6.x JCW Operator precedence/Order of Evaluation

6.x.0 Status and history

2007-11-01: Edited by Larry Wagoner

2007-10-15: Decided at OWGV Meeting 6: We decide to write three new descriptions: operator precedence, JCW; associativity, MTW; order of evaluation, SAM. Deal with MISRA 2004 rules 12.1 and 12.2; JSF C++ rules 204, 213. Should also deal with MISRA 2004 rules 12.5, 12.6 and 13.2.

6.x.1 Description of application vulnerability

The order in which operators or sub-expressions are evaluated can cause expressions to evaluate to unexpected values. This is primarily due to implicit conversion, side effects and the use of assignments in Boolean tests. Due to the undefined behavior, testing the program and seeing that it yields the expected results may give the false impression that the expression will always yield the correct result.
6.x.2 Cross reference

CWE:

MISRA: 12.1, 12.2, 12.5, 12.6, 13.2

JSF: 204, 213

6.x.3 Categorization

See clause 5.?. <Replace this with the categorization according to the analysis in Clause 5. At a later date, other categorization schemes may be added.>

6.x.4 Mechanism of failure

The order in which operators are evaluated can yield different results when implicit conversions occur. For example:

short a,b;

int c,d;

a = 65535;

b = 25;

c = 10;

d = a + b + c;

Adding a and b as shorts and then converting to ints will yield a different result than converting a and b to ints and then adding them.

When expressions with side effects are used within an expression, the order of evaluation can result in different values. For example:

a = f(b) + g(b);

where f and g both modify b. If f(b) is evaluated first, then the b used as a parameter to g(b) may be a different value than if g(b) is performed first. Likewise, if g(b) is performed first, f(b) may be called with a different value of b.
This can also be manifested as:

a = f(i) + i++;

or:

a[i++] = b[i++];

Depending on whether f(i) or i++ is evaluated first, the result can vary. Parenthesis around expressions can assist in removing some ambiguity, but for cases such as:

j = i++ * i++;

even putting parenthesis around the i++ subexpressions will still result in undefined behavior since the parenthesis would not force the i++ subexpressions to occur first.

6.x.5 Range of language characteristics considered

This vulnerability description is intended to be applicable to languages with the following characteristics:

· Languages that permit undefined or incomplete operator precedence definitions

· Languages that permit side effects in expressions

6.x.6 Avoiding the vulnerability or mitigating its effects

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

· Limited dependence should be placed on operator precedence rules in expressions

· Use parenthesis to emphasize the order of evaluation, although this will not help alleviate unexpected results in all cases
· Split complicated expressions into multiple statements for readability and to ensure the order of evaluation is what is expected

· Do not embed multiple subexpressions in expressions when the order of the evaluation of the subexpressions can alter the result

· Avoid using ++ or - - in complex expressions

· Explicitly cast operators and do not rely on implicit conversions

· Access a volatile only through a simple assignment statement if possible

· Do not rely on side effects occurring in a particular order

6.x.7 Implications for standardization

· Expression evaluation order should be defined to remove ambiguity in language standards.

6.x.8 Bibliography

<Insert numbered references for other documents cited in your description. These will eventually be collected into an overall bibliography for the TR. So, please make the references complete. Someone will eventually have to reformat the references into an ISO-required format, so please err on the side of providing too much information rather than too little. Here [1] is an example of a reference:

[1] Greg Hoglund, Gary McGraw, Exploiting Software: How to Break Code, ISBN-0-201-78695-8, Pearson Education, Boston, MA, 2004

>

