
6.<x> FAB Implementation-defined behavior

6.x.0 Status and history

2008-02-11, Revised by Derek Jones

2007-12-12: Considered at OWGV meeting 7: See notes added to BQF. Consider issues arising from maintenance that might involve changes in the selected implementation.
2007-10-15, Jim Moore added notes from OWGV Meeting #6: "So-called portability issues should be confined to EWF, BQF, and FAB. The descriptions should deal with MISRA 2004 rules 1.2, 3.1, 3.2, 3.3, 3.4 and 4.a; and JSF C++ rules 210, 211, 212, 214. Also discuss the role of pragmas and assertions."
2007-07-18, Edited by Jim Moore

2007-06-30, Created by Derek M. Jones, derek@knosof.co.uk

6.<x>.1 Description of application vulnerability

The external behavior of a program, whose source code contains one or more instances of constructs having implementation-defined behavior, when the source code is recompiled or relinked.
6.<x>.2 Cross reference

Ada: Clause 1.1.3 Conformity of an Implementation with the Standard; Clause 3.4.1 implementation-defined behavior
C: Clause 3.4.1 implementation-defined behavior
C++: Clause 1.3.5 implementation-defined behavior

Fortran: Clause 1.5 Conformance (Fortran uses the term 'processor dependent')

Also see guideline recommendations: BQF-071212-unspecified-behavior and EWF-undefined-behavior.
6.<x>.3 Categorization

See clause 5.1.2.

6.<x>.4 Mechanism of failure

Language specifications do not always uniquely define the behavior of a construct. When an instance of a construct that is not uniquely defined is encountered (this might be at any of compile, link, or run time) implementations are permitted to choose from a set of behaviors. The only difference from unspecified behavior is that implementations are required to document how their they behave.

A developer may use a construct in a way that depends on a particular implementation-defined behavior occurring. The behavior of a program containing such a usage is dependent on the translator used to build it always selecting the 'expected' behavior.

Some implementations provide a mechanism for changing an implementation's implementation-defined behavior (e.g., use of pragmas in source code). Use of such a change mechanism creates the potential for additional human error in that a developer may be unaware that a change of behavior was requested earlier in the source code and may write code that depends on the previous, unchanged, implementation-defined behavior.
6.<x>.5 Interrupting the failure mechanism

Many language constructs may have implementation-defined behavior and unconditionally recommending against any use of these constructs may be completely impractical. For instance, in many languages the number of significant characters in an identifier is implementation-defined (and it is not possible to write useful programs without using identifiers)
In the identifier significant character example developers must choose a minimum number of characters and require that only translators supporting at least that number, N, of characters be used.

The appearance of implementation-defined behavior in a language specification is a recognition by the designers that in some cases implementation flexibility provides a worthwhile benefit for language translators; this usage is not a defect in the language.
6.<x>.6 Assumed variations among languages

This vulnerability is intended to be applicable to languages with the following characteristics:

· languages whose specification allows some variation in how a translator handles some construct, where reliance on one form of this variation can result in differences in external program behavior.

· Implementations may not be required to provide a mechanism for controlling implementation-defined behavior.
6.<x>.7 Avoiding the vulnerability or mitigating its effects

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

· Ensuring that a specific use of a construct having implementation-defined behavior produces an external behavior that is the same, for that specific use, for all of possible behaviors permitted by the language specification.

· Only use a language implementation whose implementation-defined behaviors are within a known subset of implementation-defined behaviors. The known subset being chosen so that the 'same external behavior' condition described above is met.

· Create very visible documentation (e.g., at the start of a source file) that the default implementation-defined behavior is changed within the current file[Other recommendations ???]
Portability guidelines for a specific language may provide a list of common implementation behaviors.
 When developing coding guidelines for a specific language all constructs that have implementation-defined behavior shall be documented and for each construct the situations where the set of possible behaviors can varied shall be enumerated.
When applying this guideline on a project the functionality provided by an for changing its implementation-defined behavior shall be documented [and ???].
