1 General [intro]

1.1 Scope [intro.scope]

This International Standard specifies requirements for processors oftthgogramming language. The
first such requirement is that they implement the language, and so this Standard also ¢hefilt@thes
requirements and relaxations of the first requirement appear at various places within the Standard.

C+ is a general purpose programming language based on the C programming language as described in
ISO/IEC 9899 (1.2). In addition to the facilities provided by &; frovides additional data types, classes,
templates, exceptions, inline functions, operator overloading, function name overloading, references, free
store management operators, function argument checking and type conversion, and additional library facili-
ties. These extensions to C are summarized in C.1. The differences between €SO ¢ are summa-

rized in C.2. The extensions te+Gince 1985 are summarized in C.1.2.

1.2 Normative references [intro.refs]

The following standards contain provisions which, through reference in this text, constitute provisions of
this International Standard. At the time of publication, the editions indicated were valid. All standards are
subject to revision, and parties to agreements based on this International Standard are encouraged to investi-
gate the possibility of applying the most recent editions of the standards indicated below. Members of IEC
and 1SO maintain registers of currently valid International Standards.

— ANSI X3/TR-1-82:1982 American National Dictionary for Information Processing Systems
— ISO/IEC 9899:1990C Standard
— ISO/IEC xxxx:199xAmendment 1 to C Standard

EBox 1 B

CThis last title must be filled in when Amendment 1 is approved. The other titles have not been chegked for
Laccuracy. g

1.3 Definitions [intro.defs]

For the purposes of this International Standard, the definitions given in ANSI X382 and the follow-
ing definitions apply.

— argument: An expression in the comma-separated list bounded by the parentheses in a functiah call
expression, a sequence of preprocessing tokens in the comma-separated list bounded by the paréntheses
in a function-like macro invocation, the operandtubw , or an expression in the comma-separated
list bounded by the angle brackets in a template instantiation. Also knowrt astaal argumeitor
“actual parameter.

— diagnostic message: A message belonging to an implementation-defined subset of the
implementation’s message output.

— dynamic type: The dynamic typeof an expression is determined by its current value and may change
during the execution of a program. If a pointer (8.3.1) whose static typeirger to clas®” is point-
ing to an object of clasB, derived from B (10), the dynamic type of the pointefpsinter toD.”

1-2 General DRAFT: 27 May 1994 1.3 Definitions

References (8.3.2) are treated similarly.

— implementation-defined behavior: Behavior, for a correct program construct and correct data, that
depends on the implementation and that each implementation shall document. The range of possible
behaviors is delineated by the standard.

— implementation limits: Restrictions imposed upon programs by the implementation.

— locale-specific behavior:Behavior that depends on local conventions of nationality, culture, and lan-
guage that each implementation shall document.

— multibyte character: A sequence of one or more bytes representing a member of the extended charac-
ter set of either the source or the execution environment. The extended character set is a superset of the
basic character set.

— parameter: an object or reference declared as part of a function declaration or definition ir the catch
clause of an exception handler that acquires a value on entry to the function or handler, an identifier
from the comma-separated list bounded by the parentheses immediately following the macro name in a
function-like macro definition, or emplate-parameterA function may said tétake argumentsor to
“have parametersParameters are also known d@$@amal argumentsor “formal parameters.

— signature: The signature of a function is the information about that function that participates in over-
load resolution (13.2): the types of its parameters and, if the function is a non-static member of a class,
the CV-qualifiers (if any) on the function itself and whether the function is a direct member of its class
or inherited from a base class.

— static type: The static typeof an expression is the type (3.7) resulting from analysis of the program
without consideration of execution semantics. It depends only on the form of the program and does not
change.

— undefined behavior: Behavior, such as might arise upon use of an erroneous program construct'br of
erroneous data, for which the standard imposes no requirements. Permissible undefined behavior
ranges from ignoring the situation completely with unpredictable results, to behaving during translation
or program execution in a documented manner characteristic of the environment (with or without the
issuance of a diagnostic message), to terminating a translation or execution (with the issuance of a diag-
nostic message). Note that many erroneous program constructs do not engender undefined béhavior;
they are required to be diagnosed.

— unspecified behavior:Behavior, for a correct program construct and correct data, that depends on the
implementation. The range of possible behaviors is delineated by the standard. The implementation is
not required to document which behavior occurs.

1.4 Syntax notation [syntax]

In the syntax notation used in this manual, syntactic categories are indicétigt ype, and literal words

and characters ioonstant width type. Alternatives are listed on separate lines except in a few cases
where a long set of alternatives is presented on one line, marked by the"phes& An optional termi-

nal or nonterminal symbol is indicated by the subs¢opt,” so

{ expressiop), }
indicates an optional expression enclosed in braces.
Names for syntactic categories have generally been chosen according to the following rules:

— X-nameis a use of an identifier in a context that determines its meaning ¢ags-nametypedef-
name.

1) Function signatures do not include return type, because that does not participate in overload resolution.

1.4 Syntax notation DRAFT: 27 May 1994 General 43

— X-id is an identifier with no context-dependent meaning (guelified-id).

— X-seqis one or moreX’s without intervening delimiters (e.gleclaration-seds a sequence of declarat]
tions).

— X-listis one or moreX’s separated by intervening commas (eegpression-lisis a sequence of expres-
sions separated by commas).

1.5 The G+ memory model [intro.memory]

The fundamental storage unit in ther@emory model is thbyte. A byte is at least large enough to con-

tain any member of the basic execution character set and is composed of a contiguous sequence of bits, the
number of which is implementation-defined. The least significant bit is callddwherder bit; the most
significant bit is called théigh-orderbit. The memory accessible to a+(program is one or more conil
tiguous sequences of bytes. Each byte (except perhaps registers) has a unique address.

The constructs in a+€ program create, refer to, access, and manipuolgiertsin memory. Each object
(except bit-fields) occupies one or more contiguous bytes. Objects are created by definitions (3.1) and
new-expressiongs.3.4). Each object hastgpe determined by the construct that creates it. The type in
turn determines the number of bytes that the object occupies and the interpretation of their contents.
Objects may contain other objects, caltdb-object49.2, 10). An object that is not a sub-object of any
other object is called eomplete objectFor every objeck, there is some object calléfte complete object

of x, determined as follows:

— If x is a complete object, thenis the complete object af.
— Otherwise, the complete objectofs the complete object of the (unique) object that contains
Ct+ provides a variety of built-in types and several ways of composing new types from existing types.

Certain types havalignmentrestrictions. An object of one of those types may appear only at an address
that is divisible by a particular integer.

1.6 Processor compliance [intro.compliance]

Every conforming & processor shall, within its resource limits, accept and correctly execute well-formed
CH programs, and shall issue at least one diagnostic error message when presented with any ill-formed pro-
gram that contains a violation of any rule that is identified as diagnosable in this Standard or of any syntax
rule, except as noted herein.

Well-formed G+ programs are those that are constructed according to the syntax rules, semantic rules iden-
tified as diagnosable, and the One Definition Rule (3.1). If a program is not well-formed but does not con-
tain any diagnosable errors, this Standard places no requirement on processors with respect to that program.

1.7 Program execution [intro.execution]

The semantic descriptions in this Standard define a parameterized nondeterministic abstract machine. This
Standard places no requirement on the structure of conforming processors. In particular, they need not
copy or emulate the structure of the abstract machine. Rather, conforming processors are required to emu-
late (only) the observable behavior of the abstract machine as explained below.

Certain aspects and operations of the abstract machine are described in this Standard as impleméntation
defined (for examplesizeof(int)). These constitute the parameters of the abstract machine. Each
implementation shall include documentation describing its characteristics and behavior in these respects,
which documentation defines the instance of the abstract machine that corresponds to that implementation
(referred to as the “corresponding instance” below).

Certain other aspects and operations of the abstract machine are described in this Standard as unspecified
(for example, order of evaluation of arguments to a function). In each case the Standard defines a set of
allowable behaviors. These define the nondeterministic aspects of the abstract machine. An instance of the
abstract machine may thus have more than one possible execution sequence for a given program and a

1-4 General DRAFT: 27 May 1994 1.7 Program execution

given input.

Certain other operations are described in this International Standard as undefined (for example, the effect of
dereferencing the null pointer).

A conforming processor executing a well-formed program shall produce the same observable behavior as
one of the possible execution sequences of the corresponding instance of the abstract machine with the
same program and the same input. However, if any such execution sequence contains an undefined opera-
tion, this Standard places no requirement on the processor executing that program with that input (not even
with regard to operations previous to the first undefined operation).

The observable behavior of the abstract machine is its sequence of reads and voit¢eto data and
calls to library 1/0 functioné)

I An implementation can offer additional library 1/O functions as an extension. Implementations that do so should treat calls to those
functions as “observable behavior” as well.

2 Lexical conventions [lex]

A C+ program need not all be translated at the same time. The text of the program is kept in units called
source filesn this standard. A source file together with all the headers (17.1.2) and source files included
(16.2) via the preprocessing directi#mclude , less any source lines skipped by any of the conditional
inclusion (16.1) preprocessing directives, is callé@aslation unit Previously translated translation units

may be preserved individually or in libraries. The separate translation units of a program communicate
(3.4) by (for example) calls to functions whose identifiers have external linkage, manipulation of objects
whose identifiers have external linkage, or manipulation of data files. Translation units may be separately
translated and then later linked to produce an executable program. (3.4).

2.1 Phases of translation [lex.phases]
The precedence among the syntax rules of translation is specified by the foIIowing3bhases.

1 Physical source file characters are mapped to the source character set (introducing new-line charac-
ters for end-of-line indicators) if necessary. Trigraph sequences (2.2) are replaced by corresponding
single-character internal representations.

2 Each instance of a new-line character and an immediately preceding backslash character is deleted,
splicing physical source lines to form logical source lines. A source file that is not empty shall end
in a new-line character, which shall not be immediately preceded by a backslash character.

3 The source file is decomposed into preprocessing tokens (2.3) and sequences of white-space charac-
ters (including comments). A source file shall not end in a partial preprocessing token or comment.
Each comment is replaced by one space character. New-line characters are retained. Whether each
nonempty sequence of white-space characters other than new-line is retained or replaced by one
space character is implementation-defined. The process of dividing a source file’s characters into
preprocessing tokens is context-dependent. For example, see the handlimighaf a#include
preprocessing directive.

4 Preprocessing directives are executed and macro invocations are exparfiedude prepro-
cessing directive causes the named header or source file to be processed from phase 1 through phase
4, recursively.

5 Each source character set member and escape sequence in character constants and string literals is
converted to a member of the execution character set.

6 Adjacent character string literal tokens are concatenated and adjacent wide string literal tokens are
concatenated.

7 White-space characters separating tokens are no longer significant. Each preprocessing token is
converted into a token. (See 2.4). The resulting tokens are syntactically and semantically analyzed
and translated. The result of this process starting from a single source file is dafadlation
unit.

8 The translation units that will form a program are combined. All external object and function refer-
ences are resolved.

3) Implementations must behave as if these separate phases occur, although in practice different phases may be folded together.

2-2 Lexical conventions DRAFT: 27 May 1994 2.1 Phases of translation

Box 2 O

0
U 0
0 What about shared libraries?

Library components are linked to satisfy external references to functions and objects not defined in the
current translation. All such translator output is collected into a program image which contains infor-
mation needed for execution in its execution environment.

2.2 Trigraph sequences [lex.trigraph]

1 Before any other processing takes place, each occurrence of one of the following sequences of three charac-
ters (trigraph sequencés$ is replaced by the single character indicated in Table 1.

Table 1—trigraph sequences

Urigraph replacementU trigraph replacement trigraph replacemgnt

O ??= # 2?7 [27 { 0

0 27/ \ 2?)] 278 } O

g ?? N 32! | 225 - H
2 For example,

??=define arraycheck(a,b) a??(b??) ??1??! b??(a??)
becomes
#define arraycheck(a,b) a[b] || b[a]

2.3 Preprocessing tokens [lex.pptoken]

preprocessing-token:
header-name
identifier
pp-number
character-constant
string-literal
operator
digraph
punctuator
each non-white-space character that cannot be one of the above

1 Each preprocessing token that is converted to a token (2.5) shall have the lexical form of a keyword, an
identifier, a constant, a string literal, an operator, a digraph, or a punctuator.

2 A preprocessing tokeis the minimal lexical element of the language in translation phases 3 through 6.
The categories of preprocessing token aeader namesdentifiers preprocessing numbersharacter
constantsstring literals operators punctuators digraphs and single non-white-space characters that do
not lexically match the other preprocessing token categories. Hraa" character matches the last cate-
gory, the behavior is undefined. Preprocessing tokens can be separatbiebgpacethis consists of
comments (2.6), avhite-space charactefspace, horizontal tab, new-line, vertical tab, and form-feed), or
both. As described in Clause 16, in certain circumstances during translation phase 4, white space (or the
absence thereof) serves as more than preprocessing token separation. White space may appear within a pre-
processing token only as part of a header name or between the quotation characters in a character constant
or string literal.

2.3 Preprocessing tokens DRAFT: 27 May 1994 Lexical conventions-2

If the input stream has been parsed into preprocessing tokens up to a given character, the next preprocessing
token is the longest sequence of characters that could constitute a preprocessing token.

The program fragmerttEx is parsed as a preprocessing number token (one that is not a valid floating or
integer constant token), even though a parse as the pair of preprocessind. takdEx might produce a

valid expression (for example,iix were a macro defined ad). Similarly, the program fragmed€1 is

parsed as a preprocessing number (one that is a valid floating constant token), whethErioamtacro
name.

The program fragment+++++y is parsed ag ++ ++ + y |, which violates a constraint on increment
operators, even though the paxset + ++y might yield a correct expression.

2.4 Digraph sequences [lex.digraph]

Alternate representations are provided for the operators and punctuators whose primary representations use
the“national charactersThese include digraphs and additional reserved words.
digraph:

<%

%>

<:

>

%: O

In translation phase 3 (2.1) the digraphs are recognized as preprocessing tokens. Then in translation phase

7 the digraphs and the additional identifiers listed below are converted into tokens identical to those from
the corresponding primary representations, as shown in Table 2.

Table 2—identifiers that are treated as operators

Chlternate primary U alternate _ primaryl! _alternate primaﬁ
0 <% { - and && apd_eq &= 0
0 %> } (bitor | or_eq |= O
H < [Hor I xor_é:ﬁ A= H
o >] xor n nat) ! O
U o%: # Leompl ~ not! eq I= U 0
5 | & (]
lEbltand & 0 0 0
2.5 Tokens [lex.token]
token:
identifier
keyword
literal
operator
punctuator

There are five kinds of tokens: identifiers, keywords, literals (which include strings and character and
numeric constants), operators, and other separators. Blanks, horizontal and vertical tabs, newlines, form-
feeds, and comments (collectivetyyhite spac®), as described below, are ignored except as they serve to
separate tokens. Some white space is required to separate otherwise adjacent identifiers, keywords, and lit-
erals.

If the input stream has been parsed into tokens up to a given character, the next token is taken to be the
longest string of characters that could possibly constitute a token.

2—-4 Lexical conventions DRAFT: 27 May 1994 2.6 Comments

2.6 Comments [lex.comment]

The character§ start a comment, which terminates with the chara¢tersThese comments do not nest.

The characterf start a comment, which terminates the next new-line character. If there is a form-feed or

a vertical-tab character in such a comment, only white-space characters may appear between it and the
new-line that terminates the comment; no diagnostic is required. The comment chéraadtersand*/

have no special meaning within//la comment and are treated just like other characters. Similarly, the
comment charactef6 and/* have no special meaning withirf*a comment.

2.7 Identifiers [lex.name]
identifier:
nondigit
identifier nondigit
identifier digit

nondigit one of
_abcdefghijklm
nopgqrstuvwxyz
ABCDEFGHIJKLM
NOPQRSTUVWXYZ

digit: one of
0123456789

An identifier is an arbitrarily long sequence of letters and digits. The first character must be a letter; the
underscore counts as a letter. Upper- and lower-case letters are different. All characters are significant.

2.8 Keywords [lex.key]

The identifiers shown in Table 3 are reserved for use as keywords, and may not be used otherwise in phases
7 and 8:

Table 3—keywords

Lasm delete if reinterpret_cast true 0
uto do inline return try B
ool double int short typedef 0

break dynamic_cast long signed typeid 0

[tase else mutable sizeof union O

Ltatch enum namespace static unsigned 0
har extern new static_cast using B

class false operator struct virtual 0

[const float private switch void 0

[tonst _cast for protected template volatile O

Ltontinue friend public this wchar_t 0
efault goto register throw while H

Furthermore, the alternate representations shown in Table 4 for certain operators and punctuators (2.4) are
reserved and may not be used otherwise:

2.8 Keywords DRAFT: 27 May 1994 Lexical conventions -5

Table 4—alternate representations

Chitand and bitor or xor compl O
nd_eq or_eq xor_eq not not eq H

In addition, identifiers containing a double underscore) are reserved for use by+Cimplementations
and standard libraries and should be avoided by users; no diagnostic is required.

The ASCII representation of+€ programs uses as operators or for punctuation the characters shown in
Table 5.

Table 5—operators and punctuation characters

O % ~ & * () - + = {} | -
H 1 v oo < > 2

o

Table 6 shows the character combinationations that are used as operators.

Table 6—character combinations used as operators

U> ++ - * >* << >> <= >= == |= &&
Hl *= [= Op= 4= = <<= >>= &= = |: -

[

Each is converted to a single token in translation phase 7 (2.1).

Table 7 shows character combinations that are used as alternative representations for certain operators and
punctuators (2.4).

Table 7—digraphs

K% %> < > % B 0

Each of these is also recognized as a single token in translation phases 3 and 7.

Table 8 shows additional tokens that are used by the preprocessor.

Table 8—preprocessing tokens

B ##t % %:%: H 0

Certain implementation-dependent properties, such as the typsizagfot (5.3.3) and the ranges of fun-
damental types (3.7.1), are defined in the standard header files (16.2)

<float.h> <limits.h> <stddef.h>
These headers are part of the ISO C standard. In addition the headers
<new.h> <stdarg.h> <stdlib.h>

define the types of the most basic library functions. The last two headers are part of the ISO C standard;
<new.h> is G+ specific.

2-6 Lexical conventions DRAFT: 27 May 1994 2.9 Literals

2.9 Literals [lex.literal]

There are several kinds of literals (often referred tacanstant).

literal:
integer-literal
character-literal
floating-literal
string-literal
boolean-literal
2.9.1 Integer literals [lex.icon]

integer-literal:
decimal-literal integer-suffix,
octal-literal integer-suffix,
hexadecimal-literal integer-suffjy

decimal-literal:
nonzero-digit
decimal-literal digit

octal-literal:
0
octal-literal octal-digit

hexadecimal-literal:
0x hexadecimal-digit
0X hexadecimal-digit
hexadecimal-literal hexadecimal-digit

nonzero-digit: one of
1234567829

octal-digit: one of
01234567

hexadecimal-digit: one of
01234567829
abocdef

A B CDEF

integer-suffix:
unsigned-suffix long-suffjx
long-suffix unsigned-suffjx

unsigned-suffix:one of
u u

long-suffix: one of
I L

An integer literal consisting of a sequence of digits is taken to be decimal (base ten) unless it bef@ins with
(digit zero). A sequence of digits starting withis taken to be an octal integer (base eight). The dgits
and9 are not octal digits. A sequence of digits precedetxbgr 0X is taken to be a hexadecimal integer
(base sixteen). The hexadecimal digits incladar A throughf or F with decimal values ten through fif-
teen. For example, the number twelve can be writfsr914, or 0XC.

2.9.1 Integer literals DRAFT: 27 May 1994 Lexical conventions -2/

The type of an integer literal depends on its form, value, and suffix. If it is decimal and has no suffix, it has
the first of these types in which its value can be represented:long int , unsigned long int . If

it is octal or hexadecimal and has no suffix, it has the first of these types in which its value can be repre-
sentedint , unsigned int ,long int ,unsigned long int . Ifitis suffixed byu or U, its type is

the first of these types in which its value can be represamséyned int , unsigned long int . If

it is suffixed byl orL, its type is the first of these types in which its value can be represkmgdint ,
unsigned long int . If it is suffixed byul , lu , uL, Lu, Ul, U, UL, or LU, its type isunsigned

long int

A program is ill-formed if it contains an integer literal that cannot be represented by any of the allowed
types.

2.9.2 Character literals [lex.ccon]

character-literal:
' c-char-sequence
L’ c-char-sequence

c-char-sequence:
c-char
c-char-sequence c-char

c-char:
any member of the source character set except
the single-quoté, backslash , or new-line character
escape-sequence

escape-sequence:
simple-escape-sequence
octal-escape-sequence
hexadecimal-escape-sequence

simple-escape-sequencene of
LS S VAR
\a \b \f \n \r \t \Wv

octal-escape-sequence:
\ octal-digit
\ octal-digit octal-digit
\ octal-digit octal-digit octal-digit

hexadecimal-escape-sequence:
\x hexadecimal-digit
hexadecimal-escape-sequence hexadecimal-digit

A character literal is one or more characters enclosed in single quotesx’as, ioptionally preceded by

the letterL, as inL’x’ . Single character literals that do not begin witlhhave typechar , with value

equal to the numerical value of the character in the machine’s character set. Multicharacter literals that do
not begin withL have typent and implementation-defined value.

A character literal that begins with the lettersuch ad 'ab’ , is a wide-character literal. Wide-character
literals have typavchar_t . They are intended for character sets where a character does not fit into a sin-
gle byte.

Certain nongraphic characters, the single quotbe double quotg, ?, and the backslash may be repre-
sented according to Table 9.

2-8 Lexical conventions DRAFT: 27 May 1994 2.9.2 Character literals

Table 9—escape sequences

Lhew-line NL(LF) \n U
orizontal tab HT \t E
[yertical tab VT \v 0
backspace BS \b 0
Ctarriage return CR \r O
Lorm feed FF \f U
lert BEL \a E
ackslash \ A
rguestion mark ? \? 0
Ckingle quote ' \ O
LHouble quote " v O
ctal number 000 \ooo E
ex number hhh \xhhh

If the character following a backslash is not one of those specified, the behavior is undefined. An escape
sequence specifies a single character.

The escapkoooconsists of the backslash followed by one, two, or three octal digits that are taken to spec-
ify the value of the desired character. The estag®h consists of the backslash followed hyollowed

by a sequence of hexadecimal digits that are taken to specify the value of the desired character. There is no
limit to the number of hexadecimal digits in the sequence. A sequence of octal or hexadecimal digits is ter-
minated by the first character that is not an octal digit or a hexadecimal digit, respectively. The value of a
character literal is implementation dependent if it exceeds that of the lelngest

2.9.3 Floating literals [lex.fcon]

floating-constant:
fractional-constant exponent-pgytfloating-suffix,
digit-sequence exponent-part floating-siffix

fractional-constant:
digit-sequencg, . digit-sequence
digit-sequence.

exponent-part:
e sign,, digit-sequence
E sign,, digit-sequence

sign: one of
+ -

digit-sequence:
digit
digit-sequence digit

floating-suffix: one of
fl F L

A floating literal consists of an integer part, a decimal point, a fraction pagtpak, an optionally signed

integer exponent, and an optional type suffix. The integer and fraction parts both consist of a sequence of
decimal (base ten) digits. Either the integer part or the fraction part (not both) may be missing; either the
decimal point or the lettar (or E) and the exponent (not both) may be missing. The type of a floating lit-
eral isdouble unless explicitly specified by a suffix. The suffifeandF specifyfloat , the suffixed

andL specifylong double .

2.9.4 string literals DRAFT: 27 May 1994 Lexical conventions -9

2.9.4 String literals [lex.string]

string-literal:
" s-char-sequencg’
L" s-char-sequengg’

s-char-sequence:
s-char
s-char-sequence s-char

s-char:
any member of the source character set except
the double-quoté, backslash , or new-line character
escape-sequence

A string literal is a sequence of characters (as defined in 2.9.2) surrounded by double quotes, optionally
beginning with the lettek, as in"..." orL".." . A string literal that does not begin withhas type

“array ofchar " andstatic storage duration (3.6), and is initialized with the given characters. Whethdr all
string literals are distinct (that is, are stored in nonoverlapping objects) is implementation dependent. The
effect of attempting to modify a string literal is undefined.

A string literal that begins with, such ad."asdf" , is a wide-character string. A wide-character string is
of type“array ofwchar_t .” Concatenation of ordinary and wide-character string literals is undefined.

HBox 3 0
d
[(Bhould this render the program ill-formed? Or is it deliberately undefined to encourage extehsions?

Adjacent string literals are concatenated. Characters in concatenated strings are kept distinct. For example,
II\XAII IIBII

contains the two charactéksA’ and’B’ after concatenation (and not the single hexadecimal character
XAB’).

After any necessary concatenatithi is appended so that programs that scan a string can find its end.
The size of a string is the number of its characters including this terminator. Within a string, the double
guote character must be preceded by\a

2.9.5 Boolean literals [lex.bool]

boolean-literal:
false
true

The Boolean literals are the keywoffdése andtrue . Such literals have typggool and the given val-
ues. They are not Ivalues.

3 Basic concepts [basic]

This clause presents the basic concepts of #idaiguage. It explains the difference betweerlaject

and anameand how they relate to the notion oflaalue It introduces the concepts oflaclarationand a

definition and presents+#€'s notion oftype scope linkage andstorage duration The mechanisms for[l
starting and terminating a program are discussed. Finally, this clause presents the fundamental types of the
language and lists the ways of constructingipoundypes from these. a

This clause does not cover concepts that affect only a single part of the language. Such concepts are dis-
cussed in the relevant clauses.

An entityis a value, object, subobject, base class subobject, array element, variable, function, set of func-
tions, instance of a function, enumerator, type, class member, template, or namespace.

A nameis a use of an identifier (2.7) that denotes an entitgtml (6.6.4, 6.1). a

Every name that denotes an entity is introduced dbgctaration Every name that denotes a label is intro-

duced either by goto statement (6.6.4) or labeled-statemen(6.1). Every name is introduced in somg
contiguous portion of program text calledieclarative region(3.3), which is the largest part of the pradl

gram in which that name can possibly be valid. In general, each particular name is valid only within some
possibly discontiguous portion of program text calleddtspe(3.3). To determine the scope of a declarar

tion, it is sometimes convenient to refer to gudential scop®f a declaration. The scope of a declaration

is the same as its potential scope unless the potential scope contains another declaration of the same name.
In that case, the potential scope of the declaration in the inner (contained) declarative region is excluded
from the scope of the declaration in the outer (containing) declarative region.

For example, in

intj = 24;

main()
inti=j,j;
j=42;

}

the identifierj is declared twice as a name (and used twice). The declarative region of therfaisides
the entire example. The potential scope of theffilségins immediately after thatand extends to the end
of the program, but its (actual) scope excludes the text betweenratid the} . The declarative region of
the second declaration pf(thej immediately before the semicolon) includes all the text betyemmd}, O
but its potential scope excludes the declaration.ofThe scope of the second declaratiof @ the same [0
as its potential scope.

Some names denote types, classes, or templates. In general, it is necessary to determine whether or not a
name denotes one of these entities before parsing the program that contains it. The process that determines
this is callechame lookup

An identifier used in more than one translation unit may potentially refer to the same entity in these transla-
tion units depending on the linkage (3.4) specified in the translation units.

3-2 Basic concepts DRAFT: 27 May 1994 3 Basic concepts

An objectis a region of storage (3.8). In addition to giving it a name, declaring an object gives the ohject a
storage duration(3.6), which determines the object’s lifetime. Some objectpalsgnorphic the imple-
mentation generates information carried in each such object that makes it possible to determine that object’s
type during program execution. For other objects, the meaning of the values found therein is determined by
the type of the expressions used to access them.

ox 4 g
[Most of this section needs more workK.

3.1 Declarations and definitions [basic.def]
A declaration (7) introduces one or more names into a program and gives each name a meaning.

A declaration is alefinition unless it declares a function without specifying the function’s body (8.4), it
contains theextern specifier (7.1.1) and neither @nitializer nor afunction-body it declares a static data
member in a class declaration (9.5), it is a class name declaration (9.1), ortypedlef declaration
(7.1.3), ausing declaration(7.3.3), oriasing directive(7.3.4).

The following, for example, are definitions:

int a; 1! definesa

extern constint c = 1; 1 definesc

int f(int x) { return x+a; } // definesf

struct S {inta;intb;}; // definesS

struct X { 1 definesX
int x; 1 defines nonstatic data member
static int y; I declares static data membgr
X(0: x(0) {} I defines a constructor of

int Xiy =1, i definesX::y

enum { up, down }; I definesup and down

namespace N {int d; } 1 definesN and N::d

namespace N1 = N; 1! definesN1

X anX; 1l definesanX

whereas these are just declarations:

externint a; 1 declaresa

extern const int c; /i declaresc

int f(int); 1 declaresf

struct S; I declaresS
typedef int Int; I declaresint
extern X anotherX; /i declaresanotherX
using N::d; 1! declaresN::d

In some circumstancesHCimplementations generate definitions automatically. These definitions include
default constructors, copy constructors, assignment operators, and destructors. For example, given

struct C {
string s; /I string is the standard library class (17.5.1.1)
I3

main()

{
Ca;
C b=gq;
b=a;

}
the implementation will generate functions to make the definitidbezfuivalent to

3.1 Declarations and definitions DRAFT: 27 May 1994 Basic concepts-3

struct C {
string s;

CQ:-s0{}
C(const C& x): s(x.s) {}
C& operator=(const C& x) { s = x.s; return *this; }

~CO{}

3.2 One definition rule [basic.def.odr]

H?JOX 5 O

d
(Orhis is still very much under review by the Committee.

No translation unit shall contain more than one definition of any variable, function, class type, enumétation
type or template.

A function isusedif it is called, its address is taken, or it is a virtual member function that is not pure
(10.4). Every program shall contain at least one definition of every function that is used in that program.
That definition may appear explicitly in the program, it may be found in the standard or a user-defined
library, or (when appropriate) the implementation may generate it. If a non-virtual function is not defined,
a diagnostic is required only if an attempt is actually made to call that function.

EBox 6 B
[This says nothing about user-defined libraries. Probably it shouldn’t, but perhaps it should be morerexplicit
[that it isn’t discussing it. O

Exactly one definition in a program is required for a non-local variable with static storage duration, unless
it has a builtin type or is an aggregate and also is unused or used only as the operasideafftheopera-
tor.

BBox 7 g
(Orhis is still uncertain.f]

At least one definition of a class is required in a translation unit if the class is used other than in the forma-
tion of a pointer type.

EBox 8 B
[This is not quite right, because it is possible to declare a function that has an undefined class tyge as its
Creturn type, that has arguments of undefined class type. O
EBox 9 B
[There may be other situations that do not require a class to be defined: extern declarations (i.e. 'gxtern X
[k;"), declaration of static members, others??? O

For example the following complete translation unit is well-formed, even though it never defines

struct X; 1 declareX s a struct type
struct X* x1; // useX in pointer formation
X* x2; 1 useX in pointer formation

3-4 Basic concepts DRAFT: 27 May 1994 3.2 One definition rule

There may be more than one definition of a named enumeration type in a program provided that each defi-
nition appears in a different translation unit and the values of the enumerators are the same.

ox 10 g
Orhis will need to be revisited when the ODR is made more precise

There may be more than one definition of a class type in a program provided that each definition appears in

a different translation unit and the definitions describe the same type. O
No diagnostic is required for a violation of the ODR rule. O
ox 11 O

a
Orhis will need to be revisited when the ODR is made more precise

3.3 Declarative regions and scopes [basic.scope]
The scope rules are summarized in 10.5. O
3.3.1 Local scope [basic.scope.local]

A name declared in a block (6.3) is local to that block. Its scope begins at its point of declaration (3.3.10)
and ends at the end of its declarative region.

Names of parameters of a function are local to the function and shall not be redeclared in the outermost
block of that function.

The name in @atch exception-declaration is local to the handler and shall not be redeclared in the outer-
most block of the handler.

Names in a declaration in titenditionpart of anif , while , for , do, orswitch statement are local to

the controlled statement and shall not be redeclared in the outermost block of that statement.

3.3.2 Function prototype scope [basic.scope.proto]

In a function declaration, names of parameters (if supplied) have function prototype scope, which termi-
nates at the end of the function declarator.

3.3.3 Function scope

Labels (6.1) can be used anywhere in the function in which they are declared. Only labels have function
scope.

3.3.4 File scope [basic.file.scope]

A name declared outside all named namespacesr{espace, blocks (6.3) and classes (9) liges scope
The potential scope of such a name begins at its point of declaration (3.3.10) and ends at the end of the
translation unit that is its declarative region. Names declared with file scope are sajtbtoabe

File scope can be treated as a special case of namespace scope (3.3.5) by viewing an entire translation unit
as an unnamed namespace callegjtbal namespace

3.3.5 Namespace scope [basic.scope.namespace]

A name declared in a namespacaamespacg has namespace scope. lIts potential scope includes its

namespace from the name’s point of declaration (3.3.10) onwards, as well as the potential scope of any

using directive(7.3.4) that nominates its namespace. A namespace member can be also be used &fter the
scope resolution operator (5.1) applied to the name of its namespace. O

3.3.5 Namespace scope DRAFT: 27 May 1994 Basic conceptb 3

A function may be defined only in namespace or class scope. O

3.3.6 Class scope [basic.scope.class]

The name of a class member is local to its class and can be used only in a member of that class (9.4) or a
class derived from that class, after theperator applied to an expression of the type of its class (5.2.4) or a
class derived from (10) its class, after theoperator applied to a pointer to an object of its class (5.2.4) or

a class derived from (10) its class, after thescope resolution operator (5.1) applied to the name of its

class or a class derived from its class, or aftesiag directivg7.3.4). O

EBOX 12 B

What does: "can be used only in a member of that class" mean? It should be phrased to includegjbody of
Cmember functions, ctor-init-list, static member initializers. M

The scope of names introduced by friend declarations is described in 7.3.1.
A function may be defined only in namespace or class scope.

The scope rules for classes are summarized in 9.3.

3.3.7 Name hiding [basic.scope.hiding]

A name may be hidden by an explicit declaration of that same name in a nested declarative region or
derived class.

A class name (9.1) may be hidden by the name of an object, function, or enumerator declared in the same
scope. If a class and an object, function, or enumerator are declared in the same scope (in any order) with
the same name the class name is hidden.

If a name is in scope and is not hidden it is said tadible

The region in which a name is visible is calledriechof the name.

HBOX 13 E
Orhe term 'reach’ is defined here but never used. More work is needed with the "descriptive termindlogy".

3.3.8 Explicit qualification [basic.scope.exqual]

EBOX 14 El]
rhe information in this section is very similar to the one provided in 7.3.5. The information in thesgl two
sections (3.3.8 and 7.3.5) should be consolidated in one place. M

A hidden name can still be used when it is qualified by its class or namespace name usingpetor
(5.1, 9.5, 10). A hidden file scope name can still be used when it is qualified by the:unapgrator
(5.2).

3.3.9 Elaborated type specifier [basic.scope.elab]

A class name or enumeration name can be hidden by the name of an object, function, or enumenator in
local, class or namespace scope. A hidden class name can still be used when appropriately prefixed with
class , struct , orunion (7.1.5), or when followed by the operator. A hidden enumeration hame

can still be used when appropriately prefixed weittum (7.1.5). For example:

3-6 Basic concepts DRAFT: 27 May 1994 3.3.9 Elaborated type specifier

class A {
public:
static int n;
I3
main()
{
int A;
A:n=42; I OK
class A a; I OK
Ab; [l ill-formed: A does not name a type
}
The scope of class names first introduceel@borated-type-specifieis described in (7.1.5.3). a
3.3.10 Point of declaration [basic.scope.pdecl]

Thepoint of declaratiorfor a name is immediately after its complete declarator (8) and befangiékzer
(if any), except as noted below. For example,

intx =12;

{intx=x;}
Here the seconxl is initialized with its own (unspecified) value.
For the point of declaration for an enumerator, see 7.2.

The point of declaration of a function with tegtern orfriend specifier is in the innermost enclosing
namespace just after outermost nested scope containing it which is contained in the namespace.

Box 15 =
O

N
[The terms “just after the outermost nested scope" imply name injection. We avoided introducing the con-
Ctept of name injection in the working paper up until now. We should probably continue to do withoufll

The point of declaration of a class first declared irekborated-type-specifidgs immediately after the
identifier;

A nonlocal name remains visible up to the point of declaration of the local name that hides it. For example,
constint i=2;
{int ifi]; }

declares a local array of two integers.

The point of instantiation of a template is described in 14.3.

3.4 Program and linkage [basic.link]

A programconsists of one or motteanslation units(2) linked together. The process of linking togethér
translation units. A translation unit consists of a sequence of declarations.

translation unit: ad
declaration-seg,
A name is said to havmkagewhen it may denote the same object, function, type, template, or valuelas a
name introduced by a declaration in another scope: O

— When a name haaxternal linkagethe entity it denotes may be referred to by names from scopes of
other translation units or from other scopes of the same translation unit. O

— When a name hdaternal linkage the entity it denotes may be referred to by names from other scapes

3.4 Program and linkage DRAFT: 27 May 1994 Basic concepts-3

of the same translation unit. O
— When a name haw linkage the entity it denotes cannot be referred to by names from other scopes!

A name is said to be “of namespace scope” if its immediate scope is the file scope or the scope of ahamed

or unnamed namespace. O
%ox 16 E |
r'he definition of “of namespace scope” should probably appear elsewhere. M
A name of namespace scope has internal linkage if it is the name of O

— a variable that is explicitly declarestatic or is explicitly declaredconst and not explicitly
declarecextern ; or O

— a function that is explicitly declarestatic ~ or is explicitly declarednline and not explicitly O
declaredextern . In addition, the name of a data member of an anonymous union declared at hame-
space scope has internal linkage.

A name of namespace scope has external linkage if it is the name of O
— a variable, unless it has internal linkage; or O
— a function, unless it has internal linkage; or O

— a class that has any static data members (9.5), any member functions that are not defined within the
class definition and are not explicitly declaieline (9.4.2), or any member types with external linkd
age; or g

— atemplate (14). Moreover, the name of a class (9) or enumeration (7.2) has external linkage if it i$ used
to declare a function, variable, or type with external linkage, to declare a template, or to specify @ tem-
plate argument. Using a class object thraw-expressiomloes not affect the linkage of the class. O

HBox 17 (g

Crhis was voted in San Diego but was probably a mistake. There can, after all, be no issue of C Cogmatibil-
rty where exceptions are involved. Moreover, this treatment creates a bad pitfall:
/I file a.h

struct A{};

/I file main.c
#include "a.h"
extern void f();

main()
{
try {
fQ);
} catch (A) {
}
}

/I file f.c
void f() { throw A(); }

[t is reasonable to expect that the throw and the catch refer to the same type, but according to the $&h Diego
[resolutions they don't.

OOooooOooooooogoooogogon
B e e e e e i e e s e

The names of class members and enumerators has external linkage if the class or enumeration to which they
belong has external linkage. O

10

11

3-8 Basic concepts DRAFT: 27 May 1994 3.4 Program and linkage

The name of a function declared in a block scope or a variable deeldesd in a block scope has link-O
age, either internal or external to match the linkage of prior declarations of the name in the same trahnslation
unit, but if there is no prior declaration it has external linkage.

Names not covered by these rules have no linkage. Moreover, except as noted, a name declared in a local
scope (3.3.1) has no linkage and shall not be used in a way that also requires it to have external linkage.

For example: O
void f() a

O

struct A {int x; }; /I no linkage a

extern A a; /I ill-formed O

} ad

Here, there are conflicting constraintsAints use as the type of an object with external linkage requirds it
to have external linkage, but because it is declared in a local scope, it has no linkage.

Two names are the same if
— they are identifiers composed of the same character sequence; or
— they are the names of overloaded operator functions formed with the same operator; or

— they are the names of user-defined conversion functions formed with the same type.

EBox 18 B
A definition of name-sameness should probably appear elsewhere, since it is also assymed in
[[basic.scope.hiding]. O

Two names that are the same and that are declared in different scopes shall denote the same objéct, func-
tion, type, enumerator, or template if a

— both names have external linkage or else both names have internal linkage and are declared in fie same
translation unit; and O

— both names refer to members of the same namespace or to members, not by inheritance, of the same
class; and O

— when both names denote functions or function templates, the function types are identical for purp@ses of
overloading.

Inline class member functions must have exactly one definition in a program. a

ox 19 g
ro be reworked when the ODR is clarified.

After all adjustments of types (during which typedefs (7.1.3) are replaced by their definitions), thelfypes
specified by all declarations of a particular external name must be identical, except that such types may dif-
fer by the presence or absence of a major array bound (8.3.4). A violation of this rule does not require a

diagnostic. a
ox 20 B 0
(rhis needs to specified more precisely to deal with function name overloadling. |

Linkage to non-& declarations can be achieved usinipkage-specificatiorf7.5). a

3.5 Start and termination DRAFT: 27 May 1994 Basic concepts-3

3.5 Start and termination [basic.start]

3.5.1 Main function [basic.start.main]
A program shall contain a function calledin , which is the designated start of the program.

This function is not predefined by the compiler, it cannot be overloaded, and its type is implementation
dependent. The two examples below are allowed on any implementation. It is recommended that any fur-
ther (optional) parameters be added atgv . The functiormain() may be defined as

intmain() {/*...*/}
or
int main(int argc, char* argv[]) { /* ... */ }

In the latter formargc shall be the number of arguments passed to the program from an environment in
which the program is run. Hrgc is nonzero these arguments shall be supplied as zero-terminated strings
in argv[0] throughargv[argc-1] andargv[0] shall be the name used to invoke the program or

" . Itis guaranteed thatrgv[argc]==

The functionmain() shall not be called from within a program. The linkage (3.4nain() is imple-
mentation dependent. The addressm@&in() shall not be taken anohain() shall not be declared
inline or static

Calling the function
void exit(int);

declared in<cstdlib> (17.2.4.5) terminates the program without leaving the current block and hénhce
without destroying any local variables (12.4). The argument value is returned to the program’s environ-
ment as the value of the program.

A return statement imain() has the effect of leaving the main function (destroying any local variables)
and callingexit() with the return value as the argument. If control reaches the emainf without
encountering aeturn statement, the effect is that of executing

return O;

3.5.2 Initialization of non-local objects [basic.start.init]

ox 21 E
[rhis is still under active discussion by the committee.

The initialization of nonlocal static objects (3.6) in a translation unit is done before the first use of any func-
tion or object defined in that translation unit. Such initializations (8.5, 9.5, 12.1, 12.6.1) may be done
before the first statement afain() or deferred to any point in time before the first use of a function or
object defined in that translation unit. The default initialization of all static objects to zero (8.5) is per-
formed before any dynamic (that is, run-time) initialization. No further order is imposed on the initial-
ization of objects from different translation units. The initialization of local static objects is described in
6.7. O

If construction or destruction of a non-local static object ends in throwing an uncaught exception, thélesult
is to callterminate() (_exccept.terminatg. O

3-10 Basic concepts DRAFT: 27 May 1994 3.5.3 Termination

3.5.3 Termination [[basic.start.term]

Destructors (12.4) for initialized static objects are called when returningrfraim() and when calling O
exit() (17.2.4.5). Destruction is done in reverse order of initialization. The funatedit() from O
<cstdlib> can be used to specify that a function must be called at exatexit() is to be called,
objects initialized before aatexit() call may not be destroyed until after the function specified in the
atexit() call has been called.

Where a €+ implementation coexists with a C implementation, any actions specified by the C implementa-
tion to take place after treexit() functions have been called take place after all destructors have been
called.

Calling the function
void abort();
declared in<cstdlib> terminates the program without executing destructors for static objects and with-
out calling the functions passedatexit()
3.6 Storage duration [basic.stc]
The storage duration of an object determines its lifetime.
The storage class specifiestatic , auto , andmutable are related to storage duration as described
below.
3.6.1 Static storage duration [basic.stc.static]

All non-local variables have static storage duration; such variables are created and destroyed as described in
3.5 and stmt.decl.

Note that if an object of static storage duration has a constructor or a destructor with side effects, it shall not
be eliminated even if it appears to be unused.

%ox 22 g
lhis awaits committee action on the “as-if” rulél

The keywordstatic may be used to declare a local variable with static storage duration; for a description
of initialization and destruction of local variables, see 6.7.

The keywordstatic applied to a class variable in a class definition also determines that it has static stor-
age duration.
3.6.2 Automatic storage duration [basic.stc.auto]

Local objects not declarestatic or explicitly declaredauto or register have automaticstorage [
duration and are associated with an invocation of a block (7.1.1). a

Each object with automatic storage duration is initialized (8.5) each time the control flow reaches its defini-
tion and destroyed (12.4) whenever control passes from within the scope of the object to outside that scope
(6.6).

A named automatic object with a constructor or destructor with side effects may not be destroyed before the
end of its block, nor may it be eliminated even if it appears to be unused. a

3.6.3 Dynamic storage duration DRAFT: 27 May 1994 Basic concepts- Bl

3.6.3 Dynamic storage duration [Ibasic.stc.dynamic]

Objects can be created dynamically during program execution (1.7), nsmgxpression (5.3.4), and [
destroyed usingelete-expressian(5.3.5). A @ implementation provides access to, and managementDf,

dynamic storage via the globallocation functionperator new (17.3.3.4) andperator new[] O
(17.3.3.5), and the globadleallocation functionsoperator delete (17.3.3.2) andoperator O
delete(] (17.3.3.3). O
These functions are always implicitly declared. The library provides default definitions for them (17.B.3).
A CH program may provide at most one definition of any of the functionperator O
new(size_t) , :operator new[](size_t) , operator delete(void*) , and/or 0O
::operator delete[](void*) . Any such function definitions replace the default versions. This
replacement is global and takes effect upon program startup (3.5).Allocation and/or deallocation fuhittions
may also be declared and defined for any class (12.5). O
Any allocation and/or deallocation functions defined inta @@ogram shall conform to the semantics spdd-
ified in this subclause. O
3.6.3.1 Allocation functions [[basic.stc.dynamic.allocation]

Allocation functions can be static class member functions or global functions. They may be overléhded,
but the return type shall always beid* and the first parameter type shall alwaysize t (5.3.3),an O
implementation-defined integral type defined in the standard headtldef> (17.3). g

The function shall return the address of a block of available storage at least as large as the requedied size.
The order, contiguity, and initial value of storage allocated by successive calls to an allocation fundiion is
unspecified. The pointer returned is suitably aligned so that it may be assigned to a pointer of any type and
then used to access such an object or an array of such objects in the storage allocated (until the dibrage is
explicitly deallocated by a call to a corresponding deallocation function). Each such allocation shall yield a
pointer to storage (1.5) disjoint from any other currently allocated storage. The pointer returned pdihts to
the start (lowest byte address) of the allocated storage. If the size of the space is requested is zero, the value
returned shall be nonzero and disjoint from any other currently allocated storage. The results of deréferenc-
ing a pointer returned as a request for zero size are und&ined.

If an allocation function is unable to obtain an appropriate block of storage, it may invoke the currently
installednew_handler % and/or throw an exception (15) of clastoc (17.3.2.9) or a class derived]

fromalloc . O
If the allocation function returns the null pointer the result is implementation defined. O
3.6.3.2 Deallocation functions [Mbasic.stc.dynamic.deallocation]

Like allocation functions, deallocation functions may be static class member functions or global functions.

Each deallocation function shall retuwnid and its first parameter shall lweid* . For class member[
deallocation functions, a second parameter of §fpe t may be added but deallocation functions may
not be overloaded. O

The value of the first parameter supplied to a deallocation function shall be zero, or refer to storade allo-
cated by the corresponding allocation function. If the value of the first argument is null, the call to theldeal-
location function has no effect. If the value of the first argument refers to a pointer already deallocated, the

effect is undefined. O

O
*) The intent is to haveperator new() implementable by callingnalloc() orcalloc() , so the rules are substantially thél
%?me. &+ differs from C in requiring a zero request to return a non-null pointer. O

A program-supplied allocation function may obtain the address of the currently instedledhandler using the O
set_new_handler() function (17.3.3.1). |

3-12 Basic concepts DRAFT: 27 May 1994 3.6.3.2 Deallocation functions

A deallocation function may free the storage referenced by the pointer given as its argument and renders the
pointerinvalid. The storage may be available for further allocation. An invalid pointer contains an whus-
able value: it cannot even be used in an expression. O

If the argument is non-null, the value of a pointer that refers to deallocated sjadetésminate The 0O

effect of dereferencing an indeterminate pointer value is undefined.

3.6.4 Duration of sub-objects [basic.stc.inherit]

The storage duration of class subobjects, base class subobjects and array elements is that of their complete
object (1.5).

3.6.5 Themutable keyword [basic.stc.mutable]

The keywordmutable is grammatically a storage class specifier but is unrelated to the storage duration
(lifetime) of the class member it describes. The mutable keyword is described in 3.8, 5.2.4, 7.11 and
7.1.5.1.

3.6.6 Reference duration [basic.stc.ref]

Except in the case of a reference declaration initialised by an rvalue (8.5.3), a reference may be llsed to
name an existing object denoted by an Ivalue.

The reference has static storage duration if it is declared non-locally, automatic storage duration if declared
locally including as a function parameter, and inherited storage duration if declared in a class. O

References may or may not require storage.

The duration of a reference is distinct from the duration of the object it refers to except in the case dfla ref-
erence declaration initialized by an rvalue.

Access through a reference to an object which no longer exists or has not yet been constructed yields unde-
fined behaviour.

ox 23 E
[Can references be declared auto or static? This section probably does not belong here.

3.7 Types [basic.types]

ox 24 ED
[Bection 9.2 describes the conceplagbut-compatiblaéypes. Shouldn't this information be described hefr&?

There are two kinds of types: fundamental types and compound types. Types may describe objects, refer-
ences (8.3.2), or functions (8.3.5).

Arrays of unknown size and classes that have been declared but not defined arecmaiiptetetypes
because the size and structure of an instance of the type is unknown. Alsmidthé/pe represents an
empty set of values, so that no objects of typel ever existvoid is an incomplete type. The term
incompletely-defined object tyjgea synonym foincomplete typethe termcompletely-defined object type
is a synonym focomplete type

A class type (such dglass X ") may be incomplete at one point in a translation unit and complete later
on; the type'class X ” is the same type at both points. The declared type of an array may be incomplete
at one point in a translation unit and complete later on; the array types at those two “poiats df

unknown bound off” and“array of NT”) are different types. However, the type of a pointer to array of
O
%) on some architectures, it causes a system-generated runtime fault. O

3.7 Types DRAFT: 27 May 1994 Basic concepts-33

unknown size cannot be completed.

Expressions that have incomplete type are prohibited in some contexts. For example:

class X; /I X is an incomplete type ad
extern X* xp; /I Xp is a pointer to an incomplete type
extern int arr[]; /I the type of arr is incomplete
typedef int UNKA[]; // UNKA is an incomplete type
UNKA* arrp; /[arrp is a pointer to an incomplete type
UNKA** arrpp;
void foo()
{
Xp++; /l'ill-formed: X is incomplete
arrp++; /l'ill-formed: incomplete type
arrpp++; /I okay: sizeof UNKA* is known
}
struct X {inti; }; // now X is a complete type
int arr[10]; /I now the type of arr is complete
X X;
void bar()
{
Xp = &X; /I okay; type is “pointer to X”
arrp = &arr; Il ill-formed: different types
Xpt++; /I okay: X is complete
arrp++; /I ill-formed: UNKA can’t be completed
}
3.7.1 Fundamental types [basic.fundamental]

There are several fundamental types. The standard hecldeits> specifies the largest and smallesi
values of each for an implementation.

Objects declared as charactarlsar) are large enough to store any member of the implementation’s basic
character set. If a character from this set is stored in a character variable, its value is equivalent to the inte-
ger code of that character. Characters may be explicitly dealastgned or signed . Plainchar ,

signed char , andunsigned char are three distinct types. #Bhar , asigned char , and an
unsigned char consume the same amount of space.

An enumeratiorcomprises a set of named integer constant values. Each distinct enumeration constitutes a
differentenumerated typeEach constant has the type of its enumeration.

There are fousigned integer typessigned char , “short int ,“int " and“longint .” In this

list, each type provides at least as much storage as those preceding it in the list, but the implementation may
otherwise make any of them equal in storage size. Ri&irs have the natural size suggested by the
machine architecture; the other signed integer types are provided to meet special needs.

For each of the signed integer types, there exists a corresponding (but diffieisgtjed integer type O
“unsigned char ", “unsigned short int , “unsigned int , and “unsigned long

int, " each of which occupies the same amount of storage and has the same alignment requiremelits (1.5)
as the corresponding signed integer ti)pen alignment requiremenis an implementation-dependent
restriction on the value of a pointer to an object of a given type (5.4, 1.5).

Unsigned integers, declaredsigned , obey the laws of arithmetic moduld @heren is the number of
bits in the representation of that particular size of integer. This implies that unsigned arithmetic does not

overflow.
O
T See7.15.2 regarding the correspondence between types and the sequgpeespetifies that designate them. |

10

11

3-14 Basic concepts DRAFT: 27 May 1994 3.7.1 Fundamental types

Typewchar_t is a distinct type whose values can represent distinct codes for all members of the [@rgest
extended character set specified among the supported locales (17.5.9.1chigpe has the same size[]
signedness, and alignment requirements (1.5) as one of the other integral types, calledljing type

Values of typebool can be eithetrue or false 8 There are nesigned , unsigned , short , or
long bool types or values. As described beldwpl values behave as integral types. Thus, for exam-
ple, they participate in integral promotions (4.1, 5.2.3). Although values obtygle generally behave as
signed integers, for example by promoting (4.1)nto instead ofunsigned int , abool value can
successfully be stored in a bit-field of any (nonzero) size.

There are thre#oating pointtypes:float , double , andlong double . The typedouble provides O
at least as much precisionf&sat , and the typdong double provides at least as much precision as
double . Each implementation defines the characteristics of the fundamental floating point types in the
standard headetcfloat> . g

Typesbool , char , and the signed and unsigned integer types are collectively oatiéeptal types. A
synonym for integral type imteger type Enumerations (7.2) are not integral, but they can be promoted
(4.1) to signed or unsignéat . Integral andfloating types are collectively calleatithmetictypes.

Thevoid type specifies an empty set of values. It is used as the return type for functions that do not return
a value. No object of typeoid may be declared. Any expression may be explicitly converted to type
void (5.4); the resulting expression may be used only as an expression statement (6.2), as the left operand
of a comma expression (5.18), or as a second or third oper@nd5f16).

3.7.2 Compound types [basic.compound]

There is a conceptually infinite number of compound types constructed from the fundamental types in the
following ways: O

— arraysof objects of a given type, 8.3.4;

— functions which have parameters of given types and return objects of a given type, 8.3.5;
— pointersto objects or functions (including static members of classes) of a given type, 8.3.1;
— referencedo objects or functions of a given type, 8.3.2;

— constantswhich are values of a given type, 7.1.5;

— classescontaining a sequence of objects of various types (9), a set of functions for manipulating these
objects (9.4), and a set of restrictions on the access to these objects and functions, 11;

— structures which are classes without default access restrictions, 11;
— unions which are classes capable of containing objects of different types at different times, 9.6;

— pointers to non-statf® class memberswhich identify members of a given type within objects of a
given class, 8.3.3. O

In general, these methods of constructing types can be applied recursively; restrictions are mentioned in
8.3.1,8.3.4, 8.3.5, and 8.3.2.

Any type so far mentioned is amqualified type Each unqualified type has three correspondingiified
versionsof its type.10 a const-qualifiedversion, avolatile-qualifiedversion, and &onst-volatile-qualified
version (see 7.1.5). The cv-qualified or unqualified versions of a type are distinct types that belong to the
same category and have the same representation and alignment requi ntsnpound type is not
O
8) Using abool value in ways described by this International Standard as “undefined,” such as by examining the value of arflnini-
tialized automatic variable, might cause it to behave as if is néitleer norfalse . O
Static class members are objects or functions, and pointers to them are ordinary pointers to objects or functions. O
See 8.3.4 and 8.3.5 regarding cv-qualified array and function types. O
The same representation and alignment requirements are meant to imply interchangeability as arguments to functions, retlrn values
from functions, and members of unions. O

3.7.2 Compound types DRAFT: 27 May 1994 Basic concepts-1H

cv-qualified (3.7.3) by the cv-qualifiers (if any) of the type from which it is compounded. Howevef] an
array type is considered to be cv-qualified by the cv-qualifiers of its element type.

A pointer to objects of a typEis referred to as ‘gointer toT.” For example, a pointer to an object of type
int is referred to a8pointer toint ” and a pointer to an object of classs called & pointer toX.” Point-
ers to incomplete types are allowed although there are restrictions on what can be done with them (3.7).

Objects of cv-qualified (3.7.3) or unqualified typeid* (pointer to void), can be used to point to objects
of unknown type. Avoid* must have enough bits to hold any object pointer.

Except for pointers to static members, text referririgptonters does not apply to pointers to members.

3.7.3 CV-qualifiers [basic.type.qualifier]

EBOX 25 El]
[rhis section covers the same information as section 7.1.5.1. This information should probably be dansoli-
[dated in one place. M
There are twav-qualifiers, const andvolatile . When applied to an objeatpnst means the pro-

gram may not change the object, ardatile has an implementation-defined meanjrﬁbAn object
may have both cv-qualifiers.

There is a (partial) ordering on cv-qualifiers, so that one object or pointer may be saitntyebev-
qualifiedthan another. Table 10 shows the relations that constitute this ordering.

Table 10—relations onconst and volatile

Lho cv-qualifier < const N

o cv-qualifier < volatile E
ho cv-qualifier < const volatile 0
O const < const volatile 0
g volatile < const volatile B

A pointer or reference to cv-qualified type (sometimes called a cv-qualified pointer or reference) need not
actually point to a cv-qualified object, but it is treated as if it does. For example, a potdastant

may point to an unqualifiedht , but a well-formed program may not attempt to change the pointed-to
object through that pointer even though it may change the same object through some other access path.
CV-qualifiers are supported by the type system so that a cv-qualified object or cv-qualified access path to
an object may not be subverted without casting (5.4). For example:

void f()
{
inti=2; /l not cv-qualified
constint ci = 3; // cv-qualified (initialized as required)
ci=4; /I error: attempt to modify const
const int* cip; Il pointer to const int
cip = &i; I/ okay: cv-qualified access path to unqualified
*Cip = 4; /I error: attempt to modify through ptr to const
int* ip;
ip = cip; [error: attempt to convert const int* to int*
}

O
12) Roughly,volatile means the object may change of its own accord (that is, the processor may not assume that the objedfl contin-
ues to hold a previously held value). |

3-16 Basic concepts DRAFT: 27 May 1994 3.7.4 Type names

3.7.4 Type names [basic.type.name]

Fundamental and compound types can be given names typ#uef mechanism (7.1.3), and families of
types and functions can be specified and named betinglate mechanism (14).

3.8 Lvalues and rvalues [basic.lval]
Every expression is either aralueor rvalue

An Ivalue refers to an obé'ect or function. Some rvalue expressitirtse of class or cv-qualified class
type—also refer to object%)

Some builtin operators and function calls yield Ivalues. For examgesifin expression of pointer type,
then*E is an Ivalue expression referring to the object or function to whiphints. As another example,
the function

int& f();
yields an Ivalue, so the cdf) is an Ivalue expression. a

Some builtin operators expect Ivalue operands, for example the builtin assignment operators all expect their
left hand operands to be Ivalues. Other builtin operators yield rvalues, and some expect them. For example
the unary and binary operator expect rvalue arguments and yield rvalue results. The discussion of_each
builtin operator in 5 indicates whether it expects Ivalue operands and whether it yields an lvalue. a

Constructor invocations and calls to functions that do not return references are always rvaluesl] User
defined operators are functions, and whether such operators expect or yield Ivalues is determined by their

type.

The discussion of reference initialization in 8.5.3 and of temporaries in 12.2 indicates the behavior &f Ival-
ues and rvalues in other significant contexts. a

Rvalues may be qualified types, however the unqualified type is used unless the rvalue is of class type and
a member function is called on the rvalue.

Whenever an lvalue that refers to a non—&r‘})ayon—class object appears in a context where an Ivalue is not
expected, the value contained in the referenced object is used. When this occurs, the value has the unquali-
fied type of the Ivalue. For example:

const int* cip;
inti=*cip // "™cip" has type int

If this type is incomplete, the program is ill-formed. O

const int* cip; inti=*cip //"cip" has type int

When an Ivalue is used as the operangizdof the value contained in the referenced object(is
notaccessed, since that operator does not evaluate its operand.

An Ivalue or rvalue of class type can also be used to modify its referent under certain circumstances.

HBox 26 B
[Provide example and cross-referentce. O
O
13) Expressions such as invocations of constructors and of functions that return a class type do in some sense refer to an objédt, and the
ilrﬂsjlementation may invoke a member function upon such objects, but the expressions are not lvalues. O

An Ivalue that refers to an array object is usually converted to a (rvalue) pointer to the initial element of the array (4.6). |

10
11

12
13

14

3.8 Lvalues and rvalues DRAFT: 27 May 1994 Basic concepts-B7

Functions cannot be modified, but pointers to functions may be modifiable.

A pointer to an incomplete type may be modifiable. At some point in the program when this pointer tyipe is
complete, the object at which the pointer points may also be modified.

Array objects cannot be modified, but their elements may be modifiable.

The referent of @onst -qualified expression shall not be modified (through that expression), except that if
it is of class type and hagrautable component, that component may be modified.

If an expression can be used to modify its object, it is calledifiable A program that attempts to modify
an object through a nonmodifiable Ivalue or rvalue expression is ill-formed.

4 Standard conversions [conv]

Some operators may, depending on their operands, cause conversion of the value of an operand from one
type to another. This section summarizes the conversions demanded by most ordinary operators and

explains the result to be expected from such conversions; it will be supplemented as required by the discus-

sion of each operator. These conversions are also used in initialization (8.5, 8.5.3, 12.8, 12.1). 12.3 and

13.2 describe user-defined conversions and their interaction with standard conversions. The result of a con-

version is an Ivalue only if the result is a reference (8.3.2).

4.1 Integral promotions [conv.prom]

A char , wchar_t , bool , short int , enumerator, object of enumeration type (7.2), oman bit-

field (9.7) (in both their signed and unsigned varieties) may be used wherever an integer rvalue may be
used. In contexts where a constant integer is requiretpttie, char , wchar_t , short int , object of
enumeration type (7.2), or bit-field must be constant. (Enumerators are always constant).

