6.<x> XYB Absolute Path Traversal

[Combine XYA, XYB, XYC, XYD into a single item.]
[The mitigation should be centred on converting relative paths into absolute paths and then verifying that the resulting absolute path makes sense with respect to the configuration and rights or permissions. This may include checking "whitelists" and "blacklists", authorized super user status, access control lists, etc.]
6.x.0 History and status

Pending (perhaps Clause 7)


2007-07-20, Edited by Jim Moore
2007-07-13, Edited by Larry Wagoner

6.<x>.1 Description of application vulnerability

The software can construct a path that contains absolute path sequences such as "/path/here."

6.<x>.2 Cross reference

CWE: 

37. Path Issue - slash absolute path - /absolute/pathname/here
38. Path Issue - backslash absolute path - \absolute\pathname\here
39. Path Issue - drive letter or Windows volume - 'C:dirname'
40. Path Issue - Windows UNC share - '\\UNC\share\name\' 

6.<x>.3 Categorization

See clause 5.?. <Replace this with the categorization according to the analysis in Clause 5. At a later date, other categorization schemes may be added.>
6.<x>.4 Mechanism of failure

A software system that accepts input in the form of '/absolute/pathname/here' or '\absolute\pathname\here' without appropriate validation can allow an attacker to traverse the file system to unintended locations or access arbitrary files.  An attacker can inject a drive letter or Windows volume letter ('C:dirname') into a software system to potentially redirect access to an unintended location or arbitrary file.

A software system that accepts input in the form of a backslash absolute path () without appropriate validation can allow an attacker to traverse the file system to unintended locations or access arbitrary files.

An attacker can inject a Windows UNC share ('\\UNC\share\name') into a software system to potentially redirect access to an unintended location or arbitrary file.

6.<x>.5 Possible ways to avoid the vulnerability

Assume all input is malicious.  Use an appropriate combination of black lists and white lists to ensure only valid and expected input is processed by the system. Warning: if you attempt to cleanse your data, then do so that the end result is not in the form that can be dangerous. A sanitizing mechanism can remove characters such as ‘.' and ‘;' which may be required for some exploits. An attacker can try to fool the sanitizing mechanism into "cleaning" data into a dangerous form. Suppose the attacker injects a ‘.' inside a filename (e.g. "sensi.tiveFile") and the sanitizing mechanism removes the character resulting in the valid filename, "sensitiveFile". If the input data are now assumed to be safe, then the file may be compromised.

Files can often be identified by other attributes in addition to the file name, for example, by comparing file ownership or creation time. For example, you can store information on a file that you have created and closed, and then use this information to validate the identity of the file when you reopen it. Comparing multiple attributes of the file improves the probability that you have correctly identified the appropriate file.

6.<x>.6 Assumed variations among languages

This vulnerability description is intended to be applicable to languages with the following characteristics:

<Replace this with a bullet list summarizing the pertinent range of characteristics of languages for which this discussion is applicable. This list is intended to assist readers attempting to apply the guidance to languages that have not been treated in the language-specific annexes.>
6.<x>.7 Avoiding the vulnerability or mitigating its effects

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

<Replace this with a bullet list summarizing various ways in which programmers can avoid the vulnerability or contain its bad effects. Begin with the more direct, concrete, and effective means and then progress to the more indirect, abstract, and probabilistic means. 

