
ISO/IEC JTC 1/SC 22/OWGV N0095
PDTR 24772, 06 August 2007

© ISO 2007 – All rights reserved

ISO/IEC JTC 1/SC 22 N 0000
Date: 2007-06-29

ISO/IEC PDTR 24772

ISO/IEC JTC 1/SC 22/OWG

Secretariat: ANSI

Information Technology — Programming Languages — Guidance to Avoiding
Vulnerabilities in Programming Languages through Language Selection and
Use

Élément introductif — Élément principal — Partie n: Titre de la partie

Warning

This document is not an ISO International Standard. It is distributed for review and comment. It is subject to
change without notice and may not be referred to as an International Standard.

Recipients of this draft are invited to submit, with their comments, notification of any relevant patent rights of
which they are aware and to provide supporting documentation.

Document type: International standard
Document subtype: if applicable
Document stage: (20) Preparation
Document language: E

ISO/IEC PDTR 24772

ii © ISO 2007 – All rights reserved

Copyright notice

This ISO document is a working draft or committee draft and is copyright-protected by ISO. While the
reproduction of working drafts or committee drafts in any form for use by participants in the ISO
standards development process is permitted without prior permission from ISO, neither this document
nor any extract from it may be reproduced, stored or transmitted in any form for any other purpose
without prior written permission from ISO.

Requests for permission to reproduce this document for the purpose of selling it should be addressed
as shown below or to ISO’s member body in the country of the requester:

ISO copyright office
Case postale 56, CH-1211 Geneva 20
Tel. + 41 22 749 01 11
Fax + 41 22 749 09 47
E-mail copyright@iso.org
Web www.iso.org

Reproduction for sales purposes may be subject to royalty payments or a licensing agreement.

Violators may be prosecuted.

ISO/IEC PDTR 24772

© ISO 2007 – All rights reserved iii

Contents Page

Foreword ..x
Introduction...xi
1 Scope ...1
1.1 In Scope...1
1.2 Not in Scope..1
1.3 Approach ...1
1.4 Intended Audience..1
1.4.1 Safety-Critical Applications..1
1.4.2 Security-Critical Applications ..2
1.4.3 Mission-Critical Applications ...2
1.4.4 Modeling and Simulation Applications ...2
1.5 How to Use This Document..2
1.5.1 Writing Profiles ...2
2 Normative references ...3
3 Terms and definitions...4
3.1 Language Vulnerability...4
3.2 Application Vulnerability ..4
3.3 Security Vulnerability ...4
3.4 Safety Hazard ..4
3.5 Safety-critical software...4
3.6 Software quality ..4
3.7 Predictable Execution...4
4 Symbols (and abbreviated terms)..5
5 Vulnerability issues ..6
5.1 Issues arising from lack of knowledge..6
5.1.1 Issues arising from unspecified behaviour...7
5.1.2 Issues arising from implementation defined behaviour ..7
5.1.3 Issues arising from undefined behaviour ...7
5.2 Issues arising from human cognitive limitations ...8
5.3 Predictable execution ...8
5.4 Portability ..8
6. Programming Language Vulnerabilities..10
6.1 XYE Integer Coercion Errors..10
6.1.0 Status and history...10
6.1.1 Description of application vulnerability ..10
6.1.2 Cross reference...10
6.1.3 Categorization ...10
6.1.4 Mechanism of failure ..10
6.1.5 Range of language characteristics considered ..10
6.1.6 Avoiding the vulnerability or mitigating its effects ..10
6.1.7 Implications for standardization ..11
6.1.8 Bibliography..11
6.2 XYF Numeric Truncation Error...12
6.2.0 Status and history...12
6.2.1 Description of application vulnerability ..12
6.2.2 Cross reference...12
6.2.3 Categorization ...12
6.2.4 Mechanism of failure ..12
6.2.5 Range of language characteristics considered ..12

ISO/IEC PDTR 24772

iv © ISO 2007 – All rights reserved

6.2.6 Avoiding the vulnerability or mitigating its effects ..12
6.2.7 Implications for standardization ..12
6.2.8 Bibliography..13
6.3 XYG Value Problems...13
6.3.0 Status and history...13
6.3.1 Description of application vulnerability ..13
6.3.2 Cross reference...13
6.3.3 Categorization ...13
6.3.4 Mechanism of failure ..13
6.3.5 Range of language characteristics considered ..13
6.3.6 Avoiding the vulnerability or mitigating its effects ..13
6.3.7 Implications for standardization ..14
6.3.8 Bibliography..14
6.4 XYH Null Pointer Dereference..14
6.4.0 Status and history...14
6.4.1 Description of application vulnerability ..14
6.4.2 Cross reference...14
6.4.3 Categorization ...14
6.4.4 Mechanism of failure ..14
6.4.5 Range of language characteristics considered ..14
6.4.6 Avoiding the vulnerability or mitigating its effects ..15
6.4.7 Implications for standardization ..15
6.4.8 Bibliography..15
6.5 XYK Pointer Use After Free..15
6.5.0 Status and history...15
6.5.1 Description of application vulnerability ..15
6.5.2 Cross reference...15
6.5.3 Categorization ...15
6.5.4 Mechanism of failure ..15
6.5.5 Range of language characteristics considered ..16
6.5.6 Avoiding the vulnerability or mitigating its effects ..16
6.5.7 Implications for standardization ..16
6.5.8 Bibliography..17
6.6 XYL Memory Leak ...17
6.6.0 Status and history...17
6.6.1 Description of application vulnerability ..17
6.6.2 Cross reference...17
6.6.3 Categorization ...17
6.6.4 Mechanism of failure ..17
6.6.5 Range of language characteristics considered ..17
6.6.6 Avoiding the vulnerability or mitigating its effects ..17
6.6.7 Implications for standardization ..18
6.6.8 Bibliography..18
6.7 XYW Buffer Overflow in Stack ...18
6.7.0 Status and history...18
6.7.1 Description of application vulnerability ..18
6.7.2 Cross reference...18
6.7.3 Categorization ...18
6.7.4 Mechanism of failure ..19
6.7.5 Range of language characteristics considered ..19
6.7.6 Avoiding the vulnerability or mitigating its effects ..19
6.7.7 Implications for standardization ..20
6.7.8 Bibliography..20
6.8 XZB Buffer Overflow in Heap ...20
6.8.0 Status and history...20
6.8.1 Description of application vulnerability ..20
6.8.2 Cross reference...20
6.8.3 Categorization ...20
6.8.4 Mechanism of failure ..20
6.8.5 Range of language characteristics considered ..21

ISO/IEC PDTR 24772

© ISO 2007 – All rights reserved v

6.8.6 Avoiding the vulnerability or mitigating its effects ..21
6.8.7 Implications for standardization ..21
6.8.8 Bibliography..21
6.9 XZM Missing Parameter Error [Could also be Parameter Signature Mismatch]22
6.9.0 Status and history...22
6.9.1 Description of application vulnerability ..22
6.9.2 Cross reference...22
6.9.3 Categorization ...22
6.9.4 Mechanism of failure ..22
6.9.5 Range of language characteristics considered ..22
6.9.6 Avoiding the vulnerability or mitigating its effects ..22
6.9.7 Implications for standardization ..22
6.9.8 Bibliography..23
6.10 XYY Wrap-around Error..23
6.10.0 Status and history...23
6.10.1 Description of application vulnerability ..23
6.10.2 Cross reference...23
6.10.3 Categorization ...23
6.10.4 Mechanism of failure ..23
6.10.5 Range of language characteristics considered ..23
6.10.6 Avoiding the vulnerability or mitigating its effects ..23
6.10.7 Implications for standardization ..24
6.10.8 Bibliography..24
6.11 XYQ Expression Issues ..24
6.11.0 Status and history...24
6.11.1 Description of application vulnerability ..24
6.11.2 Cross reference...24
6.11.3 Categorization ...25
6.11.4 Mechanism of failure ..25
6.11.5 Range of language characteristics considered ..25
6.11.6 Avoiding the vulnerability or mitigating its effects ..25
6.11.7 Implications for standardization ..25
6.11.8 Bibliography..25
6.12 XYR Unused Variable..25
6.12.0 Status and history...25
6.12.1 Description of application vulnerability ..26
6.12.2 Cross reference...26
6.12.3 Categorization ...26
6.12.4 Mechanism of failure ..26
6.12.5 Range of language characteristics considered ..26
6.12.6 Avoiding the vulnerability or mitigating its effects ..26
6.12.7 Implications for standardization ..26
6.12.8 Bibliography..26
6.13 XYX Boundary Beginning Violation...27
6.13.0 Status and history...27
6.13.1 Description of application vulnerability ..27
6.13.2 Cross reference...27
6.13.3 Categorization ...27
6.13.4 Mechanism of failure ..27
6.13.5 Range of language characteristics considered ..27
6.13.6 Avoiding the vulnerability or mitigating its effects ..28
6.13.7 Implications for standardization ..28
6.13.8 Bibliography..28
6.14 XZI Sign Extension Error..28
6.14.0 Status and history...28
6.14.1 Description of application vulnerability ..28
6.14.2 Cross reference...28
6.14.3 Categorization ...29
6.14.4 Mechanism of failure ..29
6.14.5 Range of language characteristics considered ..29

ISO/IEC PDTR 24772

vi © ISO 2007 – All rights reserved

6.14.6 Avoiding the vulnerability or mitigating its effects ..29
6.14.7 Implications for standardization ..29
6.14.8 Bibliography..29
6.15 XZH Off-by-one Error ..29
6.15.0 Status and history...29
6.15.1 Description of application vulnerability ..30
6.15.2 Cross reference...30
6.15.3 Categorization ...30
6.15.4 Mechanism of failure ..30
6.15.5 Range of language characteristics considered ..30
6.15.6 Avoiding the vulnerability or mitigating its effects ..30
6.15.7 Implications for standardization ..30
6.15.8 Bibliography..30
6.16 XYZ Unchecked Array Indexing ...31
6.16.0 Status and history...31
6.16.1 Description of application vulnerability ..31
6.16.2 Cross reference...31
6.16.3 Categorization ...31
6.16.4 Mechanism of failure ..31
6.16.5 Range of language characteristics considered ..31
6.16.6 Avoiding the vulnerability or mitigating its effects ..32
6.16.7 Implications for standardization ..32
6.16.8 Bibliography..32
7. Application Vulnerabilities ...33
7.1 XYU Using Hibernate to Execute SQL...33
7.1.0 Status and history...33
7.1.1 Description of application vulnerability ..33
7.1.2 Cross reference...33
7.1.3 Categorization ...34
7.1.4 Mechanism of failure ..34
7.1.5 Avoiding the vulnerability or mitigating its effects ..36
7.1.6 Implications for standardization ..36
7.1.7 Bibliography..36
7.2 XYA Relative Path Traversal ..37
7.2.0 History and status...37
7.2.1 Description of application vulnerability ..37
7.2.2 Cross reference...37
6.2.3 Categorization ...37
6.2.4 Mechanism of failure ..38
7.2.5 Avoiding the vulnerability or mitigating its effects ..38
7.2.6 Implications for standardization ..39
7.2.7 Bibliography..39
7.3 XYP Hard-coded Password ..39
7.3.0 History and status...39
7.3.1 Description of application vulnerability ..39
7.3.2 Cross reference...40
7.3.3 Categorization ...40
7.3.4 Mechanism of failure ..40
7.3.5 Avoiding the vulnerability or mitigating its effects ..40
7.3.6 Implications for standardization ..40
7.3.7 Bibliography..40
7.4 XYS Executing or Loading Untrusted Code..41
7.4.0 Status and History ..41
7.4.1 Description of application vulnerability ..41
7.4.2 Cross reference...41
7.4.3 Categorization ...41
7.4.4 Mechanism of failure ..41
7.4.5 Avoiding the vulnerability or mitigating its effects ..41
7.4.6 Implications for standardization ..42

ISO/IEC PDTR 24772

© ISO 2007 – All rights reserved vii

7.4.7 Bibliography..42
7.5 XYM Insufficiently Protected Credentials ...42
7.5.0 History and status...42
7.5.1 Description of application vulnerability ..42
7.5.2 Cross reference...42
7.5.3 Categorization ...42
7.5.4 Mechanism of failure ..42
7.5.5 Avoiding the vulnerability or mitigating its effects ..43
7.5.6 Implications for standardization ..43
7.5.7 Bibliography..43
7.6 XYT Cross-site Scripting ..43
7.6.0 Status and History ..43
7.6.1 Description of application vulnerability ..43
7.6.2 Cross reference...43
7.6.3 Categorization ...44
7.6.4 Mechanism of failure ..44
7.6.5 Avoiding the vulnerability or mitigating its effects ..45
7.6.6 Implications for standardization ..45
7.6.7 Bibliography..46
7.7 XYN Privilege Management ..46
7.7.0 History and status...46
7.7.1 Description of application vulnerability ..46
7.7.2 Cross reference...46
7.7.3 Categorization ...46
7.7.4 Mechanism of failure ..46
7.7.5 Avoiding the vulnerability or mitigating its effects ..46
7.7.6 Implications for standardization ..47
7.7.7 Bibliography..47
7.8 XYO Privilege Sandbox Issues ..47
7.8.0 History and status...47
7.8.1 Description of application vulnerability ..47
7.8.2 Cross reference...47
7.8.3 Categorization ...47
7.8.4 Mechanism of failure ..47
7.8.5 Avoiding the vulnerability or mitigating its effects ..48
7.8.6 Implications for standardization ..48
7.8.7 Bibliography..48
7.9 XZO Authentication Logic Error ..48
7.9.0 Status and history...48
7.9.1 Description of application vulnerability ..49
7.9.2 Cross reference...49
7.9.3 Categorization ...49
7.9.4 Mechanism of failure ..49
7.9.5 Avoiding the vulnerability or mitigating its effects ..50
7.9.6 Implications for standardization ..50
7.9.7 Bibliography..50
7.10 XZX Memory Locking..50
7.10.0 Status and history...50
7.10.1 Description of application vulnerability ..51
7.10.2 Cross reference...51
7.10.3 Categorization ...51
7.10.4 Mechanism of failure ..51
7.10.5 Avoiding the vulnerability or mitigating its effects ..51
7.10.6 Implications for standardization ..51
7.10.7 Bibliography..51
7.11 XZP Resource Exhaustion..52
7.11.0 Status and history...52
7.11.1 Description of application vulnerability ..52
7.11.2 Cross reference...52
7.11.3 Categorization ...52

ISO/IEC PDTR 24772

viii © ISO 2007 – All rights reserved

7.11.4 Mechanism of failure ..52
7.11.5 Avoiding the vulnerability or mitigating its effects ..53
7.11.6 Implications for standardization ..53
7.11.7 Bibliography..53
7.12 XZQ Unquoted Search Path or Element ..53
7.12.0 Status and history...53
7.12.1 Description of application vulnerability ..53
7.12.2 Cross reference...53
7.12.3 Categorization ...54
7.12.4 Mechanism of failure ..54
7.12.5 Avoiding the vulnerability or mitigating its effects ..54
7.12.6 Implications for standardization ..54
7.12.7 Bibliography..54
7.13 XZL Discrepancy Information Leak ...54
7.13.0 Status and history...54
7.13.1 Description of application vulnerability ..54
7.13.2 Cross reference...54
7.13.3 Categorization ...55
7.13.4 Mechanism of failure ..55
7.13.5 Avoiding the vulnerability or mitigating its effects ..55
7.13.6 Implications for standardization ..55
7.13.7 Bibliography..55
7.14 XZN Missing or Inconsistent Access Control ...56
7.14.0 Status and history...56
7.14.1 Description of application vulnerability ..56
7.14.2 Cross reference...56
7.14.3 Categorization ...56
7.14.4 Mechanism of failure ..56
7.14.5 Avoiding the vulnerability or mitigating its effects ..56
7.14.6 Implications for standardization ..56
7.14.7 Bibliography..56
7.15 XZS Missing Required Cryptographic Step ..57
7.15.0 Status and history...57
7.15.1 Description of application vulnerability ..57
7.15.2 Cross reference...57
7.15.3 Categorization ...57
7.15.4 Mechanism of failure ..57
7.15.5 Avoiding the vulnerability or mitigating its effects ..57
7.15.6 Implications for standardization ..57
7.15.7 Bibliography..57
7.16 XZR Improperly Verified Signature..58
7.16.0 Status and history...58
7.16.1 Description of application vulnerability ..58
7.16.2 Cross reference...58
7.16.3 Categorization ...58
7.16.4 Mechanism of failure ..58
7.16.5 Avoiding the vulnerability or mitigating its effects ..58
7.16.6 Implications for standardization ..58
7.16.7 Bibliography..58
Annex A (informative) Guideline Recommendation Factors...59
A.1 Factors that need to be covered in a proposed guideline recommendation................................59
A.1.1 Expected cost of following a guideline ...59
A.1.2 Expected benefit from following a guideline ..59
A.2 Language definition..59
A.3 Measurements of language usage...59
A.4 Level of expertise..59
A.5 Intended purpose of guidelines ...59
A.6 Constructs whose behaviour can very..60
A.7 Example guideline proposal template ...60

ISO/IEC PDTR 24772

© ISO 2007 – All rights reserved ix

A.7.1 Coding Guideline ..60
Annex B (informative) Guideline Selection Process...61
B.1 Cost/Benefit Analysis ...61
B.2 Documenting of the selection process ...61
Annex C (informative) Template for use in proposing programming language vulnerabilities...............63
C. Skeleton template for use in proposing programming language vulnerabilities.........................63
C.1 6.<x> <unique immutable identifier> <short title>..63
C.1.0 6.<x>.0 Status and history..63
C.1.1 6.<x>.1 Description of application vulnerability ...63
C.1.2 6.<x>.2 Cross reference..63
C.1.3 6.<x>.3 Categorization ..63
C.1.4 6.<x>.4 Mechanism of failure ...63
C.1.5 6.<x>.5 Range of language characteristics considered ...63
C.1.6 6.<x>.6 Assumed variations among languages..64
C.1.7 6.<x>.7 Implications for standardization ...64
C.1.8 6.<x>.8 Bibliography ..64
Annex D (informative) Template for use in proposing application vulnerabilities66
D. Skeleton template for use in proposing application vulnerabilities..66
D.1 7.<x> <unique immutable identifier> <short title>..66
D.1.0 7.<x>.0 Status and history..66
D.1.1 7.<x>.1 Description of application vulnerability ...66
D.1.2 7.<x>.2 Cross reference..66
D.1.3 7.<x>.3 Categorization ..66
D.1.4 7.<x>.4 Mechanism of failure ...66
D.1.5 7.<x>.5 Assumed variations among languages..66
D.1.7 7.<x>.6 Implications for standardization ...67
D.1.8 7.<x>.7 Bibliography ..67
Bibliography...68

ISO/IEC PDTR 24772

x © ISO 2007 – All rights reserved

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies
(ISO member bodies). The work of preparing International Standards is normally carried out through ISO
technical committees. Each member body interested in a subject for which a technical committee has been
established has the right to be represented on that committee. International organizations, governmental and
non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the
International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2.

The main task of technical committees is to prepare International Standards. Draft International Standards
adopted by the technical committees are circulated to the member bodies for voting. Publication as an
International Standard requires approval by at least 75 % of the member bodies casting a vote.

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent
rights. ISO shall not be held responsible for identifying any or all such patent rights.

ISO/IEC TR 24772 which is a Technical Report of type 3, was prepared by Joint Technical Committee
ISO/IEC JTC 1, Subcommittee SC 22, Programming Languages.

ISO/IEC PDTR 24772

© ISO 2007 – All rights reserved xi

Introduction

A paragraph.

The introduction is an optional preliminary element used, if required, to give specific information or
commentary about the technical content of the document, and about the reasons prompting its preparation. It
shall not contain requirements.

The introduction shall not be numbered unless there is a need to create numbered subdivisions. In this case, it
shall be numbered 0, with subclauses being numbered 0.1, 0.2, etc. Any numbered figure, table, displayed
formula or footnote shall be numbered normally beginning with 1.