Except for enumerators, objects of enumeration type, andwghar t , if anint can represent all the
values of the original type, the value is convertedto; otherwise it is converted tmsigned int

For enumerators, objects of enumeration type, andvigbar t , if anint can represent all the values of
the underlying type, the value is converted tanan; otherwise if arunsigned int can represent all the
values, the value is converted towarsigned int ; otherwise, if dong can represent all the values, the
value is converted tolang ; otherwise it is converted tmsigned long .

A Boolean value may be convertedrtb , takingfalse to zero andrue to one.

This process is callddtegral promotion

4.2 Integral conversions [conv.integral]

An integer rvalue may be converted to any integral type. If the target tyosigned the resulting value

is the least unsigned integer congruent to the source integer (mddulegen is the number of bits used

to represent the unsigned type). In a two’'s complement representation, this conversion is conceptual and
there is no change in the bit pattern.

When an integer is converted to a signed type, the value is unchanged if it can be represented in the new
type; otherwise the value is implementation dependent.

When an integer is convertedhool , see 4.9.

4.3 Float and double [conv.double]

Single-precision floating point arithmetic may be usedfifmat expressions. When a less precise float-

ing value is converted to an equally or more precise floating type, the value is unchanged. When a more
precise floating value is converted to a less precise floating type and the value is within representable range,
the result may be either the next higher or the next lower representable value. If the result is out of range,
the behavior is undefined.

4-2 Standard conversions DRAFT: 27 May 1994 4.4 Floating and integral

4.4 Floating and integral [conv.float]

Conversion of a floating value to an integral type truncates; that is, the fractional part is discarded. Such
conversions are machine dependent; for example, the direction of truncation of negative numbers varies
from machine to machine. The result is undefined if the value cannot be represented in the integral type.

Conversions of integral values to floating type are as mathematically correct as the hardware allows. Loss
of precision occurs if an integral value cannot be represented exactly as a value of the floating type.
4.5 Arithmetic conversions [conv.arith]
Many binary operators that expect operands of arithmetic type cause conversions and yield result types in a
similar way. The purpose is to yield a common type, which is also the type of the result. This pattern is
called the' usual arithmetic conversiofis.

— If either operand is of typeng double , the other is converted tong double .

— Otherwise, if either operand d®uble , the other is converted tiouble .

— Otherwise, if either operandfipat , the other is converted flmat

— Otherwise, the integral promotions (4.1) are performed on both operands.

— Then, if either operand imsigned long the other is converted tmsigned long .

— Otherwise, if one operand id@ng int and the otheunsigned int , then if along int can
represent all the values of ansigned int , theunsigned int is converted to éong int ;
otherwise both operands are convertedrsigned long int

— Otherwise, if either operandlisng , the other is converted tong .
— Otherwise, if either operandusmsigned , the other is converted tmsigned

— Otherwise, both operands an¢ .

4.6 Pointer conversions [conv.ptr]

The following conversions may be performed wherever pointers (8.3.1) are assigned, initialized, compared,
or otherwise used:

— A constant expression (5.19) that evaluates to zero (the null pointer constant) when assigned to,
compared with, alternated with (5.16), or used as an initializer of an operand of pointer type is con-
verted to a pointer of that type. It is guaranteed that this value will produce a pointer distinguishable
from a pointer to any object or function.

— A pointer to a cv-qualified or unqualified object type may be converted to a pointer to the same type
with greater cv-qualifications (3.7.3). That is, for any unqualified fyp&@T* may be converted to
aconst T*, avolatile T*, or aconst volatile T*; aconst T* may be converted to a
const volatile T*; or avolatile T* may be converted toaonst volatile T*.

— A pointer to any object type may be converted towoid* with the greater or equal cv-J
qualifications (3.7.3). That is, for any unqualified typea T* may be converted towoid* ,a O
const void* , avolatile void* , or aconst volatile void* ;aconst T* may be con-
verted to econst void* or aconst volatile void* ; avolatile T* may be converted to
avolatile void* or aconst volatile void* ; and aconst volatile T* may be con-
verted to aonst volatile void*

— Two pointer types T1 and T2 asanmilar if there exists a typ& and integeN >0 such that: g
TlisTevyn * --- Cvyp 1 *CVyg

and

4.6 Pointer conversions DRAFT: 27 May 1994 Standard conversions-3

T2 isTcvpn * «-+ CVp 1 * CVy g

where eacley, j is const , volatile , const volatile , or nothing. An expression of type
T1 may be converted to tyge if and only if the following conditions are satisfied:

— the pointer types are similar.
— for everyj >0, if const is incv, ; thenconst is incv, ;, and similarly forvolatile
— thecv, j andcv, ; are different, thegonst is in everycv, y for 0<k <j.
— A pointer to function may be converted tead* provided avoid* has sufficient bits to hold it.

— A pointer to a cv-qualified or unqualified class type may be converted to a pointer to an addessi-
ble'® base class type (10) with greater or equal cv-qualifications (3.7.3) provided the converdibn is
unambiguous_(class.ambig); a base class is accessible if its public members are accessible (11.1).
If Dis a derived class type aldone of its unambiguous base classed} anay be converted to all
B*, aconst B* , avolatile B* , or aconst volatile B* ; aconst D* may be con- O
verted to aconst B* , or aconst volatile B* ; avolatile D* may be converted to all
volatile B* , or aconst volatile B* ; or aconst volatile D* may be converted to[]
aconst volatile B* . The result of the conversion is a pointer to the base class sub-object of
the derived class object. The null point®) is converted into itself.

— An expression with typ&array of T” is converted to a pointer to the initial element of the array (%)
except when used as the operand of the address-of ogemttresizeof operator.

— An expression with typéfunction returningT” is converted td'pointer to function returnin@”
except when used as the operand of the address-of op&@ttine function call operat@y or the
sizeof operator, or when the expression refers to a non-static member function. O

— A pointer may be converted to typeol , see 4.9.

4.7 Reference conversions [conv.ref]

1 The following conversion may be performed wherever references (8.3.2) are initialized (including argument
passing (5.2.2) and function value return (6.6.3)):

— An Ivalue of a cv-qualified or unqualified object type may be converted to a reference to the same
type with increased cv-qualifications.

— An lvalue of cv-qualified or unqualified class type may be converted to a reference to an accéssible
base class type (10) with greater or equal cv-qualifications (3.7.3) provided the conversion is Lnam-
biguous (class.ambig); base class is accessible if its public members are accessible (1D13. If]

a derived class type am@lone of its unambiguous base classes, an Ivalue ofDypay be con- O
verted to aB& aconstB& , avolatileB& , or aconstvolatileB& ; an lvalue of type O
constD may be converted to eonstB& , or aconstvolatile B& ; an lvalue of type O
volatile D may be converted to\mlatile B&, or aconst volatile B&; or an Ivalue of O
typeconst volatile D may be converted toanst volatile B& The result of the conver-
sion is a reference to the base class sub-object of the derived class object.

4.8 Pointers to members [conv.mem]

1 The following conversion may be performed wherever pointers to members (8.3.3) are initialized, assigned,
compared, or otherwise used:

— A constant expression (5.19) that evaluates to zero is converted to a pointer to member. It is guaran-

teed that this value will produce a pointer to member distinguishable from any other pointer to
|
DA pointer to a class may be explicitly converted to a pointer to a base class, regardless of accessibility, using a cast (5.2.3 ar 5.4).

4-4 Standard conversions DRAFT: 27 May 1994 4.8 Pointers to members

member.

— A pointer to member of typ&€l B::* can be converted to a pointer to member of fjpeD::* O
provided the clasB is an accessible base class of clag$1.1), provided the (inverse) conversionl
from a pointer tdD to a pointer to base clagscan be done unambiguouslyclass.ambig), and O
provided thafT1l and T2 are the same type or differ only in tHE2 has greater cv-qualifications[]
thanT1 (3.7.3). The result of this conversion refers to the same member as the pointer to mé@mber
before the conversion took place, but refers to the member as a member of the derizdTdiass O
is, the result of this conversion refers to the membBisiinstance oB.

The rule for conversion of pointers to members (from pointer to member of base to pointer to member of
derived) appears inverted compared to the rule for pointers to objects (from pointer to derived to pointer to
base) (4.6, 10). This inversion is necessary to ensure type safety.

Note that a pointer to member is not a pointer to object or a pointer to function and the rules for conversions
of such pointers do not apply to pointers to members. In particular, a pointer to member cannot be con-
verted to avoid*

A pointer to member may be converted to tigpel , see 4.9.

4.9 Boolean conversions [conv.bool]

Conversion tdool is required in several contexts, such as initializilgal variable, or in theondition
of anif orwhile statement or the first operand of the operator.

In all such cases, the expression to be converted must be of arithmetic, pointer, or pointer to member type
or of a class type for which only one unambiguous conversion exists to arithmetic, pointer, pointer to mem-
ber, orbool . Otherwise, the program is ill-formed.

A zero value (or a pointer that would compare equal to zero) bedaises ; any other value becomes
true .

5 Expressions [expr]

This clause defines the syntax, order of evaluation, and meaning of expressions. An expression is a
sequence of operators and operands that specifies a computation. An expression may result in a value and
may cause side effects.

Operators can be overloaded, that is, given meaning when applied to expressions of class type (9). Uses of
overloaded operators are transformed into function calls as described in 13.4. Overloaded operators obey
the rules for syntax specified in this clause, but the requirements of operand type, Ivalue, and evaluation
order are replaced by the rules for function call. Relations between operators, stiahnasaninga+=1,

are not guaranteed for overloaded operators (f@A).

This clause defines the operators when applied to types for which they have not been overloaded. Operator
overloading cannot modify the rules for operators applied to types for which they are defined by the lan-
guage itself.

Operators may be regrouped according to the usual mathematical rules only where the operators really are
associative or commutative. Overloaded operators are never assumed to be associative or commutative.
Except where noted, the order of evaluation of operands of individual operators and subexpressions of indi-
vidual expressions is unspecified. In particular, if a value is modified twice in an expression, the result of
the expression is unspecified except where an ordering is guaranteed by the operators involved. For exam-
ple,

i = V[i++]; /I the value of ‘" is undefined

I=7,i++,i++; /I''i becomes 9

The handling of overflow and divide by zero in expression evaluation is implementation dependent. Most
existing implementations of+E ignore integer overflows. Treatment of division by zero and all floating
point exceptions vary among machines, and is usually adjustable by a library function.

Except where noted, operands of typeast T , volatile T , T& const T& , andvolatile T& O
can be used as if they were of the plain tylpe Similarly, except where noted, operands of type
T* const andT* volatile can be used as if they were of the plain type Similarly, a plainT can

be used where wolatile T or aconst T is required. These rules apply in combination so that,
except where noted, @onst T* volatile can be used where ® is required. Such uses do nofl
count as standard conversions when considering overloading resolution (13.2).

If an expression initially has the typeeference td” (8.3.2, 8.5.3), the type is adjusted‘td” prior to any
further analysis, the expression designates the object or function denoted by the reference, and the expres-
sion is an Ivalue. A reference can be thought of as a name of an object.

User-defined conversions of class objects to and from fundamental types, pointers, and so on, can be
defined (12.3). If unambiguous (13.2), such conversions will be applied by the compiler wherever a class
object appears as an operand of an operator, as an initializer (8.5), as the controlling expression in a selec-
tion (6.4) or iteration (6.5) statement, as a function return value (6.6.3), or as a function argument (5.2.2).

O Nor is it guaranteed for tygmol ; the left operand of= must not have typkool . O

5-2 Expressions DRAFT: 27 May 1994 5.1 Primary expressions

5.1 Primary expressions [expr.prim]
1 Primary expressions are literals, names, and names qualified by the scope resolution:pperator

primary-expression:

literal

this
identifier
operator-function-id
qualified-id

(expression)

id-expression

2 A literal is a primary expression. Its type depends on its form (2.9).

3 In the body of a nonstatic member function (9.4), the keywtloisl names a pointer to the object for
which the function was invoked. The keywdtds cannot be used outside a class member function
body.

HBOX 27 E
[n a constructor it is common practice to allthws in meme-initializers O

4 The operator: followed by anidentifier, a qualified-id or anoperator-function-idis a primary expres-
sion. lIts type is specified by the declaration of the identifier, namepemator-function-id The result is
the identifier, name, ooperator-function-id The result is an Ivalue if the identifier is. The identifier or
operator-function-idnust be of file scope. Use pf allows a type, an object, a function, or an enumerator
to be referred to even if its identifier has been hidden (3.3).

5 A parenthesized expression is a primary expression whose type and value are identical to those of the
unadorned expression. The presence of parentheses does not affect whether the expression is an Ivalue.
6 A id-expressiorns a restricted form of primary-expressiothat can appear afterand-> (5.2.4):
id-expression:
unqualified-id
qualified-id

unqualified-id:
identifier
operator-function-id
conversion-function-id
~ class-name

%ox 28 g
Ossue: now it's allowed to invokeint() , but~class-name doesn’t allow for that.d

7 An identifier is anid-expressiorprovided it has been suitably declared (7). ®jerator-function-id, see
13.4. Forconversion-function-ig, see 12.3.2. Alass-namerefixed by~ denotes a destructor; see 12.4.

qualified-id:
nested-name-specifier unqualified-id

8 A nested-name-specifitihat names a class (7.1.5) followed:by and the name of a member of that class
(9.2), or a member of a base of that class (10),gsadified-id its type is the type of the member. The
result is the member. The result is an Ivalue if the member isclabg-namenay be hidden by a nontype
name, in which case thdass-names still found and used. Wheotass-name: class-namés used, and
the twoclass-name refer to the same class, this notation names the constructor (12.1). dldbsmeame 0
o~ class-nameis used, the twalass-name must refer to the same class; this notation names the

5.1 Primary expressions DRAFT: 27 May 1994 Expressions—-38

destructor (12.4). Multiply qualified names, suchNik:N2::N3::n , can be used to refer to nested
types (9.8). O

In a qualified-id if the id-expressions a conversion-functioid its conversion-type-icghall denote the O
same type in both the context in which the ergiralified-idoccurs and in the context of the class denoted
by thenested-name-specifiefFor the purpose of this evaluation, the name, if any, of each class is alsd ton-
sidered a nested class member of that class.

5.2 Postfix expressions [expr.post]

Postfix expressions group left-to-right.

postfix-expression:
primary-expression
postfix-expressior] expression]
postfix-expression(expression-ligf,)
simple-type-specifie expression-ligf;)
postfix-expression id-expression
postfix-expression> id-expression
postfix-expressiont++
postfix-expression-
dynamic_cast < type-id > (expression)

static_cast < type-id > (expression)

reinterpret_cast < type-id > (expression)

const_cast < type-id > (expression)

typeid (expression) O
typeid (type-id) O

expression-list:
assignment-expression
expression-list, assignment-expression

5.2.1 Subscripting [expr.sub]

A postfix expression followed by an expression in square brackets is a postfix expression. The intuitive
meaning is that of a subscript. One of the expressions must have thipdyyger toT” and the other must

be of enumeration or integral type. The type of the resuil.is The type“T" must be complete. The
expressiorE1[E2] is identical (by definition) ta((E1)+(E2)) . See 5.3 and 5.7 for details*ofind+

and 8.3.4 for details of arrays.

5.2.2 Function call [expr.call]

There are two kinds of function call: ordinary function call and member fuﬁai@m) call. A function

call is a postfix expression followed by parentheses containing a possibly empty, comma-separated list of
expressions which constitute the arguments to the function. For ordinary function call, the postfix expres-
sion must be a function name, or a pointer or reference to function. For member function call, the postfix
expression must be an implicit (9.4) or explicit class member access (5.2.4)iddeapeessions a func-

tion member name, or a pointer-to-member expression (5.5) selecting a function member. The first expres-
sion in the postfix expression is then calleddbgect expressigrand the call is as a member of the object
pointed to or referred to. If a function or member function name is used, the name may be overloaded (13),
in which case the appropriate function will be selected according to the rules in 13.2. The function called in
a member function call is normally selected according to the static type of the object expression (see 10),
but if that function isvirtual ~ the function actually called will be the final overrider (10.3) of the selected
function in the dynamic type of the object expression (i.e., the type of the object pointed or referred to by
the current value of the object expression).

L7 A static member function (9.5) is an ordinary function.

10

5-4 Expressions DRAFT: 27 May 1994 5.2.2 Function call

The type of the function call expression is the return type of the statically chosen function (i.e., ignoring the
virtual keyword), even if the type of the function actually called is different. This type must be com-
plete or the typ&oid .

When a function is called, each parameter (8.3.5) is initialized (8.5.3, 12.8, 12.1) with its corresponding
argument. Standard (4) and user-defined (12.3) conversions are performed. The value of a function call is
the value returned by the called function except in a virtual function call if the return type of the final over-
rider is different from the return type of the statically chosen function, the value returned from the final
overrider is converted to the return type of the statically chosen function. A function may change the val-
ues of its nonconstant parameters, but these changes cannot affect the values of the arguments except where
a parameter is of a narenst reference type (8.3.2). Where a parameter is of reference type a temporary
variable is introduced if needed (7.1.5, 2.9, 2.9.4, 8.3.4, 12.2). In addition, it is possible to modify the val-
ues of honconstant objects through pointer parameters.

A function may be declared to accept fewer arguments (by declaring default arguments (8.3.6)) or more
arguments (by using the ellipsis, 8.3.5) than the number of parameters in the function definition (8.4).

If no declaration of the called function is accessible from the scope of the call the program is ill-formed.
This implies that, except where the ellipsis () is used, a parameter is available for each argument.

Any argument of typdloat for which there is no parameter is converteddable before the call; any

of char , short , enumeration, or a bit-field type for which there is no parameter are conveieéd tr
unsigned by integral promotion (4.1). An object of a class for which no parameter is declared is passed
as a data structure.

EBOX 29 B
[To “pass a parameter as a data structure” means, roughly, that the parameter must be a PODSpjand that
[Cobtherwise the behavior is undefined. This must be made more precise. a

An object of a class for which a parameter is declared is passed by initializing the parameter with the argu-
ment by a constructor call before the function is entered (12.2, 12.8).

The order of evaluation of arguments is unspecified; take note that compilers differ. All side effects of
argument expressions take effect before the function is entered. The order of evaluation of the postfix
expression and the argument expression list is unspecified.

Recursive calls are permitted.

A function call is an Ivalue if and only if the result type is a reference.

5.2.3 Explicit type conversion (functional notation) [expr.type.conv]

A simple-type-specifief7.1.5) followed by a parenthesize#dpression-listonstructs a value of the speci-

fied type given the expression list. If the expression list specifies a single value, the expression is equiva-
lent (in definedness, and if defined in meaning) to the corresponding cast expression (5.4). If the expres-
sion list specifies more than a single value, the type must be a class with a suitably declared constructor
(8.5, 12.1).

A simple-type-specifigf7.1.5) followed by a (empty) pair of parentheses constructs a value of the specified
type. If the type is a class with a default constructor (12.1), that constructor will be called; otherwise the
result is the default value given to a static object of the specified type. See also (5.4).

5.2.4 Class member access [expr.ref]

A postfix expression followed by a dat)(or an arrow &) followed by anid-expressions a postfix [
expression. The postfix expression before the dot or arrow is evaiuatbd; result of that evaluation,[

18) This evaluation happens even if the result is unnecessary to determine the value of the entire postfix expression, for example if the
id-expressiomenotes a static member.

5.2.4 Class member access DRAFT: 27 May 1994 Expressions55

together with thed-expressiondetermine the result of the entire postfix expression. O

For the first option (dot) the type of the first expression @ihject expressigrshall be"class object(of a O
complete type). For the second option (arrow) the type of the first expressipoititer expressionshall [
be “pointer to class objettof a complete type). Thil-expressiorshall name a member of that clas§]
except that an imputed destructor may be explicitly invoked for a built-in type, see 12.4. Ther&fbre, if
has the typé‘'pointer to classX,” then the expressiok1->E2 is converted to the equivalent form
(*(E1)).E2 ; the remainder of this subclause will address only the first optionl?bot) O

If the id-expressiorns aqualified-id, the class specified by the thested-name-specifief thequalified-id O

is looked up as a type both in the class of the object expression (or the class pointed to by the pointer
expression) and the context in which the ergostfix-expressionccurs. If thenested-name-specifiepn-

tains atemplate-class-id_temp.class), its template-argumentare evaluated in the context in which the
entirepostfix-expressionccurs. For the purpose of this type lookup, the name, if any, of each class is also
considered a nested class member of that class. These searches shall yield a single type which imight be
found in either or both contexts. O

Similarly, if theid-expressions aconversion-function-idits conversion-type-ighall denote the same typé]

in both the context in which the entpestfix-expressionccurs and in the context of the class of the objétt
expression (or the class pointed to by the pointer expression). For the purpose of this evaluation, thg name,
if any, of each class is also considered a nested class member of that class. O

Abbreviatingobject-expression.id-expressiasE1.E2 , then the type and Ivalue properties of this exprés-
sion are determined as follows. In the remainder of this subclagsepresents eithetonst or the
absence ofonst ; vqrepresents eithemolatile or the absence eblatile

If E2 is declared to have tygeeference td”, thenE1l.E2 is an Ivalue; the type d1.E2 is“T". Other-
wise, one of the following rules applies.

— If E2 is a static data member, and the typ&®»fis “cq vqT”, thenE1.E2 is an lvalue; the expres-
sion designates the named member of the class. The tigleE#t is“cq vqT”.

— If E2is a (possibly overloaded) static member function, and the tyg& f“ cv-qualifier function
of(parameter type list) returning’, thenE1.E2 is an Ivalue; the expression designates the static
member function. The type &1.E2 is the same type as thatB2, namely”cv-qualifier function
of(parameter type list) returning .

— If E2 is a non-static data member, and the typEdis “cql vqlX’, and the type oE2 is “cq2 vg2
T”, the expression designates the named member of the object designated by the first expression. If
Elis an Ivalue, theic1.E2 is an Ivalue. Let the notatiomj12 stand for the'unior’ of vqland
vg2; that is, ifvqlorvg2is volatile , thenvgl2is volatile . Similarly, let the notatioegl2
stand for thé'union’ of cqlandcqg?2 that is, ifcqlor cq2is const , thencql2is const . If E2 is
declared to be mmutable member, then the type Bfl.E2 is“vql2T". If E2is not declared to be
amutable member, then the type BfL.E2 is“cql2 vql2T”.

— If E2 is a (possibly overloaded) non-static member function, and the tyg2 & “cv-qualifier
function of(parameter type list) returnifij, thenE1.E2 is notan lvalue. The expression desig-
nates a member function (of some cld3s The expression may be used only as the left-hand
operand of a member function call (9.4) or as the operand of the parenthesis operator (13.4.4). The
type ofE1.E2 is “classX’s cv-qualifier member function of(parameter type list) returihg

— If E2is a nested type, the expressiihE?2 is ill-formed.

— If E2 is a member constant, and the typdegfis “T,” the expressioi1.E2 is not an Ivalue. The
type of EL.E2 is“T".

) Note that ifE1 has the typépointer to clasX’, then(*(E1)) is an Ivalue.

5-6 Expressions DRAFT: 27 May 1994 5.2.4 Class member access

Note that'class objectscan be structures (9.2) and unions (9.6). Classes are discussed in 9.

5.2.5 Increment and decrement [expr.post.incr]

The value obtained by applying a postfix is the value of the operand. The operand must be a modifiable
Ivalue. The type of the operand must be an arithmetic type or a pointer to object type. After the result is
noted, the object is incremented byunless the object is of tygmol , in which case it is set tue

(this use is deprecated). The type of the result is the same as the type of the operand, but it is not an Ivalue.
See also 5.7 and 5.17.

The operand of postfix is decremented analogously to the postfixoperator, except that the operand
shall not be of typbool .

5.2.6 Dynamic cast [expr.dynamic.cast]

The result of the expressiaglynamic_cast<T>(v) is of typeT, which must be a pointer or a reference
to a complete class type ‘Gpointer tocv void ”. The type of must be a complete pointer typdifs a
pointer, or a complete reference typ# i a reference.

If T is a pointer to clasB andv is a pointer to clasB such thaB is an unambiguous accessible direct or
indirect base class &, the result is a pointer to the unigBesub-object of thé object pointed to by.
Similarly, if T is a reference to clag&andyv is a reference to clagssuch thaB is an unambiguous acces-
sible direct or indirect base class®fthe result is a reference to the unﬁ:?l)JB sub-object of th® object
referred to by. For example,

struct B {};
struct D : B {};
void foo(D* dp)

B* bp = dynamic_cast<B*>(dp); // equivalentto B* bp = dp;
}

Otherwisev must be a pointer or reference to a polymorphic type (10.3).

If Tisvoid* then the result is a pointer to the complete object (12.6.2) pointedvto ®yherwise, a run-
time check is applied to see if the object pointed or referred voday be converted to the type pointed or
referred to byT.

The run-time check logically executes like this: If, in the complete object pointed (referred)vtovby
points (refers) to an umambiguous base class sub-object obgect, the result is a pointer (reference) to
thatT object. Otherwise, if the type of the complete object has an unambiguous public base clasg,of type
the result is a pointer (reference) to Theub-object of the complete object. Otherwise, the run-time check
fails.

The value of a failed cast to pointer type is the null pointer. A failed cast to reference type throws
bad _cast (17.3). For example,

Y The complete object pointed or refereed tovbyjay contain otheB objects as base classes, but these are ignored.

5.2.6 Dynamic cast DRAFT: 27 May 1994 Expressions—3

class A { virtual void f(); };
class B { virtual void g(); };
class D : public virtual A, private B {};

void g()
D d;
B* bp = (B*)&d; // cast needed to break protection
A* ap = &d; /I public derivation, no cast needed
D& dr = dynamic_cast<D&>(*bp); // succeeds
ap = dynamic_cast<A*>(bp); /I succeeds
bp = dynamic_cast<B*>(ap); // fails
ap = dynamic_cast<A*>(&dr); I/l succeeds
bp = dynamic_cast<B*>(&dr); // fails
}

class E : public D, public B {};
class F : public E, public D {}
void h()
{
F f
A* ap = &f; // okay: finds unique A
D* dp =dynamic_cast<D*>(ap); // fails: ambiguous
E* ep = (E*ap; // error: cast from virtual base
E* ep = dynamic_cast<E*>(ap); // succeeds

}
5.2.7 Type identification [expr.typeid]
The result of dypeid expression is of typeonst type_info& (17.3). The value is a reference to

type_info object that represents thge-idor the type of thexpressiomespectively.

If the expressionis a reference to a polymorphic type (10.3) tyge_info for the complete object
(12.6.2) referred to is the result. Where theressioris a pointer to a polymorphic type dereferenced
using* or[expressioh thetype_info for the complete object pointed to is the result. If the pointefis
zero, the expression throws thad_typeid exception (17.3). Otherwise, if the pointer does not point(io
a valid object, the result is undefined. O

If the expression is neither a pointer nor a reference to a polymorphic type, the resutyjie thvefo O
representing the (static) type of tepression

5.2.8 Static cast [expr.static.cast]

The result of the expressigstatic_cast<T>(v) is of type T. Types may not be defined in a
static_cast. Any type conversion not mentioned below and not explicitly defined by the user (12.3)
is ill-formed.

Thestatic_cast operator cannot cast away constness. See below.

Any implicit conversion (including standard conversions and user-defined conversions) can be performed
explicitly usingstatic_cast.

A pointer to a complete clag&may be explicitly converted to a pointer to a complete dedsst haB as

a direct or indirect base class if an unambiguous conversionditorB exists (4.6, class.ambig) and ifB

is not a virtual base class (10.1). Such a cast from a base to a derived class is valid only if the pointer
points to an object of the base class that is actually a sub-object of an object of the derived class; the result-
ing pointer points to the enclosing object of the derived class. Otherwise (the object of the base class is not
a sub-object of an object of the derived class) the result of the cast is undefined.

10

11

12

13

5-8 Expressions DRAFT: 27 May 1994 5.2.8 Static cast

ox 30 g
Or'he two proposals differed in the preceding behavior. We believe this is the intended behavior;

Aside from this pointer conversion (base-to-derived), the inverse of any implicit conversion can be per-
formed explicitly usingstatic_cast subject to the restriction that the explicit conversion does not cast
away constness.

Additional conversions that may be performed explicitly usitagic_cast are listed below. No other
conversions may be performed explicitly usstgtic_cast.

A value of integral type may be explicitly converted to an enumeration type. The result of the convirsion
will compare equal to the integral value provided that the value is within the range of the enumeration’s
underlying type (7.2). Otherwise, the result is undefined.

A “pointer to member oflass A of type T1” may be explicitly converted to “gointer to member of
class B of typeT2” whenclass A andclass B are either the same class or one is is unambiguously
derived from the other (4.6), and the typdsandT2 are the same.

ox 31 B
Or'he proposal implied the above without direct statement. Checkihis.

The effect of calling a member function through a pointer to member function type that differs from the
type used in the definition of the member function is undefined.

The effect of calling a member function through a pointer to member function type that differs from the
type used in the definition of the member function is undefined.

An Ivalue expression of typel” may be explicitly converted to the typeeference toX” if an expression [
of type“pointer toT” may be explicitly converted to the typpointer toX” with a static_cast . The
implementation shall not copy a sub-object to bind a reference; for example,

struct B {};
struct D : public B {};
const B & = D(); // copying only B sub-object not allowed

BBox 32 0

O
Bssue (core#l, editorial): An rvalue expression of tjpemay be explicitly converted to the typeefer- ;
rence toconst X " if a variable of typée'reference taonst X " can be initialized with an rvalue expres-
Csion of type!' T”. g

Constructors or conversion functions are not called as the result of a cast to a reference. Conversion of a
reference to a base class to a reference to a derived class is exactly analogous to the conversion of a pointer

to a base class to a pointer to a derived class, with respect to restrictions and semantics.

The result of a cast to a reference type is an Ivalue; the results of other casts are not. Operations pérformed

on the result of a pointer or reference cast refer to the same object as the original (uncast) expression.

An expression may be converted to a class type (only) if an appropriate constructor or conversion dperator
has been declared; seel2.3.

If a null pointer value is converted to a tyfyointer toT”, the resulting pointer value is a null pointer
value.

In the description of types, the notatiom represents a set of cv-qualifiers (one obgst }, { vola-
tile }, { const, volatile }, or the empty set).

14

15

16

17

18

5.2.8 Static cast DRAFT: 27 May 1994 Expressions-9

ox 33 E
(rhis probably should be moved to the discussion of types.

Any expression may be explicitly converted to typevoid ."

ox 34 E
OWe believe this was the intent; check this.

The following rules define casting away constness. In these Tuleand Xn represent types. For two
pointer types:
X1=Tlcvll*cvl2*..cvIN* where Tl is not a pointer type and

X2=T2cv21*cv22*...cv2M* where T2 is not a pointer type and
K is the minimum of N and M,

BBox 35 B
CEditor: re-format this into subscripts, etd.

casting from X1 to X2 casts away constness if, for a non-pointermtypsy.,int), there does not exist an
implicit conversion from:

T cvl(N-K+1) * cvl(N-K+2) * ... cvIN * to
T cv2(N-K+1) * cv2(M-K+2) * ... cv2M *

Casting from a typéreference tal'l” to “reference tar2” casts away constness if a cast frgminter to
T1” to “pointer toT2” casts away constness.

Casting from'pointer toC1 member of typd'1” to “pointer toC2 member of typd2” casts away const-
ness if a cast frorfpointer toT1” to “pointer toT2” casts away constness.

For static_cast or const_cast , N and Mmust be equal, otherwiserainterpret_cast is

required. Note that these rules are not intended to protect constness in all cases -- in particular, conversions
between pointers to functions are not covered because such conversions lead to values whose use causes
undefined behavior.

5.2.9 Reinterpret cast [expr.reinterpret.cast]

The result of the expressioeinterpret_cast<T>(v) is of type“T.” Types shall not be defined in a1
reinterpret_cast. Any type conversion not mentioned below and not explicitly defined by the user
(12.3) is ill-formed.

Conversions that can be performed explicitly uswigterpret_cast are listed below. The mappind]
performed byreinterpret_cast is implementation-defined; it may, or may not, produce a representa-
tion different from the original value.

Thereinterpret_cast operator cannot cast away constnessstdee_cast (_expr.static.cas). O

A pointer can be explicitly converted to any integral type large enough to hold it. The mapping funcfibn is
implementation-defined, but is intended to be unsurprising to those who know the addressing structure of
the underlying machine.

A value of integral type can be explicitly converted to a pointer. A pointer converted to an integer of(suffi-
cient size (if any such exists on the implementation) and back to the same pointer type will have its original
value; mappings between pointers and integers are otherwise implementation-defined.

An incomplete class can be used in a pointer cast. If there is any inheritance relationship betwéen the
source and target classes, the behavior is undefined.

10

11

12

13

14

5-10 Expressions DRAFT: 27 May 1994 5.2.9 Reinterpret cast

A pointer to function may be explicitly converted to a pointer to an object type provided the object pointer
type has enough bits to hold the function pointer. A pointer to an object type may be explicitly converted

to a pointer to function provided the function pointer type has enough bits to hold the object pointer. In
both cases, use of the resulting pointer may cause addressing exceptions if the subject pointer does not refer
to suitable storage.

A pointer to a function may be explicitly converted to a pointer to a function of a different type. The effect
of calling a function through a pointer to a function type that differs from the type used in the definition of
the function is undefined. See also 4.6.

A pointer to an object can be explicitly converted to a pointer to an object of different type. In general, the
results of this are unspecified; except that converting a pointer into a pointer to a smaller object and Back to
its original type will yield the original pointer. O

A “pointer to member oflass A of type T1” may be explicitly converted to “gointer to member of [
class B of typeT2” whenclass A andclass B are either the same class or one is is unambiguously
derived from the other (4.6), and the tygdsandT2 differ. (The case wheml andT2 are the same type

is covered bytatic_cast , (5.2.8).

The effect of calling a member function through a pointer to member function type that differs from the
type used in the definition of the member function is undefined.

If a null pointer value is converted to a tyfyeointer toT”, the resulting pointer value is a null pointer
value.

An Ivalue expression of typeT” may be explicitly converted to the typeeference tX” if an expression [

of type“pointer toT” may be explicitly converted to the typpointer toX” usingreinterpret_cast

Constructors or conversion functions are not called as the result of a cast to a reference. Conversion of a
reference to a base class to a reference to a derived class is exactly analogous to the conversion of a pointer
to a base class to a pointer to a derived class, with respect to restrictions and semantics.

The result of a cast to a reference type is an Ivalue; the results of other casts are not. Operations pérformed
on the result of a pointer or reference cast refer to the same object as the original (uncast) expression.

5.2.10 Const cast [expr.const.cast]

The result of the expressiaronst_cast<T>(v) is of type“T.” Types may not be defined in a
const_cast. Any type conversion not mentioned below and not explicitly defined by the user (12.3) is
ill-formed.

A pointer or reference to any object type, or a pointer to data member may be explicitly converted to a type
that is identical except faronst andvolatile qualifiers. For pointers and references, the result will
refer to the original object. For pointers to data members, the result will refer to the same member as the
original (uncast) pointer to data member. Depending on the type of the referenced object, a write operation
through the resulting pointer, reference or pointer to data member may produce undefined behavior (7.1.5).

If a null pointer value is converted to a tyfyeointer toT”, the resulting pointer value is a null pointer
value.
5.3 Unary expressions [expr.unary]

Expressions with unary operators group right-to-left.

5.3 Unary expressions DRAFT: 27 May 1994 Expressions-51

unary-expression:
postfix-expression
++ unary-expression
-~ unary-expression
unary-operator cast-expression
sizeof unary-expression
sizeof (type-id)
new-expression
delete-expression

unary-operator: one of
* & + - | ~

5.3.1 Unary operators [expr.unary.op]

The unary* operator meanmdirectiorn the expression must be a pointer, and the result is an Ivalue refer-
ring to the object to which the expression points. If the type of the expressmmiriter toT,” the type of
the result iST.”

The result of the unarg operator is a pointer to its operand. The operand must be an Ivalue, or a
qualified-id In the first two cases, if the type of the expressidiTjs the type of the result igpointer to

T.” In particular, the address of an object of type T” is “pointer tocv T,” with the same cv-qualifiers.

For example, the address of an object of typenst int " has type'pointer toconst int .” For a
qualified-id, if the member is not static and of typE’ in class C , the type of the result iointer to
member ottlass C of typeT.” For a static member of typ@”, the type is plaifipointer toT.”

The address of an object of incomplete type may be taken, but only if the complete type of that object does
not have the address-of operatmpdrator&()) overloaded; no diagnostic is required.

The address of an overloaded function (13) can be taken only in a context that uniquely determines which
version of the overloaded function is referred to (see 13.3).

The operand of the unaryoperator must have arithmetic or pointer type and the result is the value of the
argument. Integral promotion is performed on integral operands. The type of the result is the type of the
promoted operand.

The operand of the unaryoperator must have arithmetic type and the result is the negation of its operand.
Integral promotion is performed on integral operands. The negative of an unsigned quantity is computed by
subtracting its value from"2wheren is the number of bits in the promoted operand. The type of the result

is the type of the promoted operand.

The operand of the logical negation operdtors converted tdool (4.9); its value idrue if the con-
verted operand ifalse andfalse otherwise. The type of the resultisol .

The operand of must have integral type; the result is the one’s complement of its operand. Integral pro-
motions are performed. The type of the result is the type of the promoted operand.

5.3.2 Increment and decrement [expr.pre.incr]

The operand of prefix+ is incremented by, or set tatrue if it is bool (this use is deprecated). The
operand must be a modifiable Ivalue. The type of the operand must be an arithmetic type or a pointer to a
completely-defined object type. The value is the new value of the operand; it is an Ivatuis. niét of

type bool , the expressior+x is equivalent tox+=1. See the discussions of addition (5.7) and assign-
ment operators (5.17) for information on conversions.

The operand of prefix- is decremented analogously to the prefix operator, except that the operand
shall not be of typbool .

5-12 Expressions DRAFT: 27 May 1994 5.3.3 Sizeof

5.3.3 Sizeof [expr.sizeof]

Thesizeof operator yields the size, in bytes, of its operand. The operand is either an expression, which
is not evaluated, or a parenthesized type name.sitkef operator may not be applied to an expression

that has function or incomplete type, or to the parenthesized name of such a type, or to an Ivalue that desig-
nates a bit-field. Abyte is unspecified by the language except in terms of the valusizebf ;
sizeof(char) is 1, butsizeof(bool) is implementation-definedz.

When applied to a reference, the result is the size of the referenced object. When applied to a class, the
result is the number of bytes in an object of that class including any padding required for placing such
objects in an array. The size of any class or class object is greater than zero. When applied to an array, the
result is the total number of bytes in the array. This implies that the size of an aregmknts i: times

the size of an element.

Thesizeof operator may be applied to a pointer to a function, but not to a function.
Types may not be defined irsezeof expression.

The result is a constant of tygeze t , an implementation-dependent unsigned integral type defined in
the standard headecstddef> . g

5.3.4 New [expr.new]

The new-expressioattempts to create an object of tigpe-id(8.1) to which it is applied. This type shalll
be a complete object or array type (1.5, 3.7).

new-expression:
T opt NEW new-placemepy new-typ_e-id new-?n_it?alﬁzg;;t
T opt NEW new-placemegy, (type-id) new-initializeg,

new-placement:
(expression-list)

new-type-id:
type-specifier-seq new-declaraigr

new-declarator:
* cv-qualifier-segy new-dgglaratogpt 3
Ioopt nested-name-specifiet cv-qualifier-seg, new-declaratog,
direct-new-declarator

direct-new-declarator:
[expression]
direct-new-declarator[constant-expression

new-initializer:
(expression-ligf,)

Entities created by mew-expressiohave dynamic storage duration (3.6.3). That is, the lifetime of suclilan
entity is not restricted to the scope in which it is created. If the entity is an objeagvthexpression O
returns a pointer to the object created. If it is an arraynéreexpressioneturns a pointer to the initialC

element of the array. O
Thenew-typdn anew-expressiois the longest possible sequence@iv-declaratos. This prevents ambi-
guities between declarator operat&r$, [] , and their expression counterparts. For example, O
new int*i; /I syntax error: parsed as ‘(new int*) i’ a

I not as ‘(new int)*’ a

The* is the pointer declarator and not the multiplication operator. O

<1) sizeof(bool) is not required to b#.

10

11

12

13

14

5.3.4 New DRAFT: 27 May 1994 Expressions-4.3

Parenthese must not appear meav-type-idused as the operand foew. For example,

new int(*[10])(); Il error

is ill-formed because the binding is
(new int) (*[10])(); // error

O 0O om O

The explicitly parenthesized version of thew operator can be used to create objects of compound types

(3.7.2). For example, O

new (int (*{10])()); 0
allocates an array df0 pointers to functions (taking no argument and returiming). O
The type-specifier-seghall not contairconst , volatile , class declarations, or enumeration declara-
tions. 0

When the allocated object is an array (that isdirect-new-declaratosyntax is used or theew-type-icor 0O
type-id denotes an array type), timew-expressiolyields a pointer to the initial element (if any) of the
array. Thus, botimew int andnew int[10] return anint* and the type ohew int[i][10] is O
int (*)[10] . O

Every constant-expressioim a direct-new-declaratoshall be a constant integral expression (5.19) wittila
strictly positive value. Thexpressiorin a direct-new-declaratoshall be of integral type (3.7.1) with &J

non-negative value. For examplenpifs a variable of typet , thennew float[n][5] is well-formed [
(because is theexpressiorof a direct-new-declaratd but new float[5][n] is ill-formed (because O
n is not aconstant-expression If n is negative, the effect ofew float[n][5] is undefined.

When the value of thexpressiornin adirect-new-declarators zero, an array with no elements is allocated.
The pointer returned by theew-expressionwill be non-null and distinct from the pointer to any other
object. O

Storage for the object created bynew-expressiolis obtained from the appropriagdlocation function O
(3.6.3.1). When the allocation function is called, the first argument will be amount of space requested

(which may be larger than the size of the object being created only if that object is an array). O
An implementation provides default definitions of the global allocation functipesator new() for O
non-arrays (17.3.3.4) araperator new[]() for arrays (17.3.3.5). A+« program may provide alter-[J
native definitions of these functions (17.1.5.4), and/or class-specific versions (12.5). O

Thenew-placemergyntax can be used to supply additional arguments to an allocation function. Oveflbad-
ing resolution is done by assembling an argument list from the amount of space requested (the firgt argu-
ment) and the expressions in thew-placemenpart of thenew-expressignf used (the second and suctl

ceeding arguments). O
For example: ad
— new T results in a call obperator new(sizeof(T)) , O
— new(2,f) T results in a call obperator new(sizeof(T),2,f) , O
— new T[5] results in a call obperator new[](x) , and O
— new(2,f) T[5] results in a call obperator new[](y,2,f) . O

The return value from the allocation function, if non-null, will be assumed to point to a block of appropri-
ately aligned available storage of the requested size, and the object will be created in that block (but not
necessarily at the beginning of the block, if the object is an array). O

If a class has one or more constructors (12.hgve-expressiofor that class calls one of them to initializél
the object. An object of a class can be createdeyonly if suitable arguments are provided to the clads’
constructors, or if the class has a default constructor 2(%9.1?. the class does not have a default

22) This means thagtruct s{}; s x; s y(x); is allowed on the grounds thelass s has an implicitly declared copy con-
structor, to which the argumextis being provided.

15

16
17

18

19

20

5-14 Expressions DRAFT: 27 May 1994 5.3.4 New

constructor, suitable arguments (13.2) must be providedé@wainitializer. If there is no constructor and a
new-initializeris used, it must be of the for(rexpressiop or () . If an expression is present it will be
used to initialize the object; if not, omaw-initializeris not used, the object will start out with an unspeci-
fied value.

No initializers can be specified for arrays. Arrays of objects of a class can be createevgxpression O
only if the class has a default construc¢ttin that case, the default constructor will be called for each ele-
ment of the array, in order of increasing address.

Access and ambiguity control are done for both the allocation function and the constructor (12.1, 12.5).

The allocation function may indicate failure by throwingadloc exception (15, 17.3.2.9). In this casél
no initialization is done. O

If the constructor throws an exception and rleg/-expressiodoes not contain aew-placementthen the O
deallocation function (3.6.3.2, 12.5) is used to free the memory in which the object was being constructed,

after which the exception continues to propagate in the context néthexpressian O
The way the object was allocated determines how it is freed: if it is allocatenkly , then it is freed by O
:delete , andifitis an array, itis freed lolelete[] or::delete]] as appropriate. O
EBox 36 Hy|

O
BThis is a correction to San Diego resolution 3.5, which on its face seems to require that whetherio use
delete or delete[] must be decided purely on syntactic grounds. | believe the intent of the comnhittee
Owvas to make the form afelete correspond to the form of the correspondiegy. &

Whether the allocation function is called before evaluating the constructor arguments, after evaluating the
constructor arguments but before entering the constructor, or by the constructor itself is unspecified. It is
also unspecified whether the arguments to a constructor are evaluated if the allocation function returns the

null pointer or throws an exception. O
5.3.5 Delete [expr.delete]
Thedelete-expressiooperator destroys a complete object (1.5) or array createddwy-axpressian O

delete-expression:
il opt delete cast-expression
i op delete [1] cast-expression

The first alternative is for non-array objects, and the second is for arrays. The result kagitype

In either alternative, if the value of the operandielete is the null pointer the operation has no effedil
Otherwise, in the first alternativedlete objedt the value of the operand délete shall be a pointer to all
non-array object created bynaw-expressiowithout anew-placemergpecification, or a pointer to a subtl
object (1.5) representing a base class of such an object (10).

BBox 37 g
Ossue: ... or a class with an unambiguous conversion to such a pointer type ...

In the second alternativel€lete array, the value of the operand délete shall be a pointer to an array]
created by aew-expressiowithout anew-placemergpecification. O

In the first alternativedelete objeqt if the static type of the operand is different from its dynamic type and

the class of the complete object has a destructor (12.4), the static type must have a virtual destructor or the
result is undefined. In the second alternatdeldte array if the dynamic type of the object to be deleted is

a class that has a destructor and its static type is different from its dynamic type, the result is undefined.

23)pODS structs have an implicitly-declared default constructor.

10

5.3.5 Delete DRAFT: 27 May 1994 Expressions—35

The deletion of an object may change its value. If the expression denoting the obgeleire-@xpression
is a modifiable Ivalue, any attempt to access its value after the deletion is undefined (3.6.3.2).

A G+ program that appliedelete to a pointer to constant is ill formed (1.6, 1.7). O

If the class of the object being deleted is incomplete at the point of deletion and the class has a destructor or
an allocation function or a deallocation function, the result is undefined.

The delete-expressiowill invoke the destructor (if any) for the object or the elements of the array being
deleted. In the case of an array, the elements will be destroyed in order of decreasing address (that is, in
reverse order of construction).

To free the storage pointed to, thelete-expressiowill call a deallocation functior{3.6.3.2). O

An implementation provides default definitions of the global deallocation functighs
operator delete() for non-arrays (17.3.3.2) armperator delete[]() for arrays (17.3.3.3). 0

A CH program may provide alternative definitions of these functions (17.1.5.4), and/or class-specifid ver-
sions (12.5). O

Access and ambiguity control are done for both the deallocation function and the destructor (12.4, 12.5).

5.4 Explicit type conversion (cast notation) [expr.cast]

The result of the expressiofl) cast-expressions of type T. An explicit type conversion can be
expressed using functional notation (5.2.3), a type conversion operdigran{ic_cast,
static_cast, reinterpret_cast, const_cast), or thecastnotation.

cast-expression:
unary-expression
(type-id) cast-expression

Types may not be defined in casts.
Any type conversion not mentioned below and not explicitly defined by the user (12.3) is ill-formed.

The conversions performed layatic_cast , reinterpret_cast , const_cast , or any sequence
thereof, may be performed using the cast notation of explicit type conversion. The same semantic restric-
tions and behaviors apply.

In addition to those conversions, a pointer to an object of a derived class (10) may be explicitly converted
to a pointer to any of its base classes regardless of accessibility restrictions (11.2), provided the conversion
is unambiguous €lass.ambig). The resulting pointer will refer to the contained object of the base class.

5.5 Pointer-to-member operators [expr.mptr.oper]
The pointer-to-member operaters and.* group left-to-right.

pm-expression:
cast-expression
pm-expression* cast-expression
pm-expression->* cast-expression

The binary operator* binds its second operand, which must be of typainter to member of” to its
first operand, which must be of clagsor of a class of whicH is an unambiguous and accessible base
class. The result is an object or a function of the type specified by the second operand.

The binary operator>* binds its second operand, which must be of tygmnter to member of” to its
first operand, which must be of typpointer toT” or “pointer to a class of whichis an unambiguous and
accessible base clds3he result is an object or a function of the type specified by the second operand.

If the result of.* or->* is a function, then that result can be used only as the operand for the function
call operatof) . For example,

5-16 Expressions DRAFT: 27 May 1994 5.5 Pointer-to-member operators

(ptr_to_obj->*ptr_to_mfct)(10);

calls the member function denoted jpy _to_mfct for the object pointed to bgtr_to_obj . The
result of an* expression or &* expression is an Ivalue only if its first operand is an Ivalue and its sec-
ond operand refers to an lvalue.

5.6 Multiplicative operators [expr.mul]

The multiplicative operators, / , and%group left-to-right.

multiplicative-expression:
pm-expression
multiplicative-expressior* pm-expression
multiplicative-expression pm-expression
multiplicative-expressiorfe pm-expression

The operands of and/ must have arithmetic type; the operand&afiust have integral type. The usual
arithmetic conversions (4.5) are performed on the operands and determine the type of the result.

The binary* operator indicates multiplication.

The binary/ operator yields the quotient, and the bindgperator yields the remainder from the division

of the first expression by the second. If the second operahad¥ois zero the result is undefined; other-
wise (a/b)*b + a%b is equal taa. If both operands are nonnegative then the remainder is nonnegative;
if not, the sign of the remainder is implementation dependent.

5.7 Additive operators [expr.add]

The additive operators and- group left-to-right. The usual arithmetic conversions (4.5) are performed
for operands of arithmetic type.

additive-expression:
multiplicative-expression
additive-expression+ multiplicative-expression
additive-expression multiplicative-expression

For addition, either both operands shall have arithmetic type, or one operand shall be a pointer to a com-
pletely defined object type and the other shall have integral type.

For subtraction, one of the following shall hold:
— both operands have arithmetic type;

— both operands are pointers to qualified or unqualified versions of the same completely defined object
type; or

— the left operand is a pointer to a completely defined object type and the right operand has integral type.

If both operands have arithmetic type, the usual arithmetic conversions are performed on them. The result
of the binary+ operator is the sum of the operands. The result of the binaperator is the difference
resulting from the subtraction of the second operand from the first.

For the purposes of these operators, a pointer to a nonarray object behaves the same as a pointer to the first
element of an array of length one with the type of the object as its element type.

When an expression that has integral type is added to or subtracted from a pointer, the result has the type of
the pointer operand. If the pointer operand points to an element of an array object, and the array is large
enough, the result points to an element offset from the original element such that the difference of the sub-
scripts of the resulting and original array elements equals the integral expression. In other words, if the
expressiorP points to the-th element of an array object, the expressi®)sN (equivalently,N+(P))

and (P)-N (whereN has the valua) point to, respectively, thern-th andi—n-th elements of the array

object, provided they exist. Moreover, if the expres$t@oints to the last element of an array object, the
expressior(P)+1 points one past the last element of the array object, and if the expr@gsiams one

5.7 Additive operators DRAFT: 27 May 1994 Expressions -5L7

past the last element of an array object, the exprefQiph points to the last element of the array object.

If both the pointer operand and the result point to elements of the same array object, or one past the last ele-
ment of the array object, the evaluation shall not produce an overflow; otherwise, the behavior is undefined.

If the result is used as an operand of the unasperator, the behavior is undefined unless both the pointer
operand and the result point to elements of the same array object, or the pointer operand points one past the
last element of an array object and the result points to an element of the same array object.

When two pointers to elements of the same array object are subtracted, the result is the difference of the
subscripts of the two array elements. The type of the result is an implementation-defined signed integral
type; this type shall be the same type that is defingudrdsf_t in the<cstddef> header (17.3). As

with any other arithmetic overflow, if the result does not fit in the space provided, the behavior is unde-
fined. In other words, if the expressioRsand Q point to, respectively, theth andj-th elements of an

array object, the expressidi)-(Q) has the value—j provided the value fits in an object of type
ptrdiff_t . Moreover, if the expressida points either to an element of an array object or one past the
last element of an array object, and the expres3ipoints to the last element of the same array object, the
expression(Q)+1)-(P) has the same value §€)-(P))+1 and as-((P)-((Q)+1)) , and has

the value zero if the expressiéhpoints one past the last element of the array object, even though the
expressio{Q)+1 does not point to an element of the array object. Unless both pointers point to elements
of the same array object, or one past the last element of the array object, the behavior is Eﬁbefined.

5.8 Shift operators [expr.shift]

The shift operators< and>> group left-to-right.

shift-expression:
additive-expression
shift-expression<< additive-expression
shift-expression>> additive-expression

The operands must be of integral type and integral promotions are performed. The type of the result is that
of the promoted left operand. The result is undefined if the right operand is negative, or greater than or
equal to the length in bits of the promoted left operand. The valag gk E2 is E1 (interpreted as a bit
pattern) left-shiftedE?2 bits; vacated bits are zero-filled. The valud&df>> E2 is E1 right-shiftedE2 bit
positions. The right shift is guaranteed to be logical (zero-filllihas an unsigned type or if it has a non-
negative value; otherwise the result is implementation dependent.

5.9 Relational operators [expr.rel]

The relational operators group left-to-right, but this fact is not very usefbkc means(a<b)<c and
not (a<b)&&(b<c)

relational-expression:
shift-expression
relational-expression< shift-expression
relational-expression> shift-expression
relational-expression<=shift-expression
relational-expression>=shift-expression

The operands must have arithmetic or pointer type. The operaftass than)> (greater than)s<= (less
than or equal to), and= (greater than or equal to) all yieldise ortrue . The type of the result is
bool .

24) Another way to approach pointer arithmetic is first to convert the pointer(s) to character pointer(s): In this scheme the integral
expression added to or subtracted from the converted pointer is first multiplied by the size of the object originally pointed to, and the
resulting pointer is converted back to the original type. For pointer subtraction, the result of the difference between the character point-
ers is similarly divided by the size of the object originally pointed to.

When viewed in this way, an implementation need only provide one extra byte (which may overlap another object in the program) just
after the end of the object in order to satisfy“thiee past the last elem&mequirements.

5-18 Expressions DRAFT: 27 May 1994 5.9 Relational operators

The usual arithmetic conversions are performed on arithmetic operands. Pointer conversions are performed
on pointer operands to bring them to the same type, which must be a qualified or unqualified version of the
type of one of the operands. This implies that any pointer may be compared to a constant expression evalu-
ating to zero and any pointer can be compared to a pointer of qualified or unqualifieditpe (in the

latter case the pointer is first convertedsead*). Pointers to objects or functions of the same type (after
pointer conversions) may be compared; the result depends on the relative positions of the pointed-to objects
or functions in the address space.

If two pointers of the same type point to the same object or function, or both point one past the end of the
same array, or are both null, they compare equal. If two pointers of the same type point to different objects
or functions, or only one of them is null, they compare unequal. If two pointers point to nonstatic data
members of the same object, the pointer to the later declared member compares higher provided the two
members not separated by arcess-specifielabel (11.1) and provided their class is not a union. If two
pointers point to nonstatic members of the same object separatedalogems-specifielabel (11.1) the

result is unspecified. If two pointers point to data members of the same union, they compare equal (after
conversion tovoid* , if necessary). If two pointers point to elements of the same array or one beyond the
end of the array, the pointer to the object with the higher subscript compares higher. Other pointer compar-
isons are implementation dependent.

5.10 Equality operators [expr.eq]

equality-expression:
relational-expression
equality-expression== relational-expression
equality-expression= relational-expression

The== (equal to) and the= (not equal to) operators have the same semantic restrictions, conversions, and
result type as the relational operators except for their lower precedence and truth-value resuli<iThus
==c<d istrue whenevela<b andc<d have the same truth-value.)

In addition, pointers to members of the same type may be compared. Pointer to member conversions (4.8)
are performed. A pointer to member may be compared to a constant expression that evaluates to zero.

5.11 BitwiseAND operator [expr.bit.and]

and-expression:
equality-expression
and-expression& equality-expression

The usual arithmetic conversions are performed; the result is the bitvaseinction of the operands. The
operator applies only to integral operands.

5.12 Bitwise exclusive®R operator [expr.xor]

exclusive-or-expression:
and-expression
exclusive-or-expressiot and-expression

The usual arithmetic conversions are performed; the result is the bitwise exadasfuaction of the
operands. The operator applies only to integral operands.

5.13 Bitwise inclusiveOR operator [expr.or]

inclusive-or-expression:
exclusive-or-expression
inclusive-or-expressior] exclusive-or-expression

The usual arithmetic conversions are performed; the result is the bitwise inchrsifesction of its
operands. The operator applies only to integral operands.

5.14 LogicalAND operator DRAFT: 27 May 1994 Expressions 519

5.14 LogicalAND operator [expr.log.and]

logical-and-expression:
inclusive-or-expression
logical-and-expression&& inclusive-or-expression

The && operator groups left-to-right. The operands are both converted thoghe(4.9). The result is
true if both operands argue andfalse otherwise. Unlike&, && guarantees left-to-right evaluation:
the second operand is not evaluated if the first operdatsés .

The result is ool . All side effects of the first expression except for destruction of temporaries (12.2)
happen before the second expression is evaluated.

5.15 LogicalOR operator [expr.log.or]

logical-or-expression:
logical-and-expression
logical-or-expression|| logical-and-expression

The|| operator groups left-to-right. The operands are both convertedalo(4.9). It returngrue if
either of its operands iBue , andfalse otherwise. Unlikgl , || guarantees left-to-right evaluation;
moreover, the second operand is not evaluated if the first operand evaltiates to

The result is @ool . All side effects of the first expression except for destruction of temporaries (12.2)
happen before the second expression is evaluated.

5.16 Conditional operator [expr.cond]

conditional-expression:
logical-or-expression
logical-or-expression? expression: assignment-expression

Conditional expressions group right-to-left. The first expression is convertebtg(4.9). It is evaluated

and if it istrue , the result of the conditional expression is the value of the second expression, otherwise
that of the third expression. All side effects of the first expression except for destruction of temporaries
(12.2) happen before the second or third expression is evaluated.

If either the second or third expression thrw-expressioif15.1), the result is of the type of the other.

If both the second and the third expressions are of arithmetic type, then if they are of the same type the
result is of that type; otherwise the usual arithmetic conversions are performed to bring them to a common
type. Otherwise, if both the second and the third expressions are either a pointer or a constant expression
that evaluates to zero, pointer conversions (4.6) are performed to bring them to a common type which must
be a qualified or unqualified version of the type of either the second or the third expression. Otherwise, if
both the second and the third expressions are either a pointer to member or a constant expression that evalu-
ates to zero, pointer to member conversions (4.8) are performed to bring them to a com 6wh}'¢ie

must be a qualified or unqualified version of the type of either the second or the third expression. Other-
wise, if both the second and the third expressions are Ivalues of related class types, they are converted to a
common type as if by a cast to a reference to the common type (4.7). Otherwise, if both the second and the
third expressions have typevvoid ", the common type v void .” Otherwise, if both the second and

the third expressions are of the same claghe common type i§. Otherwise the expression is ill formed.

The result has the common type; only one of the second and third expressions is evaluated. The result is an
Ivalue if the second and the third operands are of the same type and both are Ivalues.

“3) This is one instance in which theomposite typg as described in the C Standard, is still employed-n C

10

5-20 Expressions DRAFT: 27 May 1994 5.17 Assignment operators

5.17 Assignment operators [expr.ass]

There are several assignment operators, all of which group right-to-left. All require a modifiable Ivalue as
their left operand, and the type of an assignment expression is that of its left operand. The result of the
assignment operation is the value stored in the left operand after the assignment has taken place; the result
is an Ivalue.

assignment-expression:
conditional-expression
unary-expression assignment-operator assignment-expression
throw-expression

assignment-operatorone of
= *= [= Op= += -= >>= <<= &= "= |:

In simple assignment], the value of the expression replaces that of the object referred to by the left
operand. If both operands have arithmetic type, the right operand is converted to the type of the left
preparatory to the assignment. There is no implicit conversion to an enumeration (7.2), so if the left
operand is of an enumeration type the right operand must be of the same type. If the left operand is of
pointer type, the right operand must be the null pointer (4.6) or of a type that can be converted to the type of
the left operand, which conversion takes place before the assignment.

An expression of typ&pointer tocvl T” can be assigned to a pointer of tyjpeinter tocv2 T” if the set
of cv-qualifierscvlis a subset afv2(7.1.5 see also 8.5).

If the left operand is of pointer to member type, the right operand must be of pointer to member type or a
constant expression that evaluates to zero; the right operand is converted to the type of the left before the
assignment.

Assignment to objects of a class ¥0)s defined by the functioX::operator=() (13.4.3). Unless the
user defines aK::operator=() , the default version is used for assignment (12.8). This implies that an
object of a class derived froi¥ (directly or indirectly) by unambiguous public derivation (4.6) can be
assigned to aK.

A pointer to a member of claBsmay be assigned to a pointer to a member of @adshe same type pro-
videdDis derived fronB (directly or indirectly) by unambiguous public derivatiolass.ambig).

Assignment to an object of typeeference ta” assigns to the object of tyjedenoted by the reference.

If E1 is not of typebool , the behavior of an expression of the forEil op= E2 is equivalent to
E1=E1 op E2 except thaE1l is evaluated only once. k= and-=, the left operand may be a pointer to
completely defined object type, in which case the (integral) right operand is converted as explained in 5.7;
all right operands and all nonpointer left operands must have arithmetic type.

For class objects, assignment is not in general the same as initialization (8.5, 12.1, 12.6, 12.8).

See 15.1 for throw expressions.

5.18 Comma operator [expr.comma]

The comma operator groups left-to-right.

expression:
assignment-expression
expression, assignment-expression

A pair of expressions separated by a comma is evaluated left-to-right and the value of the left expression is
discarded. All side effects of the left expression are performed before the evaluation of the right expres-
sion. The type and value of the result are the type and value of the right operand; the result is an lvalue if
its right operand is.

