7.<x> XYA Relative Path Traversal

7.x.0 History and status

PENDING
2007-07-13, Created by Larry Wagoner

Combined
XYA-070720-relative-path-traversal.doc
XYB-070720-absolute-path-traversal.doc
XYC-070720-path-link-problems.doc
XYD-070720-windows-path-link-problems.doc
into EWR-070730-path-traversal

7.<x>.1 Description of application vulnerability

The software can construct a path that contains relative traversal sequences such as ".."
The software can construct a path that contains absolute path sequences such as "/path/here."
Attackers running software in a particular directory so that the hard link or symbolic link used by the software accesses a file that the attacker has control over may be able to escalate their privilege level to that of the running process.
Attackers running software in a particular directory so that the hard link or symbolic link used by the software accesses a file that the attacker has control over may be able to escalate their privilege level to that of the running process.
7.<x>.2 Cross reference

CWE:
24. Path Issue - dot dot slash - '../filedir'
25. Path Issue - leading dot dot slash - '/../filedir'
26. Path Issue - leading directory dot dot slash - '/dir
27. Path Issue - directory doubled dot dot slash - 'directory/../../filename'
28. Path Issue - dot dot backslash - '..\filename'
29. Path Issue - leading dot dot backslash - '\..\filename'
30. Path Issue - leading directory dot dot backslash - '\directory\..\filename'
31. Path Issue - directory doubled dot dot backslash - 'directory\..\..\filename'
32. Path Issue - triple dot - '...'
33. Path Issue - multiple dot - '....'
34. Path Issue - doubled dot dot slash - '....//'
35. Path Issue - doubled triple dot slash - '.../...//'
37. Path Issue - slash absolute path - /absolute/pathname/here
38. Path Issue - backslash absolute path - \absolute\pathname\here
39. Path Issue - drive letter or Windows volume - 'C:dirname'
40. Path Issue - Windows UNC share - '\\UNC\share\name\'

61. UNIX symbolic link (symlink) following

62. UNIX hard link

64. Windows shortcut following (.LNK)

65. Windows hard link
6.<x>.3 Categorization

See clause 5.?. <Replace this with the categorization according to the analysis in Clause 5. At a later date, other categorization schemes may be added.>
6.<x>.4 Mechanism of failure

A software system that accepts input in the form of: '..\filename', '\..\filename', '/directory/../filename', 'directory/../../filename', '..\filename', '\..\filename', '\directory\..\filename', 'directory\..\..\filename', '...', '....' (multiple dots), '....//', or '.../...//' without appropriate validation can allow an attacker to traverse the file system to access an arbitrary file. Note that '..' is ignored if the current working directory is the root directory. Some of these input forms can be used to cause problems for systems that strip out '..' from input in an attempt to remove relative path traversal.
A software system that accepts input in the form of '/absolute/pathname/here' or '\absolute\pathname\here' without appropriate validation can allow an attacker to traverse the file system to unintended locations or access arbitrary files. An attacker can inject a drive letter or Windows volume letter ('C:dirname') into a software system to potentially redirect access to an unintended location or arbitrary file.

A software system that accepts input in the form of a backslash absolute path () without appropriate validation can allow an attacker to traverse the file system to unintended locations or access arbitrary files.

An attacker can inject a Windows UNC share ('\\UNC\share\name') into a software system to potentially redirect access to an unintended location or arbitrary file.

A software system that allows UNIX symbolic links (symlink) as part of paths whether in internal code or through user input can allow an attacker to spoof the symbolic link and traverse the file system to unintended locations or access arbitrary files. The symbolic link can permit an attacker to read/write/corrupt a file that they originally did not have permissions to access.

Failure for a system to check for hardlinks can result in vulnerability to different types of attacks. For example, an attacker can escalate their privileges if he/she can replace a file used by a privileged program with a hardlink to a sensitive file (e.g. etc/passwd). When the process opens the file, the attacker can assume the privileges of that process.

A software system that allows Windows shortcuts (.LNK) as part of paths whether in internal code or through user input can allow an attacker to spoof the symbolic link and traverse the file system to unintended locations or access arbitrary files. The shortcut (file with the .lnk extension) can permit an attacker to read/write a file that they originally did not have permissions to access.

Failure for a system to check for hardlinks can result in vulnerability to different types of attacks. For example, an attacker can escalate their privileges if an he/she can replace a file used by a privileged program with a hardlink to a sensitive file (e.g. etc/passwd). When the process opens the file, the attacker can assume the privileges of that process or possibly prevent a program from accurately processing data in a software system.
7.x.5 Avoiding the vulnerability or mitigating its effects

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:
· Assume all input is malicious. Attackers can insert paths into input vectors and traverse the file system.

· Use an appropriate combination of black lists and white lists to ensure only valid and expected input is processed by the system.

· Warning: if you attempt to cleanse your data, then do so that the end result is not in the form that can be dangerous. A sanitizing mechanism can remove characters such as ‘.' and ‘;' which may be required fir some exploits. An attacker can try to fool the sanitizing mechanism into "cleaning" data into a dangerous form. Suppose the attacker injects a ‘.' inside a filename (e.g. "sensi.tiveFile") and the sanitizing mechanism removes the character resulting in the valid filename, "sensitiveFile". If the input data are now assumed to be safe, then the file may be compromised.
· Files can often be identified by other attributes in addition to the file name, for example, by comparing file ownership or creation time. Information regarding a file that has been created and closed can be stored and then used later to validate the identity of the file when it is reopened. Comparing multiple attributes of the file improves the likelihood that the file is the expected one.
· Follow the principle of least privilege when assigning access rights to files.
· Denying access to a file can prevent an attacker from replacing that file with a link to a sensitive file.

· Ensure good compartmentalization in the system to provide protected areas that can be trusted.
· When two or more users, or a group of users, have write permission to a directory, the potential for sharing and deception is far greater than it is for shared access to a few files. The vulnerabilities that result from malicious restructuring via hard and symbolic links suggest that it is best to avoid shared directories.
· Securely creating temporary files in a shared directory is error prone and dependent on the version of the runtime library used, the operating system, and the file system. Code that works for a locally mounted file system, for example, may be vulnerable when used with a remotely mounted file system.
· [The mitigation should be centered on converting relative paths into absolute paths and then verifying that the resulting absolute path makes sense with respect to the configuration and rights or permissions. This may include checking "whitelists" and "blacklists", authorized super user status, access control lists, etc.]

7.x.6 Implications for standardization

<Recommendations for other working groups will be recorded here. For example, we might record suggestions for changes to language standards or API standards.>
7.x.7 Bibliography
<Insert numbered references for other documents cited in your description. These will eventually be collected into an overall bibliography for the TR. So, please make the references complete. Someone will eventually have to reformat the references into an ISO-required format, so please err on the side of providing too much information rather than too little. Here [1] is an example of a reference:

[1] Greg Hoglund, Gary McGraw, Exploiting Software: How to Break Code, ISBN-0-201-78695-8, Pearson Education, Boston, MA, 2004

