6.<x> XYW Buffer Overflow in Stack
[Consider merging this with XZB.]
6.x.0 Status and history

PENDING

2007-07-20, Edited by Jim Moore

2007-07-13, Edited by Larry Wagoner
6.<x>.1 Description of application vulnerability

A stack overflow condition is a buffer overflow condition, where the buffer being overwritten is allocated on the stack (i.e., is a local variable or, rarely, a parameter to a function). 

6.<x>.2 Cross reference

CWE: 

121. Stack Overflow 

6.<x>.3 Categorization

See clause 5.?. 
Group: Array Bounds
6.<x>.4 Mechanism of failure

There are generally several security-critical data on an execution stack that can lead to arbitrary code execution. The most prominent is the stored return address, the memory address at which execution should continue once the current function is finished executing. The attacker can overwrite this value with some memory address to which the attacker also has write access, into which he places arbitrary code to be run with the full privileges of the vulnerable program. Alternately, the attacker can supply the address of an important call, for instance the POSIX system() call, leaving arguments to the call on the stack. This is often called a return into libc exploit, since the attacker generally forces the program to jump at return time into an interesting routine in the C standard library (libc). Other important data commonly on the stack include the stack pointer and frame pointer, two values that indicate offsets for computing memory addresses. Modifying those values can often be leveraged into a "write-what-where" condition.

Stack overflows can instantiate in return address overwrites, stack pointer overwrites or frame pointer overwrites.  They can also be considered function pointer overwrites, array indexer overwrites or write-whatwhere condition, etc.

Buffer overflows can be exploited for a variety of purposes.  One way is to exploit the buffer overflows so it leads to a crash. Other attacks leading to lack of availability are possible, including putting the program into an infinite loop.  Buffer overflows often can be used to execute arbitrary code.  When the consequence is arbitrary code execution, this can often be used to subvert any other security service.

6.<x>.5 Interrupting the failure mechanism

Use a language or compiler that performs automatic bounds checking.

Although not a complete solution, an abstraction library to abstract away risky APIs can be used.

Compiler-based canary mechanisms such as StackGuard, ProPolice and the Microsoft Visual Studio /GS flag can be used.  However, unless automatic bounds checking is provided, it is not a complete solution.

OS-level preventative functionality can also be used.

6.<x>.6 Assumed variations among languages

This vulnerability description is intended to be applicable to languages with the following characteristics:

<Replace this with a bullet list summarizing the pertinent range of characteristics of languages for which this discussion is applicable. This list is intended to assist readers attempting to apply the guidance to languages that have not been treated in the language-specific annexes.>
6.<x>.7 Avoiding the vulnerability or mitigating its effects

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

<Replace this with a bullet list summarizing various ways in which programmers can avoid the vulnerability or contain its bad effects. Begin with the more direct, concrete, and effective means and then progress to the more indirect, abstract, and probabilistic means.