5.18 Comma operator DRAFT: 27 May 1994 Expressions—21

In contexts where comma is given a special meaning, for example, in lists of arguments to functions (5.2.2)
and lists of initializers (8.5), the comma operator as described in this clause can appear only in parentheses;
for example,

f(a, (t=3, t+2), c);

has three arguments, the second of which has the ¥alue

5.19 Constant expressions [expr.const]

In several places,+€ requires expressions that evaluate to an integral constant: as array bounds (8.3.4), as
case expressions (6.4.2), as bit-field lengths (9.7), and as enumerator initializers (7.2).

constant-expression:
conditional-expression

A constant-expressiocan involve only literals (2.9), enumeratorenst values of integral types initial-

ized with constant expressions (8.5), aimbof expressions. Floating constants (2.9.3) must be cast to
integral types. Only type conversions to integral types may be used. In particular, exspbin
expressions, functions, class objects, pointers, and references cannot be used. The comma operator and
assignment-operatermay not be used in a constant expression. O

6 Statements [stmt.stmt]

Except as indicated, statements are executed in sequence.

statement:
labeled-statement
expression-statement
compound-statement
selection-statement
iteration-statement
jump-statement
declaration-statement
try-block

6.1 Labeled statement [stmt.label]

A statement may be labeled.

labeled-statement:
identifier : statement
case constant-expression statement
default : statement

An identifier label declares the identifier. The only use of an identifier label is as the targetof.aThe

scope of a label is the function in which it appears. Labels cannot be redeclared within a function. A label
can be used ingoto statement before its definition. Labels have their own name space and do not inter-
fere with other identifiers.

Case labels and default labels may occur only in switch statements.

6.2 Expression statement [stmt.expr]

Most statements are expression statements, which have the form

expression-statement:
expressiog}Jt ;

Usually expression statements are assignments or function calls. All side effects from an expression state-
ment are completed before the next statement is executed. An expression statement with the expression
missing is called a null statement; it is useful to carry a label just befoyeafh@ compound statement and

to supply a null body to an iteration statement suchiale (6.5.1).

6.3 Compound statement or block [stmt.block]

So that several statements can be used where one is expected, the compound statement (also, and equiva-
lently, called“block’) is provided.

compound-statement:
{ statement-sgg }

6-2 Statements DRAFT: 27 May 1994 6.3 Compound statement or block

statement-seq:
statement
statement-seq statement

A compound statement defines a local scope (3.3).
Note that a declaration isstatement6.7).

6.4 Selection statements [stmt.select]

Selection statements choose one of several flows of control.

selection-statement:
if (condition) statement
if (condition) statementelse statement
switch (condition) statement

condition:
expression
type-specifier-seq declarator assignment-expression

The statementn a selection-statemeriboth statements, in trelse form of theif statement) implicitly
defines a local scope (3.3). That is, if the statement in a selection-statement is a single statement dnd not a
compound-statemerit,is as if it was rewritten to be a compound-statement containing the original state-
ment. For example,
if (x)
for (inti;;) {
...
}

may be equivalently rewritten as
if () {
for (inti;;) {
...
}

}
Thus after théf statement, is no longer in scope.

The rules forconditiors apply both tselection-statemesitand to thdor andwhile statements (6.5).
The declaratormay not specify a function or an array. Tgpe-specifiemay not declare a new class or
enumeration.

A name introduced by a declaration ic@nditionis in scope from its point of declaration until the end of
the statements controlled by the condition. The valueaoiditionthat is an initialized declaration is the
value of the initialized variable; the value of@nditionthat is an expression is the value of the expression.
The value of the condition will be referred to as sinfphe conditiofi where the usage is unambiguous.

A variable, constant, etc. in the outermost block of a statement controlled by a condition may not have the
same name as a variable, constant, etc. declared in the condition.

If a conditioncan be syntactically resolved as either an expression or the declaration of a local name, it is
interpreted as a declaration.

6.4.1 Theif statement [stmt.if]

The condition is converted to tygmol ; if that is not possible, the program is ill-formed. If it yields
true the first substatement is executedelfe is used and the condition yieltise |, the second sub-
statement is executed. Thise ambiguity is resolved by connecting alse with the last encountered
else -lessif .

6.4.2 Theswitch statement DRAFT: 27 May 1994 Statements -6

6.4.2 Theswitch statement [stmt.switch]

Theswitch statement causes control to be transferred to one of several statements depending on the value
of a condition.

The condition must be of integral type or of a class type for which an unambiguous conversion to integral
type exists (12.3). Integral promotion is performed. Any statement within the statement may be labeled
with one or more case labels as follows:

case constant-expression

where theconstant-expressiofb.19) is converted to the promoted type of the switch condition. No twalof
the case constants in the same switch may have the same value.

There may be at most one label of the form

default :
within aswitch statement.

Switch statements may be nestedaae ordefault label is associated with the smallest switch enclos-

ing it.

When theswitch statement is executed, its condition is evaluated and compared with each case constant.
If one of the case constants is equal to the value of the condition, control is passed to the statement follow-
ing the matched case label. If no case constant matches the condition, and if thdeéaidta label,

control passes to the statement labeled by the default label. If no case matches and if thuerfaist no
then none of the statements in the switch is executed.

case anddefault labels in themselves do not alter the flow of control, which continues unimpeded
across such labels. To exit from a switch, ls®ak , 6.6.1.

Usually, the statement that is the subject of a switch is compound. Declarations may appear in the
statemenbf a switch-statement.

6.5 Iteration statements [stmt.iter]

Iteration statements specify looping.

iteration-statement:
while (condition) statement
do statement while (expression) ;
for (for-init-statement conditiq, ; expressiog,) statement

for-init-statement:
expression-statement
declaration-statement

Note that dor-init-statemenends with a semicolon.

The statemenin aniteration-statemenimplicitly defines a local scope (3.3) which is entered and exited
each time through the loop. That is, if the statement in an iteration-statement is a single statement and not a
compound-statemerit,is as if it was rewritten to be a compound-statement containing the original state-
ment. For example,
while (x)
for (inti;;) {
I ...
}

may be equivalently rewritten as

6-4 Statements DRAFT: 27 May 1994 6.5 Iteration statements

while (x) {
for (inti;;) {
...
}
}

Thus after thevhile statementi is no longer in scope.

See 6.4 for the rules @onditiors.

6.5.1 Thewhile statement [stmt.while]

In thewhile statement the substatement is executed repeatedly until the value of the condition becomes
false . The test takes place before each execution of the statement.

The condition is converted twol (4.9).

6.5.2 Thedo statement [stmt.do]

In the do statement the substatement is executed repeatedly until the value of the condition becomes
false . The test takes place after each execution of the statement.

The condition is converted twol (4.9).

6.5.3 Thefor statement [stmt.for]

Thefor statement

for (for-init-statement conditiq, ; expressiog,) statement

is equivalent to

for-init-statement

while (condition) {
statement
expression;

}

except that @ontinue in statemenfnot enclosed in another iteration statement) will exeexpeession

before re-evaluatingondition Thus the first statement specifies initialization for the loop; the condition
specifies a test, made before each iteration, such that the loop is exited when the condition becomes
false ; the expression often specifies incrementing that is done after each iteration. The condition is con-
verted tobool (4.9).

Either or both of the condition and the expression may be dropped. A missidiionmakes the implied
while clause equivalent tohile(true)

If the for-init-statements a declaration, the scope of the name(s) declared extends to the endoof the
statement For example:
inti=42;
int a[10];

for (inti=0;i<10; i++)
afi] =i;

O oo oOog O

intj =i Ilj=42

6.6 Jump statements DRAFT: 27 May 1994 Statements-6

6.6 Jump statements [stmt.jump]

Jump statements unconditionally transfer control.

jump-statement:
break ;
continue ;
return expressiog), ;
goto identifier ;

On exit from a scope (however accomplished), destructors (12.4) are called for all constructed objecis with
automatic storage duration (3.6.2) (named objects or temporaries) that are declared in that scopé] in the
reverse order of their declaration. Transfer out of a loop, out of a block, or back past an initialized variable
with automatic storage duration involves the destruction of variables with automatic storage duratiah that
are in scope at the point transferred from but not at the point transferred to. (See 6.7 for transfers into
blocks). However, the program may be terminated (by cadlkitf) or abort() , for example) with- O

out destroying class objects with automatic storage duration.

6.6.1 Thebreak statement [stmt.break]

Thebreak statement may occur only in #gration-statemenor aswitch statement and causes termi-
nation of the smallest enclosiitgration-statementr switch statement; control passes to the statement
following the terminated statement, if any.

6.6.2 Thecontinue statement [stmt.cont]

Thecontinue statement may occur only in &aration-statemenand causes control to pass to the loop-
continuation portion of the smallest enclositegation-statementthat is, to the end of the loop. More pre-
cisely, in each of the statements

while (foo) { do { for ;) {

...
contin: ; contin: ; contin: ;
} } while (foo); }

acontinue not contained in an enclosed iteration statement is equivalgatdo contin

6.6.3 Thereturn statement [stmt.return]
A function returns to its caller by thieturn statement.

A return statement without an expression can be used only in functions that do not return a value, that is, a
function with the return value typeid , a constructor (12.1), or a destructor (12.4). A return statement
with an expression can be used only in functions returning a value; the value of the expression is returned to
the caller of the function. If required, the expression is converted, as in an initialization (8.5), to the [feturn
type of the function in which it appears. A return statement may involve the construction and copyi of a
temporary object (12.2). Flowing off the end of a function is equivalentétuen with no value; this

results in undefined behavior in a value-returning function.

6.6.4 Thegoto statement [stmt.goto]
Thegoto statement unconditionally transfers control to the statement labeled by the identifier. The identi-
fier must be a label (6.1) located in the current function.

6.7 Declaration statement [stmt.dcl]

A declaration statement introduces one or more new identifiers into a block; it has the form

declaration-statement:
declaration

If an identifier introduced by a declaration was previously declared in an outer block, the outer declaration

6-6 Statements DRAFT: 27 May 1994 6.7 Declaration statement

is hidden for the remainder of the block, after which it resumes its force.

Variables with automatic storage duration (3.6.2) are initialized each timedt#aration-statemens [
executed. Variables with automatic storage duration declared in the block are destroyed on exit fidm the
block (6.6).

It is possible to transfer into a block, but not in a way that bypasses declarations with initialization. Al pro-
gram that jumps from a point where a local variable with automatic storage duration is not in scope to a
point where it is in scope is ill-formed unless the variable has pointer or arithmetic type or is an agdriegate
(8.5.1), and is declared without amitializer (8.5). For example,

void f()
{
...
goto Ix; /I ill-formed: jump into scope of ‘a’
...
ly:
Xa=1;
...
Ix:
goto ly; /I ok, jump implies destructor
/I call for ‘a’ followed by construction
/I again immediately following label ly
}

A local object with static storage duration (3.6.1) is initialized the first time control passes complétely
through its declaration. If the initialization exits by throwing an exception, the initialization is not dom-
plete, so it will be tried again the next time the function is called. Where a variable with static storagéldura-
tion is initialized with an expression that is not@nstant-expressigriefault initialization to zero of the
appropriate type (8.5) happens before its block is first entered.

The destructor for a local object with static storage duration will be executed if and only if the variablé was
constructed. The destructor must be called either immediately before or as part of the calls of the
atexit() functions (3.5). Exactly when is unspecified.

6.8 Ambiguity resolution [stmt.ambig]

There is an ambiguity in the grammar involviegpression-statementinddeclaratiors: An expression-
statementvith a function-style explicit type conversion (5.2.3) as its leftmost subexpression can be indis-
tinguishable from aleclarationwhere the firstleclaratorstarts with & . In those cases ttstatements a
declaration

To disambiguate, the wholstatementmay have to be examined to determine if it iseapression-
statementbr adeclaration This disambiguates many examples. For example, assumisig simple-
type-specifie(7.1.5),

T(@)->m=7; /I expression-statement
T(@)++; /I expression-statement
T(a,5)<<c; /I expression-statement
T(*d)(int); /I declaration

T(©)[I; /l declaration

TMH={1,2}; /I declaration
T(*g)(double(3)); // declaration

In the last example abovg, which is a pointer td, is initialized todouble(3) . This is of course ill-
formed for semantic reasons, but that does not affect the syntactic analysis.

The remaining cases adeclaratiors. For example,

6.8 Ambiguity resolution DRAFT: 27 May 1994 Statements 67

T(a); /I declaration
T(*b)0); /I declaration
T(c)=7, /I declaration

T(d),e,f=3; /I declaration
T(g)(h,2); /I declaration

The disambiguation is purely syntactic; that is, the meaning of the names, beyond whethert}ipeyidre
or not, is not used in the disambiguation.

A slightly different ambiguity betweeaxpression-statemenanddeclaratiors is resolved by requiring a
type-idfor function declarations within a block (6.3). For example,

void g()
intf(); // declaration
int a; /I declaration
f(); I/l expression-statement
a; /I expression-statement

7 Declarations [dcl.dcl]

A declaration introduces one or more names into a program and specifies how those names are to be inter-
preted. Declarations have the form

declaration:
decl-specifier-seg; init-declarator-list,,; ;
function-definition
template-declaration
asm-definition
linkage-specification
namespace-definition
namespace-alias-definition
using-declaration
using-directive

asm-definitios are described in 7.4, atidkage-specificatios are described in 7.3-unction-definitiors
are described in 8.4 andmplate-declaration are described intemp.dcls. Namespace-definitignare [
described in 7.3.1ysing-declaratios are described in 7.3.3 anding-directive are described in 7.3.4.
The description of the general form of declaration

decl-specifier-seg; init-declarator-list,; ;

is divided into two partsdecl-specifies, the components of gecl-specifier-segare described in 7.1 and
declaratoss, the components of amit-declarator-list are described in 8.

A declaration occurs in a scope (3.3); the scope rules are summarized in 10.5. A declaration that déclares a
function or defines a class, namespace, template, or function also has one or more scopes nested Within it.
These nested scopes, in turn, may have declarations nested within them. Unless otherwise stated, utterances
in this chapter about components in, of, or contained by a declaration or subcomponent thereof refeiConly to
those components of the declaration thainataested within scopes nested within the declaration.

In the general form of declaration, the optiomat-declarator-listmay be omitted only when declaring &l
class (9), enumeration (7.2) or namespace (7.3.1), that is, whatedhsepecifier-segontains either a
class-specifier an elaborated-type-specifiewith a class-key(9.1), anenum-specifieror a namespace- [
definition In these cases and wheneverass-specifierenum-specifieror namespace-definitiois pre- [
sent in thadecl-specifier-secgthe identifiers in these specifiers are among the names being declared by the
declaration (aslass-namesnum-name®numeratorsor namespace-namedepending on the syntax). O

Each init-declarator in the init-declarator-list contains exactly on&eclarator-id which is the name
declared by thanit-declaratorand hence one of the names declared by the declarationypEhgpecifiers [
(7.1.5) in thedecl-specifier-se@nd the recursivdeclaratorstructure of thenit-declarator describe a type O
(8.3), which is then associated with the name being declared byttdeclarator.

If the decl-specifier-seqontains theypedef specifier, the declaration is calledypedef declaratioand
the name of eachit-declarator is declared to be gpedef-namesynonymous with its associated type
(7.1.3). If thedecl-specifier-seqcontains notypedef specifier, the declaration is calledfanction
declarationif the type associated with the name is a function type (8.3.5) aabjert declaratiorother-
wise.

7-2 Declarations DRAFT: 27 May 1994 7 Declarations

Syntactic components beyond those found in the general form of declaration are added to a function decla-
ration to make dunction-definition An object declaration, however, is also a definition unless it contains
theextern specifier and has no initializer (3.1). A definition causes the appropriate amount of storage to
be reserved and any appropriate initialization (8.5) to be done.

Only in function-definitiong8.4) and in function declarations for constructors, destructors, and type con-
versions may thdecl-specifier-sefe omitted.

Generally speaking, the names declared by a declaration are introduced into the scope in which the declara-
tion occurs. The presence offfeend specifier, certain uses of tleaborated-type-specifemd using- O
directives alter this general behavior, however (see 11.4, 9.1 and 7.3.4)

7.1 Specifiers [dcl.spec]

The specifiers that can be used in a declaration are

decl-specifier:
storage-class-specifier
type-specifier
function-specifier
friend
typedef

decl-specifier-seq:
decl-specifier-segj; decl-specifier

The longest sequence aécl-specifies that could possibly be a type name is taken addblespecifier-seq
of adeclaration The sequence must be self-consistent as described below. For example,

typedef char* Pc;
static Pc; [/l error: name missing

Here, the declaratiostaticPc is ill-formed because no name was specified for the static variable of
type Pc. To get a variable of typat calledPc, thetype-specifieint must be present to indicate that
the typedef-naméc is the name being (re)declared, rather than being part afettiespecifiersequence.

For example,

void f(const Pc); I/ void f(char* const) (not const char*)
void g(const int Pc); // void g(const int)

Note that sincesigned , unsigned , long , andshort by default implyint , atype-nameappearing
after one of those specifiers is treated as the name being (re)declared. For example,

void h(unsigned Pc); // void h(unsigned int)
void k(unsigned int Pc); // void k(unsigned int)

7.1.1 Storage class specifiers [dcl.stc]

The storage class specifiers are

storage-class-specifier:
auto
register
static
extern
mutable

At most onestorage-class-specifienay appear in a givetiecl-specifier-seq If a storage-class-specifier
appears in @ecl-specifier-segthere can be ntypedef specifier in the saméecl-specifier-seand the
init-declarator-list of the declaration must not be empty. Tterage-class-specifieapplies to the name
declared by eacinit-declaratorin the list and not to any names declared by other specifiers.

7.1.1 Storage class specifiers DRAFT: 27 May 1994 Declarations 37

Theauto orregister specifiers can be applied only to names of objects declared in a block (6.3) or to
function parameters (8.4). They specify that the hamed object has automatic storage duration (3.6.2). An
object declared without storage-class-specifiest block scope or declared as a function parameter Has
automatic storage duration by default. Henceatlte specifier is almost always redundant and not often
used; one use @uto is to distinguish aeclaration-statemerftom anexpression-stateme(#.2) explic-

itly.

A register specifier has the same semantics aawn specifier together with a hint to the compiler
that the object so declared will be heavily used. The hint may be ignored and in most implementations it
will be ignored if the address of the object is taken.

The static ~ specifier can be applied only to names of objects and functions and to anonymous unions
(9.6). There can be retatic function declarations within a block, nor astatic ~ function parame-

ters. Astatic specifier used in the declaration of an object declares the object to have static storage
duration (3.6.1). Astatic specifier may be used in the declaration of class members and its affect is
described in 9.5. A name declared wittatic ~ specifier in a scope other than class scope (3.3.6) bas
internal linkage. For a nonmember function,iime specifier is equivalent tostatic ~ specifier for [0
linkage purposes (3.4).

Theextern specifier can be applied only to the names of objects and functionsexiéra specifier

cannot be used in the declaration of class members or function parameters. A name declared at filé scope
with the extern specifier has external linkage. An object or function declared at block scope with the
extern specifier has external linkage unless the declaration matches a previous file scope declaration that
has internal linkage, in which case the object or function has internal linkage and refers to the same object
or function denoted by the file scope declarafi®n.

A name declared at file scope withoustarage-class-specifidras external linkage unless it has internal
linkage because of a previous declaration and provided it is not dectarsid . Objects declaredonst [
and not explicitly declareeixtern have internal linkage.

The linkages implied by successive declarations for a given entity must agree. That is, within a given
scope, each declaration declaring the same object name or the same overloading of a function name must
imply the same linkage. Each function in a given set of overloaded functions may have a different linkage,
however. For example,

static char* f(); // f() has internal linkage

char* f() I () still has internal linkage
{rF...*}

char* g(); /I g() has external linkage

static char* g() // error: inconsistent linkage
{rF..*}

static int a; /l ‘a’ has internal linkage

int a; // error: two definitions

static int b; //'b’ has internal linkage

extern int b; I/ ‘b’ still has internal linkage

intc; /l ‘¢’ has external linkage

static int c; /I error: inconsistent linkage

extern d; /1 'd" has external linkage

static int d; /I error: inconsistent linkage

0) Here, “previously” includes enclosing scopes. This implies that a name spesifitd and then specifieéxtern in an
inner scope still has internal linkage.

7—-4 Declarations DRAFT: 27 May 1994 7.1.1 Storage class specifiers

The name of a declared but undefined class can be usedextean declaration. Such a declaration,
however, cannot be used before the class has been defined. For example,

struct S;

extern S a;
extern S f();
extern void g(S);

void h()
{
g(a); [l error: S undefined
fQ); [l error: S undefined
}

Themutable specifier can be applied only to names of class data members (9.2) and can not be applied to
names declarecbnst orstatic . For example

class X {
mutable const int* p; // ok
mutable int* const q; // ill-formed

h

Themutable specifier on a class data member nullifieast specifier applied to the containing class
object and permits modification of the mutable class member even though the rest of the cbjest s
(7.1.5.1).

7.1.2 Function specifiers [dcl.fct.spec]

Function-specifiergan be used only in function declarations.

function-specifier:
inline
virtual

Theinline specifier is a hint to the compiler that inline substitution of the function body is to be pre-
ferred to the usual function call implementation. The hint may be ignored. For a nonmember function, the
inline specifier also gives the function internal linkage (3.4). A function (5.2.2, 8.3.5) defined within the
declaration of a class is inline by default.

An inline member function must have exactly the same definition in every compilation in which it appears.

A class member function need not be explicitly declared witlinthree specifier in the class declaration
to be inline. When nadnline specifier is used, linkage will be external unless a definition with the
inline specifer appears before the first call.

class X {

public:
int f();
inline int g(); // X::g() has internal linkage
int h();

I3

void k(X* p)
inti=p->f(); // now X::f() has external linkage

int j = p->g();
...

7.1.2 Function specifiers DRAFT: 27 May 1994 Declarations—b

inline int X::f() Il error: called before defined
I as inline
{

}

...

inline int X::g()

...
}

inline int X::h() // now X::h() has internal linkage

{
}

...

The virtual specifier may be used only in declarations of nonstatic class member functions within a
class declaration; see 10.3.

7.1.3 Thetypedef specifier [dcl.typedef]

Declarations containing thdecl-specifietypedef declare identifiers that can be used later for naming
fundamental (3.7.1) or compound (3.7.2) types. fpedef specifier may not be used infanction- O
definition(8.4), and it may not be combined inl@cl-specifier-sewith any other kind of specifier except a
type-specifier

typedef-name:

identifier

A name declared with thgpedef specifier becomestgpedef-nameWithin the scope of its declaration,
atypedef-namés syntactically equivalent to a keyword and names the type associated with the identifier in
the way described in 8. If, indecl-specifier-segontaining thedecl-specifietypedef , there is ndype-
specifier or the onlytype-specifies arecv-qualifiers, thetypedef declaration is ill-formed. Aypedef-
nameis thus a synonym for another type. tybedef-nameoes not introduce a new type the way a class
declaration (9.1) or enum declaration does. For example, after

typedef int MILES, *KLICKSP;
the constructions

MILES distance;
extern KLICKSP metricp;

are all correct declarations; the typadasftance isint ; that ofmetricp is “pointer toint .

In a given scope, gpedef specifier may be used to redefine the name of any type declared in that scope
to refer to the type to which it already refers. For example,

typedef structs { /* ... */ } s;
typedef int [;

typedef int [;

typedef I [;

In a given scope, fypedef specifier may not be used to redefine the name of any type declared in that
scope to refer to a different type. For example,

class complex { /* ... */ };
typedef int complex; I/ error: redefinition

Similarly, in a given scope, a class may not be declared with the same nantgpaded-namehat is
declared in that scope and refers to a type other than the class itself. For example,

7-6 Declarations DRAFT: 27 May 1994 7.1.3 Thgpedef specifier

typedef int complex;
class complex { /* ... */ }; I/ error: redefinition

A typedef-naméhat names a class iscdass-namg9.1). Thetypedef-nameanay not be used after a
class , struct , orunion prefix and not in the names for constructors and destructors within the class
declaration itself. For example,

struct S {
SO:;
~S();
h

typedef struct S T;

Sa=T(); I/l ok
struct T *p; [/l error

An unnamed class defined in a declaration witlypedef specifier gets a dummy name. For linkage
purposes only (3.4), thgpedef-nameéeclared by the declaration is used to denote the class type in place of

the dummy name. Thiypedef-namés still only a synonym for the dummy name and may not be used
where a true class name is required. Such a class cannot have explicit constructors or destructors because
they cannot be named by the user. For example,

typedef struct {
S(); [/ error: requires a return type since S is
/I an ordinary member function, not a constructor
}S;

A typedef-naméhat names an enumeration is emum-namg7.2). Thetypedef-namenay not be used
after anenum prefix.
7.1.4 Thefriend specifier [dcl.friend]

Thefriend specifier is used to specify access to class members; see 11.4.

7.1.5 Type specifiers [dcl.type]
The type-specifiers are

type-specifier:
simple-type-specifier
class-specifier
enum-specifier
elaborated-type-specifier
cv-qualifier

As a general rule, at most otype-specifieis allowed in the completéecl-specifier-segf a declaration
The only exceptions to this rule are the following:

— const orvolatile may be combined with any othigpe-specifier

— signed orunsigned may be combined witbhar , long , short , orint

— short orlong may be combined withnt

— long may be combined witdouble .

At least onaype-specifieiis required in a typedef declaration. At least type-specifieiis required in a
function declaration unless it declares a constructor, destructor or type conversion operator. If there is no
type-specifieror if the onlytype-specifies present in aecl-specifier-seare cv-qualifiers, then thant

specifier is assumed as defaﬁm.Regarding the prohibition of the defautt specifier intypedef

“’)Redundant cv-qualifiers are allowed to be introduced through the use of typedefs or template type arguments and are ignored.

7.1.5 Type specifiers DRAFT: 27 May 1994 Declarations—7

declarations, seetypedef; in all other instances, the use d#cl-specifier-sexywhich contain nsimple-
type-specifies (and thus default to plaint) is deprecated.

class-specifies andenum-specifiex are discussed in 9 and 7.2, respectively. The remaiypegspecifies
are discussed in the rest of this section.

7.1.5.1 Thecv-qualifiers [dcl.type.cv]

EBOX 38 El]
[This section covers the same information as section 3.7.3. This information should probably be gansoli-
[dated in one place. M

The presence of eonst specifier in adecl-specifier-segpecifies aconst object. Except that any class
member declarechutable (7.1.1) may be modified, any attempt to modifganst object after it has O
been initialized and before it is destroyed results in undefined behavior.

Example

class X {
public:
mutable int i;
int j;

I3
class Y { public: X x; }

constYy;

Y. X+ /I defined behavior

Y. X j++; // undefined behavior

Y* p = const_cast<Y*>(&y); // cast away const-ness of y

p->x.i = 99; // defined behavior
p->x.j = 99; // undefined behavior

Unless explicitly declaredxtern , aconst object does not have external linkage and must be initialized
(8.5; 12.1). An integratonst initialized by a constant expression may be used in constant expressions
(5.19). Each element ofanst array isconst and each non-function, non-static, non-mutable member
of aconst class object isonst (9.4.1).

There are no implementation-independent semanticgdiatile objects;volatile is a hint to the
compiler to avoid aggressive optimization involving the object because the value of the object may be
changed by means undetectable by a compiler. Each elementotdtite array isvolatile and

each nonfunction, nonstatic member afodatile class object igolatile (9.4.1). An object may be
bothconst andvolatile , with thetype-specifies appearing in either order.

BBox 39 O

O
B\Iotwithstanding the description above, the semantie®latile are intended to be the same i+ @s
rthey are in C. However, it's not possible simply to copy the wording from the C standard until we Under-
Cstand the ramifications of sequence points, etc. g

7.1.5.2 Simple type specifiers [dcl.type.simple]

The simple type specifiers are

7-8 Declarations

The simple-type-specifisrspecify either a previously-declared user-defined type or one of the fundamental
types (3.7.1). Table 11 summarizes the valid combinatiorsngble-type-speciferand the types they

specify.

When multiplesimple-type-specifierare allowed, they may be freely intermixed with ottlecl-specifiers
in any order. It is implementation-defined whether bit-fields and objeathaf type are represented asl

simple-type-specifier:
o
char
wchar_t
bool
short
int
long
signed
unsigned
float
double
void

type-name:
class-name
enum-name
typedef-name

Table 11—simple-type-specifier and the types they specify

DRAFT: 27 May 1994

¢ nested-name-specifigytype-name

7.1.5.2 Simple type specifiers

[Specifier(s) U Type
ype-name othe type named
rchar O“char ”
Cunsigned char O“unsigned char "~
Csigned char U«signed char ”
ool O«hool
cunsigned 0 unsignedint "
runsigned int O“unsigned int "
[signed O“int "
Csigned int O«int
nt “int "

cunsigned short int
runsigned short
Cunsigned long int
Lunsigned long
igned long int
csigned long
rong int
(ong
Lsigned short int
igned short
cshortint
rshort
Owchar_t
Hloat
ouble
ong double
[void

0 unsigned short int
[]“unsigned short int
0“unsigned long int
U“unsigned long int
“longint "
0‘long int
0“long int
0“long int
U«shortint ”
U«short int
0 short int
0“short int
O“wchar_t
U«float ”
U«double ”
'long double
0“void ”

OOdoooOoooooooooooooooooooooooooood

7.1.5.2 Simple type specifiers DRAFT: 27 May 1994 Declarations-9

signed or unsigned quantities. Téigned specifier forcexhar objects and bit-fields to be signed; it is
redundant with other integral types.

7.1.5.3 Elaborated type specifiers [dcl.type.elab]

Generally speaking, thelaborated-type-specifiés used to refer to a previously decla@dss-nameor
enum-nameven though the name may be hidden by an intervening object, function, or enumerator declara-
tion (3.3), but in some cases it also can be used to dedkrgsaname

elaborated-type-specifier:
class-key:: o, nested-name-specifigridentifier
enum::,, nested-name-specifigyidentifier

class-key:
class
struct
union

If an elaborated-type-specifiés the sole constituent ofdeclarationof the form
class-key identifier;

then theelaborated-type-specifiedeclares thédentifier to be aclass-namen the scope that contains the
declaration (9.1). Otherwise, thdentifier following the class-keyor enum keyword is resolved as
described in 10.5 according to its qualifications, if any, but ignoring any objects, functions, or enumerators
that have been declared. If tidentifier resolves to alass-nameor enum-namethe elaborated-type-
specifierintroduces it into the declaration the same wajngle-type-speciféntroduces itdype-name If

the identifier resolves to dypedef-namethe elaborated-type-specifies ill-formed. If the resolution is
unsuccessful, thelaborated-type-specifiés ill-formed unless it is of the simple foratass-key identifier

In this case, th&entifier is declared in the smallest non-class, non-function prototype scope enclosing the
elaborated-type-specifi€B.3).

The class-keyor enum keyword present in thelaborated-type-specifienust agree in kind with the decla-
ration to which the name in thelaborated-type-specifierefers. This rule also applies to the form of
elaborated-type-specifiehat declares aelass-namesince it can be construed as refering to the definition of
the class. Thus, in amslaborated-type-specifietheenum keyword must be used to refer to an enumera-
tion (7.2), theunion class-keymust be used to refer to a union (9), and eithercthgs or struct
class-keymust be used to refer to a structure (9) or to a class declared usicigshe class-key For
example:

7-10 Declarations DRAFT: 27 May 1994 7.1.5.3 Elaborated type specifiers

struct Node {

struct Node* Next; /I ok: Refers to Node at file scope
struct Data* Data; /I ok: Declares type Data
/I at file scope and member Data
b
struct Data {
struct Node* Node; /I ok: Refers to Node at file scope
* %
b
struct Base {
struct Data; /I ok: Declares nested Data
struct ::Data* thatData; /I ok: Refers to ::Data
struct Base::Data* thisData; Il ok: Refers to nested Data
struct Data { /* ... */ }; /I Defines nested Data
struct Data; /I ok: Redeclares nested Data
b
struct Data; /I ok: Redeclares Data at file scope
struct ::Data; [/ error: qualified and nothing declared.
struct Base::Data; /I error: qualified and nothing declared.
struct Base::Datum; /I error: Datum undefined
struct Base::Data* pBase; /I ok: refers to nested Data
7.2 Enumeration declarations [dcl.enum]

An enumeration is a distinct type (3.7.1) with named constants. Its name becosnesmanamethat is, a
reserved word within its scope.

enum-name:
identifier

enum-specifier:

enum identifier,,, { enumerator-lisj, }

enumerator-list:
enumerator-definition
enumerator-list, enumerator-definition

enumerator-definition:
enumerator
enumerator= constant-expression

enumerator:
identifier

The identifiers in arenumerator-listare declared as constants, and may appear wherever constants are
required. If noenumerator-definitios with = appear, then the values of the corresponding constants biggin
at zero and increase by one ase¢hamerator-lisis read from left to right. Aenumerator-definitiomwvith

= gives the associatezhumeratorthe value indicated by thenstant-expressigrsubsequergnumeratos

without initializers continue the progression from the assigned value cdrfstant-expressiomust be of
integral type.

For example,

7.2 Enumeration declarations DRAFT: 27 May 1994 Declarations 711

enum{a, b,c=0};
enum {d, e, f=e+2 };

definesa, ¢, andd to be zerob ande to bel, andf to be3.

The point of declaration for an enumerator is immediately aftenitsnerator-definition For example:

constintx=12;
{enum {x=x}}

Here, the enumerataris initialized with the value of the constantnamely 12.

Each enumeration defines a type that is different from all other types. The type of an enumerator is its enu-
meration.

Theunderlying typeof an enumeration is an integral type, not gratuitously Iargeriﬂha:?s) that can rep-
resent all enumerator values defined in the enumeration. Hrthmerator-listis empty, the underlying
type is as if the enumeration had a single enumerator with value 0. The valzeod() applied to an
enumeration type, an object of enumeration type, or an enumerator, is the vsizenf(j applied to

the underlying type.

For an enumeration wheeg,;, is the smallest enumerator a@g,, is the largest, the values of the enumer-
ation are the values of the underlying type in the rdmgeto b,,.x, Whereb,;, andb,,, are, respectively,
the smallest and largest values of the smallest bit-field that can etgreand e, On a two’s-
complement machind,,,, is the smallest value greater than or equal to @as{é,i,) ;ab(emnax)) of the
form 2Y = 1; by iS zero ifeq, is non-negative and (b, +1) otherwise. It is possible to define an enu-
meration that has values not defined by any of its enumerators.

The value of an enumerator or an object of an enumeration type is converted to an integer by integral pro-
motion (4.1). For example,

enum color { red, yellow, green=20, blue };
color col = red;

color* cp = &col;

if (*cp == blue) // ...

makescolor a type describing various colors, and then declzmksas an object of that type, aod as a
pointer to an object of that type. The possible values of an object octjpe arered , yellow ,
green , blue ; these values can be converted to the integral values20, and21. Since enumerations
are distinct types, objects of typelor may be assigned only values of tyqmdor . For example,

colorc=1; / error: type mismatch,
/I no conversion from int to color
inti = yellow; // ok: yellow converted to integral value 1
/ integral promotion

See also C.3.

An expression of arithmetic type or of typehar_t may be converted to an enumeration type explicitly.
The value is unchanged if it is in the range of enumeration values of the enumeration type; otherwise the
resulting enumeration value is unspecified.

ox 40 g
[0rhis means the program does not crdsh.

The enum-name and each enumerator declared by an enum-specifier is declared in the scope that immedi-
ately contains the enum-specifier. These names obey the scope rules defined for all names in (3.3) and

“8)The type should be larger thamt only if the value of an enumerator won't fit in eut .

7-12 Declarations DRAFT: 27 May 1994 7.2 Enumeration declarations

(10.5). An enumerator declared in class scope may be referred to using the class member access operators (
, . (dot) and-> (arrow)), see 5.2.4. For example,

class X {
public:
enum direction { left="I", right="r' };
int f(int i)
{return i==left ? 0 : i==right 71 :2;}
2

void g(X* p)
{

direction d; I/l error: ‘direction’ not in scope
int i
i = p->f(left); /I error: ‘left’ not in scope
i = p->f(X::right); // ok
i = p->f(p->left); // ok t
...
}
7.3 Namespaces [basic.namespace]

A namespace is a kind of declarative region that effectively attaches an additional identifier to any names
declared inside it. Unlike other declarative regions, the definition of a namespace may be split over several
parts of a single translation unit.

The declarations in file scope of a translation unit behave as if they appeared in a hamespace called the
global namespace

7.3.1 Namespace definition [namespace.def]
The grammar for aamespace-definitiois

original-namespace-name:
identifier

namespace-definition:
original-namespace-definition
extension-namespace-definition
unnamed-namespace-definition

original-namespace-definition:
namespace identifier{ namespace-body

extension-namespace-definition:
namespace original-namespace-namg namespace-body

unnamed-namespace-definition:
namespace { namespace-body

namespace-body:
declaration-seg,

Theidentifierin anoriginal-namespace-definitioghall not have been previously defined in the declarative
region in which theoriginal-namespace-definitiomppears. Theadentifier in an original-namespace-
definition is the name of the namespace. Subsequently in that declarative region, it is treated as an
original-namespace-name

The original-namespace-narria anextension-namespace-definitishall have previously been defined in
anoriginal-namespace-definitioim the same declarative region. O

7.3.1 Namespace definition DRAFT: 27 May 1994 Declarations-13

Every namespace-definitiomust appear either at file scope or immediately within anatherespace-
definition

An unnamed-namespace-definitibehaves as if it were replaced by

namespace unique { namespace-body
using namespace unique;

where, for each translation unit, all occurrencesrifiue in that translation unit are replaced by an identi-
fier that differs from all other identifiers in the entire progl%?llrFor example:

namespace {inti;} // unique:i
void f() {i++; } I unique:i++
namespace A {

namespace {

int i Il A unique:i
int j; 1A unique::j
void f() {i++;} /[A unique:i++
using namespace A,
void h() {
i++; Il error: unique:i or A:: unique:i
A+, I error: A::i undefined
i+t IIA: unique::j
}

The declarative region ofrmmespace-definitiois itsnamespace-bodyThe potential scope denoted by an
original-namespace-name the concatenation of the declarative regions established by each of the
namespace-definitianin the same declarative region with tbagjinal-namespace-nameEntities declared

in anamespace-bodre said to benembes of the namespace, and names introduced by these declarations
into the declarative region of the namespace are saidrieirder namesf the namespace. For example

namespace N
{ - -
inti;
int g(int a) { return a; }
void k();
void q();
}
namespace { int k=1; }
namespace N

{
int g(char a) /I overloads N::g(int)
return k+a; I/ k is from unnamed namespace
}
inti; /I error, duplicate definition
void k(); /I OK, duplicate function declaration
void k() { /I OK, definition of N::k()
return g(a); /I calls N::g(int)
int q(); Il error, different return type
}

Because aamespace-definitiocontainsdeclaratiors in itsnamespace-bodynd anamespace-definitiois
itself adeclaration it follows thatnamespace-definitiamay be nested. For example:

2J) Although entities in an unnamed namespace might have external linkage, they are effectively qualified by a name uniquélto their
translation unit and therefore can never be seen from any other translation unit.

7-14 Declarations DRAFT: 27 May 1994 7.3.1 Namespace definition

namespace Outer {
inti;
namespace Inner {
void f() {i++; } // Outer::i
inti;
void g() { i++; } // Inner::i

}
8 The use of thestatic keyword is deprecated when declaring objects in a namespace scopédl(see
_future.directions); theunnamed-namespagpeovides a superior alternative.
9 Members of a namespace may be defined within that namespace. For example:
namespace X { void f() { } } ad
10 Members of a named namespace may also be defined outside that namespace by explicit qualification

(7.3.5) of the name being defined, provided that the entity being defined was already declared in théIlname-
space and the definition appears after the point of declaration in a namespace that encloses the declaration’s
namespace. For example:

namespace Q {
namespace V {
void f();

}
void V:f() {} //fine
void V::g() {} /I error, g() is not yet a member of V
namespace V {
void g();

}

11 Every name first declared in a namespace is a member of that namesp&iendA function first
declared within a class is a member of the innermost enclosing namespace. For example: O

/I Assume f and g have not yet been defined.
namespace A {
class X {
friend void f(X); /I declaration of f
class Y {
friend void g();

2
void f(X) { } /I definition of f declared above
X X;
void g() { f(x); } // f and g are members of A

}

using A:x;

main() {
A::f(x);
A X:f(X); /l error, f is not a member of A::X
A:X:Y:g(); Il error, g is not a member of A::X::Y

The scope of class names first introduceel@borated-type-specifieis described in (7.1.5.3). O
12 When an entity declared with tlextern specifier is not found to refer to some other declaration, then

that entity is a member of the innermost enclosing non-class namespace. For example:

7.3.1 Namespace definition DRAFT: 27 May 1994 Declarations-15

namespace X {

void p() {
q(); /I error: g not yet declared
extern void q(); // q is a member of namespace X

}
void q() { } /I definition of q

void q() {} /I some other, unrelated g

13
7.3.2 Namespace or class alias [namespace.alias]

1 A namespace-alias-definitiasieclares an alternate name for a namespace according to the following gram-
mar:

namespace-alias:
identifier

namespace-alias-definition:
namespace identifier = qualified-namespace-specifier ;

qualified-namespace-specifier:
2 opt NESted-name-specifigy class-or-namespace-name

2 Theidentifierin anamespace-alias-definitias a synonym for the name of the namespace denoted by the
qualified-namespace-specifiand becomes mamespace-alias

3 In a declarative region, mamespace-alias-definitiozan be used to redefinenamespace-aliadeclared in O
that declarative region to refer to the namespace to which it already refers. For example, the followiihg dec-
larations are well-formed: O

namespace Company_with_very_long_name {/* ... */ }

namespace CWVLN = Company_with_very_long_name;

namespace CWVLN = Company_with_very long_name; /I duplicate
namespace CWVLN = CWVLN;

OoOodgono

4 A namespace-nanshall not be declared as the name of any other entity in the same declarative regidn. A
namespace-nandefined at global scope shall not be declared as the name of any other entity in any global
scope of the program.

7.3.3 Theusing declaration [namespace.udecl]

1 A using-declaratiorintroduces a name into the declarative region in which it appears. That name is a syn-
onym for the name of some entity declared elsewhere.

using-declaration:
using :: o, nested-name-specifier unqualifiedsid
using :: unqualified-id;

%ox 41 E
[rhere is still an open issue regarding the "opt" on the nested-name-spécifier.

2 The member names specified irusing-declarationare declared in the declarative region in which the
using-declaratiorappears.

3 Every using-declarationis adeclarationand amember-declaratiomnd so may be used in a class defini-
tion. For example:

7-16 Declarations DRAFT: 27 May 1994 7.3.3 Thesing declaration

struct Base {
void f(char);
void g(char);
3
struct Derived: Base

{
using Base::f;
void f(int) { f('c’); } // calls Base::f(char)
void g(int) { g(’c’); } // recursively calls Derived::g(int)

An entity with the name of thenqualified-idshall be known to the nominated class or namespace at the
point that theusing-declarationappears. Additional definitions added to the namespace aftaisihg-
declarationare not considered when a use of the name is made.

H?:ox 42 B
[Please check this example carefully.

For example:

namespace A {
void f(int);
}

using A:f; I fis a synonym for A::f
namespace A {
void f(char);

}
void foo() {
f(a’); I/ calls f(int),
} I/l even though f(char) exists
void bar() {
using A:f;
f(a’); I/ calls f(char)
}

The names thus defined are aliases for their original declarations so th&inteleclarationdoes not
affect the type, linkage or other attributes of the members refered to.

If the set of local declarations anding-declaratios for a single name are given in a declarative region,
they shall all refer to the same entity, or all refer to functions. For example

namespace B

{
inti;
void f(int);
void f(double);

}
void g()
{
inti;
using B::i; // error: i declared twice

void f(char);
using B::f; I fine, each fis a function

7.3.3 Theusing declaration DRAFT: 27 May 1994 Declarations #17

HBOX 43 B
Orhis reflects paper 93-0105 but does not reflect the original namespace paper. According to thepriginal

aoaper, the previous example should read: ad

u
o voidg) .
o | 0
O int i; O
g using B::i; I error: i declared twice ad
g void f(char); U
0 using B::f; [/l error: f declared twice B
o} 0
O O

During overload resolution, a locally declared function is prefered over an injected one when both have the
same signature. If the signature with the best match refers to more than one function, an ambiguity exists
and the program is ill-formed.

HBox 44

ETThis treatment is a mistake, but it was voted in San Jose.

ooood

%ditorial proposal: if a local declaration conflicts with one introduced hysang-declarationthe program
s ill-formed. Thus, in the example below, the declaratiori(iof) in function h should render th
Cexample ill-formed.

o

For example:
namespace C
{
void f(int);
void f(double);
void f(char);
}
void h()
{
using B::f; // B::f(int) and B::f(double)
using C::f;
f(1); /I ambiguity B::f(int) or C::f(int)
void f(int);
f(1); /I calls local f(int)
fCh’); /I calls C::f(char)
f(2.0); /I ambiguity B::f(double) or C::f(double);
}

Even in the presence aking declarations, member function declarations hide or override members With
the same signature in a base class. For example: O

7-18 Declarations DRAFT: 27 May 1994 7.3.3 Thesing declaration

struct B { a
virtual void f(int); a

void g(int); O

3 O
struct D: B { a
using B::f; O
using B::g; a

void f(int); /l overrides B::f a

void g(int); /l hides B::g a

J5 0
void h(D* p) { a
p->f(1); /1 OK a
p->g(1); Il OK O

O

Omitting the name before implies a reference to the global namespace: O

void f();
namespace X {

using ::f; // global f
I3

main()

X::£(); Il calls ::f
}

All instances of the name mentioned insing-declaratiormust be accessible. In particular, if a derived

class uses asing-declarationto access a non-static member of a base class, the member name must be
accessible, and if the name is that of a non-static member function, then all functions named must be acces-
sible.

The alias created by thesing-declaratiorhas the usual accessibility fomeember-declaration For exam-
ple:

class A {
private:

void f(char);
public:

void f(int);
protected:

void g();

class B: public A {
using A::f; // error, A::f(char) is inaccessible

public:
using A:.qg; // B::g is a public synonym for A::g
2

Use ofaccess-declaratian(11.3) is deprecated; memiusing-declaratios provide a better alternative. [

7.3.4 Using directive [namespace.udir]

using-directive:
using namespace :: opt Nested-name-specifigrnamespace-name ;

A using-directivespecifies that the names in the namespace with the gaerespace-naméncluding
those specified by anysing-directive in that namespace, can be used in the scope in whialsitinge

7.3.4 Using directive DRAFT: 27 May 1994 Declarations —719

directive appears after the using directive, exactly as if the names from the namespace had been declared
outside a namespace at the points where the namespace was defugdg-directivedoes not add any
members to the declarative region in which it appears. If a namespace is extendeceXtgndad-
namespace-definitioafter ausing-directiveis given, the additional members of the extended namespace
may be used after tlextended-namespace-definition

The using-directives transitive: if a namespace containgsing-directivethat nominates a second name-
space that itself containsing-directivs, the effect is as if thesing-directive from the second namespace
also appeared in the first. In particular, a name in a namespace does not hide names in a second namespace

which is the subject of asing-directiven the first namespace. For example: O
namespace M { a

inti; g

} ad
namespace N { a

inti; O

using namespace M; a

} ad

.. N::i ... /[ambiguous: M::i or N::i? a

During overload resolution, all functions from the transitive search must be considered for argument match-
ing. An ambiguity exists if the best match finds two functions with the same signature, even if one might
seem to “hide” the other in thesing-directivdattice.

For example:
namespace D
{
int di;
void f(int);
void f(char);
}
using namespace D;
int di; /1 OK: no conflict with D::d1
namespace E
{
inte;
void f(int);
}
namespace D /I namespace extension
{
int d2;
using namespace E;
void f(int);
}
void f()
dl++; /l ambiguous ::d1 or D::d1
ndl++; /I OK
D::dl++; /I OK
d2++; / OK: D::d2
e++; /Il OK: E::e
f(1); /l ambiguous D::f(int) or E::f(int)

f(a’); /I OK D::f(char)

7-20 Declarations DRAFT: 27 May 1994 7.3.5 Explict qualification

7.3.5 Explict qualification [namespace.qual]

EBOX 45 El]
Orhe infomation in this section is very similar to the information provided in section 3.3.8. The information
should probably be consolidated in one place. M

A name in a class or namespace may be accessed using qualification according to the grammar:

id-expression
unqualified-id
qualified-id

nested-name-specifier:
class-or-namespace-name nested-name-specifigy

class-or-namespace-name:
class-name
namespace-name

namespace-name:
original-namespace-name
namespace-alias

The namespace-narsein a nested-name-specifieshall have been previously defined bynamed-
namespace-definitioor anamespace-alias-definition

5Box 46 B
O believe "class-specifier* and "namespace-alias-definition” above should be replaced with "type-ngme" to
Cinclude "original-namespace-specifier" and "typedef” as well. O

Theclass-name in anested-namespace-specifgmall have been previously defined bglass-specifieor
anamespace-alias-definition

The search for the initial qualifier preceding any operator locates only the names of types or name-
spaces. The search for a name after docates only nhames members of a namespace or class. In particu-
lar, using-directive are ignored, as is any enclosing declarative region.

7.4 Theasmdeclaration [dcl.asm]

An asm declaration has the form

asm-definition:
asm (string-literal) ;

The meaning of aasm declaration is implementation dependent. Typically it is used to pass information

through the compiler to an assembler.

7.5 Linkage specifications [dcl.link]

Linkage (3.4) betweert€ and non-&+ code fragments can be achieved usiligkage-specification
linkage-specification:

extern string-literal { declaration-seg, }
extern string-literal declaration

declaration-seq:
declaration
declaration-seq declaration

The string-literal indicates the required linkage. The meaning of dtreng-literal is implementation

7.5 Linkage specifications DRAFT: 27 May 1994 Declarations-21

dependent. Every implementation shall provide for linkage to functions written in the C programming lan-

guage,;'C" , and linkage to € functions,"C++" . Default linkage isC++" . For example, O
complex sqgrt(complex); /I C++ linkage by default
extern "C" {

double sqrt(double); // C linkage
}

[(Box 47
O

a
O
rhis example may need to be revisited depending on what the rules ultimately are coneerfimgge
[Fo standard library functions from the C library. a

Linkage specifications nest. A linkage specification does not establish a scdpeade-specification
may occur only irfile scope (3.3). Ainkage-specificatiorior a class applies to nonmember functions and
objects declared within it. Ainkage-specificatiorfor a function also applies to functions and objects
declared within it. A linkage declaration with a string that is unknown to the implementation is ill-formed.

If a function has more than otiakage-specificationthey must agree; that is, they must specify the same
string-literal. Except for functions with & linkage, a function declaration without a linkage specificatidh
may not precede the first linkage specification for that function. A function may be declared without a link-
age specification after an explicit linkage specification has been seen; the linkage explicitly specified in the
earlier declaration is not affected by such a function declaration.

At most one of a set of overloaded functions (13) with a particular name can have C linkage.

Linkage can be specified for objects. For example,

extern "C" {
...
_iobuf _iob[_NFILE];
...
int _flsbuf(unsigned,_iobuf*);
...
}

Functions and objects may be declastatic ~ within the{} of a linkage specification. The linkage
directive is ignored for such a function or object. Otherwise, a function declared in a linkage specification
behaves as if it was explicitly declarextern . For example,

extern "C" double f();
static double f(); Il error

is ill-formed (7.1.1). An object defined within an
extern "C" {/* ... */ }
construct is still defined (and not just declared).

Linkage from @+ to objects defined in other languages and to objects defined iindth other languages
is implementation and language dependent. Only where the object layout strategies of two language imple-
mentations are similar enough can such linkage be achieved.

When the name of a programming language is used to name a style of linkagestiinthibiteral in a
linkage-specificationit is recommended that the spelling be taken from the document defining that lan-
guage, for examplédda (not ADA andFORTRANnotFortran).

8 Declarators [dcl.decl]

A declarator declares a single object, function, or type, within a declaration.initfieclarator-list
appearing in a declaration is a comma-separated sequence of declarators, each of which may have an initial-
izer.

init-declarator-list:
init-declarator
init-declarator-list , init-declarator

init-declarator:
declarator initializeg,

The two components of declarationare the specifiersdécl-specifier-seq7.1) and the declaratoriif-
declarator-lis). The specifiers indicate the fundamental type, storage class, or other properties of the
objects and functions being declared. The declarators specify the names of these objects and functions and
(optionally) modify the type with operators such*a§ointer to) and) (function returning). Initial val-

ues can also be specified in a declarator; initializers are discussed in 8.5 and 12.6.

Eachinit-declaratorin a declaration is analyzed separately as if it was in a declaration bﬁ%self.

Declarators have the syntax

declarator:
direct-declarator
ptr-operator declarator

direct-declarator:
declarator-id
direct-declarator (parameter-declaration-clausg¢ cv-qualifier-seg, exception-specificatiop
direct-declarator [constant-expressigg |
(declarator)

SU) A declaration with several declarators is usually equivalent to the corresponding sequence of declarations each with a single
declarator. That is

T D1,D2,...Dn;

is usually equvalent to

T D1, TD2;..TDn;

whereT is adecl-specifier-segnd eacli is ainit-declarator The exception occurs when one declarator modifies the name environ-
ment used by a following declarator, as in

struct S{... };
S S, T; /ldeclare two instances of struct S

which is not equivalent to

structS{... };
S S;
S T, [lerror

8-2 Declarators DRAFT: 27 May 1994 8 Declarators

ptr-operator:
* cv-qualifier-segy
& O
iI optNESted-name-specifiet cv-qualifier-seg, ad

cv-qualifier-seq:
cv-qualifier cv-qualifier-seg

cv-qualifier:
const
volatile

declarator-id:
id-expression
nested-name-specifigftype-name

A class-naméhas special meaning in a declaration of the class of that name and when qualified by that
name using the scope resolution operator(12.1, 12.4). Thev-qualifierconst shall not appear more
than once in av-qualifier-segsimilarly for volatile

8.1 Type names [dcl.name]

To specify type conversions explicitly, and as an argumesizebf or new, the name of a type must be
specified. This can be done withygpe-id which is syntactically a declaration for an object or function of
that type that omits the name of the object or function.
type-id:
type-specifier-seq abstract-declaraggr

type-specifier-seq:
type-specifier type-specifier-sgg

abstract-declarator:
ptr-operator abstract-declaratgy
direct-abstract-declarator

direct-abstract-declarator:
direct-abstract-declaratqy, (parameter-declaration-claus¢ cv-qualifier-seg, exception-specificatiqp
direct-abstract-declaratqg, [constant-expressigp]
(abstract-declarator)

It is possible to identify uniquely the location in thiestract-declaratomwhere the identifier would appear
if the construction were a declarator in a declaration. The named type is then the same as the type of the
hypothetical identifier. For example,

int /linti

int * /lint *pi
int *[3] /l'int *p[3]
int (*)[3] I/l int (*p3i)[3]
int *() I'int *f()

int (*)(double) [l int (*pf)(double)

name respectively the typémteger, “pointer to integet, “array of 3 pointers to integets;pointer to
array of 3 integers,“function having no parameters and returning pointer to integed pointer to func-
tion ofdouble returning an integet.

A type can also be named (often more easily) by ustpgexief(7.1.3).

Note that anexception-specificatiodoes not affect the function type, so its appearance iabatract-
declaratorwill have empty semantics.

5

6

8.2 Ambiguity resolution DRAFT: 27 May 1994 Declarators 83

8.2 Ambiguity resolution [dcl.ambig.res]

The ambiguity arising from the similarity between a function-style cast and a declaration mentioned in 6.8
can also occur in the context of a declaration. In that context, it surfaces as a choice between a function
declaration with a redundant set of parentheses around a parameter name and an object declaration with a
function-style cast as the initializer. Just as for statements, the resolution is to consider any construct that
could possibly be a declaration a declaration. A declaration can be explicitly disambiguated by a
nonfunction-style cast or=ato indicate initialization. For example,

struct S {
S(int);

2

void foo(double a)

{
S x(int(a)); / function declaration
S y((int)a); /I object declaration
Sz =int(a); /Il object declaration

}

The ambiguity arising from the similarity between a function-style cast sypkadcan occur in many dif-

ferent contexts. The ambiguity surfaces as a choice between a function-style cast expression and a declara-
tion of a type. The resolution is that any construct that could possiblyype-adin its syntactic context

shall be consideredtgpe-id

For example,

#include <stddef.h>

char *p;

void *operator new(size_t, int);

void foo(int x) {
new (int(*p)) int; /I new-placement expression
new (int(*[x])); Il new type-id

}

For example,

template <class T>

struct S {

T *p;

I3

S<int()> x; /I type-id

S<int(1)>y; Il expression (ill-formed)

For example,

void foo()

{
sizeof(int(1)); // expression
sizeof(int()); // type-id (ill-formed)

}
For example,
void foo()
{
(int(1)); Il expression
(int0)1; Il type-id (ill-formed)

8-4 Declarators DRAFT: 27 May 1994 8.3 Meaning of declarators

8.3 Meaning of declarators [dcl.meaning]

A list of declarators appears after an optionald@gl-specifier-se7.1). Each declarator contains exactly

one declarator-id it names the identifier that is declared. daclarator-id shall be a simpledentifier,

except for the following cases: the declaration of some special functions (12.3, 12.4, 13.4), the definition of
a member function (9.4), the definition of a static data member (9.5), the declaration of a friend function
that is a member of another class (11.4). afuto , static , extern , register , friend ,inline

virtual , ortypedef specifier applies directly to eadeclarator-idin a init-declarator-list the type
specified for eacldeclarator-iddepends on both thiecl-specifier-se@nd itsdeclarator.

Thus, a declaration of a particular identifier has the form
TD

whereT is adecl-specifier-se@ndD is a declarator. The following subsections give an inductive proce-
dure for determining the type specified for the contadtealarator-idby such a declaration.

First, thedecl-specifier-sedetermines a type. For example, in the declaration

int unsigned i;
the type specifiersit unsigned determine the typeunsigned int . Or in general, in the declara-
tion

TD

thedecl-specifier-sed@ determines the typer.”

In a declaratiolm DwhereDis an unadorned identifier the type of this identifiétTis

In a declaratiom DwhereD has the form
(D1)

the type of the containetkclarator-idis the same as that of the contaidedlarator-idin the declaration
TD1

Parentheses do not alter the type of the embedieledrator-id but they may alter the binding of complex
declarators.

8.3.1 Pointers [dcl.ptr]
In a declaratiom DwhereD has the form
* cv-qualifier-seg, D1

and the type of the identifier in the declaratioB1 is “type-modifierT,” then the type of the identifier &f
is “type-modifier cv-qualifier-sepointer toT.” The cv-qualifiers apply to the pointer and not to the object
pointed to.

For example, the declarations

const int ci = 10, *pc = &ci, *const cpc = pc, **ppc;

inti, *p, *const cp = &i;
declareci , a constant integepc, a pointer to a constant integepc, a constant pointer to a constant
integer,ppc, a pointer to a pointer to a constant integeran integerp, a pointer to integer; anth, a
constant pointer to integer. The valuecdf cpc , andcp cannot be changed after initialization. The value
of pc can be changed, and so can the object pointed¢p b¥xamples of correct operations are

8.3.1 Pointers

i=ci

*Cp = Ci;
pct++;

pc = cpc;
pc = p;
ppc = &pc;

Examples of ill-formed operations are
ci=1, /I error
Ci++; /I error
*pe = 2; /I error
cp = &ci; I error
CpC++; Il error
p = pc; /I error

Each is unacceptable because it would either change the value of an object deaktredr allow it to be

ppc = &p; /I error

DRAFT: 27 May 1994

changed through an unqualified pointer later, for example:

volatile

There can be no pointers to references (8.3.2) or pointers to bit-fields (9.7).

*ppc = &ci; // okay, but would make p pointtoci ...
Il ... because of previous error

*p =5; /I clobber ci

specifiers are handled similarly.

See also 5.17 and 8.5.

8.3.2 References

In a declaratiom DwhereD has the form

and the type of the identifier in the declarafioB1 is “type-modifierT,” then the type of the identifier &f

& D1

Declarators -&6

[dcl.ref]

is “type-modifierreference tal.” At all times during the determination of a type, types of the ftom

qualifiedreference ta@” is adjusted to btreference ta”. For example, in

the type ofaref is “reference tdnt

typedef int& A;
const A aref = 3;

type“reference tavvoid” is ill-formed.

For example,

declares to be a reference parameterf oo the calf(d) will add3.14 tod.

declares the functiog() to return a reference to an integergg8)=7 will assign7 to the fourth element

void f(double& a) { a += 3.14; }
...

double d = 0;

f(d);

int v[20];

...

int& g(int i) { return v[i]; }
...

93 =7;

of the array.

, hot “const

reference tant

OO ogoo o

. A declarator that specifies the

O

8-6 Declarators DRAFT: 27 May 1994 8.3.2 References

struct link {
link* next;

J5

link* first;

void h(link*& p) // ‘p’ is a reference to pointer

p->next = first;

first = p;
p=0;

}

void k()

link* g = new link;
h(a);

declareg to be a reference to a pointedittk soh(g) will leave g with the value zero. See also 8.5.3.

There can be no references to references, no references to bit-fields (9.7), no arrays of references, and no
pointers to references. The declaration of a reference must contmiitiadizer (8.5.3) except when the
declaration contains an explieiktern specifier (7.1.1), is a class member (9.2) declaration within a class
declaration, or is the declaration of an parameter or a return type (8.3.5); see 3.1. A reference must be ini-
tialized to refer to a valid object. In particular, null references are prohibited; no diagnostic is required.

8.3.3 Pointers to members [dcl.mptr]

In a declaratiom DwhereD has the form
iI optNested-name-specifier * cv-qualifier-seg, D1

and thenested-name-specifieames a class, and the type of the identifier in the declarhtixhis “type-
modifier T,” then the type of the identifier @ is “type-modifier cv-qualifier-seqointer to member of
class nested-name-specifier of type

For example,

class X {
public:
void f(int);
int a;
b

class Y;

int X::* pmi = &X::a;

void (X::* pmf)(int) = &X::f;
double X::* pmd;

char Y::* pmc;

declaregpmi, pmf, pmdandpmcto be a pointer to a memberXbf typeint , a pointer to a member &f
of typevoid(int) , & pointer to a member fof typedouble and a pointer to a member 6fof type
char respectively. The declaration @imd is well-formed even thougX has no members of type
double . Similarly, the declaration gdmc is well-formed even thougl is an incomplete typepmi and
pmf can be used like this:

8.3.3 Pointers to members DRAFT: 27 May 1994 Declarators—-8

X obj;
/...
obj.*pmi =7; /[assign 7 to an integer
/I member of obj
(obj.*pmf)(7); // call a function member of obj
[/l with the argument 7

Note that a pointer to member cannot point to a static member of a class (9.5), a member with reference
type, or‘cv void .” There are no references to members. See also 5.5 and 5.3.

