:

DCRN Definition Rationale

7.26.11-1
An identifier that begins with

mem followed by a lowercase

letter.

Function names that begin in this manner may be added to the

<string.h> header. By avoiding use of the specified identifiers

in user-written code, users reduce the risk that programs will behave

differently under implementations that comply with future revisions
of the language standard. (PORTABILITY)

7.26.12 Extended multibyte and wide character utilities <wchar.h>

Designated constructs:

DCRN Definition Rationale

7.26.12-1

An identifier that begins with

wcs, followed by a lowercase

letter.

Function names that begin in this manner may be added to the

<wchar.h> header. By avoiding use of the specified identifiers in

user-written code, users reduce the risk that programs will behave
differently under implementations that comply with future revisions

of the language standard. (PORTABILITY)

Note: Since, similar functions whose names begin in a similar manner may also be added to the <string.h>

header, DCRN 7.26.12-1 serves for both cases.

7.26.13 Wide character classification and mapping utilities <wctype.h>

Designated constructs:

See 7.26.2.

8 Annex A – Orthosyntax and Parasyntax Summary

8.1 Lexical grammar

8.1.1 Lexical elements

Orthosyntax:

token = keyword

 | identifier

 | constant

 | string-literal

 | punctuator ;

preprocessing-token = header-name

| identifier

| pp-number

| character-constant

| string-literal

| operator

| punctuator

| each non-white-space character that cannot be one of the

above ;

Parasyntax:

LETTER = identifier-nondigit \ _ ;

WORD-TOKEN = LETTER

 | WORD-TOKEN < LETTER ;

8.1.2 Keywords

Orthosyntax:

keyword = auto | break | case | char | const | continue |

default | do | double | else | enum | extern |

float | for | goto | if | inline | int | long |

register | restrict | return | short | signed |

sizeof | static | struct | switch | typedef |

union | unsigned | void | volatile | while | _Bool |

_Complex | _Imaginary ;

8.1.3 Identifiers

Orthosyntax:

identifier = identifier-nondigit

| identifier < identifier-nondigit

| identifier < digit

identifier-nondigit = _ | a | b | c | d | e | f | g | h | i | j | k | l | m

| n | o | p | q | r | s | t | u | v | w | x | y | z

| A | B | C | D | E | F | G | H | I | J | K | L | M

| N | O | P | Q | R | S | T | U | V | W | X | Y | Z

digit = 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 ;

8.1.4 Universal character names

Orthosyntax:

universal-character-name = \u < hex-quad

 | \U < hex-quad ;

hex-quad = hexadecimal-digit < hexadecimal-digit <

hexadecimal-digit < hexadecimal-digit ;

8.1.5 Constants

Orthosyntax:

constant = floating-constant

 | integer-constant

 | enumeration-constant

 | character-constant ;

Orthosyntax:

integer-constant = decimal-constant < [integer-suffix]

 | octal-constant < [integer-suffix]

 | hexadecimal-constant < [integer-suffix] ;

decimal-constant = nonzero-digit

 | decimal-constant < digit ;

octal-constant = 0

 | octal-constant < octal-digit ;

hexadecimal-constant = hexadecimal-prefix < hexadecimal-digit

 | hexadecimal-constant < hexadecimal-digit ;

hexadecimal-constant = 0x | 0X ;

nonzero-digit = 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 ;

octal-digit = 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 ;

hexadecimal-digit = 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

 | a | b | c | d | e | f

 | A | B | C | D | E | F ;

integer-suffix = unsigned-suffix < [long-suffix]

 | unsigned-suffix < long-long suffix

 | long-suffix < [unsigned-suffix]

| long-long-suffix < [unsigned-suffix] ;

unsigned-suffix = u | U ;

long-suffix = l | L ;

long-long-suffix = ll | LL ;

Orthosyntax:

floating-constant = decimal-floating-constant

 | hexadecimal-floating-constant ;

decimal-floating-constant = fractional-constant

< [exponent-part] < [floating-suffix]

| digit-sequence < exponent-part < [floating-suffix] ;

hexadecimal-floating-constant = hexadecimal-prefix

< hexadecimal-fractional-constant

< binary-exponent-part

< [floating-suffix]

| hexadecimal-prefix

< hexadecimal-digit-sequence

< binary-exponent-part

< [floating-suffix] ;

fractional-constant = [digit-sequence] < . < digit-sequence

 | digit-sequence ;

exponent-part = e < [sign] < digit-sequence

 | E < [sign] < digit-sequence ;

sign = + | - ;

digit-sequence = digit

 | digit-sequence < digit ;

hexadecimal-fractional-constant = [hexadecimal-digit-sequence] < .

