
What is predictable execution?

Brian Wichmann

August 24, 2006

1 Introduction

The concept of predictable execution is not as straightforward as it might seem.
What is often meant is that the behaviour of the program was not as intended
— but since we know that capturing the ‘intent’ in a concrete manner is hard,
this line of reasoning is not very productive.

Consider an ordinary binary program, which, for simplicity, interacts with
it environment in a minimal manner, but runs under some operating system.
It is highly likely that the OS initialises the store and registers and hence the
program may well behave predictably, regardless of the nature of the machine
code.

One could claim that programs always act predictably, it is just that the
reasoning can be rather complex in some circumstances. Some years ago, a
Pascal program written to check the implementation of integer division ran
inconsistently. Eventually, it was found that the processor chip had an error
so that if an interrupt occurred when the integer division operation was being
performed, the machine state was not recovered correctly - thus giving the
inconsistency. The later processor chips corrected this error. In this paper we
are not concerned with such implementation faults — we assume the processor
and the execution environment (compiler, interpreter, loader, etc) does not have
implementation faults.

However, deducing properties of the program just from the machine-code is
very hard and not useful now that high level programming languages are almost
universal.

2 High level language view

We need to be able to deduce the execution characteristics in a more convenient
way based upon the following:

1. The relevant programming language definition.

2. The features defined for this specific implementation (which may in turn
depend upon compiling options).

1

mailto:Brian.Wichmann@bcs.org.uk


3. The source text.

This approach is quite seductive, but has a grave problem as formulated
above. What if the language definition makes requirements not enforced by a
compiler? Perhaps it is stated that there shall be no access to an uninitialised
variable. Hence the first item needs to be restricted to the static semantics of
the language which is required to be enforced by the compiler.

Consider now an array access in which the index value is not in range. In Java
and Ada, this results in the raising of an exception, while for C the semantics is
undefined. However, it must be assumed that this was a programming error and
hence for all languages one requires that this situation does not arise. Hence
one in forced to conclude that the concept of predictable execution requires that
certain properties of a program are verified.

Hence our modified approach to predictable execution requires that one
shows the absence of predefined exceptions (in Java and Ada) or the equiva-
lent conditions which would otherwise result in an undefined execution.

2.1 Portability

Portability is not strictly necessary if the properties of the specific system are
understood. However, strict portability makes in much easier to be sure that
the execution properties apply in a specific case. Moreover, if a tool is used
to detect for any non-predictable aspects, it is vital that the implementation
defined characteristics are correctly set.

2.2 Language definition

The quality of these varies very substantially. For instance, Fortran does not
define any dynamic properties (the concept of a run-time error is not defined).
This was true in the 60s when Boyer and Moore did their classic work on proving
programs correct [6]. They just had to write a definition of the language based
upon the English text.

I believe that the definitions of Ada, Java and C are adequate to define the
notion of predictable execution. I am uncertain about C++ in this regard which
makes me nervous about the use of the language. (It seems that the problem
with C++ is the size and complexity of the language, rather than inherent issues
in the design.)

2.3 Language for code generation

Languages can be used to generate code from some other program specification.
In many cases, problems which would otherwise arise may be avoided by using
properties of the specification. In other words, predictable execution may not
be clear from the generated code, but could be from the original specification.

2



3 Language problems

Execution order. If the execution order is not defined, then a combinatorial
problem can arise in attempting to predict the execution characteristics
of a program.

Side-effects in functions. This could be regarded as a special case of the
execution order problem, but from the point of view of program analysis,
banning side-effects is best.

Permitted optimizations. The C language introduces sequence points for
this purpose, but causes some difficulties in establishing predictable exe-
cution.

Parameter passing. Fortran introduced special wording, which very few peo-
ple understood to allow some flexibility in this area. Ada does something
similar which can cause problems unless aliasing can be avoided. (In some
situations, Ada structures can be passed by copy or reference.)

Aliasing. If an item of storage is accessible in more than one way, then the
compiled code may depend upon how two different accesses are handled.
Program proof has similar problems. Particularly troublesome with point-
ers.

Storage control. This is handled automatically with Java (but then gives
problems with timing). Ada has an unsafe feature for reclaiming stor-
age and hence does not require garbage collection.

Exceptions. The method which makes predictable execution easier to verify
is to require that predefined exceptions are not raised. Many situations
in C which result in unpredictable execution would raise an exception in
Ada. In consequence an Ada coding with no exceptions being raised can
be very similar to the C coding with no unpredictable execution.