8.3.4 Arrays [dcl.array]

In a declaratiodm DwhereD has the form
D1 [constant-expressigg]

and the type of the identifier in the declarafioD1 is “type-modifiefT,” then the type of the identifier &f
is an array type. If theonstant-expressiofb.19) is present, it must be of enumeration or integral type and
have a value greater than zero. The constant expression specibesitidef (number of elements in) the
array. If the value of the constant expressioN,ithe array hadl elements numbere@d to N-1, and the
type of the identifier oD is “type-modifierarray of N T.” If the constant expression is omitted, the type of
the identifier ofD is “type-modifierarray of unknown bound of,” an incomplete object type. Any cv-
qualifiers that appear itype-modifierare applied to the typeand not to the array type, as in this example:

typedef int A[5], AA[2][3];

const A x; I type is “array of 5 const int”

const AAy; I type is “array of 2 array of 3 const int”

An array may be constructed from one of the fundamentalgtvp(esxceptvoid), from a pointer, from a
pointer to member, from a class, or from another array.

When several'array of specifications are adjacent, a multidimensional array is created; the constant
expressions that specify the bounds of the arrays may be omitted only for the first member of the sequence.
This elision is useful for function parameters of array types, and when the array is external and the defini-
tion, which allocates storage, is given elsewhere. Thecfinsstant-expressiomay also be omitted when

the declarator is followed by anitializer (8.5). In this case the bound is calculated from the number of
initial elements (say\) supplied (8.5.1), and the type of the identifieDa$ “array ofN T.”

The declaration
float fa[17], *afp[17];

declares an array fibat numbers and an array of pointerdle@t numbers. The declaration
static int x3d[3][5][7];

declares a static three-dimensional array of integers, with re¥73 In complete detaik3d is an array

of three items; each item is an array of five arrays; each of the latter arrays is an array of seven integers.
Any of the expressiong3d, x3d[i] , x3d[i][j] . x3d[i[I1k] may reasonably appear in an
expression.

Conversions affecting Ivalues of array type are described in 4.6. Except where it has been declared for a
class (13.4.5), the subscript operafpr is interpreted in such a way th&l[E2] is identical to
*((ED)+(E2)) . Because of the conversion rules that apply,tif E1 is an array an&?2 an integer,
thenE1[E2] refers to theE2-th member oE1l. Therefore, despite its asymmetric appearance, subscript-

ing is a commutative operation.

34 The enumeration types are included in the fundamental types.

8-8 Declarators DRAFT: 27 May 1994 8.3.4 Arrays

A consistent rule is followed for multidimensional arrays. Hfis an n-dimensional array of rank
ixjx ---xk, thenE appearing in an expression is converted to a pointer tm ai \-dimensional array
with rankjx - - - xk. If the* operator, either explicitly or implicitly as a result of subscripting, is applied to
this pointer, the result is the pointed-to-1)-dimensional array, which itself is immediately converted
into a pointer.

For example, consider
int x[3][5];

Herex is a X5 array of integers. Whenappears in an expression, it is converted to a pointer to (the first

of three) five-membered arrays of integers. In the expres§ijon, which is equivalent t(x+i) , X is

first converted to a pointer as described; thein is converted to the type &f which involves multiplying

i by the length of the object to which the pointer points, namely five integer objects. The results are added
and indirection applied to yield an array (of five integers), which in turn is converted to a pointer to the first
of the integers. If there is another subscript the same argument applies again; this time the result is an inte-
ger.

It follows from all this that arrays in+€ are stored row-wise (last subscript varies fastest) and that the first
subscript in the declaration helps determine the amount of storage consumed by an array but plays no other
part in subscript calculations.

8.3.5 Functions [dcl.fct]
In a declaratiod DwhereD has the form
D1(parameter-declaration-clausg¢ cv-qualifier-seg,

and the type of the containeéclarator-idin the declaratiom D1 is “type-modifierT1,” the type of the
declarator-id in D is “type-modifier cv-qualifier-seg function with parameters of typparameter-
declaration-clausend returningr'l”; a type of this form is tunction typéz).

parameter-declaration-clause:
parameter-declaration-ligf; ..
parameter-declaration-list, ...

opt

parameter-declaration-list:
parameter-declaration
parameter-declaration-list, parameter-declaration

parameter-declaration:
decl-specifier-seq declarator
decl-specifier-seq declarator assignment-expression
decl-specifier-seq abstract-declaraggr
decl-specifier-seq abstract-declaratgr = assignment-expression

The parameter-declaration-clausdetermines the arguments that can be specified, and their processing,
when the function is called. If tiarameter-declaration-claugerminates with an ellipsis, the number of
arguments is known only to be equal to or greater than the number of parameters specified; if it is empty,
the function takes no arguments. The parametefM@t) is equivalent to the empty parameter list.
Except for this special cas®id may not be a parameter type (though types derived ¥mdh , such as

void* , may). Where syntactically corre¢t,... " is synonymous witlf... ”. The standard header
<stdarg.h> contains a mechanism for accessing arguments passed using the ellipsis, see 17.1.2. O

32) ps indicated by the syntax, cv-qualifiers are a significant component in function return types.

8.3.5 Functions DRAFT: 27 May 1994 Declarators -89

[(Box 48
O

oy
N
(Something should probably be said about how arguments work in-€. For example, do they work{]
(Hor member functions? Virtual member functions? If so, what are the rules? M

See 12.1 for the treatment of array arguments.

A single name may be used for several different functions in a single scope; this is function overloading
(13). All declarations for a function with a given parameter list must agree exactly both in the type of the
value returned and in the number and type of parameters; the presence or absence of the ellipsis is consid-
ered part of the function type. The type of each parameter is determined from itledvapecifier-seq
anddeclarator After determining the type of each parameter, any parameter ofayag of T” or “func-

tion returningT” is adjusted to bé&pointer toT” or “pointer to function returnind,” respectively. After
producing the list of parameter types, several transformations take place upon the types-gialjfier
modifying a parameter type is deleted; e.g., the wgid(constint) becomesyoid(int) . Such
cv-qualifiers affect only the definition of the parameter within the body of the function. I$ttrage-
class-specifieregister modifies a parameter type, the specifier is deleted; egisterchar*
becomeghar* . Suchstorage-class-qualifier affect only the definition of the parameter within the body

of the function. The resulting list of transformed parameter types is the functiqrésdistetetype

ox 49 B
Ossue: a definition fotsignaturé will be added as soon as the semantics are made precise.

The return type and the parameter type list, but not the default arguments (8.3.6), are part of the function
type. If the type of a parameter includes a type of the f@wmter to array of unknown bound ©f “ref-

erence to array of unknown boundTof the program is ill-formed® A cv-qualifier-seqcan only be part

of a declaration or definition of a nonstatic member function, and of a pointer to a member function; see
9.4.1. ltis part of the function type.

Functions cannot return arrays or functions, although they can return pointers and references to such things.
There are no arrays of functions, although there may be arrays of pointers to functions.

Types may not be defined in return or parameter types.

The parameter-declaration-claugs used to check and convert arguments in calls and to check pointer-to-
function and reference-to-function assignments and initializations.

An identifier can optionally be provided as a parameter name; if present in a function declaration, it cannot
be used since it goes out of scope at the end of the function declarator (3.3); if present in a function defini-
tion (8.4), it names a parameter (sometimes céfieanal argumerif). In particular, parameter names are
also optional in function definitions and names used for a parameter in different declarations and the defini-
tion of a function need not be the same.
The declaration
inti,

*pi,

f0,

*fpi(int),

(*pif)(const char*, const char*);

(*fpif(int))(int);

declares an integér, a pointempi to an integer, a functioh taking no arguments and returning an integer,
a functionfpi taking an integer argument and returning a pointer to an integer, a gufintés a function
which takes two pointers to constant characters and returns an integer, a ffpiictiotaking an integer

33) This excludes parameters of tyfygr-arr-seq T2” whereT2 is “pointer to array of unknown bound ©f and whereptr-arr-seq
means any sequence“‘@ointer t¢ and“array of modifiers. This exclusion applies to the parameters of the function, and if a parame-
ter is a pointer to function then to its parameters also, etc.

10

8-10 Declarators DRAFT: 27 May 1994 8.3.5 Functions

argument and returning a pointer to a function that takes an integer argument and returns an integer. It is
especially useful to compafgi andpif . The binding offpi(int) is *(fpi(int)) , So the decla-

ration suggests, and the same construction in an expression requires, the calling of affinctonl then

using indirection through the (pointer) result to yield an integer. In the decldrpif){const

char*, const char*) |, the extra parentheses are necessary to indicate that indirection through a pointer
to a function yields a function, which is then called.

Typedefs are sometimes convenient when the return type of a function is complex. For example, the func-
tion fpif above could have been declared

typedefint IFUNC(int);
IFUNC* fpif(int);

The declaration
fseek(FILE*, long, int);

declares a function taking three arguments of the specified types. Since no return value type is specified it
is taken to bént (7.1.5). The declaration

printf(const char* ...);
declares a function that can be called with varying numbers and types of arguments. For example,

printf("hello world");
printf("a=%d b=%d", a, b);

It must always have a value, however, that can be convertembtesta char* as its first argument.

8.3.6 Default arguments [dcl.fct.default]

If an expression is specified in a parameter declaration this expression is used as a default argument. All
subsequent parameters must have default arguments supplied in this or previous declarations of this func-
tion. Default arguments will be used in calls where trailing arguments are missing. A default argument
shall not be redefined by a later declaration (not even to the same value). A declaration may add default
arguments, however, not given in previous declarations.

The declaration
point(int = 3, int = 4);
declares a function that can be called with zero, one, or two arguments ioit typét may be called in any
of these ways:
point(1,2); point(1); point();
The last two calls are equivalentgoint(1,4) andpoint(3,4) , respectively.

Default argument expressions in non-member functions have their names bound and their types checked at
the point of declaration, and are evaluated at each point of call. In member functions, names in default
argument expressions are bound at the end of the class declaration, like names in inline member function
bodies (9.4.2). In the following examptewill be called with the valu§?2)

inta=1;

int f(int);

int g(int x = f(a)); // default argument: f(::a)

void h() {
a=2
{
inta=3;
} g(; 1 g(f(::a))

8.3.6 Default arguments DRAFT: 27 May 1994 Declarators 8.1

Local variables shall not be used in default argument expressions. For example,

void f()

{
int i
extern void g(int x =i); // error
...

}

Note that default arguments are evaluated before entry into a function and that the order of evaluation of
function arguments is implementation dependent. Consequently, parameters of a function may not be used
in default argument expressions. Paramaters of a function declared before a default argument expression
are in scope and may hide global and class member names. For example,

int a;
int f(int a, int b = a); /I error: parameter ‘a’

/l used as default argument
typedefint [;

int g(float I, int b = [(2)); // error: ‘float’ called

Similarly, the declaration ok::mem1() in the following example is undefined because no object is sup-
plied for the nonstatic membxr:a used as an initializer.

int b;
class X {
int a;
meml(int i = a); // error: nonstatic member ‘a’
I/ used as default argument
mem2(inti = b); // ok; use X::b
static b;
2

The declaration oX::mem2() is meaningful, however, since no object is needed to access the static
memberX::b . Classes, objects, and members are described in 9.

A default argument is not part of the type of a function.

int f(int = 0);
void h()
{
intj =f(1);
int k = (); /I fine, means f(0)
}
int (*pl)(int) = &f;
int (*p2)() = &f; /I error: type mismatch

An overloaded operator (13.4) shall not have default arguments.

8.4 Function definitions [dcl.fct.def]
Function definitions have the form

function-definition:
decl-specifier-segj;, declarator ctor-initializegy, function-body

function-body:
compound-statement

Thedeclaratorin afunction-definitionmust contain a declarator with the form

D1 (parameter-declaration-claus¢ cv-qualifier-segy,

8-12 Declarators DRAFT: 27 May 1994 8.4 Function definitions

as described in 8.3.5.
The parameters are in the scope of the outermost block fofritton-body

A simple example of a complete function definition is

int max(int a, int b, int c)

{
intm=(@a>b)?a:b;
return (m>c) ? m:c;
}
Hereint is thedecl-specifier-segmax(int a, int b, int c¢) is thedeclarator {/* ... */ } is

thefunction-body
A ctor-initializer is used only in a constructor; see 12.1 and 12.6.

A cv-qualifier-seccan be part of a non-static member function declaration, non-static member function def-
inition, or pointer to member function only; see 9.4.1. It is part of the function type.

Note that unused parameters need not be named. For example,

void print(int a, int)

{
}

printf("a = %d\n",a);

8.5 Initializers [dcl.init]

A declarator may specify an initial value for the identifier being deciifethe identifier designates ari]
object or reference being initialized. The process of initialization described in the remainder of thi§l sub-
clause (8.5) applies also to initializations specified by other syntactic contexts, such as the initializafion of
function parameters with argument expressions (5.2.2) or the initialization of return values (6.6.3).
initializer:
= initializer-clause
(expression-list)

initializer-clause:
assignment-expression
{ initializer-list , o }

{}

initializer-list:
initializer-clause
initializer-list , initializer-clause

Automatic, register, static, and external variables at file scope may be initialized by arbitrary expressions
involving constants and previously declared variables and functions.

int f(int);

inta=2;

intb = f(a);

int c(b);

An expression of typépointer tocvl T” can initialize a pointer of typgpointer tocv2 T” if the set of
cv-qualifierscvlis a subset afv2 An expression of typ&cvl T” can initialize an object of typev2 T”
independently of the cv-qualifiecylandcv2 For example,

3% The syntax provides for empty initializer clauses, but nonethelesdo€s not have zero length arrays.

10

8.5 Initializers DRAFT: 27 May 1994 Declarators 813

int a;
constintb =a;
intc=b;

const int* p0 = &a;
const int* pl = &b;
int* p2 = &b; Il error: makes a pointer to
// nonconst point to a const

int *const p3 = p2;
int *const p4 = pl; // error: makes a pointer to

// nonconst point to a const
const int* p5 = p1;

The declarations gf2 andp4 are ill-formed for the same reason: had those initializations been allowed,
they would have allowed the value of something declamtt to be changed through an unqualified
pointer.

Default argument expressions are more restricted; see 8.3.6.
The order of initialization of static objects is described in 3.5 and 6.7. a

Variables with storage class static (3.6) that are not initialized and do not have a constructor are guaranteed
to start off as zero converted to the appropriate type. If the objeciass or struct , its data mem-

bers start off as zero converted to the appropriate type. If the objamisna, its first data member starts

off as zero converted to the appropriate type. The initial values of automatic and register variables that are
not initialized are indeterminate.

When an initializer applies to a pointer or an object of enumeration or arithmetic type, it consists of a single
expression, perhaps in braces. The initial value of the object is taken from the expression; the same conver-
sions as for assignment are performed.

Note that sincé) is not an initializer,
X a();

is not the declaration of an object of clagsbut the declaration of a function taking no argument and
returning anX.

An initializer for a static member is in the scope of the member’s class. For example,

int a;

struct X {
static int a;
static int b;

I3
int X::a =1,
intX:b=a, //X:b=X:a
See 8.3.6 for initializers used as default arguments. O

The semantics of initializers are as follows. In this discussionatiget typeis the type of the object ord
reference being initialized andckass reference tyge any type of the forireference tav class$ type. O

— If the target type is neither a class nor a class reference type, and the initializer type is not @ class
type35), the behavior of the initialization is determined by the preceding rules of this subclausél and
Clause 4; no user-defined conversions are considered. O

35) Note that expressions of typeeference to T are adjusted to be Ivalues of typE’, so there are no special rules for initializer
expressions of ref-to-class type.

11

8-14 Declarators DRAFT: 27 May 1994 8.5 Initializers

— If the initializer is of typée‘'reference tav1T1”, and the target type is eithav2T1” or “cv2class [
B” (where B is an accessible unambiguous base class of the class type defdtgdhmn the initial- O
ization is accomplished by causing the identifier to denote a reference bound to the object or fuhction
denoted by the initializer expression; the restrictions and semantics of reference conversion are applied.

— If the initializer is of class type, a set of candidate functions is created (13.2.1), each of which is@ con-
structor or conversion function that is a valid step in a conversion sequence leading from the inifializer
type to the target typ‘qéG.) From this set of candidate functions a function is chosen as describéd in

13.2% O
ox 50 E |
Orhis must be reconciled with the rules for template argument/parameter matdhing. M

— Otherwise, the initializer type is not a class type. If the target type is a class or class reference type with
a constructor, the candidate functions are all the constructors accepting the initializer type as an argu-
ment without user-defined conversions. From this set of candidate functions a function is chosen’by the

process described in 139 O
ox 51 B |
[Revise 12.6.1 (12.6.1) to reference this. M

— If the target type is a class (not a class reference) type without a constructor, the behavior is detérmined

by 8.5.1 below. O
Any other cases are ill-formed. O
8.5.1 Aggregates [dcl.init.aggr]

An aggregates an array or an object of a class (9) with no user-declared constructors (12.1), no private or
protected members (11), no base classes (10), and no virtual functions (10.3). When an aggregate is initial-
ized theinitializer may be annitializer-clauseconsisting of a brace-enclosed, comma-separated list of ini-
tializers for the members of the aggregate, written in increasing subscript or member order. If the aggregate
contains subaggregates, this rule applies recursively to the members of the subaggregate. If there are fewer
initializers in the list than there are members of the aggregate, then the aggregate is padded with zeros of
the appropriate types.

For example,

struct S {int a; char* b; int c; };
Sss={1, "asdf" };

initializesss.a with 1, ss.b with ,asdf" andss.c with zero.

An aggregate that is a class may also be initialized with an object of its class or of a class publicly derived
from it (12.8).

Braces may be elided as follows. If thtializer-clausebegins with a left brace, then the succeeding
comma-separated list of initializers initializes the members of the aggregate; it is erroneous for there to be
more initializers than members. If, however, ithiializer-clauseor a subaggregate does not begin with a

3% the target type is a class or ref-to-nonconst-class type, these candidate functions include constructors of the target type. If the ini-
tializer type can be converted to the argument type of a target-type constructor (without using user-defined conversions) then that con-
structor is a candidate.

Note that as described in 13.2, an extra "tie-breaker" is used in the overload resolution of initialization contexts: a conversion
sequence containing a standard conversion after a user-defined conversion is worse than a conversion sequence in which the user-
defined conversion is not followed by a standard conversion.

The same "standard conversion tie-breaker" applies here.

10

8.5.1 Aggregates DRAFT: 27 May 1994 Declarators-85

left brace, then only enough elements from the list are taken to account for the members of the aggregate;
any remaining members are left to initialize the next member of the aggregate of which the current aggre-
gate is a part.

For example,
intx[]={1,3,5}

declares and initializes as a one-dimensional array that has three members, since no size was specified
and there are three initializers.
float y[4][3] = {
{1,3,5},
{2,4,61},
{3,5,7},
h
is a completely-bracketed initialization: 1, 3, and 5 initialize the first row of the &y, namely
y[0][0] ,y[O][1] ,andy[O][2] . Likewise the nexttwo lines initializg1l] andy[2] . The initial-
izer ends early and therefoy§3] is initialized with zeros. Precisely the same effect could have been
achieved by
float y[4][3] = {
1,3,52,46,3,5 7
b
The last (rightmost) index varies fastest (8.3.4).

The initializer fory begins with a left brace, but the one 0] does not, therefore three elements from
the list are used. Likewise the next three are taken successivg|§]forandy[2] . Also,

float y[4][3] = {
\ {1h{2}L{3}L{4}

initializes the first column of (regarded as a two-dimensional array) and leaves the rest zero.
Initialization of arrays of objects of a class with constructors is described in 12.6.1.

The initializer for a union with no constructor is either a single expression of the same type, or a brace-
enclosed initializer for the first member of the union. For example,

union u { int a; char* b; };

ua={1}

ub=a;

uc=1; /I error
ud={0,"asdf"}; // error
ue={"asdf"}; Il error

There may not be more initializers than there are members or elements to initialize. For example,
charcv[4]={'a,’'s’,'d,'f,0}; /lerror
is ill-formed.

A POD-struct? is an aggregate structure that contains neither references nor pointers to members. Simi-
larly, aPOD-unionis an aggregate union that contains neither references nor pointers to members.

¥ The acronym POD stands ftplain ol’ data

8-16 Declarators DRAFT: 27 May 1994 8.5.2 Character arrays

8.5.2 Character arrays [dcl.init.string]

A char array (whether signed or unsigned) may be initialized by a stringhar_t array may be ini-
tialized by a wide-character string; successive characters of the string initialize the members of the array.
For example,

char msg[] = "Syntax error on line %s\n";

shows a character array whose members are initialized with a string. Note that Betause a single
character and because a traili@j is appendedsizeof(msg) is 25.

There may not be more initializers than there are array elements. For example,

char cv[4] = "asdf"; // error

is ill-formed since there is no space for the implied traiNdg .

8.5.3 References [dcl.init.ref]

A variable declared to be B&, that is“reference to typd” (8.3.2), must be initialized by an object, or
function, of typeT or by an object that can be converted info &or example,

void f()
{ . .
inti;
int&r=i; //'rrefersto '
r=1; /I the value of ‘i’ becomes 1

int* p = &r; // 'p’ points to ‘'
int& rr =r; // ‘rr’ refers to what ‘r’ refers to,
/I that is, to ‘I’
}

A reference cannot be changed to refer to another object after initialization. Note that initialization of a ref-
erence is treated very differently from assignment to it. Argument passing (5.2.2) and function value return
(6.6.3) are initializations.

The initializer may be omitted for a reference only in a parameter declaration (8.3.5), in the declaration of a
function return type, in the declaration of a class member within its class declaration (9.2), and where the
extern specifier is explicitly used. For example,

int& ri; /I error: initializer missing
extern int& r2; // ok

If the initializer for a reference to typeis an lvalue of typf or of a type derived (10) frorh for which T

is an unambiguous accessible base (4.6), the reference will refer Toghe ¢f the) initializer; otherwise,

if and only if the reference is tocanst and an object of typ€ can be created from the initializer, such an
object will be created. The reference then becomes a name for that object. For example,

double d =2.0;

double& rd = d; / rd refers to ‘d’
const double& rcd = d; // rcd refers to ‘d’
double& rd2 = 2.0; /I error: not an Ivalue
int i=2;

doubleé& rd3 = i; /I error: type mismatch

const double& rcd2 = 2; // rcd2 refers to temporary
[/l with value ‘2’

A reference to @onst object is required to beonst . Similarly a reference towlatile or const
volatile object is required to beolatile orconst volatile (respectively). However, @onst ,
volatile , orconst volatile reference can refer to a plain object. For example,

8.5.3 References DRAFT: 27 May 1994 Declarators—-87

const double d = 2.0;

double& rd = d; /I error: non-const reference to const
const volatile double& rcvd =d; // okay: rcvd refers to ‘d’
const double& rcd = rcvd; // error: non-volatile reference to volatile

6 The lifetime of a temporary object created in this way is the scope in which it is created (3.6).

9 Classes [class]

A class is a type. Its name becometaas-nam€9.1), that is, a reserved word within its scope.

class-name:
identifier
template-id
Class-specifies andelaborated-type-specifisr(7.1.5.3) are used to matlass-nams. An object of a class
consists of a (possibly empty) sequence of members.

class-specifier:
class-head{ member-specificatiqp, }

class-head:
class-key identifigf, base-clausgy,
class-key nested-name-specifier identifier base-clguse

class-key:
class
struct
union

The name of a class can be used dass-nameven within thenember-specificatioof the class specifier
itself. A class-specifieis commonly referred to as a class definition. A class is considered defined after
the closing brace of itslass-specifiehas been seen even though its member functions are in general not
yet defined.

Objects of an empty class have a nonzero size.

Class objects may be assigned, passed as arguments to functions, and returned by functions (except objects
of classes for which copying has been restricted; see 12.8). Other plausible operators, such as equality
comparison, can be defined by the user; see 13.4.

A structureis a class declared with tletass-keystruct ; its members and base classes (10) are public by
default (11). Aunionis a class declared with tietass-keynion ; its members are public by default and it
holds only one member at a time (9.6).

9.1 Class names [class.name]

A class definition introduces a new type. For example,

struct X {int a; };
struct Y {inta; };
X al;

Y az;

int a3;

declares three variables of three different types. This implies that

al =a2; I error: Y assigned to X
al = ag3; Il error: int assigned to X

are type mismatches, and that

9-2 Classes DRAFT: 27 May 1994 9.1 Class names

int f(X);
int f(Y);

declare an overloaded (13) functiifh and not simply a single functid) twice. For the same reason,

struct S {inta; };
struct S {inta; }; // error, double definition

is ill-formed because it definé&stwice.

A class definition introduces the class name into the scope where it is defined and hides any class, object,
function, or other declaration of that name in an enclosing scope (3.3). If a class name is declared in a
scope where an object, function, or enumerator of the same name is also declared the class can be referred
to only using arelaborated-type-specifi€r.1.5.3). For example,

struct stat {
...

h

stat gstat; /I use plain ‘stat’ to
/I define variable

int stat(struct stat*); // redefine ‘stat’ as function

void f()
{
struct stat* ps; /I ‘struct’ prefix needed
/I to name struct stat
...
stat(ps); /I call stat()
...
}

A declarationconsisting solely ofclass-keidentifier; is a forward declaration of the identifier as a class
name. It introduces the class name into the current scope. For example,

struct s {inta; };
void g()

struct s; // hide global struct ‘s’
s* p; // refer to local struct ‘s’
struct s { char* p; }; // declare local struct ‘s’

}
Such declarations allow definition of classes that refer to each other. For example,

class vector;

class matrix {
...
friend vector operator*(matrix&, vector&);

h

class vector {
...
friend vector operator*(matrix&, vector&);

I3
Declaration ofriend s is described in 11.4, operator functions in 13.4.
An elaborated-type-specifi€i7.1.5.3) can also be used in the declarations of objects and functions. It dif-

fers from a class declaration in that if a class of the elaborated name is in scope the elaborated name will
refer to it. For example,

9.1 Class names DRAFT: 27 May 1994 Classes-®

struct s {inta; };

void g(int s)
struct s* p = new struct s; /l global ‘s’
p->a=s; /l'local ‘s’
}

A name declaration takes effect immediately afteidbatifieris seen. For example,

class A*A;

first specifiesA to be the name of a class and then redefines it as the name of a pointer to an object of that
class. This means that the elaborated folass A must be used to refer to the class. Such artistry with
names can be confusing and is best avoided.

A typedef-namé7.1.3) that names a class islass-namgsee also 7.1.3.

9.2 Class members [class.mem]

member-specification:
member-declaration member-specificatipn
access-specifier member-specificatiqp,

member-declaration:
decl-specifier-seg, member-declarator-ligf; ;
function-definition ;
qualified-id ;
using-declaration O

opt

member-declarator-list:
member-declarator
member-declarator-list, member-declarator

member-declarator:
declarator pure-specifigy,
declarator constant-initializey, O
identifier,, : constant-expression

pure-specifier:

=0
constant-initializer: O
= constant-expression O

Themember-specificatioim a class definition declares the full set of members of the class; no member can

be added elsewhere. Members of a class are data members, member functions (9.4), nested types, and
member constants. Data members and member functions are static or nonstatic; see 9.5. Nested types are
classes (9.1, 9.8) and enumerations (7.2) defined in the class, and arbitrary types declared as members by
use of a typedef declaration (7.1.3). The enumerators of an enumeration (7.2) defined in the class are mem-
ber constants of the class. Except when used to declare friends (11.4) or to adjust the access to a member of
a base class (11.3nember-declarationdeclare members of the class, and each mgchber-declaration

must declare at least one member name of the class. A member may not be declared twicentbére
specification except that a nested class may be declared and then later defined.

Note that a single name can denote several function members provided their types are sufficiently different
(13). 0

10
11

12

13

9-4 Classes DRAFT: 27 May 1994 9.2 Class members

A member-declaratocan contain @onstant-initializeronly if it declares atatic member (9.5) of inte- O
gral type. In that case, the member can appear in constant expressions (5.19) within its declarativélregion
after its declaration. The member must still be defined elsewhere and the declarator that defines the mem-
ber shall not contain anitializer. O

A member can be initialized using a constructor; see 12.1. O
A member may not bauto , extern , orregister

The decl-specifier-segan be omitted in function declarations only. Thember-declarator-listan be
omitted only after aclass-specifier an enum-specifier or a decl-specifier-sepf the form friend
elaborated-type-specifierA pure-specifiemay be used only in the declaration of a virtual function (10.3).

Nonstatic (9.5) members that are class objects must be objects of previously declared classes. In par-
ticular, a clas€l may not contain an object of clasls, but it may contain a pointer or reference to an
object of classl . When an array is used as the type of a nonstatic member all dimensions must be speci-
fied.

A simple example of a class definition is

struct tnode {
char tword[20];
int count;
tnode *left;
tnode *right;

h

which contains an array of twenty characters, an integer, and two pointers to similar structures. Once this
definition has been given, the declaration

tnode s, *sp;

declares to be atnode andsp to be a pointer to tnode . With these declarationsp->count refers
to thecount member of the structure to whislp points;s.left refers to thdeft subtree pointer of
the structures; ands.right->tword[0] refers to the initial character of tthword member of the
right subtree of.

Nonstatic data members of a class declared without an intervacoegs-specifieare allocated so that

later members have higher addresses within a class object. The order of allocation of nonstatic data mem-
bers separated by asrcess-specifiers implementation dependent (11.1). Implementation alignment
requirements may cause two adjacent members not to be allocated immediately after each other; so may
requirements for space for managing virtual functions (10.3) and virtual base classes (10.1); see also 5.4.

If two typesT1 andT2 are the same type, th@&i andT2 arelayout-compatibleypes.

Two POD-struct (8.5.1) types are layout-compatible if they have the same number of members, and corre-
sponding members (in order) have layout-compatible types.

Two POD-union (8.5.1) types are layout-compatible if they have the same number of members, and corre-
sponding members (in any order) have layout-compatible types.

BBox 52 E
[(Bhouldn't this be the sansetof types?[]

Two enumeration types are layout-compatible if they have the same sets of enumerator values.

ox 53 B
[(Bhouldn’t this be the sammderlying typ& [

14

15

16

17

18

19

20

21

22

23

9.2 Class members DRAFT: 27 May 1994 Classes-®

If a POD-union contains several POD-structs that share a common initial sequence, and if the POD-union
object currently contains one of these POD-structs, it is permitted to inspect the common initial part of any
of them. Two POD-structs share a common initial sequence if corresponding members have layout-
compatible types (and, for bit-fields, the same widths) for a sequence of one or more initial members.

A pointer to a POD-struct object, suitably converted, points to its initial member (or if that member is a
bit-field, then to the unit in which it resides) and vice versa. There may therefore be unnamed padding
within a POD-struct object, but not at its beginning, as necessary to achieve appropriate alignment.

The range of nonnegative values of a signed integral type is a subrange of the corresponding unsigned inte-
gral type, and the representation of the same value in each type is the same.

Even if the implementation defines two or more basic types to have the same representation, they are never-
theless different types.

The representations of integral types shall define values by use of a pure binary numeration system.

ox 54 E
[Does this mean two's complement? Is there a definitidpwfe binary numeration systetn?l

The qualified or unqualified versions of a type are distinct types that have the same representation and
alignment requirements.

A qualified or unqualifiedroid* shall have the same representation and alignment requirements as a qual-
ified or unqualifiedchar* .

Similarly, pointers to qualified or unqualified versions of layout-compatible types shall have the same rep-
resentation and alignment requirements.

If the program attempts to access the stored value of an object other than through an Ivalue of one of the
following types:

the dynamic type of the object, O
a qualified version of the declared type of the object,
a type that is the signed or unsigned type corresponding to the declared type of the object,

a type that is the signed or unsigned type corresponding to a qualified version of the declared type of the
object,

an aggregate or union type that includes one of the aforementioned types among its members (includ-
ing, recursively, a member of a subaggregate or contained union), or

a character typé(.’)

the result is undefined.

A function member (9.4) with the same name as its class is a constructor (12.1). A static data member, enu-
merator, member of an anonymous union, or nested type may not have the same name as its class.

9.3 Scope rules for classes [class.scope0]

The following rules describe the scope of names declared in classes.

1) The scope of a name declared in a class consists not only of the text following the name’s declarator,
but also of all function bodies, default arguments, and constructor initializers in that class (including
such things in nested classes).

2) A nameNused in a clasS must refer to the same declaration when re-evaluated in its context and

V) The intent of this list is to specify those circumstances in which an object may or may not be aliased.

9-6 Classes DRAFT: 27 May 1994 9.3 Scope rules for classes

in the completed scope of S.

3) If reordering member declarations in a class yields an alternate valid program under (1) and (2), the
program’s meaning is undefined.

4) A declaration in a nested declarative region hides a declaration whose declarative region contains
the nested declarative region.

5) A declaration within a member function hides a declaration whose scope extends to or past the end
of the member function’s class.

6) The scope of a declaration that extends to or past the end of a class definition also extends to the
regions defined by its member definitions, even if defined lexically outside the class (this includes
both function member bodies and static data member i nitializations).

For example:
typedefint c;
enum{i=1}
class X {

char V[i]; // error: '’ refers to :i
// but when reevaluated is X::i
int f() { return sizeof(c); } // okay: X::c
char c;
enum{i=2}

h

typedef char* T,;
struct Y {
T a /I error: 'T' refers to ;T
/I but when reevaluated is Y::T
typedeflong T,;

T b;
I3
struct Z {
int f(const R); /I error: 'R’ is parameter name
// but swapping the two declarations
/I changes it to a type
typedefint R;
2
9.4 Member functions [class.mfct]

A function declared as a member (without thend specifier; 11.4) is called a member function, and is
called for an object using the class member syntax (5.2.4). For example,

struct tnode {
char tword[20];
int count;
tnode *left;
tnode *right;
void set(char*, tnode* |, thode* r);

h
Hereset is a member function and can be called like this:

9.4 Member functions DRAFT: 27 May 1994 Classes—9

void f(tnode n1, thode n2)

{
nl.set("abc",&n2,0);
n2.set("def",0,0);

}

The definition of a member function is considered to be within the scope of its class. This means that (pro-
vided it is nonstatic 9.5) it can use names of members of its class directly. Such names then refer to the
members of the object for which the function was called.

A static local variable in a member function always refers to the same object. A static member function can
use only the names of static members, enumerators, and nested types directly. If the definition of a member
function is lexically outside the class definition, the member function name must be qualified by the class
name using the operator. For example,

void tnode::set(char* w, thode* |, tnode* r)

{
count = strlen(w+1);
if (sizeof(tword)<=count)
error("tnode string too long");
strepy(tword,w);
left =1;
right =r;
}

The notationtnode::set specifies that the functioset is a member of and in the scope of class
tnode . The member naméword , count , left , andright refer to members of the object for which
the function was called. Thus, in the calfl.set(abc",&n2,0)"tword referstonl.tword, and inthe
call n2.set(def",0,0)" it refers tm2.tword . The functionsstrlen , error , andstrcpy must be
declared elsewhere.

Members may be defined (3.1) outside their class definition if they have already been declared but not
defined in the class definition; they may not be redeclared. See also 3.4. Function members may be men-
tioned in friend declarations after their class has been defined. Each member function that is called must
have exactly one definition in a program, (no diagnostic required).

The effect of calling a nonstatic member function (9.5) of a ¢fafes something that is not an object of
classXis undefined.

9.4.1 Thethis pointer [class.this]

In a nonstatic (9.4) member function, the keywthis is a non-lvalue expression whose value is the
address of the object for which the function is called. The typlei®f in a member function of a cla¥s

is X* unless the member function is declaoeshst or volatile ; in those cases, the typetbis is
const X* orvolatile X*, respectively. A function declarednst andvolatile has ahis with

the typeconst volatile X*. See also C.3.3. For example,

struct s {
int a;
int f() const;
int g() { return a++; }
int h() const { return a++; } // error

3
int s::f() const { return a; }

The a++ in the body ofs::h s ill-formed because it tries to modify (a part of) the object for which
s::h() is called. This is not allowed in@nst member function wherthis is a pointer teconst
that is,*this is aconst .

9-8 Classes DRAFT: 27 May 1994 9.4.1 Thhis pointer

A const member function (that is, a member function declared witltdimst qualifier) may be called
for const and noneonst objects, whereas a n@onst member function may be called only for a
nonconst object. For example,

void k(s& x, const s& y)

{
x.f0;
x.90);
y.f0;
y.90; I error

}

The cally.g() is ill-formed becausg is const ands:g() is a noneonst member function that
could (and does) modify the object for which it was called.

Similarly, only volatile member functions (that is, a member function declared wittvalatile
specifier) may be invoked fovolatile objects. A member function can be botbnst and
volatile

Constructors (12.1) and destructors (12.4) may be invokeddonst or volatile object. Construc-
tors (12.1) and destructors (12.4) cannot be dectamest or volatile

9.4.2 Inline member functions [class.inline]

A member function may be defined (8.4) in the class definition, in which cadalines (7.1.2). Defin-
ing a function within a class definition is equivalent to declaririglite and defining it immediately
after the class definition; this rewriting is considered to be done after preprocessing but before syntax analy-
sis and type checking of the function definition. Thus
int b;
struct x {
char* f() { return b; }
char* b;

I3
is equivalent to

int b;

struct x {
inline char* f(); g
char* b;

I3
inline char* x::f() { return b; } // moved
Thus theb used inx::f() is X::b and not the globdl. See alsoclass.local.type

Member functions can be defined even in local or nested class definitions where this rewriting would be
syntactically incorrect. See 9.9 for a discussion of local classes and 9.8 for a discussion of nested classes.

9.5 Static members [class.static]

A data or function member of a class may be declstatic in the class definition. There is only one
copy of a static data member, shared by all objects of the class and any derived classes in a program. A
static member is not part of objects of a class. Static members of a global class have external linkage (3.4).
The declaration of a static data member in its class definitinntia definition and may be of an incom-
plete type. A definition is required elsewhere; see also C.3. A static data member cannot be mutable.

A static member function does not havihia pointer so it can access nonstatic members of its class only
by using. or->. A static member function cannot bigtual . There cannot be a static and a nonstatic
member function with the same name and the same parameter types.

9.5 Static members DRAFT: 27 May 1994 Classes-9

Static members of a local class (9.9) have no linkage and cannot be defined outside the class definition. It
follows that a local class cannot have static data members.

A static membemenof classcl can be referred to a&:mem (5.1), that is, independently of any object.
It can also be referred to using theand-> member access operators (5.2.4). The static membar [
exists even if no objects of class have been created. For example, in the followmg, chain
idle , and so on exist even if poocess objects have been created:

class process {
static int no_of_processes;
static process* run_chain;
static process* running;
static process* idle;
...

public:
...
int state();
static void reschedule();
...

I3
andreschedule can be used without reference tpracess object, as follows:

void f()
{

}

process::reschedule();

Static members of a global class are initialized exactly like global objects and only in file scope. For exam-
ple,

void process::reschedule() { /* ... */ };

int process::no_of_processes = 1;

process* process::running = get_main();

process* process::run_chain = process::running;

Static members obey the usual class member access rules (11) except that they can be initialized (in file
scope). The initializer of a static member of a class has the same access rights as a member function, as in
process::run_chain above.

The type of a static member does not involve its class name; thus the typecess :
no_of processes isint and the type o&process : reschedule isvoid(*)()

9.6 Unions [class.union]

A union may be thought of as a class whose member objects all begin at offset zero and whose size is suffi-
cient to contain any of its member objects. At most one of the member objects can be stored in a union at
any time. A union may have member functions (including constructors and destructors), but not virtual
(10.3) functions. A union may not have base classes. A union may not be used as a base class. An object
of a class with a constructor or a destructor or a user-defined assignment operator (13.4.3) cannot be a
member of a union. A union can havestatic = data members.

HBOX 55 g
[Bhouldn’t we prohibit references in unionsr

A union of the form
union { member-specificatior} ;

is called an anonymous union; it defines an unnamed object (and not a type). The names of the members of
an anonymous union must be distinct from other names in the scope in which the union is declared; they are

9-10 Classes DRAFT: 27 May 1994 9.6 Unions

used directly in that scope without the usual member access syntax (5.2.4). For example,

void f()
{
union {int a; char* p; };
a=1;
...
p = "Jennifer";

...
}

Herea andp are used like ordinary (nonmember) variables, but since they are union members they have
the same address.

A global anonymous union must be declaséatic . An anonymous union may not hapevate or
protected members (11). An anonymous union may not have function members.

A union for which objects or pointers are declared is not an anonymous union. For example,

union { int aa; char* p; } obj, *ptr = &obj;
aa=1, /I error
ptr->aa=1; // ok

The assignment to plaiaa is ill formed since the member name is not associated with any particular
object.

Initialization of unions that do not have constructors is described in 8.5.1.

9.7 Bit-fields [class.hit]

A member-declaratoof the form

identifier,, : constant-expression

specifies a bit-field; its length is set off from the bit-field name by a colon. Allocation of bit-fields within a
class object is implementation dependent. Fields are packed into some addressable allocation unit. Fields
straddle allocation units on some machines and not on others. Alignment of bit-fields is implementation
dependent. Fields are assigned right-to-left on some machines, left-to-right on others.

An unnamed bit-field is useful for padding to conform to externally-imposed layouts. Unnamed fields are
not members and cannot be initialized. As a special case, an unnamed bit-field with a width of zero speci-
fies alignment of the next bit-field at an allocation unit boundary.

A bit-field may not be a static member. A bit-field must have integral or enumeration type (3.7.1). It is
implementation dependent whether a plain (neither explicitly signed nor unsighedield is signed or
unsigned. The address-of operatanay not be applied to a bit-field, so there are no pointers to bit-fields.
Nor are there references to bit-fields.

9.8 Nested class declarations [class.nest]

A class may be defined within another class. A class defined within another is caistedclass. The
name of a nested class is local to its enclosing class. The nested class is in the scope of its enclosing class.
Except by using explicit pointers, references, and object names, declarations in a nested class can use only
type names, static members, and enumerators from the enclosing class.

int x;

inty;

class enclose {
public:
int x;
static int s;

9.8 Nested class declarations DRAFT: 27 May 1994 Classes19

class inner {
void f(int i)
{
x =1i; [/ error: assign to enclose::x
s =1i; [/ ok: assign to enclose::s
=X =i; /] ok: assign to global x
y =i Il ok: assign to global y
}
void g(enclose* p, int i)
{
p->x=i; [/l ok: assign to enclose::x
}

2
inner* p=0; // error ‘inner’ not in scope

Member functions of a nested class have no special access to members of an enclosing class; they obey the
usual access rules (11). Member functions of an enclosing class have no special access to members of a
nested class; they obey the usual access rules. For example,

class E {
int x;
class | {
inty;
void f(E* p, int i)
{
p->x =i; [/l error: E:x is private
}
I3
int g(I* p)
{
return p->y; [l error: I:1y is private
}

h

Member functions and static data members of a nested class can be defined in the global scope. For exam-
ple,

class enclose {

class inner {
static int x;
void f(int i);
2

h

typedef enclose::inner ei;
inteinx=1;

void enclose::inner:f(int i) { /* ... */ }

A nested class may be declared in a class and later defined in the same or an enclosing scope. For example:

9-12 Classes DRAFT: 27 May 1994 9.8 Nested class declarations

class E {
class I1; /I forward declaration of nested class
class 12;
class 11 {}; // definition of nested class

c’Iass E:12{}; /I definition of nested class

Like a member function, a friend function defined within a class is in the lexical scope of that class; it
obeys the same rules for name binding as the member functions (described above and in 10.5) and like
them has no special access rights to members of an enclosing class or local variables of an enclosing func-
tion (11).

9.9 Local class declarations [class.local]

A class can be defined within a function definition; such a class is cdtbedlalass. The name of a local

class is local to its enclosing scope. The local class is in the scope of the enclosing scope. Declarations in a
local class can use only type names, static variabldsrn variables and functions, and enumerators

from the enclosing scope. For example,

int x;
void f()
{ . .
static int s ;
int x;
extern int g();
struct local {
intg() { return x; } /I error: ‘X’ is auto
inth() {returns; } Il ok
int k() { return ::x; } // ok
int1() { return g(); } // ok
2
...
}

local*p=0; // error: ‘local’ not in scope

An enclosing function has no special access to members of the local class; it obeys the usual access rules
(11). Member functions of a local class must be defined within their class definition. A local class may not
have static data members.

9.10 Nested type names [class.nested.type]

Type names obey exactly the same scope rules as other names. In particular, type names defined within a
class definition cannot be used outside their class without qualification. For example,

class X {

public:
typedef int [;
classY {/*...*};
I a;

h

| b; /I error
Y c; /I error
X:Yd; //ok
X:le; /lok

10 Derived classes [class.derived]

A list of base classes may be specified in a class declaration using the notation:

base-clause:
base-specifier-list

base-specifier-list:
base-specifier
base-specifier-list, base-specifier

base-specifier:
X opt NESted-name-specifigyclass-name
virtual access-specifigy; :: o, N€sted-name-specifigyclass-name
access-specifier virtug) :: . nested-name-specifigy class-name

access-specifier:
private
protected
public

Theclass-namén abase-specifiemust denote a previously declared class (9), which is catléect base

classfor the class being declared. A cld&ss a base class of a cld3sdf it is a direct base class &for a

direct base class of one D base classes. A class isiadirect base class of another if it is a base class

but not a direct base class. A class is said to be (directly or indirdetiypdfrom its (direct or indirect)

base classes. For the meaningaofess-specifiesee 11. Unless redefined in the derived class, members

of a base class can be referred to in expressions as if they were members of the derived class. The base
class members are said toibberitedby the derived class. The scope resolution operatdb.1) may be

used to refer to a base member explicitly. This allows access to a name that has been redefined in the

derived class. A derived class can itself serve as a base class subject to access control; see 11.2. A pointer
to a derived class may be implicitly converted to a pointer to an accessible unambiguous base class (4.6). A

reference to a derived class may be implicitly converted to a reference to an accessible unambiguous base
class (4.7).

For example,

class Base {
public:

inta, b, c;
b

class Derived : public Base {
public:

int b;
h

class Derived2 : public Derived {
public:

intc;
b

10-2 Derived classes DRAFT: 27 May 1994 10 Derived classes

Here, an object of clad3erived2 will have a sub-object of clad3erived which in turn will have a
sub-object of clasBase. A derived class and its base class sub-objects can be represented by a ditected
acyclic graphPAG) where an arrow mearidirectly derived froni. A DAG of sub-objects is often referred]

to as d sub-object lattic&.For example,

Base
Derived
Derived2
Note that the arrows need not have a physical representation in memory and the order in which the sub-
objects appear in memory is unspecified. O
Initialization of objects representing base classes can be specified in constructors; see 12.6.2. O
10.1 Multiple base classes [class.mi]

A class may be derived from any number of base classes. For example,

classA{/*..*}
classB {/*...* };
classC{/*...* };
class D : public A, public B, public C { /* ... */ };

The use of more than one direct base class is often called multiple inheritance.

The order of derivation is not significant except possibly for default initialization by constructor (12.1), for
cleanup (12.4), and for storage layout (5.4, 9.2, 11.1).

A class may not be specified as a direct base class of a derived class more than once but it may be an indi-
rect base class more than once.

classB {/*...* };
class D : public B, public B{/*...*/}; /lillegal

classL {/*...*};

class A: publicL{/*...*};

class B : public L {/*...*/ };

class C : public A, publicB{/*...*/}; /llegal

Here, an object of clagdwill have two sub-objects of claksas shown below.
L L

| |
.

The keywordvirtual may be added to a base class specifier. A single sub-object of the virtual base
class is shared by every base class that specified the base class to be virtual. For example,

classV {/*...*};

class A : virtual public V { /* ... */ };
class B : virtual public V { /* ... */ };
class C : public A, publicB{/* ... */ };

Here clas< has only one sub-object of clagsas shown below.

10.1 Multiple base classes DRAFT: 27 May 1994 Derived classes-20
\%
A< >B
C

A class may have both virtual and nonvirtual base classes of a given type.

classB {/*...* };

class X : virtual public B { /* ... */ };

class Y : virtual public B {/* ... */ };

class Z : public B {/* ... */ };

class AA : public X, public Y, public Z {/* ... */ };

Here clas®\Ahas two sub-objects of claBsZ’'s B and the virtuaB shared by< andY, as shown below.

10.2 Member Name Lookup [[class.member.lookup]

Member name lookup determines the meaning of a nddiexpressioror qualified-id) in a class scope.l]
Name lookup can result in @ambiguity in which case the program is ill-formed. Foridrexpression O
name lookup begins in the class scopéhief ; for aqualified-id, name lookup begins in the scope of the
nested-name-specifieName lookup takes place before access control (11). O

The following steps define the result of name lookup in a class scope. First, we consider every declaration
for the name in the class and in each of its base class sub-objects. A member fiamB loidesa mem- [

ber name fain Aif aAis B. We eliminate from consideration any declarations that are so hidden. Ifithe
resulting set of declarations are not all from sub-objects of the same type, or the set has a nonstaticlthember
and includes declarations from distinct sub-objects, there is an ambiguity and the program is ill-faimed.
Otherwise that set is the result of the lookup. O

For example, 0

class A {
public:
int a;
int (*b)();
int f();
int f(int);
int g();
I3

class B {

int a;

int b();
public:

int f();

int g;

int h();

int h(int);
I3

class C : public A, public B {};

10-4 Derived classes DRAFT: 27 May 1994 10.2 Member Name Lookup

void g(C* pc)
{

pc->a =1; // error: ambiguous: A::a or B::a
pc->b(); /I error: ambiguous: A::b or B::b
pc->f(); [l error: ambiguous: A::f or B::f
pc->f(1); // error: ambiguous: A::f or B::f
pc->g(); /I error: ambiguous: A::g or B::g
pc->g = 1; // error: ambiguous: A::g or B::g
pc->h(); /I ok

pc->h(1); // ok

}

If the name of an overloaded function is unambiguously found overloading resolution also takes place
before access control. Ambiguities can often be resolved by qualifying a name with its class nameg. For
example,

class A {
public:

int f();
I3

class B {
public:

int f();
I3

class C : public A, public B {
int f() { return A::f() + B::f(); }
2

The definition of ambiguity allows a nonstatic object to be found in more than one sub-object. Whéen vir-
tual base classes are used, two base classes can share a common sub-object. For example,

class V { public: int v; };
class A {
public:
int a;
staticint s;
enum{e};
I3
class B : public A, public virtual V {};
class C : public A, public virtual V {};

class D : public B, public C { };

void f(D* pd)
pd->v++; /I ok: only one ‘v’ (virtual)
pd->s++; I/ ok: only one ‘s’ (static)
inti = pd->e; // ok: only one ‘e’ (enumerator)
pd->a++; I error, ambiguous: two ‘a’s in ‘D’
}

When virtual base classes are used, a hidden declaration may be reached along a path throughlthe sub-
object lattice that does not pass through the hiding declaration. This is not an ambiguity. The identical use
with nonvirtual base classes is an ambiguity; in that case there is no unique instance of the name that hides
all the others. For example,

10.2 Member Name Lookup DRAFT: 27 May 1994 Derived classes 19

class V { public: int f(); intx;};
class W { public: int g(); inty;};
class B : public virtual V, public W

{
public:
intf(); intx;
intg(); inty;
I3

class C : public virtual V, public W { };

class D : public B, public C { void g(); };

The names defined i and the left hand instance fare hidden by those B, but the names defined in
the right hand instance @are not hidden at all.

void D::g()
X++; /1 ok: B::x hides V::x
f(); /I ok: B::f() hides V::f()
y++; [/l error: Bty and C's W:y
a(); /I error: B::g() and C's W::g()
}

An explicit or implicit conversion from a pointer to or an lvalue of a derived class to a pointer or reference
to one of its base classes must unambiguously refer to a unique object representing the base class. For
example,

classV{};

class A{};

class B : public A, public virtual V { };
class C : public A, public virtual V { };
class D : public B, public C {};

void g()

Dd;

B* pb = &d;

A* pa = &d; /I error, ambiguous: C's AorB's A?
V* pv = &d; // fine: only one V sub-object

10.3 Virtual functions [class.virtual]

Virtual functions support dynamic binding and object-oriented programming. A class that declares or
inherits a virtual function is calledmolymorphic class

If a virtual member functionf is declared in a cladBase and in a clas®erived , derived directly or
indirectly fromBase, a member functiomf with the same name and same parameter |Baas::vf is
declared, therDerived::vf is also virtual (whether or not it is so declared) anavierrided?)

1) A function with the same name but a different parameter list (see 13) as a virtual function is not necessarily virtual and does not
override. The use of thértual specifier in the declaration of an overriding function is legal but redundant (has empty semantics).
Access control (11) is not considered in determining overriding.

10-6 Derived classes DRAFT: 27 May 1994 10.3 Virtual functions

Base::vf . For convenience we say that any virtual function overrides itself. Then in any well-formed
class, for each virtual function declared in that class or any of its direct or indirect base classes there is a
uniquefinal overriderthat overrides that function and every other overrider of that function.

A program is ill-formed if the return type of any overriding function differs from the return type of the
overridden function unless the return type of the latter is pointer or reference (possibly cv-qualified) to a
classB, and the return type of the former is pointer or reference (respectively) to ® slasls thaB is an
unambiguous direct or indirect base clas®phccessible in the class of the overriding function, and the
cv-qualification in the return type of the overriding function is less than or equal to the cv-qualification in
the return type of the overridden function. In that case when the overriding function is called as the final
overrider of the overridden function, its result is converted to the type returned by the (statically chosen)
overridden function. See 5.2.2. For example,

class B {};
class D : private B { friend class Derived; };
struct Base {

virtual void vf1();

virtual void vf2();

virtual void vf3();

virtual B* vf4();

void f();
I3
struct No_good : public Base {
D* vf4(); Il error: B (base class of D) inaccessible
I3
struct Derived : public Base {
void vf1(); [virtual and overrides Base::vf1()
void vf2(int); /I not virtual, hides Base::vf2()
char vf3(); I error: invalid difference in return type only
D* vf4(); /I okay: returns pointer to derived class
void f();
2
void g()
{
Derived d;
Base* bp = &d; /l standard conversion:
/I Derived* to Base*
bp->vf1(); /I calls Derived::vf1()
bp->vf2(); /I calls Base::vf2()
bp->f(); /I calls Base::f() (not virtual)
B* p = bp->vf4(); // calls Derived::pf() and converts the
/I result to B*
Derived* dp = &d;
D* q = dp->vf4(); // calls Derived::pf() and does not
/I convert the result to B*
dp->vf2(); [l ill-formed: argument mismatch
}

That is, the interpretation of the call of a virtual function depends on the type of the object for which it is
called (the dynamic type), whereas the interpretation of a call of a nonvirtual member function depends
only on the type of the pointer or refe rence denoting that object (the static type). See 5.2.2.

Thevirtual specifier implies membership, so a virtual function cannot be a global (nonmember) (7.1.2)
function. Nor can a virtual function be a static member, since a virtual function call relies on a specific
object for determining which function to invoke. A virtual function can be declafédral in another

class. A virtual function declared in a class must be defined or declared pure (10.4) in that class.

10.3 Virtual functions DRAFT: 27 May 1994 Derived classes 7

6 Following are some examples of virtual functions used with multiple base classes:
struct A {
virtual void f();
2
struct B1: A{ // note non-virtual derivation
void f();
2
struct B2 : A {
void f();
I3
struct D : B1, B2{ // D has two separate A sub-objects
2
void foo()
{
D d;
/Il A* ap = &d; // would be ill-formed: ambiguous
B1* blp = &d;
A* ap =blp;
D* dp=&d;
ap->f(); // calls D:B1::f
dp->f(); //ill-formed: ambiguous
}

In classD above there are two occurrences of clasnd hence two occurrences of the virtual member
function A::f . The final overrider oB1::A::f is B1::f and the final overrider oB2::A::f is
B2::f

7 The following example shows a function that does not have a unique final overrider:

struct A {
virtual void f();

h

struct VBL1 : virtual A{ /I note virtual derivation
void f();
I3

struct VB2 : virtual A {
void f();
2

struct Error : VB1, VB2 { //ill-formed
I3

struct Okay : VB1, VB2 {
void f();
I3

BothVB1::f andVB2:f overrideA:f butthere is no overrider of both of them in cl&ssor . This
example is therefore ill-formed. Clagkay is well formed, however, becau€kay::f is a final over-
rider.

8 The following example uses the well-formed classes from above.

struct VB1la : virtual A { // does not declare f

h

10-8 Derived classes DRAFT: 27 May 1994 10.3 Virtual functions

struct Da : VBla, VB2 {

h
void foe()
VBla* vblap = new Da;
vblap->f(); // calls VB2:f
}

Explicit qualification with the scope operator (5.1) suppresses the virtual call mechanism. For example,

class B { public: virtual void f(); };
class D : public B { public: void f(); };

void D::f() { /* ... */ B::f(); }

Here, the function call iD::f really does calB::f and notD::f

10.4 Abstract classes [class.abstract]

The abstract class mechanism supports the notion of a general concept, sgblaes,aof which only
more concrete variants, suchcxle andsquare , can actually be used. An abstract class can also be
used to define an interface for which derived classes provide a variety of implementations.

An abstract clasds a class that can be used only as a base class of some other class; no objects of an
abstract class may be created except as sub-objects of a class derived from it. A class is abstract if it has at
least ongoure virtual function(which may be inherited: see below). A virtual function is specffigme by

using apure-specifiel(9.2) in the function declaration in the class declaration. A pure virtual function need

be defined only if explicitly called with theualified-id syntax (5.1). For example,

class point { /* ... */ };

class shape { Il abstract class
point center;
...

public:
point where() { return center; }
void move(point p) { center=p; draw(); }
virtual void rotate(int) = 0; // pure virtual
virtual void draw() = 0; I pure virtual
...

k

An abstract class may not be used as an parameter type, as a function return type, or as the type of an
explicit conversion. Pointers and references to an abstract class may be declared. For example,

shape x; /I error: object of abstract class
shape* p; Il ok

shape f(); I error

void g(shape); I error

shape& h(shape&); // ok

Pure virtual functions are inherited as pure virtual functions. For example,

class ab_circle : public shape {
int radius;
public:
void rotate(int) {}
/I ab_circle::draw() is a pure virtual

h

Sinceshape::draw() is a pure virtual functiorab_circle::draw() is a pure virtual by default.
The alternative declaration,

10.4 Abstract classes DRAFT: 27 May 1994 Derived classes—90

class circle : public shape {
int radius;
public:
void rotate(int) {}
void draw(); // must be defined somewhere

would make classircle nonabstract and a definition cifcle::draw() must be provided.

An abstract class may be derived from a class that is not abstract, and a pure virtual function may override a
virtual function which is not pure.

Member functions can be called from a constructor of an abstract class; the effect of calling a pure virtual
function directly or indirectly for the object being created from such a constructor is undefined.

10.5 Summary of scope rules [class.scope]

The scope rules for+€ programs can now be summarized. These rules apply uniformly for all names
(including typedef-name§7.1.3) andclass-nameg9.1)) wherever the grammar allows such names in the
context discussed by a particular rule. This section discusses lexical scope only; see 3.4 for an explanation
of linkage issues. The notion of point of declaration is discussed in (3.3).

Any use of a name must be unambiguous (up to overloading) in its sadass(ambig). Only if the
name is found to be unambiguous in its scope are access rules considered (11). Only if no access control
errors are found is the type of the object, function, or enumerator named considered.

A name used outside any function and class or prefixed by the unary scope opefatwdnot qualified
by the binary:: operator or the> or. operators) must be the name of a global object, function, or enu-
merator.

A name specified afteX:: , afterobj. , whereobj is anX or a reference t, or afterptr-> , where
ptr is a pointer taX must be the name of a member of clfss be a member of a base class<ofln
addition, ptr in ptr-> may be an object of a cla¥that hasoperator->() declared satr-
>operator->() eventually resolves to a pointerXq13.4.6).

A name that is not qualified in any of the ways described above and that is used in a function that is not a
class member must be declared before its use in the block in which it occurs or in an enclosing block or
globally. The declaration of a local name hides previous declarations of the same name in enclosing blocks
and at file scope. In particular, no overloading occurs of names in different scopes (13.4).

A name that is not qualified in any of the ways described above and that is used in a function that is a non-
static member of clasd must be declared in the block in which it occurs or in an enclosing block, be a
member of clasX or a base class of cla¥sor be a global name. The declaration of a local name hides
declarations of the same name in enclosing blocks, members of the function’s class, and global names. The
declaration of a member name hides declarations of the same name in base classes and global names.

A name that is not qualified in one of the ways described above and is used in a static member function of a
classX must be declared in the block in which it occurs, in an enclosing block, be a static member of class
X, or a base class of cla¥sor be a global name.

A function parameter name in a function definition (8.4) is in the scope of the outermost block of the func-
tion (in particular, it is a local name). A function parameter name in a function declaration (8.3.5) that is
not a function definition is in a local scope that disappears immediately after the function declaration. A
default argument is in the scope determined by the point of declaration (3.3) of its parameter, but may not
access local variables or nonstatic class members; it is evaluated at each point of call (8.3.6).

A ctor-initializer (12.6.2) is evaluated in the scope of the outermost block of the constructor it is specified
for. In particular, it can refer to the constructor’'s parameter names.

11 Member access control [class.access]

A member of a class can be

— private ; that is, its name can be used only by member functions and friends of the class in
which it is declared.

— protected ; that is, its name can be used only by member functions and friends of the class in
which it is declared and by member functions and friends of classes derived from this class (see
11.5).

— public ; thatis, its name can be used by any function.

Members of a class declared with the keywdabs areprivate by default. Members of a class
declared with the keywordsdruct orunion arepublic by default. For example,

class X {
inta; // X:ais private by default

h

struct S {
inta; // S:ais public by default

h

11.1 Access specifiers [class.access.spec]

Member declarations may be labeled byaaocess-specifigil0):
access-specifier. member-specificatiqp,

An access-specifiespecifies the access rules for members following it until the end of the class or until
anotheraccess-specifids encountered. For example,

class X {
inta; // X:ais private by default: ‘class’ used
public:
intb; // X:bis public
intc; // X::cis public
h
Any number of access specifiers is allowed and no particular order is required. For example,

struct S {
inta; // S:ais public by default: ‘struct’ used
protected:
intb; // S:bis protected
private:
intc; // S:cis private
public:
intd; //S:dis public
2

11-2 Member access control DRAFT: 27 May 1994 11.1 Access specifiers

The order of allocation of data members with separetess-specifidabels is implementation dependent
(9.2).

11.2 Access specifiers for base classes [class.access.base]

If a class is declared to be a base class (10) for another class usimgplice access specifier, the
public members of the base class are accessiblpuatic members of the derived class and
protected members of the base class are accessibpeoscted members of the derived class (but
see 13.1). If a class is declared to be a base class for another class ysiotpthed access specifier,
thepublic andprotected members of the base class are accessibgatiscted = members of the
derived class. If a class is declared to be a base class for another class ymingtthe access specifier,
the public and protected members of the base class are accessibl@ieate members of the
derived clast.