 < hexadecimal-digit-sequence

 | hexadecimal-digit-sequence < . ;

binary-exponent-part = p < [sign] < digit-sequence

 | P < [sign] < digit-sequence ;

hexadecimal-digit-sequence = hexadecimal-digit

 | hexadecimal-digit-sequence < hexadecimal-digit ;

floating-suffix = f | l | F | L ;

Orthosyntax:

enumeration-constant = identifier ;

Orthosyntax:

character-constant = ‘ < c-char-sequence < ' ;

| L < ' < c-char-sequence < ' ;

character-constant = ' < c-char-sequence < '

 | L < ' < c-char-sequence < ' ;

c-char-sequence = c-char

 | c-char-sequence < c-char ;

c-char = escape-sequence

| any member of the source character set except the

single-quote ', backslash \, or new-line character ;

escape-sequence = simple-escape-sequence

 | octal-escape-sequence

 | hexadecimal-escape-sequence

| universal-character-name ;

simple-escape-sequence = \' | \" | \? | \\ | \a | \b

| \f | \n | \r | \t | \v ;

octal-escape-sequence = \ < octal-digit

 | \ < octal-digit < octal-digit

 | \ < octal-digit < octal-digit < octal-digit ;

hexadecimal-escape-sequence = \x < hexadecimal-digit

 | hexadecimal-escape-sequence < hexadecimal-digit ;

Parasyntax:

character-constant = INTEGER-CHARACTER-CONSTANT

| WIDE-CHARACTER-CONSTANT ;

INTEGER-CHARACTER-CONSTANT = ‘ < c-char-sequence < ' ;

WIDE-CHARACTER-CONSTANT = L < ' < c-char-sequence < ' ;

VALUE-ESCAPE-SEQUENCE = escape-sequence

& OCT-OR-HEX-ESCAPE-SEQUENCE ;

OCT-OR-HEX-ESCAPE-SEQUENCE = \ < OCTAL-ESC-DIGITS

 | \ < HEXADECIMAL-ESC-DIGITS ;

OCTAL-ESC-DIGITS = octal-digit

 | octal-digit < octal-digit

 | octal-digit < octal-digit < octal-digit ;

HEXADECIMAL-ESC-DIGITS = hexadecimal-digit

 | HEXADECIMAL-ESC-DIGITS < hexadecimal-digit ;

8.1.6 String literals

Orthosyntax:

string-literal = " < [s-char-sequence] < "

| L" < [s-char-sequence] < " ;

s-char-sequence = s-char

 | s-char-sequence < s-char ;

s-char = escape-sequence

 | any member of the source character set except the

double-quote ", backslash \, or new-line character ;

Parasyntax:

CHARACTER-STRING-LITERAL = " < [s-char-sequence] < " ;

WIDE-STRING-LITERAL = L" < [s-char-sequence] < " ;

8.1.7 Punctuators

Orthosyntax:

punctuator = [|] | (|) | { | } | . | -> | ++ | -- | & | * | + | -

| ~ | ! | / | % | << | >> | < | > | <= | >= | == | ^ | | | &&

| || | ? | : | ; | ... | = | *= | /= | %= | += | -= | <<=

| >>= | &= | ^= | |= | , | # | ## | <: | :> | <% | %> | %:

| %:%: ;

Parasyntax:

SUBSTITUTE-PUNCTUATOR = <: | :> | <% | %> | %: | %:%: ;

8.1.8 Header names

Orthosyntax:

header-name = < < h-char-sequence < >

 | " < q-char-sequence < " ;

h-char-sequence = h-char

 | h-char-sequence < h-char ;

h-char = any member of the source character set

except the new-line character and >

q-char-sequence = q-char

 | q-char-sequence < q-char

q-char = any member of the source character set

except the new-line character and "

Parasyntax:

