6.14
XZI Sign Extension Error

6.14.0
Status and history

REVISE: Tom Plum
2008-01-16, Edited by Plum [and I suggest it be merged into FLC]
2007-12-14, considered at OWGV meeting 7. Some issues are noted below.

2007-08-05, Edited by Benito

2007-07-30, Edited by Larry Wagoner

2007-07-20, Edited by Jim Moore

2007-07-13, Edited by Larry Wagoner

6.14.1
Description of application vulnerability

If one extends a signed number incorrectly, if negative numbers are used, an incorrect extension may result.

[Consider the two issues listed immediately below:]

[Note: combining XYE [subsumed by FLC]
 XYF [subsumed by FLC],
 XYY [just revised by Dan],
 XZI as "integer arithmetic" was suggested.] I agree; merge it into FLC.
[Note: Should "divide by zero" be added?] I recommend a separate new topic.
6.14.2
Cross reference

CWE:

194. Sign Extension Error

6.14.3
Categorization

See clause 5.?.
Group: Arithmetic
6.14.4
Mechanism of failure

Converting a signed shorter data type to a larger data type or pointer can cause errors due to the extension of the sign bit. A negative data element that is extended with an unsigned extension algorithm will produce an incorrect result. For instance, this can occur when a signed character is converted to a short or a signed integer is converted to a long. Sign extension errors can lead to buffer overflows and other memory based problems. This can occur unexpectedly when moving software designed and tested on a 32 bit architecture to a 64 bit architecture computer.
[To understand the topic better, I consulted the original CWE

The following example is provided:
struct fakeint { short f0; short zeros; };
struct fakeint strange;
struct fakeint strange2;
strange.f0=-240;
strange2.f0=240;
strange2.zeros=0;
strange.zeros=0;
printf("%d %d\n",strange.f0,strange);
printf("%d %d\n",strange2.f0,strange2);

Maybe I just need more coffee, but this looks wrong. Negative 240 will assign just fine to a short integer which C90 and C99 require to be at least 16 bits. If “short” is changed to “unsigned char”, then the example illustrates the text. (If the C/C++ folks agree with that, I’ll draft a suggestion to CWE.)
6.14.5
Range of language characteristics considered

This vulnerability description is intended to be applicable to languages with the following characteristics:
· Languages may be strongly or weakly typed. Strongly typed languages do a strict enforcement of type rules since all types are known at compile time.

· Some languages allow implicit type conversion. Others require explicit type conversion.

6.14.6
Avoiding the vulnerability or mitigating its effects

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:
· Use a sign extension library, standard function, or appropriate language-specific coding methods to extend signed numbers.
· Use static analysis tools to help locate situations in which unintended conversions could affect numerical values.

·
·
6.14.7
Implications for standardization

<Recommendations for other working groups will be recorded here. For example, we might record suggestions for changes to language standards or API standards.>

6.14.8
Bibliography
<Insert numbered references for other documents cited in your description. These will eventually be collected into an overall bibliography for the TR. So, please make the references complete. Someone will eventually have to reformat the references into an ISO-required format, so please err on the side of providing too much information rather than too little. Here [1] is an example of a reference:

[1] Greg Hoglund, Gary McGraw, Exploiting Software: How to Break Code, ISBN-0-201-78695-8, Pearson Education, Boston, MA, 2004