In the absence of aaccess-specifiefor a base clasquublic is assumed when the derived class is
declaredstruct andprivate is assumed when the class is declatads . For example,

classB {/*...* };

class D1 : private B {/* ... */ };

class D2 : public B {/* ... */ };
classD3:B{/*...*} /[‘B’ private by default
struct D4 : public B { /* ... */ };

struct D5 : private B {/* ... */ };

struct D6 : B{/*...*/'}; [/ ‘B’ public by default
class D7 : protected B { /* ... */ };

struct D8 : protected B { /* ... */ };

HereB is a public base db2, D4, andD6, a private base dd1, D3, andD5, and a protected base BY
andD8.

Because of the rules on pointer conversion (4.6), a static member of a private base class may be inaccessi-
ble as an inherited name, but accessible directly. For example,

class B {
public:
int mi; /I nonstatic member
static int si; // static member
2
lass D : private B {
I3
class DD : public D {
void f();
2
void DD::f() {
mi = 3; [error: mi is private in D
si=3; /I error: si is private in D
B b;
b.mi=3; /I okay (b.mi is different from this->mi)
b.si =3; // okay (b.si is the same as this->si)
B:si=3; I/ okay
B* bpl = this; // error: B is a private base class
B* bp2 = (B*)this; // okay with cast
bp2->mi =3; // okay and bp2->mi is the same as this->mi
}

*2)ps specified previously in 11, private members of a base class remain inaccessible even to derived clasdeadinledsclara-
tions within the base class declaration are used to grant access explicitly.

11.2 Access specifiers for base classes DRAFT: 27 May 1994 Member access contreB 11

Members and friends of a clasgan implicitly convert aiX* to a pointer to a private or protected immedi-
ate base class of

11.3 Access declarations [class.access.dcl]

The access of public or protected member of a private or protected base class can be restored to the same
level in the derived class by mentioning dpsalified-id in the public (for public members of the base

class) omprotected (for protected members of the base class) part of a derived class declaration. Such
mention is called aaccess declaratian

For example,

class A {
public:
int z;
int z1;

h

class B : public A {
int a;
public:
intb, c;
int bf();
protected:
int x;
inty;
h

class D : private B {
int d;

public:
B::c; // adjust access to ‘B::C’
B::z; /Il adjust access to ‘A::z’
A::z1; // adjust access to ‘A::z1’
inte;
int df();

protected:
B::x; // adjust access to ‘B::x’
int g;

b

class X : public D {
int xf();
3

int ef(D&);
int ff(X&);

The external functioef can use only the namesz, z1, e, anddf . Being a member dd, the function
df can use the namésc, z, z1, bf , x,y, d, e, df , andg, but nota. Being a member d, the function
bf can use the membeas b, c, z, z1, bf , x, andy. The functionxf can use the public and protected
names fronD, that is,c, z, z1, e, anddf (public), andx, andg (protected). Thus the external function
ff has access only m z, z1, e, anddf . If Dwere a protected or private base clasX,off would have
the same privileges as before, ffutwould have no access at all.

An access declaration may not be used to restrict access to a member that is accessible in the base class, nor
may it be used to enable access to a member that is not accessible in the base class. For example,

11-4 Member access control DRAFT: 27 May 1994 11.3 Access declarations

class A {
public:
int z;
3
class B : private A {
public:
int a;
int x;
private:
int b;
protected:
intc;
b
class D : private B {
public:
B::a; // make ‘a’ a public member of D
B::b; [/l error: attempt to grant access
/I can’t make ‘b’ a public member of D
A::z; [l error: attempt to grant access
protected:
B::c; /I make ‘c’ a protected member of D
B::x; // error: attempt to reduce access
/I can’'t make ‘X’ a protected member of D
h

class E : protected B {
public:
B::a; // make ‘a’ a public member of E
2
The names andx are protected membersBby virtue of its protected derivation froB1 An access dec-
laration for the name of an overloaded function adjusts the access to all functions of that name in the base
class. For example,

class X {
public:
f0;
f(int);
I3

class Y : private X {
public:

X:f; [/ makes X:f() and X::f(int) public in Y
2

The access to a base class member cannot be adjusted in a derived class that also defines a member of that
name. For example,

class X {
public:
void f();

class Y : private X {
public:
void f(int);
X::f; [l error: two declarations of f

11.4 Friends DRAFT: 27 May 1994 Member access control 15

11.4 Friends [class.friend]

A friend of a class is a function that is not a member of the class but is permitted to use the private and pro-
tected member names from the class. The name of a friend is not in the scope of the class, and the friend is
not called with the member access operators (5.2.4) unless it is a member of another class. The following
example illustrates the differences between members and friends:

class X {

int a;

friend void friend_set(X*, int);
public:

void member_set(int);
2

void friend_set(X* p, inti) { p->a=1i; }
void X::member_set(inti) {a=i;}

void f()

{
X obj;
friend_set(&obj,10);
obj.member_set(10);

}

When afriend declaration refers to an overloaded name or operator, only the function specified by the
parameter types becomes a friend. A member function of aXleams be a friend of a cla¥ For exam-
ple,
class Y {
friend char* X::foo(int);
...
h

All the functions of a clasX can be made friends of a clagdy a single declaration using ataborated-
type—specifie‘}g) (9.2):
class Y {

friend class X;
...

h

Declaring a class to be a friend also implies that private and protected names from the class granting friend-
ship can be used in the class receiving it. For example,

class X {
enum { a=100 };
friend class Y;

h

class Y {
int v[X::a]; // ok, Y is a friend of X
5

class Z {
intv[X::a]; [/l error: X::ais private

h

#3)Note that thelass-keyf theelaborated-type-specifiés required.

11-6 Member access control DRAFT: 27 May 1994 11.4 Friends

If a class or function mentioned as a friend has not been declared, see 7.3.1.
A function first declared in a friend declaration is equivalent texa@ern declaration (3.4, 7.1.1).

A global (but not a membefijliend function may be defined in a class definition other than a local class
definition (9.9). The function is theénline and the rewriting rule specified for member functions (9.4.2)
is applied. Afriend function defined in a class is in the (lexical) scope of the class in which it is defined.
A friend function defined outside the class is not.

Friend declarations are not affecteddrgess-specifier®.2).

Friendship is neither inherited nor transitive. For example,

class A {
friend class B;
int a;
3
class B {
friend class C;
b
classC {
void f(A* p)
{
p->a++; [/ error: Cis not a friend of A
I/ despite being a friend of a friend
}
b

class D : public B {
void f(A* p)
{

p->a++; [/l error: D is not a friend of A
/I despite being derived from a friend

11.5 Protected member access [class.protected]

A friend or a member function of a derived class can access a protected static member of a base class. A
friend or a member function of a derived class can access a protected nonstatic member of one of its base
classes only through a pointer to, reference to, or object of the derived class itself (or any class derived from

that class). When a protected member of a base class appeaysalifiad-id in a friend or a member
function of a derived class, tnested-name-specifiarust name the derived class. For example,

class B {
protected:
inti;

h

class D1 : public B {
I3

class D2 : public B {
friend void fr(B*,D1*,D2*);
void mem(B*,D1*);

11.5 Protected member access DRAFT: 27 May 1994 Member access controt-711

void fr(B* pb, D1* p1, D2* p2)

{
pb->i=1; //illegal
pl->i=2; //illegal
p2->i = 3; [/ ok (access through a D2)
intB::* pmi_B = &B::i; Il illegal
int D2::* pmi_D2 = &D2:i; // ok
}
void D2::mem(B* pb, D1* p1)
{
pb->i=1; //illegal
pl->i=2; /lillegal
i=3; /I ok (access through ‘this’)
}

void g(B* pb, D1* p1, D2* p2)

pb->i=1; //illegal
pl->i=2; /lillegal
p2->i=3; /lillegal

11.6 Access to virtual functions [class.access.virt]

The access rules (11) for a virtual function are determined by its declaration and are not affected by the
rules for a function that later overrides it. For example,

class B {
public:
virtual f();

h

class D : public B {
private:

f0;
h

void f()

{
Dd;
B* pb = &d;
D* pd = &d;

pb->f(); // ok: B::f() is public,
/I D::A() is invoked
pd->f(); // error: D::f() is private
}

Access is checked at the call point using the type of the expression used to denote the object for which the
member function is called{ in the example above). The access of the member function in the class in
which it was defined¥in the example above) is in general not known.

11.7 Multiple access [class.paths]

If a name can be reached by several paths through a multiple inheritance graph, the access is that of the path
that gives most access. For example,

11-8 Member access control DRAFT: 27 May 1994 11.7 Multiple access

class W { public: void f(); };
class A : private virtual W { };
class B : public virtual W { };
class C : public A, public B {
void f() { W::f(); } /] ok

SinceW::f() is available taC::f() along the public path throud?) access is allowed.

12 Special member functions [speciall

Some member functions are special in that they affect the way objects of a class are created, copied, and
destroyed, and how values may be converted to values of other types. Often such special functions are
called implicitly. Also, the compiler may generate instances of these functions when the programmer does
not supply them. Compiler-generated special functions may be referred to in the same ways that
programmer-written functions are.

These member functions obey the usual access rules (11). For example, declaring a constructor
protected ensures that only derived classes and friends can create objects using it.

12.1 Constructors [class.ctor]

A member function with the same name as its class is called a constructor; it is used to construct values of
its class type. An object of class type will be initialized before any use is made of the object; see 12.6.

A constructor can be invoked forcanst or volatile objectfm) A constructor may not be declared
const orvolatile (9.4.1). A constructor may not betual . A constructor may not bstatic

Constructors are not inherited. Default constructors and copy constructors, however, are generated (by the
compiler) where needed (12.8). Generated constructommiblie

A default constructofor a classX is a constructor of classthat can be called without an argument. If no
constructor has been declared for cldsa default constructor is implicitly declared. The definition for an
implicitly-declared default constructor is generated only if that constructor is called. An implicitly-declared
default constructor is non-trivial if and only if either the class has direct virtual bases or virtual functions or
if the class has direct bases or members of a class (or array thereof) requiring non-trivial initialization
(12.6).

A copy constructofor a classX is a constructor whose first parameter is of t)jgeor const X& and
whose other parameters, if any, all have defaults, so that it can be called with a single argumeix of type
For exampleX::X(const X&) andX::X(X&, int=0) are copy constructors. If no copy constructor lis
declared in the class definition, a copy constructor is implicitly ded@&redhe definition for an
implicitly-declared copy constructor is generated only if that copy constructor is called.

%ox 56 g
[Do we need a definition fortrivial implicitly-declared copy constructors? M

O

Zg) Volatile semantics might or might not be used.
)Thus the class definition

struct X {
X(const X&, int);
I

causes a copy constructor to be generated and the member function definition
X::X(const X& x, inti=0){... }

is ill-formed because of ambiguity.

10

11

12

12-2 Special member functions DRAFT: 27 May 1994 12.1 Constructors

A constructor for a clas¥ whose first parameter is of typéor const X (not reference types), is not al
copy constructor, and must have other parameters. For exatnplgl) is ill-formed.

Constructors for array elements are called in order of increasing addresses (8.3.4).

If a class has base classes or member objects with constructors, their constructors are called before the con-
structor for the derived class. The constructors for base classes are called first. See 12.6.2 for an explana-
tion of how arguments can be specified for such constructors and how the order of constructor calls is deter-
mined.

An object of a class with a constructor cannot be a member of a union.

No return type (not evewoid) can be specified for a constructor.réurn statement in the body of a
constructor may not specify a return value. It is not possible to take the address of a constructor.

A constructor can be used explicitly to create new objects of its type, using the syntax
class-name(expression-ligf,)
For example,

complex zz = complex(1,2.3);
cprint(complex(7.8,1.2));

An object created in this way is unnamed (unless the constructor was used as an initializer for a named vari-
able as fozz above), with its lifetime limited to the expression in which it is created; see 12.2.

Member functions may be called from within a constructor; see 12.7.

12.2 Temporary objects [class.temporary]

In some circumstances it may be necessary or convenient for the compiler to generate a temporary object.
Precisely when such temporaries are introduced is implementation dependent. When a compiler introduces
a temporary object of a class that has a constructor it must ensure that a constructor is called for the tempo-
rary object. Similarly, the destructor must be called for a temporary object of a class where a destructor is
declared. For example,

class X {
...

public:
...
X(int);
X(const X&);
~X(;

I3

X A(X);
void g()
{

X a(l1);
X b =1(X(2));
a=f(a);

}

Here, one might use a temporary in which to cons2j before passing it th) by X(X&) ; alterna-

tively, X(2) might be constructed in the space used to hold the argument for the firstf@all.oAlso, a
temporary might be used to hold the resulf(®{2)) before copying it tdo by X(X&) ; alternatively,

f() ’s result might be constructed in. On the other hand, for many functiof{} , the expression

a=f(a) requires a temporary for either the argun®ent the result of(a) to avoid undesired aliasing of

a. Even if the copy constructor is not called, all the semantic restrictions, such as accessibility, must be sat-
isfied.

12.2 Temporary objects DRAFT: 27 May 1994 Special member functions 423

The compiler must ensure that every temporary object is destroyed. Ordinarily, temporary objects are
destroyed as the last step in evaluating the (unique) expression that (lexically) contains the point where they
were created and is not a subexpression of another expression. This is true even if that evaluation ends in
throwing an exception. Temporaries created while evaluating default argument expressions (8.3.6) are con-
sidered to be created in the expression that calls the function, not the expression that defines the default
argument.

The only context in which temporaries are destroyed at a different point is when an expression appears as a
declarator initializer. In that context, the temporary that holds the result of the expression must persist at
least until the initialization implied by the declarator is complete. If the declarator declares a reference, all
temporaries in the expression persist until the end of the scope in which the reference is declared. Other-
wise, the declarator defines an object that is initialized from a copy of the temporary; during this copying,
an implementation may call the copy constructor many times; the temporary is destroyed as soon as it has
been copied. In all cases, temporaries are destroyed in reverse order of creation.

Another form of temporaries is discussed in 8.5.3.

12.3 Conversions [class.conv]
Type conversions of class objects can be specified by constructors and by conversion functions.

Such conversions, often calleder-defined conversionare used implicitly in addition to standard conver-
sions (4). For example, a function expecting an argument ofXyqan be called not only with an argu-

ment of typeX but also with an argument of tyewhere a conversion fror to X exists. User-defined
conversions are used similarly for conversion of initializers (8.5), function arguments (5.2.2, 8.3.5), func-
tion return values (6.6.3, 8.3.5), expression operands (5), expressions controlling iteration and selection
statements (6.4, 6.5), and explicit type conversions (5.2.3, 5.4).

User-defined conversions are applied only where they are unambiguwtass(@mbig, 12.3.2). Conver-
sions obey the access control rules (11). As ever access control is applied after ambiguity resolution (10.5).

See 13.2 for a discussion of the use of conversions in function calls as well as examples below.

12.3.1 Conversion by constructor [class.conv.ctor]

A constructor with a single parameter specifies a conversion from its parameter type to the type of its class.
For example,

class X {
...

public:
X(int);
X(const char*, int =0);

h

void f(X arg) {
Xa=1, /l'a=X(1)
X b ="Jessie"; /I b=X("Jessie",0)
a=2; Il'a=X(2)
f(3); 11(X(3))

}

When no constructor for clagéaccepts the given type, no attempt is made to find other constructors or
conversion functions to convert the assigned value into a type acceptable to a constructor Xor Fetaiss
example,

class X { /* ... */ X(int); };
class Y {/*..*Y(X); };
Ya=1; /I illegal: Y(X(1)) not tried

12-4 Special member functions DRAFT: 27 May 1994 12.3.2 Conversion functions

12.3.2 Conversion functions [class.conv.fct]

1 A member function of a clagéwith a name of the form

conversion-function-id:
operator conversion-type-id

conversion-type-id:
type-specifier-seq conversion-declarafpr

conversion-declarator:
ptr-operator conversion-declaratgy

specifies a conversion froMto the type specified by thenversion-type-id Such member functions are
called conversion functions. Classes, enumerationstygredief-nan® may not be declared in tlype-
specifier-seq Neither parameter types nor return type may be specified. A conversion operator is never
used to convert a (possibly qualified) object (or reference to an object) to the (possibly qualified) same
object type (or a reference to it), or to a (possibly qualified) base class of that type (or a reference to it). If
conversion-type-iis void or cv-qualifiedvoid , the program is ill-formed.

2 Here is an example:

class X {
...
public:
operator int();

I3
void f(X a)

inti =int(a);
i = (int)a;
i=a,
}
In all three cases the value assigned will be convertext:bperator int() . User-defined conver-0
sions are not restricted to use in assignments and initializations. For example,

void g(X a, X b)

inti=(a)?1+a:0;
intj = (a&&b) ? at+b : i;

if @) {// ...
}
}
3 The conversion-type-idin a conversion-function-idis the longest possible sequence aoinversion-
declaratos. This prevents ambiguities between the declarator operator * and its expression counterparts.
For example:

&ac.operator int*i; // syntax error:
I/l parsed as: '&(ac.operator int *) i’
/I not as: '&(ac.operator int)*i’

The * is the pointer declarator and not the multiplication operator.

4 Conversion operators are inherited.
5 Conversion functions can be virtual.
6 At most one user-defined conversion (constructor or conversion function) is implicitly applied to a single

value. For example,

12.3.2 Conversion functions DRAFT: 27 May 1994 Special member functions 42

class X {
...
public:
operator int();

h

class Y {
...
public:
operator X();

Y a;
inth=a; Il illegal:

/l a.operator X().operator int() not tried
int ¢ = X(a); // ok: a.operator X().operator int()

User-defined conversions are used implicitly only if they are unambiguous. A conversion function in a
derived class does not hide a conversion function in a base class unless the two functions convert to the
same type. For example,

class X {
public:
...
operator int();

h

class Y : public X {
public:

...

operator void*();

I3
void f(Y& a)
if (a) { / error: ambiguous
1

}

12.4 Destructors [class.dtor]

A member function of classl named~cl is called a destructor; it is used to destroy values of ¢ype
immediately before the object containing them is destroyed. A destructor takes no parameters, and no
return type can be specified for it (not ewand). It is not possible to take the address of a destructor. A
destructor can be invoked forcanst or volatile objectf16 A destructor may not be declarednst

or volatile (9.4.1). A destructor may not lseatic

Destructors are not inherited. If a base or a member of a class has a destructor and no destructor is declared
for the class itself a default destructor is generated.

HBox 57 g
CA default destructor should be generated if the class has a deallocation funkction.

This generated destructor calls the destructors for bases and members of its class. Generated destructors are
public

#0)yolatile semantics might or might not be used.

12-6 Special member functions DRAFT: 27 May 1994 12.4 Destructors

The body of a destructor is executed before the destructors for member or base objects. Destructors for
nonstatic member objects are executed in reverse order of their declaration before the destructors for base
classes. Destructors for nonvirtual base classes are executed in reverse order of their declaration in the
derived class before destructors for virtual base classes. Destructors for virtual base classes are executed in
the reverse order of their appearance in a depth-first left-to-right traversal of the directed acyclic graph of
base classesjeft-to-right’ is the order of appearance of the base class names in the declaration of the
derived class. Destructors for elements of an array are called in reverse order of their construction.

A destructor may be declaretttual or purevirtual . In either case if any objects of that class or
any derived class are created in the program the destructor must be defined.

Member functions may be called from within a destructor; see 12.7.
An object of a class with a destructor cannot be a member of a union.

Destructors are invoked implicitly (1) when an automatic variable (3.6) or temporary (12.2, 8.5.3) object
goes out of scope, (2) for constructed static (3.6) objects at program termination (3.5), and (3) through use
of a delete-expressio(b.3.5) for objects allocated byrew-expressioli5.3.4). Destructors can also be
invoked explicitly. A delete-expressioinvokes the destructor for the referenced object and passes the
address of its memory to a dealloation function (5.3.5, 12.5). For example,

class X {
...

public:
X(int);
~X();

void g(X*);

void f() /l common use:

{

X* p =new X(111); // allocate and initialize

9(p);
delete p; I/ cleanup and deallocate

}

Explicit calls of destructors are rarely needed. One use of such calls is for objects placed at specific
addresses using mew-expressiorwith the placement option. Such use of explicit placement and
destruction of objects can be necessary to cope with dedicated hardware resources and for writing memory
management facilities. For example,

void* operator new(size_t, void* p) { return p; }
void f(X* p);
static char buf[sizeof(X)];

void g() /I rare, specialized use:

X* p = new(buf) X(222); // use buf[]
Il and initialize

f(p);
p->X::~X(); I cleanup

}

Invocation of destructors is subject to the usual rules for member functions, e.g., an object of the appropri-
ate type is required (except invokimiglete on a null pointer has no effect). When a destructor is
invoked for an object, the object no longer exists; if the destructor is explicitly invoked again for the same
object the behavior is undefined. For example, if the destructor for an automatic object is explicitly
invoked, and the block is subsequently left in a manner that would ordinarily invoke implicit destruction of

10

11

12.4 Destructors DRAFT: 27 May 1994 Special member functions 42

the object, the behavior is undefined.
The notation for explicit call of a destructor may be used for any simple type name. For example,

int* p;
...
p->int::~int();

Using the notation for a type that does not have a destructor has no effect. Allowing this enables people to
write code without having to know if a destructor exists for a given type. O

The effect of destroying an object more than once is undefined. This implies that that explicitly destibying
a local variable causes undefined behavior on exit from the block, because exiting will attempt to destroy
the variable again. This is true even if the block is exited because of an exception.

12.5 Free store [class.free]

When an object is created withne@w-expressiqbh.3.4), anallocation functiofoperator new() for 0O
non-array objects ooperator new([]() for arrays) is (implicitly) called to get the required storadge
(3.6.3.1). O

When a non-array object or an array of cl@igs created by aew-expressignthe allocation function is [
looked up in the scope of claBaising the usual rules.

When anew-expressiois executed, the selected allocation function will be called with the amount of space

requested (possibly zero) as its first argument. O
Any allocation function for a classis a static member (even if not explicitly declastatic). O
For example, O

class Arena; class Array_arena;
struct B {

void* operator new(size_t, Arena*);
}.

truct D1 : B {
I3

Arena* ap; Array_arena* aap;
void foo(int i)

{ new (ap) D1; // calls B::operator new(size_t, Arena*)
new D1]i]; /I calls ::operator new[](size_t)
new D1; /'ill-formed: ::operator new(size_t) hidden
}
When an object is deleted with adelete-expressi¢h.3.5), a deallocation function O
(operator delete() for non-array objects ooperator delete[]() for arrays) is (implicitly) O
called to reclaim the storage occupied by the object. O

When an object is deleted bydalete-expressigrthe deallocation function is looked up in the scope 0Of
class of the executed destructor (see 5.3.5) using the usual rules.

When adelete-expressiois executed, the selected deallocation function will be called with the addre8s of
the block of storage to be reclaimed as its first argument and (if the two-parameter style is used) thdsize of
the block as its second argum‘el??t.

Any deallocation function for a clagtis a static member (even if not explicitly declastdtic). For [
example,

27)f the static class in thdelete-expressiois different from the dynamic class and the destructor is not virtual the size might be
incorrect, but that case is already undefined.

10

11

12-8 Special member functions DRAFT: 27 May 1994 12.5 Free store

class X {
...
void operator delete(void*);
void operator delete[](void*, size_t);

I8

class Y {
...
void operator delete(void*, size_t);
void operator delete[](void*);

2

Since member allocation and deallocation functionsstac they cannot be virtual. However, the
deallocation function actually called is determined by the destructor actually called, so if the destructor is

virtual the effect is the same. For example, O
struct B {
virtual ~B();
void operator delete(void*, size_t);
2
struct D : B {
void operator delete(void*);
void operator delete[](void*, size_t);
2
void f(int i)
{
B* bp = new D;
delete bp; I/l uses D::operator delete(void*) O
D* dp = new DJi];
delete [] dp; // uses D::operator delete[](void*, size_t) O
}
Here, storage for the non-array object of class deallocated bp::operator delete() , due to the O
virtual destructor. O

Access to the deallocation function is checked statically. Thus even though a different one may actually be
executed, the statically visible deallocation function must be accessible. Thus in the example akidve, if
B::operator delete() had beemrivate , the delete expression would have been ill-formed.

12.6 Initialization [class.init]

A class having a user-defined constructor or having a non-trivial implicitly-declared default constructor is
said to require non-trivial initialization.

An object of a class (or array thereof) with no private or protected non-static data members and that does
not require non-trivial initialization can be initialized using an initializer list; see 8.5.1. An object of a class
(or array thereof) with a user-declared constructor must either be initialized or have a default constructor
(12.1) (whether user- or compiler-declared). The default constructor is used if the object (or array thereof) is
not explicitly initialized.

12.6.1 Explicit initialization [class.expl.init]

Objects of classes with constructors (12.1) can be initialized with a parenthesized expression list. This list
is taken as the argument list for a call of a constructor doing the initialization. Alternatively a single value
is specified as the initializer using theoperator. This value is used as the argument to a copy constructor.
Typically, that call of a copy constructor can be eliminated. For example,

12.6.1 Explicit initialization DRAFT: 27 May 1994 Special member functions 129

class complex {
...

public:
complex();
complex(double);
complex(double,double);
...

h

complex sqgrt(complex,complex);

complex a(1); // initialize by a call of
/I complex(double)
complex b = a; /l initialize by a copy of ‘a’

complex ¢ = complex(1,2); // construct complex(1,2)
I/l using complex(double,double)
I/l copy itinto ‘c’

complex d = sqrt(b,c); /I call sgrt(complex,complex)

/I and copy the result into ‘d’
complex e; [l initialize by a call of

/I complex()
complex f = 3; /I construct complex(3) using

/I complex(double)
I/l copy itinto ‘f’

Overloading of the assignment operatdras no effect on initialization.

The initialization that occurs in argument passing and function return is equivalent to the form
Tx=a;

The initialization that occurs inew expressions (5.3.4) and in base and member initializers (12.6.2) is
equivalent to the form

T x(a);

Arrays of objects of a class with constructors use constructors in initialization (12.1) just as do individual
objects. If there are fewer initializers in the list than elements in the array, a default constructor (12.1) must
be declared (whether by the compiler or the user), and it is used; otherwisgidlieer-clausemust be
complete. For example,

complex cc ={ 1, 2 }; // error; use constructor
complex v[6] = { 1,complex(1,2),complex(),2 };

Here,v[0] andv[3] are initialized withcomplex::complex(double) , V[1] s initialized with
complex::complex(double,double) , and v[2] , v[4] , and v[5] are initialized with
complex::complex()

An object of classvican be a member of a cla¥only if (1) Mhas a default constructor, or ()has a
user-declared constructor and if every user-declared constructor ofXclggscifies actor-initializer

(12.6.2) for that member. In case 1 the default constructor is called when the aggregate is created. If a
member of an aggregate has a destructor, then that destructor is called when the aggregate is destroyed.

Constructors for nonlocal static objects are called in the order they occur in a file; destructors are called in
reverse order. See also 3.5, 6.7, 9.5.
12.6.2 Initializing bases and members [class.base.init]

The definition of a constructor can specify initializers for direct and virtual base classes and for mdmbers
not inherited from a base class. This is most useful for class objects, constants, and references where the
semantics of initialization and assignment differctar-initializer has the form

12-10 Special member functions DRAFT: 27 May 1994 12.6.2 Initializing bases and members

ctor-initializer:
mem-initializer-list

meme-initializer-list:
meme-initializer
meme-initializer , meme-initializer-list

meme-initializer:
i1 optNEsted-name-specifigrclass-name(expression-ligf,)
identifier (expression-ligf,)

The argument list is used to initialize the named nonstatic member or base class object. This (or for an
aggregate (8.5.1), initialization by a brace-enclosed list) is the only way to initialize noostetic and
reference members. For example,

struct B1 { B1(int); /* ... */ };
struct B2 { B2(int); /* ... */ };

struct D : B1, B2 {

D(int);
B1 b;
const c;
I3
D::D(int a) : B2(a+1), B1(at+2), c(at+3), b(at4)
{rF..*}%
D d(10);

First, the base classes are initialized in declaration order (independent of the ander-ofitializes), then

the members are initialized in declaration order (independent of the ordeerofinitializes), then the

body ofD::D() is executed (12.1). The declaration order is used to ensure that sub-objects and members
are destroyed in the reverse order of initialization.

Virtual base classes constitute a special case. Virtual bases are constructed before any nonvirtual bases and
in the order they appear on a depth-first left-to-right traversal of the directed acyclic graph of base classes;
“left-to-right’ is the order of appearance of the base class names in the declaration of the derived class.

The class of aomplete objedfl.5) is said to be thmost derivedtlass for the sub-objects representing base
classes of the object. All sub-objects for virtual base classes are initialized by the constructor of the most
derived class. If a constructor of the most derived class does not spewfyp-énitializerfor a virtual base

class then that virtual base class must have a default constructomeknyinitializes for virtual classes
specified in a constructor for a class that is not the class of the complete object are ignored. For example,

class V {

public:
V();
V(int);
...

2

class A : public virtual V {
public:

AQ;

A(int);

...

12.6.2 Initializing bases and members DRAFT: 27 May 1994 Special member functions—12

class B : public virtual V {
public:

B():;

B(int);

...
2

class C : public A, public B, private virtual V {
public:

CO;

C(int);

...
I3

ACAGNti) VG {7 .. ¥}
B:B(nti) { /* ... */ }
cc(inti) { /... */ }

V v(1); /] use V(int)
A a(2); /l use V(int)
B b(3); // use V()
C c(4); Il use V()

In a ctor-initializer, the effect of calling a non-static member function of a class object whose base €lasses
have not all been initialized is undefined. For example, O

class A {
public:
A(int x);

OoOodono

h

class B : public A {
public:
int f();
B() : A(fQ) {3 /I undefined: calls B::f() but B's A not yet initialized

O good

A mem-initializeris evaluated in the scope of the constructor in which it appears. For example,

class X {

int a;
public:

const int&r;

X0): r(a) {}

initializes X::r to refer toX::a for each object of class O

The identifier of actor-initializers meme-initializerin a class’ constructor is looked up in the scope of the
class. It must denote a nonstatic data member or the type of a direct or virtual base class. For thelpurpose
of this name lookup, the name, if any, of each class is considered a nested class member of that Class. A
constructor'snem-initializer-listcan initialize a base class using any name that denotes that base clas&itype;
the name used may differ from the class definition. The type shall not designate both a direct nonfirtual
base class and an inherited virtual base class. For example: O

struct A { AQ); }; O
struct B: public virtual A {}; a
struct C: public A, public B { C(); }; a
O

C:C(O: A){} /I ill-formed: which A?

12-12 Special member functions DRAFT: 27 May 1994 12.7 Constructors and destructors

12.7 Constructors and destructors [class.cdtor]

Member functions may be called in constructors and destructors. This implies that virtual functions may be
called (directly or indirectly). The function called will be the one defined in the constructor’'s (or
destructor’s) own class or its bases, motany function overriding it in a derived class. This ensures that
unconstructed parts of objects will not be accessed in the body of the constructor or destructor. For exam-
ple,
class X {
public:
virtual void f();
XO){fO;} [calls X:f()
~X(0) {f(;} /I calls X::f()

class Y : public X {
int&r;

public:
void f()

r++; [/ disaster if ‘r’ is uninitialized

}
Y(int& rr) :r(rr) {} // calls X::X() which calls X::f()
h

The effect of calling a pure virtual function directly or indirectly for the object being constructed from a
constructor, except using explicit qualification, is undefined (10.4).

12.8 Copying class objects [class.copy]

A class object can be copied in two ways, by assignment (5.17) and by initialization (12.1, 8.5) including
function argument passing (5.2.2) and function value return (6.6.3). Conceptually, for 4 ttlase two
operations are implemented by an assignment operator and a copy constructor (12.1). If not declared by the
programmer, they will if possible be automatically defintyfthesizet) as memberwise assignment and
memberwise initialization of the base classes and non-static data memBergsgectively. An explicit
declaration of either of them will suppress the synthesized definition.

If all bases and members of a claslsave copy constructors accepticmnst parameters, the synthesized
copy constructor foX will have a single parameter of typenst X& , as follows: O

X::X(const X&)
Otherwise it will have a single parameter of tyf#
X X(X&)
and programs that attempt initialization by copyingarfist X objects will be ill-formed. a

Similarly, if all bases and members of a clXslsave assignment operators acceptingst parameters,
the synthesized assignment operatopdarill have a single parameter of typenst X& , as follows: a

X& X::operator=(const X&)
Otherwise it will have a single parameter of tyf#
X& X::operator=(X&)

and programs that attempt assignment by copyirgge$t X objects will be ill-formed. The synthesized
assignment operator will return a reference to the object for which is invoked.

Objects representing virtual base classes will be initialized only once by a generated copy constructor.
Objects representing virtual base classes will be assigned only once by a generated assignment operator.

12.8 Copying class objects DRAFT: 27 May 1994 Special member functions—13

5 Memberwise assignment and memberwise initialization implies that if aXlags a member or base of a
classM Ms assignment operator afdis copy constructor are used to implement assignment and initial-
ization of the member or base, respectively, in the synthesized operations. The default assignment opera-
tion cannot be generated for a class if the class has:

— a non-static data member that isclst or a reference,
— a non-static data member or base class whose assignment operator is inaccessible to the class, or

— a non-static data member or base class with no assignment operator for which a default assign-
ment operation cannot be generated.

Similarly, the default copy constructor cannot be generated for a class if a non-static data member or a
base of the class has an inaccessible copy constructor, or has no copy constructor and the default copy
constructor cannot be generated for it.

6 The default assignment and copy constructor will be declared, but they will not be defined (that is, a
function body generated) unless needed. ThaX:igperator=() will be generated only if no
assignment operation is explicitly declared and an object of Xl@sassigned an object of clas®r an
object of a class derived frokor if the address of::operator= is taken. Initialization is handled
similarly.

7 If implicitly declared, the assignment and the copy constructor will be public members and the assign-
ment operator for a class will be defined to return a reference of tyl& referring to the object
assigned to.

8 If a classX has anyX::operator=() that has a parameter of cla§she default assignment will not
be generated. If a class has any copy constructor defined, the default copy constructor will not be gen-
erated. For example,

class X {
...
public:
X(int);
X(const X&, int = 1);
h
X a(d); /I calls X(int);
X b(a, 0); /I calls X(const X&, int);
Xc=b; /I calls X(const X&, int);
9 Assignment of class objecksis defined in terms oX::operator=(const X&) . This implies (12.3) O
that objects of a derived class can be assigned to objects of a public base class. For example,
class X {
public:
int b;
h
class Y : public X {
public:
int c;

h

12-14 Special member functions DRAFT: 27 May 1994 12.8 Copying class objects

void f()

{
X x1;
Y yi;

x1 =vyl; /I ok
y1l=x1; I error

}
Hereyl.b is assigned tal.b andyl.c is not copied.
10 Copying one object into another using the default copy constructor or the default assignment operator does
not change the structure of either object. For example,
struct s {
virtual f();
...
I8
struct ss : public s {
f0;
..
I3
void f()
{
sa,
ss b;
a=b; I really a.s::operator=(b)
b=a; Il error
a.f(); /I calls s::f
b.f(); /I calls ss::f

(s&)b =a; //assignto b’s s part
I really ((s&)b).s::operator=(a)
b.f(); /1 still calls ss::f
}

The calla.f() will invoke s::f() (as is suitable for an object of clas$10.3)) and the cabh.f() will
call ss::f() (as is suitable for an object of class).

13 Overloading [over]

Box 58 B
gThis intro and section 13.1 need to be rewritten. | would introduce the notiowadf @rofile, which is
[related to a full parameter type profile, but is defined such that two functions with the same call profile can-
[hot be overloaded. i

When several different function declarations are specified for a single name in the same scope, that name is
said to beoverloaded When that name is used, the correct function is selected by comparing the types of
the arguments with the types of the parameters. For example,

double abs(double);

int abs(int);
abs(1); /I call abs(int);
abs(1.0); /I call abs(double);

Since for any typd, aT and aT& accept the same set of initializer values, functions with parameter types
differing only in this respect may not have the same name. For example,

int f(int i)
{
}

int f(int& r) // error: function types
/I not sufficiently different
{

}

It is, however, possible to distinguish betweenst T&, volatile T&, and plainT& so functions that
differ only in this respect may be defined. Similarly, it is possible to distinguish bewosstT* |
volatile T*, and plainT* so functions that differ only in this respect may be defined.

...

...

Functions that differ only in the return type may not have the same name.

Member functions that differ only in that one istatic = member and the other isn’'t may not have the
same name (9.5).

A typedef is not a separate type, but only a synonym for another type (7.1.3). Therefore, functions that
differ by typedef‘types only may not have the same name. For example,

typedef int Int;

void f(inti) {/*...*/}
void f(Inti) { /* ... */ } /I error: redefinition of f

Enumerations, on the other hand, are distinct types and can be used to distinguish overloaded functions.
For example,

13-2 Overloading DRAFT: 27 May 1994 13 Overloading

enumE{a};

void f(int i) { /* ... */ }
void ((E1) {/*...*/}

Parameter types that differ only in a poirtterersus an arralj are identical, that is, the array declaration
is adjusted to become a pointer declaration (8.3.5). Note that only the second and subsequent array dimen-
sions are significant in parameter types (8.3.4).

f(char*);

f(char[]); /I same as f(char*);
f(char[7]); /I same as f(char*);
f(char[9]); /I same as f(char*);
g(char(*)[10]);

g(char[5][10]); // same as g(char(*)[10]);
g(char[7][10]); // same as g(char(*)[10]);
g(char(*)[20]); // different from g(char(*)[10]);

Parameter types that differ only in the presence or absewcoasif and/orvolatile are identical. That
is, theconst andvolatile type-specifiers for each parameter type are ignored when determining which
function is being declared, defined, or called. For example,

typedef const int cint;

int f (int);

int f (const int); /l redeclaration of f (int);
intf(int) {...} /I definition of f (int)
intf(cint){...} /I error: redefinition of f (int)

Only theconst andvolatile type-specifiers at the outermost level of the parameter type specification
are ignored in this fashiogpnst andvolatile type-specifiers buried within a parameter type specifi-
cation are significant and may be used to distinguish overloaded function. In particular, for ahyType
constT* |, andvolatile T* are considered distinct parameter types, asT&econstT& , and
volatile T&

13.1 Declaration matching [over.dcl]

Two function declarations of the same name refer to the same function if they are in the same scope and
have identical parameter types (13). A function member of a derived clagsiristhe same scope as a
function member of the same name in a base class. For example,

class B {
public:

int f(int);
2

class D : public B {
public:

int f(char®);
I3

HereD::f(char*) hidesB::f(int) rather than overloading it.

void h(D* pd)
{

pd->f(1); /I error:

/I D::f(char*) hides B::f(int)

pd->B::f(1); /I ok
pd->f("Ben"); /I ok, calls D::f

13.1 Declaration matching DRAFT: 27 May 1994 Overloading 133

A locally declared function is not in the same scope as a function in a containing scope.

int f(char*);
void g()

extern f(int);
f("asdf"); /I error: f(int) hides f(char*)
/I so there is no f(char*) in this scope

}

void caller ()

void callee (int, int);
{
void callee (int); // hides callee (int, int)
callee (88, 99); /Il error: only callee (int) in scope

)

2 Different versions of an overloaded member function may be given different access rules. For example,

class buffer {

private:
char* p;
int size;

protected:
buffer(int s, char* store) { size = s; p = store; }
...

public:
buffer(int s) { p = new char[size = s]; }
...
b
13.2 Overload resolution [over.match]
1 Recall from 5.2.2, that a function call ispastfix-expressioriollowed by an optionakexpression-list

enclosed in parentheses. Of interest in this section are only those function calls in whicstfixe
expressiorhas the following forms:

postfix-expression:
primary-expression
postfix-expression id-expression
postfix-expression> id-expression

In these cases, tipostfix-expressionltimately contains a name that must be resolved against visible decla-
rations to identify which function is being called.

2 Since, through overloading declarations, a name may refer to more than one function, the function refer-
enced by a function call is determined not only by the name, but also by the kind of function call, the num-
ber of arguments present, and their types. The name and the kind of function call determine a set of
candidate functionthat could be referenced by the name. From this set of candidate functions a function is
chosen whose parameters best match the arguments in the call in number and type.

13.2.1 Candidate functions [over.match.funcs]
1 There are two kinds of function calls: member function calls and ordinary (or non-member) function calls.
2 In member function calls, the name to be resolved id-axpressiorand is preceded by ar or. opera-

tor. Since the construét.B is generally equivalent {@&A) -> B, the rest of this chapter assumes, without
loss of generality, that all member function calls have bemmalizedto the form that uses an object

13-4 Overloading DRAFT: 27 May 1994 13.2.1 Candidate functions

pointer and the> operator. Furthermore, the left operand of-theoperator has typ&* , whereT denotes

some clasX optionally qualified byconst and/orvolatile 48) Thus, in a member function call, the
id-expressionn the call is looked up as a member functioX dbllowing the rules for looking up names in
classes (10). If a member function is found, that function and its overloaded declarations (in the same
scope) constitute the set of candidate functions submitted to argument matching (13.2.2).

In non-member calls, the name is not qualified by>aror . operator and has the more general form of a
primary-expression The name is looked up in the context of the function call following the normal rules
for name lookup. If the name resolves to a function declaration, that function and its overloaded declara-
tions (in the same scope) constitute the set of candidate functions submitted to argument matching (13.2.2).

If the name in the ordinary function call resolves to a member function and the keipgords in scope

and refers to the class of that member function, then the ordinary-looking function call is actually a member
function call using an implicithis pointer. In this case, the function call is put into normalized member
call form using an explicthis pointer.

In either kind of function call, the name may resolve to something other than a function name. This section,
13.2, will not consider this case further since such a name cannot be overloaded.

Section 13.4.8 describes the set of candidate functions constructed for the resolution of an overloaded oper-
ator in an expression.

13.2.2 Argument matching [over.match.args]

From the set of candidate functions constructed for a function call (13.2.1) or an operator in an expression
(13.4.8), a function is chosen whose parameters best match the arguments in the call according to the rules
described in this section.

To be considered at all, a candidate function must have enough parameters to satisfy the arguments in the
call. If there aranarguments in the call, all candidate functions having exatfgrameters remain candi-

dates unconditionally. A candidate function having fewer thggarameters remains a candidate only if it

has an ellipsis in its parameter list (8.3.5). For the purposes of argument matching, its parameter list is
extended to the right with ellipses so that there are exatpprameters. A candidate function having

more thanm parameters remains a candidate only if iivelst parameter has a default initializer (8.3.6).

For the purposes of argument matching, the parameter list is truncated on the right, so that there are exactly
m parameters.

From the subset of candidate functions with the correct number of parameters a function is chosen that best
matches the arguments in the call. The choice is made in two steps. First, for each individual argument in
the call, the subset of the candidate functions that best match that argument is determined according to the
rules forbest-matchdescribed below. Then, the function that best matches the call is obtained by forming
the intersection of the subsets obtained for each argument. Unless this intersection has exactly one func-
tion, the call is ill-formed.

The function thus selected must be a better match to the call than any other candidate function. Otherwise,
the call is ill-formed. One function is a better match to the call than another if for each argument in the call,
the first function is at least as good a match as the second function, and for some argument the first function
is a better match.

For purposes of argument matching, a non-static member function is considered to have an extra parameter,
which must match the pointer specified in the normalized member function call (13.2.1) as if the pointer
were also an argument in the call. No temporaries will be introduced for this extra parameter and no user-
defined conversions will be applied to achieve a type match. The type of this extra parameter is the type of
the keywordthis (9.4.1) within the member function. For example, faxomst member function of

classX, the extra parameter is assumed to havedgpst X*.

“S)Note thatcv-qualifierson the type of objects are significant in overload resolution for both Ivalue and rvalue objects.

10

11
12

13.2.2 Argument matching DRAFT: 27 May 1994 Overloading 35

How well a functionmatchesan argument is based on the sequence of implicit conversions that can be
applied to the argument to yield a value of the type required by the corresponding parameter of the func-
tion. For the purposes of argument matching, no sequence of conversions is considered that

(a) does not lead to the type required by the parameter, or
(b) contains more than one user-defined conversion, or

(c) can be shortened into another considered sequence by deleting one or more conversions. (For
examplejnt —float -double is a sequence of conversions frarh to double , butitis
not considered because it contains the shorter sequrtncedouble)

Some sequences of conversions are better than others according to rules that are given below. If,
according to these rules, there is a single sequence of conversions that is uniquely better than all the rest,
it is called the function’®est-matchingequence for the argument. One function matches an argument
better than another if it has a best-matching sequence for that argument and its best-matching sequence
is better than the best-matching sequence of the other function. A function is a best match for an argu-
ment if it has a best-matching sequence for that argument and no other function is a better match for the
argument.

Box 59 O

O
| feel I've gone out on a limb with the preceding paragraph. | don’t honestly believe that earliegdrafts
actually explained how a best-matching function is derived from best-matching sequences. Nar did it
explain what happens if there is more than one best-matching sequence. g

OoOooom

An ellipsis in a parameter list (8.3.5) is a match for an argument of any type.

Except as mentioned below, the followitntyial conversiongnvolving a typeT do not affect which of
two conversion sequences is better: the conversion of an argument 6ptypeer tocvl T to the
type“pointer tocv2 T” if the set of cv-qualifiersvlis a subset ofv2(7.1.5 see also 8.5). Where nec-
essaryconst andvolatile are used as tie-breakers as described in rule [1] below.

Box 60 O

The table was removed. "B"“T&", "T&"- >"T", "T&"- >"const T&", "T&"->"volatile T&", "T&"- B
>"const volatile T&" were removed because a reference initialization is considered a binding arid not a
conversion. As well, expressions of reference type are transformed into lvalue expressions véé’y early
during expression processing, before argument matching takes place.>"TH]'- "T(args)"-
>"(*T)(args)" were removed because expressions of type "array of" and of type "function of" aregrans-
formed into expressions of type "pointer to" and "pointer to function of" very early during expression
processing, before argument matching takes place.>"8¢nst T", "T">"volatile T", "T"->"const O
volatile T" were removed because the cv-qualifiers of pass-by-value parameters do not participaté in the
function type.

Oooooooooooooo

If a parameter is of typeonst T&, the effect of binding the reference to a temporary (8.5.3) does not
affect argument matching. Any function that would require initializing a non-const reference with a
temporary (8.3.2) is excluded as a match during overload resolution.

Sequences of conversions are considered according to these rules:

[1] Exact match: Sequences of zero or more trivial conversions are better than all other sequences.

[2] Match with promotions: Of sequences not mentioned in [1], those that contain only integral pro-
motions (4.1), conversions froffoat to double , and trivial conversions are better than all
others.

[3] Match with standard conversions: Of sequences not mentioned in [2], those with only standard
(4) and trivial conversions are better than all others. Of thesB,isf derived directly or

13
14

15

16

13-6 Overloading DRAFT: 27 May 1994 13.2.2 Argument matching

indirectly fromA, converting é8* to A* is better than converting toid* or const void*
Further, if C is publicly derived directly or indirectly frorB, converting aC* to B* is better
than converting té* and converting &€ to B&is better than converting #8& Similarly, con-
verting anA::* to B::* is better than converting a:* to C::*.

[4] Match with user-defined conversions: Of sequences not mentioned in [3], those that involve only

user-defined conversions (12.3), standard (4) and trivial conversions are better than all other
sequences.

[5] Match with ellipsis: Sequences that involve matches with the ellipsis are worse than all others.

User-defined conversions are selected based on the type of variable being initialized or assigned to.

B Box6l B
g Where did this come from? It relates to conversion sequences and ambiguities therein, but it |g not in
0 the context of overload resolution. Are there other places that these conversion sequences ard used in
O the lanquage? g
class Y {
...
public:

operator int();
operator double();

2
void f(Y y)
inti=vy; /I call Y::operator int()
double d;
d=y; /I call Y::operator double()
float f =y; [/ error: ambiguous
}

Standard conversions (4) may be applied to the argument of a user-defined conversion, and to the result of a
user-defined conversion.

struct S { S(long); operator int(); };

void f(long), f(char*);
void g(S), g(char*);
void h(const S&), h(char*);

void k(S& a)

{
f(a); Il f(long(a.operator int()))
g(1); I1'g(S(long(1)))
h(2); II'(S(long(1)))

}

Except when one conversion sequence is a subsequence of another, if two conversion sequences each con-
tain a user-defined conversion, any standard conversions also used in the sequences do not affect which
sequence is better. For example,

17

13.2.2 Argument matching DRAFT: 27 May 1994 Overloading 137

class X {
public:

X(int);
I3

class Y {
public:
Y(long);

c’Iass Z{
public:
operator int();

h

void f(X);

void f(Y);

void g(int);
void g(double);

void g()

f(1); /I ambiguous
Z z
9(2); I okay -- g(int(z))

The call f(1) is ambiguous despit§y(long(1))) needing one more standard conversion than
f(x(1)) , and the calg(z) is unambiguous even thougj{double(int(z)) has only one user-
defined conversion. The difference is that the two conversion sequences fouifd faontain two
differentuser-defined conversions and neither sequence is a subsequence of the other, while the two con-
version sequences found fpf) contain the same user-defined conversion and one is a subsequence of the
other.

No preference is given to conversion by constructor (12.1) over conversion by conversion function (12.3.2)
or vice versa.

struct X {
operator int();

h

struct Y {
Y(X);
2

Y operator+(Y,Y);
void f(X a, X b)

atb; // error, ambiguous:
I operator+(Y(a), Y(b)) or
I a.operator int() + b.operator int()

13.3 Address of overloaded function [over.over]

A use of a function name without arguments selects, among all functions of that name that are in scope, the
(only) function that exactly matches the target. The target may be

— an object being initialized (8.5)

— the left side of an assignment (5.17)

13-8 Overloading DRAFT: 27 May 1994 13.3 Address of overloaded function

— a parameter of a function (5.2.2)
— a parameter of a user-defined operator (13.4)
— the return value of a function, operator function, or conversion (6.6.3)

— an explicit type conversion (5.2.3, 5.4)

Note that iff() andg() are both overloaded functions, the cross product of possibilities must be con-
sidered to resolvi&g) , or the equivalent expressié(g)

For example,
int f(double);
int f(int);
(int (*)(int))&f; Il cast expression as selector
int (*pfd)(double) = &f; /I selects f(double)
int (*pfi)(int) = &f; /I selects f (int)
int (*pfe)(...) = &f; /I error: type mismatch

The last initialization is ill-formed because f) with type int(...) has been defined, and not

because of any ambiguity.

Note also that there are no standard conversions (4) of one pointer to function type into another (4.6). In
particular, even iBis a public base ddwe have

D* f();
B* (*p1)() = &f; /I error

void g(D*);
void (*p2)(B*) = &g; /I error

13.4 Overloaded operators [over.oper]

A function declaration having one of the followingerator-function-ig as its name declares aperator
function An operator function is said implementhe operator named in itgperator-function-id

operator-function-id:
operator operator

operator: one of

new delete new([] delete[]

- % o~ e | -~

| = < > += = *= /= %=
N= &= [= << >> >>= <= == 1=
<= >= && || ++ - S>* >

0 0

The last two operators are function call (5.2.2) and subscripting (5.2.1).
Both the unary and binary forms of
+ - * &
can be overloaded.
The following operators cannot be overloaded:
Fooon ?:
nor can the preprocessing symbland## (16).

Operator functions are usually not called directly; instead they are invoked to evaluate the operators they
implement (13.4.1 - 13.4.7). They can be explicitly called, though. For example,

13.4 Overloaded operators DRAFT: 27 May 1994 Overloading 3

complex z = a.operator+(b); // complex z = a+b;
void* p = operator new(sizeof(int)*n);

The allocation and deallocation functiormgeratornew , operatornew[] , operatordelete
andoperator delete[]] , are described completely in 12.5. The attributes and restrictions found in the
rest of this section do not apply to them unless explicitly stated in 12.5.

An operator function must either be a non-static member function or have at least one parameter whose
type is a class, a reference to a class, an enumeration, or a reference to an enumeration. It is not possible to
change the precedence, grouping, or number of operands of operators. The meaning of the mperators
(unary)&, and, (comma), predefined for each type, may be changed for specific types by defining operator
functions that implement these operators. Excepofmrator= , operator functions are inherited; see

12.8 for the rules fooperator=

The identities among certain predefined operators applied to basic types (for exaraptea+=1) need
not hold for operator functions. Some predefined operators, suech asquire an operand to be an Ivalue
when applied to basic types; this is not required by operator functions.

An operator function cannot have default arguments (8.3.6).

Operators not mentioned explicitly below in 13.4.3 to 13.4.7 act as ordinary unary and binary operators
obeying the rules of section 13.4.1 or 13.4.2.

13.4.1 Unary operators [over.unary]

A prefix unary operator may be implemented by a non-static member function (9.4) with no parameters or a
non-member function with one parameter. Thus, for any prefix unary op@a@xcan be interpreted as

eitherx.operator@() or operator@(x) . If both forms of the operator function have been declared,
the rules in 13.4.8 determine which, if any, interpretation is used. See 13.4.7 for an explanation of the post-
fix unary operators+ and-- . O

The unary and binary forms of the same operator are considered to have the same name. Conseduiently, a
unary operator can hide a binary operator from an enclosing scope, and vice versa.

13.4.2 Binary operators [over.binary]

A binary operator may be implemented either by a non-static member function (9.4) with one parameter or
by a non-member function with two parameters. Thus, for any binary op@ai@ycan be interpreted as

either x.operator@(y) or operator@(x,y) . If both forms of the operator function have been
declared, the rules in 13.4.8 determines which, if any, interpretation is used.

13.4.3 Assignment [over.ass]

The assignment functiooperator= must be a non-static member function with exactly one parameter.
It implements the assigment operater, It is not inherited (12.8). Instead, unless the user defines

operator= for a classX, operator= is defined, by default, as memberwise assignment of the members
of classX.

X& X::operator=(const X& from)

{
/I copy members of X
}
13.4.4 Function call [over.call]

operator() must be a non-static member function. It implements the function call syntax
postfix-expression(expression-ligf,)

where thepostfix-expressiopvaluates to a class object and the possibly esygyession-listnatches the

13-10 Overloading DRAFT: 27 May 1994 13.4.4 Function call

parameter list of anperator() member function of the class. Thus, a gédrgl,arg2,arg3) is
interpreted ag.operator()(argl,arg2,arg3) for a class object.
13.4.5 Subscripting [over.sub]

operator(] must be a non-static member function. It implements the subscripting syntax
postfix-expressior] expression]

Thus, a subscripting expressixiiy] is interpreted az.operator[](y) for a class object.

13.4.6 Class member access [over.ref]

operator-> must be a non-static member function taking no parameters. It implements class member
access usingr

postfix-expression> primary-expression

An expressiornx->m is interpreted agx.operator->())->m for a class objeck. It follows that
operator-> must return either a pointer to a class that has a memtrean object of or a reference to a
class for whicloperator-> s defined.

13.4.7 Increment and decrement [over.inc]

The prefix and postfix increment operators can be implemented by a functionogatador++ . If this

function is a member function with no parameters, or a non-member function with one class parameter, it
defines the prefix increment operater for objects of that class. If the function is a member function with

one parameter (which must be of tyipé) or a non-member function with two parameters (the second
must be of typént), it defines the postfix increment operatar for objects of that class. When the post-

fix increment is called, thmt argument will have value zero. For example,

class X {

public:
const X& operator++(); /I prefix ++a
const X& operator++(int); // postfix a++

h

class Y {

public:

2

const Y& operator++(Y&); /I prefix ++b
const Y& operator++(Y&, int); // postfix b++

void f(X a, Y b)

{
++a,; I/l a.operator++();
a++, /l a.operator++(0);
++Db; /I operator++(b);
b++; /Il operator++(b, 0);
a.operator++(); Il explicit call: like ++a;
a.operator++(0); // explicit call: like a++;
operator++(b); I explicit call: like ++b;
operator++(b, 0); // explicit call: like b++;
}

The prefix and postfix decrement operatersare handled similarly.

2

13.4.8 DRAFT: 27 May 1994 Overloading 1311
Overloaded operators in expressions
13.4.8 Overloaded operators in expressions [over.oper.funcs]

To determine which operator function is to be invoked to implement an expression involving an operator,
the operator notation is first transformed to the equivalent function-call notation as summarized in the Table
12 (where @ denotes one of the operators covered in the specified section).

Table 12—relationship between operator and function call notation

[Section U Expression ' Member function U Non-member function
1341 @a (Ba)->operator@ () operaioi@ (a) .
13.4.2 a@b (&@)->operator@ (b) operatgn@ (a, b) 0
(13.4.3 azb (&3d)->operator= (b) O a
t13.4.4 ,...) (&a)->dperator()(b,...) --- g g

3.45 (&ax>operator[|(b) g g

346 ap (&a)->operator-> () 0 0
13.4.7 a@ (&a)->operator@ (1) operatgr@ (a, 1) 0

If no operand of the operator has a type that is a class, a reference to a class, an enumeration, or alfeference
to an enumeration, the operator is assumed to be a built-in operator and interpreted accordingly. Fdriexam-

ple: O
struct Thing { a
Thing(char*); a
Thing operator+(char*); O
operator char*(); a

I3 0
void f() a
{ a
char* p ="one" + "two"; /! ill-formed O
inti=1+1; Ii=2 g

} O

The declaration op is ill-formed because neither operand+ofs a (pointer or reference to a) class af
enum. The operands are not implicitly converted Thing and the + does not refer to[O
Thing::operator+(char*) . Similarly, 1+1 is always?2 regardless of any other definitions of]
operator+

If the first operand of the operator is an object or reference to an object oKcthgsoperator could be
implemented by a member operator functiorKofA set of candidate member functions is constructed for
the operator-function-idas if it were named in a member call as a member of the first operand according to
the rules in 13.2.1.

If the operator is either a unary or binary operator (sections 13.4.1, 13.4.2, or 13.4.7) and either operand has
a type that is a class, reference to a class, an enumeration, or a reference to an enumeration, the operator
could be implemented by a non-member operator function. A set of candidate functions is constructed for
the operator-function-icas if it were named in an ordinary call according to the rules in 13.2.1.

If both sets of candidate functions described above are empty, the operator is assumed to be a built-in oper-
ator and interpreted accordingly. Otherwise, the two sets are combined into one set of candidate functions
from which an appropriate function is selected according to the argument matching rules defined in 13.2.2.

14 Templates [temp]

A classtemplatedefines the layout and operations for an unbounded set of related types. For example, a
single class templateist might provide a common definition for list oft , list of float , and list of
pointers toShapes. A functiontemplatedefines an unbounded set of related functions. For example, a
single function templateort() might provide a common definition for sorting all the types defined by
theList class template.

A templatedefines a family of types or functions.

template-declaration:
template < template-parameter-list- declaration

template-parameter-list:
template-parameter
template-parameter-list template-parameter

Thedeclarationin atemplate-declaratiomust declare or define a function or a class, define a static data
member of a template class, or define a template member of a classmplate-declarations a
declaration A template-declaratioms a definition (also) if itsleclarationdefines a function, a class, or a

static data member of a template class. There must be exactly one definition for each template in a pro-
gram. There can be many declarations.

The names of a template obeys the usual scope and access control rtéesplaie-declaratiormay O

appear only as a global declaration, as a member of a namespace, as a member of a class, or as a Member of
a class template. A member template may natitbeal . A destructor may not be a template. A local

class may not have a member template.

A template shall not have C linkage. If the linkage of a template is something other than-¢ e C

behavior is implementation-defined. O
A vector class template might be declared like this: O
template<class T> class vector {
T*v;
int sz;
public:

vector(int);

T& operator[](int);

T& elem(int i) { return v[i]; }
...

h

The prefixtemplate <class T> specifies that a template is being declared and thateaid T will be

used in the declaration. In other wordector is a parameterized type wilhas its parameter. A clasg]
template definition specifies how individual classes can be constructed much as a class definition specifies
how individual objects can be constructed. O

A member template may be defined within its class or separately. For example: O

14-2 Templates DRAFT: 27 May 1994 14 Templates

template<class T> class string { a
public: a
template<class T2> compare(const T2&); a
template<class T2> string(const string<T2>& s) { /* ... */ } a
... a
2 0
template<class T> template<class T2> string<T>::compare(const T2& s) a
{ a
... a
} 0
14.1 Template names [temp.names]
1 A template can be referred to byeanplate-id
template-id:
template-name< template-argument-list-
template-name:
identifier
template-argument-list:
template-argument
template-argument-list template-argument
template-argument:
assignment-expression
type-id
template-name ad
2 A template-icthat names a template class dass-namg9).
3 A template-idthat names a defined template class can be used exactly like the names of other defined
classes. For example:
vector<int> v(10);
vector<int>* p = &v;
Template-id that name functions are discussed in 14.9.
4 A template-idthat names a template class that has been declared but not defined can be used exactly like
the names of other declared but undefined classes. For example:
template<class T> class X; // X is a class template
X<int>* p; // ok: pointer to undefined class X<int>
X<int>x; /I error: object of undefined class X<int>
5 The name of a template followed byads always taken as the beginning ofeaplate-idand never as a

name followed by the less-than operator. Similarly, the first non-nestisdtaken as the end of the
template-argument-ligather than a greater-than operator. For example:

template<int i> class X { /* ... */ }

X< 1>2 >x1; /] syntax error
X<(1>2)>x2; I/ ok

template<class T>class Y {/* ... */ }
X<Y<1>>x3;// ok

14.1 Template names DRAFT: 27 May 1994 Templates 13

HBOX 62 g
[Bhould we bless a hack allowiXgY<1>>? (yes)O

The name of a class template may not be declared to refer to any other template, class, function, object,
namespace, value, or type in the same scope. A global template name shall be unique in a program.
14.2 Name resolution [temp.res]

A name used in a template is assumed not to name a type unless it has been explicitly declared to refer to a
type in the context enclosing the template declaration or in the template itself before its use. For example:

/I no B declared here
class X;
template<class T> class Y {

class Z; // forward declaration of member class
typedef T::A; /[A is a type name

void f() {
X* al; I/l declare pointer to X O
T* az; I/l declare pointerto T O
Y* a3; /l declare pointerto Y O
Z* a4; /l declare pointer to Z 0O
T::A* a5; // declare pointer to T's A O
B* a6; /I B is not a type name: O
/I multiply B by a6 O
}
b
The construct: O
type-name-declaration: O
typedef qualified-name; a

is adeclarationthat states thajualified-namemnust name a type, but gives no clue to what that type might
be. The leftmost identifier of thgualified-namemust be demplate-argumemame.