STD-HEADER-NAME = < < STD-HU-CHAR-SEQUENCE < > ;

USER-HEADER-NAME = " < STD-HU-CHAR-SEQUENCE < " ;

STD-HU-CHAR-SEQUENCE = STD-HU-BEFORE-PERIOD < . < LETTER ;

STD-HU-BEFORE-PERIOD = STD-HU-CHAR & LETTER

 | STD-HU-BEFORE-PERIOD < STD-HU-CHAR ;

STD-HU-CHAR = LETTER

 | digit ;

8.1.9 Preprocessing numbers

Orthosyntax:

pp-number = digit

 | . < digit

 | pp-number < digit

 | pp-number < nondigit

 | pp-number < e < sign

 | pp-number < E < sign

 | pp-number < p < sign

 | pp-number < P < sign

 | pp-number < . ;

Parasyntax:

ALL-DIGIT-PP-NUMBER = digit

 | ALL-DIGIT-PP-NUMBER < digit ;

8.2 Phrase structure grammar

8.2.1 Expressions

Parasyntax:

SIDE-EFFECTIVE-OPERATOR = ++ | -- | == | *= | /= | %= | += |

-= | <<= | >>= | &= | ^= | |=

Orthosyntax:

primary-expr = identifier

 | constant

 | string-literal

 | (expression)

Orthosyntax:

postfix-expr = primary-expr

 | postfix-expr [expression]

 | postfix-expr ([argument-expression-list])

 | postfix-expr identifier

 | postfix-expr -> identifier

 | postfix-expr ++

 | postfix-expr -- ;

argument-expression-list:

assignment-expr

argument-expression-list , assignment-expr

Parasyntax:

postfix-expr = primary-expr

 | SUBSCRIPT-EXPRESSION

 | FUNCTION-CALL-EXPRESSION

 | DIRECT-ACCESS-EXPRESSION

 | INDIRECT-ACCESS-EXPRESSION

 | POST-INCREMENT-EXPRESSION

 | POST-DECREMENT-EXPRESSION ;

SUBSCRIPT-EXPRESSION = postfix-expr [expression] ;

FUNCTION-CALL-EXPRESSION = postfix-expr ([argument-expression-list]) ;

DIRECT-ACCESS-EXPRESSION = postfix-expr identifier ;

INDIRECT-ACCESS-EXPRESSION = postfix-expr -> identifier ;

POST-INCREMENT-EXPRESSION = postfix-expr ++ ;

POST-DECREMENT-EXPRESSION = postfix-expr -- ;

argument-expression-list = ARGUMENT

| argument-expression-list , ARGUMENT ;

ARGUMENT = assignment-expr ;

Orthosyntax:

unary-expr = postfix-expr

 | ++ unary-expr

 | -- unary-expr

 | unary-operator cast-expr

 | sizeof unary-expr

 | sizeof (type-name) ;

unary-operator = & | * | + | - | ~ | ! ;

Parasyntax:

unary-expr = postfix-expr

 | PRE-INCREMENT-EXPRESSION

 | PRE-DECREMENT-EXPRESSION

 | UNARY-OP-EXPR

 | SIZEOF-UNARY-EXPR

 | SIZEOF-TYPE-NAME ;

PRE-INCREMENT-EXPRESSION = ++ unary-expr ;

PRE-DECREMENT-EXPRESSION = -- unary-expr ;

UNARY-OP-EXPR = AMPERSAND-EXPR

 | ASTERISK-EXPR

 | UPLUS-EXPR

 | UMINUS-EXPR

 | TILDE-EXPR

 | SHRIEK-EXPR ;

SIZEOF-UNARY-EXPR = sizeof unary-expr ;

SIZEOF-TYPE-EXPR = sizeof (type-name) ;

AMPERSAND-EXPR = & cast-expr ;

ASTERISK-EXPR = * cast-expr ;

UPLUS-EXPR = + cast-expr ;

UMINUS-EXPR = - cast-expr ;

TILDE-EXPR = ~ cast-expr ;

SHRIEK-EXPR = ! cast-expr ;

Orthosyntax:

cast-expr = unary-expr

 | (type-name) cast-expr ;

Parasyntax:

cast-expr = unary-expr

 | EXPLICIT-CAST-EXPR ;

