6.x IHN Type system (name changed from Strong typing)
[For the convenience of reviewers, the applicable JSF C++ rules are quoted below:
[AV Rule 148 Enumeration types shall be used instead of integer types (and constants) to select from a limited series of choices.
[Note: This rule is not intended to exclude character constants (e.g. ‘A’, ‘B’, ‘C’, etc.) from use as case labels.
[Rationale: Enhances debugging, readability and maintenance. Note that a compiler flag (if available) should be set to generate a warning if all enumerators are not present in a switch statement.
[AV Rule 183 Every possible measure should be taken to avoid type casting.
[Rationale: Errors caused by casts are among the most pernicious, particularly because they are so hard to recognize. Strict type checking is your friend – take full advantage of it.]
[For the convenience of reviewers, I have paraphrased the applicable rules from MISRA 2004:
6.1 Use the plain type char only for character values.
6.2 Use the signed and unsigned type char only for numeric values.
6.3 In place of basic types, use typedefs that indicate size and signedness. The POSIX typedefs are recommended.
6.x.0 Status and history
REVISE: Jim Moore
2007-12-12: Considered at OWGV meeting 7. Thoughts included: Don't write the description in terms of strong/weak typing. Realistically, different languages provide different typing capabilities. // Use whatever typing facilities are available. // Code as if data is typed even if the language doesn't provide for it. // Exclude automatically generated code. // Pay attention to whatever messages the compiler generates regarding type violations. // Tom Plum offered to send more suggestions. // Erhard offered to send some examples.
2007-12-07: Formatting changes and minor improvements made by Jim Moore.
2007-10-15: OWGV Meeting 6 decided: Write a new description, IHN, to encourage strong typing but deal with performance implications. Use enumeration types when you intend to select from a manageably small set of alternatives. Deal with issues like char being implementation-defined in C. Discuss how one should introduce names (e.g. typedefs) to document typing decisions and check them with tools. Deal with MISRA 2004 rules 6.1, 6.2, 6.3; JSF rules 148, 183.
6.x.1 Description of application vulnerability

When data values are converted from one type to another, even when done intentionally, unexpected results can occur.
6.x.2 Cross reference

CWE: [None]
MISRA 2004: 6.1, 6.2, 6.3
JSF C++: 148, 183
6.x.3 Categorization

See clause 5.?. <Replace this with the categorization according to the analysis in Clause 5. At a later date, other categorization schemes may be added.>
6.x.4 Mechanism of failure

Mention the difference between name typing and structure typing. Mention coercion and casting.
<Replace this with a brief description of the mechanism of failure. This description provides the link between the programming language vulnerability and the application vulnerability. It should be a short paragraph.>
The type of a data object informs the compiler how values should be represented and which operations may be applied. The type system of a language is the set of rules used by the language to structure and organize its collection of types. Any attempt to manipulate data objects with inappropriate operations is a type error. A program is said to be type safe (or type secure) if it can be demonstrated that it has no type errors [2].
Every programming language has some sort of type system. A language is said to be statically typed if the type of every expression is known at compile time. The type system is said to be strong if it guarantees type safety and weak if it does not. There are strongly typed languages that are not statically typed because they enforce type safety with run time checks [2].
In practical terms, nearly every language falls short of being strongly typed (in an ideal sense) because of the inclusion of mechanisms to bypass type safety in particular circumstances. For that reason and because every language has a different type system, this description will focus on taking advantage of whatever features for type safety may be available in the chosen language.
Sometimes it is appropriate for a data value to be converted from one type to another compatible one. For example, consider the following program fragment, written in no specific language:

float a;
integer i;
a := a + i;
The variable "i" is of integer type. It must be converted to the float type before it can be added to the data value. An implicit conversion, as shown, is called a coercion. If, on the other hand, the conversion must be explicit, e.g. "a := a + float(i)", then the conversion is called a cast.
Type equivalence is the strictest form of type compatibility; two types are equivalent if they are compatible without using coercion or casting. Type equivalence is usually characterized in terms of name type equivalence—two variables have the same type if they are declared in the same declaration or declarations that use the same type name—or structure type equivalence—two variables have the same type if they have identical structures. There are variations of these approaches and most languages use different combinations of them [1]. Therefore, a programmer skilled in one language may very well code inadvertent type errors when using a different language.
It is desirable for a program to be type safe because the application of operations to operands of an inappropriate type may produce unexpected results. (In addition, the presence of type errors can reduce the effectiveness of static analysis for other problems.) Searching for type errors is a valuable exercise because their presence often reveals design errors as well as coding errors. Many languages check for type errors—some at compile-time, others at run-time. Obviously, compile-time checking is more valuable because it can catch errors that are not executed by a particular set of test cases.

Making the most use of the type system of a language is useful in two ways. First, data conversions always bear the risk of changing the value. For example, a conversion from integer to float risks the loss of significant digits while the inverse conversion risks the loss of any fractional value. Second, a coder can use the type system to increase the probability of catching design errors or coding blunders. For example, the following Ada fragment declares two distinct floating point types:

type Celsius is new Float;

type Fahrenheit is new Float;

The declaration makes it impossible to add a value of type Celsius to a value of type Fahrenheit without explicit conversion.
6.x.5 Range of language characteristics considered

This vulnerability description applies to most procedural programming languages.

6.x.6 Avoiding the vulnerability or mitigating its effects

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

· Take advantage of any facility offered by the programming language to declare distinct types and use any mechanism provided by the language processor and related tools to check for or enforce type compatibility.
· If possible, given the choice of language and processor, use available facilities to preclude or detect the occurrence of coercion. If it is not possible, use tooling and/or human review to assist in searching for coercions.
· Avoid casting data values except when there is no alternative. Document such occurrences so that the justification is made available to maintainers.
· Use the most restricted data type that suffices to accomplish the job. For example, use an enumeration type to select from a limited set of choices (e.g. a switch statement or the discriminant of a union type) rather than a more general type, such as integer. This will make it possible for tooling to check if all possible choices have been covered.
· Treat every compiler, tool, or run-time diagnostic concerning type compatibility as a serious issue. Do not resolve the problem by hacking the code with a cast; instead examine the underlying design to determine if the type error is a symptom of a deeper problem. Never ignore instances of coercion; if the conversion is necessary, convert it to a cast and document the rationale for use by maintainers.
6.x.7 Implications for standardization

It would be helpful if language specifiers used a common, uniform terminology to describe their type systems so that programmers experienced in other languages can reliably learn the type system of a language that is new to them.
It would be helpful if language implementers provided compiler switches or other tools to provide the highest possible degree of checking for type errors.
6.x.8 Bibliography
[1] Robert W. Sebesta, Concepts of Programming Languages, 8th edition, ISBN-13: 978-0-321-49362-0, ISBN-10: 0-321-49362-1, Pearson Education, Boston, MA, 2008

[2] Carlo Ghezzi and Mehdi Jazayeri, Programming Language Concepts, 3rd edition, ISBN-0-471-10426-4, John Wiley & Sons, 1998