WORKING DRAFT ISO/IEC PDTR 24772

© ISO 2007 – All rights reserved 1

Information Technology — Programming Languages — Guidance to Avoiding Vulnerabilities in Programming 1
Languages through Language Selection and Use 2

1 Scope 3

1.1 In Scope 4

1) Applicable to the computer programming languages covered in this document. 5
2) Applicable to software written, reviewed and maintained for any application. 6
3) Applicable in any context where assured behavior is required, e.g. security, safety, mission/business 7

criticality etc. 8
1.2 Not in Scope 9

This technical report does not address software engineering and management issues such as how to design 10
and implement programs, using configuration management, managerial processes etc. 11

The specification of the application is not within the scope. 12

1.3 Approach 13

The impact of the guidelines in this technical report are likely to be highly leveraged in that they are likely to 14
affect many times more people than the number that worked on them. This leverage means that these 15
guidelines have the potential to make large savings, for a small cost, or to generate large unnecessary costs, 16
for little benefit. For these reasons this technical report has taken a cautious approach to creating guideline 17
recommendations. New guideline recommendations can be added over time, as practical experience and 18
experimental evidence is accumulated. 19

 20
Some of the reasons why a guideline might generate unnecessary costs include: 21

1) Little hard information is available on which guideline recommendations might be cost effective 22
2) It is likely to be difficult to withdraw a guideline recommendation once it has been published 23
3) Premature creation of a guideline recommendation can result in: 24

i. Unnecessary enforcement cost (i.e., if a given recommendation is later found to be not 25
worthwhile). 26

ii. Potentially unnecessary program development costs through having to specify and use 27
alternative constructs during software development. 28

iii. A reduction in developer confidence of the worth of these guidelines. 29
 30
1.4 Intended Audience 31

The intended audience for this document is those who are concerned with assuring the software of their 32
system, that is, those who are developing, qualifying, or maintaining a software system and need to avoid 33
vulnerabilities that could cause the software to execute in a manner other than intended. Specific examples of 34
such communities include: 35

1.4.1 Safety-Critical Applications 36

Users who may benefit from this document include those developing, qualifying, or maintaining a system 37
where it is critical to prevent behaviour which might lead to: 38

• loss of human life or human injury 39
• damage to the environment 40
 41

ISO/IEC PDTR 24772

2 © ISO 2007 – All rights reserved

and where it is justified to spend additional resources to maintain this property. 42

1.4.2 Security-Critical Applications 43

Users who may benefit from this document includes those developing, qualifying, or maintaining a system 44
where it is critical to exhibit security properties of: 45

• Confidentiality 46
• Integrity, and 47
• Availability 48
 49

and where it is justified to spend additional money to maintain those properties. 50

1.4.3 Mission-Critical Applications 51

Users who may benefit from this document include those developing, qualifying, or maintaining a system 52
where it is critical to prevent behaviour which might lead to: 53

• loss of or damage to property, or 54
• loss or damage economically 55
 56

1.4.4 Modeling and Simulation Applications 57

Programmers who may benefit from this document include those who are primarily experts in areas other than 58
programming and who need to use computation as part of their work. These programmers include scientists, 59
engineers, economists, and statisticians. These programmers require high confidence in the applications they 60
write and use due to the increasing complexity of the calculations made (and the consequent use of teams of 61
programmers each contributing expertise in a portion of the calculation), due to the costs of invalid results, or 62
due to the expense of individual calculations implied by a very large number of processors used and/or very 63
long execution times needed to complete the calculations. These circumstances give a consequent need for 64
high reliability and motivate the need felt by these programmers for the guidance offered in this document. 65

1.5 How to Use This Document 66

1.5.1 Writing Profiles 67

[Note: Advice for writing profiles was discussed in London 2006, no words] 68

ISO/IEC PDTR 24772

© ISO 2007 – All rights reserved 3

 69

2 Normative references 70

The following referenced documents are indispensable for the application of this document. For dated 71
references, only the edition cited applies. For undated references, the latest edition of the referenced 72
document (including any amendments) applies. 73

ISO/IEC PDTR 24772

4 © ISO 2007 – All rights reserved

3 Terms and definitions 74

For the purposes of this document, the following terms and definitions apply. 75

3.1 Language Vulnerability 76

A property (of a programming language) that can contribute to, or that is strongly correlated with, application 77
vulnerabilities in programs written in that language. 78

Note: The term "property" can mean the presence or the absence of a specific feature, used singly or in 79
combination. As an example of the absence of a feature, encapsulation (control of where names may be 80
referenced from) is generally considered beneficial since it narrows the interface between modules and 81
can help prevent data corruption. The absence of encapsulation from a programming language can thus 82
be regarded as a vulnerability. Note that a property together with its complement may both be considered 83
language vulnerabilities. For example, automatic storage reclamation (garbage collection) is a 84
vulnerability since it can interfere with time predictability and result in a safety hazard. On the other hand, 85
the absence of automatic storage reclamation is also a vulnerability since programmers can mistakenly 86
free storage prematurely, resulting in dangling references. 87

3.2 Application Vulnerability 88

A security vulnerability or safety hazard, or defect. 89

3.3 Security Vulnerability 90

A weakness in an information system, system security procedures, internal controls, or implementation that 91
could be exploited or triggered by a threat. 92

3.4 Safety Hazard 93

Should definition come from, IEEE 1012-2004 IEEE Standard for Software Verification and Validation, 94
3.1.11, IEEE Std 1228-1994 IEEE Standard for Software Safety Plans, 3.1.5, IEEE Std 1228-1994 IEEE 95
Standard for Software Safety Plans, 3.1.8 or IEC 61508-4 and ISO/IEC Guide 51? 96

3.5 Safety-critical software 97

Software for applications where failure can cause very serious consequences such as human injury or death. 98

3.6 Software quality 99

The degree to which software implements the needs described by its specification. 100

3.7 Predictable Execution 101

The property of the program such that all possible executions have results which can be predicted from the 102
relevant programming language definition and any relevant language-defined implementation characteristics 103
and knowledge of the universe of execution. 104

Note: In some environments, this would raise issues regarding numerical stability, exceptional 105
processing, and concurrent execution. 106

Note: Predictable execution is an ideal which must be approached keeping in mind the limits of human 107
capability, knowledge, availability of tools etc. Neither this nor any standard ensures predictable 108
execution. Rather this standard provides advice on improving predictability. The purpose of this document 109
is to assist a reasonably competent programmer approach the ideal of predictable execution. 110

ISO/IEC PDTR 24772

© ISO 2007 – All rights reserved 5

4 Symbols (and abbreviated terms) 111

ISO/IEC PDTR 24772

6 © ISO 2007 – All rights reserved

5 Vulnerability issues 112

Software vulnerabilities are unwanted characteristics of software that may allow software to behave in ways 113
that are unexpected by a reasonably sophisticated user of the software. The expectations of a reasonably 114
sophisticated user of software may be set by the software's documentation or by experience with similar 115
software. Programmers build vulnerabilities into software by failing to understand the expected behavior (the 116
software requirements), or by failing to correctly translate the expected behavior into the actual behavior of the 117
software. 118

This document does not discuss a programmer's understanding of software requirements. This document 119
does not discuss software engineering issues per se. This document does not discuss configuration 120
management; build environments, code-checking tools, nor software testing. This document does not discuss 121
the classification of software vulnerabilities according to safety or security concerns. This document does not 122
discuss the costs of software vulnerabilities, nor the costs of preventing them. 123

This document does discuss a reasonably competent programmer's failure to translate the understood 124
requirements into correctly functioning software. This document does discuss programming language 125
features known to contribute to software vulnerabilities. That is, this document discusses issues arising from 126
those features of programming languages found to increase the frequency of occurrence of software 127
vulnerabilities. The intention is to provide guidance to those who wish to specify coding guidelines for their 128
own particular use. 129

A programmer writes source code in a programming language to translate the understood requirements into 130
working software. The programmer combines in sequence language features (functional pieces) expressed in 131
the programming language so the cumulative effect is a written expression of the software's behavior. 132

A program's expected behavior might be stated in a complex technical document, which can result in a 133
complex sequence of features of the programming language. Software vulnerabilities occur when a 134
reasonably competent programmer fails to understand the totality of the effects of the language features 135
combined to make the resulting software. The overall software may be a very complex technical document 136
itself (written in a programming language whose definition is also a complex technical document). 137

Humans understand very complex situations by chunking, that is, by understanding pieces in a hierarchal 138
scaled scheme. The programmer's initial choice of the chunk for software is the line of code. (In any 139
particular case, subsequent analysis by a programmer may refine or enlarge this initial chunk.) The line of 140
code is a reasonable initial choice because programming editors display source code lines. Programming 141
languages are often defined in terms of statements (among other units), which in many cases are 142
synonymous with textual lines. Debuggers may execute programs stopping after every statement to allow 143
inspection of the program's state. Program size and complexity is often estimated by the number of lines of 144
code (automatically counted without regard to language statements). 145

5.1 Issues arising from lack of knowledge 146

While there are many millions of programmers in the world, there are only several hundreds of authors 147
engaged in designing and specifying those programming languages defined by international standards. The 148
design and specification of a programming language is very different than programming. Programming 149
involves selecting and sequentially combining features from the programming language to (locally) implement 150
specific steps of the software's design. In contrast, the design and specification of a programming language 151
involves (global) consideration of all aspects of the programming language. This must include how all the 152
features will interact with each other, and what effects each will have, separately and in any combination, 153
under all foreseeable circumstances. Thus, language design has global elements that are not generally 154
present in any local programming task. 155

The creation of the abstractions which become programming language standards therefore involve 156
consideration of issues unneeded in many cases of actual programming. Therefore perhaps these issues are 157
not routinely considered when programming in the resulting language. These global issues may motivate the 158
definition of subtle distinctions or changes of state not apparent in the usual case wherein a particular 159
language feature is used. Authors of programming languages may also desire to maintain compatibility with 160

ISO/IEC PDTR 24772

© ISO 2007 – All rights reserved 7

older versions of their language while adding more modern features to their language and so add what 161
appears to be an inconsistency to the language. 162

A reasonably competent programmer therefore may not consider the full meaning of every language feature 163
used, as only the desired (local or subset) meaning may correspond to the programmer's immediate intention. 164
In consequence, a subset meaning of any feature may be prominent in the programmer's overall experience. 165

Further, the combination of features indicated by a complex programming goal can raise the combinations of 166
effects, making a complex aggregation within which some of the effects are not intended. 167

5.1.1 Issues arising from unspecified behaviour 168

While every language standard attempts to specify how software written in the language will behave in all 169
circumstances, there will always be some behavior which is not specified completely. In any circumstance, of 170
course, a particular compiler will produce a program with some specific behavior (or fail to compile the 171
program at all). Where a programming language is insufficiently well defined, different compilers may differ in 172
the behavior of the resulting software. The authors of language standards often have an interpretations or 173
defects process in place to treat these situations once they become known, and, eventually, to specify one 174
behavior. However, the time needed by the process to produce corrections to the language standard is often 175
long, as careful consideration of the issues involved is needed. 176

When programs are compiled with only one compiler, the programmer may not be aware when behavior not 177
specified by the standard has been produced. Programs relying upon behavior not specified by the language 178
standard may behave differently when they are compiled with different compilers. An experienced 179
programmer may choose to use more than one compiler, even in one environment, in order to obtain 180
diagnostics from more than one source. In this usage, any particular compiler must be considered to be a 181
different compiler if it is used with different options (which can give it different behavior), or is a different 182
release of the same compiler (which may have different default options or may generate different code), or is 183
on different hardware (which may have a different instruction set). In this usage, a different computer may be 184
the same hardware with a different operating system, with different compilers installed, with different software 185
libraries available, with a different release of the same operating system, or with a different operating system 186
configuration. 187

5.1.2 Issues arising from implementation defined behaviour 188

In some situations, a programming language standard may specifically allow compilers to give a range of 189
behavior to a given language feature or combination of features. This may enable more efficient execution on 190
a wider range of hardware, or enable use of the language in a wider variety of circumstances. 191

The authors of language standards are encouraged to provide lists of all allowed variation of behavior (as 192
many already do). Such a summary will benefit applications programmers, those who define applications 193
coding standards, and those who make code-checking tools. 194

5.1.3 Issues arising from undefined behaviour 195

In some situations, a programming language standard may specify that program behavior is undefined. While 196
the authors of language standards naturally try to minimize these situations, they may be inevitable when 197
attempting to define software recovery from errors, or other situations recognized as being incapable of 198
precise definition. 199

Generally, the amount of resources available to a program (memory, file storage, processor speed) is not 200
specified by a language standard. The form of file names acceptable to the operating system is not specified 201
(other than being expressed as characters). The means of preparing source code for execution may not be 202
specified by a language standard. 203

ISO/IEC PDTR 24772

8 © ISO 2007 – All rights reserved

5.2 Issues arising from human cognitive limitations 204

The authors of programming language standards try to define programming languages in a consistent way, so 205
that a programmer will see a consistent interface to the underlying functionality. Such consistency is intended 206
to ease the programmer's process of selecting language features, by making different functionality available 207
as regular variation of the syntax of the programming language. However, this goal may impose limitations on 208
the variety of syntax used, and may result in similar syntax used for different purposes, or even in the same 209
syntax element having different meanings within different contexts. 210

Any such situation imposes a strain on the programmer's limited human cognitive abilities to distinguish the 211
relationship between the totality of effects of these constructs and the underlying behavior actually intended 212
during software construction. 213

Attempts by language authors to have distinct language features expressed by very different syntax may 214
easily result in different programmers preferring to use different subsets of the entire language. This imposes 215
a substantial difficulty to anyone who wants to employ teams of programmers to make whole software 216
products or to maintain software written over time by several programmers. In short, it imposes a barrier to 217
those who want to employ coding standards of any kind. The use of different subsets of a programming 218
language may also render a programmer less able to understand other programmer's code. The effect on 219
maintenance programmers can be especially severe. 220

5.3 Predictable execution 221

If a reasonably competent programmer has a good understanding of the state of a program after reading 222
source code as far as a particular line of code, the programmer ought to have a good understanding of the 223
state of the program after reading the next line of code. However, some features, or, more likely, some 224
combinations of features, of programming languages are associated with relatively decreased rates of the 225
programmer's maintaining their understanding as they read through a program. It is these features and 226
combinations of features which are indicated in this document, along with ways to increase the programmer's 227
understanding as code is read. 228

Here, the term understanding means the programmer's recognition of all effects, including subtle or 229
unintended changes of state, of any language feature or combination of features appearing in the program. 230
This view does not imply that programmers only read code from beginning to end. It is simply a statement 231
that a line of code changes the state of a program, and that a reasonably competent programmer ought to 232
understand the state of the program both before and after reading any line of code. As a first approximation 233
(only), code is interpreted line by line. 234

5.4 Portability 235

The representation of characters, the representation of true/false values, the set of valid addresses, the 236
properties and limitations of any (fixed point or floating point) numerical quantities, and the representation of 237
programmer-defined types and classes may vary among hardware, among languages (affecting inter-238
language software development), and among compilers of a given language. These variations may be the 239
result of hardware differences, operating system differences, library differences, compiler differences, or 240
different configurations of the same compiler (as may be set by environment variables or configuration files). 241
In each of these circumstances, there is an additional burden on the programmer because part of the 242
program's behavior is indicated by a factor that is not a part of the source code. That is, the program's 243
behavior may be indicated by a factor that is invisible when reading the source code. Compilation control 244
schemes (IDE projects, make, and scripts) further complicate this situation by abstracting and manipulating 245
the relevant variables (target platform, compiler options, libraries, and so forth). 246

Many compilers of standard-defined languages also support language features that are not specified by the 247
language standard. These non-standard features are called extensions. For portability, the programmer must 248
be aware of the language standard, and use only constructs with standard-defined semantics. The motivation 249
to use extensions may include the desire for increased functionality within a particular environment, or 250
increased efficiency on particular hardware. There are well-known software engineering techniques for 251
minimizing the ill effects of extensions; these techniques should be a part of any coding standard where they 252

ISO/IEC PDTR 24772

© ISO 2007 – All rights reserved 9

are needed, and they should be employed whenever extensions are used. These issues are software 253
engineering issues and are not further discussed in this document. 254

Some language standards define libraries that are available as a part of the language definition. Such 255
libraries are an intrinsic part of the respective language and are called intrinsic libraries. There are also 256
libraries defined by other sources and are called non-intrinsic libraries. 257

The use of non-intrinsic libraries to broaden the software primitives available in a given development 258
environment is a useful technique, allowing the use of trusted functionality directly in the program. Libraries 259
may also allow the program to bind to capabilities provided by an environment. However, these advantages 260
are potentially offset by any lack of skill on the part of the designer of the library (who may have designed 261
subtle or undocumented changes of state into the library's behavior), and implementer of the library (who may 262
not have the implemented the library identically on every platform), and even by the availability of the library 263
on a new platform. The quality of the documentation of a third-party library is another factor that may 264
decrease the reliability of software using a library in a particular situation by failing to describe clearly the 265
library's full behavior. If a library is missing on a new platform, its functionality must be recreated in order to 266
port any software depending upon the missing library. The re-creation may be burdensome if the reason the 267
library is missing is because the underlying capability for a particular environment is missing. 268

Using a non-intrinsic library usually requires that options be set during compilation and linking phases, which 269
constitute a software behavior specification beyond the source code. Again, these issues are software 270
engineering issues and are not further discussed in this document. 271

ISO/IEC PDTR 24772

10 © ISO 2007 – All rights reserved

6. Programming Language Vulnerabilities 272

6.1 XYE Integer Coercion Errors 273

6.1.0 Status and history 274

PENDING 275
2007-08-05, Edited by Benito 276
2007-07-30, Edited by Larry Wagoner 277
2007-07-20, Edited by Jim Moore 278
2007-07-13, Edited by Larry Wagoner 279

6.1.1 Description of application vulnerability 280

Integer coercion refers to a set of flaws pertaining to the type casting, extension, or truncation of primitive data 281
types. Common consequences are of integer coercion are undefined states of execution resulting in infinite 282
loops or crashes, or exploitable buffer overflow conditions, resulting in the execution of arbitrary code. 283

6.1.2 Cross reference 284

CWE: 285
192. Integer Coercion Error 286

6.1.3 Categorization 287

See clause 5.?. 288
Group: Arithmetic 289

6.1.4 Mechanism of failure 290

Several flaws fall under the category of integer coercion errors. For the most part, these errors in and of 291
themselves result only in availability and data integrity issues. However, in some circumstances, they may 292
result in other, more complicated security related flaws, such as buffer overflow conditions. 293

Integer coercion often leads to undefined states of execution resulting in infinite loops or crashes. In some 294
cases, integer coercion errors can lead to exploitable buffer overflow conditions, resulting in the execution of 295
arbitrary code. Integer coercion errors result in an incorrect value being stored for the variable in question. 296

6.1.5 Range of language characteristics considered 297

This vulnerability description is intended to be applicable to languages with the following characteristics: 298

• Languages that allow implicit type conversion (coercion). 299
• Languages that are weakly typed. Strongly typed languages do a strict enforcement of type rules 300

since all types are known at compile time. 301
• Languages that support logical, arithmetic, or circular shifts. Some languages do not support one or 302

more of the shift types. 303
• Some languages throw exceptions on ambiguous data casts. 304

6.1.6 Avoiding the vulnerability or mitigating its effects 305

 [Note: RSIZE_T and verifiably representation should be considered, see ISO/IEC TR 24731.] 306

 Software developers can avoid the vulnerability or mitigate its ill effects in the following ways: 307

• Integer values used in any of the following ways must be guaranteed correct: 308

ISO/IEC PDTR 24772

© ISO 2007 – All rights reserved 11

• as an array index 309
• in any pointer arithmetic 310
• as a length or size of an object 311
• as the bound of an array (for example, a loop counter) 312
• in security critical code 313

• The first line of defense against integer vulnerabilities should be range checking, either explicitly or 314
through strong typing. However, it is difficult to guarantee that multiple input variables cannot be 315
manipulated to cause an error to occur in some operation somewhere in a program. 316

• An alternative or ancillary approach is to protect each operation. However, because of the large 317
number of integer operations that are susceptible to these problems and the number of checks 318
required to prevent or detect exceptional conditions, this approach can be prohibitively labor intensive 319
and expensive to implement. 320

• A language which throws exceptions on ambiguous data casts might be chosen. Design objects and 321
program flow such that multiple or complex casts are unnecessary. Ensure that any data type casting 322
that you must used is entirely understood in order to reduce the plausibility of error in use. 323

• Type conversions occur explicitly as the result of a cast or implicitly as required by an operation. While 324
conversions are generally required for the correct execution of a program, they can also lead to lost or 325
misinterpreted data. 326

• Do not assume that a right shift operation is implemented as either an arithmetic (signed) shift or a 327
logical (unsigned) shift. If E1 in the expression E1 >> E2 has a signed type and a negative value, the 328
resulting value is implementation defined and may be either an arithmetic shift or a logical shift. Also, 329
be careful to avoid undefined behavior while performing a bitwise shift. 330

• Integer conversions, including implicit and explicit (using a cast), must be guaranteed not to result in 331
lost or misinterpreted data. The only integer type conversions that are guaranteed to be safe for all 332
data values and all possible conforming implementations are conversions of an integral value to a 333
wider type of the same signedness. Typically, converting an integer to a smaller type results in 334
truncation of the high-order bits. 335

• Bitwise shifts include left shift operations of the form shift-expression << additive-expression and right 336
shift operations of the form shift-expression >> additive-expression. The integer promotions are 337
performed on the operands, each of which has integer type. The type of the result is that of the 338
promoted left operand. If the value of the right operand is negative or is greater than or equal to the 339
width of the promoted left operand, the behavior is undefined. [Bitwise shifting may be a distinct 340
vulnerability.] 341

• If an integer expression is compared to, or assigned to, a larger integer size, then that integer 342
expression should be evaluated in that larger size by explicitly casting one of the operands. 343

6.1.7 Implications for standardization 344

<Recommendations for other working groups will be recorded here. For example, we might record 345
suggestions for changes to language standards or API standards.> 346

6.1.8 Bibliography 347

<Insert numbered references for other documents cited in your description. These will eventually be collected 348
into an overall bibliography for the TR. So, please make the references complete. Someone will eventually 349
have to reformat the references into an ISO-required format, so please err on the side of providing too much 350
information rather than too little. Here [1] is an example of a reference: 351

[1] Greg Hoglund, Gary McGraw, Exploiting Software: How to Break Code, ISBN-0-201-78695-8, Pearson 352
Education, Boston, MA, 2004 353