EXPLICIT-CAST-EXPR = (type-name) cast-expr ;

Orthosyntax:

multiplicative-expr = cast-expr

 | multiplicative-expr * cast-expr

 | multiplicative-expr / cast-expr

 | multiplicative-expr % cast-expr ;

Parasyntax:

EXPLICIT-MULT-EXPR = multiplicative-expr * cast-expr

 | EXPLICIT-DIVIDE-EXPR ;

EXPLICIT-DIVIDE-EXPR = multiplicative-expr / cast-expr

 | multiplicative-expr % cast-expr ;

Orthosyntax:

additive-expr = multiplicative-expr

 | additive-expr + multiplicative-expr

 | additive-expr - multiplicative-expr ;

Parasyntax:

additive-expr = multiplicative-expr

 | EXPLICIT-ADDITIVE-EXPR ;

EXPLICIT-ADDITIVE-EXPR = EXPLICIT-PLUS-EXPR

 | EXPLICIT-MINUS-EXPR ;

EXPLICIT-PLUS-EXPR = additive-expr + multiplicative-expr ;

EXPLICIT-MINUS-EXPR = additive-expr - multiplicative-expr ;

Orthosyntax:

shift-expr = additive-expr

 | shift-expr << additive-expr

 | shift-expr >> additive-expr

Orthosyntax:

relational-expr = shift-expr

 | relational-expr < shift-expr

 | relational-expr > shift-expr

 | relational-expr <= shift-expr

 | relational-expr >= shift-expr ;

Parasyntax:

relational-expr = shift-expr

 | EXPLICIT-REL-EXPR ;

EXPLICIT-REL-EXPR = EXPLICIT- LT-EXPR

 | relational-expr > shift-expr

 | relational-expr <= shift-expr

 | relational-expr >= shift-expr ;

EXPLICIT- LT-EXPR = relational-expr < shift-expr ;

Orthosyntax:

equality-expr = relational-expr

 | equality-expr == relational-expr

 | equality-expr != relational-expr ;

Parasyntax:

equality-expr = relational-expr

 | EXPLICIT-EQUALITY-EXPR ;

EXPLICIT-EQUALITY-EXPR | equality-expr == relational-expr

 | equality-expr != relational-expr ;

Orthosyntax:

AND-expr = equality-expr

 | AND-expr & equality-expr ;

Parasyntax:

AND-expr = equality-expr

 | EXPLICIT-AND-EXPR ;

EXPLICIT-AND-EXPR | AND-expr & equality-expr ;

Orthosyntax:

exclusive-OR-expr = AND-expr

 | exclusive-OR-expr ^ AND-expr ;

Parasyntax:

exclusive-OR-expr = AND-expr

 | EXPLICIT-XOR-EXPR ;

EXPLICIT-XOR-EXPR | exclusive-OR-expr ^ AND-expr ;

Orthosyntax:

inclusive-OR-expr = exclusive-OR-expr

 | inclusive-OR-expr | exclusive-OR-expr ;

Parasyntax:

inclusive-OR-expr = exclusive-OR-expr

 | EXPLICIT-IOR-EXPR ;

EXPLICIT-IOR-EXPR | inclusive-OR-expr | exclusive-OR-expr ;

Orthosyntax:

logical-AND-expr = inclusive-OR-expr

 | logical-AND-expr && inclusive-OR-expr ;

Parasyntax:

logical-AND-expr = inclusive-OR-expr

 | EXPLICIT-LAND-EXPR ;

EXPLICIT-LAND-EXPR | logical-AND-expr && inclusive-OR-expr ;

Orthosyntax:

logical-OR-expr = logical-AND-expr

 | logical-OR-expr || logical-AND-expr

Parasyntax:

logical-OR-expr = logical-AND-expr

 | EXPLICIT-LOR-EXPR ;

EXPLICIT-LOR-EXPR = logical-OR-expr || logical-AND-expr ;

Orthosyntax:

conditional-expr = logical-OR-expr

 | logical-OR-expr ? expr : conditional-expr ;

Parasyntax:

conditional-expr = logical-OR-expr

 | EXPLICIT-COND-EXPR ;

EXPLICIT-COND-EXPR = logical-OR-expr ? expr : conditional-expr ;

