6.1
FLC Numeric Conversion Errors

6.1.0
Status and history

2008-01-04, Edited by Robert C. Seacord
2007-12-21, Merged XYE and XYF
REVISE: Robert Seacord
2007-10-01, OWGV Meeting #6

2007-08-05, Edited by Benito

2007-07-30, Edited by Larry Wagoner

2007-07-20, Edited by Jim Moore

2007-07-13, Edited by Larry Wagoner

6.1.1
Description of application vulnerability

Certain contexts in various languages may require exact matches with respect to types [7]:

aVar := anExpression

value1 + value2

foo(arg1, arg2, arg3, … , argN)

Type conversion seeks to follow these exact match rules while allowing programmers some flexibility in using values such as: structurally-equivalent types in a name-equivalent language, types whose value ranges may be distinct but intersect (for example, subranges), and distinct types with sensible/meaningful corresponding values (for example, integers and floats). Explicit conversions are called type casts. An implicit type conversion between compatible but not necessarily equivalent types is called type coercion.

Numeric conversions can lead to a loss of data, if the target representation is not capable of representing the original value. For example, converting from an integer type to a smaller integer type can result in truncation if the original value cannot be represented in the smaller size and converting a floating point to an integer can result in a loss of precision or an out-of-range value.

6.1.2
Cross reference

CERT C: INT02-A, INT08-A, INT31-C

CERT C++: INT02-A, INT31-C

CWE:
192. Integer Coercion Error
MISRA C 2004, Rule 12.9
6.1.3
Categorization

See clause 5.?.
Group: Arithmetic
6.1.4
Mechanism of failure

Numeric conversion errors can lead to a number of safety and security issues. Typically, conversion errors in data integrity issues, but may also result in safety and security vulnerabilities.
Numeric values within a typical operational range can be safely converted between data types. Vulnerabilities typically occur when appropriate range checking is not performed, and unanticipated values are encountered. These can result in safety issues, for example, the failure of the Ariane 5 launcher which occurred due to an improperly handled conversion error resulting in the processor being shutdown [3].
Conversion errors can also result in security issues. An attacker may input a particular numeric value to exploit a flaw in the program logic. The resulting erroneous value may then be used as an array index, a loop iterator, a length, a size, state data, or in some other security critical manner. For example, a truncated integer value may be used to allocate memory, while the actual length is used to copy information to the newly allocated memory, resulting in a buffer overflow [6].

Numeric type conversion errors often lead to undefined states of execution resulting in infinite loops or crashes. In some cases, integer type conversion errors can lead to exploitable buffer overflow conditions, resulting in the execution of arbitrary code. Integer type conversion errors result in an incorrect value being stored for the variable in question.

6.1.5
Range of language characteristics considered

This vulnerability description is intended to be applicable to languages with the following characteristics:

· Languages that perform implicit type conversion (coercion).

· Languages that are weakly typed. Strongly typed languages do a strict enforcement of type rules because all types are known at compile time.

· Languages that support logical, arithmetic, or circular shifts on integer values. Some languages do not support one or more of the shift types.

· Languages that do not generate exceptions on problematic conversions.
6.1.6
Avoiding the vulnerability or mitigating its effects

To protect against corruption of memory, integer values used in any of the following ways must be correct:

Integer values that originate from untrusted sources must be guaranteed correct if they are used in any of the following ways [1]:
· as an array index

· in any pointer arithmetic

· as a length or size of an object

· as the bound of an array (for example, a loop counter)

· as an argument to a memory allocation function

· in security or safety critical code

For dependable systems, all value faults must be avoided.

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

·
·
·
·
·
·
· The first line of defense against integer vulnerabilities should be range checking, either explicitly or through strong typing. However, it is difficult to guarantee that multiple input variables cannot be manipulated to cause an error to occur in some operation somewhere in a program [6].

· An alternative or ancillary approach is to protect each operation. However, because of the large number of integer operations that are susceptible to these problems and the number of checks required to prevent or detect exceptional conditions, this approach can be prohibitively labor intensive and expensive to implement.

· A language which generates exceptions on erroneous data conversions might be chosen. Design objects and program flow such that multiple or complex casts are unnecessary. Ensure that any data type casting that you must used is entirely understood to reduce the plausibility of error in use.

·
·
·
·
·

Verifiably in range operations are often preferable to treating out of range values as an error condition because the handling of these errors has been repeatedly shown to cause denial-of-service problems in actual applications. Faced with a numeric conversion error, the underlying computer system may do one of two things: (a) signal some sort of error condition, or (b) produce a numeric value that is within the range of representable values on that system. The latter semantics may be preferable in some situations in that it allows the computation to proceed, thus avoiding a denial-of-service attack. However, it raises the question of what numeric result to return to the user.
A recent innovation from ISO/IEC TR 24731-1 [8] is the definition of the rsize_t type for the C programming language. Extremely large object sizes are frequently a sign that an object’s size was calculated incorrectly. For example, negative numbers appear as very large positive numbers when converted to an unsigned type like size_t. Also, some implementations do not support objects as large as the maximum value that can be represented by type size_t.

For these reasons, it is sometimes beneficial to restrict the range of object sizes to detect programming errors. For implementations targeting machines with large address spaces, it is recommended that RSIZE_MAX be defined as the smaller of the size of the largest object supported or (SIZE_MAX >> 1), even if this limit is smaller than the size of some legitimate, but very large, objects. Implementations targeting machines with small address spaces may wish to define RSIZE_MAX as SIZE_MAX, which means that there is no object size that is considered a runtime-constraint violation.
6.1.7
Implications for standardization

<Recommendations for other working groups will be recorded here. For example, we might record suggestions for changes to language standards or API standards.>

6.1.8
Bibliography

[1] CERT. CERT C Secure Coding Standard. https://www.securecoding.cert.org/confluence/x/HQE (2007).
[2] CERT. CERT C++ Secure Coding Standard. https://www.securecoding.cert.org/confluence/x/fQI (2007).
[3] Lions, J. L.

ARIANE 5 Flight 501 Failure Report. Paris, France: European Space Agency (ESA) & National Center for Space Study (CNES) Inquiry Board, July 1996.
[4] Hatton 2003

[5] MISRA Limited. "
MISRA C
: 2004 Guidelines for the Use of the C Language in Critical Systems." Warwickshire, UK: MIRA Limited, October 2004 (ISBN 095241564X).
[6] Seacord, R. Secure Coding in C and C++. Boston, MA: Addison-Wesley, 2005. See
http://www.cert.org/books/secure-coding
 for news and errata.
[7] John David N. Dionisio. Type Checking. http://myweb.lmu.edu/dondi/share/pl/type-checking-v02.pdf
[8] ISO/IEC TR 24731-1. Extensions to the C Library, — Part I: Bounds-checking interfaces. Geneva, Switzerland: International Organization for Standardization, April 2006.