ISO/IEC PDTR 24772

12 © ISO 2007 – All rights reserved

6.2 XYF Numeric Truncation Error 354

[Note: Consider combining with XYE.] 355

6.2.0 Status and history 356

PENDING 357
2007-08-02, Edited by Benito 358
2007-07-30, Edited by Larry Wagoner 359
2007-07-20, Edited by Jim Moore 360
2007-07-13, Edited by Larry Wagoner 361
 362

6.2.1 Description of application vulnerability 363

Truncation errors occur when a primitive is cast to a primitive of a smaller size and data is lost in the 364
conversion. 365

6.2.2 Cross reference 366

CWE: 367
197. Numeric Truncation Error 368

6.2.3 Categorization 369

See clause 5.?. 370
Group: Arithmetic 371

6.2.4 Mechanism of failure 372

When a primitive is cast to a smaller primitive, the high order bits of the large value are lost in the conversion. 373
If high order bits are lost, then the new primitive will have lost some of the value of the original primitive, 374
resulting in a value that could cause unintended consequences. For instance, the new primitive may used as 375
an index into a buffer, a loop iterator, or simply as necessary state data. In any case, the value cannot be 376
trusted and the system will be in an undefined state. While this method may be employed viably to isolate the 377
low bits of a value, this usage is rare and better methods are available for isolating bits such as masking. 378

6.2.5 Range of language characteristics considered 379

This vulnerability description is intended to be applicable to languages with the following characteristics: 380

• Languages that allow implicit type conversion (coercion). 381
• Languages that are weakly typed. Strongly typed languages do a strict enforcement of type rules 382

since all types are known at compile time. 383
• Languages that do not throw exceptions on ambiguous data casts. 384

6.2.6 Avoiding the vulnerability or mitigating its effects 385

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways: 386

• Ensure that no casts, implicit or explicit, take place that move from a larger size primitive to a smaller 387
size primitive. 388

• Should the isolation of smaller bits of a value be desired, masking of the original value is safer and 389
more predictable. 390

6.2.7 Implications for standardization 391

<Recommendations for other working groups will be recorded here. For example, we might record 392
suggestions for changes to language standards or API standards.> 393

ISO/IEC PDTR 24772

© ISO 2007 – All rights reserved 13

6.2.8 Bibliography 394

<Insert numbered references for other documents cited in your description. These will eventually be collected 395
into an overall bibliography for the TR. So, please make the references complete. Someone will eventually 396
have to reformat the references into an ISO-required format, so please err on the side of providing too much 397
information rather than too little. Here [1] is an example of a reference: 398

[1] Greg Hoglund, Gary McGraw, Exploiting Software: How to Break Code, ISBN-0-201-78695-8, Pearson 399
Education, Boston, MA, 2004 400

6.3 XYG Value Problems 401

[Note: Consider merging with XZM.] 402

6.3.0 Status and history 403

IN 404
2007-08-04, Edited by Benito 405
2007-07-30, Edited by Larry Wagoner 406
2007-07-19, Edited by Jim Moore 407
2007-07-13, Edited by Larry Wagoner 408

6.3.1 Description of application vulnerability 409

The software does not properly handle the case where the number of parameters, fields or argument names is 410
different from the number provided. 411

6.3.2 Cross reference 412

CWE: 413
230. Missing Value Error 414
231. Extra Value Error 415

6.3.3 Categorization 416

See clause 5.?. <Replace this with the categorization according to the analysis in Clause 5. At a later date, 417
other categorization schemes may be added.> 418
6.3.4 Mechanism of failure 419

The software does not properly handle the case where the number of parameters, fields or argument names is 420
different from the number provided. In the case of too few, a parameter, field or argument name is specified, 421
but the associated value is empty, blank or null. Alternatively, in the case of too many, more values are 422
specified than expected. This typically occurs in situations when only one value is expected. 423

6.3.5 Range of language characteristics considered 424

This vulnerability description is intended to be applicable to languages with the following characteristics: 425

• Languages that do not pass NULL as the value of a parameter if too few arguments are provided. 426
• Languages that do not require the number and type of parameters to be equal to the parameters 427

provided. 428

6.3.6 Avoiding the vulnerability or mitigating its effects 429

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways: 430

ISO/IEC PDTR 24772

14 © ISO 2007 – All rights reserved

• Before using input provided, check that the number of parameters, fields or argument names provided 431
is equal to the number expected. 432

6.3.7 Implications for standardization 433

<Recommendations for other working groups will be recorded here. For example, we might record 434
suggestions for changes to language standards or API standards.> 435

6.3.8 Bibliography 436

<Insert numbered references for other documents cited in your description. These will eventually be collected 437
into an overall bibliography for the TR. So, please make the references complete. Someone will eventually 438
have to reformat the references into an ISO-required format, so please err on the side of providing too much 439
information rather than too little. Here [1] is an example of a reference: 440

[1] Greg Hoglund, Gary McGraw, Exploiting Software: How to Break Code, ISBN-0-201-78695-8, Pearson 441
Education, Boston, MA, 2004 442

6.4 XYH Null Pointer Dereference 443

6.4.0 Status and history 444

PENDING 445
2007-08-03, Edited by Benito 446
2007-07-30, Edited by Larry Wagoner 447
2007-07-20, Edited by Jim Moore 448
2007-07-13, Edited by Larry Wagoner 449

6.4.1 Description of application vulnerability 450

A null-pointer dereference takes place when a pointer with a value of NULL is used as though it pointed to a 451
valid memory area. 452

6.4.2 Cross reference 453

CWE: 454
467. Null Pointer Dereference 455

6.4.3 Categorization 456

See clause 5.?. 457
Group: Dynamic Allocation 458

6.4.4 Mechanism of failure 459

A null-pointer dereference takes place when a pointer with a value of NULL is used as though it pointed to a 460
valid memory area. Null-pointer dereferences often result in the failure of the process or in very rare 461
circumstances and environments, code execution is possible. 462

6.4.5 Range of language characteristics considered 463

This vulnerability description is intended to be applicable to languages with the following characteristics: 464

• Languages that permit the use of pointers. 465
• Languages that allow the use of a NULL pointer. 466

ISO/IEC PDTR 24772

© ISO 2007 – All rights reserved 15

6.4.6 Avoiding the vulnerability or mitigating its effects 467

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways: 468

• Before dereferencing a pointer, ensure it is not equal to NULL. 469

6.4.7 Implications for standardization 470

<Recommendations for other working groups will be recorded here. For example, we might record 471
suggestions for changes to language standards or API standards.> 472

6.4.8 Bibliography 473

<Insert numbered references for other documents cited in your description. These will eventually be collected 474
into an overall bibliography for the TR. So, please make the references complete. Someone will eventually 475
have to reformat the references into an ISO-required format, so please err on the side of providing too much 476
information rather than too little. Here [1] is an example of a reference: 477

[1] Greg Hoglund, Gary McGraw, Exploiting Software: How to Break Code, ISBN-0-201-78695-8, Pearson 478
Education, Boston, MA, 2004 479

6.5 XYK Pointer Use After Free 480

6.5.0 Status and history 481

PENDING 482
2007-08-03, Edited by Benito 483
2007-07-30, Edited by Larry Wagoner 484
2007-07-20, Edited by Jim Moore 485
2007-07-13, Edited by Larry Wagoner 486

6.5.1 Description of application vulnerability 487

Calling free() twice on the same memory address can lead to a buffer overflow or referencing memory after 488
it has been freed can cause a program to crash. 489

6.5.2 Cross reference 490

CWE: 491
415. Double Free (Note that Double Free (415) is a special case of Use After Free (416)) 492
416. Use after Free 493

[Note: perhaps double free and use after free should be separate items.] 494

6.5.3 Categorization 495

See clause 5.?. 496
Group: Dynamic Allocation 497

6.5.4 Mechanism of failure 498

Doubly freeing memory may result in allowing an attacker to execute arbitrary code. The use of previously 499
freed memory may corrupt valid data, if the memory area in question has been allocated and used properly 500
elsewhere. If chunk consolidation occurs after the use of previously freed data, the process may crash when 501
invalid data is used as chunk information. If malicious data is entered before chunk consolidation can take 502
place, it may be possible to take advantage of a write-what-where primitive to execute arbitrary code. 503

ISO/IEC PDTR 24772

16 © ISO 2007 – All rights reserved

When a program calls free() twice with the same argument, the program's memory management data 504
structures become corrupted. This corruption can cause the program to crash or, in some circumstances, 505
cause two later calls to malloc() to return the same pointer. If malloc() returns the same value twice and 506
the program later gives the attacker control over the data that is written into this doubly-allocated memory, the 507
program becomes vulnerable to a buffer overflow attack. 508

The use of previously freed memory can have any number of adverse consequences — ranging from the 509
corruption of valid data to the execution of arbitrary code, depending on the instantiation and timing of the 510
flaw. The simplest way data corruption may occur involves the system's reuse of the freed memory. Like 511
double free errors and memory leaks, Use After Free errors have two common and sometimes overlapping 512
causes: Error conditions and other exceptional circumstances; and Confusion over which part of the program 513
is responsible for freeing the memory. In one scenario, the memory in question is allocated to another pointer 514
validly at some point after it has been freed. The original pointer to the freed memory is used again and points 515
to somewhere within the new allocation. As the data is changed, it corrupts the validly used memory. This 516
induces undefined behavior in the process. If the newly allocated data chances to hold a class, in C++ for 517
example, various function pointers may be scattered within the heap data. If one of these function pointers is 518
overwritten with an address to valid shell code, execution of arbitrary code can be achieved. 519

The lifetime of an object is the portion of program execution during which storage is guaranteed to be 520
reserved for it. An object exists, has a constant address, and retains its last-stored value throughout its 521
lifetime. If an object is referred to outside of its lifetime, the behavior is undefined. The value of a pointer 522
becomes indeterminate when the object it points to reaches the end of its lifetime. 523

6.5.5 Range of language characteristics considered 524

This vulnerability description is intended to be applicable to languages with the following characteristics: 525

• Languages that permit the use of pointers. 526
• Languages that allow the use of a NULL pointer. 527

6.5.6 Avoiding the vulnerability or mitigating its effects 528

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways: 529

• Ensure that each allocation is freed only once. After freeing a chunk of memory, set the pointer to 530
NULL to ensure the pointer cannot be freed again. In complicated error conditions, be sure that clean-531
up routines respect the state of allocation properly. If the language is object oriented, ensure that 532
object destructors delete each chunk of memory only once. Ensuring that all pointers are set to NULL 533
once memory they point to has been freed can be effective strategy. The utilization of multiple or 534
complex data structures may lower the usefulness of this strategy. 535

• Allocating and freeing memory in different modules and levels of abstraction burdens the programmer 536
with tracking the lifetime of that block of memory. This may cause confusion regarding when and if a 537
block of memory has been allocated or freed, leading to programming defects such as double-free 538
vulnerabilities, accessing freed memory, or writing to unallocated memory. To avoid these situations, 539
it is recommended that memory be allocated and freed at the same level of abstraction, and ideally in 540
the same code module. 541

6.5.7 Implications for standardization 542

<Recommendations for other working groups will be recorded here. For example, we might record 543
suggestions for changes to language standards or API standards.> 544

ISO/IEC PDTR 24772

© ISO 2007 – All rights reserved 17

6.5.8 Bibliography 545

<Insert numbered references for other documents cited in your description. These will eventually be collected 546
into an overall bibliography for the TR. So, please make the references complete. Someone will eventually 547
have to reformat the references into an ISO-required format, so please err on the side of providing too much 548
information rather than too little. Here [1] is an example of a reference: 549

[1] Greg Hoglund, Gary McGraw, Exploiting Software: How to Break Code, ISBN-0-201-78695-8, Pearson 550
Education, Boston, MA, 2004 551

6.6 XYL Memory Leak 552

6.6.0 Status and history 553

PENDING 554
2007-08-03, Edited by Benito 555
2007-07-30, Edited by Larry Wagoner 556
2007-07-20, Edited by Jim Moore 557
2007-07-13, Edited by Larry Wagoner 558

6.6.1 Description of application vulnerability 559

[Note: Possibly separate item: Attempting to allocate storage and not checking if it is successful.] 560

The software does not sufficiently track and release allocated memory after it has been used, which slowly 561
consumes remaining memory. This is often triggered by improper handling of malformed data or unexpectedly 562
interrupted sessions. 563

6.6.2 Cross reference 564

CWE: 565
401. Memory Leak 566

6.6.3 Categorization 567

See clause 5.?. 568
Group: Dynamic Allocation 569

6.6.4 Mechanism of failure 570

If an attacker can determine the cause of the memory leak, an attacker may be able to cause the application 571
to leak quickly and therefore cause the application to crash. 572

6.6.5 Range of language characteristics considered 573

This vulnerability description is intended to be applicable to languages with the following characteristics: 574

• Languages that can dynamically allocate memory. 575
• Languages that do not have the capability for garbage collection to collect dynamically allocated 576

memory that is no longer reachable. 577

6.6.6 Avoiding the vulnerability or mitigating its effects 578

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways: 579

ISO/IEC PDTR 24772

18 © ISO 2007 – All rights reserved

• Garbage collectors attempts to reclaim memory that will never be used by the application again. 580
Some garbage collectors are part of the language while others are add-ons such as Boehm-Demers-581
Weiser Garbage Collector or Valgrind. Again, this is not a complete solution as it is not 100% 582
effective, but it can significantly reduce the number of memory leaks. 583

• Allocating and freeing memory in different modules and levels of abstraction burdens the programmer 584
with tracking the lifetime of that block of memory. This may cause confusion regarding when and if a 585
block of memory has been allocated or freed, leading to memory leaks. To avoid these situations, it is 586
recommended that memory be allocated and freed at the same level of abstraction, and ideally in the 587
same code module. 588

• Memory leaks can be eliminated by avoiding the use of dynamically allocated storage entirely. 589

Note: some consider this to be a design issue rather than a coding issue. 590

6.6.7 Implications for standardization 591

<Recommendations for other working groups will be recorded here. For example, we might record 592
suggestions for changes to language standards or API standards.> 593

6.6.8 Bibliography 594

<Insert numbered references for other documents cited in your description. These will eventually be collected 595
into an overall bibliography for the TR. So, please make the references complete. Someone will eventually 596
have to reformat the references into an ISO-required format, so please err on the side of providing too much 597
information rather than too little. Here [1] is an example of a reference: 598

[1] Greg Hoglund, Gary McGraw, Exploiting Software: How to Break Code, ISBN-0-201-78695-8, Pearson 599
Education, Boston, MA, 2004 600

6.7 XYW Buffer Overflow in Stack 601

[Note: Consider merging this with XZB.] 602

6.7.0 Status and history 603

PENDING 604
2007-08-03, Edited by Benito 605
2007-07-30, Edited by Larry Wagoner 606
2007-07-20, Edited by Jim Moore 607
2007-07-13, Edited by Larry Wagoner 608
 609

6.7.1 Description of application vulnerability 610

A buffer overflow in the stack condition occurs when the buffer being overwritten is allocated on the stack (i.e., 611
is a local variable or, rarely, a parameter to a function). 612

6.7.2 Cross reference 613

CWE: 614
121. Stack Overflow 615

6.7.3 Categorization 616

See clause 5.?. 617
Group: Array Bounds 618

ISO/IEC PDTR 24772

© ISO 2007 – All rights reserved 19

6.7.4 Mechanism of failure 619

There are generally several security-critical data on an execution stack that can lead to arbitrary code 620
execution. The most prominent is the stored return address, the memory address at which execution should 621
continue once the current function is finished executing. The attacker can overwrite this value with some 622
memory address to which the attacker also has write access, into which he places arbitrary code to be run 623
with the full privileges of the vulnerable program. Alternately, the attacker can supply the address of an 624
important call, for instance the POSIX system() call, leaving arguments to the call on the stack. This is often 625
called a return into libc exploit, since the attacker generally forces the program to jump at return time into an 626
interesting routine in the C library (libc). Other important data commonly on the stack include the stack pointer 627
and frame pointer, two values that indicate offsets for computing memory addresses. Modifying those values 628
can often be leveraged into a "write-what-where" condition. 629

Stack overflows can instantiate in return address overwrites, stack pointer overwrites or frame pointer 630
overwrites. They can also be considered function pointer overwrites, array indexer overwrites or write-what-631
where condition, etc. 632

Buffer overflows can be exploited for a variety of purposes. A relatively easy way of exploitation is to overflow 633
a buffer so it leads to a crash. Other attacks leading to lack of availability are possible, including putting the 634
program into an infinite loop. Buffer overflows often can be used to execute arbitrary code. When the 635
consequence is arbitrary code execution, this can often be used to subvert any other security service. 636

6.7.5 Range of language characteristics considered 637

This vulnerability description is intended to be applicable to languages with the following characteristics: 638

• Some languages or compilers perform or implement automatic bounds checking. 639

• The size and bounds of arrays and their extents might be statically determinable or dynamic. Some languages 640
provide both capabilities. 641

• Language implementations might or might not statically detect out of bound access and generate a compile-time 642
diagnostic. 643

• At run-time the implementation might or might not detect the out of bounds access and provide a notification at 644
run-time. The notification might be treatable by the program or it might not be. 645

• Accesses might violate the bounds of the entire array or violate the bounds of a particular extent. It is possible 646
that the former is checked and detected by the implementation while the latter is not. 647

• The information needed to detect the violation might or might not be available depending on the context of use. 648
(For example, passing an array to a subroutine via a pointer might deprive the subroutine of information 649
regarding the size of the array.) 650

• Some languages provide for whole array operations that may obviate the need to access individual elements. 651

• Some languages may automatically extend the bounds of an array to accommodate accesses that might 652
otherwise have been beyond the bounds. (This may or may not match the programmer's intent.) 653

6.7.6 Avoiding the vulnerability or mitigating its effects 654

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways: 655

• Although not a complete solution, an abstraction library to abstract away risky APIs can be used. 656

• Compiler-based canary mechanisms such as StackGuard, ProPolice and the Microsoft Visual Studio 657
/GS flag can be used. However, unless automatic bounds checking is provided, it is not a complete 658
solution. 659

ISO/IEC PDTR 24772

20 © ISO 2007 – All rights reserved

• OS-level preventative functionality can also be used. 660

6.7.7 Implications for standardization 661

<Recommendations for other working groups will be recorded here. For example, we might record 662
suggestions for changes to language standards or API standards.> 663

6.7.8 Bibliography 664

<Insert numbered references for other documents cited in your description. These will eventually be collected 665
into an overall bibliography for the TR. So, please make the references complete. Someone will eventually 666
have to reformat the references into an ISO-required format, so please err on the side of providing too much 667
information rather than too little. Here [1] is an example of a reference: 668

[1] Greg Hoglund, Gary McGraw, Exploiting Software: How to Break Code, ISBN-0-201-78695-8, Pearson 669
Education, Boston, MA, 2004 670

6.8 XZB Buffer Overflow in Heap 671

6.8.0 Status and history 672

PENDING 673
2007-08-03, Edited by Benito 674
2007-07-30, Edited by Larry Wagoner 675
2007-07-20, Edited by Jim Moore 676
2007-07-13, Edited by Larry Wagoner 677
 678

6.8.1 Description of application vulnerability 679

A heap overflow condition is a buffer overflow, where the buffer that can be overwritten is allocated in the 680
heap portion of memory, generally meaning that the buffer was allocated using a routine such as the POSIX 681
malloc() call. 682

6.8.2 Cross reference 683

CWE: 684
122. Heap Overflow 685

6.8.3 Categorization 686

See clause 5.?. 687
Group: Array Bounds 688

6.8.4 Mechanism of failure 689

Heap overflows are usually just as dangerous as stack overflows. Besides important user data, heap 690
overflows can be used to overwrite function pointers that may be living in memory, pointing it to the attacker's 691
code. Even in applications that do not explicitly use function pointers, the run-time will usually leave many in 692
memory. For example, object methods in C++ are generally implemented using function pointers. Even in C 693
programs, there is often a global offset table used by the underlying runtime. 694

Heap overflows generally lead to crashes. Other attacks leading to lack of availability are possible, including 695
putting the program into an infinite loop. Heap overflows can be used to execute arbitrary code, which is 696
usually outside the scope of a program's implicit security policy. When the consequence is arbitrary code 697
execution, this can often be used to subvert any other security service. 698

ISO/IEC PDTR 24772

© ISO 2007 – All rights reserved 21

6.8.5 Range of language characteristics considered 699

This vulnerability description is intended to be applicable to languages with the following characteristics: 700

• The size and bounds of arrays and their extents might be statically determinable or dynamic. Some 701
languages provide both capabilities. 702

• Language implementations might or might not statically detect out of bound access and generate a 703
compile-time diagnostic. 704

• At run-time the implementation might or might not detect the out of bounds access and provide a 705
notification at run-time. The notification might be treatable by the program or it might not be. 706

• Accesses might violate the bounds of the entire array or violate the bounds of a particular extent. It is 707
possible that the former is checked and detected by the implementation while the latter is not. 708

• The information needed to detect the violation might or might not be available depending on the 709
context of use. (For example, passing an array to a subroutine via a pointer might deprive the 710
subroutine of information regarding the size of the array.) 711

• Some languages provide for whole array operations that may obviate the need to access individual 712
elements. 713