Orthosyntax:

assignment-expr = conditional-expr

 | unary-expr assignment-operator assignment-expr ;

assignment-operator = = | *= | /= | %= | += | -=

| <<= | >>= | &= | ^= | |= ;

Parasyntax:

assignment-expr = conditional-expr

 | EXPLICIT-ASSIGNMENT-EXPR ;

EXPLICIT-ASSIGNMENT-EXPR = EXPLICIT-SIMPLE-ASSIGNMENT-EXPR

 | EXPLICIT-MULT-ASSIGNMENT-EXPR

 | EXPLICIT-DIVIDE-ASSIGNMENT-EXPR

 | EXPLICIT-MOD-ASSIGNMENT-EXPR

 | EXPLICIT-PLUS-ASSIGNMENT-EXPR

 | EXPLICIT-MINUS-ASSIGNMENT-EXPR

 | EXPLICIT-SHIFT-ASSIGNMENT-EXPR

 | EXPLICIT-SHIFT-ASSIGNMENT-EXPR

 | EXPLICIT-BITWISE-ASSIGNMENT-EXPR ;

EXPLICIT-SIMPLE-ASSIGNMENT-EXPR = unary-expr = assignment-expr ;

EXPLICIT-MULT-ASSIGNMENT-EXPR = unary-expr *= assignment-expr ;

EXPLICIT-DIVIDE-ASSIGNMENT-EXPR = unary-expr /= assignment-expr ;

EXPLICIT-MOD-ASSIGNMENT-EXPR = unary-expr %= assignment-expr ;

EXPLICIT-PLUS-ASSIGNMENT-EXPR = unary-expr += assignment-expr ;

EXPLICIT-MINUS-ASSIGNMENT-EXPR = unary-expr -= assignment-expr ;

EXPLICIT-SHIFT-ASSIGNMENT-EXPR = EXPLICIT-LSHIFT-ASSIGNMENT-EXPR

 | EXPLICIT-RSHIFT-ASSIGNMENT-EXPR ;

EXPLICIT-LSHIFT-ASSIGNMENT-EXPR = unary-expr <<= assignment-expr ;

EXPLICIT-RSHIFT-ASSIGNMENT-EXPR = unary-expr >>= assignment-expr ;

EXPLICIT-BITWISE-ASSIGNMENT-EXPR = EXPLICIT-AND-ASSIGNMENT-EXPR

 | EXPLICIT-XOR-ASSIGNMENT-EXPR

 | EXPLICIT-IOR-ASSIGNMENT-EXPR ;

EXPLICIT-AND-ASSIGNMENT-EXPR = unary-expr &= assignment-expr ;

EXPLICIT-XOR-ASSIGNMENT-EXPR = unary-expr ^= assignment-expr ;

EXPLICIT-IOR-ASSIGNMENT-EXPR = unary-expr |= assignment-expr ;

Orthosyntax:

comma-expression = assignment-expr

 | expression , assignment-expr ;

Parasyntax:

comma-expression = assignment-expr

 | EXPLICIT-COMMA-EXPRESSION ;

EXPLICIT-COMMA-EXPRESSION= expression , assignment-expr ;

Orthosyntax:

constant-expr = conditional-expr ;

8.2.2 Declarations

Orthosyntax:

declaration = declaration-specifiers [init-declarator-list] ;

declaration-specifiers = storage-class-specifier [declaration-specifiers]

 | type-specifier [declaration-specifiers]

 | type-qualifier [declaration-specifiers] ;

init-declarator-list = init-declarator

 | init-declarator-list , init-declarator ;

init-declarator = declarator

 | declarator = initializer ;

Orthosyntax:

storage-class-specifier = typedef

| extern

| static

| auto

| register ;

Orthosyntax:

type-specifier = void

 | char

 | short

 | int

| long

| float

| double

| signed

| unsigned

| _Bool

| _Complex

| _Imaginary

| struct-or-union-specifier

| enum-specifier

| typedef-name ;

