6.<x> XYK Pointer Use After Free

6.x.0 Status and history

PENDING

2007-07-20, Edited by Jim Moore

2007-07-13, Edited by Larry Wagoner
6.<x>.1 Description of application vulnerability

Calling free() twice on the same memory address can lead to a buffer overflow or referencing memory after it has been freed can cause a program to crash.

6.<x>.2 Cross reference

CWE: 

415. Double Free

416. Use after Free
[perhaps double free and use after free should be separate items.]
6.<x>.3 Categorization

See clause 5.?. 
Group: Dynamic Allocation
6.<x>.4 Mechanism of failure

Doubly freeing memory may result in allowing an attacker to execute arbitrary code.  The use of previously freed memory may corrupt valid data, if the memory area in question has been allocated and used properly elsewhere.  If chunk consolidation occurs after the use of previously freed data, the process may crash when invalid data is used as chunk information.  If malicious data is entered before chunk consolidation can take place, it may be possible to take advantage of a write-what-where primitive to execute arbitrary code.

When a program calls free() twice with the same argument, the program's memory management data structures become corrupted. This corruption can cause the program to crash or, in some circumstances, cause two later calls to malloc() to return the same pointer. If malloc() returns the same value twice and the program later gives the attacker control over the data that is written into this doubly-allocated memory, the program becomes vulnerable to a buffer overflow attack.

The use of previously freed memory can have any number of adverse consequences -- ranging from the corruption of valid data to the execution of arbitrary code, depending on the instantiation and timing of the flaw. The simplest way data corruption may occur involves the system's reuse of the freed memory. Like double free errors and memory leaks, Use After Free errors have two common and sometimes overlapping causes: Error conditions and other exceptional circumstances; and Confusion over which part of the program is responsible for freeing the memory. In one scenario, the memory in question is allocated to another pointer validly at some point after it has been freed. The original pointer to the freed memory is used again and points to somewhere within the new allocation. As the data is changed, it corrupts the validly used memory.  This induces undefined behavior in the process. If the newly allocated data chances to hold a class, in C++ for example, various function pointers may be scattered within the heap data.  If one of these function pointers is overwritten with an address to valid shellcode, execution of arbitrary code can be achieved.

Note that Double Free (415) is a special case of Use After Free (416).

The lifetime of an object is the portion of program execution during which storage is guaranteed to be reserved for it. An object exists, has a constant address, and retains its last-stored value throughout its lifetime. If an object is referred to outside of its lifetime, the behavior is undefined. The value of a pointer becomes indeterminate when the object it points to reaches the end of its lifetime.

6.<x>.5 Interrupting the failure mechanism

Ensure that each allocation is freed only once. After freeing a chunk of memory, set the pointer to NULL to ensure the pointer cannot be freed again. In complicated error conditions, be sure that clean-up routines respect the state of allocation properly. If the language is object oriented, ensure that object destructors delete each chunk of memory only once.  Ensuring that all pointers are set to NULL once they memory they point to has been freed can be effective strategy. The utilization of multiple or complex data structures may lower the usefulness of this strategy.

Allocating and freeing memory in different modules and levels of abstraction burdens the programmer with tracking the lifetime of that block of memory. This may cause confusion regarding when and if a block of memory has been allocated or freed, leading to programming defects such as double-free vulnerabilities, accessing freed memory, or writing to unallocated memory.  To avoid these situations, it is recommended that memory be allocated and freed at the same level of abstraction, and ideally in the same code module.

6.<x>.6 Assumed variations among languages

This vulnerability description is intended to be applicable to languages with the following characteristics:

<Replace this with a bullet list summarizing the pertinent range of characteristics of languages for which this discussion is applicable. This list is intended to assist readers attempting to apply the guidance to languages that have not been treated in the language-specific annexes.>
6.<x>.7 Avoiding the vulnerability or mitigating its effects

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

<Replace this with a bullet list summarizing various ways in which programmers can avoid the vulnerability or contain its bad effects. Begin with the more direct, concrete, and effective means and then progress to the more indirect, abstract, and probabilistic means.