• Some languages may automatically extend the bounds of an array to accommodate accesses that 714
might otherwise have been beyond the bounds. (This may or may not match the programmer's intent.) 715

6.8.6 Avoiding the vulnerability or mitigating its effects 716

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways: 717

• Use a language or compiler that performs automatic bounds checking. 718

• Use an abstraction library to abstract away risky APIs, though not a complete solution. 719

• Canary style bounds checking, library changes which ensure the validity of chunk data and other such 720
fixes are possible, but should not be relied upon. 721

• OS-level preventative functionality can be used, but is also not a complete solution. 722

• Protection to prevent overflows can be disabled in some languages to increase performance. This 723
option should be used very carefully. 724

6.8.7 Implications for standardization 725

<Recommendations for other working groups will be recorded here. For example, we might record 726
suggestions for changes to language standards or API standards.> 727

6.8.8 Bibliography 728

<Insert numbered references for other documents cited in your description. These will eventually be collected 729
into an overall bibliography for the TR. So, please make the references complete. Someone will eventually 730
have to reformat the references into an ISO-required format, so please err on the side of providing too much 731
information rather than too little. Here [1] is an example of a reference: 732

[1] Greg Hoglund, Gary McGraw, Exploiting Software: How to Break Code, ISBN-0-201-78695-8, Pearson 733
Education, Boston, MA, 2004 734

ISO/IEC PDTR 24772

22 © ISO 2007 – All rights reserved

6.9 XZM Missing Parameter Error [Could also be Parameter Signature Mismatch] 735

6.9.0 Status and history 736

IN 737
2007-08-04, Edited by Benito 738
2007-07-30, Edited by Larry Wagoner 739
2007-07-19, Edited by Jim Moore 740
2007-07-13, Edited by Larry Wagoner 741
 742

6.9.1 Description of application vulnerability 743

If too few arguments are sent to a function, the function will still pop the expected number of arguments from 744
the stack. A variable number of arguments could potentially be exhausted by a function. 745

6.9.2 Cross reference 746

CWE: 747
234. Missing Parameter Error 748

6.9.3 Categorization 749

See clause 5.?. <Replace this with the categorization according to the analysis in Clause 5. At a later date, 750
other categorization schemes may be added.> 751

6.9.4 Mechanism of failure 752

There is the potential for arbitrary code execution with privileges of the vulnerable program if function 753
parameter list is exhausted or the program could potentially fail if it needs more arguments then are available. 754

[Note: Linking separately compiled modules can be a problem. Using an object code library can 755
be a problem.] 756

6.9.5 Range of language characteristics considered 757

This vulnerability description is intended to be applicable to languages with the following characteristics: 758

• Languages that do not pass NULL as the value of a parameter if too few arguments are provided. 759

• Languages that do not require the number and type of parameters to be equal to the parameters 760
provided. 761

6.9.6 Avoiding the vulnerability or mitigating its effects 762

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways: 763

• Forward declare all functions. Forward declaration of all used functions will result in a compiler 764
error if too few arguments are sent to a function. 765

• Some languages have facilities to assist in linking to other languages or to separately compiled 766
modules. 767

6.9.7 Implications for standardization 768

<Recommendations for other working groups will be recorded here. For example, we might record 769
suggestions for changes to language standards or API standards.> 770

ISO/IEC PDTR 24772

© ISO 2007 – All rights reserved 23

6.9.8 Bibliography 771

<Insert numbered references for other documents cited in your description. These will eventually be collected 772
into an overall bibliography for the TR. So, please make the references complete. Someone will eventually 773
have to reformat the references into an ISO-required format, so please err on the side of providing too much 774
information rather than too little. Here [1] is an example of a reference: 775

[1] Greg Hoglund, Gary McGraw, Exploiting Software: How to Break Code, ISBN-0-201-78695-8, Pearson 776
Education, Boston, MA, 2004 777

6.10 XYY Wrap-around Error 778

6.10.0 Status and history 779

PENDING 780
2007-08-04, Edited by Benito 781
2007-07-30, Edited by Larry Wagoner 782
2007-07-20, Edited by Jim Moore 783
2007-07-13, Edited by Larry Wagoner 784
 785

6.10.1 Description of application vulnerability 786

Wrap around errors occur whenever a value is incremented past the maximum value for its type and therefore 787
"wraps around" to a very small, negative, or undefined value. 788

6.10.2 Cross reference 789

CWE: 790
128. Wrap-around Error 791

6.10.3 Categorization 792

See clause 5.?. 793
Group: Arithmetic 794

6.10.4 Mechanism of failure 795

Due to how arithmetic is performed by computers, if a primitive is incremented past the maximum value 796
possible for its storage space, the system will fail to recognize this [not categorically correct], and therefore 797
increment each bit as if it still had extra space. Because of how negative numbers are represented in binary, 798
primitives interpreted as signed may "wrap" to very large negative values. 799

Wrap-around errors generally lead to undefined behavior and infinite loops, and therefore crashes. If the 800
value in question is important to data (as opposed to flow), data corruption will occur. If the wrap around 801
results in other conditions such as buffer overflows, further memory corruption may occur. A wrap-around can 802
sometimes trigger buffer overflows which can be used to execute arbitrary code. 803

6.10.5 Range of language characteristics considered 804

This vulnerability description is intended to be applicable to languages with the following characteristics: 805

• Some languages trigger an exception condition when a wrap-around error occurs. 806

6.10.6 Avoiding the vulnerability or mitigating its effects 807

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways: 808

ISO/IEC PDTR 24772

24 © ISO 2007 – All rights reserved

• The choice could be made to use a language that is not susceptible to these issues. 809

• Provide clear upper and lower bounds on the scale of any protocols designed. 810

• Place sanity checks on all incremented variables to ensure that they remain within reasonable 811
bounds. 812

• Analyze the software using static analysis. 813

6.10.7 Implications for standardization 814

<Recommendations for other working groups will be recorded here. For example, we might record 815
suggestions for changes to language standards or API standards.> 816

6.10.8 Bibliography 817

<Insert numbered references for other documents cited in your description. These will eventually be collected 818
into an overall bibliography for the TR. So, please make the references complete. Someone will eventually 819
have to reformat the references into an ISO-required format, so please err on the side of providing too much 820
information rather than too little. Here [1] is an example of a reference: 821

[1] Greg Hoglund, Gary McGraw, Exploiting Software: How to Break Code, ISBN-0-201-78695-8, Pearson 822
Education, Boston, MA, 2004 823

6.11 XYQ Expression Issues 824

6.11.0 Status and history 825

IN 826
2007-08-04, Edited by Benito 827
2007-07-30, Edited by Larry Wagoner 828
2007-07-19, Edited by Jim Moore 829
2007-07-13, Edited by Larry Wagoner 830
 831

6.11.1 Description of application vulnerability 832

The software contains an expression that will always evaluate to the same Boolean value (either always true 833
or always false). 834

[Note: This might be generalized to a discussion of "redundant" code and/or "dead" code. Some 835
prefer this be phrased in terms of "unreachable code".] 836

[From DO-178B: 837

Dead code – Executable object code (or data) which, as a result of a design error cannot be executed 838
(code) or used (data) in an operational configuration of the target computer environment and is not 839
traceable to a system or software requirement. An exception is embedded identifiers. 840

Deactivated code – Executable object code (or data) which by design is either (a) not intended to be 841
executed (code) or used (data), for example, a part of a previously developed software component, or (b) 842
is only executed (code) or used (data) in certain configurations of the target computer environment, for 843
example, code that is enabled by a hardware pin selection or software programmed options.] 844

6.11.2 Cross reference 845

CWE: 846

ISO/IEC PDTR 24772

© ISO 2007 – All rights reserved 25

570. Expression is Always True 847
571. Expression is Always False 848

6.11.3 Categorization 849

See clause 5.?. <Replace this with the categorization according to the analysis in Clause 5. At a later date, 850
other categorization schemes may be added.> 851

6.11.4 Mechanism of failure 852

Any boolean expression that evaluates to the same value is indicative of superfluous code and is possibly 853
indicative of a bug that exists and, although the chance is remote, possibly could be exploited. 854

6.11.5 Range of language characteristics considered 855

This vulnerability description is intended to be applicable to languages with the following characteristics: 856

• All languages that have Boolean expressions are susceptible to this. 857

6.11.6 Avoiding the vulnerability or mitigating its effects 858

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways: 859

• This expression will always evaluate to the same Boolean value meaning the program could be rewritten in 860
a simpler form. The nearby code may be present for debugging purposes, or it may not have been 861
maintained along with the rest of the program. Coding guidelines could require the programmer to declare 862
whether such instances are intentional. 863

• The expression could be indicative of an earlier bug earlier and additional testing may be needed to 864
ascertain why the same Boolean value is occurring. 865

[Note: This relates to the DO-178B distinction between "dead" code and "deactivated" code. See 866
minutes of Meeting #5 for definitions.] 867

6.11.7 Implications for standardization 868

<Recommendations for other working groups will be recorded here. For example, we might record 869
suggestions for changes to language standards or API standards.> 870

6.11.8 Bibliography 871

<Insert numbered references for other documents cited in your description. These will eventually be collected 872
into an overall bibliography for the TR. So, please make the references complete. Someone will eventually 873
have to reformat the references into an ISO-required format, so please err on the side of providing too much 874
information rather than too little. Here [1] is an example of a reference: 875

[1] Greg Hoglund, Gary McGraw, Exploiting Software: How to Break Code, ISBN-0-201-78695-8, Pearson 876
Education, Boston, MA, 2004 877

6.12 XYR Unused Variable 878

6.12.0 Status and history 879

IN 880
2007-08-04, Edited by Benito 881
2007-07-30, Edited by Larry Wagoner 882

ISO/IEC PDTR 24772

26 © ISO 2007 – All rights reserved

2007-07-19, Edited by Jim Moore 883
2007-07-13, Edited by Larry Wagoner 884
 885

6.12.1 Description of application vulnerability 886

The variable's value is assigned but never used or never assigned at all, making it a dead store. 887

6.12.2 Cross reference 888

CWE: 889
563. Unused Variable 890

6.12.3 Categorization 891

See clause 5.?. <Replace this with the categorization according to the analysis in Clause 5. At a later date, 892
other categorization schemes may be added.> 893

6.12.4 Mechanism of failure 894

A variable is declared, but never used. It is likely that the variable is simply vestigial, but it is also possible that 895
the unused variable points out a bug. Note that this may be acceptable if it is a volatile variable. An unused 896
variable is unlikely to be the cause of a vulnerability, however it is indicative of a lack of a clean compile at a 897
reasonably high level of compiler settings. 898

6.12.5 Range of language characteristics considered 899

This vulnerability description is intended to be applicable to languages with the following characteristics: 900

• Only static typed programming languages are susceptible to declaring a variable but never using 901
it. Closely related is directly assigning a value to a variable in a dynamic typed programming 902
language and never referencing the variable again. 903

6.12.6 Avoiding the vulnerability or mitigating its effects 904

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways: 905

• Most compilers can detect unused variables. However, the detection may have to be enabled as 906
the default may be to ignore unused variables. 907

6.12.7 Implications for standardization 908

<Recommendations for other working groups will be recorded here. For example, we might record 909
suggestions for changes to language standards or API standards.> 910

6.12.8 Bibliography 911

<Insert numbered references for other documents cited in your description. These will eventually be collected 912
into an overall bibliography for the TR. So, please make the references complete. Someone will eventually 913
have to reformat the references into an ISO-required format, so please err on the side of providing too much 914
information rather than too little. Here [1] is an example of a reference: 915

[1] Greg Hoglund, Gary McGraw, Exploiting Software: How to Break Code, ISBN-0-201-78695-8, Pearson 916
Education, Boston, MA, 2004 917

ISO/IEC PDTR 24772

© ISO 2007 – All rights reserved 27

6.13 XYX Boundary Beginning Violation 918

[Note: Perhaps this should be subsumed by XYZ.] 919

6.13.0 Status and history 920

PENDING 921
2007-08-04, Edited by Benito 922
2007-07-30, Edited by Larry Wagoner 923
2007-07-20, Edited by Jim Moore 924
2007-07-13, Edited by Larry Wagoner 925
 926

6.13.1 Description of application vulnerability 927

A buffer underwrite condition occurs when a buffer is indexed with a negative number, or pointer arithmetic 928
with a negative value results in a position before the beginning of the valid memory location. 929

6.13.2 Cross reference 930

CWE: 931
124. Boundary Beginning Violation ("buffer underwrite") 932

6.13.3 Categorization 933

See clause 5.?. 934
Group: Array Bounds 935

6.13.4 Mechanism of failure 936

Buffer underwrites will very likely result in the corruption of relevant memory, and perhaps instructions, leading 937
to a crash. If the memory corrupted memory can be effectively controlled, it may be possible to execute 938
arbitrary code. If the memory corrupted is data rather than instructions, the system will continue to function 939
with improper changes, ones made in violation of a policy, whether explicit or implicit. 940

6.13.5 Range of language characteristics considered 941

This vulnerability description is intended to be applicable to languages with the following characteristics: 942

• The size and bounds of arrays and their extents might be statically determinable or dynamic. 943
Some languages provide both capabilities. 944

• Language implementations might or might not statically detect out of bound access and generate 945
a compile-time diagnostic. 946

• At run-time the implementation might or might not detect the out of bounds access and provide a 947
notification at run-time. The notification might be treatable by the program or it might not be. 948

• Accesses might violate the bounds of the entire array or violate the bounds of a particular extent. 949
It is possible that the former is checked and detected by the implementation while the latter is not. 950

• The information needed to detect the violation might or might not be available depending on the 951
context of use. (For example, passing an array to a subroutine via a pointer might deprive the 952
subroutine of information regarding the size of the array.) 953

• Some languages provide for whole array operations that may obviate the need to access 954
individual elements. 955

ISO/IEC PDTR 24772

28 © ISO 2007 – All rights reserved

• Some languages may automatically extend the bounds of an array to accommodate accesses 956
that might otherwise have been beyond the bounds. (This may or may not match the 957
programmer's intent.) 958

6.13.6 Avoiding the vulnerability or mitigating its effects 959

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:. 960

• Some languages have facilities or add-on options that can be used to automatically check array 961
indexes. 962

• Add-on tools, such as static analyzers, can be used to detect possible violations. Coding 963
techniques can be used and encouraged through their specification in coding guidelines that 964
improve the analyzability of the code. 965

• Sanity checks should be performed on all calculated values used as index or for pointer 966
arithmetic. 967

6.13.7 Implications for standardization 968

<Recommendations for other working groups will be recorded here. For example, we might record 969
suggestions for changes to language standards or API standards.> 970

6.13.8 Bibliography 971

<Insert numbered references for other documents cited in your description. These will eventually be collected 972
into an overall bibliography for the TR. So, please make the references complete. Someone will eventually 973
have to reformat the references into an ISO-required format, so please err on the side of providing too much 974
information rather than too little. Here [1] is an example of a reference: 975

[1] Greg Hoglund, Gary McGraw, Exploiting Software: How to Break Code, ISBN-0-201-78695-8, Pearson 976
Education, Boston, MA, 2004 977

6.14 XZI Sign Extension Error 978

6.14.0 Status and history 979

PENDING 980
2007-08-05, Edited by Benito 981
2007-07-30, Edited by Larry Wagoner 982
2007-07-20, Edited by Jim Moore 983
2007-07-13, Edited by Larry Wagoner 984
 985

6.14.1 Description of application vulnerability 986

If one extends a signed number incorrectly, if negative numbers are used, an incorrect extension may result. 987

[Note: combining XYE, XYF, XYY, XZI as "integer arithmetic" was suggested.] 988
[Note: Should "divide by zero" be added?] 989

6.14.2 Cross reference 990

CWE: 991
194. Sign Extension Error 992

ISO/IEC PDTR 24772

© ISO 2007 – All rights reserved 29

6.14.3 Categorization 993

See clause 5.?. 994
Group: Arithmetic 995

6.14.4 Mechanism of failure 996

Converting a signed shorter data type such to a larger data type or pointer can cause errors due to the 997
extension of the sign bit. A negative data element that is extended with an unsigned extension algorithm will 998
produce an incorrect result. For instance, this can occur when a signed character is converted to a short or a 999
signed integer is converted to a long. Sign extension errors can lead to buffer overflows and other memory 1000
based problems. This can occur unexpectedly when moving software designed and tested on a 32 bit 1001
architecture to a 64 bit architecture computer. 1002

6.14.5 Range of language characteristics considered 1003

This vulnerability description is intended to be applicable to languages with the following characteristics: 1004

• Languages may be strongly or weakly typed. Strongly typed languages do a strict enforcement of 1005
type rules since all types are known at compile time. 1006

• Some languages allow implicit type conversion. Others require explicit type conversion. 1007

6.14.6 Avoiding the vulnerability or mitigating its effects 1008

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways: 1009

• Use a sign extension library or standard function to extend signed numbers. 1010

• When extending signed numbers fill in the new bits with 0 if the sign bit is 0 or fill the new bits with 1011
1 if the sign bit is 1. 1012

• Cast a character as unsigned before conversion to an integer. 1013

6.14.7 Implications for standardization 1014

<Recommendations for other working groups will be recorded here. For example, we might record 1015
suggestions for changes to language standards or API standards.> 1016

6.14.8 Bibliography 1017

<Insert numbered references for other documents cited in your description. These will eventually be collected 1018
into an overall bibliography for the TR. So, please make the references complete. Someone will eventually 1019
have to reformat the references into an ISO-required format, so please err on the side of providing too much 1020
information rather than too little. Here [1] is an example of a reference: 1021

[1] Greg Hoglund, Gary McGraw, Exploiting Software: How to Break Code, ISBN-0-201-78695-8, Pearson 1022
Education, Boston, MA, 2004 1023

6.15 XZH Off-by-one Error 1024

6.15.0 Status and history 1025

IN 1026
2007-08-04, Edited by Benito 1027
2007-07-30, Edited by Larry Wagoner 1028
2007-07-19, Edited by Jim Moore 1029

ISO/IEC PDTR 24772

30 © ISO 2007 – All rights reserved

2007-07-13, Edited by Larry Wagoner 1030
 1031

6.15.1 Description of application vulnerability 1032

A product uses an incorrect maximum or minimum value that is 1 more or 1 less, than the correct value. 1033

[Note: This may need further study. For example, this might be an umbrella for a lot of individual 1034
items. On the other hand, this might be a contributing cause of other items.] 1035

6.15.2 Cross reference 1036

CWE: 1037
193. Off-by-one Error 1038

6.15.3 Categorization 1039

See clause 5.?. <Replace this with the categorization according to the analysis in Clause 5. At a later date, 1040
other categorization schemes may be added.> 1041

6.15.4 Mechanism of failure 1042

This could lead to a buffer overflow. However that is not always the case. For example, an off-by-one error 1043
could be a factor in a partial comparison, a read from the wrong memory location, or an incorrect conditional. 1044

6.15.5 Range of language characteristics considered 1045

This vulnerability description is intended to be applicable to languages with the following characteristics: 1046

• Many languages have mechanisms to assist in the problem, e.g. methods to obtain the actual 1047
bounds of an array. 1048

6.15.6 Avoiding the vulnerability or mitigating its effects 1049

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways: 1050

• Off-by-one errors are very common bug that is also a code quality issue. As with most quality 1051
issues, a systematic development process, use of development/analysis tools and thorough 1052
testing are all common ways of preventing errors, and in this case, off-by-one errors. 1053

6.15.7 Implications for standardization 1054

<Recommendations for other working groups will be recorded here. For example, we might record 1055
suggestions for changes to language standards or API standards.> 1056

6.15.8 Bibliography 1057

<Insert numbered references for other documents cited in your description. These will eventually be collected 1058
into an overall bibliography for the TR. So, please make the references complete. Someone will eventually 1059
have to reformat the references into an ISO-required format, so please err on the side of providing too much 1060
information rather than too little. Here [1] is an example of a reference: 1061

[1] Greg Hoglund, Gary McGraw, Exploiting Software: How to Break Code, ISBN-0-201-78695-8, Pearson 1062
Education, Boston, MA, 2004 1063

ISO/IEC PDTR 24772

© ISO 2007 – All rights reserved 31

6.16 XYZ Unchecked Array Indexing 1064

[Note: Perhaps XYW, XYX, XYZ and XZB should be combined into two items: array indexing 1065
violations when accessing individual elements and block move/copy.] 1066

6.16.0 Status and history 1067

PENDING 1068
2007-08-04, Edited by Benito 1069
2007-07-30, Edited by Larry Wagoner 1070
2007-07-20, Edited by Jim Moore 1071
2007-07-13, Edited by Larry Wagoner 1072
 1073

6.16.1 Description of application vulnerability 1074

Unchecked array indexing occurs when an unchecked value is used as an index into a buffer. 1075

6.16.2 Cross reference 1076

CWE: 1077
129. Unchecked Array Indexing 1078

6.16.3 Categorization 1079

See clause 5.?. 1080
Group: Array Bounds 1081

6.16.4 Mechanism of failure 1082

A single fault could allow both an overflow and underflow of the array index. An index overflow exploit might 1083
use buffer overflow techniques, but this can often be exploited without having to provide "large inputs." Array 1084
index overflows can also trigger out-of-bounds read operations, or operations on the wrong objects; i.e., 1085
"buffer overflows" are not always the result. 1086

