6.x
EWD Structured Programming

6.x.0
Status and history
REVISE: John Benito

2007-12-12, edited at OWGV meeting 7

2007-11-19, edited by Benito

2007-10-15, decided at OWGV meeting #6: “Write a new description, EWD about the use of structured programming that discusses goto, continue statement, break statement, single exit from a function. Discuss in terms of cost to analyzability and human understanding. Include setjmp and longjmp.”
6.x.1
Description of application vulnerability

Programs that have a convoluted control structure are likely to be less understandable, less maintainable, harder to modify, harder to statically analyze, harder to read, and more difficult to match allocation and release of resources.


6.x.2
Cross reference

CWE: none

Holtzmann-1 [move to Bibliography]
JSF: none

MISRA: 14.4 through 14.7 and 20.7
6.x.3
Categorization

See clause 5.?. 
6.x.4
Mechanism of failure

· Memory or resource leaks.
· Difficult to maintain.

· Validation of the design is difficult.

· Difficult to statically analyze.

6.x.5
Range of language characteristics considered

This vulnerability description is intended to be applicable to languages with the following characteristics:

· Languages that allow goto statements.

· Languages that allow leaving a loop without consideration for the loop control.

· Languages that allow local jumps (goto).

· Languages that allow non-local jumps (setjmp/longjmp in ‘C’).

· Languages that support multiple entry and exit points from a function, procedure, subroutine or method.

6.x.6
Avoiding the vulnerability or mitigating its effects

Use only those features of the programming language that follows code structure to write programs, that is statements are sequentially executed or controlled by conditional statements, looping or structured functions, procedures, methods, or subroutines. [Rewrite]
· Avoid using language features such as goto.
· Avoid using language features such as continue and break in the middle of loops.

· Avoid using language features that transfer control of the program flow via a jump.

· Avoid multiple exit points to a function/procedure/method/subroutine.

· Avoid multiple entry points to a function/procedure/method/subroutine.

6.x.7
Implications for standardization

<Recommendations for other working groups will be recorded here. For example, we might record suggestions for changes to language standards or API standards.>

6.x.8
Bibliography
<Insert numbered references for other documents cited in your description. These will eventually be collected into an overall bibliography for the TR. So, please make the references complete. Someone will eventually have to reformat the references into an ISO-required format, so please err on the side of providing too much information rather than too little. Here [1] is an example of a reference:

[1] Greg Hoglund, Gary McGraw, Exploiting Software: How to Break Code, ISBN-0-201-78695-8, Pearson Education, Boston, MA, 2004