Orthosyntax:

struct-or-union-specifier = [struct-or-union identifier] { struct-declaration-list }

 | struct-or-union identifier ;

struct-or-union = struct

 | union ;

struct-declaration-list = struct-declaration

 | struct-declaration-list struct-declaration ;

struct-declaration = specifier-qualifier-list struct-declarator-list ;

specifier-qualifier-list = type-specifier [specifier-qualifier-list]

 | type-qualifier [specifier-qualifier-list] ;

struct-declarator-list = struct-declarator

 | struct-declarator-list , struct-declarator ;

struct-declarator = declarator

 | [declarator] : constant-expr ;

Parasyntax:

struct-or-union-specifier = [struct-or-union SU-IDENTIFIER] { struct-declaration-list }

 | struct-or-union SU-IDENTIFIER ;

SU-IDENTIFIER = identifier ;

struct-declarator = declarator

 | BIT-FIELD-DECLARATOR ;

BIT-FIELD-DECLARATOR = [declarator] : constant-expr ;

Orthosyntax:

enum-specifier = enum [identifier] { enumerator-list }

 | enum [identifier] { enumerator-list , }

 | enum identifier ;

enumerator-list = enumerator

 | enumerator-list , enumerator ;

enumerator = enumeration-constant

 | enumeration-constant = constant-expression ;

Parasyntax:

enum-specifier = enum [ENUM-IDENTIFIER] { enumerator-list }

 | enum [ENUM-IDENTIFIER] { enumerator-list , }

 | enum ENUM- IDENTIFIER ;

ENUM-IDENTIFIER = identifier ;

Orthosyntax:

type-qualifier = const

 | restrict

 | volatile ;

Orthosyntax:

function-specifier = inline ;

Orthosyntax:

declarator = [pointer] direct-declarator ;

direct-declarator = identifier

 | (declarator)

 | direct-declarator [[constant-expr]]

 | direct-declarator (parameter-type-list)

 | direct-declarator ([identifier-list]) ;

Parasyntax:

declarator = POINTER-DECLARATOR

 | NON-POINTER-DECLARATOR ;

POINTER-DECLARATOR = pointer direct-declarator ;

NON-POINTER-DECLARATOR = direct-declarator ;

direct-declarator = DD-IDENTIFIER

 | DEC-IN-PAREN

 | ARRAY-DECLARATOR

 | FUNCTION-DECLARATOR ;

DD-IDENTIFIER = identifier ;

DEC-IN-PAREN = (declarator) ;

ARRAY-DECLARATOR = direct-declarator ARRAY-BOUND ;

ARRAY-BOUND = [[constant-expr]] ;

FUNCTION-DECLARATOR = FUNCTION-PROTOTYPE

 | K-AND-R-FUNCTION-DECLARATOR ;

FUNCTION-PROTOTYPE = direct-declarator (parameter-type-list) ;

K-AND-R-FUNCTION-DECLARATOR = direct-declarator ([identifier-list]) ;

Orthosyntax:

pointer = * [type-qualifier-list]

 | * [type-qualifier-list] pointer ;

type-qualifier-list = type-qualifier

 | type-qualifier-list type-qualifier ;

Orthosyntax:

parameter-type-list = parameter-list

| parameter-list , ... ;

parameter-list = parameter-declaration

 | parameter-list , parameter-declaration ;

parameter-declaration = declaration-specifiers declarator

 | declaration-specifiers [abstract-declarator] ;

identifier-list = identifier

 | identifier-list , identifier ;

Parasyntax:

parameter-declaration = declaration-specifiers PARAMETER-DECLARATOR

 | declaration-specifiers [abstract-declarator] ;

PARAMETER-DECLARATOR = declarator ;

Orthosyntax:

type-name = specifier-qualifier-list [abstract-declarator] ;

abstract-declarator = pointer

 | [pointer] direct-abstract-declarator ;

direct-abstract-declarator = (abstract-declarator)

 | [direct-abstract-declarator] [[constant-expression]]

 | [direct-abstract-declarator] ([parameter-type-list]) ;

Orthosyntax:

typedef-name = identifier ;

Orthosyntax:

initializer = assignment-expr

 | { initializer-list }

 | { initializer-list , } ;

initializer-list = initializer

 | initializer-list , initializer ;

8.2.3 Statements

Orthosyntax:

statement = labeled-statement

 | compound-statement

 | expression-statement

 | selection-statement

 | iteration-statement

 | jump-statement ;