Unchecked array indexing, depending on its instantiation, can be responsible for any number of related 1087
issues. Most prominent of these possible flaws is the buffer overflow condition. Due to this fact, consequences 1088
range from denial of service, and data corruption, to full blown arbitrary code execution. The most common 1089
condition situation leading to unchecked array indexing is the use of loop index variables as buffer indexes. If 1090
the end condition for the loop is subject to a flaw, the index can grow or shrink unbounded, therefore causing 1091
a buffer overflow or underflow. Another common situation leading to this condition is the use of a function's 1092
return value, or the resulting value of a calculation directly as an index in to a buffer. 1093

Unchecked array indexing will very likely result in the corruption of relevant memory and perhaps instructions, 1094
leading to a crash, if the values are outside of the valid memory area. If the memory corrupted is data, rather 1095
than instructions, the system will continue to function with improper values. If the memory corrupted memory 1096
can be effectively controlled, it may be possible to execute arbitrary code, as with a standard buffer overflow. 1097

6.16.5 Range of language characteristics considered 1098

This vulnerability description is intended to be applicable to languages with the following characteristics: 1099

• The size and bounds of arrays and their extents might be statically determinable or dynamic. 1100
Some languages provide both capabilities. 1101

• Language implementations might or might not statically detect out of bound access and generate 1102
a compile-time diagnostic. 1103

ISO/IEC PDTR 24772

32 © ISO 2007 – All rights reserved

• At run-time the implementation might or might not detect the out of bounds access and provide a 1104
notification at run-time. The notification might be treatable by the program or it might not be. 1105

• Accesses might violate the bounds of the entire array or violate the bounds of a particular extent. 1106
It is possible that the former is checked and detected by the implementation while the latter is not. 1107

• The information needed to detect the violation might or might not be available depending on the 1108
context of use. (For example, passing an array to a subroutine via a pointer might deprive the 1109
subroutine of information regarding the size of the array.) 1110

• Some languages provide for whole array operations that may obviate the need to access 1111
individual elements. 1112

• Some languages may automatically extend the bounds of an array to accommodate accesses 1113
that might otherwise have been beyond the bounds. (This may or may not match the 1114
programmer's intent.) 1115

6.16.6 Avoiding the vulnerability or mitigating its effects 1116

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways: 1117

• Include sanity checks to ensure the validity of any values used as index variables. In loops, use 1118
greater-than-or-equal-to, or less-than-or-equal-to, as opposed to simply greater-than, or less-than 1119
compare statements. 1120

• The choice could be made to use a language that is not susceptible to these issues 1121

6.16.7 Implications for standardization 1122

<Recommendations for other working groups will be recorded here. For example, we might record 1123
suggestions for changes to language standards or API standards.> 1124

6.16.8 Bibliography 1125

<Insert numbered references for other documents cited in your description. These will eventually be collected 1126
into an overall bibliography for the TR. So, please make the references complete. Someone will eventually 1127
have to reformat the references into an ISO-required format, so please err on the side of providing too much 1128
information rather than too little. Here [1] is an example of a reference: 1129

[1] Greg Hoglund, Gary McGraw, Exploiting Software: How to Break Code, ISBN-0-201-78695-8, Pearson 1130
Education, Boston, MA, 2004 1131

 1132

ISO/IEC PDTR 24772

© ISO 2007 – All rights reserved 33

7. Application Vulnerabilities 1133

7.1 XYU Using Hibernate to Execute SQL 1134

7.1.0 Status and history 1135

2007-08-04, Edited by Benito 1136
2007-07-30, Created by Larry Wagoner 1137
Combined: 1138

XYU-070720-sql-injection-hibernate.doc 1139
XYV-070720-php-file-inclusion.doc 1140
XZC-070720-equivalent-special-element-injection.doc 1141
XZD-070720-os-command-injection.doc 1142
XZE-070720-injection.doc 1143
XZF-070720-delimiter.doc 1144
XZG-070720-server-side-injection.doc 1145
XZJ-070720-common-special-element-manipulations.doc 1146
into RST-070730-injection.doc. 1147

 1148
7.1.1 Description of application vulnerability 1149

(XYU) Using Hibernate to execute a dynamic SQL statement built with user input can allow an attacker to 1150
modify the statement's meaning or to execute arbitrary SQL commands. 1151

(XYV) A PHP product uses "require" or "include" statements, or equivalent statements, that use attacker-1152
controlled data to identify code or HTML to be directly processed by the PHP interpreter before inclusion in the 1153
script. 1154

(XZC) The software allows the injection of special elements that are non-typical but equivalent to typical 1155
special elements with control implications into the dataplane. This frequently occurs when the product has 1156
protected itself against special element injection. 1157

(XZD) Command injection problems are a subset of injection problem, in which the process can be tricked into 1158
calling external processes of an attackers choice through the injection of command syntax into the data plane. 1159

(XZE) Injection problems span a wide range of instantiations. The basic form of this weakness involves the 1160
software allowing injection of control-plane data into the data-plane in order to alter the control flow of the 1161
process. 1162

(XZF) Line or section delimiters injected into an application can be used to compromise a system. as data is 1163
parsed, an injected/absent/malformed delimiter may cause the process to take unexpected actions that result 1164
in an attack. 1165

(XZG) The software allows inputs to be fed directly into an output file that is later processed as code, e.g. a 1166
library file or template. A web product allows the injection of sequences that cause the server to treat as 1167
server-side includes. 1168

(XZJ) Multiple leading/internal/trailing special elements injected into an application through input can be used 1169
to compromise a system. As data is parsed, improperly handled multiple leading special elements may cause 1170
the process to take unexpected actions that result in an attack. 1171

7.1.2 Cross reference 1172

CWE: 1173
76. Equivalent Special Element Injection 1174
78. OS Command Injection 1175

ISO/IEC PDTR 24772

34 © ISO 2007 – All rights reserved

90. LDAP Injection 1176
91. XML Injection (aka Blind Xpath injection) 1177
92. Custom Special Character Injection 1178
95. Direct Dynamic Code Evaluation ('Eval Injection') 1179
97. Server-Side Includes (SSI) Injection 1180
98 PHP File Inclusion 1181
99. Resource Injection 1182
144. Line Delimiter 1183
145. Section Delimiter 1184
161. Multiple Leading Special Elements 1185
163. Multiple Trailing Special Elements 1186
165. Multiple Internal Special Elements 1187
166. Missing Special Element 1188
167. Extra Special Element 1189
168. Inconsistent Special Elements 1190
564. SQL Injection: Hibernate 1191

7.1.3 Categorization 1192

See clause 5.?. <Replace this with the categorization according to the analysis in Clause 5. At a later date, 1193
other categorization schemes may be added.> 1194

7.1.4 Mechanism of failure 1195

(XYU) SQL injection attacks are another instantiation of injection attack, in which SQL commands are injected 1196
into data-plane input in order to effect the execution of predefined SQL commands. Since SQL databases 1197
generally hold sensitive data, loss of confidentiality is a frequent problem with SQL injection vulnerabilities. 1198

If poor SQL commands are used to check user names and passwords, it may be possible to connect to a 1199
system as another user with no previous knowledge of the password. If authorization information is held in a 1200
SQL database, it may be possible to change this information through the successful exploitation of a SQL 1201
injection vulnerability. Just as it may be possible to read sensitive information, it is also possible to make 1202
changes or even delete this information with a SQL injection attack. 1203

(XYV) This is frequently a functional consequence of other Weaknesses. It is usually multi-factor with other 1204
factors, although not all inclusion bugs involve assumed-immutable data. Direct request Weaknesses 1205
frequently play a role. This can also overlap directory traversal in local inclusion problems. 1206

(XZC) Many injection attacks involve the disclosure of important information -- in terms of both data sensitivity 1207
and usefulness in further exploitation. In some cases injectable code controls authentication; this may lead to 1208
a remote vulnerability. Injection attacks are characterized by the ability to significantly change the flow of a 1209
given process, and in some cases, to the execution of arbitrary code. Data injection attacks lead to loss of 1210
data integrity in nearly all cases as the control-plane data injected is always incidental to data recall or writing. 1211
Often the actions performed by injected control code are not logged. 1212
(XZD) A software system that accepts and executes input in the form of operating system commands (e.g. 1213
system(), exec(), open()) could allow an attacker with lesser privileges than the target software to 1214
execute commands with the elevated privileges of the executing process. 1215

Command injection is a common problem with wrapper programs. Often, parts of the command to be run are 1216
controllable by the end user. If a malicious user injects a character (such as a semi-colon) that delimits the 1217
end of one command and the beginning of another, he may then be able to insert an entirely new and 1218
unrelated command to do whatever he pleases. The most effective way to deter such an attack is to ensure 1219
that the input provided by the user adheres to strict rules as to what characters are acceptable. As always, 1220
white-list style checking is far preferable to black-list style checking. 1221

Dynamically generating operating system commands that include user input as parameters can lead to 1222
command injection attacks. An attacker can insert operating system commands or modifiers in the user input 1223

ISO/IEC PDTR 24772

© ISO 2007 – All rights reserved 35

that can cause the request to behave in an unsafe manner. Such vulnerabilities can be very dangerous and 1224
lead to data and system compromise. If no validation of the parameter to the exec command exists, an 1225
attacker can execute any command on the system the application has the privilege to access. 1226

Command injection vulnerabilities take two forms: an attacker can change the command that the program 1227
executes (the attacker explicitly controls what the command is); or an attacker can change the environment in 1228
which the command executes (the attacker implicitly controls what the command means). In this case we are 1229
primarily concerned with the first scenario, in which an attacker explicitly controls the command that is 1230
executed. Command injection vulnerabilities of this type occur when: 1231

• Data enters the application from an untrusted source. 1232
• The data is part of a string that is executed as a command by the application. 1233
• By executing the command, the application gives an attacker a privilege or capability that the 1234

attacker would not otherwise have. 1235

(XZE) Injection problems encompass a wide variety of issues -- all mitigated in very different ways. For this 1236
reason, the most effective way to discuss these weaknesses is to note the distinct features which classify 1237
them as injection weaknesses. The most important issue to note is that all injection problems share one thing 1238
in common -- they allow for the injection of control plane data into the user controlled data plane. This means 1239
that the execution of the process may be altered by sending code in through legitimate data channels, using 1240
no other mechanism. While buffer overflows and many other flaws involve the use of some further issue to 1241
gain execution, injection problems need only for the data to be parsed. The most classic instantiations of this 1242
category of weakness are SQL injection and format string vulnerabilities. 1243

Many injection attacks involve the disclosure of important information in terms of both data sensitivity and 1244
usefulness in further exploitation. In some cases injectable code controls authentication, this may lead to a 1245
remote vulnerability. 1246

Injection attacks are characterized by the ability to significantly change the flow of a given process, and in 1247
some cases, to the execution of arbitrary code. 1248

Data injection attacks lead to loss of data integrity in nearly all cases as the control-plane data injected is 1249
always incidental to data recall or writing. Often the actions performed by injected control code are not 1250
logged. 1251

Eval injection occurs when the software allows inputs to be fed directly into a function (e.g. "eval") that 1252
dynamically evaluates and executes the input as code, usually in the same interpreted language that the 1253
product uses. Eval injection is prevalent in handler/dispatch procedures that might want to invoke a large 1254
number of functions, or set a large number of variables. 1255

A PHP file inclusion occurs when a PHP product uses "require" or "include" statements, or equivalent 1256
statements, that use attacker-controlled data to identify code or HTML to be directly processed by the PHP 1257
interpreter before inclusion in the script. 1258

A resource injection issue occurs when the following two conditions are met: 1259

• An attacker can specify the identifier used to access a system resource. For example, an attacker 1260
might be able to specify part of the name of a file to be opened or a port number to be used. 1261

• By specifying the resource, the attacker gains a capability that would not otherwise be permitted. 1262

For example, the program may give the attacker the ability to overwrite the specified file, run with a 1263
configuration controlled by the attacker, or transmit sensitive information to a third-party server. Note: 1264
Resource injection that involves resources stored on the file system goes by the name path manipulation and 1265
is reported in separate category. See the path manipulation description for further details of this vulnerability. 1266
Allowing user input to control resource identifiers may enable an attacker to access or modify otherwise 1267
protected system resources. 1268
(XZF) Line or section delimiters injected into an application can be used to compromise a system. as data is 1269
parsed, an injected/absent/malformed delimiter may cause the process to take unexpected actions that result 1270

ISO/IEC PDTR 24772

36 © ISO 2007 – All rights reserved

in an attack. One example of a section delimiter is the boundary string in a multipart MIME message. In many 1271
cases, doubled line delimiters can serve as a section delimiter. 1272

(XZG) This can be resultant from XSS/HTML injection because the same special characters can be involved. 1273
However, this is server-side code execution, not client-side. 1274

(XZJ) The software does not respond properly when an expected special element (character or reserved 1275
word) is missing, an extra unexpected special element (character or reserved word) is used or an 1276
inconsistency exists between two or more special characters or reserved words, e.g. if paired characters 1277
appear in the wrong order, or if the special characters are not properly nested. 1278

7.1.5 Avoiding the vulnerability or mitigating its effects 1279

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways: 1280

• (XYU) A non-SQL style database which is not subject to this flaw may be chosen. 1281
• Follow the principle of least privilege when creating user accounts to a SQL database. Users should 1282

only have the minimum privileges necessary to use their account. If the requirements of the system 1283
indicate that a user can read and modify their own data, then limit their privileges so they cannot 1284
read/write others' data. 1285

• Duplicate any filtering done on the client-side on the server side. 1286
• Implement SQL strings using prepared statements that bind variables. Prepared statements that do 1287

not bind variables can be vulnerable to attack. 1288
• Use vigorous white-list style checking on any user input that may be used in a SQL command. Rather 1289

than escape meta-characters, it is safest to disallow them entirely since the later use of data that have 1290
been entered in the database may neglect to escape meta-characters before use. 1291

• Narrowly define the set of safe characters based on the expected value of the parameter in the 1292
request. 1293

• (XZC) As so many possible implementations of this weakness exist, it is best to simply be aware of 1294
the weakness and work to ensure that all control characters entered in data are subject to black-list 1295
style parsing. 1296

• (XZD) Assign permissions to the software system that prevents the user from accessing/opening 1297
privileged files. 1298

• (XZE) A language can be chosen which is not subject to these issues. 1299
• As so many possible implementations of this weaknes exist, it is best to simply be aware of the 1300

weakness and work to ensure that all control characters entered in data are subject to black-list style 1301
parsing. Assume all input is malicious. Use an appropriate combination of black lists and white lists 1302
to ensure only valid and expected input is processed by the system. 1303

• To avert eval injections, refractor your code so that it does not need to use eval() at all. 1304
• (XZF) Developers should anticipate that delimiters and special elements will be 1305

injected/removed/manipulated in the input vectors of their software system. Use an appropriate 1306
combination of black lists and white lists to ensure only valid, expected and appropriate input is 1307
processed by the system. 1308

• (XZG) Assume all input is malicious. Use an appropriate combination of black lists and white lists to 1309
ensure only valid and expected input is processed by the system. 1310

 1311

7.1.6 Implications for standardization 1312

<Recommendations for other working groups will be recorded here. For example, we might record 1313
suggestions for changes to language standards or API standards.> 1314

7.1.7 Bibliography 1315

<Insert numbered references for other documents cited in your description. These will eventually be collected 1316
into an overall bibliography for the TR. So, please make the references complete. Someone will eventually 1317
have to reformat the references into an ISO-required format, so please err on the side of providing too much 1318
information rather than too little. Here [1] is an example of a reference: 1319

ISO/IEC PDTR 24772

© ISO 2007 – All rights reserved 37

[1] Greg Hoglund, Gary McGraw, Exploiting Software: How to Break Code, ISBN-0-201-78695-8, Pearson 1320
Education, Boston, MA, 2004 1321

7.2 XYA Relative Path Traversal 1322

7.2.0 History and status 1323

PENDING 1324
2007-08-05, Edited by Benito 1325
2007-07-13, Created by Larry Wagoner 1326
Combined 1327

XYA-070720-relative-path-traversal.doc 1328
XYB-070720-absolute-path-traversal.doc 1329
XYC-070720-path-link-problems.doc 1330
XYD-070720-windows-path-link-problems.doc 1331
into EWR-070730-path-traversal 1332
 1333

7.2.1 Description of application vulnerability 1334

The software can construct a path that contains relative traversal sequences such as ".." 1335

The software can construct a path that contains absolute path sequences such as "/path/here." 1336

Attackers running software in a particular directory so that the hard link or symbolic link used by the software 1337
accesses a file that the attacker has control over may be able to escalate their privilege level to that of the 1338
running process. 1339

Attackers running software in a particular directory so that the hard link or symbolic link used by the software 1340
accesses a file that the attacker has control over may be able to escalate their privilege level to that of the 1341
running process. 1342

7.2.2 Cross reference 1343

CWE: 1344
24. Path Issue - dot dot slash - '../filedir' 1345
25. Path Issue - leading dot dot slash - '/../filedir' 1346
26. Path Issue - leading directory dot dot slash - '/dir 1347
27. Path Issue - directory doubled dot dot slash - 'directory/../../filename' 1348
28. Path Issue - dot dot backslash - '..\filename' 1349
29. Path Issue - leading dot dot backslash - '\..\filename' 1350
30. Path Issue - leading directory dot dot backslash - '\directory\..\filename' 1351
31. Path Issue - directory doubled dot dot backslash - 'directory\..\..\filename' 1352
32. Path Issue - triple dot - '...' 1353
33. Path Issue - multiple dot - '....' 1354
34. Path Issue - doubled dot dot slash - '....//' 1355
35. Path Issue - doubled triple dot slash - '.../...//' 1356
37. Path Issue - slash absolute path - /absolute/pathname/here 1357
38. Path Issue - backslash absolute path - \absolute\pathname\here 1358
39. Path Issue - drive letter or Windows volume - 'C:dirname' 1359
40. Path Issue - Windows UNC share - '\\UNC\share\name\' 1360
61. UNIX symbolic link (symlink) following 1361
62. UNIX hard link 1362
64. Windows shortcut following (.LNK) 1363
65. Windows hard link 1364

6.2.3 Categorization 1365

See clause 5.?. <Replace this with the categorization according to the analysis in Clause 5. At a later date, 1366
other categorization schemes may be added.> 1367

ISO/IEC PDTR 24772

38 © ISO 2007 – All rights reserved

6.2.4 Mechanism of failure 1368

A software system that accepts input in the form of: '..\filename', '\..\filename', '/directory/../filename', 1369
'directory/../../filename', '..\filename', '\..\filename', '\directory\..\filename', 'directory\..\..\filename', '...', '....' 1370
(multiple dots), '....//', or '.../...//' without appropriate validation can allow an attacker to traverse the file system 1371
to access an arbitrary file. Note that '..' is ignored if the current working directory is the root directory. Some 1372
of these input forms can be used to cause problems for systems that strip out '..' from input in an attempt to 1373
remove relative path traversal. 1374

A software system that accepts input in the form of '/absolute/pathname/here' or '\absolute\pathname\here' 1375
without appropriate validation can allow an attacker to traverse the file system to unintended locations or 1376
access arbitrary files. An attacker can inject a drive letter or Windows volume letter ('C:dirname') into a 1377
software system to potentially redirect access to an unintended location or arbitrary file. 1378

A software system that accepts input in the form of a backslash absolute path () without appropriate validation 1379
can allow an attacker to traverse the file system to unintended locations or access arbitrary files. 1380

An attacker can inject a Windows UNC share ('\\UNC\share\name') into a software system to potentially 1381
redirect access to an unintended location or arbitrary file. 1382

A software system that allows UNIX symbolic links (symlink) as part of paths whether in internal code or 1383
through user input can allow an attacker to spoof the symbolic link and traverse the file system to unintended 1384
locations or access arbitrary files. The symbolic link can permit an attacker to read/write/corrupt a file that they 1385
originally did not have permissions to access. 1386

Failure for a system to check for hard links can result in vulnerability to different types of attacks. For example, 1387
an attacker can escalate their privileges if he/she can replace a file used by a privileged program with a hard 1388
link to a sensitive file (e.g. etc/passwd). When the process opens the file, the attacker can assume the 1389
privileges of that process. 1390

A software system that allows Windows shortcuts (.LNK) as part of paths whether in internal code or through 1391
user input can allow an attacker to spoof the symbolic link and traverse the file system to unintended locations 1392
or access arbitrary files. The shortcut (file with the .lnk extension) can permit an attacker to read/write a file 1393
that they originally did not have permissions to access. 1394

Failure for a system to check for hard links can result in vulnerability to different types of attacks. For example, 1395
an attacker can escalate their privileges if an he/she can replace a file used by a privileged program with a 1396
hard link to a sensitive file (e.g. etc/passwd). When the process opens the file, the attacker can assume the 1397
privileges of that process or possibly prevent a program from accurately processing data in a software system. 1398

7.2.5 Avoiding the vulnerability or mitigating its effects 1399

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways: 1400

• Assume all input is malicious. Attackers can insert paths into input vectors and traverse the file 1401
system. 1402

• Use an appropriate combination of black lists and white lists to ensure only valid and expected input is 1403
processed by the system. 1404