EBOX 63 B
O have chosen the most restrictive variant of this idea. We ought to consider if the construct shquld be
Callowed for a nongqualified name, and if the construct would be useful outside templates. a

Knowing which names are type names allows the syntax of every template declaration to be checked. Syn-
tax errors in a template declaration can therefore be diagnosed at the point of the declaration exactly as
errors for non-template constructs. Other errors, such as type errors, cannot be diagnosed until later; such
errors may be diagnosed at the point of instantiation or at the point where member functions are gdnerated
(14.3). Errors that can be diagnosed at the point of a template declaration, may be diagnosed there or later
together with the type errors.

Three kinds of names can be used within a template definition:

— The name of the template itself, the names oft¢heplate-parametsy and names declared withiri!
the template itself.

— Names from the scope of the template definition.

— Names dependent ortemplate-argumerftom the scope of a template instantiation. O

14-4 Templates DRAFT: 27 May 1994 14.2 Name resolution

For example:

#include<iostream.h>

template<class T> class Set {

T p;
int cnt;
public:
Set();
Set<T>(const Set<T>&);
void printall()
for (inti = 0; i<cnt; i++)
cout << p[i] <<’\n’;
}
...
h
When looking for the declaration of a hame used in a template definition the usual lookup rules (9.3) are
first applied. Thus, in the example,is the local variablé declared irprintall, cnt is the member
cnt declared inSet , andcout is the standard output stream declareibgtream.h . However, not [

every declaration can be found this way, the resolution of some names must be postponed until the actual
template-argumenis known. For example, theperator<< needed to prinp[i] cannot be known
until it is known what typd is (14.2.3).

14.2.1 Locally declared names [temp.local]

Within the scope of a template or a specialization of a template the name of the template is equivalent to the
name of the template qualified by ttenplate-parameterThus, the constructor f@et can be referred to

asSet() orSet<T>() . Other specializations (14.5) of the class can be referred to by explicitly qualify-

ing the template name with appropritgenplate-argumest For example: O

template<class T> class X {
X*p; /l meaning X<T>
X<T>* p2;
X<int>* p3;

I3

template<class T> class Y;

class Y<int> {
Y* p; /l meaning Y<int>

Oooo o

I3
See 14.6 for the scope teimplate-parameter

14.2.2 Names from the template’s enclosing scope [temp.encl]

If a name used in a template isn’t defined in the template definition itself, names declared in the scope
enclosing the template are considered. If the name used is found there, the name used refers to the name in
the enclosing context. For example:

14.2.2 DRAFT: 27 May 1994 Templates 6
Names from the template’s enclosing scope

void g(double);

void h();
template<class T> class Z {
public:
void f() {
g(1); // calls g(double)
h++; // error: cannot increment function
}
h

void g(int); // not in scope at the point of the template
/I definition, not considered for the call g(1)

In this, a template definition behaves exactly like other definitions. For example:
void g(double);

void h();
class ZZ {
public:
void f() {
g(1); // calls g(double)
h++; // error: cannot increment function
}
J5

void g(int); // not in scope at the point of class ZZ
/I definition, not considered for the call g(1)

Note that if an implementation somehow replicates class or template definitions so that names used in the
class or template bind to different names in different compilations, the one-definition rule has been violated
and any use of the class or template is ill-formed. Violation of the one-definition rule by template instantia-
tion is a non-required diagnostic.

ox 64 g
[Are violations of the one-definition rule required if violation is in a single file? (o)

14.2.3 Dependent names [temp.dep]

Some names used in a template are neither known at the point of the template definition nor declared within
the template definition. Such names shall dependtemplate-argumerdnd shall be in scope at the poiriil
of the template instantiation (14.3). For example:

class Horse {
...

b
ostreamé& operator<<(ostreamé&,const Horse&); 0

void hh(Set<Horse>& h)

{
h.printall();
}
In the call ofSet<Horse>::printall() , the meaning of the< operator used to primg[i] in the
definition of Set<T>::printall() (14.2), is

operator<<(ostream&,const Horse&);

This function takes an argument of tyigerse and is called from a template withemplate-parametef [

14-6 Templates DRAFT: 27 May 1994 14.2.3 Dependent hames

for which thetemplate-argumeris Horse . Because this function depends dermplate-argumerthe call O
is well-formed.

A function calldepends om template-argumerif the call would have a different resolution or no resollt
tion if the actual template type were missing from the program. Examples of calls that depend on an argu-

ment typer are: g
1) The function called has a parameter that dependisacnording to the type deduction rules (14.9.2).
For examplef(T) , f(Vector<T>) , andf(const T*) . g

2) The type of the actual argument dependsl orFor examplef(T(1)) , f(t) , f(g(t) , and

f(&t) assuming that is aT. O

3) A call is resolved by the use of a conversioff without either an argument or a parameter of the

called function being of a type that depended @s specified in (1) and (2). For example: O
struct B { }; a
struct T: B{}; a
struct X { operator T(); }; O
void f(B); a
void g(X x) a

O

f(x); // meaning f(B(x.operator T())) a

/I so the call f(x) depends on T a

} 0

H Box65 B

g It has been suggested that a full list of cases would be a better definition than the generalfule we

0 decided onin San Jose. | strongly prefer a general rule, but we should be open to clarifications iflpeople

0 feel the need for them.

This ill-formed template instantiation uses a function that does not depertdraplate-argumest O
template<class T> class Z { g
public:

void f() {
g(2); // g() not found in Z's context.
/I Look again at point of instantiation
}
2
void g(int);
void h(const Z<Horse>& x) t
x.f(); /1 error: g(int) called by g(1) does not depend O
I/l on template-parameter “Horse” O
}
The callx.f() gives raise to the specialization: a

Z<Horse>::f() { g(1); }

The callg(1) would call g(int) , but since that call in no way depends on thmplate-argument O
Horse and becausg(int) wasn't in scope at the point of the definition of the template, thex£gll O
is ill-formed.

14.2.3 Dependent names DRAFT: 27 May 1994 Templates-14

On the other hand:

void h(const Z<int>& y) a
y.f(); // fine: g(int) called by g(1) depends O
I/l on template-parameter “int” O
}
Here, the caly.f() gives raise to the specialization: a

Z<int>:f() { g(1); }

The callg(1) callsg(int) , and since that call depends on theplate-argumerint , the cally.f()
is acceptable eventhougkint) wasn't in scope at the point of the template definition.

A name from a base class may hide the namdeahplate-parameterFor example:

struct A {
struct B { /* ... */ };
I3

template<class B> struct X : A {
Bb; //AsB

OooOoOo googo o oo

h

A name of a member may hide the name ¢éraplate-parametein a member function definition. Ford
example:

template<class T> struct A {
struct B { /* ... */ };
void f();

2

template<class B> void A::f()

{
}

B b; // A’s B, not the template parameter

OoOoOonOo oooo

14.2.4 Non-local names declared within a template [temp.inject]

Names that are not template members can be declared within a template class or function. Howewvr, such
declarations must match declarations in the scope at the point of their declaration or instantiation. For
example:

void f(); M
/I'noY, Z, or g here O
template<class T> class X { O
friend class Y; // error: No Y in scope O
class Z * p; [/ error: No Z in scope ad
friend X operator+(const X&, const X&); // checking delayed ad
friend void f(); // ok 0
friend void f(T); // checking delayed ad
3 O
class C{ ad
friend C operator+(const C&, const C&); O
b O
void f(C); ad
classD {}; O

14-8 Templates DRAFT: 27 May 1994 14.2.4
Non-local names declared within a template

void g() ad
O
X<C>c; [/ ok: operator+(const C&, const C&) and f(C) in scope O
X<D>d; // error: no operator+(const D&, const D&) or f(D) g
} O
14.3 Template instantiation [temp.inst]

A class generated from a class template is called a generated class. A function generated from a function
template is called a generated function. A static data member generated from a static data member template
is called a generated static data member. A class defined teithpdate-idas its name is called an explic-

itly specialized class. A function defined witheaplate-idas its name is called an explicitly specialized
function. A static data member defined withemplate-idas its name is called an explicitly specialized

static data member. A specialization is a class, function, or static data member that is either generated or
explicitly specialized; seetemp.dcls.

The act of generating a class, function, or static data member from a template is commonly referred to as
template instantiation.

The point of instantiation of a template is the point where names dependenttemplete-argumerdare O
bound. That point is immediately before the global declaration containing the first use of the terplate
requiring its definition. This implies that names used in a template definition cannot be bound to local
names. For example:

I/l void g(int); not declared here

template<class T> class Y {

public:
void f() { 9(1); }
I3
void k(const Z<int>& h)
{
void g(int);
h.f(); // error: g(int) called by g(1) not found
}

Each compilation unit in which the definition of a template is used has a point of instantiation for the class.
If this causes names used in the template definition to bind to different names in different compilations, the
one-definition rule has been violated and any use of the template is ill-formed Such violation doEs not
require a diagnostic.

A template can be either explicitly instantiated for a given argument list or be implicitly instantiated. A
template that has been used in a way that require a specialization of its definition will have the specializa-
tion implicitly generated unless it has either been explicitly instantiated (14.4) or explicitly specidlized
(14.5). A specialization will not be implicitly generated unless the definition of a template specialization is
required. For example:

template<class T> class Z {
void f();
void g();

14.3 Template instantiation DRAFT: 27 May 1994 Templates 10

void h()
{
Z<int> a; // instantiation of class Z<int> required
Z<char>* p; // instantiation of class Z<char> not required
Z<double>* q; // instantiation of class Z<double> not required
a.f(); // instantiation of Z<int>::f() required
p->g(); // instantiation of class Z<char> required, and
/I instantiation of Z<char>::g() required
}
Nothing in this example requiretass Z<double> , Z<int>::g() , orZ<char>::f() to be instan-

tiated. An implementation shall not instantiate a function or a class that does not require instanfiation.
However, virtual functions may be instantiated for implementation purposes.

If a template for which a definition is in scope is used in a way that involves overload resolution or cahver-
sion to a base class, the definition of a template specialization is required. For example:

template<class T>class B {/* ... */ };
template<class T> class D : public B<T> { /* ... */ }; g

void f(void*);
void f(B<int>*);

void g(D<int>* p, D<char>* pp) 0

f(p); // instantiation of D<int> required: call f(B<int>*)

B<char>* g = pp; // instantiation of D<char> required: t
/I convert D<char>* to B<char>* ad
}
If an instantiation of a class template is required and the template is declared but not defined, the pragram is
ill-formed. For example: O
template<class T> class X; O
A<char> ch; /I error: definition of X required a

The result of an infinite recursion in instantiation is undefined. In particular, an implementation is alldwed
to report an infinite recursion as being ill-formed. For example:

template<class T> class X {
X<T>*p; /] ok
X<T*> a; // instantiation of X<T> requires
/I the instantiation of X<T*> which requires
/I the instantiation of X<T**> which ...

h

No program shall explicitly instantiate any template more than once, both explicitly instantiate and eéxplic-
itly specialize a template, or specialize a template more than once for a giveriesaplate-argumest [
An implementation is not required to diagnose a violation of this rule.

An explicit specialization or explicit instantiation of a template must be in the namespace in which théltem-
plate was defined. Implicitly generated template classes, functions, and static data members are placed in
the namespace where the template was defined. For example: O

10

14-10 Templates DRAFT: 27 May 1994 14.3 Template instantiation

namespace N {
template<class T> class X {/* ... */ };
template<class T>class Y {/* ... */ };
template<class T> class Z {

void f(int i) { g(i); }
...

ad

a

ad

O

ad

a

2 a

class X<int> { /* ... */ }; I/ ok: specialization in same namspace d

} 0

template class Y<int> {// error: explicit instantiation a

I in different namespace a

... a

2 0

void g(int); O

namespace M { a

void g(int); a

N::Z<int> nz; // which g() does N::Z<int>::f() call? a

I1:9() a

nx.f(2); a

} ad

The reasong() is called is that the point of instantiation is before M O
EBox 66 ED

[T his resolution hasn’t specifically been voted on. The behavior is chosen to match template uses ip[tlasses

Cand functions. ™

Recursive instantiation is possible. For example: ad

template<int i> int fac() { return i>1 ? i*fac<i-1>() : 1; } O

int f() 0

{ ad

return fac<17>(); a

} ad

There shall be an implementation quantity that specifies the limit on the depth of recursive instantiations.

14.4 Explicit instantiation [temp.explicit]
The syntax for explicit instantiation is:

instantiation:
template specialization

For example:
template class vector<char>{/* ... */ }; O
/l instantiate sort(vector<char>&): O
template void sort<char>(vector<char>&); t

A trailing template-argumennay be left unspecified in an explicit instantiation or explicit specializatioriof
a template function provided it can be deduced from the function argument type. For example: O

/I deduce template-argument: O
template void sort<>(vector<int>&);

14.4 Explicit instantiation DRAFT: 27 May 1994 Templates 1411

EBOX 67 %D
[Can we instantiate if there is no definition in scope? Yes, but answering this question requires a nmodel for
Ctompilation of templates. See 84 of N0413/0826. 0

The explicit instantiation of a class implies the instantiation of all of its members. Thus, it is not possible to
both explicitly instantiate a class and to specialize some of its members for tegingate-argument-list

BBox 68 O

0
an we instantiate a class if the definition of some of its member functions are not in scope? Yes, but
ranswering this question requires a model for compilation of templates. See 84 of ANSI X3J16/94+0026,
0SO WG21/N0413. g

14.5 Template specialization [temp.spec]

A specialized template function, template class, or static member of a template can be declared by @ decla-
ration where the declared name template-id that is:

specialization: ad
template-name< template-argument-list> declaration O

For example:
template<class T> class stream; O

class stream<char>{ /* ... */ };

template<class T> void sort(vector<T>& v) { /* ... */ }

void sort<char*>(vector<char*>& v) {/*...*/} g

Given these declarationsfream<char> will be used as the definition of streams affar s; other
streams will be handled by template classes generated from the class template. Sontadiyar*> O
will be used as the sort function for arguments of typetor<char*> ; othervector types will be
sorted by functions generated from the template.

A declaration of the template being specialized must be in scope at the point of declaration of a specializa-
tion. For example:

class X<int> { /* ... */ }; I/ error: X not a template
template<class T> class X { ... };

class X<char*> { /* ... */ }; I/ fine: X is a template

An explicitly specialized class or an explicitly specialized function must be declared before it can beused.
Specializing a class or a function after it has been used in a translation unit or in another translatioriJunit is
ill-formed. For example:

template<class T> void sort(vector<T>& v) { /* ... */ }

void f(vector<String>& v)

{

sort(v); // use general template
Il sort(vector<T>&), T is String

}

void sort<String>(vector<String>& v); // error: specialize after use
void sort<>(vector<char*>& v); // fine sort<char*> not yet used

If a function or class template has been explicitly specialized tiemplate-argumeriist no specialization 0

14-12 Templates DRAFT: 27 May 1994 14.5 Template specialization

will be implicitly generated for thaemplate-argumeniist.

Note that a function with the same name as a template and a type that exactly matches that of a teimplate is
not a specialization (14.9.4).

14.6 Template parameters [temp.param]
The syntax fotemplate-parametsris: g

template-parameter:
type-parameter
parameter-declaration

type-parameter:
class identifier,y,
class identifier,,, = type-name
typedef identifier,,
typedef identifier,,, = type-name

template < template-parameter-list class identifier,, t

template < template-parameter-list- class identifier,,, = template-name O

For example: O
template<class T> myarray { /* ... */ }; O
template<class K, class V, template<class T> class C = myarray> a

class Map { a

C<K> key; O

C<V> value; O

... a

h 0

[Box 69
O

O
O
Orhis grammar leaves out namespaeenplate-parametsr See 82 of ANSI X3J16/94-0026, 1S
ONVG21/N0413. O

HBox 70 B 0
Orhis grammar should be modified to accefptict as well aglass for templatetemplate-parametst O]

Default arguments may not be specified in a declaration or a definition of a specialization. O

A type-parametedefines itsidentifier to be atype-idin the scope of the template declaration.type- [
parametermay not be redeclared within its scope (including nested scopes). A notyhgsparameter
may not be assigned to or in any other way have its value changed. For example:

template<class T, inti> class Y {

int T; // error: template-parameter redefined O
void f() {
char T; // error: template-parameter redefined O
i++; I error: change of template-argument value O
}
b
template<class X> class X; // error: template-parameter redefined O

A template-parametethat could be interpreted as either garameter-declaratioror a type-parameter
(because itsdentifier is the name of an already existing class) is takentggeaparameter A template- [
parameterhides a variable, type, constant, etc. of the same name in the enclosing scope. For example:

14.6 Template parameters DRAFT: 27 May 1994 Templates 343

classT{/*...*};

int i ad
template<class T, T i> void f(T t) g
{ O
Ttl=ji // template-arguments T and i O
“Tt2=:i; /lglobals Tandi 0O
} O

Here, the templatk has aype-parametecalledT, rather than an unnamed non-type parameter of €lass
There is no semantic difference betwekrss andtypedef in atemplate-parameter

There are no restrictions on what can Heraplate-argumertype beyond the constraints imposed by thé
set of argument types (14.7). In particular, reference types and types contaigjuglifiers are
allowed. A non-referencéemplate-argumentannot have its address taken. When a non-referefice
template-argumens used as an initializer for a reference a temporary is always used. For example:

template<const X& x, int i> void f()

{
&x; Il ok
&i; // error: address of non-reference template-argument O
int& ri = i; // error: non-const reference bound to temporary O
const int& cri = i; // ok: reference bound to temporary O
}

Note that because there are no constant expression of floating type and standard conversions are nat applied
to template-argumestatemplate-parameterannot be of floating type. For example: O

template<double d> class X; // error
template<double* pd> class X; // ok
template<double& rd> class X; // ok

OooOoo

A defaulttemplate-argumenis a type or a value specified afterin a template-parameter A default O
template-argumennay be specified in a template declaration or a template definition. A function template
may not have defautemplate-argument The set of defautemplate-argumestavailable for use with all
template declaration or definition is obtained by merging the default arguments from the definition (if in
scope) and all declarations in scope in the same way default function arguments are (8.3.6). For example:

template<class T1, class T2 = int> class A;
template<class T1 = int, class T2> class A;

is equivalent to
template<class T1 = int, class T2 = int> class A,

If a template-parametehas a default argument all subsequemplate-parametsr must have a defaultdl
argument supplied in the same or previous declarations of the template. For example:

template<class T1 = int, class T2> class B; // error
A template-parametanay not be given default arguments by two different declarations in the same sdope.

template<class T = int> class X;
template<class T = int> class X { /*... */ }; /] error

The scope of eemplate-argumerdgxtends from its point of declaration until the end of its template. In far-
ticular, atemplate-parametecan be used in the declaration of subseqtemplate-parametsrand their O
default arguments. For example:

template<class T, T* p, class U = T>class X { /* ... */ };
template<class T> void f(T* p = new T);

A template-parameterannot be used in preceditegnplate-parametersr their default arguments. O

14-14 Templates DRAFT: 27 May 1994 14.6 Template parameters

Similarly, atemplate-argumenmnay be used in the specification of base classes. For example: O

template<class T> class X : public vector<T> { /* ... */ };
template<class T>class Y : public T {/* ... */ };

Note that the use of template-parametesis a base class implies that a class usedeas@ate-argument [
must be defined and not just declared.

14.7 Template arguments [temp.arg]

The types of théeemplate-argumentspecified in demplate-idmust match the types specified for the tem-
plate in itstemplate-parameter-listFor exampleyector s as defined in 14 can be used like this:

vector<int> v1(20);
vector<complex> v2(30);

typedef vector<complex> cvec; // make cvec a synonym
/I for vector<complex>
cvec v3(40); //v2 and v3 are of the same type

v1[3] =7;
v2[3] = v3.elem(4) = complex(7,8);

Non-type non-referenceemplate-argumestmust beconstant-expressienor addresses of objects or fundd
tions with external linkage. In particular, a string literal (2.9.4hasan acceptabléemplate-argument OJ
because a string literal is the address of an object with static linkage. For example:

template<class T, char* p> class X {

...

X(const char*q) {/* ... */ } O
2

X<int,"Studebaker"> x1; // error: string literal as template-argument g
char* p = "Vivisectionist";
X<int,p> x2; // ok

Nor is a local type or an unnamed type an acceptabiplate-argumentFor example: O

void f()

{
struct S {/*...* };

X<S,p> x3; /l error: local type used as template-argument O

}
Similarly, a referencéemplate-parametezannot be be bound to a temporary:
template<const int& CRI) struct B { /* ... */ };

B<1> b2; // error: temporary required for template argument

intc=1,
B<c> bl; // ok

oo o O O

A template has no special access rights tteitgplate-argumertypes. However, often a template doesrt
need any. For example:

14.7 Template arguments DRAFT: 27 May 1994 Templates 345

class 'Y {
private:
struct S {/*...*/ };
X<S> x; /l most operations by X on S do not lead to errors

I3
X<Y::S>y; /l most operations by X on Y::S leads to errors

The templateX can useY::S without violating any access rules as long as it uses only the access throligh a
template-argumenthat does not explicity mention A templatgpe-parametercan be used in anQd
elaborated-type-specifierHowever, a specialization of a template for whicty@e-parameteused this [
way is not in agreement with tieéaborated-type-specifi€ir.1.5) is ill-formed. For example:

template<class T> class X {
class T* p;
2

struct S {/* ... * };
union U {/* ... */'};
enumE {/* ... */};

X<S>s; [l fine

X<int> i; // error: template-argument must be a class
X<U>u; /I error: template-argument must be a class
X<E>e; [l error: template-argument must be a class

oo

An argument for demplate-parametenf reference type must becanstant-expressioran object or func-
tion with external linkage, or a static class member. A temporary object is not an acceptable argument to a
template-parametesf reference type.

When defaultemplate-argumentare used, éemplate-argumerlist can be empty. In that case the empty
<> brackets must still be used. For example:

template<class T = char> class String;
String<>* p; // ok: String<char>
String* q; // syntax error

The notion of “array type decay” does not applytémplate-parametsr For example:

template<int a[5]> struct S { /* ... */ }; t
int v[5];

int*p=v;

S<v> x; // fine

S<p>y; /l error

14.8 Type equivalence [temp.type]

Two template-id refer to the same class or function if themplatenames are identical and their argu-
ments have identical values. For example,

template<class E, int size> class buffer;

buffer<char,2*512> x;
buffer<char,1024> vy;

declares andy to be of the same type, and

14-16 Templates DRAFT: 27 May 1994 14.8 Type equivalence

template<class T, void(*err_fct)()>
class list{/*...*/ };

list<int,&error_handlerl> x1;
list<int,&error_handler2> x2;
list<int,&error_handler2> x3;
list<char,&error_handler2> x4;

declarex2 andx3 to be of the same type. Their type differs from the typed aindx4 .

14.9 Function templates [temp.fct]

A function template specifies how individual functions can be constructed. A family of sort functions, for
example, might be declared like this:

template<class T> void sort(vector<T>);

A function template specifies an unbounded set of (overloaded) functions. A function generated from a
function template is called a template function, so is an explicit specialization of a function templatg; see
_temp.dcls. Template arguments can either be explicitly specified in a call or be deduced from the func-
tion arguments.

14.9.1 Explicit template argument specification [temp.arg.explicit]

Template arguments can be specified in a call by qualifying the template function name by the [ist of
template-argumentexactly asemplate-argumestare specified in uses of a class template. For example:

void f(vector<complex>& cv, vector<int>& ci)

{
sort<complex>(cv); /I sort(vector<complex>)
sort<int>(ci); /I sort(vector<int>)

and

template<class U, class V> U convert(V v);

void g(double d) O
inti = convert<int,double>(d); // int convert(double) O
char ¢ = convert<char,double>(d); // char convert(double) O
}

Implicit conversions (4) are accepted for a function argument for which the parameter has been fixed by
explicit specification of &emplate-argumentFor example:

template<class T> void f(T);
class complex {

...
complex(double);

void g()

f<complex>(1); // ok, means f<complex>((complex(1))

14.9.2 Template argument deduction DRAFT: 27 May 1994 Templates 447

14.9.2 Template argument deduction [temp.deduct]

Template arguments that can be deduced from the function arguments need not be explicitly specified. For
example,

void f(vector<complex>& cv, vector<int>& ci)

{
sort(cv); /I sort(vector<complex>)
sort(ci); /I sort(vector<int>)
}
and
void g(double d) O
{
int i = convert<int>(d); //int convert(double) g
int ¢ = convert<char>(d); // char convert(double) t
}

A template type argumefitor a template non-type argumeéntan be deduced from a function argument
composed from these elements:

T
cv-list T

T*

T&

T[integer-constarjt
class-template-namd >

type(*)(T) O
type T::*

TM0

typdi] O

class-template-namé>
where theT in argument list form
type (*)(T)

includes argument lists with more than one arguments where at least one argument cantafisoa
these forms can be used in the same wdyiador further composition of types. For example,

X<int>(*)(v[6])

0
0
O
is of the form O

class-template-namd@> (*)(typdi]) a
which is a variant of O

type (*)(T) 0
wheretypeis X<int> andTisv[6] . O

Note that a major array bound is not part of a function parameter type so it can’t be deduced from dni argu-
ment:

14-18 Templates DRAFT: 27 May 1994 14.9.2 Template argument deduction

template<int i> void f1(int a[10][i]);

template<int i> void f2(int a[i][10]);

void g(int v[10][10]) O

f1(v); // ok: i deduced to be 10

f1<10>(v); // ok

f2(v); /I error: cannot deduce template-argument i
f2<10>(v); // ok

oOod

}

Nontype parameters may not be used in expressions in the function declaration. The type of the function
template-parametenust match the type of themplate-argumergxactly. For example:
template<char c>class A {/* ... */ }; t

template<int i> void f(A<i>); // error: conversion not allowed O
template<int i> void f(A<i+1>); // error: expression not allowed

Every template-parametespecified in theemplate-parameter-lisimust be either explicitly specified or
deduced from a function argument. If functiemplate-argumestare specified in a call they are specified
in declaration order. Trailing arguments can be left out of a list of exj@ioiplate-argument For exam-

ple,
template<class X, class Y, class Z> X f(Y,2);

void g()
{
f<int,char*,double>("aa",3.0);
f<int,char*>("aa",3.0); // Z is deduced to be double
f<int>("aa",3.0); // Y is deduced to be char*, and
/I Z is deduced to be double
f("aa",3.0); // error X cannot be deduced
}

A template-parameterannot be deduced from a default function argument. For example:

template <class T> void f(T =5, T =7);

void g()
{
f(1); Il fine: call f<int>(1,7)
fQ); /l error: cannot deduce T
f<int>(); // fine: call f<int>(5,7)
}
14.9.3 Overload resolution [temp.over]

A template function may be overloaded either by (other) functions of its name or by (other) template func-
tions of that same name. Overloading resolution for template functions and other functions of the same

name is done in the following three steps: O
1) Look for an exact match (13.2) on functions; if found, call it. O

2) Look for a function template from which a function that can be called with an exact match can be
generated; if found, call it. O

3) Look for match with conversions. For arguments to ordinary functions and for arguments to altem-

plate function that corresponds to parameters whose type does not depend on atdethlats [
parametey the ordinary best match rules apply. For template functions, only the following

14.9.3 Overload resolution DRAFT: 27 May 1994 Templates 349

conversions listed below applies. After the best matches are found for individual arguments, the
intersection rule (13.2.2) is used to look for a best match; if found, call it. O

For arguments that correspond to parameters whose type depends on a deduced template parameter, the
following conversions are allowed: O

— For a parameter of the forBxparams> , whereparams is a template parameter list contair-]
ing one or more deduced parameters, and argument of type “class derivdgi<fjpanams>" [
may be converted tB<params>. Additionally, for a parameter of the forBxparams>* , an [
argument of type “pointer to class derived froBxkparams>" may be converted to [

B<params>* . Similarly for references. g

— A pointer (reference) may be converted to a more qualified pointer (reference) type, accordihg to
the rules in 4.6 (4.7). O

— "“array of T” to “pointerto T.” O

— “function ...” to “pointer to function to”

If no match is found the call is ill-formed. In each case, if there is more than one alternative in theé first
step that finds a match, the call is ambiguous and is ill-formed.

A match on a template (step (2)) implies that a specific template function with parameters that éxactly
match the types of the arguments will be generatesinp.dcls). Not even trivial conversions (13.2)
will be applied in this case.

Box 71 O

O
This is too strict. To match existing usage, a proposal for allowing at least some trivial conversiofns will
undoubtedly be accepted. See the proposal for a more general overloaded mechanism in
N0407/94-0020 (issue 3.9). g

OoOooom

The same process is used for type matching for pointers to functions (13.3).
Here is an example:

template<class T> T max(T a, T b) { return a>b?a:b; };

void f(int a, int b, char c, char d)

{

int m1 = max(a,b); // max(int a, int b)

char m2 = max(c,d); // max(char a, char b)

int m3 = max(a,c); // error: cannot generate max(int,char)
}

For example, adding
int max(int,int);

to the example above would resolve the third call, by providing a function that could be called for
max(a,c) after using the standard conversiortoér toint forc.

Here is an example involving conversions on a function argument involvethlate-parametededuc- 0
tion:

template<class T> struct B { /* ... */ };
template<class T> struct D : public<T>{/* ... */ };
template<class T> void f(B<T>&);

OooQg d

10

11

14-20 Templates DRAFT: 27 May 1994 14.9.3 Overload resolution

void g(B<int>& bi, D<int>& di) a
{ 0
f(bi); // f(bi) O
f(di); // f((B<int>&)di) a
} ad

Here is an example involving conversions on a function argument not involviemnplate-parameter O

deduction: O
template<class T> void f(T*,int); a
template<class T> void f(T,char); O
void h(int* pi, int i, char c) a
{ O

f(pi,i); 1/ f<int>(pi,i) O
f(pi,c); // f<char*>(pi,c) a
f(i,c); M f<int>(i,c); O
f(i,i); /1 f<int>(i,char(i)) O
} O

A function template definition is needed to generate specific versions of the template; only a functionl tem-
plate declaration is needed to generate calls to specific versions.

In case a call has explicitly qualifigeémplate-argumestand requires overload resolution, the explicit
qualification is used first to determine the set of overloaded functions to be considered and overload resolu-
tion then takes place for the remaining arguments. For example:

template<class X, class Y, class Z> void f(X,Y*,2); O
template<class X, class Y, class Z> void f(X*,Y,Z2); O

void g(char* pc, int* pi)

(0,0,0); // error: ambiguous: f<int,int,int>(int,int*,int)

I or f<int,int,int>(int*,int,int) ?
f<char>(pc,pi,0); // f<char,int*,int>(char*,int*,int)
f<char*>(pc,pi,0); // f<char*,int,int>(char*,int*,int) O
}
14.9.4 Overloading and specialization [temp.over.spec]

A template function can be overloaded by a function with the same type as a potentially generated function.
For example:

template<class T> T max(T a, T b) { return a>b?a:b; }
int max(int a, int b);

int min(int a, int b);
template<class T> T min(T a, T b) { return a<b?a:b; }

Such an overloaded function is not a specialization. The declaration simply guides the overload resolution.
This implies that a definition ahax(int,int) andmin(int,int) will be implicitly generated from
the templates. If such implicit instantiation is not wanted, the specialization syntax should be used instead:

template<class T> T max(T a, T b) { return a>b?a:b; }
int max<int>(int a, int b);

Defining a function with the same type as a template specialization that is called is ill-formed. For Exam-
ple:

14.9.4 Overloading and specialization DRAFT: 27 May 1994 Templates 421

template<class T> T max(T a, T b) { return a>b?a:b; }
int max(int a, int b) { return a>b?a:b; }

void f(int x, int y)
{

}

If the two definitions ofnax() are not in the same translation unit the diagnostic is not required. If a dépa-
rate definition of a functiomax(int,int) is needed, the specialization syntax can be used. If the ¢on-
versions enabled by an ordinary declaration is also needed, both can be used. For example: O

max(x,y); // error: duplicate definition of max() O

template<class T> T max(T a, T b) { return a>b?a:b; }
int max<>(int a, intb) { /* ... */ }

void g(char x, chary)

{
}

int max(int,int);

max(x,y); // max<char>(a,b)

void f(char x, char y)

{
}

max(x,y); // max<int>(iny(x),int(y))

Ooooo o oooo oOod

14.10 Member function templates [temp.mem.func]

A member function of a template class is implicitly a template function wittethplate-parametsrof its [
class as iteemplate-parametsr For example,

template<class T> class vector {
T*v;
int sz;

public:
vector(int);
T& operator[](int);
T& elem(int i) { return V[i]; }
...

b
declares three function templates. The subscript function might be defined like this:
template<class T> T& vector<T>::operator[](int i)
if (i<0 || sz<=i) error("vector: range error");

return V[i];

}

The template-argumenfior vector<T>::operator[]() will be determined by the vector to whichl
the subscripting operation is applied.

vector<int> v1(20);

vector<complex> v2(30);

v1[3]=7; Il vector<int>::operatorf]()
v2[3] = complex(7,8); [/ vector<complex>::operator[]()

14-22 Templates DRAFT: 27 May 1994 14.11 Friends

14.11 Friends [temp.friend]

A friend function of a template may or may not be a template function. For example,

template<class T> class task {
...
friend void next_time();
friend task<T>* preempt(task<T>*);
friend task* prmt(task®); // task is task<T>
friend class task<int>;
...

h

Here,next_time() andtask<int> become friends of athsk classes, and eathsk has appropri- O
ately typed functionpreempt() andprmt() as friends. Thereempt functions might be defined as a
template.

template<class T> task<T>* preempt(task<T>*t) { /* ... */ } t
A friend template may not be defined within a class. For example: ad
class A { a
friend template<class T> B; Il ok a
friend template<class T> f(T); // ok a
friend template<class T> BB { /* ... [*}; I/ error a
friend template<class T> ff(T){ /* ... /* } // error O
I3 0
14.12 Static members and variables [temp.static]

Each template class or function generated from a template has its own copies of any static variables or
members. For example,

template<class T> class X {
static T s;
...

I3

X<int> aa;

X<char*> bb;
HereX<int> has a static membsrof typeint andX<char*> has a static memberof typechar* .
Static class member templates are defined similarly to member function templates. For example,

template<class T> T X<T>:is = 0;
int X<int>::s = 3;

Similarly,

template<class T> f(T* p)
{

static T s;

...

k

void g(int a, char* b)
{

f(&a);

f(&b);

14.12 Static members and variables DRAFT: 27 May 1994 Templates 128

Here f(int*) has a static membexr of typeint and f(char**) has a static membexr of type
char* . O

15 Exception handling [except]

Exception handling provides a way of transferring control and information from a point in the executidn of
a program to aexception handleassociated with a point previously passed by the execution. A handler
will be invoked only by ahrow-expressiomvoked in code executed in the handlersblockor in func-

tions called from the handlerts/-block

try-block:

try compound-statement handler-seq
handler-seq:

handler handler-seg
handler:

catch (exception-declaration) compound-statement

exception-declaration:
type-specifier-seq declarator
type-specifier-seq abstract-declarator
type-specifier-seq

throw-expression:
throw assignment-expressigp

A try-block is a statemen{6). A throw-expressions of typevoid . A throw-expressions sometimes
referred to as &hrow-point” Code that executestlrow-expressiofis said to“throw an exceptiofi;code
that subsequently gets control is call€dhandler”

A goto , break , return , orcontinue statement can be used to transfer control outtof-bBlockor [
handler, but not into one. When this happens, each variable declaredrinlifeek will be destroyed in O

the context that directly contains its declaration. For example, O
lab: try { a

T1 11, a

try { a

T2 t2; a

if (condition d

goto lab; O

} catch(...) { I* handler 2 */ } a

} catch(...) { /* handler 1 */ } a

Here, executingjoto lab; will destroy firstt2 , thentl . Any exception raised while destroyitg [
will result in executinghandler 2 any exception raised while destroyitly will result in executing O

handler 1

15.1 Throwing an exception [except.throw]

Throwing an exception transfers control to a handler. An object is passed and the type of that object deter-
mines which handlers can catch it. For example,

throw "Help!";

15-2 Exception handling DRAFT: 27 May 1994 15.1 Throwing an exception

can be caught bylandlerof somechar* type:

try {
}

catch(const char* p) {
/l handle character string exceptions here
}

...

and

class Overflow {
...

public:
Overflow(char,double,double);

h

void f(double x)

{
...

throw Overflow('+',x,3.45e107);
}

can be caught by a handler

try {
...

f(1.2);
I...

catch(Overflow& 00) {
/I handle exceptions of type Overflow here
}

When an exception is thrown, control is transferred to the nearest handler with an appropriateeaype;
est means the handler whosey-block was most recently entered by the thread of control and not yet
exited;"appropriate typeis defined in 15.3.

The operand of throw shall be of a type with no ambiguous base classes. That is, it shall be possilile to
convert the value thrown unambiguously to each of its base cff¥ses. O

A throw-expressiolnitializes a temporary object of the static type of the operaridroiv and uses that[
temporary to initialize the appropriately-typed variable named in the handler. If the static type &f the
expression thrown is a class or a pointer or reference to a class, there shall be an unambiguous cdnversion
from that class type to each of its accessible base classes. Except for that restriction and forthe redirictions
on type matching mentioned in 15.3 and the use of a temporary variable, the operaod ois treated

exactly as a function argument in a call (5.2.2) or the operantetdira statement.

The memory for the temporary copy of the exception being thrown is allocated in an implementation-
defined way. The temporary persists as long as there is a handler being executed for that exceptiondIn par-
ticular, if a handler exits by executinglaow; statement, that passes control to another handler forlthe
same exception, so the temporary remains. If the use of the temporary object can be eliminated without
changing the meaning of the program except for the execution of constructors and destructors associated
with the use of the temporary object (12.2), then the exception in the handler may be initialized directly
with the argument of the throw expression.

A throw-expressiomvith no operand rethrows the exception being handled without copying it. For exam-
ple, code that must be executed because of an exception yet cannot completely handle the exception can be
written like this:

29 f the value thrown has no base classes or is not of class type, this condition is vacuously satisfied.

15.1 Throwing an exception DRAFT: 27 May 1994 Exception handling 3

try {
...

catch (...) { // catch all exceptions
I/l respond (partially) to exception

throw; Il pass the exception to some
/I other handler

}

The exception thrown is the one most recently caught and not finished. An exception is consideredltaught
when initialization is complete for the formal parameter of the corresponding catch clause, or[When
terminate() orunexpected() is entered due to a throw. An exception is considered finished when
the corresponding catch clause exits. O

If no exception is presently being handled, executinghm@w-expressionwith no operand calls
terminate() (15.5.1).

15.2 Constructors and destructors [except.ctor]

As control passes from a throw-point to a handler, destructors are invoked for all automatic objects con-
structed since thieey-blockwas entered.

An object that is partially constructed will have destructors executed only for its fully constructed sub-
objects. Should a constructor for an element of an automatic array throw an exception, only the constructed
elements of that array will be destroyed. If the object or array was allocatatwm@xpressiqrthe stor- [

age occupied by that object is sometimes deleted also (5.3.4).

The process of calling destructors for automatic objects constructed on the path tiigivioak to a
throw-expressiois called”stack unwinding

15.3 Handling an exception [except.handle]

The exception-declaratiom a handlerdescribes the type(s) of exceptions that can cause that handler fb be
executed. Thexception-declaratioshall not denote an incomplete type. O

A handlerwith typeT, const T, T&, orconst T&is a match for ahrow-expressiomwith an object of O
typeE if

[1] T andE are the same type, or
[2] T is an accessible (4.6) base clask af the throw point, or

[3] T is a pointer type ank is a pointer type that can be converted toy a standard pointer con-
version (4.6) at the throw point.

For example,

class Matherr { /* ... */ virtual vf(); };

class Overflow: public Matherr { /* ... */ };
class Underflow: public Matherr { /* ... */ };
class Zerodivide: public Matherr { /* ... */ };

void f()
{
try {
a0):
}

15-4 Exception handling DRAFT: 27 May 1994 15.3 Handling an exception

catch (Overflow 00) {
...
}

catch (Matherr mm) {
...
}

}

Here, theOverflow handler will catch exceptions of tygaverflow and theMatherr handler will
catch exceptions of typdatherr and all types publicly derived frodatherr including Underflow
andZerodivide

The handlers for &ry-blockare tried in order of appearance. That makes it possible to write handlerglthat
can never be executed, for example by placing a handler for a derived class after a handler for a corféspond-
ing base class.

A ... in a handler'ssxception-declaratiofiunctions similarly to... in a function parameter declara-
tion; it specifies a match for any exception. If present, a handler must be the last handler fortiis
block

If no match is found among the handlers fdryablock the search for a matching handler continues in a
dynamically surroundingtry-block If no matching handler is found in a program, the function
terminate() (15.5.1) is called.

An exception is considered handled upon entry to a handler. The stack will have been unwound at that
point.
15.4 Exception specifications [except.spec]

A function declaration lists exceptions that its function might directly or indirectly throw by usinglan
exception-specificatioas a suffix of its declarator. O

%ox 72 g 0
[(Bhould it be possible to use more general typesttianids in exception-specificati@? [HN|

exception-specification:
throw (type-id-list,)

type-id-list:
type-id
type-id-list , type-id

An exception-specificatioshall appear only in a context that causes it to apply directly to a declaratiah or

definition of a function or member function. For example: O
extern void f() throw(int); /I OK a
extern void (*fp) throw (int); /I ill-formed a
extern void g(void f() throw(int)); //ill-formed O

If any declaration of a function has arception-specificatigrall declarations, including the definition, of
that function shall have axception-specificatiowith the same set afpe-ics. If a virtual function has anJ
exception-specificatigrall declarations, including the definition, of any function that overrides that virfual
function in any derived class must haveexgeption-specificatioat least as restrictive as that in the base
class. For example: O

15.4 Exception specifications DRAFT: 27 May 1994 Exception handling 45

struct B { a

virtual void f() throw (int, double); a

virtual void g(); O

b O

struct D: B { a

void f(); /l'ill-formed O

void g() throw (int); /I OK a

5 O

The declaration db::f is ill-formed because it allows all exceptions, whe@as allows onlyint and O

double .
Types may not be defined éxception-specificatian a

An exception-specificationan include the same class more than once and can include classes reldied by
inheritance, even though doing so is redundant. eXoeption-specificatiortan include classes with(d
ambiguous base classes, even though throwing objects of such classes is ill-formed (15.1). An exdéeption
specification can also include identifiers that represent incompletest‘g)pes. a

If a classX is in thetype-id-listof the exception-specificationf a function, that function is said &low [
exception objects of classor any class publicly derived frodd Similarly, if a pointer typér* is in the
type-id-listof the exception-specificationf a function, the function allows exceptions of tyge or that
are pointers to any type publicly derived frafh.

%ox 73

d
(This still needs to deal wittonst andvolatile ad

Whenever an exception is thrown and the search for a handler (15.3) encounters the outermost block of a
function with anexception-specificatiqgrthe functionunexpected() is called (15.5.2) if thexception-
specificationdoes not allow the exception. For example,

class Z: public X { };
class W {};

void f() throw (X,Y)
{

intn=0;

if (n) throw X(); /l OK

if (n) throw Y(); /[also OK

throw W(); [/ will call unexpected()

}

An implementation shall not reject an expression merely because when executed it throws or might throw
an exception that the containing function does not allow. For example,

extern void f() throw(X,Y);
void g() throw(X)
{

f0; /1 OK
}

the call tof is well-formed even though when callédmight throw exceptiorY thatg does not allow.

Y This makes sense, for example, in declaring a function that is defined elsewhere. It probably does not make sense in a function def-
inition, because the type would have to be completed before an object of that type could be constructed and thrown.

15-6 Exception handling DRAFT: 27 May 1994 15.4 Exception specifications

A function with noexception-specificatioallows all exceptions. A function with an emptyception-
specificationthrow() , does not allow any exceptions.

An exception-specificatiois not considered part of a function’s type.

15.5 Special functions [except.special]

The exception handling mechanism relies on two functiterspinate() and unexpected() , for
coping with errors related to the exception handling mechanism itself. These functions are declafed in
<exception> and<exception.ns> (17.3.2).

15.5.1 Theterminate() function [except.terminate]
Occasionally, exception handling must be abandoned for less subtle error handling techniques. For exam-
ple, O
— when a exception handling mechanism, after completing evaluation of the object to be throwri] calls
a user function that exits via an uncaught exceﬁ’t]l n, O
— when the exception handling mechanism cannot find a handler for a thrown exception, O
— when the exception handling mechanism finds the stack corrupted, or O

— when a destructor called during stack unwinding caused by an exception tries to exit using an excep-
tion. O

In such cases,
void terminate();
is called;terminate() calls the function given on the most recent caliedf terminate()

typedef void(*PFV)();
PFV set_terminate(PFV);

The previous function given &®et_terminate() will be the return value; this enables users to imple-
ment a stack strategy for usingrminate() . The default function called bterminate() is
abort()

The function given as argument $et_terminate , if called, shall not return to its caller. It shouldl

either terminate execution by explicitly calliegit() orabort() or loop infinitely. The effect of suchO
a function trying to return to its caller, either by executingtarn statement or throwing an exceptior,]
is undefined.

15.5.2 Theunexpected() function [except.unexpected]

If a function with anexception-specificatiothrows an exception that is not listed in teeception-
specification the function

void unexpected();

is called;unexpected() calls the function given on the most recent calieif unexpected()

typedef void(*PFV)();
PFV set_unexpected(PFV);

The previous function given &et_unexpected() will be the return value; this enables users to imple-
ment a stack strategy for usingexpected() . The default function called bynexpected() is
terminate() . Since the default function called rminate() is abort() , this leads to immedi-
ate and precise detection of the error.

> Eor example, if the object being thrown is of a class with a copy constiigctomate() will be called if that copy constructor
exits with an exception duringtarow .

15.5.2 Theunexpected() function DRAFT: 27 May 1994 Exception handling 157

Theunexpected() function shall not return, but it can throw (or re-throw) an exception. Handlerdfor
this exception will be looked for starting at the call of the function weaseption-specificatiowas vio-
lated. Thus amxception-specificatiodoes not guarantee that only the listed classes will be thrown. For
example,

void pass_through() { throw; }
void f(PFV pf) throw() /I f claims to throw no exceptions

*pH0); // but the argument function might
}
void g(PFV pf)
{

set_unexpected(&pass_through);

f(pf);
After the call ing() toset unexpected() ,f) behaves as if it had rexception-specificatioat all.
15.6 Exceptions and access [except.access]

The parameter of a catch clause obeys the same access rules as a parameter of the function in which the
catch clause occurs.

An object may be thrown if it can be copied and destroyed in the context of the function in which the throw
occurs.

16 Preprocessing directives [cpp]

A preprocessing directive consists of a sequence of preprocessing tokens that begi#spréfiracessing

token that is either the first character in the source file (optionally after white space containing no new-line
characters) or that follows white space containing at least one new-line character, and is ended by the next
new-line charactet?)

preprocessing-file:

group,,
group:
group-part
group group-part
group-part:
pp-tokeng,, new-line
if-section
control-line
if-section:
if-group elif-groupg,, else-group,, endif-line
if-group:
#if constant-expression new-line grouyp
ifdef identifier new-line groug,
ifndef identifier new-line groug,
elif-groups:
elif-group
elif-groups elif-group
elif-group:
elif constant-expression new-line grgyp
else-group:
else new-line group,
endif-line:
endif new-line

>2) Thus, preprocessing directives are commonly cédlieds’” These'lines’ have no other syntactic significance, as all white space is
equivalent except in certain situations during preprocessing (s#eti@acter string literal creation operator in 16.3.2, for example).

16-2 Preprocessing directives DRAFT: 27 May 1994 16 Preprocessing directives

control-line:
include pp-tokens new-line
define identifier replacement-list new-line
define identifier Iparen identifier-lisy,,) replacement-list new-line
undef identifier new-line
line pp-tokens new-line
error pp-tokeng,, new-line
#pragma pp-tokeng, new-line
new-line
Iparen:

the left-parenthesis character without preceding white-space

replacement-list:
pp-tokeng,

pp-tokens:
preprocessing-token
pp-tokens preprocessing-token

new-line:
the new-line character

The only white-space characters that shall appear between preprocessing tokens within a preprocessing
directive (from just after the introducimgpreprocessing token through just before the terminating new-line
character) are space and horizontal-tab (including spaces that have replaced comments or possibly other
white-space characters in translation phase 3).

The implementation can process and skip sections of source files conditionally, include other source files,
and replace macros. These capabilities are callegrocessingbecause conceptually they occur before
translation of the resulting translation unit.

The preprocessing tokens within a preprocessing directive are not subject to macro expansion unless other-
wise stated.

16.1 Conditional inclusion [cpp.cond]

The expression that controls conditional inclusion shall be an integral constant expression except that: it
shall not contain a cast; identifiers (including those lexically identical to keywords) are interpreted as
described belovxr??’) and it may contain unary operator expressions of the form

defined identifier
or
defined (identifier)

which evaluate td if the identifier is currently defined as a macro name (that is, if it is predefined or if it
has been the subject oftdefine preprocessing directive without an intervenihgndef directive with
the same subiject identifier), zero if it is not.

Each preprocessing token that remains after all macro replacements have occurred shall be in the lexical
form of a token (2.5).

Preprocessing directives of the forms

#if constant-expression new-line grgyp
elif constant-expression new-line group

check whether the controlling constant expression evaluates to nonzero.

23)Because the controlling constant expression is evaluated during translation phase 4, all identifiers either are or are not macro names
— there simply are no keywords, enumeration constants, and so on.

16.1 Conditional inclusion DRAFT: 27 May 1994 Preprocessing directives 48

Prior to evaluation, macro invocations in the list of preprocessing tokens that will become the controlling
constant expression are replaced (except for those macro names modifiedéfingee unary operator),

just as in normal text. If the toketefined is generated as a result of this replacement process or use of
thedefined unary operator does not match one of the two specified forms prior to macro replacement,
the behavior is undefined. After all replacements due to macro expansion deflrited unary operator

have been performed, all remaining identifiers are replaced with the pp-nOmémed then each prepro-
cessing token is converted into a token. The resulting tokens comprise the controlling constant expression
which is evaluated according to the rules of 5.19 using arithmetic that has at least the ranges specified in
< ??P>>>>>, except thaint andunsigned int act as if they have the same representation as,
respectively,long and unsignedlong . This includes interpreting character constants, which may
involve converting escape sequences into execution character set members. Whether the numeric value for
these character constants matches the value obtained when an identical character constant occurs in an
expression (other than within#f or #elif directive) is implementation-definez'é? Also, whether a
single-character character constant may have a negative value is implementation-defined.

Preprocessing directives of the forms

ifdef identifier new-line groug,
ifndef identifier new-line grougy

check whether the identifier is or is not currently defined as a macro name. Their conditions are equivalent
to#if defined identifierand#if !defined identifierrespectively.

Each directive’s condition is checked in order. If it evaluates to false (zero), the group that it controls is
skipped: directives are processed only through the name that determines the directive in order to keep track
of the level of nested conditionals; the rest of the directives’ preprocessing tokens are ignored, as are the
other preprocessing tokens in the group. Only the first group whose control condition evaluates to true
(nonzero) is processed. If none of the conditions evaluates to true, and thetfelse adirective, the

group controlled by théelse is processed; lacking#else directive, all the groups until théendif

are skipped.

16.2 Source file inclusion [cpp.include]
A #include directive shall identify a header or source file that can be processed by the implementation.
A preprocessing directive of the form

#include < h-char-sequence new-line

searches a sequence of implementation-defined places for a header identified uniquely by the specified
sequence between thkeand> delimiters, and causes the replacement of that directive by the entire contents
of the header. How the places are specified or the header identified is implementation-defined.

A preprocessing directive of the form
include " g-char-sequence new-line

causes the replacement of that directive by the entire contents of the source file identified by the specified
sequence between tHedelimiters. The named source file is searched for in an implementation-defined
manner. If this search is not supported, or if the search fails, the directive is reprocessed as if it read

#include < h-char-sequence new-line

with the identical contained sequence (includingharacters, if any) from the original directive.

%) Thus, the constant expression in the followdily directive andf statement is not guaranteed to evaluate to the same value in
these two contexts.

#if'z -'a = =25
if(z-'a = = 25)

55) As indicated by the syntax, a preprocessing token shall not follteisa or #endif directive before the terminating new-line
character. However, comments may appear anywhere in a source file, including within a preprocessing directive.

16-4 Preprocessing directives DRAFT: 27 May 1994 16.2 Source file inclusion

A preprocessing directive of the form

include pp-tokens new-line

(that does not match one of the two previous forms) is permitted. The preprocessing tokartduafeer

in the directive are processed just as in normal text. (Each identifier currently defined as a macro name is
replaced by its replacement list of preprocessing tokens.)The directive resulting after all replacements shall
match one of the two previous for f.The method by which a sequence of preprocessing tokens between
a< and a> preprocessing token pair or a pair'ofharacters is combined into a single header name prepro-
cessing token is implementation-defined.

There shall be an implementation-defined mapping between the delimited sequence and the external source
file name. The implementation shall provide unique mappings for sequences consisting of one or more
nondigits (2.7) followed by a period | and a singleondigit The implementation may ignore the distinc-

tions of alphabetical case and restrict the mapping to six significant characters before the period.

%ox 74 g
[Does this restriction still make sense fe+€ [

A #include preprocessing directive may appear in a source file that has been read because of a
#include directive in another file, up to an implementation-defined nesting limit{see??2>>>).

The most common uses#ihclude preprocessing directives are as in the following:

#include <stdio.h>
#include "myprog.h"

This example illustrates a macro-repladéttiude directive:

#if VERSION= =1

#define INCFILE "versl.h"
#elif VERSION= =2

#define INCFILE "vers2.h" [* and so on*/
#else

#define INCFILE "versN.h"
#endif
#include INCFILE

16.3 Macro replacement [cpp.replace]

Two replacement lists are identical if and only if the preprocessing tokens in both have the same number,
ordering, spelling, and white-space separation, where all white-space separations are considered identical.

An identifier currently defined as a macro without use of Iparemifgect-likemacro) may be redefined by
another#define preprocessing directive provided that the second definition is an object-like macro defi-
nition and the two replacement lists are identical.

An identifier currently defined as a macro using Iparefufation-likemacro) may be redefined by another
#define preprocessing directive provided that the second definition is a function-like macro definition
that has the same number and spelling of parameters, and the two replacement lists are identical.

The number of arguments in an invocation of a function-like macro shall agree with the number of parame-
ters in the macro definition, and there shall existseprocessing token that terminates the invocation.

A parameter identifier in a function-like macro shall be uniquely declared within its scope.

%) Note that adjacent string literals are not concatenated into a single string literal (see the translation phases in 2.1); thus, an expan-
sion that results in two string literals is an invalid directive.

10

16.3 Macro replacement DRAFT: 27 May 1994 Preprocessing directives 1%

The identifier immediately following thdefine is called themacro name There is one name space for
macro names. Any white-space characters preceding or following the replacement list of preprocessing
tokens are not considered part of the replacement list for either form of macro.

If a # preprocessing token, followed by an identifier, occurs lexically at the point at which a preprocessing
directive could begin, the identifier is not subject to macro replacement.

A preprocessing directive of the form

define identifier replacement-list new-line

defines an object-like macro that causes each subsequent instance of the ma@am@meeplaced by
the replacement list of preprocessing tokens that constitute the remainder of the directive. The replacement
list is then rescanned for more macro names as specified below.

A preprocessing directive of the form

define identifier Iparen identifier-lis,,) replacement-list new-line

defines a function-like macro with parameters, similar syntactically to a function call. The parameters are
specified by the optional list of identifiers, whose scope extends from their declaration in the identifier list
until the new-line character that terminates #taefine preprocessing directive. Each subsequent
instance of the function-like macro name followed by as the next preprocessing token introduces the
sequence of preprocessing tokens that is replaced by the replacement list in the definition (an invocation of
the macro). The replaced sequence of preprocessing tokens is terminated by the natiepngcessing

token, skipping intervening matched pairs of left and right parenthesis preprocessing tokens. Within the
sequence of preprocessing tokens making up an invocation of a function-like macro, new-line is considered
a normal white-space character.

The sequence of preprocessing tokens bounded by the outside-most matching parentheses forms the list of
arguments for the function-like macro. The individual arguments within the list are separated by comma
preprocessing tokens, but comma preprocessing tokens between matching inner parentheses do not separate
arguments. If (before argument substitution) any argument consists of no preprocessing tokens, the behav-
ior is undefined. If there are sequences of preprocessing tokens within the list of arguments that would oth-
erwise act as preprocessing directives, the behavior is undefined.

16.3.1 Argument substitution [cpp.subst]

After the arguments for the invocation of a function-like macro have been identified, argument substitution
takes place. A parameter in the replacement list, unless precedetidné preprocessing token or fol-

lowed by a## preprocessing token (see below), is replaced by the corresponding argument after all macros
contained therein have been expanded. Before being substituted, each argument’s preprocessing tokens are
completely macro replaced as if they formed the rest of the translation unit; no other preprocessing tokens
are available.

16.3.2 Thet operator [cpp.stringize]

Each# preprocessing token in the replacement list for a function-like macro shall be followed by a parame-
ter as the next preprocessing token in the replacement list.

If, in the replacement list, a parameter is immediately preceded thyraprocessing token, both are
replaced by a single character string literal preprocessing token that contains the spelling of the preprocess-
ing token sequence for the corresponding argument. Each occurrence of white space between the
argument’s preprocessing tokens becomes a single space character in the character string literal. White
space before the first preprocessing token and after the last preprocessing token comprising the argument is
deleted. Otherwise, the original spelling of each preprocessing token in the argument is retained in the
character string literal, except for special handling for producing the spelling of string literals and character

1) Since, by macro-replacement time, all character constants and string literals are preprocessing tokens, not sequences possibly con-
taining identifier-like subsequences (see 2.1.1.2, translation phases), they are never scanned for macro names or parameters.

16-6 Preprocessing directives DRAFT: 27 May 1994 16.3.2 Theoperator

constants: & character is inserted before edctand\ character of a character constant or string literal
(including the delimiting" characters). If the replacement that results is not a valid character string literal,
the behavior is undefined. The order of evaluatiot ahd## operators is unspecified.

16.3.3 The## operator [cpp.concat]

A ## preprocessing token shall not occur at the beginning or at the end of a replacement list for either form
of macro definition.

If, in the replacement list, a parameter is immediately preceded or followed#bypeeprocessing token,
the parameter is replaced by the corresponding argument’s preprocessing token sequence.

For both object-like and function-like macro invocations, before the replacement list is reexamined for
more macro names to replace, each instance##f greprocessing token in the replacement list (not from

an argument) is deleted and the preceding preprocessing token is concatenated with the following prepro-
cessing token. If the result is not a valid preprocessing token, the behavior is undefined. The resulting
token is available for further macro replacement. The order of evaluatighaferators is unspecified.

16.3.4 Rescanning and further replacement [cpp.rescan]

After all parameters in the replacement list have been substituted, the resulting preprocessing token
sequence is rescanned with all subsequent preprocessing tokens of the source file for more macro names to
replace.

If the name of the macro being replaced is found during this scan of the replacement list (not including the
rest of the source file’s preprocessing tokens), it is not replaced. Further, if any nested replacements
encounter the name of the macro being replaced, it is not replaced. These nonreplaced macro name prepro-
cessing tokens are no longer available for further replacement even if they are later (re)examined in con-
texts in which that macro name preprocessing token would otherwise have been replaced.

The resulting completely macro-replaced preprocessing token sequence is not processed as a preprocessing
directive even if it resembles one.

16.3.5 Scope of macro definitions [cpp.scope]

A macro definition lasts (independent of block structure) until a corresporflindef directive is
encountered or (if none is encountered) until the end of the translation unit.

A preprocessing directive of the form

undef identifier new-line

causes the specified identifier no longer to be defined as a macro name. Itis ignored if the specified identi-
fier is not currently defined as a macro name.

The simplest use of this facility is to definéraanifest constaritas in
#define TABSIZE 100
int table[TABSIZE];

The following defines a function-like macro whose value is the maximum of its arguments. It has the
advantages of working for any compatible types of the arguments and of generating in-line code without the
overhead of function calling. It has the disadvantages of evaluating one or the other of its arguments a sec-
ond time (including side effects) and generating more code than a function if invoked several times. It also
cannot have its address taken, as it has none.

#define max(a, b) ((a) > (b) ? (a) : (b))

The parentheses ensure that the arguments and the resulting expression are bound properly.

16.3.5 Scope of macro definitions DRAFT: 27 May 1994 Preprocessing directives-16

5 To illustrate the rules for redefinition and reexamination, the sequence
#define x 3
#define f(a) f(x * (a))
#undef x
#define x 2
#define g f
#define z z[0]
#define h o(~

#define m(a) a(w)
#define w 0,1
#define t(a) a

fly+1) + f(f(2)) % t(t(g)(0) + t)(1);
g(x+(3,4)-w) | h5) & m

(f*m(m);
results in
f2* (y+1)) + (2 * (2 * (z[0])))) % #(2 * (0)) + t(2);
f(2* (2+(3,4)-0,1)) [f(2 * (~5)) & f(2*(0,1))"m(0,1);
6 To illustrate the rules for creating character string literals and concatenating tokens, the sequence
#define str(s) #s
#define xstr(s) str(s)
#define debug(s, t) printf("x" # s "= %d, x" # t "= %s", \
X ## s, X #i# 1)
#define INCFILE(n) vers##n [* from previoustinclude example*/

#define glue(a, b) a##b
#define xglue(a, b) glue(a, b)

#define HIGHLOW "hello"
#define LOW LOW ", world"
debug(1, 2);

fputs(str(strncmp("abc\0d”, "abc", \4’) /* this goes away */
==0) str(: @\n), s);

#include xstr(INCFILE(2).h)

glue(HIGH, LOW);

xglue(HIGH, LOW)

results in
printf("x" "1" "= %d, x" "2" "= %s", x1, x2);
fputs("strncmp(\"abc\0d\", \"abc\", '\\4') = =0"" @\n", s);
#include "vers2.h" (after macro replacement, before file access)

"hello";
"hello" ", world"

or, after concatenation of the character string literals,
printf("x1= %d, x2= %s", x1, x2);

fputs("strncmp(\"abc\0d\", \"abc\", '\\4’) = =0: @\n", s);
#include "vers2.h" (after macro replacement, before file access)
"hello”;

"hello, world"

Space around theand## tokens in the macro definition is optional.

7 And finally, to demonstrate the redefinition rules, the following sequence is valid.

16-8 Preprocessing directives DRAFT: 27 May 1994 16.3.5 Scope of macro definitions

#define OBJ_LIKE (1-1)
#define OBJ_LIKE [* white space */ (1-1) /* other */
#define FTN_LIKE(@) (a)
#define FTN_LIKE(a)([* note the white space */\
a /* other stuff on this line
*/)
But the following redefinitions are invalid:
#define OBJ_LIKE 0) I* different token sequenc¥
#define OBJ_LIKE @a-1)r different white space/
#define FTN_LIKE(b) (a) /* different parameter usagé/
#define FTN_LIKE(b) (b) /* different parameter spelling/
16.4 Line control [cpp.line]

The string literal of &line directive, if present, shall be a character string literal.

