6.x LAV Initialization of variables

6.x.0 Status and history

2007-12-28 Initial writeup by Stephen Michell

6.x.1 Description of application vulnerability

All variables must contain a legal value that is a member of their type before the first time it is read. Reading a variable that has not been initialized with a legal value can cause unpredictable execution in the block that has visibility to the variable, and has the potential to export bad values to callers, or cause out of bounds memory accesses.
Uninitialized variable usage is often not detected until after testing and often when the code in question is delivered and in use, often because happenstance will provide it/them with adequate values (such as default data settings or accidental left-over values) until some other change exposes it the defect.

Variables that are declared during module construction (such as a class constructor, instantiation, or elaboration) may have alternate paths that can read values before they are set. This can happen in straight sequential code but is more prevelant when concurrency or co-routines are present, with the same impacts described above.

Another vulnerability occurs when compound objects are initialized incompletely, as can happen when objects are incrementally built, or fields are added under maintenance.
Depending on the compiler, linker, loader and runtime system some classes of objects may be preloaded with a known null or bad value, but systems should not rely on initialization (vice of static analysis) to catch initialization faults .
When possible and supported by the language, whole-structure initialization is preferrable to field-by-field initialization statements, and named association is preferrable to positional, as it facilitates human review and is less susceptible to failures under maintenance. For classes, the declaration and initialization may occur in separate modules. In such cases it must be posisble to show that every field that needs an initial value receives that value, and to document ones that do not require initial values.

6.x.2 Cross reference

CWE xxx
MISRA 9.1, 9.2 9.3

JSF C++ Coding Std 71, 143, 147
6.x.3 Categorization

See clause 5.?. <Replace this with the categorization according to the analysis in Clause 5. At a later date, other categorization schemes may be added.>

6.x.4 Mechanism of failure

Uninitialized objects may have illegal values, legal but wrong values, or legal and dangerous values. Wrong values could cause unbounded branches in conditionals or unbounded loop executions, or could simply cause wrong calculations and results.

There is a special case of pointers or access types. When such a type contains null values, a bound violation and likely hardware exception can result.; when such a type contains plausible but meaningless values, random data reads and writes can collect erroneous data or can destroy data that is in use by anoher part of the program; when such a type is an access to a subprogram with a plausible(but wrong) value, then either a bad instruction trap may occur or a transfer to an unknown code fragment can occur. All of these scenarios can result in unbounded behaviours.

Uninitialized variables are difficult to identify and use for attackers, but can be arbitrarity dangerous in safety situations.

6.x.5 Applicable Language Characteristics

This vulnerability description is intended to be applicable to languages with the following characteristics:

Some languages are definied such that all initialization must be constructed from sequential and possibly conditional operations, increasing the possibility that not all portions will be initialized.

Some languages have elaboration time initialization and function invocation that can initialize objects as they are declared and before the first subprogram execution statement, permitting verifiable initialization before unit execution commences (when appropriate).

Some languages that have named assignments that can be used to build reviewable assignment structures that can be analysed by the language processor for completeness. Languages with positional notation only can use comments and secondary tools to help show correct assignment.

6.x.6 Avoiding the vulnerability or mitigating its effects

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

The general problem of showing that all objects are initialized is intractable, hence developers must carefully structure programs to show that all variables are set before first read on every path throughout the subprogram.

The simplest method is to initialize each object at elaboration time, or immediately after subprogram execution commences and before any branches. If the subprogram must commence with conditional statements, then the programmer is responsible to show that every variable declared and not initialized earlier is initialized on each branch.

Applications can consider defining or reserving fields or portions of the object to only be set when initialized.

Where objects are visibile from many modules, it is complex to determine where the first read occurs, and identify a module that must set the value before that read. When concurrency, interrupts and coroutines are present, it becomes especially imperative to identify where early initialization ccurs and to show that the correct order is set via program structure, not by timing, OS precedence, or chance..

It should be possible to use static analysis tools to show that all objects are set before use in certain specific cases, but as the general problem is intractable, programmers should keep initialization algoriths simple so that they can be analysed.
When declaring and initializing the object together, if the language does not statically match the declarative structure and the initialization structure, use static analysis tools to help detect any mismatches.

When setting compound objects, if the language provides mechanisms to set all components together, use those in preference to a sequence of initializations as this helps coverage analysis; otherwise use tools that perform such coverage analysis and document the initialization. Do not perform partial initializations unless there is no choice, and document any deviations from 100% nitialization.

Where default assignment to multiple components are performed, explicit declaration of the component names and/or ranges helps static analysis and identification of component changes during maintenance.

6.x.7 Implications for standardization

Some languages have ways to determine if modules and regions are elaborated and initialized and to raise exceptions if this does not occur. Languages that do not may consider adding such capabilities.

Languages could consider setting aside fields in all objects to identify if initialization has occurred, especially for security and safety domains.

Languages that do not support whole-object initialization could consider adding this capability.

6.x.8 Bibliography

<Insert numbered references for other documents cited in your description. These will eventually be collected into an overall bibliography for the TR. So, please make the references complete. Someone will eventually have to reformat the references into an ISO-required format, so please err on the side of providing too much information rather than too little. Here [1] is an example of a reference:

[1] Greg Hoglund, Gary McGraw, Exploiting Software: How to Break Code, ISBN-0-201-78695-8, Pearson Education, Boston, MA, 2004