Tasking. A very tricky area. This is not considerd here.

4 Ensuring predictable execution

No widely-used programming language makes achieving predictable execution
easy. On the other hand, the great majority of execution of many programs are
predictable and hence the problem is one of assurance and locating the sources
of unpredictability.

The only language that I know that makes predictable execution its primarily
aim is Newspeak [8].

Hence we have somehow to make do with existing languages, or at least
subsets of them.

Conceptually, the language-based method of ensuring predictable execution
should allow for tools to verify the property, or indicate statements which are not

3



predictable. Unfortunately, there are severe practical limits to this approach.
Comprehensive languages like Ada 95 or C++ which are used without regard
to static analysis makes checking many properties virtually intractable, such as
ensuring no access to unset variables. (It is tempting to think that the speed of
modern computers checking of code in the full language would be possible —
this is not the case due to the exponential nature of the analysis required.)

The unset variable problem also indicates some of the issues in language
design. Ada 95 and C are conventional in this area in that this condition for
unpredictability exists. This implies that the number of paths through the
code which need to be checked can grow exponentially with the program size.
Moreover, programs can be ‘correct’ and yet be virtually impossible to check
perhaps due to dynamic conditions which are unknown to any static analysis
tool.

For Ada 95 and C a solution must be to adopt a coding style which makes
the task of checking for no unset variables by a tool tractable. One must clearly
avoid junk initialisations, since that just removes one issue to create another.

Java overcomes this problem by placing restrictions on local variables and
requiring objects to be initialised. In the context of a very dynamic language
like Java this is a very reasonable design choice.

One way round some of the static analysis problems is to use a subset of
the full language. The adherence to the subset and the predictable execution
properties could then be checked with manageable overheads.

4.1 Language subsets

One means of easing the problem of verifying predictable execution is to use a
subset designed to avoid some of the static analysis issues.

At least in the area of high integrity safety systems, the use of subsets is
well established.

To illustrate both the advantages and the problems of the use of subsets, we
take two examples, SPARK [10, 9] and MISRA-C [11].

4.1.1 SPARK

SPARK is an Ada 95 subset in the sense that the production of code from
SPARK uses an ordinary Ada 95 compiler. It is much more than an Ada
subset due to the addition of annotations and the availability of the SPARK
examiner which checks for adherence to the subset. The examiner is very fast
and yet checks for no access to unset variables. It can achieve this because
the annotations provide design information about the usage of variables which
would not be present in conventional Ada code.

SPARK is really a design tool using the concept of Correctness by Construc-
tion [9]. This implies that converting full Ada 95 to SPARK is inappropriate
— a redesign is needed.

In addition to the Examiner, a tool is available which will make a significant
step to showing the code is exception-free. This tool exploits the Ada range

4



constraints, as would an Ada compiler. This tool can also exploit (optionally)
additional annotations to prove key properties of a program. These proper-
ties could verify predictable execution, or go substantially further in verifying
correctness of the code (a topic outside the scope of this paper).

There is an interesting alternative way of looking at predictable execution.
The University of Toronto Research Group in defining the language Turing
stated as their objective that a conforming implementation of the language
should be faithful (see page 338 of [7]). By this term, they meant that a program
which compiled would either fail to execute with an appropriate error message
or the execution could be predicted exactly from the language definition. A
note prepared by the author analyses SPARK from this point of view in 1998.
Some small details are not correct for the current version of SPARK, but it does
cover the main aspects of the issue.

4.1.2 MISRA-C

This subset is a complete contrast to SPARK, due to starting from a very
different language and not attempting to define a design tool. The basic concept
of MISRA-C is simple enough: to obtain predictable execution by removing any
language features which are clearly problematic. For instance, malloc is not
permitted.

The objectives of MISRA-C is not only predictability but also intelligibility
which therefore includes some coding style requirements. Another major differ-
ence from SPARK is that there is no specific tool but rather an aim to encourage
a market for tools which check for the subset.

MISRA-C gives the impression that predictable execution can be guaranteed
by means of adhering to the subset which can be checked statically. This is
clearly not the case, since, for example, an array index needs to be in range,
which can only be checked (in general) dynamically.

4.1.3 Some comparisons

SPARK and MISRA-C are very different, even if some of the objectives are
similar and both are being used in embedded safety systems.