The line numberof the current source line is one greater than the number of new-line characters read or
introduced in translation phase 1 (2.1) while processing the source file to the current token.

A preprocessing directive of the form
#line digit-sequence new-line

causes the implementation to behave as if the following sequence of source lines begins with a source line
that has a line number as specified by the digit sequence (interpreted as a decimal integer). The digit
sequence shall not specify zero, nor a number greater than 32767.

A preprocessing directive of the form
line digit-sequence” s-char-sequengg’ new-line

sets the line number similarly and changes the presumed name of the source file to be the contents of the
character string literal.

A preprocessing directive of the form
line pp-tokens new-line

(that does not match one of the two previous forms) is permitted. The preprocessing tokdins aftar

the directive are processed just as in normal text (each identifier currently defined as a macro name is
replaced by its replacement list of preprocessing tokens). The directive resulting after all replacements
shall match one of the two previous forms and is then processed as appropriate.

16.5 Error directive [cpp.error]
A preprocessing directive of the form
error pp-tokeng,, new-line
causes the implementation to produce a diagnostic message that includes the specified sequence of prepro-
cessing tokens.
16.6 Pragma directive [cpp.pragma]
A preprocessing directive of the form
pragma pp-tokeng, new-line

causes the implementation to behave in an implementation-defined manner. Any pragma that is not recog-
nized by the implementation is ignored.

16.7 Null directive DRAFT: 27 May 1994 Preprocessing directives 18

16.7 Null directive [cpp.null]

A preprocessing directive of the form

new-line

has no effect.

16.8 Predefined macro names [cpp.predefined]
The following macro names shall be defined by the implementation:

__LINE_ _The line number of the current source line (a decimal constant).

__FILE_ _The presumed name of the source file (a character string literal).

__DATE__The date of translation of the source file (a character string literal of the form
"Mmm dd yyyy" , where the names of the months are the same as those generated by the
asctime function, and the first character ddl is a space character if the value is less than 10). If
the date of translation is not available, an implementation-defined valid date shall be supplied.

__TIME_ _The time of translation of the source file (a character string literal of the form
"hh:mm:ss" as in the time generated by thectime function). If the time of translation is not
available, an implementation-defined valid time shall be supplied.

__STDC__Whether__STDC__is defined and if so, what its value is, are implementation dependent.

___cplusplus The name__cplusplus is defined (to an unspecified value) when compiling-a C
translation unit.

The values of the predefined macros (except fotINE_ _and__FILE_) remain constant throughout
the translation unit.

None of these macro names, nor the identdfifined , shall be the subject oftalefine or a#undef
preprocessing directive. All predefined macro names shall begin with a leading underscore followed by an
uppercase letter or a second underscore.

17 Library [lib.library]

FBox 75
H_ibrary WG issue: Michael Vilot, January 14, 1994

OoOoono

]
[his section ordering has not been discussed by the Library Working Group. Once they do have <hance
[do discuss it, the section order, numbering, and names are likely to be changed. H

17.1 Introduction [lib.introduction]

%ox 76

[Library WG issue: Michael Vilot, November 22, 1993
a

DL‘___LII:ID

ow much of “Introduction” section has to be made global to the entire clasue? The various C ruleld about
Jeserved identifiers could be made irrelevant if C 1 @rograms were prohibited from defining mac@s
{except, presumably, for a few things liiesert) If we don’t define the standard namespace in a way
[that obviates the need for so many rules, then we haven't used the language feature effectively. 1

The Standard €+ library contains components for: language support, predefined exceptions, iostréams,
strings, bit sets, bit strings, dynamic arrays, complex numbers, and locale objects. The language [Support
components are required by certain parts of thel@hguage, such as memory allocation (5.3.4, 5.3.5) ahd
exception processing éxcept.intro). The predefined exceptions provide support for uniform error repart-

ing from the Standard+€ library. The iostreams components are the primary mechanism+fq@ra@yram 0
input/output. The strings and other containers provide some of the most commonly used data types not
directly defined in the € language. And the complex components provide support for numeric pro€ess-
ing. This library also makes available the facilities of the Standard C library, suitably adjusted to éhsure
static type safety.

17.1.1 Standard C library [lib.intro.standard.c]

This International Standard includes by reference clause 7 of the C Standard and clause 4 of Amendment 1
to the C Standard (1.2). The combined library described in those clauses is hereinafter catkautitrel

C library. With the qualifications noted in this subclause 17.1 and in 17.2, the Standard C library is a Bubset
of the Standard+ library.

17.1.2 Headers [lib.headers]

17-2 Library DRAFT: 27 May 1994 17.1.2 Headers

Box 77
O

rLibrary WG issue: Michael Vilot, November 22, 1993
O
Urhe rule that “any of the € headers can include any of the other Beaders” imposes a restriction ¢l
+ programmers beyond any that C programmers must endure. Since we are changing the names of the
eaders from current usage anyway (by droppinghhe we can be unambiguous about the declaratfgns
[used across components in the standard library. Implementations that support precompiled headers will do
Qust fine with a more precise specification. a

I:II_I___L,DI:I

The elements of the Standargi-dibrary are declared or defined (as appropriate) ieader,whose con- O
tents are made available to a translation unit when it contains the apprémaiele preprocessing O

directive®® Objects and functions defined in the library and required by+gf@gram are included in thell
program prior to program startup. O
The Standard€ library provides 4+ headersas shown in Table 13: O
Table 13—C++ Headers O
HEADER HEADER HEADER HEADER ad
O
<all> <complex>17.5.7 <cwctype> <new>17.3.3]
<bits>17.5.3 <csetjmp> <defines>17.3.1 <objcpy>17.5.8]
<bitstring>17.5.4 <csignal> <dynarray>17.5.5 <ostream>17.4.4]
<cassert> <cstdarg> <exception>17.3.2 <ptrdynarray>17.5.6]
<cctype> <cstddef> <fstream>17.4.8 <sstream>17.4.7]
<cerrno> <cstdio> <iomanip>17.4.5 <streambuf>17.4.2 a
<cfloat> <cstdlib> <ios>17.4.1 <string>17.5.1]
<cis0646> <cstring> <iostream>17.4.9 <strstream>17.4.6]
<climits> <ctime> <istream>17.4.3 <typeinfo>17.3.4]
<clocale> <cwchar> <locale>17.5.9 <wstring>17.5.2]
<cmath> a

For compatibility with the Standard C library, the Standafdli®rary provides the 18 headersas shown O
in Table 14: O

Table 14—C Headers O

HEADER HEADER HEADER HEADER O
O

<assert.h> <limits.h> <stdarg.h> <string.h> g
<ctype.h> <locale.h> <stddef.h> <time.h> O
<errno.h> <math.h> <stdio.h> <wchar.h> O
<float.h> <setjimp.h> <stdlib.h> <wctype.h> O
<is0646.h> <signal.h> g

98) A header is not necessarily a source file, nor are the sequences delimitatidby in header names necessarily valid source file
names.

17.1.2 Headers DRAFT: 27 May 1994 Library 173

The headekall> includes all the other+€ headers. O

If a header is implemented as a source file, the derivation of the file name from the header name is
implementation-defined. If a file has a name equivalent to the derived file name for one of the above head-
ers, is not provided as part of the implementation, and is placed in any of the standard places for a source
file to be included, the behavior is undefined.

A translation unit may include these headers in any order. Each may be included more than once, Mith no
effect different from being included exactly once, except that the effect of including<tesert> or O
<assert.h> depends each time on the lexically current definitioNDEBUG A translation unit shall

include a header only outside of any external declaration or definition, and shall include the header lexically
before the first reference to any of the entities it declares or first defines in that translation unit.

Certain types and macros are defined in more than one header. For such an entity, a second or subsequent
header that also defines it may be included after the header that provides its initial definition.

None of the C headers includes any of the other headers, except that each C header includes its cofiespond-
ing C+ header, as described above, followed by an explicit using-directive (7.3.3) for each name that the
C+ header declares or defines in the namesgpiate(17.1.4). Except for the headeall> , none of the

CH headers includes any of the C headers. However, any of+thge&ders can include any of the other

C+ headers, and must include & Geader that contains any needed definitioh. O

17.1.3 Processor Compliance [lib.compliance]

Two kinds of implementations are defindtbstedand freestanding.For a hosted implementation, thig]
International Standard defines the set of available headers. A freestanding implementation is one ihlwhich
execution may take place without the benefit of an operating system, and has an implementation-defined set
of headers. This set shall include at least: O

— the headers that providetdanguage support (as described in 17.3) O

— the G+ headerscfloat> |, <climits> , <cstdarg> , and<cstddef> , and their corresponding Cl
headers O

— a version of the € header<cstdlib> that declares at least the functicasort , atexit , and O

exit , and its corresponding C header. O
17.1.4 Reserved names [lib.reserved.names]
HBox 78 B
HJbrary WG issue: Michael Vilot, January 14, 1994 0

O

O
[This section has not been discussed by the Library Working Group. Once they do have a chance td discuss
0t, the contents are likely to be removed or changed.

A translation unit that includes a header shall not contain any macros that define names declared orfdefined
in that header. Nor shall such a translation unit define macros for names lexically identical to keywords.

Each G+ header defines the namespat# . Each @&+ header declares or defines all names listed inlis
associated subclause within that namespace. O

Each header also optionally declares or defines names which are always reserved to the implementation for
any use and names reserved to the implementation for use at file scope.

>Y) Including any one of the+€ headers can introduce all of the-@eaders into a translation unit, or just the one that is named in the
#include preprocessing directive.

17-4 Library DRAFT: 27 May 1994 17.1.4 Reserved names

Each name defined as a macro in a header is reserved to the implementation for any use if the translation
unit includes the head&?

Certain sets of nhames and function signatures are reserved whether or not a translation unit includes a
header:

— Each name that begins with an underscore and either an uppercase letter or another underscore is
reserved to the implementation for any use.

— Each name that begins with an underscore is reserved to the implementation for use as a name with file
scope or within the namespastd in the ordinary name space. g

— Each name declared as an object with external linkage in a header is reserved to the implementation to
designate that library object with external Iinkgéé. O

— Each global function signature declared with external linkage in a header is reserved to the implementa-
tion to designate that function signature with external link&4e. O

— Each name having two consecutive underscores is reserved to the implementation for use as a name
with bothextern "C" andextern "C++" linkage.

— Each name declared with external linkage in a C header is reserved to the implementation for use as a
name withextern "C" linkage.

— Each function signature declared with external linkage in a C header is reserved to the implementation

for use as a function signature with bettiern "C" andextern "C++" Iinkage.63) g
It is unspecified whether a name declared with external linkage in a C header hasxéittmetC" or
extern "C++" Iinkage§4)

If the program declares or defines a name in a context where it is reserved, other than as explicitly allowed
by this clause, the behavior is undefined.

No other names or global function signatures are reserved to the implemerﬂ@tion.

17.1.5 Restrictions and conventions [lib.res.and.conventions]

HBox 79 B
HJbrary WG issue: Michael Vilot, January 14, 1994 0
O

O
[This section has not been discussed by the Library Working Group. Once they do have a chance td discuss
0t, the contents of this section and its subsections are likely to be removed or changed.

%9 tis not permissible to remove a library macro definition by usingttimelef directive.

The list of such reserved names includeso , declared or defined icerrno> . |
The list of such reserved function signatures with external linkage incketgap(jmp_buf) , declared or defined in O
<csetjmp> , andva_end(va_list) , declared or defined icstdarg>

The function signatures declareddowchar> and<cwctype> are always reserved, notwithstanding the restrictions imposedlin
suSJclause 4.5.1 of Amendment 1 to the C Standard for these headers.

The only reliable way to declare an object or function signature from the Standard C library is by including the header that declares
it5notwithstanding the latitude granted in subclause 7.1.7 of the C Standard.
°)A global function cannot be declared by the implementation as taking additional default arguments. Also, the use of masking mac-
ros for function signatures declared in C headers is disallowed, notwithstanding the latitude granted in subclause 7.1.7 of the C Stan-
dard. The use of a masking macro can often be replaced by defining the function signaline as

17.1.5.1 Restrictions on macro definitions DRAFT: 27 May 1994 Library 145

17.1.5.1 Restrictions on macro definitions [lib.res.on.macro.definitions]

All object-like macros defined by the Standarg Gbrary and described in this clause as expanding to inte-
gral constant expressions are also suitable for ug#d inpreprocessing directives, unless explicitly stated
otherwise.

17.1.5.2 Restrictions on arguments [lib.res.on.arguments]

Each of the following statements applies to all arguments to functions defined in the Stamrddnh@,
unless explicitly stated otherwise in this clause.

— If an argument to a function has an invalid value (such as a value outside the domain of the function, or
a pointer invalid for its intended use), the behavior is undefined.

— If a function argument is described as being an array, the pointer actually passed to the function shall
have a value such that all address computations and accesses to objects (that would be valid if the
pointer did point to the first element of such an array) are in fact valid.

17.1.5.3 Restrictions on exception handling [lib.res.on.exception.handling]

HBOX 80

[Library WG issue: Dag Bitick, January 23, 1994
O

% Jerry Schwarz writes:

P> | think this should be changed to allow any function
[>> to throwxalloc
>
“Any of the functions defined in the StandarétQibrary
[can report a failure to allocate storage by calling ex.raise()
P for an object ex of type xalloc.
O
Lpardon me for being picky and generally difficult, but | think Jerry’s wording is significantly superior,(and |
%isk for a change.

OOoooooooooOoogoono

O

O

r think the current wording is circuitous, and the prevailing terminology is "throw an exception” Whe%talk-
Cing about the concept, not the actual implementation.
O

aﬁere’s my suggested wording:

O
r'Any of the functions defined in the Standaret-Cibrary can report a failure to allocate storage by thr
Ong xalloc.”

DE%DDDDD

Any of the functions defined in the Standard Gbrary can report a failure to allocate storage by calling
ex.raise() for an objectex of typealloc . Otherwise, none of the functions defined in the Standard
C+ library throw an exception that must be caught outside the function, unless explicitly stated otherwise.

None %E)the functions defined in the Standaré Ibrary catch any exceptions, unless explicitly stated oth-
erwise:

%) A function can catch an exception not documented in this clause provided it rethrows the exception.

17-6 Library DRAFT: 27 May 1994 17.1.5.4 Alternate definitions for functions

17.1.5.4 Alternate definitions for functions [lib.alternate.definitions.for.functions]
EBox 81 El]
aibrary WG issue: Michael Vilot, November 22, 1993 d
O O

0t took us 9 months or so to work out the wording in 93-0148/N0355 to describe “installing” handlerdinc-

Uions in such a way as to get reasonably clear semantics without overly constraining a multithrededimple-
entation. There is no reason to discard that work lightly, although | would like to see a more cise

rfescription of “installing” and “invoking” a handler function that doesn’t involve the overspecification bf

[Tequiring a global pointer. ™
O O
Urhe following changes added in 93-0108 should be removed:

“Certain handler functions are determined by the values stored in pointer objects within the Stah C

ibrary. Initially, these pointer objects designate functions defined in the Standaliir@ry. Other func-{1
tions, however, when executed at run time, permit the program to alter these stored values to pointiat func-
[Tions defined in the program.” &

This clause describes the behavior of numerous functions defined by the Standdnhy. Under some
circumstances, however, certain of these function descriptions also apply to functions defined in the pro-
gram:

— Four function signatures defined in the Standaﬁdllbrar%/ﬁ]may be displaced by definitions in the pro-
gram. Such displacement occurs prior to program startup.

— Certain handler functions are determined by the values stored in pointer objects within the Stendard C
library. Initially, these pointer objects store null pointers or designate functions defined in the Standard
Ctt library. Other functions, however, when executed at run time, permit the program to alter these
stored values to point at functions defined in the program.

— Virtual member function signatures defined for a base class in the Starddiior&y may be overrid-
den in a derived class by definitions in the program.

In all such cases, this clause distinguishes two behaviors for the functions in question:

— Required behaviodescribes both the behavior provided by the implementation and the behavior that
shall be provided by any function definition in the program.

— Default behaviordescribes any specific behavior provided by the implementation, within the scope of
the required behavior.

Where no distinction is explicitly made in the description, the behavior described is the required behavior.

If a function defined in the program fails to meet the required behavior when it executes, the behavior is
undefined.

17.1.5.5 Objects within classes [lib.objects.within.classes]

%) The function signatures, all declareckinew>, areoperator delete(void*) , operator delete[J(void*) , oper-
ator new(size_t) , andoperator new[](size_t)

17.1.5.5 Objects within classes DRAFT: 27 May 1994 Library *77

HBox 82 El]
HJbrary WG issue: Tom Keffer, March 8, 1994 d
0 O
[jThe San Diego rewrite dropped all uses of pre- and post-condition specifications on member fuddtions.
[(JSee: X3J16/93-0013R1, 93-0060, and 93-0064, as voted upon and accepted.]
O

O
Ebomment (Library WG meeting, San Diego): d
0 O
[rhe general concern is that the text describes specifics of what happens to the “exposition only” fémber

[Wata, rather than behavior.
O

O
%xample: d
0 O
[17.5.1.1.1 describes the action of the default constructor in terms of how the “exposition only” dataldhould
[be initialized. It doesn’t say whether the string is the null string, an unitialized string of unspecified lgngth,
Ebr what...

DBD%

Eﬁecommend:

O
Generic behaviour should be specified, possibly with the aid of the exposition implementation. H

Objects of certain classes are sometimes required by the external specifications of their classes to store data,
apparently in member objects. For the sake of exposition, this clause provides representative declarations,

and semantic requirements, for private member objects of classes that meet the external specifications of

the classes. The declarations for such member objects and the definitions of related member types in this

clause are enclosed in a comment that endsexjtbsition only as in:

I streambuf* sb; exposition only
Any alternate implementation that provides equivalent external behavior is equally acceptable. a
17.1.5.6 Functions within classes [lib.functions.within.classes]
EBox 83 B
Library WG issue: Tom Keffer, March 8, 1994 n
d O

LAl classes should explicitly list the copy constructor, assignment operator, and destructor in their dascrip-
Sion. O

0
O O
(But: 17.1.5.6 should state that an implementation can rely on the compiler to actually generate sygh func-
(tions. O

For the sake of exposition, this clause repeats in a derived class declarations for all the virtual member
functions inherited from a base class. All such declarations are enclosed in a comment that ends with
inherited, as in:

I virtual void do_raise(); inherited
If a virtual member function in the base class meets the semantic requirements of the derived class, it is
unspecified whether the derived class provides an overriding definition for the function signature.
An implementation can declare additional non-virtual member function signatures within a class:

— by adding arguments with default values to a member function signature described in thgslclause;

08) Hence, taking the address of a member function has an unspecified type. The same latituotegimesl to the implementation
of virtual or global functions, however.

17-8 Library DRAFT: 27 May 1994 17.1.5.6 Functions within classes

— by replacing a member function signature with default values by two or more member function signa-
tures with equivalent behavior;

— by adding a member function signature for a member function name described in this clause.

A call to a member function signature described in this clause behaves the same as if the implementation
declares no additional member function signatﬁ%s.

For the sake of exposition, this clause describes no copy constructors, assignment operators, or (hon-
virtual) destructors with the same apparent semantics as those that can be generated by default. It is
unspecified whether the implementation provides explicit definitions for such member function signatures,
or for virtual destructors that can be generated by default.

17.1.5.7 Global functions [lib.global.functions]

A call to a global function signature described in this clause behaves the same as if the implementation
declares no additional global function signatJnQés.

17.1.5.8 Unreserved names [lib.unreserved.names]

Certain types defined in C headers are sometimes needed to express declarations in other headers, Wwhere the
required type names are neither defined nor reserved. In such cases, the implementation provides a syn-
onym for the required type, using a name reserved to the implementation. Such cases are explicitly stated
in this clause, and indicated by writing the required type naneenstant-width italic charac-

ters.

Certain names are sometimes convenient to supply for the sake of exposition, in the descriptions in this
clause, even though the names are neither defined nor reserved. In such cases, the implementation either
omits the name, where that is permitted, or provides a nhame reserved to the implementation. Such cases are
also indicated in this clause by writing the convenient narserstant-width italic characters.

For example:

The clasdilebuf , defined in<fstream> , is described as containing the private member object:
FILE* file ;

This notation indicates that the memligr is a pointer to the typEILE , defined in<cstdio> , but the O

namesfile andFILE are neither defined nor reserved<fstream> . An implementation need not

implement classilebuf with an explicit member of typEILE* . If it does so, it can choose 1) to

replace the naméle with a name reserved to the implementation, and 2) to repldde with an
incomplete type whose name is reserved, such as in:

struct _Filet* _Fname;

If the program needs to have typLE defined, it must also includecstdio> , which completes the
definition of _Filet

17.1.5.9 Implementation types [lib.implementation.types]

Certain types defined in this clause are based on other types, but with added constraints.

%9) A valid G+ program always calls the expected library member function, or one with equivalent behavior. An implementation may
%I&o define additional member functions that would otherwise not be called by atgbicbGram.

A valid C+ program always calls the expected library global function. An implementation may also define additional global func-
tions that would otherwise not be called by a valitl @Fogram.

17.1.5.9.1 Enumerated types DRAFT: 27 May 1994 Library 0

17.1.5.9.1 Enumerated types [lib.enumerated.types]

Several types defined in this clause anemerated type&ach enumerated type can be implemented ad_an
enumeration or as a synonym for an enumeration. The enumerateghtyperated can be written: g

enum secret {
Vo, Vi, V2, V3 ...}
typedef secret enumerated ;

static const enumerated CO (V0);
static const enumerated C1 (V1);
static const enumerated C2 (V2);
static const enumerated C3 (V3);

Here, the name€0, C1, etc. represergnumerated elementsr this particular enumerated type. All such
elements have distinct values.

17.1.5.9.2 Bitmask types [lib.bitmask.types]

HBOX 84

[Library WG issue: Mark Terribile, December 20, 1993
O

%Bitmask types

D...

PThe following terms apply to objects and values of bitmask
[Htypes:

O

To set a value Y in an object X is
pto evaluate the expressionx Y.
O
[>To clear a value Y in an object X is
Ebto evaluate the expression X &="Y.

E The value Y is set in the object
pX if the expression X & Y

OOdOoooOOooooooooooooooooOodan

O
djif the expression ... is non-zero’ or ‘if the expression ... is equal to Y’ ? The former only works if the-yalue
LI is restricted to a single bit. | think that the I/O system requires multibit values (but | could be mistaken).

Several types defined in this clause lsitsmask typesEach bitmask type can be implemented as an enumer-
ated type that overloads certain operators. The bitmaskfyypask can be written:

17-10 Library DRAFT: 27 May 1994 17.1.5.9.2 Bitmask types

enum secret {
VO =1<<0, Vi =1<<1], V2 =1<<2, V3 =1<<3, ...}
typedef secret bitmask ;

static const bitmask CO (VO);
static const bitmask C1 (V1),
static const bitmask C2 (V2);
static const bitmask C3 (V3),

bitmask & operator&=(bitmask & X, bitmaskyY)
{X =(bitmask)(X & Y); return (X); }

bitmask & operator|=(bitmask & X, bitmaskY)
{ X =(bitmask)(X | Y);return (X); } O

bitmask & operator’=(bitmask & X, bitmaskyY)
{X =(bitmask)(X ™ Y); return (X); }

bitmask operator&(bitmask X , bitmaskY)
{return ((bitmask)(X & Y));}

bitmask operator|(bitmask X , bitmaskY)
{return ((bitmask)(X | Y);}

bitmask operator™(bitmask X , bitmaskY)
{return ((bitmask)(X * Y));}

bitmask operator~(bitmask X)
{return ((bitmask)~ X); }

Here, the name€0, C1, etc. representitmask elementfor this particular bitmask type. All such ele-
ments have distinct values such that, for any @aiandCj, Ci & Ci is nonzero and’i & Cj is zero.
The following terms apply to objects and values of bitmask types:

— Toseta valueYin an objectXis to evaluate the expressign|= Y.

— Tocleara valueYin an objectXis to evaluate the expressigné&= ~ Y.

— The valueYis setin the objectXif the expressiotX & Yis nonzero.

17.1.5.9.3 Derived classes [lib.derived.classes]
Certain classes defined in this clause are derived from other classes in the StanltilaranZ

— It is unspecified whether a class described in this clause as a base class is itself derived from other base
classes (with names reserved to the implementation).

— It is unspecified whether a class described in this clause as derived from another class is derived from
that class directly, or through other classes (with names reserved to the implementation) that are derived
from the specified base class.

In any case:
— A base class described as virtual in this clause is always virtual;
— A base class described as non-virtual in this clause is never virtual,

— Unless explicitly stated otherwise, types with distinct names in this clause are distingtl}ypes.

"I an implicit exception to this rule are types described as synonyms for basic integral types s&eht asandstreamoff

17.1.5.10 Protection within classes DRAFT: 27 May 1994 Library 711

17.1.5.10 Protection within classes [lib.protection.within.classes]

It is unspecified whether a member described in this clause as private is private, protected, or public. It is
unspecified whether a member described as protected is protected or public. A member described as public
is always public.

It is unspecified whether a function signature or class described in this clause is a friend of another class
described in this clause.

17.1.5.11 Definitions [lib.definitions]

BBox 85 g
aibrary WG issue: Michael Vilot, November 22, 1993;
0 0
[This subclause should be merged with Section 1.3. & a

The Standard € library makes widespread use of characters and character sequences that follow a few
uniform conventions:

— A letteris any of the 26 lowercase or 26 uppercase letters in the basic execution character set.

— The decimal-point characteis the (single-byte) character used by functions that convert between a
(single-byte) character sequence and a value of one of the floating-point types. It is used in the charac-
ter sequence to denote the beginning of a fractional part. It is represented in this clause by a period,
", which is also its value in tH&" locale, but may change during program execution by a call to
setlocale(int, const char*) , declared ir<clocale> . g

— A character sequends an array objeci that can be declared d&sA[N , whereT is any of the types
char , unsigned char , orsigned char , optionally qualified by any combination obnst or
volatile . The initial elements of the array have defined contents up to and including an element
determined by some predicate. A character sequence can be designated by a poirehabpants
to its first element.

— A null-terminated byte stringgr NTBS is a character sequence whose highest-addressed element with
. . . 2)
defined content has the value zero (dreninating nuIICharacteri. O

— Thelength of arnTBSis the number of elements that precede the terminating null charactempgty
NTBsShas a length of zero.

— Thevalue of amnTBSis the sequence of values of the elements up to and including the terminating null
character.

— A staticNTBsis anNTBsS with static storage duratidi?)

— A null-terminated multibyte stringyr NTMBS is anNTBS that constitutes a sequence of valid multibyte
characters, beginning and ending in the initial shift Hre.

— A staticNTMBSis anNTMBS with static storage duration. O

— A wide-character sequends an array objeci that can be declared &8 A[N, where T is type
wchar_t , optionally qualified by any combination obnst orvolatile . The initial elements of
the array have defined contents up to and including an element determined by some predicate. A char-
acter sequence can be designated by a pointer Sahat designates its first element.

) Many of the objects manipulated by function signatures declaredsining> are character sequencesnaBss. The size of O
some of these character sequences is limited by a length value, maintained separately from the character sequence.

A string literal, such a&bc" | is a stationTss.
74) An nTBs that contains characters only from the basic execution character set is mis@anEach multibyte character then con-
sists of a single byte.

17-12 Library DRAFT: 27 May 1994 17.1.5.11 Definitions

— A null-terminated wide-character stringgr NTWCS is_a wide-character sequence whose highest-
addressed element with defined content has the valué2ero. O

— Thelength of amnTwcsis the number of elements that precede the terminating null wide character. An
emptynTwcshas a length of zero.

— Thevalue of amnTwcsis the sequence of values of the elements up to and including the terminating null
character.

— A staticNTWCSIS anNTWCS with static storage duratidf?

17.2 Standard C library [lib.standard.c.library]

This subclause summarizes the explicit changes in definitions, declarations, or behavior within the Standard
C library when it is part of the Standard *C library. (Subclause 17.1 imposes some \&\f2implicit\fiP\&
changes in the behavior of the Standard C library.)

17.2.1 Moadifications to headers [lib.mods.to.headers]

Each C header, whose name has the form \&\f6name\&\fP\f5.h\fP\&, includes its corresponding *C héader
\&\f5c\&\fP\fename\fP\&, followed by an explicit using-declaration (7.3.3) for each name placed inthe

standard library namespace by the header.*f O
17.2.2 Modifications to definitions [lib.mods.to.definitions]
17.2.2.1 Type \&\f7wchar t\fP\& (lib.wchar.t]
\&\fSwchar t\fP\& is a keyword in this International Standard. It does not appear as a type name defined
in any of \&\f5<stddef.l»\fP\&, \&\f5 <stdlib.r>\fP\&, or \&\fS5<wchar.»\fP\&. g
17.2.2.2 Macro \&\f7NULL\fP\& (lib.null]

The macro \&\fS5NULL\fP\&, defined in any of \&&ocale.»\fP\&, \&\f5<stddef.\fP\&, O
\&\f5 <stdio.IP\fP\&, \&\5 <stdlib.F>\fP\&, \&\f5 <string.rP\fP\&, \&\5 <time.\fP\&, or O
\&\f5 <wchar.l»\fP\&, is an implementation-defined *C null-pointer constant in this International
Standard.*f O

17.2.2.3 Header \&\f%is0646.\fP\& [lib.header.is0646.h]

The tokens \&\f5and\fP\&, \&\fS5andq\fP\&, \&\fSbitand\fP\&, \&\fSbitor\fP\&, \&\fScomp\fP\&, O
\&\f5not_eq\fP\&, \&\f5not\fP\&, \&\fS5ornfP\&, \&\fS5or_eq\fP\&, \&\f5xor\fP\&, and \&\fSxor eq\fP\& [

are keywords in this International Standard. They do not appear as macro names defiheéd in
\&\f5 <is0646.1P\P\&.

17.2.3 Moadifications to declarations [lib.mods.to.declarations]

) Many of the objects manipulated by function signatures declaredhiohar> are wide-character sequencesmwcss. O
76)A wide string literal, such ds'abc" | is a statiozitwcs.

The header \&\f&stdlib.l>\fP\&, for example, makes all declarations and definitions available in the global name space, mith as
in the C Standard. The header \&&stdlib>\fP\& provides the same declarations and definitions within the namespace
\&\f5std\fP\&.

8 Possible definitions include \&\f50\fP\& and \&\f50L\fP\&, but not \&\f5(void*)O\fP\&. O

17.2.3.1 DRAFT: 27 May 1994 Library 1#13
\&\f7memchr(const\ void*, int, size t)\fP\&
17.2.3.1 \&\f7memchr(const\ void*, int, sizet)\fP\& (lib.memchr]

The function signature \&\fsmemchr(const void*, int, siy¥P\&, declared in \&\fxstring.I»\fP\& in the
C Standard, does not have the declaration

void* memchr(const void* \&\fP\F6S\&\fP\T5, int \&\FP\f6C\&\P\f5, size t \&\fP\f

in this International Standard. Its declaration in \&&ing.»>\fP\& is replaced by the two declarations:
const void* memchr(const void* \&\fP\f6S\&\fP\f5, int \&\fP\f6C\&\fP\f5, size_t\

both of which have the same behavior as the original declaration.

17.2.3.2 \&\f7strchr(const\ char*, int)\fP\& (lib.strchr]

The function signature \&\f5strchr(const char*, int)\fP\&, declared in \&afing.l>\fP\& in the C Stan-
dard, does not have the declaration:

char* strchr(const char* \&\fP\f6S\&\fP\f5, int \&\fP\f6C\&\fP\f5);.ix "[strchr]”

in this International Standard. Its declaration in \&¥&ing.I>\fP\& is replaced by the two declarations:
const char* strchr(const char* \&\fP\f6S\&\fP\f5, int \&\fP\f6C\&\FP\f5);.ix "[st

both of which have the same behavior as the original declaration.

17.2.3.3 \&\f7strpbrk(const\ char*, const\ char*)\fP\& (lib.strpbrk]

The function signature \&\f5strpbrk(const char*, const char*)\fP\&, declared in<&fing.»\fP\& in the
C Standard, does not have the declaration:

char* strpbrk(const char* \&\fP\f6s1\&\fP\f5, const char* \&\fP\f6s2\&\fP\f5);.ix

in this International Standard. Its declaration in \&E&ing.>\fP\& is replaced by the two declarations:
const char* strpbrk(const char* \&\fP\f6s1\&\fP\f5, const char* \&\fP\f6s2\&\fP\f

both of which have the same behavior as the original function signature.

17.2.3.4 \&\f7strrchr(const\ char*, int)\fP\& (lib.strrchr]

The function signature \&\f5strrchr(const char*, int)\fP\&, declared in \&&ffing.l»\fP\& in the C Stan-
dard, does not have the declaration:

char* strrchr(const char* \&\fP\fES\&\fP\f5, int \&\fP\fEC\&\FP\f5);.ix "[strrchr

in this International Standard. Its declaration in \&¥&ing.I>\fP\& is replaced by the two declarations:
const char* strrchr(const char* \&\fP\f6S\&\fP\f5, int \&\fP\f6C\&\fP\5);.ix “[s

both of which have the same behavior as the original declaration.

17.2.3.5 \&\f7strstr(const\ char*, const\ char)\fP\& (lib.strstr]

The function signature \&\f5strstr(const char*, const char*)\fP\&, declared in<&ifthig.I>\fP\& in the C
Standard, does not have the declaration:

char* strstr(const char* \&\fP\f6s1\&\fP\f5, const char* \&\fP\f6s2\&\fP\f5);.ix

in this International Standard. Its declaration in \&E&ing.>\fP\& is replaced by the two declarations:
const char* strstr(const char* \&\fP\f6s1\&\fP\f5, const char* \&\fP\f6s2\&\fP\f5

17-14 Library DRAFT: 27 May 1994 17.2.35
\&\f7strstr(const\ char*, const\ char*)\fP\&

both of which have the same behavior as the original declaration.
17.2.4 Madifications to behavior [lib.mods.to.behavior]

17.2.4.1 Macro \&\f7offsetof\fP\& [lib.offsetof]

The macro \&\f5offsetof(\&\fP\f6type\&\fP\f5, \&\fP\fémember-designaton\&\fP\f5)\fP\&, defined
\&\f5 <stddef.»\fP\&, accepts a restricted set of \&\f6type\fP\& arguments in this International Standard.
\&\fétype\fP\& shall be a POD structure or a POD union. O

17.2.4.2 \&\f7longjmp(jmp_buf, int)\fP\& [lib.longjmp]

The function signature \&\f5longjmp(jmpuf \&\fP\f6jbuf\&\fP\f5, int \&\fP\feval\&\fP\5)\fP\&, declared O

in \&\f5<setjmp.»\fP\&, has more restricted behavior in this International Standard. If any automatic
objects would be destroyed by a thrown exception transferring control to another (destination) pointin the
program, then a call to \&\f5longjmp(\&\fP\f6jbuf\&\fP\f5, \&\fP\feval\&\fP\f5)\fP\& at the throw poinil

that transfers control to the same (destination) point has undefined behavior.

17.2.4.3 Storage allocation functions [lib.storage.allocation.functions]

The function signatures \&\f5calloc(sizpfP\&, \&\fSmalloc(size H)\fP\&, and \&\f5realloc(void*, O
size t)\fP\&, declared in \&\fxstdlib.l>\fP\&, do not attempt to allocate storage by calling \&\fSoperatdr

new(sizet)\fP\&, declared in \&\fsxnew>\fP\&. O
17.2.4.4 \&\fratexit(void (*)(void))\fP\& (lib.atexit]

The function signature \&\f5atexit(void (F\&\fP\f6A&\P\f5)(void))\fP\&, declared in \&&tdlib.>\fP\&, O
has additional behavior in this International Standard: O

— For the execution of a function registered with \&\f5atexit\fP\&, if control leaves the function because it
provides no handler for a thrown exception, \&\f5terminate()\fP\& is called. O

17.2.4.5 \&\f7exit(int)\fP\& lib.exit]

The function signature \&\f5exit(int \&\fP\f6status\&\fP\f5)\fP\&, declared in \&$&dlib.r>\fP\&, has O
additional behavior in this International Standard:

— First, all functions \&\f6A\fP\& registered by calling \&\f5atexit(\&\fP\F6R&\P\5)\fP\&, are called, ifl
the reverse order of their registration.*f The function signature \&\f5atexit(void (*)())\fP\&, is declated
in \&\f5 <stdlib.r>\fP\&.

— Next, all static objects are destroyed in the reverse order of their construction. (Automatic objetts are
not destroyed as a result of calling \&\f5exit(int)\fP\&.)*f

— Next, all open C streams (as mediated by the function signatures declared sstditf5r\fP\&) with [
unwritten buffered data are flushed, all open C streams are closed, and all files created by [dalling
\&\f5tmpfile()\fP\& are removed.*f The function signature \&\f5tmpfile(\fP\& is declared
\&\f5 <stdio.P\fP\&.

— Finally, control is returned to the host environment. If \&\féstatus\fP\& is zero [or
\&G\SEXIT _SUCCESS\MP\&, an implementation-defined form of the status \&\f2succesSful
termination\fP\& is returned. If \&\f6status\fP\& is \&\FSEXIFAILURE\fP\&, an implementation-

9) A function is called for every time it is registered. O
80) Automatic objects are all destroyed in a program whose function \&\f5main\fP\& contains no automatic objects and exectites the
call to \&\f5exit\fP\&. Control can be transferred directly to such a \&\f5main\fP\& by throwing an exception that is caugdht in
\&\f5main\fP\&.

Any C streams associated with \&\f5cin\fP\&, \&\f5cout\fP\&, etc. are flushed and closed when static objects are destroyed in the
previous phase.

17.2.4.5 \&\f7exit(int)\fP\& DRAFT: 27 May 1994 Library 17-15

defined form of the status \&\f2unsuccessful termination\fP\& is returned. Otherwise the diatus
returned is implementation-defined. The macros \&\BEXRAILUREVP\& and O
\&\FSEXIT _SUCCESS\P\& are defined in \&\¥stdlib.r>\fP\&.

The function signature \&\f5exit(int)\fP\& never returns to its caller. O

17.3 Language support [lib.language.support]

This subclause describes the function signatures that are called implicitly, and the types of objectdgener-
ated implicitly, during the execution of somet@rograms. It also describes the headers that declare these
function signatures and define any related types.

17.3.1 Headerxdefines> [lib.header.defines]

The headekdefines> defines a constant and several types used widely throughout the Stamedard C
library. Some are also defined in C headers.

The constant is:
const size_t NPOS = (size_t)(-1);

which is the largest representable value of sipe_t

17.3.1.1 Typdvoid_t [lib.fvoid.t]
typedef void fvoid_t();

The typefvoid_t is a function type used to simplify the writing of several declarations in this clause.

17.3.1.2 Typeptrdiff_t [lib.ptrdiff.t]
typedef T ptrdiff_t;

The typeptrdiff_t is a synonym forT, the implementation-defined signed integral type of the result of
subtracting two pointers.

17.3.1.3 Typesize_t [lib.size.t]
typedef T size_t;

The typesize_t is a synonym forT, the implementation-defined unsigned integral type of the result of

thesizeof operator.

17.3.1.4 Typewint_t [lib.wint.t]
typedef T wint_t;

The typewint t is a synonym forT, the implementation-defined integral type, unchanged by integral

promotions, that can hold any value of typehar t as well as at least one value that does not correspond
to the code for any member of the extended charact&fset. a

82) The extra value is denoted by the madfBOFdefined in<cwchar> . Itis permissible fotWEOFRo be in the range of values rep{]
resentable bwchar_t .

17-16 Library DRAFT: 27 May 1994 17.3.1.5 Typecapacity

17.3.1.5 Typecapacity [lib.capacity]

typedef T capacity;
static const capacity default_size;
static const capacity reserve;

The typecapacity is an enumerated type (indicated her@asvith the elements:

— default_size , as an argument value indicates that no reserve capacity argument is present in the
argument list;

— reserve , as an argument value indicates that the preceding argument specifies a reserve capacity.

17.3.2 Headexexception> [lib.header.exception]

EBox 86
rLibrary WG issue: Michael Vilot, November 22, 1993
O

Urhe San Diego rewrite dropped all uses of exception specifications. [See: X3J16/93-0012R1, 93- 50]13R1
Eb:% -0060, and 93-0064, as voted upon and accepted.]

I:I%I:II:I

D

0
[Dropping exception specifications was not a decision the Library WG reached. They need to be retained
Cuntil we make an explicit decision to remove them. O

The headekexception> defines several types and functions related to the handling of exceptionddin a

CH program. O
17.3.2.1 Clas&xception [lib.exception]
FBox 87 B
H_ibrary WG issue: Charles Allison, January 3, 1994 0
O

O
What is the current state ohar * vs.string arguments to xmsg and xalloc constructors. Did we 6ffi-
Ctially decide that we shouldn’t use string? | notice that 17 use null-terminated strings.

HBox 88

El_ibrary WG issue: Michael Vilot, November 22, 1993

i

gThe use of a virtuaraise() member function, instead of actually throwing exceptions, is a signifigant
departure from the intent of the language. The rationale, “to provide a central point for debugging ks,”
[keems to be inappropriate overspecification. It precludes other options that would achieve the sameigoal.

17.3.2.1 Clas&xception DRAFT: 27 May 1994 Library 17-17

class exception { ad
public:
typedef void (*raise_handler)(exception&); O
static raise_handler set_raise_handler(raise_handler handler_arg);
exception(const string& what_arg); ad
virtual ~exception(); O
void raise();
virtual string what() const; O
protected:
exception(); O
virtual void do_raise();
private: O
I static raise_handler handler ; exposition only
I const string* desc; exposition only O
I bool alloced ; exposition only O
I3

The clasexception defines the base class for the types of objects thrown as exceptions by Standdrd C
library functions, and certain expressions, to report errors detected during program execution. Every&xcep-
tion ex thrown by a function defined within the Standard @brary is thrown by evaluating an expression

of the formex.raise() . The class maintains a ttataise handletthat designates a function to be called

by the member functioraise . O

The class defines a member typése handler and maintains several kinds of data. For the sakelbf
exposition, the stored data is presented here as:

— static raise_handler handler , points to the function called by the member function
raise . Its initial value designates no function to be called; O
— const string* what , stores a null pointer or points to an object of typang whose value is [

intended to briefly describe the general nature of the exception thrown;

— bool alloced , stores a nonzero value if the string objettat has been allocated by the object i
classexception

17.3.2.1.1 Typeexception::raise_handler [lib.exception::raise.handler]

typedef void (*raise_handler)(exception&); ad

The typeraise_handler describes a pointer to a function called by the member funetise to per-

form operations common to all objects of clagseption . a
17.3.2.1.2 [{lib.exception::set.raise.handler]
exception;:set_raise_handler(raise_handler) a
static raise_handler set_raise_handler(raise_handler handler_arg);
Assignshandler_arg to handler and then returns the previous value storefgandler . O
17.3.2.1.3exception::exception(const string&) [lib.cons.exception.str]
exception(const string& what_arg); O

Constructs an object of claggception and initializesdesc to &string(what_arg) andalloced
to a nonzero value.

OO

17-18 Library DRAFT: 27 May 1994 17.3.2.1.4exception::~exception()

17.3.2.1.4exception::~exception() [(lib.des.exception]

virtual ~exception(); ad

Destroys an object of clasxception . If alloced is nonzero, the function frees any object pointed b

by what . a

17.3.2.1.5exception::raise() [{lib.exception::raise]
void raise();

If handler is nonzero, call§* handler)(*this) . The function then calldo_raise() , then eval-

uates the expressidnrow *this . O

17.3.2.1.6exception::what() [(lib.exception::what]
virtual string what() const; O

If desc is not a null pointer, returnstring(desc) . Otherwise, the value returned is implementatiah
defined. 0

17.3.2.1.7exception::exception() [lib.cons.exception]

exception(); O

Con%t3r)ucts an object of clasgception and initializesdesc to an unspecified value arlloced to O
zero. g

17.3.2.1.8exception::do_raise() [lib.exception::do.raise]

virtual void do_raise(); ad

Called by the member functioaise to perform operations common to all objects of a class derived ffdm
exception . The default behavior is to return. a

17.3.2.2 Clas$ogic (lib.logic]

class logic : public exception { O
public:

logic(const string& what_arg);

virtual ~logic();
I virtual string what() const; inherited
protected:
I virtual void do_raise(); inherited

h

OoOoo

The clasdogic defines the type of objects thrown as exceptions by the implementation to report éfrors
presumably detectable before the program executes, such as violations of logical preconditions ar class

invariants. O

17.3.2.2.1logic::logic(const string&) [lib.cons.logic]
logic(const string& what_arg); O

Constructs an object of claegjic , initializing the base class withkxception(what_arg) . O

83 The protected default constructor oeception can, and should, avoid allocating any additional storage.

17.3.2.2.2logic::~logic() DRAFT: 27 May 1994 Library 17-19

17.3.2.2.2logic::~logic() [lib.des.logic]
virtual ~logic(); ad
Destroys an object of claksgic . a
17.3.2.2.3logic::what() [(lib.logic::what]
I virtual string what() const inherited, ad
Behaves the same asception::what() . O
17.3.2.2.4logic::do_raise() [lib.logic::do.raise]
I virtual void do_raise(); inherited
Behaves the same asception::do_raise() . O
17.3.2.3 Classuntime (lib.runtime]
class runtime : public exception { O
public:
runtime(const string& what_arg); O
virtual ~runtime(); g
I virtual string what(); inherited O
protected:
I virtual void do_raise(); inherited
runtime(); 0
2
The classuntime defines the type of objects thrown as exceptions by the implementation to report &rrors
presumably detectable only when the program executes. O
17.3.2.3.1runtime::runtime(const string&) [lib.cons.runtime.str]
runtime(const string& what_arg); ad
Constructs an object of clagmtime , initializing the base class witxception(what arg). a
17.3.2.3.2runtime::~runtime() [(lib.des.runtime]
virtual ~runtime(); O
Destroys an object of clagsntime . O
17.3.2.3.3runtime::what() (lib.runtime::what]
I virtual string what() const inherited, ad
Behaves the same asception::what() . O
17.3.2.3.4runtime::do_raise() (lib.runtime::do.raise]
I virtual void do_raise(); inherited

Behaves the same asception::do_raise() . g

17-20 Library DRAFT: 27 May 1994 17.3.2.3.5runtime::runtime()

17.3.2.3.5runtime::runtime() [lib.cons.runtime]
runtime(); ad
Constructs an object of clasmtime , initializing the base class witxception() . a
17.3.2.4 Clasbad_cast [({lib.bad.cast]
class bad_cast : public logic { O
public:
bad_cast(const string& what_arg); O
virtual ~bad_cast(); ad
I virtual string what() const; inherited O
protected:
I virtual void do_raise(); inherited
I3
The clasdad_cast defines the type of objects thrown as exceptions by the implementation to repoit the
execution of an invalidynamic-casexpression. a
17.3.2.4.1bad_cast::bad_cast(const string&) [lib.cons.bad.cast]
bad_cast(const string& what_arg); O
Constructs an object of clasad_cast , initializing the base class withgic(what_arg . O
17.3.2.4.2bad_cast::~bad_cast() [(lib.des.bad.cast]
virtual ~bad_cast(); O
Destroys an object of clabad_cast . O
17.3.2.4.3bad_cast::what() [lib.bad.cast::what]
I virtual string what() const inherited, ad
Behaves the same asception::what() . O
17.3.2.4.4bad_cast::do_raise() [{lib.bad.cast::do.raise]
I virtual void do_raise(); inherited
Behaves the same asception::do_raise() . a
17.3.2.5 Classnvalid_argument (lib.invalid.argument]
class invalid_argument : public domain { O
public:
invalid_argument(const string& what_arg); O
virtual ~invalid_argument(); ad
I virtual string what() const; inherited O
protected:
I virtual void do_raise(); inherited
I3
The classnvalid_argument defines the base class for the types of all objects thrown as exceptions,

by functions in the Standard-Clibrary, to report an invalid argument. a

17.3.25.1 DRAFT: 27 May 1994 Library 1721
invalid_argument::invalid_argument(const string&)

17.3.25.1 [lib.cons.invalid.argument]
invalid_argument::invalid_argument(const string&) O

invalid_argument(const string& what_arg); ad
Constructs an object of classnvalid_argument , initializing the base class with(
domain(what arg). a
17.3.2.5.2invalid_argument::~invalid_argument() [(lib.des.invalid.argument]

virtual ~invalid_argument(); O
Destroys an object of claswalid_argument . O
17.3.2.5.3invalid_argument::what() (lib.invalid.argument::what]

I virtual string what() const inherited,; ad
Behaves the same asception::what() . O
17.3.2.5.4invalid_argument::do_raise() (lib.invalid.argument::do.raise]

I virtual void do_raise(); inherited
Behaves the same asception::do_raise() . g
17.3.2.6 Clas¢ength_error (lib.length.error]

class length_error : public domain { ad

public:

length_error(const string& what_arg); O
virtual ~length_error(); O

I virtual string what() const; inherited ad

protected:

I virtual void do_raise(); inherited

2

The clasdength_error defines the base class for the types of all objects thrown as exceptions, byfunc-
tions in the Standard+€ library, to report an attempt to produce an object whose length equals or exceeds

NPOS O
17.3.2.6.1length_error::length_error(const string&) [(lib.cons.length.error]

length_error(const string& what_arg); ad
Constructs an object of clagngth_error , initializing the base class wittomain(what_arg) . a
17.3.2.6.2length_error::~length_error() [({lib.des.length.error]

virtual ~length_error(); O
Destroys an object of clakngth_error . O
17.3.2.6.3length_error::what() (lib.length.error::what]

I virtual string what() const; inherited ad

Behaves the same asception::what() . O

17-22 Library DRAFT: 27 May 1994 17.3.2.6.4
length_error::do_raise()

17.3.2.6.4length_error::do_raise() (lib.length.error::do.raise]
I virtual void do_raise(); inherited
Behaves the same asception::do_raise() . a
17.3.2.7 Classut_of range [(lib.out.of.range]
class out_of_range : public domain { O
public:
out_of _range(const string& what_arg); O
virtual ~out_of_range(); ad
I virtual string what() const; inherited O
protected:
I virtual void do_raise(); inherited
2
The clas®out_of range defines the base class for the types of all objects thrown as exceptions, byfunc-
tions in the Standard+Elibrary, to report an out-of-range argument. a
17.3.2.7.1out_of range::out_of range(const string&) ({lib.cons.out.of.range]
out_of _range(const string& what_arg); O
Constructs an object of clagat_of range |, initializing the base class wittomain(what _arg) . O
17.3.2.7.2out_of range::~out_of range() [lib.des.out.of.range]
virtual ~out_of_range(); O
Destroys an object of classit_of range . O
17.3.2.7.3out_of_range::what() (lib.out.of.range::what]
I virtual string what() const; inherited ad
Behaves the same asception::what() . O
17.3.2.7.4out_of range::do_raise() [{lib.out.of.range::do.raise]
I virtual void do_raise(); inherited
Behaves the same asception::do_raise() . a
17.3.2.8 Classverflow [lib.overflow]
class overflow : public range { O
public:
overflow(const string& what_arg); O
virtual ~overflow();
I virtual string what() const; inherited O
protected:
I virtual void do_raise(); inherited
2

The clasoverflow defines the base class for the types of all objects thrown as exceptions, by functions
in the Standard+& library, to report an arithmetic overflow. a

17.3.2.8.1 DRAFT: 27 May 1994 Library 1723
overflow::overflow(const string&)

17.3.2.8.1overflow::overflow(const string&) [(lib.cons.overflow]
overflow(const string& what_arg); ad

Constructs an object of claggerflow |, initializing the base class witange(what _arg) . a

17.3.2.8.20overflow::~overflow() [lib.des.overflow]

virtual ~overflow();

Destroys an object of classerflow . O
17.3.2.8.3overflow::what() [({lib.overflow::what]
I virtual string what() const; inherited a
Behaves the same asception::what() . O
17.3.2.8.4overflow::do_raise() [lib.overflow::do.raise]
I virtual void do_raise(); inherited
Behaves the same asception::do_raise() . g
17.3.2.9 Classlloc (lib.alloc]
class alloc : public runtime { ad
public:
alloc(); O
virtual ~alloc(); O
I virtual void what() const; inherited ad
protected:
I virtual void do_raise(); inherited
private: O
I static string alloc_msg ; exposition only ad
h
The classlloc defines the type of objects thrown as exceptions by the implementation to report a failure
to allocate storage. For the sake of exposition, the maintained data is presented here as: O
— static string alloc_msg , an object of typestring whose value is intended to briefly
describe an allocation failure, initialized to an unspecified value. O
17.3.2.9.1alloc::alloc() [(lib.cons.alloc]
alloc(); O
Constructs an object of clagboc |, initializing the base class witantime() . O
17.3.2.9.2alloc::~alloc() [lib.des.alloc]
virtual ~alloc(); O

Destroys an object of clasfioc . g

17-24 Library DRAFT: 27 May 1994 17.3.2.9.3alloc::what()

17.3.2.9.3alloc::what() (lib.alloc::what]

I virtual int what() const; inherited ad
Returns an implementation-defined vafie. O
17.3.2.9.4alloc::do_raise() lib.alloc::do.raise]

I virtual void do_raise(); inherited
Behaves the same asception::do_raise() . O
17.3.2.10 Classlomain [{lib.domain]

class domain : public logic { O

public:

domain(const string& what_arg); ad
virtual ~domain(); O

I virtual string what() const; inherited O

protected:

I virtual void do_raise(); inherited

h
The classlomain defines the type of objects thrown as exceptions by the implementation to report démain
errors. u
17.3.2.10.1domain::domain(const string&) [lib.cons.domain]

domain(const string& what_arg); O
Constructs an object of clademain , initializing the base class withgic(what_arg) . O
17.3.2.10.2domain::~domain() (lib.des.domain]

virtual ~domain(); O
Destroys an object of clademain . g
17.3.2.10.3domain::what() (lib.domain::what]

I virtual string what() const; inherited ad
Behaves the same asception::what() . O
17.3.2.10.4domain::do_raise() [lib.domain::do.raise]

I virtual void do_raise(); inherited
Behaves the same asception::do_raise() . O
17.3.2.11 Classange (lib.range]

84 possible return value &alloc_msg .

17.3.2.11 Classange DRAFT: 27 May 1994 Library 17-25

class range : public runtime { a
public: a
range(const string& what_arg); a
virtual ~range(); a
I virtual string what() const; inherited a
protected: a
I virtual void do_raise(); inherited a
I3 0
The clasgange defines the type of objects thrown as exceptions by the implementation to report fange
errors. g
17.3.2.11.1range::range(const string&) [lib.cons.range]
range(const string& what_arg); a
Constructs an object of clasmge , initializing the base class witantime(what _arg) . ad
17.3.2.11.2range::~range() [{lib.des.range]
virtual ~range(); a
Destroys an object of clasange . ad
17.3.2.11.3range::what() (lib.range::what]
I virtual int what() const; inherited a
Behaves the same asception::what() . O
17.3.2.11.4range::do_raise() (lib.range::do.raise]
I virtual void do_raise(); inherited a
Behaves the same asception::do_raise() . g
17.3.2.12set_terminate(fvoid_t*) [lib.set.terminate]
HBox 89 B
HJbrary WG issue: Michael Vilot, November 22, 1993 I
0 O
rRequiring global objects is an overspecification: ED
O
17.3.2.12 seterminate “The function storgsew p in a static object H]
g ... The function returns the previous contents of termihaiedler.” I
0 O
17.3.2.13 ditto for unexpectedandler. B
O
%7.3.3.1 ditto for newhandler. H]
O

gThe treatment of all 3 handlers in 93-0148/N0355 was simpler and clearer. The San Diego rewrite gmounts
[to overspecification, particularly in light of the ongoing interest in keeping this library viable in railti-
[threaded environments.

fvoid_t* set_terminate(fvoid_t* new_p);

17-26 Library DRAFT: 27 May 1994 17.3.2.12set_terminate(fvoid_t*)

Establishes a new handler for terminating exception processing. The functionrgargs in a static
object that, for the sake of exposition, can be declared as:

fvoid_t* terminate_handler = &abort;
where the function signatuaebort() is defined in<cstdlib> (17.2.4.5). new_p shall not be a null O
pointer.

The function returns the previous contentgesfninate handler

17.3.2.13set_unexpected(fvoid_t*) [lib.set.unexpected]

fvoid_t* set_unexpected(fvoid_t* new_p);

Establishes a new handler for an unexpected exception thrown by a function wikception-
specification.The function storemew _p in a static object that, for the sake of exposition, can be declared
as:

fvoid_t* unexpected_handler = &terminate;

new_p shall not be a null pointer.

The function returns the previous contentsioéxpected _handler

17.3.2.14terminate() [lib.terminate]

void terminate();
Called by the implementation when exception handling must be abandoned for any of several reasons, such
as:
— when a thrown exception has no corresponding handler;
— when a thrown exception determines that the the execution stack is corrupted;

— when a thrown exception calls a destructor that tries to transfer control to a calling function by throwing
another exception.

Using the notation of subclause 17.3.2.12, the function evaluates the expression:

(* terminate_handler)0

The required behavior of any function called by this expression is to terminate execution of the program

without returning to the caller. The default behavior is to ablbrt() , declared in<cstdlib> a

(17.2.4.5).

17.3.2.15unexpected() [lib.unexpected]
void unexpected(); 0

Called by the implementation when a function withexigeption-specificatiothrows an exception that is
not listed in theexception-specificationUsing the notation of subclause 17.3.2.13, the function evaluates
the expression:

(* unexpected_handler ()
The required behavior of any function called by this expression is to throw an exception or terminate execu-

tion of the program without returning to the caller. The called function may perform any of the following
operations:

— rethrow the exception;

17.3.2.15unexpected() DRAFT: 27 May 1994 Library 17-27

— throw another exception;
— callterminate() ;
— call eitherabort() or exit(int) , declared irccstdlib> (17.2.4.5). g

The default behavior is to caéirminate()

17.3.3 Headexnew> [lib.header.new]

HBox 90
HJbrary WG issue: Michael Vilot, November 22, 1993

O
rhe wording has disappeared that required an implementation that uses the global veogierstaf
Chew anddelete to pick up program-supplied versions that replace them.

mOoOoOodod

The headexnew> defines several functions that manage the allocation of storage in a program, as
described in subclauses 5.3 and 12.5.

17.3.3.1set_new_handler(fvoid_t*) [lib.set.new.handler]

HBox 91

El_ibrary WG issue: Michael Vilot, November 22, 1993

BThis is part of a general issue on stating the requirements on types and furszbbsthe library.

O
[Keeping a separate subsection for the handlers in 93-0148/N0355 also served two other purposes.;
O

D%FIDEDDDD

irst, it gave us a place to introduce appropriate typedefs. As indicated, “thevdygpet needs to beT]l

fefined or replaced.” | suggestplaced Actually, the use ofvoid_t is lessprecise than the use of the

rthree handler typedefs in 93-0148/N0355.

O
O

[Second, it gave us a place to describe the default implementation: the description of the new-handler in

%3-0108 section 17.3.2.5 seems out of place, and artifically removed from 17.3.2.2. ad
O

O

We should retain the wording in 93-0148/N0355, because it avoids another global name and it cor@eys the

Csemantics of each handler more succinctly.

fvoid_t* set_new_handler(fvoid_t* new_p); a
Establishes a new handler to be called by the default versiapeaftor new(size t) andoper-
ator new[](size_t) when they cannot satisfy a request for additional storage. The function stores

new_p in a static object that, for the sake of exposition, can be cadled handler and can be declared
as:

fvoid_t* new_handler =& new_hand;

where, in turnnew_hand can be defined as:

static void new_hand ()

{ // raise alloc exception O
static const alloc ex("operator new"); ad
ex.raise();

17-28 Library DRAFT: 27 May 1994 17.3.3.1
set_new_handler(fvoid_t*)

The function returns the previous contentsiefy _handler

17.3.3.2 operator delete(void*) [lib.op.delete]
void operator delete(void* ptr); 0

Called by adelete expression to render the valuemf invalid. The program can define a function

with this function signature that displaces the default version defined by the Starddiora@y. The

required behavior is to accept a valugotif that is null or that was returned by an earlier cafigera-
tor new(size_t)

The default behavior for a null value pfr is to do nothing. Any other value gftr shall be a value

returned earlier by a call to the defaofterator new(size t) . 85 The default behavior for such &1
non-null value ofptr is to reclaim storage allocated by the earlier call to the detmdtator
new(size_t) . Itis unspecified under what conditions part or all of such reclaimed storage is allocated
by a subsequent call tperator new(size t) or any ofcalloc(size_t) , malloc(size_t) ,
or realloc(void*, size t) , declared ircestdlib> (17.2.4.3). a
17.3.3.3 operator delete[](void*) [lib.op.delete.array]

void operator delete[](void* ptr);

Called by adelete]] expression to render the valuegdf invalid. The program can define a function
with this function signature that displaces the default version defined by the Stasidhbda®y.

The required behavior is to accept a valugosf that is null or that was returned by an earlier call to
operator new[](size_t)

The default behavior for a null value pfr is to do nothing. Any other value gfr shall be a value

returned earlier by a call to the defapiiterator new[](size_t) . 8) The default behavior for suchil
a non-null value ofptr is to reclaim storage allocated by the earlier call to the defqdtator
new[](size_t) . It is unspecified under what conditions part or all of such reclaimed storage is allo-
cated by a subsequent call toperator new(size t) or any of calloc(size t) ,
malloc(size _t) , orrealloc(void*, size_t) , declared irccstdlib> (17.2.4.3). O
17.3.3.4 operator new(size_t) [lib.op.new]
85) The value must not have been invalidated by an intervening caflei@tor delete(size_t) , or it would be an invalid
ggﬂument for a Standare=dibrary function call.

The value must not have been invalidated by an intervening egetator delete[](size_t) , or it would be an invalid

argument for a Standard~ibrary function call.

17.3.3.4 operator new(size_t) DRAFT: 27 May 1994 Library 17-29

HBox 92
HJbrary WG issue: Michael Vilot, November 22, 1993

O

[The 3 paragraphs of 93-0148/N0355 section 17.1.1 should be retained.

O

Urhe change to split these out and reorder them is counterproductive. By repeating the descriptions{you've
ntroduced a lot of wordiness and potential for error. In particular, the wording about storage allocatiph and

Jeclamation lost something in the translation.

