6.8
XZB Buffer Overflow in Heap

[Note: Recommend merging this with XYW.]
6.8.0
Status and history

2008-02-13, Edited by Derek Jones

2007-12-15, updated status, Jim Moore
2007-08-03, Edited by Benito

2007-07-30, Edited by Larry Wagoner

2007-07-20, Edited by Jim Moore

2007-07-13, Edited by Larry Wagoner

6.8.1
Description of application vulnerability

A heap overflow condition is a buffer overflow, where the buffer that can be overwritten is allocated in the heap portion of memory, generally meaning that the buffer was allocated using a routine such as the POSIX malloc() call.

6.8.2
Cross reference

CWE:

122. Heap Overflow

6.8.3
Categorization

See clause 5.?.

Group: Array Bounds

6.8.4
Mechanism of failure

Heap overflows are usually just as dangerous as stack overflows. Besides important user data, heap overflows can be used to overwrite function pointers that may be living in memory, pointing it to the attacker's code. Even in applications that do not explicitly use function pointers, the run-time will usually leave many in memory. For example, object methods in C++ are generally implemented using function pointers. Even in C programs, there is often a global offset table used by the underlying runtime.

Heap overflows generally lead to crashes. Other attacks leading to lack of availability are possible, including putting the program into an infinite loop. Heap overflows can be used to execute arbitrary code, which is usually outside the scope of a program's implicit security policy. When the consequence is arbitrary code execution, this can often be used to subvert any other security service.

6.8.5
Range of language characteristics considered

This vulnerability description is intended to be applicable to languages with the following characteristics:

· The size and bounds of arrays and their extents might be statically determinable or dynamic. Some languages provide both capabilities.

· Language implementations might or might not statically detect out of bound access and generate a compile-time diagnostic.

· At run-time the implementation might or might not detect the out of bounds access and provide a notification at run-time. The notification might be treatable by the program or it might not be.

· Accesses might violate the bounds of the entire array or violate the bounds of a particular extent. It is possible that the former is checked and detected by the implementation while the latter is not.

· The information needed to detect the violation might or might not be available depending on the context of use. (For example, passing an array to a subroutine via a pointer might deprive the subroutine of information regarding the size of the array.)

· Some languages provide for whole array operations that may obviate the need to access individual elements.

· Some languages may automatically extend the bounds of an array to accommodate accesses that might otherwise have been beyond the bounds. (This may or may not match the programmer's intent.)

6.8.6
Avoiding the vulnerability or mitigating its effects

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

· Use a language or compiler that performs automatic bounds checking.

· Use an abstraction library to abstract away risky APIs, though not a complete solution.

· Canary style bounds checking, library changes which ensure the validity of chunk data and other such fixes are possible, but should not be relied upon.

· OS-level preventative functionality can be used, but is also not a complete solution.

· Protection to prevent overflows can be disabled in some languages to increase performance. This option should be used very carefully.

6.8.7
Implications for standardization

<Recommendations for other working groups will be recorded here. For example, we might record suggestions for changes to language standards or API standards.>

6.8.8
Bibliography

<Insert numbered references for other documents cited in your description. These will eventually be collected into an overall bibliography for the TR. So, please make the references complete. Someone will eventually have to reformat the references into an ISO-required format, so please err on the side of providing too much information rather than too little. Here [1] is an example of a reference:

[1] Greg Hoglund, Gary McGraw, Exploiting Software: How to Break Code, ISBN-0-201-78695-8, Pearson Education, Boston, MA, 2004