Orthosyntax:

labeled-statement = identifier : statement

 | case constant-expr : statement

 | default : statement ;

Parasyntax:

labeled-statement = IDENTIFIER-LABELED-STATEMENT

| CASE-LABELED-STATEMENT

| DEFAULT-LABELED-STATEMENT ;

IDENTIFIER-LABELED-STATEMENT = identifier : statement ;

CASE-LABELED-STATEMENT = case constant-expr : statement ;

DEFAULT-LABELED-STATEMENT = default : statement ;

Orthosyntax:

compound-statement = { [declaration-list] [statement-list] } ;

declaration-list = declaration

 | declaration-list declaration ;

statement-list = statement

 | statement-list statement ;

Orthosyntax:

expression-statement = [expression] ;

Orthosyntax

selection-statement = if (expression) statement

| if (expression) statement else statement

| switch (expression) statement ;

Parasyntax

selection-statement = BINARY-SELECTION

| SWITCH-STMT ;

BINARY-SELECTION = PLAIN-IF-STMT

 | IF-ELSE-STMT ;

PLAIN-IF-STMT = if (IF-EXPR) TRUE-STMT ;

IF-ELSE-STMT = if (IF-EXPR) TRUE-STMT else FALSE-STMT ;

IF-EXPR = expression ;

EXPLICIT-LOGICAL-EXPR = EXPLICIT-REL-EXPR

 | EXPLICIT-EQUALITY-EXPR

 | EXPLICIT-LAND-EXPR

 | EXPLICIT-LOR-EXPR

 | ! (EXPLICIT-LOGICAL-EXPR) ;

TRUE-STMT = statement ;

FALSE-STMT = statement ;

SWITCH-STMT = switch (SWITCH-EXPR) SWITCH-BODY ;

SWITCH-EXPR = expression ;

SWITCH-BODY = statement ;

STRUC-SWITCH-STMNT = switch (SWITCH-EXPR) STRUC-SWITCH-BODY ;

STRUC-SWITCH-BODY = { CASE-CLAUSES ; DEFAULT-CLAUSE } ;

CASE-CLAUSES = CASE-CLAUSE

 | CASE-CLAUSES ; CASE-CLAUSE ;

CASE-CLAUSE = case constant-expr : CASE-GROUP ;

DEFAULT-CLAUSE = default : CASE-GROUP ;

CASE-GROUP = { statement-list ; break } ;

Orthosyntax:

iteration-statement = while (expression) statement

 | do statement while (expression) ;

 | for (clause-1 ; expression-2 ; expression-3) statement ;

Parasyntax:

iteration-statement = WHILE-STATEMENT

 | DO-WHILE-STATEMENT

 | FOR-STATEMENT ;

WHILE-STATEMENT = while (WHILE-EXPRESSION) BODY ;

DO-WHILE-STATEMENT = do BODY while (WHILE-EXPRESSION) ;

FOR-STATEMENT = for (clause-1 ; expression-2 ; expression-3) BODY ;

WHILE-EXPRESSION = expression ;

BODY = statement ;

Orthosyntax:

jump-statement = goto identifier ;

 | continue ;

 | break ;

 | return [expression] ; ;

Parasyntax:

jump-statement = GOTO-STATEMENT

| CONTINUE-STATEMENT

| BREAK-STATEMENT

| RETURN-STATEMENT ;

GOTO-STATEMENT = goto identifier ; ;

CONTINUE-STATEMENT = continue ; ;

BREAK-STATEMENT = break ; ;

RETURN-STATEMENT = PLAIN-RETURN-STMNT

 | EXPR-RETURN-STMNT ;

PLAIN-RETURN-STMNT = return ; ;

EXPR-RETURN-STMNT = return [expression] ; ;

8.2.4 External definitions

Orthosyntax:

translation-unit = external-declaration

 | translation-unit external-declaration ;

external-declaration = function-definition

 | declaration

Orthosyntax:

function-definition = [declaration-specifiers] declarator [declaration-list]

compound-statement ;

declaration-list = declaration

| declaration-list declaration;

Parasyntax:

