6.x NYY Dynamically-linked code and self-modifying code (was Self-modifying Code)
6.x.0 Status and history

2007-11-22, edited by Plum

6.x.1 Description of application vulnerability

On some platforms, and in some languages (such as assembler code), instructions can modify other instructions in the code space (“self-modifying code”). Such operations would doubtless be completely beyond the capabilities of static analysis to understand the semantics, and quite probably beyond the capabilities of the average human programmer or reviewer.

Somewhat more analyzable, dynamically-linked code (dynamic class libraries in Java or C++, DLLs, etc) still poses significant challenges for analysis. Development and test methodologies for safety-critical applications usually require that all components have been designed and tested together, a requirement that becomes harder to verify if some components are dynamically-linked. [Is this the reason for the restriction?]
6.x.2 Cross reference

JSF AV rule 2: No self-modifying code.

6.x.3 Categorization

[tbd].

6.x.4 Mechanism of failure

[tbd].

6.x.5 Range of language characteristics considered

This vulnerability description is intended to be applicable to languages with the following characteristics:

· Self-modifying code;
· Dynamically-linked libraries.
6.x.6 Avoiding the vulnerability or mitigating its effects

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

· Avoid implementation languages that allow self-modifying code.
· [tbd re dynamic linking]
6.x.7 Implications for standardization

[tbd]
6.x.8 Bibliography

