6.x DCM Dangling references to stack frames

6.x.0 Status and history


2008-02-14: edited by Erhard Ploedereder: revised example, word polishing
2007-12-12: edited by OWGV meeting 7

2007-12-06: first version by Erhard Ploedereder

2007-10-15: Needs to be written.

2007-10-15, Decided at OWGV #6: We decide to write a new vulnerability, Pointer Arithmetic, RVG, for 17.1 thru 17.4. Don't do 17.5. We also want to create DCM to deal with dangling references to stack frames, 17.6. XYK deals with dangling pointers. Deal with MISRA 2004 rules 17.1, 17.2, 17.3, 17.4, 17.5, 17.6; JSF rule 175.

6.x.1 Description of application vulnerability

Many systems implementation languages allow treating the address of a local variable as a value stored in other variables. Examples are the application of the address operator in C or C++, or of the ‘Access or ‘Address attributes in Ada. In the C-family of languages, this facility is also used to model the call-by-reference mechanism by passing the address of the actual parameter by-value. An obvious safety requirement is that the stored address shall not be used after the lifetime of the local variable has expired. Technically, the stack frame, in which the local variable lived, has been popped and memory may have been reused for a subsequent call. Unfortunately the invalidity of the stored address is very difficult to decide. This situation can be described as a “dangling reference to the stack”. See also XYK “dangling references to the heap”. 

6.x.2 Cross reference

CWE: 
JSF C++: 111

MISRA 2004: 17.6
6.x.3 Categorization

See clause 5.?. <Replace this with the categorization according to the analysis in Clause 5. At a later date, other categorization schemes may be added.>
6.x.4 Mechanism of failure

The consequences of dangling references to the stack come in two flavors: a deterministically predictable flavor, which therefore can be exploited, and an intermittent, non-deterministic flavor, which is next to impossible to elicit during testing. The following code sample illustrates the two flavors; the behavior is not language-specific:

struct s {  … }; 
typedef struct s array_type[1000]; 
array_type* ptr; 
array_type* F() 
{ 
  struct s Arr[1000]; 
  ptr = &Arr;     // Risk of flavor 1; 
  return &Arr;    // Risk of flavor 2; 
} 

…

  struct s secret; 
  array_type* ptr2; 
  ptr2 = F(); 
  secret = (*ptr2)[10];   // Fault of flavor 2  
 …

  secret = (*ptr)[10];    // Fault of flavor 1 














The risk of flavor 1 is the assignment of the address of Arr to a pointer variable that survives the lifetime of Arr. The fault is the subsequent use of the dangling reference to the stack, which references memory since altered by other calls and possibly validly owned by other routines. As part of a call-back, the fault allows systematic examination of portions of the stack contents without triggering an array-bounds-checking violation. Thus, this vulnerability is easily exploitable. As a fault, the effects can be most astounding, as memory gets corrupted by completely unrelated code portions. (A life-time check as part of pointer assignment can prevent the risk. In many cases, e.g., the situations above, the check is statically decidable by a compiler; however, for the general case, a dynamic check is needed to ensure that the copied pointer value lives no longer than the designated object.)
The risk of flavor 2 is an idiom “seen in the wild” to return the address of a local variable in order to avoid an expensive copy of a function result, as long as it is consumed before the next routine call occurs. The idiom is based on the ill-founded assumption that the stack will not be affected by anything until this next call is issued. The assumption is false, however, if an interrupt occurs and interrupt handling employs a strategy called “stack stealing”, i.e., using the current stack to satisfy its memory requirements. Thus, the value of Arr can be overwritten before it can be retrieved after the call on F. As this fault will only occur if the interrupt arrives after the call has returned but before the returned result is consumed, the fault is highly intermittent and next to impossible to (re-)create during testing. Thus, it is unlikely to be exploitable, but also exceedingly hard to find by testing. It can begin to occur after a completely unrelated interrupt handler has been coded or altered. Only static analysis can relatively easily detect the danger (unless the code combines it with risks of flavor 1). Some compilers issue warnings for this situation; such warnings need to be heeded.
6.x.5 Range of language characteristics considered


This vulnerability description is intended to be applicable to languages with the following characteristics:

· The address of a local entity (or formal parameter) of a routine can be obtained and stored in a variable or can be returned by this routine as a result; and

· no check is made that the lifetime of the variable receiving the address is no larger than the lifetime of the designated entity.

6.x.6 Avoiding the vulnerability or mitigating its effects

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

· Do not use the address of declared entities as storable, assignable or returnable value (except where idioms of the language make it unavoidable).

· Where unavoidable, ensure that the lifetime of the variable containing the address is completely enclosed by the lifetime of the designated object.

· Never return the address of a local variable as the result of a function call. (No excuses.)  

6.x.7 Implications for standardization

Language designers can avoid the vulnerability or mitigate its ill effects in the following ways:

· Do not provide means to obtain the address of a declared entity as a storable value; or

· Define implicit checks to implement the assurance of enclosed lifetime expressed in 6.x.6. Note that, in many cases, the check is statically decidable, e.g., when the address of a local entity is taken as part of a return statement or expression.  

6.x.8 Bibliography
<Insert numbered references for other documents cited in your description. These will eventually be collected into an overall bibliography for the TR. So, please make the references complete. Someone will eventually have to reformat the references into an ISO-required format, so please err on the side of providing too much information rather than too little. Here [1] is an example of a reference:

[1] Greg Hoglund, Gary McGraw, Exploiting Software: How to Break Code, ISBN-0-201-78695-8, Pearson Education, Boston, MA, 2004

>