8.3 Preprocessing directives

Orthosyntax:

preprocessing-file = [group] ;

group = group-part

 | group group-part ;

group-part = [pp-tokens] new-line

 | if-section

 | control-line ;

if-section = if-group [elif-groups] [else-group] endif-line ;

if-group = # if constant-expr new-line [group]

 | # ifdef identifier new-line [group]

 | # ifndef identifier new-line [group] ;

elif-groups = elif-group

 | elif-groups elif-group ;

elif-group = # elif constant-expr new-line [group] ;

else-group = # else new-line [group] ;

endif-line = # endif new-line ;

control-line = # include pp-tokens new-line

 | # define identifier replacement-list new-line

 | # define identifier lparen [identifier-list]

 replacement-list new-line

 | # undef identifier new-line

 | # line pp-tokens new-line

 | # error [pp-tokens] new-line

 | # pragma [pp-tokens] new-line

 | # new-line ;

lparen = a left-parentheses without preceding white space ;

replacement-list = [pp-tokens] ;

pp-tokens = preprocessing-token

 | pp-tokens preprocessing-token ;

new-line = the new-line character ;

Parasyntax:

if-group = IF-DIRECTIVE [group] ;

 | IFDEF-DIRECTIVE [group] ;

 | IFNDEF-DIRECTIVE [group] ;

IF-DIRECTIVE = # if constant-expr new-line ;

IFDEF-DIRECTIVE = # ifdef identifier new-line ;

IFNDEF-DIRECTIVE = # ifndef identifier new-line ;

elif-group = ELIF-DIRECTIVE [group] ;

ELIF-DIRECTIVE = # elif constant-expr new-line ;

else-group = ELSE-DIRECTIVE [group] ;

ELSE-DIRECTIVE = # else new-line ;

endif-line = ENDIF-DIRECTIVE ;

ENDIF-DIRECTIVE = # endif new-line ;

control-line = INCLUDE-DIRECTIVE

 | PLAIN-DEFINE-DIRECTIVE

 | FLIKE-DEFINE-DIRECTIVE

 | UNDEF-DIRECTIVE

 | LINE-DIRECTIVE

 | ERROR-DIRECTIVE

 | PRAGMA-DIRECTIVE

 | NULL-DIRECTIVE ;

INCLUDE-DIRECTIVE = # include pp-tokens new-line ;

PLAIN-DEFINE-DIRECTIVE = # define identifier replacement-list new-line ;

FLIKE-DEFINE-DIRECTIVE = # define identifier < ([identifier-list]

replacement-list new-line ;

DEFINE-DIRECTIVE = PLAIN-DEFINE-DIRECTIVE

 | FLIKE-DEFINE-DIRECTIVE ;

PAREN-REPLACEMENT-LIST = (replacement-list) ;

UNDEF-DIRECTIVE = # undef identifier new-line ;

LINE-DIRECTIVE = # line pp-tokens new-line ;

ERROR-DIRECTIVE = # error [pp-tokens] new-line ;

PRAGMA-DIRECTIVE = # pragma [pp-tokens] new-line ;

NULL-DIRECTIVE = # new-line ;

DIRECTIVE = IF-DIRECTIVE

 | IFDEF-DIRECTIVE

| IFNDEF-DIRECTIVE

| ELIF-DIRECTIVE

| ELSE-DIRECTIVE

| ENDIF-DIRECTIVE

| INCLUDE-DIRECTIVE

 | PLAIN-DEFINE-DIRECTIVE

 | FLIKE-DEFINE-DIRECTIVE

 | UNDEF-DIRECTIVE

 | LINE-DIRECTIVE

 | ERROR-DIRECTIVE

 | PRAGMA-DIRECTIVE

 | NULL-DIRECTIVE ;

9 Annex B – Library summary (NR)

This page intentionally left blank

10 Annex C – Sequence points

This page intentionally left blank

11 Annex D - Universal character names for identifiers

This page intentionally left blank

12 Annex E – Implementation limits

This page intentionally left blank

13 Annex F – IEC 60559 floating-point arithmetic

This page intentionally left blank

14 Annex G – IEC 60559-compatible complex arithmetic

This page intentionally left blank

15 Annex H – Language-independent arithmetic

This page intentionally left blank

16 Annex I – Common warnings

This page intentionally left blank

17 Annex J – Portability issues

This page intentionally left blank

	ISO/IEC JTC 1/SC 22/OWGV N 0228

