6.x CLL Switch statements and static analysis (was enumerable types)
6.x.0 Status and history

REVISE: Tom Plum

2007-12-12, edited at OWGV meeting 7

2007-11-22, edited by Plum
2007-10: OWGV meeting 6: Write a new description, CLL. Using an enumerable type is a good thing. One wants the case analysis to cover all of the cases. One often wants to avoid falling through to subsequent cases. Adding a default option defeats static analysis. Providing labels marking the programmer's intentions about falling through can be an aid to static analysis.
6.x.1 Description of application vulnerability

[When using a switch statement, it is important to make sure that all possible cases are, in fact, dealt with. One way to accomplish this is to switch on a variable of an enumerated type. In this case, it is preferable to omit the default case, because the static analysis is simplified and because maintainers can better understand the intent of the original programmer. When one must switch on some other form of type, it is necessary to have a default case, preferably to be regarded as an error condition.]
In the switch statement of some languages, control can “flow-through” from one case into another case; this can result in execution of un-intended code. It is preferable to avoid flowing through. (Multiple labels are OK and desirable.) In cases where it is necessary, providing comments marking the programmer's intentions about falling through can be an aid to static analysis and the understanding of maintainers.
In most languages, oversights during implementation can result in the omission of significant cases that should have been explicitly handled in a switch statement. Sometimes static analysis can assist with verifying that each significant case in the requirements is implemented in the corresponding switch statement; but if this assistance is employed, then a default case can diminish the effectiveness, since the tool cannot tell whether the omitted case was or was not intended for the default treatment. For some languages, a default case is necessary; in such cases, it is preferable that execution of the default be treated as a run-time error.
Using an enumerable type for the switch variable can facilitate the assistance from static analysis, since the list of significant cases is more apparent from the declaration of the enumeration.

6.x.2 Cross reference

Hatton 14: Switch statements [Move to Bibliography]
MISRA C: 15.2, 15.3, add-in 14.8, 15.1, 15.4, 15.5
CERT/CC guidelines: MSC01-A
6.x.3 Categorization

[tbd].

6.x.4 Mechanism of failure

[tbd]
6.x.5 Range of language characteristics considered

This vulnerability description is intended to be applicable to languages with the following characteristics:

· Selection among alternative control-flow (switch statement or equivalent);
· Ability to flow-through from one alternative to another within a switch;
· Enumeration variables.

6.x.6 Avoiding the vulnerability or mitigating its effects

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

· Adopt appropriate programming guidelines (preferably augmented by static analysis). For example, consider the rules itemized above from CERT/CC, Hatton, or MISRA C.
· Other means of assurance might include proofs of correctness, analysis with tools, verification techniques, etc.

6.x.7 Implications for standardization

[tbd][Perhaps languages could check for "completeness" of the switch variable and mutual exclusion of the cases.]
6.x.8 Bibliography
