7.7
XYN Privilege Management

7.7.0
History and status

OK: No one is assigned

2007-12-15, Status updated, Jim Moore 
2007-08-04, Edited by Benito

2007-07-30, Edited by Larry Wagoner

2007-07-20, Edited by Jim Moore
2007-07-13, Edited by Larry Wagoner
7.7.1
Description of application vulnerability

Failure to adhere to the principle of least privilege amplifies the risk posed by other vulnerabilities.

7.7.2
Cross reference

CWE: 

250. Often Misused: Privilege Management

7.7.3
Categorization

See clause 5.?. <Replace this with the categorization according to the analysis in Clause 5. At a later date, other categorization schemes may be added.>

7.7.4
Mechanism of failure

This vulnerability type refers to cases in which an application grants greater access rights than necessary. Depending on the level of access granted, this may allow a user to access confidential information. For example, programs that run with root privileges have caused innumerable Unix security disasters. It is imperative that you carefully review privileged programs for all kinds of security problems, but it is equally important that privileged programs drop back to an unprivileged state as quickly as possible in order to limit the amount of damage that an overlooked vulnerability might be able to cause. Privilege management functions can behave in some less-than-obvious ways, and they have different quirks on different platforms. These inconsistencies are particularly pronounced if you are transitioning from one non-root user to another. Signal handlers and spawned processes run at the privilege of the owning process, so if a process is running as root when a signal fires or a sub-process is executed, the signal handler or sub-process will operate with root privileges. An attacker may be able to leverage these elevated privileges to do further damage. To grant the minimum access level necessary, first identify the different permissions that an application or user of that application will need to perform their actions, such as file read and write permissions, network socket permissions, and so forth. Then explicitly allow those actions while denying all else.

7.7.5
Avoiding the vulnerability or mitigating its effects

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

Very carefully manage the setting, management and handling of privileges. Explicitly manage trust zones in the software.

Follow the principle of least privilege when assigning access rights to entities in a software system. 

7.7.6
Implications for standardization

<Recommendations for other working groups will be recorded here. For example, we might record suggestions for changes to language standards or API standards.>

7.7.7
Bibliography
<Insert numbered references for other documents cited in your description. These will eventually be collected into an overall bibliography for the TR. So, please make the references complete. Someone will eventually have to reformat the references into an ISO-required format, so please err on the side of providing too much information rather than too little. Here [1] is an example of a reference:

[1] Greg Hoglund, Gary McGraw, Exploiting Software: How to Break Code, ISBN-0-201-78695-8, Pearson Education, Boston, MA, 2004

