6.x BQF Unspecified Behaviour

6.x.0 Status and History

2008-02-12, Revised by Derek Jones

2007-12-12: Considered at OWGV meeting 7: In general, it's not possible to completely avoid unspecified behaviour. The point is to code so that the behaviour of the program is indifferent to the lack of specification. In addition, Derek should propose additional text for Clause 5 that explains that different languages use the terms "unspecified", "undefined", and "implementation-defined" in different ways and may have additional relevant terms of their own. Also, 5.1.1 should clarify that the existence of unspecified behaviour is not necessarily a defect, or a failure of the language specification. N0078 may be helpful.
2007-10-15, Jim Moore added notes from OWGV Meeting #6: "So-called portability issues should be confined to EWF, BQF, and FAB. The descriptions should deal with MISRA 2004 rules 1.2, 3.1, 3.2, 3.3, 3.4 and 4.a; and JSF C++ rules 210, 211, 212, 214. Also discuss the role of pragmas and assertions."

2007-07-18, Edited by Jim Moore

2007-06-30, Created by Derek M. Jones, derek@knosof.co.uk

6.x.1 Description of application vulnerability

The external behavior of a program, whose source code contains one or more instances of constructs having unspecified behavior, when the source code is recompiled or relinked.
6.x.2 Cross reference

Ada: Clause 1.1.3 Conformity of an Implementation with the Standard ; Clause 3.4.4 unspecified behavior

C: Clause 3.4.4 unspecified behavior

C++: Clause 1.3.13 unspecified behavior

Fortran: Clause 1.5 Conformance (Fortran uses the term 'processor dependent')

Also see guideline recommendations: EWF-undefined-behavior and FAB-implementation-defined-behavior.
6.x.3 Categorization

See clause 5.1.1.

6.x.4 Mechanism of failure

Language specifications do not always uniquely define the behavior of a construct. When an instance of a construct that is not uniquely defined is encountered (this might be at any of compile, link, or run time)implementations are permitted to choose from the set of behaviors allowed by the language specification. The term 'unspecified behavior' is sometimes applied to such behaviors, (language specific guidelines need to analyse and document the terms used by their respective language).
Adeveloper may use a construct in a way that depends on a subset of the possible behaviors occurring. The behavior of a program containing such a usage is dependent on the translator used to build it always selecting the 'expected' behavior.

6.x.5 Interrupting the Failure Mechanism

Many language constructs may have unspecified behavior and unconditionally recommending against any use of these constructs may be impractical. For instance, in many languages the order of evaluation of the operands appearing on the left- and right-hand side of an assignment statement is unspecified, but in most cases the set of possible behaviors always produces the same result.

The appearance of unspecified behavior in a language specification is a recognition by the designers that in some cases flexibility is needed by software developers and provides a worthwhile benefit for language translators; this usage is not a defect in the language.
The important characteristic is not the internal behavior exhibited by a construct (e.g., the sequence of machine code generated by a translator) but its external behavior (i.e., the one visible to a user of a program). If the set of possible unspecified behaviors permitted for a specific use of a construct all produce the same external effect when the program containing them is executed, then rebuilding the program cannot result in a change of behavior for that specific usage of the construct.

For instance, while the following assignment statement contains unspecified behavior in many languages (I.e., it is possible to evaluate either A or B operand first, followed by the other operand):

A = B;

in most cases the order in which A and B are evaluated does not effect the external behavior of a program containing this statement.

6.x.6 Assumed variations among languages

This vulnerability is intended to be applicable to languages with the following characteristics:

· languages whose specification allows a finite set of more than one behaviors for how a translator handles some construct, where two or more of the behaviors can result in differences in external program behavior.

6.x.7 Avoiding the vulnerability or mitigating its effects

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

· Ensuring that a specific use of a construct having unspecified behavior produces a result that is the same, for that specific use, for all of possible behaviors permitted by the language specification.

·

When developing coding guidelines for a specific language all constructs that have unspecified behavior shall be documented and for each construct the situations where the set of possible behaviors can varied shall be enumerated.