• Warning: if you attempt to cleanse your data, then do so that the end result is not in the form that can 1405
be dangerous. A sanitizing mechanism can remove characters such as ‘.' and ‘;' which may be 1406
required fir some exploits. An attacker can try to fool the sanitizing mechanism into "cleaning" data 1407
into a dangerous form. Suppose the attacker injects a ‘.' inside a filename (e.g. "sensi.tiveFile") and 1408
the sanitizing mechanism removes the character resulting in the valid filename, "sensitiveFile". If the 1409
input data are now assumed to be safe, then the file may be compromised. 1410

• Files can often be identified by other attributes in addition to the file name, for example, by comparing 1411
file ownership or creation time. Information regarding a file that has been created and closed can be 1412

ISO/IEC PDTR 24772

© ISO 2007 – All rights reserved 39

stored and then used later to validate the identity of the file when it is reopened. Comparing multiple 1413
attributes of the file improves the likelihood that the file is the expected one. 1414

• Follow the principle of least privilege when assigning access rights to files. 1415

• Denying access to a file can prevent an attacker from replacing that file with a link to a sensitive file. 1416

• Ensure good compartmentalization in the system to provide protected areas that can be trusted. 1417

• When two or more users, or a group of users, have write permission to a directory, the potential for 1418
sharing and deception is far greater than it is for shared access to a few files. The vulnerabilities that 1419
result from malicious restructuring via hard and symbolic links suggest that it is best to avoid shared 1420
directories. 1421

• Securely creating temporary files in a shared directory is error prone and dependent on the version of 1422
the runtime library used, the operating system, and the file system. Code that works for a locally 1423
mounted file system, for example, may be vulnerable when used with a remotely mounted file system. 1424

• [The mitigation should be centered on converting relative paths into absolute paths and then verifying 1425
that the resulting absolute path makes sense with respect to the configuration and rights or 1426
permissions. This may include checking "whitelists" and "blacklists", authorized super user status, 1427
access control lists, etc.] 1428

7.2.6 Implications for standardization 1429

<Recommendations for other working groups will be recorded here. For example, we might record 1430
suggestions for changes to language standards or API standards.> 1431

7.2.7 Bibliography 1432

<Insert numbered references for other documents cited in your description. These will eventually be collected 1433
into an overall bibliography for the TR. So, please make the references complete. Someone will eventually 1434
have to reformat the references into an ISO-required format, so please err on the side of providing too much 1435
information rather than too little. Here [1] is an example of a reference: 1436

[1] Greg Hoglund, Gary McGraw, Exploiting Software: How to Break Code, ISBN-0-201-78695-8, Pearson 1437
Education, Boston, MA, 2004 1438

7.3 XYP Hard-coded Password 1439

7.3.0 History and status 1440

Pending 1441
2007-08-04, Edited by Benito 1442
2007-07-30, Edited by Larry Wagoner 1443
2007-07-20, Edited by Jim Moore 1444
2007-07-13, Edited by Larry Wagoner 1445
 1446

7.3.1 Description of application vulnerability 1447

Hard coded passwords may compromise system security in a way that cannot be easily remedied. It is never 1448
a good idea to hardcode a password. Not only does hardcoding a password allow all of the project's 1449
developers to view the password, it also makes fixing the problem extremely difficult. Once the code is in 1450
production, the password cannot be changed without patching the software. If the account protected by the 1451
password is compromised, the owners of the system will be forced to choose between security and 1452
availability. 1453

ISO/IEC PDTR 24772

40 © ISO 2007 – All rights reserved

7.3.2 Cross reference 1454

CWE: 1455
259. Hard-coded Password 1456

7.3.3 Categorization 1457

See clause 5.?. <Replace this with the categorization according to the analysis in Clause 5. At a later date, 1458
other categorization schemes may be added.> 1459

7.3.4 Mechanism of failure 1460

The use of a hard-coded password has many negative implications -- the most significant of these being a 1461
failure of authentication measures under certain circumstances. On many systems, a default administration 1462
account exists which is set to a simple default password which is hard-coded into the program or device. This 1463
hard-coded password is the same for each device or system of this type and often is not changed or disabled 1464
by end users. If a malicious user comes across a device of this kind, it is a simple matter of looking up the 1465
default password (which is freely available and public on the Internet) and logging in with complete access. In 1466
systems which authenticate with a back-end service, hard-coded passwords within closed source or drop-in 1467
solution systems require that the back-end service use a password which can be easily discovered. Client-1468
side systems with hard-coded passwords propose even more of a threat, since the extraction of a password 1469
from a binary is exceedingly simple. If hard-coded passwords are used, it is almost certain that malicious 1470
users will gain access through the account in question. 1471

7.3.5 Avoiding the vulnerability or mitigating its effects 1472

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways: 1473

• Rather than hard code a default username and password for first time logins, utilize a "first login" 1474
mode which requires the user to enter a unique strong password. 1475

• For front-end to back-end connections, there are three solutions that may be used. 1476

• Use of generated passwords which are changed automatically and must be entered at given 1477
time intervals by a system administrator. These passwords will be held in memory and only 1478
be valid for the time intervals. 1479

• The passwords used should be limited at the back end to only performing actions valid to for 1480
the front end, as opposed to having full access. 1481

• The messages sent should be tagged and checksummed with time sensitive values so as to 1482
prevent replay style attacks. 1483

7.3.6 Implications for standardization 1484

<Recommendations for other working groups will be recorded here. For example, we might record 1485
suggestions for changes to language standards or API standards.> 1486

7.3.7 Bibliography 1487

<Insert numbered references for other documents cited in your description. These will eventually be collected 1488
into an overall bibliography for the TR. So, please make the references complete. Someone will eventually 1489
have to reformat the references into an ISO-required format, so please err on the side of providing too much 1490
information rather than too little. Here [1] is an example of a reference: 1491
[1] Greg Hoglund, Gary McGraw, Exploiting Software: How to Break Code, ISBN-0-201-78695-8, Pearson 1492
Education, Boston, MA, 2004 1493

ISO/IEC PDTR 24772

© ISO 2007 – All rights reserved 41

7.4 XYS Executing or Loading Untrusted Code 1494

7.4.0 Status and History 1495

PENDING 1496
2007-08-05, Edited by Benito 1497
2007-07-30, Edited by Larry Wagoner 1498
2007-07-20, Edited by Jim Moore 1499
2007-07-13, Edited by Larry Wagoner 1500
 1501

7.4.1 Description of application vulnerability 1502

Executing commands or loading libraries from an untrusted source or in an untrusted environment can cause 1503
an application to execute malicious commands (and payloads) on behalf of an attacker. 1504

7.4.2 Cross reference 1505

CWE: 1506
114. Process Control 1507

7.4.3 Categorization 1508

See clause 5.?. <Replace this with the categorization according to the analysis in Clause 5. At a later date, 1509
other categorization schemes may be added.> 1510

7.4.4 Mechanism of failure 1511

Process control vulnerabilities take two forms: 1512
 An attacker can change the command that the program executes so that the attacker explicitly controls what 1513
the command is; 1514
 An attacker can change the environment in which the command executes so that the attacker implicitly 1515
controls what the command means. 1516
 1517
Considering only the first scenario, the possibility that an attacker may be able to control the command that is 1518
executed, process control vulnerabilities occur when: 1519
 Data enters the application from an untrusted source. 1520
 The data is used as or as part of a string representing a command that is executed by the application. 1521
 By executing the command, the application gives an attacker a privilege or capability that the attacker would 1522
not otherwise have. 1523

7.4.5 Avoiding the vulnerability or mitigating its effects 1524

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways: 1525

• Libraries that are loaded should be well understood and come from a trusted source. The 1526
application can execute code contained in the native libraries, which often contain calls that are 1527
susceptible to other security problems, such as buffer overflows or command injection. 1528

• All native libraries should be validated to determine if the application requires the use of the 1529
library. It is very difficult to determine what these native libraries actually do, and the potential for 1530
malicious code is high. In addition, the potential for an inadvertent mistake in these native libraries 1531
is also high, as many are written in C or C++ and may be susceptible to buffer overflow or race 1532
condition problems. 1533

• To help prevent buffer overflow attacks, validate all input to native calls for content and length. 1534

ISO/IEC PDTR 24772

42 © ISO 2007 – All rights reserved

• If the native library does not come from a trusted source, review the source code of the library. 1535
The library should be built from the reviewed source before using it. 1536

7.4.6 Implications for standardization 1537

<Recommendations for other working groups will be recorded here. For example, we might record 1538
suggestions for changes to language standards or API standards.> 1539

7.4.7 Bibliography 1540

<Insert numbered references for other documents cited in your description. These will eventually be collected 1541
into an overall bibliography for the TR. So, please make the references complete. Someone will eventually 1542
have to reformat the references into an ISO-required format, so please err on the side of providing too much 1543
information rather than too little. Here [1] is an example of a reference: 1544

[1] Greg Hoglund, Gary McGraw, Exploiting Software: How to Break Code, ISBN-0-201-78695-8, Pearson 1545
Education, Boston, MA, 2004 1546

7.5 XYM Insufficiently Protected Credentials 1547

7.5.0 History and status 1548

Pending 1549
2007-08-04, Edited by Benito 1550
2007-07-30, Edited by Larry Wagoner 1551
2007-07-20, Edited by Jim Moore 1552
2007-07-13, Edited by Larry Wagoner 1553
 1554

7.5.1 Description of application vulnerability 1555

This weakness occurs when the application transmits or stores authentication credentials and uses an 1556
insecure method that is susceptible to unauthorized interception and/or retrieval. 1557

7.5.2 Cross reference 1558

CWE: 1559
256. Plaintext Storage 1560
257. Storing Passwords in a Recoverable Format 1561

7.5.3 Categorization 1562

See clause 5.?. <Replace this with the categorization according to the analysis in Clause 5. At a later date, 1563
other categorization schemes may be added.> 1564

7.5.4 Mechanism of failure 1565

Storing a password in plaintext may result in a system compromise. Password management issues occur 1566
when a password is stored in plaintext in an application's properties or configuration file. A programmer can 1567
attempt to remedy the password management problem by obscuring the password with an encoding function, 1568
such as base 64 encoding, but this effort does not adequately protect the password. Storing a plaintext 1569
password in a configuration file allows anyone who can read the file access to the password-protected 1570
resource. Developers sometimes believe that they cannot defend the application from someone who has 1571
access to the configuration, but this attitude makes an attacker's job easier. Good password management 1572
guidelines require that a password never be stored in plaintext. 1573

 1574
The storage of passwords in a recoverable format makes them subject to password reuse attacks by 1575

ISO/IEC PDTR 24772

© ISO 2007 – All rights reserved 43

malicious users. If a system administrator can recover the password directly or use a brute force search on the 1576
information available to him, he can use the password on other accounts. 1577

The use of recoverable passwords significantly increases the chance that passwords will be used maliciously. 1578
In fact, it should be noted that recoverable encrypted passwords provide no significant benefit over plain-text 1579
passwords since they are subject not only to reuse by malicious attackers but also by malicious insiders. 1580

7.5.5 Avoiding the vulnerability or mitigating its effects 1581

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways: 1582

• Software developers can avoid the vulnerability or mitigate its ill effects in the following ways: 1583
• Avoid storing passwords in easily accessible locations. 1584
• Never store a password in plaintext. 1585
• Ensure that strong, non-reversible encryption is used to protect stored passwords. 1586
• Consider storing cryptographic hashes of passwords as an alternative to storing in plaintext. 1587

7.5.6 Implications for standardization 1588

<Recommendations for other working groups will be recorded here. For example, we might record 1589
suggestions for changes to language standards or API standards.> 1590

7.5.7 Bibliography 1591

<Insert numbered references for other documents cited in your description. These will eventually be collected 1592
into an overall bibliography for the TR. So, please make the references complete. Someone will eventually 1593
have to reformat the references into an ISO-required format, so please err on the side of providing too much 1594
information rather than too little. Here [1] is an example of a reference: 1595

[1] Greg Hoglund, Gary McGraw, Exploiting Software: How to Break Code, ISBN-0-201-78695-8, Pearson 1596
Education, Boston, MA, 2004 1597

7.6 XYT Cross-site Scripting 1598

7.6.0 Status and History 1599

2007-08-04, Edited by Benito 1600
2007-07-30, Edited by Larry Wagoner 1601
2007-07-20, Edited by Jim Moore 1602
2007-07-13, Edited by Larry Wagoner 1603
 1604

7.6.1 Description of application vulnerability 1605

Cross-site scripting (XSS) weakness occurs when dynamically generated web pages display input, such as 1606
login information, that is not properly validated, allowing an attacker to embed malicious scripts into the 1607
generated page and then execute the script on the machine of any user that views the site. If successful, 1608
Cross-site scripting vulnerabilities can be exploited to manipulate or steal cookies, create requests that can be 1609
mistaken for those of a valid user, compromise confidential information, or execute malicious code on the end 1610
user systems for a variety of nefarious purposes. 1611

7.6.2 Cross reference 1612

CWE: 1613
80. Basic XSS 1614
81. XSS in error pages 1615

ISO/IEC PDTR 24772

44 © ISO 2007 – All rights reserved

82. Script in IMG tags 1616
83. XSS using Script in Attributes 1617
84. XSS using Script Via Encoded URI Schemes 1618
85. Doubled character XSS manipulators, e.g. '<<script' 1619
86. Invalid Character in Identifiers 1620
87. Alternate XSS syntax 1621

7.6.3 Categorization 1622

See clause 5.?. <Replace this with the categorization according to the analysis in Clause 5. At a later date, 1623
other categorization schemes may be added.> 1624

7.6.4 Mechanism of failure 1625

Cross-site scripting (XSS) vulnerabilities occur when an attacker uses a web application to send malicious 1626
code, generally JavaScript, to a different end user. When a web application uses input from a user in the 1627
output it generates without filtering it, an attacker can insert an attack in that input and the web application 1628
sends the attack to other users. The end user trusts the web application, and the attacks exploit that trust to 1629
do things that would not normally be allowed. Attackers frequently use a variety of methods to encode the 1630
malicious portion of the tag, such as using Unicode, so the request looks less suspicious to the user. 1631

XSS attacks can generally be categorized into two categories: stored and reflected. Stored attacks are those 1632
where the injected code is permanently stored on the target servers in a database, message forum, visitor log, 1633
and so forth. Reflected attacks are those where the injected code takes another route to the victim, such as in 1634
an email message, or on some other server. When a user is tricked into clicking a link or submitting a form, 1635
the injected code travels to the vulnerable web server, which reflects the attack back to the user's browser. 1636
The browser then executes the code because it came from a 'trusted' server. For a reflected XSS attack to 1637
work, the victim must submit the attack to the server. This is still a very dangerous attack given the number of 1638
possible ways to trick a victim into submitting such a malicious request, including clicking a link on a malicious 1639
Web site, in an email, or in an inner-office posting. 1640

XSS flaws are very likely in web applications, as they require a great deal of developer discipline to avoid 1641
them in most applications. It is relatively easy for an attacker to find XSS vulnerabilities. Some of these 1642
vulnerabilities can be found using scanners, and some exist in older web application servers. The 1643
consequence of an XSS attack is the same regardless of whether it is stored or reflected. 1644

The difference is in how the payload arrives at the server. XSS can cause a variety of problems for the end 1645
user that range in severity from an annoyance to complete account compromise. The most severe XSS 1646
attacks involve disclosure of the user's session cookie, which allows an attacker to hijack the user's session 1647
and take over their account. Other damaging attacks include the disclosure of end user files, installation of 1648
Trojan horse programs, redirecting the user to some other page or site, and modifying presentation of content. 1649

Cross-site scripting (XSS) vulnerabilities occur when: 1650
 1. Data enters a Web application through an untrusted source, most frequently a web request. 1651
 2. The data is included in dynamic content that is sent to a web user without being validated for malicious 1652
code. 1653
The malicious content sent to the web browser often takes the form of a segment of JavaScript, but may also 1654
include HTML, Flash or any other type of code that the browser may execute. The variety of attacks based on 1655
XSS is almost limitless, but they commonly include transmitting private data like cookies or other session 1656
information to the attacker, redirecting the victim to web content controlled by the attacker, or performing other 1657
malicious operations on the user's machine under the guise of the vulnerable site. 1658

Cross-site scripting attacks can occur wherever an untrusted user has the ability to publish content to a 1659
trusted web site. Typically, a malicious user will craft a client-side script, which — when parsed by a web 1660
browser — performs some activity (such as sending all site cookies to a given E–mail address). If the input is 1661
unchecked, this script will be loaded and run by each user visiting the web site. Since the site requesting to 1662
run the script has access to the cookies in question, the malicious script does also. There are several other 1663
possible attacks, such as running "Active X" controls (under Microsoft Internet Explorer) from sites that a user 1664
perceives as trustworthy; cookie theft is however by far the most common. All of these attacks are easily 1665

ISO/IEC PDTR 24772

© ISO 2007 – All rights reserved 45

prevented by ensuring that no script tags — or for good measure, HTML tags at all — are allowed in data to 1666
be posted publicly. 1667

Specific instances of XSS are: 1668
 'Basic' XSS involves a complete lack of cleansing of any special characters, including the most fundamental 1669
XSS elements such as "<", ">", and "&". 1670
 1671
 A web developer displays input on an error page (e.g. a customized 403 Forbidden page). If an attacker can 1672
influence a victim to view/request a web page that causes an error, then the attack may be successful. 1673

 A Web application that trusts input in the form of HTML IMG tags is potentially vulnerable to XSS attacks. 1674
Attackers can embed XSS exploits into the values for IMG attributes (e.g. SRC) that is streamed and then 1675
executed in a victim's browser. Note that when the page is loaded into a user's browsers, the exploit will 1676
automatically execute. 1677

 The software does not filter "javascript:" or other URI's from dangerous attributes within tags, such as 1678
onmouseover, onload, onerror, or style. 1679

 The web application fails to filter input for executable script disguised with URI encodings. 1680

 The web application fails to filter input for executable script disguised using doubling of the involved 1681
characters. 1682

 The software does not strip out invalid characters in the middle of tag names, schemes, and other identifiers, 1683
which are still rendered by some web browsers that ignore the characters. 1684

 The software fails to filter alternate script syntax provided by the attacker. 1685

Cross-site scripting attacks may occur anywhere that possibly malicious users are allowed to post unregulated 1686
material to a trusted web site for the consumption of other valid users. The most common example can be 1687
found in bulletin-board web sites which provide web based mailing list-style functionality. The most common 1688
attack performed with cross-site scripting involves the disclosure of information stored in user cookies. In 1689
some circumstances it may be possible to run arbitrary code on a victim's computer when cross-site scripting 1690
is combined with other flaws. 1691

7.6.5 Avoiding the vulnerability or mitigating its effects 1692

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways: 1693

• Carefully check each input parameter against a rigorous positive specification (white list) defining 1694
the specific characters and format allowed. 1695

• All input should be sanitized, not just parameters that the user is supposed to specify, but all data 1696
in the request, including hidden fields, cookies, headers, the URL itself, and so forth. 1697

• A common mistake that leads to continuing XSS vulnerabilities is to validate only fields that are 1698
expected to be redisplayed by the site. 1699

• Data is frequently encountered from the request that is reflected by the application server or the 1700
application that the development team did not anticipate. Also, a field that is not currently reflected 1701
may be used by a future developer. Therefore, validating ALL parts of the HTTP request is 1702
recommended. 1703

7.6.6 Implications for standardization 1704

<Recommendations for other working groups will be recorded here. For example, we might record 1705
suggestions for changes to language standards or API standards.> 1706

ISO/IEC PDTR 24772

46 © ISO 2007 – All rights reserved

7.6.7 Bibliography 1707

<Insert numbered references for other documents cited in your description. These will eventually be collected 1708
into an overall bibliography for the TR. So, please make the references complete. Someone will eventually 1709
have to reformat the references into an ISO-required format, so please err on the side of providing too much 1710
information rather than too little. Here [1] is an example of a reference: 1711

[1] Greg Hoglund, Gary McGraw, Exploiting Software: How to Break Code, ISBN-0-201-78695-8, Pearson 1712
Education, Boston, MA, 2004 1713

7.7 XYN Privilege Management 1714

7.7.0 History and status 1715

PENDING 1716
2007-08-04, Edited by Benito 1717
2007-07-30, Edited by Larry Wagoner 1718
2007-07-20, Edited by Jim Moore 1719
2007-07-13, Edited by Larry Wagoner 1720
 1721

7.7.1 Description of application vulnerability 1722

Failure to adhere to the principle of least privilege amplifies the risk posed by other vulnerabilities. 1723

7.7.2 Cross reference 1724

CWE: 1725
250. Often Misused: Privilege Management 1726

7.7.3 Categorization 1727

See clause 5.?. <Replace this with the categorization according to the analysis in Clause 5. At a later date, 1728
other categorization schemes may be added.> 1729

