6.12
XYR Unused Variable

6.12.0
Status and history

2008-02-14 a serious rewrite to separate unused declarations from dead stores; the previous version merged their causes, effects and remedies in incorrect ways; by Erhard Ploedereder
2007-12-14, revise to deal with this comment: " also closely related is reassigning a value to a variable without evaluating it" in 6.12.5.
2007-08-04, Edited by Benito

2007-07-30, Edited by Larry Wagoner

2007-07-19, Edited by Jim Moore

2007-07-13, Edited by Larry Wagoner

6.12.1
Description of application vulnerability

A variable's value is assigned but never used, making it a dead store. As a variant, a variable is declared but neither read nor written to in the program, making it an unused variable.
6.12.2
Cross reference

CWE:

563. Unused Variable

6.12.3
Categorization

See clause 5.?. <Replace this with the categorization according to the analysis in Clause 5. At a later date, other categorization schemes may be added.>
6.12.4
Mechanism of failure

A variable is declared, but never used. It is likely that the unused variable is simply vestigial, but it is also possible that the unused variable points out a bug.
A variable is assigned a value but this value is never used thereafter. The assignment is then generally referred to as a dead store. Note that this may be acceptable if the variable is a volatile variable, for which the assignment of a value triggers some external event.
A dead store is indicative of sloppy programming or of a design or coding bug: either the use of the value was forgotten (almost certainly bug) or the assignment was done even though it was not needed (sloppiness).
An unused variable or a dead store is very unlikely to be the cause of a vulnerability. However, since compilers diagnose unused variables routinely and dead stores occasionally, their presence is often an indication that compiler warnings are either suppressed or are being ignored by programmers – a vulnerability in its own right. This observation does not hold for automatically generated code, where it is commonplace to find unused variables and dead stores, introduced to keep the generation process simple and uniform.

6.12.5
Range of language characteristics considered

This vulnerability description is intended to be applicable to languages with the following characteristics:

· Dead stores are possible only in languages that provide assignment. (Pure functional languages do not have this issue.)

· Unused variables (in the technical sense above) are possible only in languages that provide variable declarations. Languages, in which instead the first assignment introduces the variable, the identical issue of no further uses maps onto the problem of dead stores.
· <<< for reasons unknown, the deleted text does not show up as deleted >>>
6.12.6
Avoiding the vulnerability or mitigating its effects

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

· Enable detection of unused variables and dead stores in the compiler. The default setting may be to suppress these warnings.

6.12.7
Implications for standardization

<Recommendations for other working groups will be recorded here. For example, we might record suggestions for changes to language standards or API standards.>
· Consider mandatory diagnostics for unused variables.
6.12.8
Bibliography
<Insert numbered references for other documents cited in your description. These will eventually be collected into an overall bibliography for the TR. So, please make the references complete. Someone will eventually have to reformat the references into an ISO-required format, so please err on the side of providing too much information rather than too little. Here [1] is an example of a reference:

[1] Greg Hoglund, Gary McGraw, Exploiting Software: How to Break Code, ISBN-0-201-78695-8, Pearson Education, Boston, MA, 2004

