6.<x> Relative Path Traversal

6.<x>.1 XYA Description of application vulnerability

The software can construct a path that contains relative traversal sequences such as ".."

6.<x>.2 Cross reference

CWE:
24. Path Issue - dot dot slash - '../filedir'
25. Path Issue - leading dot dot slash - '/../filedir'
26. Path Issue - leading directory dot dot slash - '/dir
27. Path Issue - directory doubled dot dot slash - 'directory/../../filename' ectory/../filename'
28. Path Issue - dot dot backslash - '..\filename'
29. Path Issue - leading dot dot backslash - '\..\filename'
30. Path Issue - leading directory dot dot backslash - '\directory\..\filename'
31. Path Issue - directory doubled dot dot backslash - 'directory\..\..\filename'
32. Path Issue - triple dot - '...'
33. Path Issue - multiple dot - '....'
34. Path Issue - doubled dot dot slash - '....//'
35. Path Issue - doubled triple dot slash - '.../...//'
6.<x>.3 Categorization

See clause 5.?. <Replace this with the categorization according to the analysis in Clause 5. At a later date, other categorization schemes may be added.>
6.<x>.4 Mechanism of failure

24 A software system that accepts input in the form of: '..\filename', '\..\filename', '/directory/../filename', 'directory/../../filename', '..\filename', '\..\filename', '\directory\..\filename', 'directory\..\..\filename', '...', '....' (multiple dots), '....//', or '.../...//'
without appropriate validation can allow an attacker to traverse the file system to access an arbitrary file. Note that '..' is ignored if the current working directory is the root directory. Some of these input forms can be used to cause problems for systems that strip out '..' from input in an attempt to remove relative path traversal.

6.<x>.5 Interrupting the failure mechanism
Assume all input is malicious. Attackers can insert paths into input vectors and traverse the file system. Use an appropriate combination of black lists and white lists to ensure only valid and expected input is processed by the system. Warning: if you attempt to cleanse your data, then do so that the end result is not in the form that can be dangerous. A sanitizing mechanism can remove characters such as ‘.' and ‘;' which may be required fir some exploits. An attacker can try to fool the sanitizing mechanism into "cleaning" data into a dangerous form. Suppose the attacker injects a ‘.' inside a filename (e.g. "sensi.tiveFile") and the sanitizing mechanism removes the character resulting in the valid filename, "sensitiveFile". If the input data are now assumed to be safe, then the file may be compromised.

6.<x>.6 Assumed variations among languages

This vulnerability description is intended to be applicable to languages with the following characteristics:

<Replace this with a bullet list summarizing the pertinent range of characteristics of languages for which this discussion is applicable. This list is intended to assist readers attempting to apply the guidance to languages that have not been treated in the language-specific annexes.>
6.<x>.7 Avoiding the vulnerability or mitigating its effects

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

<Replace this with a bullet list summarizing various ways in which programmers can avoid the vulnerability or contain its bad effects. Begin with the more direct, concrete, and effective means and then progress to the more indirect, abstract, and probabilistic means.

History