SPARK is rather well defined, and a formal definition was produced a few
years ago. In contrast, the definition of MISRA-C is is less precise which is
to be expected since it handles intelligibility. MISRA-C is only stated to be
appropriate for a Safety Integrity Level of 3 or less, while SPARK has been
used for several Level 4 systems.

Over the years, the size of the SPARK subset has increased — an interesting
recent development has been a verifiable tasking facility. MISRA-C has gone
through one revision, but now appears to be static. SPARK is based upon
the current Ada standard, while MISRA-C appears to be based upon the 1990
edition of the C standard rather than the current one of 1999.

5



5 Qualification of tools

Current languages effectively require to use of tools to demonstrate predictable
execution. Since modern programming languages are relatively complex, show-
ing that a tool is fit-for-purpose is difficult. There are three vital characteristics:

1. Showing that the tool reports any unpredictable aspects of the code;

2. Noting the extent to which a tool reports false positives, ie warns of inse-
cure aspects which on further analysis turn out not to be insecure;

3. Aspects of usability of the tool.

It seems that the only feasible approach is to check these three aspects by
running test cases. This is a very difficult and time-consuming task. In essence,
it is similar approach used the validate compilers.

One development which could easy the construction of static analysis tools
is standards like ASIS [1]. Here, the semantic information necessary to compile
an (Ada) program is recorded in a data structure which can then be used by
analysis tools. Apart from reducing the cost of developing static analysis tools,
it reduces the risk that the tools diverge from the compiler (and hence the
generated code).

The Pi Technology study of MISRA tools is excellent [13]. Unfortunately,
from the point of view of establishing predictable execution, it has a number of
drawbacks: the definition of MISRA-C has changed with the new edition [11];
the tools have also surely changed as well; compliance to the MISRA-C subset
is somewhat different from establishing predictable execution. The study shows
the difficulty in tool evaluation and the large potential difference between tools.

Two studies have been undertaken on static analysis to detect buffer overflow
problems in (legacy) C code [12, 14]. These reports make depressing reading,
since the detection is difficult and never 100% even though from the logical
viewpoint, it is straightforward. The major questions arising from this work is
the impact of using MISRA-C or more modern coding standards.

An alternative approach of using dynamic tests when a static test cannot
be shown to be adequate. The is detailed in [14]. The problem with this
technique is that when a dynamic test fails, the systems design must provide
for an appropriate action. No such action is possible for some safety systems,
such as fly-by-wire aircraft with unstable aerodynamics. For most systems,
especially outside the safety area, reporting such a fault could lead to rapid fault
correction and higher reliability than is currently achieved. The alternative to
using a dynamic test is to undertake a review of the code — this could resolve
the actual problems with the code, but is an expensive process.

6 Floating point

To establish predictable execution in a useful sense, numerical analysis needs to
be applied, see [4, 3]. Hence this is not a language issue. If classical numerical

6



analysis has not been applied and an algorithm is unstable, then the numerical
results are indeed unpredictable.

If one writes:

if 0.1× 10.0 = 1.0 then

then the results could well be unpredictable. Some think that a coding standard
prohibiting the use of equality with floating point solves that problem — it does
not! For instance, suppose that a calculation requires the solution of a quadratic
equation in which the physics ensures that the roots are real. Hence one might
write:

√
b2 − 4ac. The problem here is that rounding error might produce a

(small) negative value. Hence it is necessary to check that the result is not
negative, and that in the case of a negative value, it is small enough to be
attributed to rounding error. Rounding error is unavoidable with floating point
and it needs to be taken into account with all non-trivial calculations.

The IFIP book [4] has a lot of information about the relationship between
programming languages and numerical computation.

Unfortunately, numerical analysis is rarely taught at the undergraduate level,
which implies that there is a danger that this issue is missed in validating critical
systems. This problem arose recently when a development team was unable to
compute bp× q/rc where p, q and r are integers.

7 Conclusions

It is hard to justify any unpredictable execution in a high integrity application.
On the other hand, establishing predictable execution in all circumstances is
quite demanding.

It might seem that defensive programming is a solution to this problem, at
least as far as checking for preconditions for language constructs. This can be
done in many circumstances, such as for safety systems for which a safe state
can be imposed. However, this then gives rise to another issue: how often will
the system trigger the safe state response when the correct action is surely to
correct the bug in the program.