7.7.4 Mechanism of failure 1730

This vulnerability type refers to cases in which an application grants greater access rights than necessary. 1731
Depending on the level of access granted, this may allow a user to access confidential information. For 1732
example, programs that run with root privileges have caused innumerable Unix security disasters. It is 1733
imperative that you carefully review privileged programs for all kinds of security problems, but it is equally 1734
important that privileged programs drop back to an unprivileged state as quickly as possible in order to limit 1735
the amount of damage that an overlooked vulnerability might be able to cause. Privilege management 1736
functions can behave in some less-than-obvious ways, and they have different quirks on different platforms. 1737
These inconsistencies are particularly pronounced if you are transitioning from one non-root user to another. 1738
Signal handlers and spawned processes run at the privilege of the owning process, so if a process is running 1739
as root when a signal fires or a sub-process is executed, the signal handler or sub-process will operate with 1740
root privileges. An attacker may be able to leverage these elevated privileges to do further damage. To grant 1741
the minimum access level necessary, first identify the different permissions that an application or user of that 1742
application will need to perform their actions, such as file read and write permissions, network socket 1743
permissions, and so forth. Then explicitly allow those actions while denying all else. 1744

7.7.5 Avoiding the vulnerability or mitigating its effects 1745

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways: 1746

Very carefully manage the setting, management and handling of privileges. Explicitly manage trust zones in 1747
the software. 1748

ISO/IEC PDTR 24772

© ISO 2007 – All rights reserved 47

Follow the principle of least privilege when assigning access rights to entities in a software system. 1749

7.7.6 Implications for standardization 1750

<Recommendations for other working groups will be recorded here. For example, we might record 1751
suggestions for changes to language standards or API standards.> 1752

7.7.7 Bibliography 1753

<Insert numbered references for other documents cited in your description. These will eventually be collected 1754
into an overall bibliography for the TR. So, please make the references complete. Someone will eventually 1755
have to reformat the references into an ISO-required format, so please err on the side of providing too much 1756
information rather than too little. Here [1] is an example of a reference: 1757

[1] Greg Hoglund, Gary McGraw, Exploiting Software: How to Break Code, ISBN-0-201-78695-8, Pearson 1758
Education, Boston, MA, 2004 1759

7.8 XYO Privilege Sandbox Issues 1760

7.8.0 History and status 1761

Pending 1762
2007-08-04, Edited by Benito 1763
2007-07-30, Edited by Larry Wagoner 1764
2007-07-20, Edited by Jim Moore 1765
2007-07-13, Edited by Larry Wagoner 1766
 1767

7.8.1 Description of application vulnerability 1768

A variety of vulnerabilities occur with improper handling, assignment, or management of privileges. These are 1769
especially present in sandbox environments, although it could be argued that any privilege problem occurs 1770
within the context of some sort of sandbox. 1771

7.8.2 Cross reference 1772

CWE: 1773
266. Incorrect Privilege Assignment 1774
267. Unsafe Privilege 1775
268. Privilege Chaining 1776
269. Privilege Management Error 1777
270. Privilege Context Switching Error 1778
272. Least Privilege Violation 1779
273. Failure to Check Whether Privileges were Dropped Successfully 1780
274. Insufficient Privileges 1781
276. Insecure Default Permissions 1782

7.8.3 Categorization 1783

See clause 5.?. <Replace this with the categorization according to the analysis in Clause 5. At a later date, 1784
other categorization schemes may be added.> 1785

7.8.4 Mechanism of failure 1786

The failure to drop system privileges when it is reasonable to do so is not an application vulnerability by itself. 1787
It does, however, serve to significantly increase the severity of other vulnerabilities. According to the principle 1788
of least privilege, access should be allowed only when it is absolutely necessary to the function of a given 1789
system, and only for the minimal necessary amount of time. Any further allowance of privilege widens the 1790

ISO/IEC PDTR 24772

48 © ISO 2007 – All rights reserved

window of time during which a successful exploitation of the system will provide an attacker with that same 1791
privilege. 1792

There are many situations that could lead to a mechanism of failure. A product could incorrectly assign a 1793
privilege to a particular entity. A particular privilege, role, capability, or right could be used to perform unsafe 1794
actions that were not intended, even when it is assigned to the correct entity. (Note that there are two 1795
separate sub-categories here: privilege incorrectly allows entities to perform certain actions; and the object is 1796
incorrectly accessible to entities with a given privilege.) Two distinct privileges, roles, capabilities, or rights 1797
could be combined in a way that allows an entity to perform unsafe actions that would not be allowed without 1798
that combination. The software may not properly manage privileges while it is switching between different 1799
contexts that cross privilege boundaries. A product may not properly track, modify, record, or reset privileges. 1800
In some contexts, a system executing with elevated permissions will hand off a process/file/etc. to another 1801
process/user. If the privileges of an entity are not reduced, then elevated privileges are spread throughout a 1802
system and possibly to an attacker. The software may not properly handle the situation in which it has 1803
insufficient privileges to perform an operation. A program, upon installation, may set insecure permissions for 1804
an object. 1805

7.8.5 Avoiding the vulnerability or mitigating its effects 1806

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways: 1807

• The principle of least privilege when assigning access rights to entities in a software system 1808
should be followed. The setting, management and handling of privileges should be managed very 1809
carefully. Upon changing security privileges, one should ensure that the change was successful. 1810

• Consider following the principle of separation of privilege. Require multiple conditions to be met 1811
before permitting access to a system resource. 1812

• Trust zones in the software should be explicity managed. If at all possible, limit the allowance of 1813
system privilege to small, simple sections of code that may be called atomically. 1814

• As soon as possible after acquiring elevated privilege to call a privileged function such as chroot(), 1815
the program should drop root privilege and return to the privilege level of the invoking user. 1816

• In newer Windows implementations, make sure that the process token has the 1817
SeImpersonatePrivilege. 1818

7.8.6 Implications for standardization 1819

<Recommendations for other working groups will be recorded here. For example, we might record 1820
suggestions for changes to language standards or API standards.> 1821

7.8.7 Bibliography 1822

<Insert numbered references for other documents cited in your description. These will eventually be collected 1823
into an overall bibliography for the TR. So, please make the references complete. Someone will eventually 1824
have to reformat the references into an ISO-required format, so please err on the side of providing too much 1825
information rather than too little. Here [1] is an example of a reference: 1826

[1] Greg Hoglund, Gary McGraw, Exploiting Software: How to Break Code, ISBN-0-201-78695-8, Pearson 1827
Education, Boston, MA, 2004 1828

7.9 XZO Authentication Logic Error 1829

7.9.0 Status and history 1830

PENDING 1831
2007-08-04, Edited by Benito 1832

ISO/IEC PDTR 24772

© ISO 2007 – All rights reserved 49

2007-07-30, Edited by Larry Wagoner 1833
2007-07-20, Edited by Jim Moore 1834
2007-07-13, Edited by Larry Wagoner 1835
 1836

7.9.1 Description of application vulnerability 1837

The software does not properly ensure that the user has proven their identity. 1838

7.9.2 Cross reference 1839

CWE: 1840
288. Authentication Bypass by Alternate Path/Channel 1841
289. Authentication Bypass by Alternate Name 1842
290. Authentication Bypass by Spoofing 1843
294. Authentication Bypass by Replay 1844
301. Reflection Attack in an Authentication Protocol 1845
302. Authentication Bypass by Assumed-Immutable Data 1846
303. Authentication Logic Error 1847
305. Authentication Bypass by Primary Weakness 1848

7.9.3 Categorization 1849

See clause 5.?. <Replace this with the categorization according to the analysis in Clause 5. At a later date, 1850
other categorization schemes may be added.> 1851

7.9.4 Mechanism of failure 1852

Authentication bypass by alternate path or channel occurs when a product requires authentication, but the 1853
product has an alternate path or channel that does not require authentication. Note that this is often seen in 1854
web applications that assume that access to a particular CGI program can only be obtained through a "front" 1855
screen, but this problem is not just in web apps. 1856
 1857
Authentication bypass by alternate name occurs when the software performs authentication based on the 1858
name of the resource being accessed, but there are multiple names for the resource, and not all names are 1859
checked. 1860
 1861
Authentication bypass by capture-replay occurs when it is possible for a malicious user to sniff network traffic 1862
and bypass authentication by replaying it to the server in question to the same effect as the original message 1863
(or with minor changes). Messages sent with a capture-relay attack allow access to resources which are not 1864
otherwise accessible without proper authentication. Capture-replay attacks are common and can be difficult 1865
to defeat without cryptography. They are a subset of network injection attacks that rely listening in on 1866
previously sent valid commands, then changing them slightly if necessary and resending the same commands 1867
to the server. Since any attacker who can listen to traffic can see sequence numbers, it is necessary to sign 1868
messages with some kind of cryptography to ensure that sequence numbers are not simply doctored along 1869
with content. 1870
 1871
Reflection attacks capitalize on mutual authentication schemes in order to trick the target into revealing the 1872
secret shared between it and another valid user. In a basic mutual-authentication scheme, a secret is known 1873
to both the valid user and the server; this allows them to authenticate. In order that they may verify this shared 1874
secret without sending it plainly over the wire, they utilize a Diffie-Hellman-style scheme in which they each 1875
pick a value, then request the hash of that value as keyed by the shared secret. In a reflection attack, the 1876
attacker claims to be a valid user and requests the hash of a random value from the server. When the server 1877
returns this value and requests its own value to be hashed, the attacker opens another connection to the 1878
server. This time, the hash requested by the attacker is the value which the server requested in the first 1879
connection. When the server returns this hashed value, it is used in the first connection, authenticating the 1880
attacker successfully as the impersonated valid user. 1881
 1882
Authentication bypass by assumed-immutable data occurs when the authentication scheme or implementation 1883
uses key data elements that are assumed to be immutable, but can be controlled or modified by the attacker, 1884

ISO/IEC PDTR 24772

50 © ISO 2007 – All rights reserved

e.g. if a web application relies on a cookie "Authenticated=1" 1885
 1886
Authentication logic error occurs when the authentication techniques do not follow the algorithms that define 1887
them exactly and so authentication can be jeopardized. For instance, a malformed or improper implementation 1888
of an algorithm can weaken the authorization technique. 1889
 1890
An authentication bypass by primary weakness occurs when the authentication algorithm is sound, but the 1891
implemented mechanism can be bypassed as the result of a separate weakness that is primary to the 1892
authentication error. 1893

7.9.5 Avoiding the vulnerability or mitigating its effects 1894

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways: 1895

• Funnel all access through a single choke point to simplify how users can access a resource. For 1896
every access, perform a check to determine if the user has permissions to access the resource. 1897
Avoid making decisions based on names of resources (e.g. files) if those resources can have 1898
alternate names. 1899

• Canonicalize the name to match that of the file system's representation of the name. This can 1900
sometimes be achieved with an available API (e.g. in Win32 the GetFullPathName function). 1901

• Utilize some sequence or time stamping functionality along with a checksum which takes this into 1902
account in order to ensure that messages can be parsed only once. 1903

• Use different keys for the initiator and responder or of a different type of challenge for the initiator 1904
and responder. 1905

• Assume all input is malicious. Use an appropriate combination of black lists and white lists to 1906
ensure only valid and expected input is processed by the system. For example, valid input may be 1907
in the form of an absolute pathname(s). You can also limit pathnames to exist on selected drives, 1908
have the format specified to include only separator characters (forward or backward slashes) and 1909
alphanumeric characters, and follow a naming convention such as having a maximum of 32 1910
characters followed by a '.' and ending with specified extensions. 1911

7.9.6 Implications for standardization 1912

<Recommendations for other working groups will be recorded here. For example, we might record 1913
suggestions for changes to language standards or API standards.> 1914

7.9.7 Bibliography 1915

<Insert numbered references for other documents cited in your description. These will eventually be collected 1916
into an overall bibliography for the TR. So, please make the references complete. Someone will eventually 1917
have to reformat the references into an ISO-required format, so please err on the side of providing too much 1918
information rather than too little. Here [1] is an example of a reference: 1919

[1] Greg Hoglund, Gary McGraw, Exploiting Software: How to Break Code, ISBN-0-201-78695-8, Pearson 1920
Education, Boston, MA, 2004 1921

7.10 XZX Memory Locking 1922

7.10.0 Status and history 1923

PENDING 1924
2007-08-04, Edited by Benito 1925
2007-07-30, Edited by Larry Wagoner 1926

ISO/IEC PDTR 24772

© ISO 2007 – All rights reserved 51

2007-07-20, Edited by Jim Moore 1927
2007-07-13, Edited by Larry Wagoner 1928
 1929

7.10.1 Description of application vulnerability 1930

Sensitive data stored in memory that was not locked or that has been improperly locked may be written to 1931
swap files on disk by the virtual memory manager. 1932

7.10.2 Cross reference 1933

CWE: 1934
591. Memory Locking 1935

7.10.3 Categorization 1936

See clause 5.?. <Replace this with the categorization according to the analysis in Clause 5. At a later date, 1937
other categorization schemes may be added.> 1938

7.10.4 Mechanism of failure 1939

Sensitive data that is written to a swap file may be exposed. 1940

7.10.5 Avoiding the vulnerability or mitigating its effects 1941

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways: 1942

• Identify data that needs to be protected from swapping and choose platform-appropriate 1943
protection mechanisms. 1944

• Check return values to ensure locking operations are successful. 1945

• On Windows systems the VirtualLock function can lock a page of memory to ensure that it will 1946
remain present in memory and not be swapped to disk. However, on older versions of Windows, 1947
such as 95, 98, or Me, the VirtualLock() function is only a stub and provides no protection. 1948
On POSIX systems the mlock() call ensures that a page will stay resident in memory but does 1949
not guarantee that the page will not appear in the swap. Therefore, it is unsuitable for use as a 1950
protection mechanism for sensitive data. Some platforms, in particular Linux, do make the 1951
guarantee that the page will not be swapped, but this is non-standard and is not portable. Calls to 1952
mlock() also require supervisor privilege. Return values for both of these calls must be checked 1953
to ensure that the lock operation was actually successful. 1954

7.10.6 Implications for standardization 1955

[Note: Should POSIX and other API standards should provide the functionality.] 1956

7.10.7 Bibliography 1957

<Insert numbered references for other documents cited in your description. These will eventually be collected 1958
into an overall bibliography for the TR. So, please make the references complete. Someone will eventually 1959
have to reformat the references into an ISO-required format, so please err on the side of providing too much 1960
information rather than too little. Here [1] is an example of a reference: 1961

[1] Greg Hoglund, Gary McGraw, Exploiting Software: How to Break Code, ISBN-0-201-78695-8, Pearson 1962
Education, Boston, MA, 2004 1963

ISO/IEC PDTR 24772

52 © ISO 2007 – All rights reserved

7.11 XZP Resource Exhaustion 1964

7.11.0 Status and history 1965

PENDING 1966
2007-08-04, Edited by Benito 1967
2007-07-30, Edited by Larry Wagoner 1968
2007-07-20, Edited by Jim Moore 1969
2007-07-13, Edited by Larry Wagoner 1970
 1971

7.11.1 Description of application vulnerability 1972

The application is susceptible to generating and/or accepting an excessive amount of requests that could 1973
potentially exhaust limited resources, such as memory, file system storage, database connection pool entries, 1974
or CPU. This can ultimately lead to a denial of service that could prevent valid users from accessing the 1975
application. 1976

7.11.2 Cross reference 1977

CWE: 1978
400. Resource Exhaustion (file descriptor, disk space, sockets,...) 1979

7.11.3 Categorization 1980

See clause 5.?. <Replace this with the categorization according to the analysis in Clause 5. At a later date, 1981
other categorization schemes may be added.> 1982

7.11.4 Mechanism of failure 1983

There are two primary failures associated with resource exhaustion. The most common result of resource 1984
exhaustion is denial of service. In some cases it may be possible to force a system to "fail open" in the event 1985
of resource exhaustion. 1986

Resource exhaustion issues are generally understood but are far more difficult to successfully prevent. Taking 1987
advantage of various entry points, an attacker could craft a wide variety of requests that would cause the site 1988
to consume resources. Database queries that take a long time to process are good DoS targets. An attacker 1989
would only have to write a few lines of Perl code to generate enough traffic to exceed the site's ability to keep 1990
up. This would effectively prevent authorized users from using the site at all. 1991

Resources can be exploited simply by ensuring that the target machine must do much more work and 1992
consume more resources in order to service a request than the attacker must do to initiate a request. 1993
Prevention of these attacks requires either that the target system either recognizes the attack and denies that 1994
user further access for a given amount of time or uniformly throttles all requests in order to make it more 1995
difficult to consume resources more quickly than they can again be freed. The first of these solutions is an 1996
issue in itself though, since it may allow attackers to prevent the use of the system by a particular valid user. If 1997
the attacker impersonates the valid user, he may be able to prevent the user from accessing the server in 1998
question. The second solution is simply difficult to effectively institute and even when properly done, it does 1999
not provide a full solution. It simply makes the attack require more resources on the part of the attacker. 2000

The final concern that must be discussed about issues of resource exhaustion is that of systems which "fail 2001
open." This means that in the event of resource consumption, the system fails in such a way that the state of 2002
the system — and possibly the security functionality of the system — is compromised. A prime example of this 2003
can be found in old switches that were vulnerable to "macof" attacks (so named for a tool developed by 2004
Dugsong). These attacks flooded a switch with random IP and MAC address combinations, therefore 2005
exhausting the switch's cache, which held the information of which port corresponded to which MAC 2006
addresses. Once this cache was exhausted, the switch would fail in an insecure way and would begin to act 2007
simply as a hub, broadcasting all traffic on all ports and allowing for basic sniffing attacks. 2008

ISO/IEC PDTR 24772

© ISO 2007 – All rights reserved 53

7.11.5 Avoiding the vulnerability or mitigating its effects 2009

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways: 2010

• Software developers can avoid the vulnerability or mitigate its ill effects in the following ways: 2011

• Implement throttling mechanisms into the system architecture. The best protection is to limit the 2012
amount of resources that an unauthorized user can cause to be expended. A strong 2013
authentication and access control model will help prevent such attacks from occurring in the first 2014
place. The login application should be protected against DoS attacks as much as possible. 2015
Limiting the database access, perhaps by caching result sets, can help minimize the resources 2016
expended. To further limit the potential for a DoS attack, consider tracking the rate of requests 2017
received from users and blocking requests that exceed a defined rate threshold. 2018

• Other ways to avoid the vulnerability are to ensure that protocols have specific limits of scale 2019
placed on them, ensure that all failures in resource allocation place the system into a safe posture 2020
and to fail safely when a resource exhaustion occurs. 2021

7.11.6 Implications for standardization 2022

<Recommendations for other working groups will be recorded here. For example, we might record 2023
suggestions for changes to language standards or API standards.> 2024

7.11.7 Bibliography 2025

<Insert numbered references for other documents cited in your description. These will eventually be collected 2026
into an overall bibliography for the TR. So, please make the references complete. Someone will eventually 2027
have to reformat the references into an ISO-required format, so please err on the side of providing too much 2028
information rather than too little. Here [1] is an example of a reference: 2029

[1] Greg Hoglund, Gary McGraw, Exploiting Software: How to Break Code, ISBN-0-201-78695-8, Pearson 2030
Education, Boston, MA, 2004 2031

 2032

7.12 XZQ Unquoted Search Path or Element 2033

7.12.0 Status and history 2034

PENDING 2035
2007-08-04, Edited by Benito 2036
2007-07-30, Edited by Larry Wagoner 2037
2007-07-20, Edited by Jim Moore 2038
2007-07-13, Edited by Larry Wagoner 2039
 2040

7.12.1 Description of application vulnerability 2041

Strings injected into a software system that are not quoted can permit an attacker to execute arbitrary 2042
commands. 2043

7.12.2 Cross reference 2044

CWE: 2045
428. Unquoted Search Path or Element 2046

ISO/IEC PDTR 24772

54 © ISO 2007 – All rights reserved

7.12.3 Categorization 2047

See clause 5.?. <Replace this with the categorization according to the analysis in Clause 5. At a later date, 2048
other categorization schemes may be added.> 2049

7.12.4 Mechanism of failure 2050

The mechanism of failure stems from missing quoting of strings injected into a software system. By allowing 2051
whitespaces in identifiers, an attacker could potentially execute arbitrary commands. This vulnerability covers 2052
"C:\Program Files" and space-in-search-path issues. Theoretically this could apply to other operating 2053
systems besides Windows, especially those that make it easy for spaces to be in files or folders. 2054

7.12.5 Avoiding the vulnerability or mitigating its effects 2055

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways: 2056

• Software should quote the input data that can be potentially executed on a system. 2057

7.12.6 Implications for standardization 2058

<Recommendations for other working groups will be recorded here. For example, we might record 2059
suggestions for changes to language standards or API standards.> 2060

7.12.7 Bibliography 2061

<Insert numbered references for other documents cited in your description. These will eventually be collected 2062
into an overall bibliography for the TR. So, please make the references complete. Someone will eventually 2063
have to reformat the references into an ISO-required format, so please err on the side of providing too much 2064
information rather than too little. Here [1] is an example of a reference: 2065

[1] Greg Hoglund, Gary McGraw, Exploiting Software: How to Break Code, ISBN-0-201-78695-8, Pearson 2066
Education, Boston, MA, 2004 2067

 2068

7.13 XZL Discrepancy Information Leak 2069

7.13.0 Status and history 2070

PENDING 2071
2007-08-04, Edited by Benito 2072
2007-07-30, Edited by Larry Wagoner 2073
2007-07-20, Edited by Jim Moore 2074
2007-07-13, Edited by Larry Wagoner 2075
 2076

7.13.1 Description of application vulnerability 2077

A discrepancy information leak is an information leak in which the product behaves differently, or sends 2078
different responses, in a way that reveals security-relevant information about the state of the product, such as 2079
whether a particular operation was successful or not. 2080