Much more needs to be done to make predictable execution achievable for
the widely used programming languages with industrial sized applications. Such
activity might include:

1. Development of ASIS-style [1] standards and implementations for lan-
guages other than Ada.

2. Development of test facilities for static analysis tools.

3. Standards for annotations for languages to improve the effectiveness of
static analysis tools.

4. Development of the proposed SC22 Guidelines [17].

7



7.1 Proposed wording for the ISO Guidelines

Definition Predictable execution: The property of the program such that all
possible executions have results which can be predicted from the relevant pro-
gramming language definition and any relevant language-defined implementa-
tion characteristics. The execution should not raise any exception and floating
point calculations should be numerically stable.

References

[1] ISO/IEC 15291:1999, Information technology — Programming languages
— Ada Semantic Interface Specification (ASIS)

[2] ISO/IEC TR 15942:2000, “Information technology – Programming
languages – Guide for the use of the Ada programming language in high
integrity systems” URL

[3] N J Higham. Accuracy and Stability of Numerical Algorithms. SIAM.
1996. ISBN 0-89871-355-2

[4] B Einarsson (Editor). Accuracy and Reliability in Scientific Computing.
SIAM. 2005. ISBN 0-89871-584-9

[5] Entry for strictfp: URL

[6] Robert S. Boyer, Matt Kaufmann, and J Strother Moore. The
Boyer-Moore Theorem Prover and Its Interactive Enhancement.
Computers and Mathematics with Applications, 29(2), 1995, pp. 27-62.
URL

[7] R C Holt and J N P Hume. Introduction to Computer Science using the
Turing programming language. Reston, 1984.

[8] Currie, I. F., NewSpeak: an unexceptional language, Software
Engineering Journal, pp. 170-176 (July 1986).

[9] Amey Peter. Correctness by Construction: Better Can Also Be Cheaper.
Praxis Critical Systems Limited. CrossTalk Magazine, March 2002. URL

[10] J Barnes. High Integrity Software — the SPARK Approach to Safety and
Security. Addison-Wesley. 2002.

[11] Motor Industry Software Reliability Association. Guidelines for the Use
of the C Language in Vehicle Based Software, 2004 (second edition).

[12] Misha Zitser, Richard Lippmann, Tim Leek. Testing static analysis tools
using exploitable buffer overflows from open source code. Proceedings of
the 12th ACM SIGSOFT twelfth international symposium on Foundations
of software engineering, 2004.

8

http://isotc.iso.org/livelink/livelink/fetch/2000/2489/Ittf_Home/PubliclyAvailableStandards.htm
http://mindprod.com/jgloss/strictfp.html
http://citeseer.ist.psu.edu/boyer95boyermoore.html
http://www.praxis-his.com/pdfs/c_by_c_better_cheaper.pdf#search=%22Amey%20Peter.%20Correctness%20by%20Construction%3A%20Better%20Can%20Also%20Be%20Cheaper.%22


[13] A Comparison of MISRA C Testing Tools. October 2001. URL

[14] Thomas Plum, David M. Keaton. Eliminating Buffer Overflows, Using the
Compiler or a Standalone Tool. URL

[15] Kendra June Kratkiewicz. Evaluating Static Analysis Tools for Detecting
Buffer Overflows in C Code. URL

[16] B A Wichmann. Is SPARK faithful? October 1998. Available from the
author.

[17] ISO/IEC Project 22.24772: Guidance for Avoiding Vulnerabilities
through Language Selection and Use. URL

A Document details

1. First written March 2006.

2. Extensively revised, August 2006.

3. Minor revision to take account of comments from Clive Pygott, 8th August
2006.

4. Revised to add proposed wording for the Guidelines as a result of BSI
meeting on 15th August.

5. Revised to include amendment resulting from email exchange, 24th August
2006.

9

http://www.pitechnology.com/uploads/documents/MISRA_C_tools.pdf
http://www.plumhall.com/ASE-SSATTM-plum+keaton-proceedings.pdf
http://www.ll.mit.edu/IST/pubs/KratkiewiczThesis.pdf
http://www.aitcnet.org/isai/

	Introduction
	High level language view
	Portability
	Language definition
	Language for code generation

	Language problems
	Ensuring predictable execution
	Language subsets
	SPARK
	MISRA-C
	Some comparisons


	Qualification of tools
	Floating point
	Conclusions
	Proposed wording for the ISO Guidelines

	Document details