7.13.2 Cross reference 2081

CWE: 2082
204. Response Discrepancy Information Leak 2083
206. Internal Behavioral Inconsistency Information Leak 2084

ISO/IEC PDTR 24772

© ISO 2007 – All rights reserved 55

207. External Behavorial Inconsistency Information Leak 2085
208. Timing Discrepancy Information Leak 2086

7.13.3 Categorization 2087

See clause 5.?. <Replace this with the categorization according to the analysis in Clause 5. At a later date, 2088
other categorization schemes may be added.> 2089

7.13.4 Mechanism of failure 2090

A response discrepancy information leak occurs when the product sends different messages in direct 2091
response to an attacker's request, in a way that allows the attacker to learn about the inner state of the 2092
product. The leaks can be inadvertent (bug) or intentional (design). 2093
 2094
A behavioural discrepancy information leak occurs when the product's actions indicate important differences 2095
based on (1) the internal state of the product or (2) differences from other products in the same class. Attacks 2096
such as OS fingerprinting rely heavily on both behavioral and response discrepancies. An internal 2097
behavioural inconsistency information leak is the situation where two separate operations in a product cause 2098
the product to behave differently in a way that is observable to an attacker and reveals security-relevant 2099
information about the internal state of the product, such as whether a particular operation was successful or 2100
not. An external behavioural inconsistency information leak is the situation where the software behaves 2101
differently than other products like it, in a way that is observable to an attacker and reveals security-relevant 2102
information about which product is being used, or its operating state. 2103
 2104
A timing discrepancy information leak occurs when two separate operations in a product require different 2105
amounts of time to complete, in a way that is observable to an attacker and reveals security-relevant 2106
information about the state of the product, such as whether a particular operation was successful or not. 2107

7.13.5 Avoiding the vulnerability or mitigating its effects 2108

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways: 2109

• Software developers can avoid the vulnerability or mitigate its ill effects in the following ways: 2110

• Compartmentalize your system to have "safe" areas where trust boundaries can be 2111
unambiguously drawn. Do not allow sensitive data to go outside of the trust boundary and always 2112
be careful when interfacing with a compartment outside of the safe area. 2113

7.13.6 Implications for standardization 2114

<Recommendations for other working groups will be recorded here. For example, we might record 2115
suggestions for changes to language standards or API standards.> 2116

7.13.7 Bibliography 2117

<Insert numbered references for other documents cited in your description. These will eventually be collected 2118
into an overall bibliography for the TR. So, please make the references complete. Someone will eventually 2119
have to reformat the references into an ISO-required format, so please err on the side of providing too much 2120
information rather than too little. Here [1] is an example of a reference: 2121

[1] Greg Hoglund, Gary McGraw, Exploiting Software: How to Break Code, ISBN-0-201-78695-8, Pearson 2122
Education, Boston, MA, 2004 2123

 2124

ISO/IEC PDTR 24772

56 © ISO 2007 – All rights reserved

7.14 XZN Missing or Inconsistent Access Control 2125

7.14.0 Status and history 2126

PENDING 2127
2007-08-04, Edited by Benito 2128
2007-07-30, Edited by Larry Wagoner 2129
2007-07-20, Edited by Jim Moore 2130
2007-07-13, Edited by Larry Wagoner 2131
 2132

7.14.1 Description of application vulnerability 2133

The software does not perform access control checks in a consistent manner across all potential execution 2134
paths. 2135

7.14.2 Cross reference 2136

CWE: 2137
285. Missing or Inconsistent Access Control 2138

7.14.3 Categorization 2139

See clause 5.?. <Replace this with the categorization according to the analysis in Clause 5. At a later date, 2140
other categorization schemes may be added.> 2141

7.14.4 Mechanism of failure 2142

For web applications, attackers can issue a request directly to a page (URL) that they may not be authorized 2143
to access. If the access control policy is not consistently enforced on every page restricted to authorized 2144
users, then an attacker could gain access to and possibly corrupt these resources. 2145

7.14.5 Avoiding the vulnerability or mitigating its effects 2146

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways: 2147

• For web applications, make sure that the access control mechanism is enforced correctly at the 2148
server side on every page. Users should not be able to access any information that they are not 2149
authorized for by simply requesting direct access to that page. Ensure that all pages containing 2150
sensitive information are not cached, and that all such pages restrict access to requests that are 2151
accompanied by an active and authenticated session token associated with a user who has the 2152
required permissions to access that page. 2153

7.14.6 Implications for standardization 2154

<Recommendations for other working groups will be recorded here. For example, we might record 2155
suggestions for changes to language standards or API standards.> 2156

7.14.7 Bibliography 2157

<Insert numbered references for other documents cited in your description. These will eventually be collected 2158
into an overall bibliography for the TR. So, please make the references complete. Someone will eventually 2159
have to reformat the references into an ISO-required format, so please err on the side of providing too much 2160
information rather than too little. Here [1] is an example of a reference: 2161

[1] Greg Hoglund, Gary McGraw, Exploiting Software: How to Break Code, ISBN-0-201-78695-8, Pearson 2162
Education, Boston, MA, 2004 2163

ISO/IEC PDTR 24772

© ISO 2007 – All rights reserved 57

7.15 XZS Missing Required Cryptographic Step 2164

7.15.0 Status and history 2165

PENDING 2166
2007-08-03, Edited by Benito 2167
2007-07-30, Edited by Larry Wagoner 2168
2007-07-20, Edited by Jim Moore 2169
2007-07-13, Edited by Larry Wagoner 2170
 2171

7.15.1 Description of application vulnerability 2172

Cryptographic implementations should follow the algorithms that define them exactly otherwise encryption can 2173
be faulty. 2174

7.15.2 Cross reference 2175

CWE: 2176
325. Missing Required Cryptographic Step 2177

7.15.3 Categorization 2178

See clause 5.?. <Replace this with the categorization according to the analysis in Clause 5. At a later date, 2179
other categorization schemes may be added.> 2180

7.15.4 Mechanism of failure 2181

Not following the algorithms that define cryptographic implementations exactly can lead to weak encryption. 2182

7.15.5 Avoiding the vulnerability or mitigating its effects 2183

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways: 2184

• Implement cryptographic algorithms precisely. 2185

7.15.6 Implications for standardization 2186

[Note: This should be added to programming language libraries.] 2187

<Recommendations for other working groups will be recorded here. For example, we might record 2188
suggestions for changes to language standards or API standards.> 2189

7.15.7 Bibliography 2190

<Insert numbered references for other documents cited in your description. These will eventually be collected 2191
into an overall bibliography for the TR. So, please make the references complete. Someone will eventually 2192
have to reformat the references into an ISO-required format, so please err on the side of providing too much 2193
information rather than too little. Here [1] is an example of a reference: 2194

[1] Greg Hoglund, Gary McGraw, Exploiting Software: How to Break Code, ISBN-0-201-78695-8, Pearson 2195
Education, Boston, MA, 2004 2196

 2197

ISO/IEC PDTR 24772

58 © ISO 2007 – All rights reserved

7.16 XZR Improperly Verified Signature 2198

7.16.0 Status and history 2199

PENDING 2200
2007-08-03, Edited by Benito 2201
2007-07-27, Edited by Larry Wagoner 2202
2007-07-20, Edited by Jim Moore 2203
2007-07-13, Edited by Larry Wagoner 2204

7.16.1 Description of application vulnerability 2205

The software does not verify, or improperly verifies, the cryptographic signature for data. 2206

7.16.2 Cross reference 2207

CWE: 2208
347. Improperly Verified Signature 2209

7.16.3 Categorization 2210

See clause 5.?. <Replace this with the categorization according to the analysis in Clause 5. At a later date, 2211
other categorization schemes may be added.> 2212

7.16.4 Mechanism of failure 2213

7.16.5 Avoiding the vulnerability or mitigating its effects 2214

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways: 2215

<Replace this with a bullet list summarizing various ways in which programmers can avoid the programming 2216
language vulnerability, break the chain of causation to the application vulnerability, or contain the bad effects 2217
of the application vulnerability. Begin with the more direct, concrete, and effective means and then progress to 2218
the more indirect, abstract, and probabilistic means.> 2219

7.16.6 Implications for standardization 2220

<Recommendations for other working groups will be recorded here. For example, we might record 2221
suggestions for changes to language standards or API standards.> 2222

7.16.7 Bibliography 2223

<Insert numbered references for other documents cited in your description. These will eventually be collected 2224
into an overall bibliography for the TR. So, please make the references complete. Someone will eventually 2225
have to reformat the references into an ISO-required format, so please err on the side of providing too much 2226
information rather than too little. Here [1] is an example of a reference: 2227

[1] Greg Hoglund, Gary McGraw, Exploiting Software: How to Break Code, ISBN-0-201-78695-8, Pearson 2228
Education, Boston, MA, 2004 2229

ISO/IEC PDTR 24772

© ISO 2007 – All rights reserved 59

Annex A 2230
(informative) 2231

 2232
Guideline Recommendation Factors 2233

A.1 Factors that need to be covered in a proposed guideline recommendation 2234

These are needed because circumstances might change, for instance: 2235

• Changes to language definition. 2236
• Changes to translator behavior. 2237
• Developer training. 2238
• More effective recommendation discovered. 2239

A.1.1 Expected cost of following a guideline 2240

How to evaluate likely costs. 2241

A.1.2 Expected benefit from following a guideline 2242

How to evaluate likely benefits. 2243

A.2 Language definition 2244

Which language definition to use. For instance, an ISO/IEC Standard, Industry standard, a particular 2245
implementation. 2246

Position on use of extensions. 2247

A.3 Measurements of language usage 2248

Occurrences of applicable language constructs in software written for the target market. 2249

How often do the constructs addressed by each guideline recommendation occur. 2250

A.4 Level of expertise. 2251

How much expertise, and in what areas, are the people using the language assumed to have? 2252

Is use of the alternative constructs less likely to result in faults? 2253

A.5 Intended purpose of guidelines 2254

For instance: How the listed guidelines cover the requirements specified in a safety related standard. 2255

ISO/IEC PDTR 24772

60 © ISO 2007 – All rights reserved

A.6 Constructs whose behaviour can very 2256

The different ways in which language definitions specify behaviour that is allowed to vary between 2257
implementations and how to go about documenting these cases. 2258

A.7 Example guideline proposal template 2259

A.7.1 Coding Guideline 2260

Anticipated benefit of adhering to guideline 2261

• Cost of moving to a new translator reduced. 2262
• Probability of a fault introduced when new version of translator used reduced. 2263
• Probability of developer making a mistake is reduced. 2264
• Developer mistakes more likely to be detected during development. 2265
• Reduction of future maintenance costs. 2266

 2267

ISO/IEC PDTR 24772

© ISO 2007 – All rights reserved 61

Annex B 2268
(informative) 2269

Guideline Selection Process 2270
 2271

It is possible to claim that any language construct can be misunderstood by a developer and lead to a failure 2272
to predict program behavior. A cost/benefit analysis of each proposed guideline is the solution adopted by this 2273
technical report. 2274

The selection process has been based on evidence that the use of a language construct leads to unintended 2275
behavior (i.e., a cost) and that the proposed guideline increases the likelihood that the behavior is as intended 2276
(i.e., a benefit). The following is a list of the major source of evidence on the use of a language construct and 2277
the faults resulting from that use: 2278

• a list of language constructs having undefined, implementation defined, or unspecified behaviours, 2279
• measurements of existing source code. This usage information has included the number of 2280

occurrences of uses of the construct and the contexts in which it occurs, 2281
• measurement of faults experienced in existing code, 2282
• measurements of developer knowledge and performance behaviour. 2283

The following are some of the issues that were considered when framing guidelines: 2284

• An attempt was made to be generic to particular kinds of language constructs (i.e., language 2285
independent), rather than being language specific. 2286

• Preference was given to wording that is capable of being checked by automated tools. 2287
• Known algorithms for performing various kinds of source code analysis and the properties of those 2288

algorithms (i.e., their complexity and running time). 2289

B.1 Cost/Benefit Analysis 2290

The fact that a coding construct is known to be a source of failure to predict correct behavior is not in itself a 2291
reason to recommend against its use. Unless the desired algorithmic functionality can be implemented using 2292
an alternative construct whose use has more predictable behavior, then there is no benefit in recommending 2293
against the use of the original construct. 2294

While the cost/benefit of some guidelines may always come down in favor of them being adhered to (e.g., 2295
don't access a variable before it is given a value), the situation may be less clear cut for other guidelines. 2296
Providing a summary of the background analysis for each guideline will enable development groups. 2297

Annex A provides a template for the information that should be supplied with each guideline. 2298

It is unlikely that all of the guidelines given in this technical report will be applicable to all application domains. 2299

B.2 Documenting of the selection process 2300

The intended purpose of this documentation is to enable third parties to evaluate: 2301

• the effectiveness of the process that created each guideline, 2302
• the applicability of individual guidelines to a particular project. 2303

ISO/IEC PDTR 24772

62 © ISO 2007 – All rights reserved

ISO/IEC PDTR 24772

© ISO 2007 – All rights reserved 63

Annex C 2304
(informative) 2305

Template for use in proposing programming language vulnerabilities 2306
 2307

C. Skeleton template for use in proposing programming language vulnerabilities 2308

C.1 6.<x> <unique immutable identifier> <short title> 2309

Notes on template header. The number "x" depends on the order in which the vulnerabilities are 2310
listed in Clause 6. It will be assigned by the editor. The "unique immutable identifier" is intended to 2311
provide an enduring identifier for the vulnerability description, even if their order is changed in the 2312
document. The "short title" should be a noun phrase summarizing the description of the application 2313
vulnerability. No additional text should appear here. 2314

C.1.0 6.<x>.0 Status and history 2315

The header will be removed before publication. 2316

This temporary section will hold the edit history for the vulnerability. With the current status of the 2317
vulnerability. 2318

C.1.1 6.<x>.1 Description of application vulnerability 2319

Replace this with a brief description of the application vulnerability. It should be a short paragraph. 2320

C.1.2 6.<x>.2 Cross reference 2321

CWE: Replace this with the CWE identifier. At a later date, other cross-references may be added. 2322

C.1.3 6.<x>.3 Categorization 2323

See clause 5.?. Replace this with the categorization according to the analysis in Clause 5. At a later 2324
date, other categorization schemes may be added. 2325

C.1.4 6.<x>.4 Mechanism of failure 2326

Replace this with a brief description of the mechanism of failure. This description provides the link 2327
between the programming language vulnerability and the application vulnerability. It should be a 2328
short paragraph. 2329

C.1.5 6.<x>.5 Range of language characteristics considered 2330

Replace this with a description of the various points at which the chain of causation could be broken. 2331
It should be a short paragraph. 2332

ISO/IEC PDTR 24772

64 © ISO 2007 – All rights reserved

C.1.6 6.<x>.6 Assumed variations among languages 2333

This vulnerability description is intended to be applicable to languages with the following 2334
characteristics: 2335

Replace this with a bullet list summarizing the pertinent range of characteristics of languages for 2336
which this discussion is applicable. This list is intended to assist readers attempting to apply the 2337
guidance to languages that have not been treated in the language-specific annexes. 2338

C.1.7 6.<x>.7 Implications for standardization 2339

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways: 2340

Replace this with a bullet list summarizing various ways in which programmers can avoid the 2341
vulnerability or contain its bad effects. Begin with the more direct, concrete, and effective means and 2342
then progress to the more indirect, abstract, and probabilistic means. 2343

 2344

C.1.8 6.<x>.8 Bibliography 2345

<Insert numbered references for other documents cited in your description. These will eventually be 2346
collected into an overall bibliography for the TR. So, please make the references complete. Someone 2347
will eventually have to reformat the references into an ISO-required format, so please err on the side 2348
of providing too much information rather than too little. Here [1] is an example of a reference: 2349

[1] Greg Hoglund, Gary McGraw, Exploiting Software: How to Break Code, ISBN-0-201-78695-8, 2350
Pearson Education, Boston, MA, 2004 2351

ISO/IEC PDTR 24772

© ISO 2007 – All rights reserved 65

ISO/IEC PDTR 24772

66 © ISO 2007 – All rights reserved

Annex D 2352
(informative) 2353

Template for use in proposing application vulnerabilities 2354
 2355

D. Skeleton template for use in proposing application vulnerabilities 2356

D.1 7.<x> <unique immutable identifier> <short title> 2357

Notes on template header. The number "x" depends on the order in which the vulnerabilities are 2358
listed in Clause 6. It will be assigned by the editor. The "unique immutable identifier" is intended to 2359
provide an enduring identifier for the vulnerability description, even if their order is changed in the 2360
document. The "short title" should be a noun phrase summarizing the description of the application 2361
vulnerability. No additional text should appear here. 2362

D.1.0 7.<x>.0 Status and history 2363

The header will be removed before publication. 2364

This temporary section will hold the edit history for the vulnerability. With the current status of the 2365
vulnerability. 2366

D.1.1 7.<x>.1 Description of application vulnerability 2367

Replace this with a brief description of the application vulnerability. It should be a short paragraph. 2368

D.1.2 7.<x>.2 Cross reference 2369

CWE: Replace this with the CWE identifier. At a later date, other cross-references may be added. 2370

D.1.3 7.<x>.3 Categorization 2371

See clause 5.?. Replace this with the categorization according to the analysis in Clause 5. At a later 2372
date, other categorization schemes may be added. 2373

D.1.4 7.<x>.4 Mechanism of failure 2374

Replace this with a brief description of the mechanism of failure. This description provides the link 2375
between the programming language vulnerability and the application vulnerability. It should be a 2376
short paragraph. 2377

D.1.5 7.<x>.5 Assumed variations among languages 2378

This vulnerability description is intended to be applicable to languages with the following 2379
characteristics: 2380

Replace this with a bullet list summarizing the pertinent range of characteristics of languages for 2381
which this discussion is applicable. This list is intended to assist readers attempting to apply the 2382
guidance to languages that have not been treated in the language-specific annexes. 2383

ISO/IEC PDTR 24772

© ISO 2007 – All rights reserved 67

D.1.7 7.<x>.6 Implications for standardization 2384

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways: 2385

Replace this with a bullet list summarizing various ways in which programmers can avoid the 2386
vulnerability or contain its bad effects. Begin with the more direct, concrete, and effective means and 2387
then progress to the more indirect, abstract, and probabilistic means. 2388

 2389

D.1.8 7.<x>.7 Bibliography 2390

<Insert numbered references for other documents cited in your description. These will eventually be 2391
collected into an overall bibliography for the TR. So, please make the references complete. Someone 2392
will eventually have to reformat the references into an ISO-required format, so please err on the side 2393
of providing too much information rather than too little. Here [1] is an example of a reference: 2394

[1] Greg Hoglund, Gary McGraw, Exploiting Software: How to Break Code, ISBN-0-201-78695-8, 2395
Pearson Education, Boston, MA, 2004 2396

ISO/IEC PDTR 24772

68 © ISO 2007 – All rights reserved

Bibliography 2397

[1] ISO/IEC Directives, Part 2, Rules for the structure and drafting of International Standards, 2001 2398

[2] ISO/IEC TR 10000-1, Information technology — Framework and taxonomy of International 2399
Standardized Profiles — Part 1: General principles and documentation framework 2400

[3] ISO 10241, International terminology standards — Preparation and layout 2401

[4] ISO/IEC TR 15942:2000, "Information technology - Programming languages - Guide for the use of the 2402
 Ada programming language in high integrity systems" 2403

[5] Joint Strike Fighter Air Vehicle: C++ Coding Standards for the System Development and 2404
Demonstration Program. Lockheed Martin Corporation. December 2005. 2405

[6] ISO/IEC 9899:1999, Programming Languages – C 2406

[7] ISO/IEC 1539-1:2004, Programming Languages – Fortran 2407

[8] ISOISO/IEC 8652:1995/Cor 1:2001/Amd 1:2007, Information technology -- Programming languages – Ada 2408

[9] ISO/IEC 15291:1999, Information technology - Programming languages - Ada Semantic Interface 2409
Specification (ASIS) 2410

[10] Software Considerations in Airborne Systems and Equipment Certification. Issued in the USA by the 2411
Requirements and Technical Concepts for Aviation (document RTCA SC167/DO-178B) and in Europe 2412
by the European Organization for Civil Aviation Electronics (EUROCAE document ED-12B).December 2413
1992. 2414

[11] IEC 61508: Parts 1-7, Functional safety: safety-related systems. 1998. (Part 3 is concerned with 2415
software). 2416

[12] ISO/IEC 15408: 1999 Information technology. Security techniques. Evaluation criteria for IT security. 2417

[13] J Barnes. High Integrity Software - the SPARK Approach to Safety and Security. Addison-Wesley. 2418
2002. 2419

[14] R. Seacord Preliminary draft of the CERT C Programming Language Secure Coding Standard. 2420
ISO/IEC JTC 1/SC 22/OWGV N0059, April 2007. 2421

[15] Motor Industry Software Reliability Association. Guidelines for the Use of the C Language in Vehicle 2422
Based Software, 2004 (second edition)1. 2423

[16] ISO/IEC TR24732, Extensions to the C Library, — Part I: Bounds-checking interfaces 2424

[17] Steve Christy, Vulnerability Type Distributions in CVE, V1.0, 2006/10/04 2425

1 The first edition should not be used or quoted in this work.