EEPDEDLI___LIDD

O
0 O
(Orhe words in 93-0148/N0355 section 17.1.1.1, paragraph 4, were intentionally copied, in order, fromthe C
Lstandard. The Rationale statement clearly expresses our intent to pattern our description of storage-mhanage-
anent after the same words foalloc/calloc/free (17.2.4.3). 0

O
gThe concept of “invalidating” is probably more appropriate wording. Let’s see if we can't keep the advan-
[(fages of the wording of 93-0148/N0355 with this suggested improvement.

void* operator new(size_t size); 0

Called by anew expression to allocateize bytes of storage suitably aligned to represent any object of
that size. The program can define a function with this function signature that displaces the default version
defined by the Standard-Clibrary.

The required behavior is to return a non-null pointer only if storage can be allocated as requested. Each
such allocation shall yield a pointer to storage disjoint from any other allocated storage. The order and con-
tiguity of storage allocated by successive callsgerator new(size_t) is unspecified. The initial

stored value is unspecified. The returned pointer points to the start (lowest byte address) of the allocated
storage. Ifsize is zero, the value returned shall not compare equal to any other value retuope-by

ator new(size_t)

The default behavior is to execute a loop. Within the loop, the function first attempts to allocate the
requested storage. Whether the attempt involves a call to the Standard C library foradtaan is
unspecified. If the attempt is successful, the function returns a pointer to the allocated storage. Otherwise
(using the notation of subclause 17.3.3.1), néw_handler is a null pointer, the result is
implementation—defineﬁs.;) Otherwise, the function evaluates the expresgtonew handler)() . If

the called function returns, the loop repeats. The loop terminates when an attempt to allocate the requested
storage is successful or when a called function does not return.

The required behavior of a function called (bynew_handler)() is to perform one of the following
operations:

— make more storage available for allocation and then return;

— execute an expression of the foax.raise() , whereex is an object of typalloc , declared in O
<exception> ;
— call eitherabort() or exit(int) , declared irccstdlib> (17.2.4.5). a

The default behavior of a function called lfy new _handler)() is described by the function
new_hand, as shown in subclause 17.3.3.1.

8/) The value cannot legitimately compare equal to one that has been invalidated by apeathtor delete(size_t) , since
gg}/ such comparison is an invalid operation.
A common extension whemew_handler is a null pointer is fooperator new(size_t) to return a null pointer, in accor-

dance with many earlier implementations &f.C

17-30 Library DRAFT: 27 May 1994

17.3.3.40perator new(size_t)

The order and contiguity of storage allocated by successive cabipei@tor new(size_t) is

unspecified, as are the initial values stored there.

17.3.3.50perator new[](size_t)

void* operator new[](size_t size);

[lib.op.new.array]

Called by anew[] expression to allocateize bytes of storage suitably aligned to represent any array
object of that size or smallef? The program can define a function with this function signature that dis-

places the default version defined by the Standardil@ary.
The required behavior is the same asofogrator new(size_t)

The default behavior is to retuoperator new(size).

17.3.3.6 operator new(size_t, void*)

void* operator new(size_t size , void* ptr);

Returnsptr .

17.3.3.7 operator new[](size_t, void*)

void* operator new[](size_t size , void* ptr);

Returnsptr .

17.3.4 Headerxtypeinfo>

The headektypeinfo>
tation.

17.3.4.1 Clasbad_type_id

class bad_type_id : public logic {
public:

bad_type_id();

virtual ~bad_type_id();
protected:
I virtual void do_raise();

k

The clasdad_type_id
a null pointerp in an expression of the fortypeid (* p) .

17.3.4.1.1bad_type_id::bad_type_id()
bad_type_id();

inherited

[lib.placement.op.new]

[lib.placement.op.new.array]

[lib.header.typeinfo]

defines two types associated with type information generated by the implemen-

O

(lib.bad.type.id]

defines the type of objects thrown as exceptions by the implementation to réport

O

[lib.cons.bad.type.id]
0

Constructs an object of clabad_type_id , initializing the base cladegic with an unspecified con-[

structor.

%91t is not the direct responsibility afperator new[](size_t)

or operator delete[](void*)

O

to note the repetition

count or element size of the array. Those operations are performed elsewhere in thevaemagidelete expressions. The array

new expression, may, however, increasedfr® argument tmperator new[](size_t)

information.

to obtain space to store supplemental

17.3.4.1.2 DRAFT: 27 May 1994 Library 1731
bad_type_id::~bad_type_id()

17.3.4.1.2bad_type_id::~bad_type_id() (lib.des.bad.type.id]
virtual ~bad_type_id(); ad
Destroys an object of clabad_type id . a
17.3.4.1.3bad_type_id::do_raise() [({lib.bad.type.id::do.raise]
I virtual void do_raise(); inherited
Behaves the same asception::do_raise() . O
17.3.4.2 Classype_info [lib.type.info]
class type_info { O
public:
virtual ~type_info(); ad
bool operator==(const type_info& rhs) const; O
bool operator!=(const type_info& rhs) const; O
bool before(const type_info& rhs); O
const char* name() const;
private:
I const char* name, exposition only
I T desc ; exposition only O
type_info(const type_info& rhs); ad
type_info& operator=(const type_info& rhs); O
2

The clasgype_info describes type information generated within the program by the implementation.
Objects of this class effectively store a pointer to a hame for the type, and an encoded value suitable for
comparing two types for equality or collating order. The names, encoding rule, and collating sequefkte for
types are all unspecified and may differ between programs.

For the sake of exposition, the stored objects are presented here as:
— const char* name, points at a statigTMBS; O

— T desc , an object of a typd that has distinct values for all the distinct types in the program, stores
the value corresponding tmme.

17.3.4.2.1type_info::~type_info() (lib.des.type.info]
virtual ~type_info(); O
Destroys an object of tyggpe_info . O
17.3.4.2.2type_info::operator==(const type_info&) (lib.type.info::op==
bool operator==(const type_info& rhs) const; ad

Compares the value storeddiasc with rhs . desc. Returns a nonzero value if the two values represent

the same type. a
17.3.4.2.3type_info::operator!=(const type_info&) (lib.type.info::op!=]
bool operator!=(const type_info& rhs) const; O

Returns a nonzero value!{fthis == rhs). O

17-32 Library DRAFT: 27 May 1994 17.34.2.4
type_info::before(const type_info&)

17.3.4.2.4type_info::before(const type_info&) [(lib.type.info::before]

bool before(const type_info& rhs) const; ad

Compares the value storeddasc with rhs . desc . Returns a nonzero value*this precedeshs in
the collation order. O

17.3.4.2.5type_info::name() (lib.type.info::name]

const char* name() const;

Returnsname. u
17.3.4.2.6type_info::type_info(const type_info&) [(lib.cons.type.info]
type_info(const type_info& rhs); O

g:ot))nstructs an object of clagge_info and initializesnameto rhs . nameanddesc to rhs . desc. [

U
17.3.4.2.7type_info::operator=(const type_info&) (lib.type.info::op=]
type_info& operator=(const type_info& rhs); O
Assignsrhs . nameto nameandrhs . desc to desc . The function returnghis . O
17.4 Input/output [lib.input/output]
HBox 93

HJbrary WG issue: Nobuo Saito, January 17, 1994

OoOodood

O

in the current library draft, there is nothing about the I/O functions for wide characters. For Asian Hations
(ike Japan, it is crucial to be able to use the multibyte characters flexibly in all the areas like 1/0O functions.
gTherefore, it is very important to prepare I/O functions for the wide characters in the current library graft.

O
e also want to prepare the sophisticated solutions using the high functionalities +# targDage(likeT]
rthe overloading). Then, the following design policy will be reasonable.
O
U 1) Use the overloaded function names both for characters and wide
g characters.

O
] 2) Use the character base buffers in the streambuf.
O
Ebomment (Library WG meeting, San Diego, 3/8/94):

gSee pending proposals:
194-0050/N0437 Takanori Adachi "An inserter and extractor for the unified string class"
[094-0052/N0439 Norohiro Kumagai "A Proposal for Widechar |Ostream"

DIIEBD%FIDDDDDDDD

This subclause describes a number of headers that together support input, output, and internal datdlconver-
sions.

) since the copy constructor and assignment operattyder info are private to the class, objects of this type cannot be copigd,
but objects of derived classes possibly can be.

17.4.1 Headerios> DRAFT: 27 May 1994 Library 17-33

17.4.1 Headexios> [lib.header.ios]

The Headekios> defines a type and several function signatures for controlling how to interpret text input
from a sequence of characters and how to generate text output to a sequence of characters.

17.4.1.1 Class$os [lib.ios]

17-34 Library DRAFT: 27 May 1994

class ios {
public:
class failure : public exception {
public:
failure(const string& what_arg);
virtual ~failure();
I virtual string what() const; inherited
protected:
I virtual void do_raise(); inherited
2

typedef T1 fmtflags;
static const fmtflags dec;
static const fmtflags fixed;
static const fmtflags hex;
static const fmtflags internal;
static const fmtflags left;
static const fmtflags oct;
static const fmtflags right;
static const fmtflags scientific;
static const fmtflags showbase;
static const fmtflags showpoint;
static const fmtflags showpos;
static const fmtflags skipws;
static const fmtflags unitbuf;
static const fmtflags uppercase;
static const fmtflags adjustfield,;
static const fmtflags basefield;
static const fmtflags floatfield;
typedef T2 iostate;
static const iostate badbit;
static const iostate eofbit;
static const iostate failbit;
static const iostate goodbit;
typedef T3 openmode;
static const openmode app;
static const openmode ate;
static const openmode binary;
static const openmode in;
static const openmode out;
static const openmode trunc;
typedef T4 seekdir;
static const seekdir beg;
static const seekdir cur;
static const seekdir end;
class Init {
public:

Init();

~Init();
private:

I static int init_ent exposition only

h
ios(streambuf* sb_arg);
virtual ~ios();
operator bool() const
bool operator!() const

ios& copyfmt(const ios& rhs);
ostream* tie() const;

ostream* tie(ostream* tiestr_arg);
streambuf* rdbuf() const;

streambuf* rdbuf(streambuf* sb_arg);

iostate rdstate() const;
void clear(iostate state_arg = goodbit);

17.4.1.1 Clas#os

17.4.1.1 Classos DRAFT: 27 May 1994 Library 17-35

void setstate(iostate state_arg);
bool good() const; O
bool eof() const; O
bool fail() const; O
bool bad() const; ad
iostate exceptions() const;
void exceptions(iostate except_arg);
fmtflags flags() const; O
fmtflags flags(fmtflags fmtfl_arg);
fmtflags setf(fmtflags fmtfl_arg);
fmtflags setf(fmtflags fmtfl_arg , fmtflags mask);
void unsetf(fmtflags mask);
int fill() const;
int fill(int ch);
int precision() const;
int precision(int prec_arg);
int width() const;
int width(int wide_arg);
locale imbue(const locale& loc_arg); O
locale rdloc() const; O
static int xalloc();
long& iword(int index_arg);
void*& pword(int index_arg);
protected:
i0s();
void init(streambuf* sb_arg); O
private:
I streambuf* sb; exposition only
I ostream* tiestr exposition only
I iostate state ; exposition only
I iostate except ; exposition only
1 fmtflags fmtfl ; exposition only
I int prec ; exposition only
I int wide ; exposition only
I char fillch exposition only
1 locale loc ; exposition only O
I static int index ; exposition only
I int* iarray exposition only
I void** parray ; exposition only
I3

The clasdos serves as a base class for the clastesam andostream . It defines several member
types:

— aclasdailure derived fromexception ; O
— aclasdnit ;

— three bitmask typeémtflags , iostate , andopenmode;

— an enumerated typseekdir

It maintains several kinds of data:

— a pointer to astream bufferan object of classtreambuf |, that controls sources (input) and sinks
(output) of character sequences;

— state information that reflects the integrity of the stream buffer;

— control information that influences how to interpret (format) input sequences and how to generate (for-
mat) output sequences;

— additional information that is stored by the programffor its private use. O

17-36 Library DRAFT: 27 May 1994 17.4.1.1 Clas#os

For the sake of exposition, the maintained data is presented here as:
— streambuf* sb, points to the stream buffer;

— <F1s2B-ostream*>tiestr , points to an output sequence thaties to (synchronized with) an inputC
sequence controlled by the stream buffer;

— iostate state , holds the control state of the stream buffer;

— iostate except , holds a mask that determines what elements sthie cause exceptions to be
thrown;

— fmtflags fmtfl , holds format control information for both input and output;
— int wide , specifies the field width (humber of characters) to generate on certain output conversions;

— int prec , specifies the precision (number of digits after the decimal point) to generate on certain out-
put conversions;

— char fillch , specifies the character to use to pad (fill) an output conversion to the specified field
width;

— locale loc , specifies the locale in which to perform locale-dependent input and output operatidis;

— static int index , specifies the next available unique index for the integer or pointer arrays main-
tained for the private use of the program, initialized to an unspecified value;

— int* jarray , points to the first element of an arbitrary-length integer array maintained for the pri-
vate use of the program;

— void** parray , points to the first element of an arbitrary-length pointer array maintained for the
private use of the program.

17.4.1.1.1 Classs::failure [lib.ios::failure]
EBox 94 E
aibrary WG issue: Jerry Schwarz, September 28, 1993 0
O O
Or'he San Diego rewrite drops tleess component fronios::failure . g a
class failure : public exception { ad
public:
failure(const string& where_arg); O
virtual ~failure();
1 virtual string what() const; inherited ad
protected:
I virtual void do_raise(); inherited
I3
The clasdailure defines the base class for the types of all objects thrown as exceptions, by functions in
the Standard€ library, to report errors detected during stream buffer operations. O
17.4.1.1.1.1ios::failure::failure(const string&) [lib.cons.ios::failure]
failure(const char* where_arg =0, const char* why_arg =0);

Constructs an object of clafslure |, initializing the base class witxception(what arg). a

17.41.1.1.2 DRAFT: 27 May 1994 Library 1%37
ios::failure::~failure()

17.4.1.1.1.2ios::failure::~failure() [lib.des.ios::failure]

virtual ~failure();

Destroys an object of clafsilure . a
17.4.1.1.1.3ios::failure::what() (lib.ios::failure::what]

I virtual string what() const; inherited a
Behaves the same asception::what() . O
17.4.1.1.1.4ios::failure::do_raise() [lib.ios::failure::do.raise]

I virtual void do_raise(); inherited
Behaves the same asception::do_raise() . O
17.4.1.1.2 Typeos::fmtflags [lib.ios::fmtflags]

typedef T1 fmtflags;

The typefmtflags is a bitmask type (indicated here & with the elements:

— dec, set to convert integer input or to generate integer output in decimal base;

— fixed , setto generate floating-point output in fixed-point notation;

— hex, set to convert integer input or to generate integer output in hexadecimal base;

— internal , set to add fill characters at a designated internal point in certain generated output;
— left , setto add fill characters on the left (initial positions) of certain generated output;

— oct , set to convert integer input or to generate integer output in octal base;

— right , set to add fill characters on the right (final positions) of certain generated output;

— scientific , Set to generate floating-point output in scientific notation;

— showbase , set to generate a prefix indicating the numeric base of generated integer output;

— showpoint , set to generate a decimal-point character unconditionally in generated floating-point out-
put;

— showpos , set to generate+asign in non-negative generated numeric output;
— skipws , set to skip leading white space before certain input operations;
— unitbuf , set to flush output after each output operation;

— uppercase , set to replace certain lowercase letters with their uppercase equivalents in generated out-
put.

Typefmtflags also defines the constants:
— adjustfield , the valudeft | right | internal ;
— basefield , the valualec | oct | hex ;

— floatfield , the valuescientific | fixed

17-38 Library DRAFT: 27 May 1994 17.4.1.1.3 Typéos::iostate

17.4.1.1.3 Typeos::iostate [lib.ios::iostate]
typedef T2 iostate;

The typeiostate is a bitmask type (indicated here B8 with the elements:

— badbit , set to indicate a loss of integrity in an input or output sequence (such as an irrecoverable read
error from a file);

— eofbit , set to indicate that an input operation reached the end of an input sequence;

— failbit , Set to indicate that an input operation failed to read the expected characters, or that an output
operation failed to generate the desired characters.

Typeiostate also defines the constant:

— goodbit , the value zero.

17.4.1.1.4 Typeos:.openmode [lib.ios::openmode]

%ox 95

ELibrary WG issue: Jerry Schwarz, January 3, 1994

OoOoono

penmode’s are used in contexts that have nothing to do with files (or open for that matter). The r@ﬁne is
rPbviously a misnomer (as are many of the names in iostreams).

O
[Not fixed.

E’I:ID

O

typedef T3 openmode;

The typeopenmode is a bitmask type (indicated here &3) with the elements:

— app, set to seek to end-of-file before each write to the file;

— ate , set to open a file and seek to end-of-file immediately after opening the file;

— binary , set to perform input and output in binary mode (as opposed to text mode);
— in , set to open a file for input;

— out , set to open a file for output;

— trunc , setto truncate an existing file when opening it. O

17.4.1.1.5 Typeos::seekdir [lib.ios::seekdir]
typedef T4 seekdir;

The typeseekdir is an enumerated type (indicated herd@ &swith the elements:

— beg, to request a seek (positioning for subsequent input or output within a sequence) relative to the
beginning of the stream;

— cur , to request a seek relative to the current position within the sequence;

— end, to request a seek relative to the current end of the sequence.

17.4.1.1.6 Clas®s::Init DRAFT: 27 May 1994 Library 17-39

17.4.1.1.6 Clasgs::Init [lib.ios::init]
class Init {
public:
Init();
~Init();
private:
I static int init_ent exposition only
2

The classlnit describes an object whose construction ensures the construction of the four objects
declared irciostream> that associate file stream buffers with the standard C streams provided for by the
functions declared ircstdio> (17.2). For the sake of exposition, the maintained data is presentedihere
as:

— static int init_cnt , counts the number of constructor and destructor calls for lcliass, ini-
tialized to zero.

17.4.1.1.6.1ios::Init:Init() [lib.cons.ios::init]
Init();
Constructs an object of classt . If init_cnt is zero, the function stores the value ongih cnt

then constructs and initializes the four objecits (17.4.9.1),cout (17.4.9.2),cerr (17.4.9.3), and
clog (17.4.9.4). In any case, the function then adds one to the value storgdant

17.4.1.1.6.2ios::Init::~Init() [lib.des.ios::init]
~Init();

Destroys an object of classit . The function subtracts one from the value storedincnt and, if

the resulting stored value is one, calisit.flush() , cerr.flush() , andclog.flush()

17.4.1.1.7io0s::i0s(streambuf*) [lib.cons.ios.sb]
ios(streambuf* sb_arg);

Constructs an object of clasi®s , assigning initial values to its member objects by calling
init(sb arg).

17.4.1.1.8ios::~ios() [lib.des.ios]
virtual ~ios();

Destroys an object of clagss . O

17.4.1.1.9ios::0perator bool() [lib.ios::operator.bool]
operator bool() const O

Returns a non-null pointer (whose value is otherwise unspecifidd)lbft | badbit is set in

State

17.4.1.1.10ios::operator!() [lib.ios::operator!]

bool operator!() const ad

17-40 Library DRAFT: 27 May 1994 17.4.1.1.10ios::0perator!()

Returns a nonzero valuefdilbit | badbit is set instate

17.4.1.1.11ios::copyfmt(const ios&) [lib.ios::copyfmt]

ios& copyfmt(const ios& rhs);

Assigns to the member objects*tfis the corresponding member objectgfod , except that:
— sb andstate are left unchanged;

— except is altered last by callingxception(rhs.except).

If any newly stored pointer values itthis point at objects stored outside the objdts , and those
objects are destroyed whes is destroyed, the newly stored pointer values are altered to point at newly
constructed copies of the objects.

The function returnsthis

17.4.1.1.12ios::tie() [lib.ios::tie]

ostream* tie() const;
Returnstiestr

17.4.1.1.13ios::tie(ostream*) [lib.ios::tie.os]

ostream* tie(ostream* tiestr_arg);
Assignstiestr_arg to tiestr and then returns the previous value storeigeistr

17.4.1.1.14ios::rdbuf() [lib.ios::rdbuf]

streambuf* rdbuf() const;
Returnssb.

17.4.1.1.15io0s::rdbuf(streambuf*) [lib.ios::rdbuf.sb]

streambuf* rdbuf(streambuf* sb_arg);
Assignssb_arg to sb, then callslear() . The function returns the previous value storesbin

17.4.1.1.16io0s::rdstate() [lib.ios::rdstate]

iostate rdstate() const;
Returnsstate

17.4.1.1.17ios::clear(iostate) [lib.ios::clear.ios]

BBox 96

H_ibrary WG issue: Jerry Schwarz, September 28, 1993

O
(Orhe San Diego rewrite addmsg arguments t@os::clear andios::setstate

mOoOOooO

void clear(iostate state_arg = goodbit); O

17.4.1.1.17ios::clear(iostate) DRAFT: 27 May 1994

Library 17-41

Assignsstate_arg to state . If sb is a null pointer, the function then sdtadbit in state . If
state & except is zero, the function returns. Otherwise, the function dalls .raise() for an
objectfail of classfailure , constructed with argument values that are implementation-defined.

17.4.1.1.18ios::setstate(iostate)

void setstate(iostate state_arg);
Callsclear(state | state_arg).

17.4.1.1.19i0s::good()

bool good() const;
Returns a nonzero valuesfate is zero.

17.4.1.1.20io0s::eof()

bool eof() const;
Returns a nonzero valuegbfbit is set instate

17.4.1.1.21ios::fail()

BBox 97

a_ibrary WG issue: Jerry Schwarz, September 28, 1993

O
[Bhould sefailbit when the input can’t be represented in the obj

gﬂl:ll:ll:ll:l

bool fail() const;
Returns a nonzero valuefdilbit is set instate

17.4.1.1.22ios::bad()

bool bad() const;
Returns a nonzero valuebdbit is set instate

17.4.1.1.23ios::exceptions()

iostate exceptions() const;
Returnsexcept .

17.4.1.1.24ios::exceptions(iostate)

void exceptions(iostate except_arg);
Assignsexcept_arg to except ,then calllear(state).

17.4.1.1.25i0s::flags()

fmtflags flags() const;

Returnsfmtf!

t.

[lib.ios::setstate.ios]

[lib.ios::good]

[lib.ios::eof]

[lib.ios::fail]

[lib.ios::bad]

[lib.ios::exceptions]

[lib.ios::exceptions.ios]

[lib.ios::flags]

17-42 Library DRAFT: 27 May 1994 17.4.1.1.26ios::flags(fmtflags)

17.4.1.1.26ios::flags(fmtflags) [lib.ios::flags.f]
fmtflags flags(fmtflags fmtfl_arg);

Assignsfmtfl_arg to fmtfl and then returns the previous value storeftitf/

17.4.1.1.27ios::setf(fmtflags) [lib.ios::setf.f]
fmtflags setf(fmtflags fmtfl_arg);

Setsfmtfl_arg in fmtfl and then returns the previous value storefitf/

17.4.1.1.28ios::setf(fmtflags, fmtflags) [lib.ios::setf.ff]
fmtflags setf(fmtflags fmtfl_arg , fmtflags mask);

Clearsmask in fmtfl , setsfmtfl_arg & maskin fmtfl , and then returns the previous value stored
in fmtfl

17.4.1.1.29io0s::unsetf(fmtflags) [lib.ios::unsetf]

void unsetf(fmtflags mask);
Clearsmask in fmtfl

17.4.1.1.30ios::fill() [lib.ios:fill]

int fill() const;
Returnsfill

17.4.1.1.31ios::fill(int) [lib.ios::fill.i]
int fill(int fillch_arg);

Assignsfillch_arg to fillch ~ and then returns the previous value storefid/ah

17.4.1.1.32ios::precision() [lib.ios::precision]

int precision() const;
Returnsprec .

17.4.1.1.33ios::precision(int) [lib.ios::precision.i]

int precision(int prec_arg);
Assignsprec_arg to prec and then returns the previous value storegrét .

17.4.1.1.34ios::width() [lib.ios::width]

int width() const;

Returnswide .

17.4.1.1.35ios::width(int) DRAFT: 27 May 1994 Library 17-43

17.4.1.1.35io0s::width(int) [lib.ios::width.i]
int width(int wide_arg);
Assignswide_arg to wide and then returns the previous value storegioe . a
17.4.1.1.36ios::imbue(const locale&) (lib.ios::imbue]
locale imbue(const locale loc_arg); a
Assignsloc_arg toloc and then returns the previous value storefddn. ad
17.4.1.1.37ios::rdloc() [(lib.ios::rdloc]
locale rdloc() const; a
Returnsloc . O
17.4.1.1.38ios::xalloc() [lib.ios::xalloc]
FBox 98 .
a_ibrary WG issue: Jerry Schwarz, September 28, 1993
O O
Os it clear thakalloc _doesn’t have to start at zero? [O

static int xalloc();
Returnsindex ++.

17.4.1.1.39ios::iword(int) [lib.ios::iword]
long& iword(int idx);

If iarray is a null pointer, allocates an arrayinf of unspecified size and stores a pointer to its first
element inarray . The function then extends the array pointed ahbyy as necessary to include the
elementiarray [idx]. Each newly allocated element of the array is initialized to zero. The function
returnsiarray [idx]. After a subsequent call fvord(int) for the same object, the earlier return
value may no longer be vaifd)

17.4.1.1.40io0s::pword(int) [lib.ios::pword]
void* & pword(int idx);

If parray is a null pointer, allocates an array of pointersa@ of unspecified size and stores a pointer
to its first element iparray . The function then extends the array pointed gbdryay as necessary to
include the elemenparray [idx]. Each newly allocated element of the array is initialized to a null
pointer. The function returngarray [idx 1. After a subsequent call foword(int) for the same
object, the earlier return value may no longer be valid.

I an implementation is free to implement both the integer array pointediatiay and the pointer array pointed at bgrray
as sparse data structures, possibly with a one-element cache for each.

17-44 Library DRAFT: 27 May 1994 17.4.1.1.41%ios::i0s()

17.4.1.1.41ios::i0s() [lib.cons.ios]

i0s();
Constructs an object of clags , assigning initial values to its member objects by calliit¢0)

17.4.1.1.42ios::init(streambuf*) [lib.ios::init.sb]

void init(streambuf* sb_arg);

Assigns:

— sb _arg tosb;

— anull pointer tafiestr

— goodbit to state if sb_arg is not a null pointer, otherwidmdbit to state ;
— goodbit to except ;

— skipws | dec to fmtfl

— zero towide ;

— 6 toprec ;

— the space characterfiich ;
— locale::classic() toloc ;
— anull pointer taarray ;

— a null pointer tqparray .

17.4.1.2dec(ios&) [lib.dec]
ios& dec(ios& str);

Callsstr .setf(ios::dec, ios::basefield) and then returnstr %%

17.4.1.3fixed(ios&) [lib.fixed]
ios& fixed(ios& str);

Callsstr .setf(ios::fixed, ios::floatfield) and then returnstr .

17.4.1.4hex(ios&) [lib.hex]
i0s& hex(ios& str);

Callsstr .setf(ios::hex, ios::basefield) and then returnstr .

17.4.1.5internal(ios&) [lib.internal]
ios& internal(ios& str);

Callsstr .setf(ios::internal, ios::adjustfield) and then returnstr .

92) The function signaturdec(ios&) can be called by the function signatostream& stream::operator<<(ostream&
(*)(ostream&)) to permit expressions of the forwout << dec to change the format flags storeccout .

17.4.1.6 left(ios&) DRAFT: 27 May 1994 Library 17-45

17.4.1.6left(ios&) [lib.left]
i0s& left(ios& Str);

Callsstr .setf(ios::left, ios::adjustfield) and then returnstr .

17.4.1.7 noshowbase(ios&) [lib.noshowbase]

ios& noshowbase(ios& str);
Callsstr .unsetf(ios::showbase) and then returnstr .

17.4.1.8 noshowpoint(ios&) [lib.noshowpoint]

i0s& noshowpoint(ios& str);
Callsstr .unsetf(ios::showpoint) and then returnstr .

17.4.1.9 noshowpos(ios&) [lib.noshowpos]

ios& noshowpos(ios& str);
Calls str .unsetf(ios::showpos) and then returnstr .

17.4.1.10noskipws(ios&) [lib.noskipws]

i0S& noskipws(ios& str);
Callsstr .unsetf(ios::skipws) and then returnstr .

17.4.1.11nouppercase(ios&) [lib.nouppercase]

ios& nouppercase(ios& str);
Callsstr .unsetf(ios::uppercase) and then returnstr .

17.4.1.120ct(ios&) [lib.oct]

i0s& oct(ios& str);
Callsstr .setf(ios::oct, ios::basefield) and then returnstr .

17.4.1.13right(ios&) [lib.right]
i0s& right(ios& str);

Callsstr .setf(ios::right, ios::adjustfield) and then returnstr .

17.4.1.14scientific(ios&) [lib.scientific]

ios& scientific(ios& str);
Callsstr .setf(ios::scientific, ios::floatfield) and then returnstr .

17.4.1.15showbase(ios&) [lib.showbase]

ios& showbase(ios& str);

Callsstr .setf(ios::showbase) and then returnstr .

17-46 Library DRAFT: 27 May 1994

17.4.1.16showpoint(ios&)

ios& showpoint(ios& str);
Callsstr .setf(ios::showpoint) and then returnstr .

17.4.1.17 showpos(ios&)

i0s& showpos(ios& str);
Callsstr .setf(ios::showpos) and then returnstr .

17.4.1.18skipws(ios&)

i0s& skipws(ios& str);
Callsstr .setf(ios::skipws) and then returnstr .

17.4.1.19uppercase(ios&)

ios& uppercase(ios& str);
Callsstr .setf(ios::uppercase) and then returnstr .

17.4.2 Headexstreambuf>

17.4.1.16showpoint(ios&)

[lib.showpoint]

[lib.showpos]

[lib.skipws]

[lib.uppercase]

[lib.header.streambuf]

The headexstreambuf> defines a macro and three types that control input from and output to chardcter

sequences.

The macro is:

— EOF which expands to a negative integral constant expression, representable i typeat is
returned by several functions to indicate end-of-file (no more input from an input sequence or no more
output permitted to an output sequence), or to indicate an invalid returr’Yalue. O

17.4.2.1 Typestreamoff
typedef T1 streamoff;

[lib.streamoff]
O

The typestreamoff is a synonym for one of the signed basic integral tyffes/hose representation has

at least as many bits as tyjpag . It is used to represent:

— a signed displacement, measured in bytes, from a specified position within a sequence;

— an absolute position within a sequence, not necessarily measured in uniform units.

In the second case, the valigtreamoff)(-1)
be represented as a value of tgpeamoff

17.4.2.2 Classtreampos

93) This macro is also defined, with the same value and meaningsidio>

indicates an invalid position, or a position that cannot

[lib.streampos]

17.4.2.2 Classtreampos DRAFT: 27 May 1994 Library 17-47

HBOX 99 B
[Library WG issue: Jerry Schwarz, January 3, 1994 0
O 0

ill has a lot more experience wifpos_t than | do, but the reference tstteamoff that representsi]

he position infp " doesn’'t make sense to me. | thought fipats t ’s could be magic cookies. What @
Cfimportant is the identity 0
O long(streampos(n)) ==n I
O 0
Bs it really possible in general to add an offset tépas_t without having a file to which it is attached?ED

O

(Even if it is possible to do this arithmetic fdpos_t , it isn’t necessarily the case for arbitrq%
Cstreambuf ’s. In particular it isn’t possible for thabstreambuf class proposed in x3j16/93- 0125. [

O 0

O 0

gThe immediate problem is solved, but there is still a lot of discussion of adding offfats tb 's. This

fisn’t an operation that the C standard allows, and | think it is a mistake to go beyond the C standaid here.
0’m not sure of the operational consequence of what Bill is doing. O

HBox 100
[Library WG issue: Jerry Schwarz, January 3, 1994
O

%treampos: This is a substantial change from rev 7.

5 think what Rev 7 is trying to say is more like
class streampos {
union { fpos_t fp; long n; };
friend class filebuf ; // so it can get at fp
public:
streampos(long i) {n=1i; }
operator long() { return n; }

Ooooooogooo

k

E@DDDDDDDBD%@DEDDDD

gThe draft usesstreamoff where | havelong . | don't think there is a guarantee t
rsizeof(streamoff) is at leastsizeof(long) so there is a problem. (E.gtringbuf stores
[kize t 'sin streampos 's) O

In this subclause, the type narfp@s t is a synonym for the tygpos_t defined in<cstdio> (17.2). O

class streampos {

public:
streampos(streamoff off =0);
streamoff offset() const;
streamoff operator-(streampos& rhs) const; ad
streampos& operator+=(streamoff off);
streampos& operator-=(streamoff off);
streampos operator+(streamoff off) const; g
streampos operator-(streamoff off) const; ad
bool operator==(const streampos& rhs) const; O
bool operator!=(const streampos& rhs) const; O
private:
I streamoff pos; exposition only
I foos tfp exposition only

h

17-48 Library DRAFT: 27 May 1994 17.4.2.2 Classtreampos

The classstreampos describes an object that can store all the information necessary to restore an arbi-
trary sequence, controlled by the Standatd library, to a previoustream positionand conversion
state® For the sake of exposition, the data it stores is presented here as:

— streamoff ~ pos, specifies the absolute position within the sequence;

— fpos_tfp , specifies the stream position and conversion state in the implementation-dependenil form
required by functions declared<wstdio>

It is unspecified how these two member objects combine to represent a stream position.

17.4.2.2.1streampos::streampos(streamoff) [lib.cons.streampos]

BBox 101

aibrary WG issue: Jerry Schwarz, September 28, 1993

O
[Cstreampos::streampos talks about conversion states for multibyi

ROO00

streampos(streamoff off =0);

Constructs an object of clasgeampos , initializing pos to zero andfp to the stream position at the
beginning of the sequence, with the conversion state at the beginning of a new multibyte sequence in the
initial shift state’> The constructor then evaluates the expresitoa += off . a

17.4.2.2.2streampos::offset() [lib.streampos::offset]

streamoff offset() const;

Determines the value of tymereamoff that represents the stream position storgabi® andfp , if pos-
sible, and returns that value. Otherwise, the function re{atresamoff)(-1) . For a sequence requir-
ing a conversion state, even a representable value oftygamoff need not supply sufficient informa-
tion to restore the stored stream position.

17.4.2.2.3streampos:.operator-(streampos&) [lib.streampos::op-.sp]

streamoff operator-(streampos& rhs) const; O

Determines the value of typstreamoff that represents the difference in stream positions between

*this andrhs , if possible, and returns that value. *tfis is a stream position nearer the beginning of

the sequence thaifis , the difference is negative.) Otherwise, the function ret(gtnsamoff)(-1)

For a sequence that does not represent stream positions in uniform units, even a representable value need
not be meaningful.

17.4.2.2.4streampos::operator+=(streamoff) [lib.streampos::op+=]

%) The conversion state is used for sequences that translate between wide-character and generalized multibyte encoding, as described
in Amendment 1 to the C Standard.
The next character to read or write is the first character in the sequence.

17.4.2.2.4 DRAFT: 27 May 1994 Library 1749
streampos::operator+=(streamoff)

EBox 102 E
aibrary WG issue: Jerry Schwarz, January 3, 1994 0
O O
[At any rate, the wording needs to be clarified. E.g. U
g streampos& streampos::operator+=(streamposé& rhs) g
Uadds off to the stream offset storedpios andfp , if possible, &
pand replaces the stored value. Otherwise ... 0
O O

[The problem is that this wording seems to say that if you can't add the offset to fp you take the otherwise.

streamposé& operator+=(streamoff off);

Adds off to the stream position stored mws andfp , if possible, and replaces the stored values. Other-
wise, the function stores an invalid stream positiopas andfp . For a sequence that does not represent
stream positions in uniform units, the resulting stream position need not be meaningful. The furction
returns*this

17.4.2.2.5streampos::operator-=(streamoff) [lib.streamos::op-=]

streampos& operator-=(streamoff off);

Subtractsoff from the stream position stored fios and fp , if possible, and replaces the stored value.
Otherwise, the function stores an invalid stream positiggosyandfp . For a sequence that does not rep-
resent stream positions in uniform units, the resulting stream position need not be meaningful. Thel func-
tion returnstthis

17.4.2.2.6streampos::operator+(streamoff) [lib.streampos::op+]
streampos operator+(streamoff off) const; O

Returnsstreampos(*this) += off .

17.4.2.2.7streampos::operator-(streamoff) [lib.streampos::op-.off]
streampos operator-(streamoff off) const; O

Returnsstreampos(*this) -= off . O

17.4.2.2.8streampos::operator==(const streampos&) [lib.streampos::op==
bool operator==(const streampos& rhs) const; ad

Compares the stream position storedtims to the stream position storediihs , and returns a nonzero
value if the two correspond to the same position within a file or if both store an invalid stream positioml

17.4.2.2.9streampos::operator!=(const streampos&) [(lib.op!=.streampos]
bool operator!=(const streampos& rhs) const; O
Returns a nonzero value!{fthis == rhs).

17.4.2.3 Classtreambuf [lib.streambuf]

17-50 Library DRAFT: 27 May 1994 17.4.2.3 Classtreambuf

class streambuf {
public:
virtual ~streambuf();
streampos pubseekoff(streamoff off , ios::seekdir way,
ios::openmode which =ios::in | ios::out);
streampos pubseekpos(streampos sp,
ios::openmode which =ios::in | ios::out);
streambuf* pubsetbuf(char* s, int ny;
int in_avail();
int pubsync();
int sbumpc();
int sgetc();
int sgetn(char* s, int ny;
int snextc();
int sputbackc(char c);
int sungetc();
int sputc(int c);
int sputn(const char* s, int ny;
protected:
streambuf();
char* eback() const;
char* gptr() const;
char* egptr() const;
void gbump(int n;
void setg(char* gbeg_arg , char* gnext_arg , char* gend_arg);
char* pbase() const;
char* pptr() const;
char* epptr() const;
void pbump(int ny;
void setp(char* pbeg_arg , char* pend_arg);
virtual int overflow(int ¢ = EOF);
virtual int pbackfail(int ¢ =EOF);
virtual int showmany();
virtual int underflow();
virtual int uflow();
virtual int xsgetn(char* s, int ny;
virtual int xsputn(const char* s, int ny;
virtual streampos seekoff(streamoff off , ios::seekdir way,
ios::openmode which =ios::in | ios::out);
virtual streampos seekpos(streampos sp,
ios::openmode which =ios::in | ios::out);
virtual streambuf* setbuf(char* s, int ny;
virtual int sync();
private:
1 char* gbeg; exposition only
I char* gnext ; exposition only
I char* gend; exposition only
I char* pbeg; exposition only
I char* pnext ; exposition only
I char* pend; exposition only

h
The classstreambuf serves as an abstract base class for deriving vastoesm buffersvhose objects
each control two character sequences:
— a (single-byte) character input sequence;

— a (single-byte) character output sequence.

17.4.2.3 Classtreambuf DRAFT: 27 May 1994 Library 17-51

Stream buffers can impose various constraints on the sequences they control. Some constraints are:
— The controlled input sequence can be not readable.
— The controlled output sequence can be not writable.

— The controlled sequences can be associated with the contents of other representations for character
sequences, such as external files.

— The controlled sequences can support operatimastly to or from associated sequences.

— The controlled sequences can impose limitations on how the program can read characters from a
sequence, write characters to a sequence, put characters back into an input sequence, or alter the stream
position.

Each sequence is characterized by three pointers which, if non-null, all point into the same array object.
The array object represents, at any moment, a (sub)sequence of characters from the sequence. Operations
performed on a sequence alter the values stored in these pointers, perform reads and writes directly to or
from associated sequences, and alter the stream position and conversion state as needed to maintain this
subsequence relationship. The three pointers are:

— thebeginning pointeror lowest element address in the array (catleely here);

— the next pointer,or next element address that is a current candidate for reading or writing (called
xnext here);

— theend pointerpr first element address beyond the end of the array (cadied here).

The following semantic constraints shall always apply for any set of three pointers for a sequence, using the
pointer names given immediately above:

— If xnext is not a null pointer, therbeg andxend shall also be non-null pointers into the same array,
as described above.

— If xnext is not a null pointer angnext < xend for an output sequence, therwate positionis
available. In this casé,xnext shall be assignable as the next element to write (to put, or to store a
character value, into the sequence).

— If xnext is not a null pointer angbeg < xnext for an input sequence, therpatback positioris
available. In this caseqnext [-1] shall have a defined value and is the next (preceding) element to
store a character that is put back into the input sequence.

— If xnext is not a null pointer ananext < xend for an input sequence, thenre@ad positionis
available. In this caséxnext shall have a defined value and is the next element to read (to get, or to
obtain a character value, from the sequence).

For the sake of exposition, the maintained data is presented here as:
— char* gbeg, the beginning pointer for the input sequence;

— char* gnext , the next pointer for the input sequence;

— char* gend, the end pointer for the input sequence;

— char* pbeg, the beginning pointer for the output sequence;

— char* pnext , the next pointer for the output sequence;

— char* pend, the end pointer for the output sequence. O

17-52 Library DRAFT: 27 May 1994 17.4.2.3.1streambuf::~streambuf()

17.4.2.3.1streambuf::~streambuf() [lib.des.streambuf]

virtual ~streambuf();
Destroys an object of clastreambuf

17.4.2.3.2streambuf::pubseekoff(streamoff, [lib.streambuf::pubseekoff]
ios::seekdir, ios::openmode)

streampos pubseekoff(streamoff off , ios::seekdir way,
ios::openmode which =ios::in | ios::out);

Returnsseekoff(off , way, which). O

17.4.2.3.3streambuf::pubseekpos(streampos, [lib.streambuf::pubseekpos]
ios::openmode)

streampos pubseekpos(streampos sp,
ios::openmode which =ios::in | ios::out);

Returnsseekpos(sp, which). a
17.4.2.3.4streambuf::pubsetbuf(char*, int) [lib.streambuf::pubsetbuf]
streambuf* pubsetbuf(char* s, int ny;
Returnssetbuf(s, n). O
17.4.2.3.5streambuf::in_avail() [lib.streambuf::in.avail]
int in_avail(); O

If the input sequence does not have a read position available, reosmmany() . Otherwise, the func-O
tion returnsgend - gnext .

17.4.2.3.6streambuf::pubsync() [lib.streambuf::pubsync]
int pubsync();

Returnssync()

17.4.2.3.7streambuf::sbumpc() [lib.streambuf::sbumpc]

int sbumpc();

If the input sequence does not have a read position available, refiong§ . Otherwise, the function
returns(unsigned char)* gnext ++.

17.4.2.3.8streambuf::sgetc() [lib.streambuf::sgetc]
int sgetc();
If the input sequence does not have a read position available, netgierflow() . Otherwise, the func-

tion returngunsigned char)* gnext .

17.4.2.3.9 DRAFT: 27 May 1994 Library 1#53
streambuf::sgetn(char*, int)

17.4.2.3.9streambuf::sgetn(char*, int) [lib.streambuf::sgetn]

int sgetn(char* s, int ny;
Returnsxsgetn(s, n).

17.4.2.3.10streambuf::snextc() [lib.streambuf::snextc]

int snextc(); O

Calls sbumpc() and, if that function return&€OF, returns EOF Otherwise, the function returns
sgetc()

17.4.2.3.11streambuf::sputbackc(char) [lib.streambuf::sputbackc]

int sputbackc(char C);

If the input sequence does not have a putback position available,cor'# gnext [-1] , returns
pbackfail(¢) . Otherwise, the function retur@snsigned char)*-- gnext .

17.4.2.3.12streambuf::sungetc() [lib.streambuf::sungetc]

int sungetc();

If the input sequence does not have a putback position available, neacidail() . Otherwise, the

function returngunsigned char)*-- gnext .

17.4.2.3.13streambuf::sputc(int) [lib.streambuf::sputc]
int sputc(int c);

If the output sequence does not have a write position available, reterflow(¢). Otherwise, the

function returngunsigned char)(* pnext ++= ¢).
17.4.2.3.14streambuf::sputn(const char*, int) [lib.streambuf::sputn]
int sputn(const char* s, int ny;

Returnsxsputn(s, n).

17.4.2.3.15streambuf::streambuf() [lib.cons.streambuf]
HBox 103 E
El_ibrary WG issue: Jerry Schwarz, September 28, 1993
O
Eﬁtreambuf copy constructor explicitly undefined. E O
O
[Also operator=() . E
streambuf();

Cogstructs an object of clasgeambuf() and initializes all its pointer member objects to null point-
ers:

J%) The default constructor is protected for clasgambuf to assure that only objects for classes derived from this class may be
constructed.

17-54 Library DRAFT: 27 May 1994

17.4.2.3.16streambuf::eback()

char* eback() const;
Returnsgbeg .

17.4.2.3.17streambuf::gptr()

char* gptr() const;
Returnsgnext .

17.4.2.3.18streambuf::egptr()

char* egptr() const;
Returnsgend.

17.4.2.3.19streambuf::gbump(int)
void gbump(int ny;

Assignsgnext + nto gnext .

17.4.2.3.20streambuf::setg(char*, char*, char*)

void setg(char* gbeg_arg , char* gnext_arg

17.4.2.3.16streambuf::eback()

[lib.streambuf::eback]

[lib.streambuf::gptr]

[lib.streambuf::egptr]

[lib.streambuf::gbump]

[lib.streambuf::setg]

gend_arg);

Assignsgbeg _arg to gbeg, gnext arg tognext ,andgend arg togend.

17.4.2.3.21streambuf::pbase()

char* pbase() const;
Returnspbeg .

17.4.2.3.22streambuf::pptr()

char* pptr() const;
Returnspnext .

17.4.2.3.23streambuf::epptr()

char* epptr() const;
Returnspend.

17.4.2.3.24streambuf::pbump(int)
void pbump(int ny;

Assignspnext + nto pnext .

17.4.2.3.25streambuf::setp(char*, char*)

void setp(char* pbeg_arg , char* pend_arg);

[lib.streambuf::pbase]

[lib.streambuf::pptr]

[lib.streambuf::epptr]

[lib.streambuf::pbump]

[lib.streambuf::setp]

Assignspbeg _arg to pbeg, pbeg _arg to pnext ,andpend_arg to pend.

17.4.2.3.26 DRAFT: 27 May 1994 Library 1755
streambuf::overflow(int)

17.4.2.3.26streambuf::overflow(int) [lib.streambuf::overflow]

[(Box 104
0

rLibrary WG issue: Jerry Schwarz, January 3, 1994
O
Eln any event the protocol in the draft has some defects:

Eﬁ) In casec==EOF, the draft doesn't allow the function to fail. My protocol does.
O

[B) In the draft’s first case, the protocol doesn’t say anything about what happens when an output pasition is
Efnade available.

D%FIDEDDDD

O
Ep) The draft's second case doesn’t say anything aboutdiieg and pnext are modified. Since i%]
rdoesn’t say they presumably must be left unchanged, but that is obviously a mistake. 0
O O

érli)) Most importantly, | have indicated exactly what information must be supplied in order to specializé the
rotocol.

O O
0 want to emphasize (D). Even if Bill doesn't like my version of the protocol, | think it is essentially{that

there be some indication of what has to be specified to specialize it. a
HBox 105 %
El_ibrary WG issue: Jerry Schwarz, January 3, 1994 g
O
Epverﬂow: Rev 7 simply requires the return is BQFif c==EOF. Requiring it to be 0 is a change. El]

O
[More generally | think the San Diego rewrite over specifies the protocol in many places. Since thi
Ebontract with user defined virtuals | think over specification here is wrong.

s the

gThe only obligation obverflow(c) is to eventually append the characters betwsmy and pptr
randc to the output sequence followed by

O

Elt is not (for example) required to return immediatelyFEEOF.

B\Ior is it required to put into the array even if it makes an output position available.

O
0 think the San Diego rewrite over specified all the virtuals. | consider this a serious issue.

H]DED%DED]]EDIID%P

17-56 Library DRAFT: 27 May 1994 17.4.2.3.26
streambuf::overflow(int)

HBox 106
El_ibrary WG issue: Jerry Schwarz, January 2, 1994

I:II:IDEI

gThe San Diego rewrite has modified the descriptioavefflow , but | think it still overspecifies in somel]

ways, and under specifies in others. Also it doesn’t make it clear that what is being described is D‘proto-
Ctol”, that derived classes are required to implement. It hasn’t been solicited, but here is my versi f the
Ehnderflow protocol (using the vocabulary of the draft).

gThe pending sequence of characters is defined as the concatenation of

O
O
0
O
O . , 0
O a) If pbeg is NULLthen the empty sequence otherwise 0
g pnext-pbeg characters beginning pbeg . 0
O
g b) if c==EOF then the empty sequence otherwise the U
0 sequence consisting of B
O
Loverflow may consume some initial subsequence of the pending sequence. Consuming a q%ﬂracter
aneans either appending it to the associated output stream or discarding it. ad
O
O

n case some characters of the pending sequence have not been appended to the associated outpuit stream,
Letr be the number of characters in the pending sequence not appended to the output strepegl
Candpnext must be set so thapnext-pbeg==r and ther characters starting abeg are the same ag{]
She subsequence that has not been appended to the associated output stream. ad
O
O
rn case all characters of the pending sequence have been appended to the associated output s%lam, then
Ceither pbeg is set toNULL, orpbeg andpnext are both set to (the same) ndbH_L value. 0
O
O
Crhe function may fail if either appending some character to the associated output stream fails or fdd some
feason [l have in mind out of memory] it is unable to estabpbleg andpnext according to the abovel

Tules. B
= 0
Elf the function fails it may signal that by returnirfgOFor throwing an exception. I
ad
Eptherwise the function returns some value (other tB&¥F to indicate success ED
O
(0To specialize this proposal you must specify. B
O
O
g a) What possible subsequences will be disposed of. ad
0 b) When are characters discarded and when are they 0
0 appended to the associated output stream. B
O ¢) The associated output stream. (This need not 0
g be specified if 0
g d) How failure is signaled. ad
0 e) The effect, if any ogbeg, gnext, gend B
O
O believe this protocol is easier to work with than the one in the draft. H
virtual int overflow(int ¢ =EOF); 0

Appends the character designatecctp the output sequence, if possible, in one of three ways:

— If ¢ 1= EOF and if either the output sequence has a write position available or the function makes a
write position available, the function assign$o * pnext ++. The function signals success by return-
ing (unsigned char) c.

17.4.2.3.26 DRAFT: 27 May 1994 Library 1757
streambuf::overflow(int)

— If ¢ '= EOF and if the function can append a character directly to the associated output sequence, the
function appendg directly to the associated output sequencepbég < pnext , the pnext -
pbeg characters beginning gbeg shall be first appended directly to the associated output sequence,
beginning with the character gtbeg. The function signals success by returnifumsigned
char) c.

— If ¢ == EOF, there is no character to append. The function signals success by returning a value other
thanEOF

If the function can succeed in more than one of these ways, it is unspecified which way is chosen. The
function can alter the number of write positions available as a result of any call. How (or whether) the
function makes a write position available or appends a character directly to the output sequence is defined
separately for each class derived fretmeambuf in this clause.

The function returnEOFto indicate failure.

The default behavior is to retuBOF

17.4.2.3.27streambuf::pbackfail(int) [lib.streambuf::pbackfail]
virtual int pbackfail(int ¢ = EOF);

Puts back the character designated: Iy the input sequence, if possible, in one of five ways:

— If ¢ = EOF , if either the input sequence has a putback position available or the function makes a put-
back position available, and (finsigned char) ¢ == (unsigned char) gnext [-1] , the
function assigngnext - 1 to gnext . The function signals success by return{ngsigned
char) c.

— If ¢ = EOF , if either the input sequence has a putback position available or the function makes a put-
back position available, and if the function is permitted to assign to the putback position, the function
assign to*-- gnext . The function signals success by returrungsigned char) c.

— If ¢ = EOF , if no putback position is available, and if the function can put back a character directly
to the associated input sequence, the function putsddakctly to the associate input sequence. The
function signals success by returniugsigned char) c.

— If ¢ == EOF and if either the input sequence has a putback position available or the function makes a
putback position available, the function assignext -1 to gnext . The function signals succes§!
by returning a value other th&OF

— If ¢ == EOF, if no putback position is available, if the function can put back a character directly to the
associated input sequence, and if the function can determine the cheaiautezdiately before the cur-
rent position in the associated input sequence, the function puts lwhidctly to the associated input
sequence. The function signals success by returning a value othEtRan

If the function can succeed in more than one of these ways, it is unspecified which way is chosen. The
function can alter the number of putback positions available as a result of any call. How (or whether) the
function makes a putback position available, puts back a character directly to the input sequence, or deter-
mines the character immediately before the current position in the associated input sequence is defined sep-
arately for each class derived fratneambuf in this clause.

The function returnEOFto indicate failure.

The default behavior is to retuBOF a

17-58 Library DRAFT: 27 May 1994 17.4.2.3.28streambuf::showmany()

17.4.2.3.28streambuf::showmany() [lib.streambuf::showmany]

virtual int showmany(); a

Eeturns a count of the minimum number of characters that can be read from the input sequence befdfe a call
to uflow() or underflow() returnsEOF A return value 0k196>1 indicates that the next such calll
will return EOF O

The default behavior is to return zero. a

17.4.2.3.29streambuf::underflow() [lib.streambuf::underflow]

BBox 107

%ibrary WG issue: Jerry Schwarz, January 3, 1994

O
[(Footnote 43: “The public streambuf member functions aaliderflow only if the incremengnext

Ebefore returning”

a\/lust be raised to the body of the text.

O
CANd it has to be reworded becauselerflow can now return witlgnext not being set.

DD%DDDEDDDD

17.4.2.3.29streambuf::underflow() DRAFT: 27 May 1994 Library 17-59

HBox 108
[Library WG issue: Jerry Schwarz, January 3, 1994
O

O 4T

nderflow : The over specification here is really bad. I've written streambuf classes where unddiflow
lways guarantees some minimum amount of characters will be put in the buffer. Thus it may dodlots of
rstuff even if there is a read position available.
O
EI\/Iy version ofunderflow

gThe pending sequence of characters is defined as the concatenation of

EEDEEDDDDEE%

Ch) If gnext is nonNULL then thegend-gnext characters starting anext , otherwise the empt

) In case the pending sequence has more than one characenthgnext characters starting
rgnext are the characters in the pending sequence after the result character.
O
[b) If the pending sequence has exactly one charactergtteen andgend may beNULL or may both ber{]
Ehet to the same ndWULL pointer.

Lsequence O
O 0
ao) Some sequence (possibly empty) of characters read from the input stream. a]
O 0
Of the pending sequence is null then the function fails. d
O 0
Ebtherwise the first character of the pending sequence is called the result character. El]
O
[The backup sequence is defined as the concatenation of a]
O 0
Eh) If gbeg is nonNULLthen empty, otherwise tlgmext-gbeg characters beginning gbeg . ™
O
ao) the result character. a]
0 0
(OThe function sets up tlgnext andgend satisfying d
O 0
éél]
O

Hf gbeg andgnext are nonNULLthen the function is not constrained as to their contents, but the “tsual

backup condition” is that either

I:IDEEE]UDD

O
Lh) If the backup sequence contains at lgmsixt-gbeg characters then thgnext-gbeg characters’J
%tarting agbeg agree with the laginext-gbeg characters of the backup sequence. %

[Io) or then characters starting gnext-n agree with the backup sequence (wheris the length of thea]
[backup sequence)

17-60 Library DRAFT: 27 May 1994 17.4.2.3.29streambuf::underflow()

EBox 109 0 0
aibrary WG issue: Jerry Schwarz, January 2, 1994 B

§To specialize this protocol you must specify é

%i) How a character is read from the input stream. B O
Elo) How many characters are read from the input stream under various con%tions O
EH) Which alternative for case (b) of the rules for settingngxt andgend are B O
Ep) Whether the normal backup condition is satisfied. B O
Ed) The effect opbeg,pnext,pend if any E a

virtual int underflow();
Reads a character from the input sequence, if possible, without moving the stream position past it, as fol-
lows:

— If the input sequence has a read position available the function signals success by returning
(unsigned char)* gnext .

— Otherwise, if the function can determine the charaxtat the current position in the associated input
sequence, it signals success by returimgigned char) X. If the function makes a read position
available, it also assignsto * gnext .

The function can alter the number of read positions available as a result of any call. How (or whether) the
function makes a read position available or determines the chaxaatténe current position in the associ-
ated input sequence is defined separately for each class derivestrieambuf in this clause.

The function returnEOFto indicate failure.

The default behavior is to retuBOF

17.4.2.3.30streambuf::uflow() [lib.streambuf::uflow]
HBox 110 B
ELibrary WG issue: Jerry Schwarz, January 3, 1994 B
%treambuf::uflow is supposed to be defined as B
Epall underflow(EOF) . If underflow returnsEOF, returnEOF. If there is a read position availab%
HN

[(then dogbump(-1) and return(unsigned char)*gnext++

virtual int uflow();

Reads a character from the input sequence, if possible, and moves the stream position past it, as follows:

— If the input sequence has a read position available the function signals success by returning
(unsigned char)* gnext ++,

— Otherwise, if the function can read the charaxgtdirectly from the associated input sequence, it signals
success by returnin@unsigned char) x. If the function makes a read position available, it also
assigns« to * gnext .

17.4.2.3.30streambuf::uflow() DRAFT: 27 May 1994 Library 17-61

The function can alter the number of read positions available as a result of any call. How (or whether) the
function makes a read position available or reads a character directly from the input sequence is defined
separately for each class derived fretmeambuf in this clause.

The function returnEOFto indicate failure.

The default behavior is to calinderflow() and, if that function returnEOF or fails to make a read
position available, returrEOF Otherwise, the function signals success by returr{ungsigned
char)* gnext ++.

17.4.2.3.31streambuf::xsgetn(char*, int) [lib.streambuf::xsgetn]

virtual int xsgetn(char* s, int ny;

Assigns up ta1 characters to successive elements of the array whose first element is desigmatdhey
characters assigned are read from the input sequence as if by repeatedloaitgpt() . Assigning stops
when eithern characters have been assigned or a cadbtompc() would returnEOF The function

returns the number of characters assig%éd.

17.4.2.3.32streambuf::xsputn(const char*, int) [lib.streambuf::xsputn]

virtual int xsputn(const char* s, int ny;

Writes up ton characters to the output sequence as if by repeated cslattdf c¢) . The characters writ-
ten are obtained from successive elements of the array whose first element is desigsatéiriiyng
stops when eithen characters have been written or a cabpotc(¢) would returnEOF The function O
returns the number of characters written.

17.4.2.3.33streambuf::seekoff(streamoff, ios::seekdir, [lib.streambuf::seekoff]
ios::openmode)

virtual streampos seekoff(streamoff off ,ios::seekdir way,
ios::openmode which =ios::in | ios::out);

Alters the stream positions within one or more of the controlled sequences in a way that is defined sepa-
rately for each class derived fratreambuf in this clause. The default behavior is to return an object of
classstreampos that stores an invalid stream position.

17.4.2.3.34streambuf::seekpos(streampos, [lib.streambuf::seekpos]
ios::openmode)

virtual streampos seekpos(streampos sp,
ios::openmode which =ios:in | ios::out);

Alters the stream positions within one or more of the controlled sequences in a way that is defined sepa-
rately for each class derived fratreambuf in this clause. The default behavior is to return an object of
classstreampos that stores an invalid stream position.

I7) A class derived fronstreambuf can override the virtual member functionderflow() with a function that returns a value
other tharnEOFwithout making a read position available. In that evsmeambuf::uflow() must also be overridden since the
degault behavior is inadequate.

Classes derived frostreambuf can provide more efficient ways to implemesgetn andxsputn by overriding these defi- O
nitions in the base class.

17-62 Library DRAFT: 27 May 1994 17.4.2.3.35
streambuf::setbuf(char*, int)

17.4.2.3.35streambuf::setbuf(char*, int) [lib.streambuf::setbuf]

virtual streambuf* setbuf(char* s, int ny;

Performs an operation that is defined separately for each class derivedrsambuf in this clause.

The default behavior is to retutinis

17.4.2.3.36streambuf::sync() [lib.streambuf::sync]

virtual int sync();

Synchronizes the controlled sequences with any associated external sources and sinks of characters in a way
that is defined separately for each class derived fitoeambuf in this clause. The function returB©F

if it fails. The default behavior is to return zero.

17.4.3 Headekistream> [lib.header.istream]

The headexistream> defines a type and a function signature that control input from a stream buffer.

17.4.3.1 Classstream [lib.istream]
BBox 111 g 0
H_ibrary WG issue: Per Bothner, March 8, 1994 0 ad
O 0

[(The members of clagstream should not be allowed to calbutback() g ™
HBox 112 El]
H_ibrary WG issue: Jerry Schwarz, January 3, 1994 -

O

ERev 7 defined a bunch of terms like “extracting a character.” | can't find the equivalent here. In spEkify-
Cing members of istream, the San Diego rewrite uses phrases like “characters are read .. until end=af-file”
Lyithout ever defining them (at least as far as | can find.) In particular Rev 7's definitions specifiedivhat
awappens when a virtual throws an exception, and | can't find that in the San Diego rewrite. -

O

O
Orhis is still not fixed. As far as | can determine, the draft doesn't say what happens when a virtualdhrows
Can exception.

HBox 113 El]
[Library WG issue: Jerry Schwarz, January 2, 1994 -
O 0

ev 7 also contained an explicit statement that except where explicitly noted none of the istream rd@mbers
reall pbackfail, seekoff, or seekpos . This is an important constraint.

O
The draft now says “All input characters are obtained or extracted by calls to the function sigpatures
Eéb.sbumpc(), sh.sgetc(), sputbacke()

”

[fuals that might be called, not the non-virtuals. And note that Rev 7 explicitly prohibit pbackfail=fiom

N

O
a:’erhaps that sentence is intended to address this issue, but it doesn’t. Note that what is important@the Vir-
[being called. That was deliberate. NN

17.4.3.1 Classstream DRAFT: 27 May 1994

class istream : virtual public ios {

public:
istream(streambuf* sb);
virtual ~istream();
bool ipfx(bool noskipws = 0);
void isfx();
istream& operator>>(istream& (* pf)(istream&))
istream& operator>>(ios& (* pf)(ios&))
istream& operator>>(char* S);
istream& operator>>(unsigned char* S)
istream& operator>>(signed char* s);
istream& operator>>(char& c);
istream& operator>>(unsigned char& c)
istream& operator>>(signed char& c)
istream& operator>>(bool& n);
istream& operator>>(short& n);
istream& operator>>(unsigned short& n);
istream& operator>>(int& ny;
istream& operator>>(unsigned int& ny;
istream& operator>>(long& n);
istream& operator>>(unsigned long& ny;
istream& operator>>(float& f);
istream& operator>>(double& f);
istreamé& operator>>(long double& f);
istream& operator>>(void*& p);
istream& operator>>(streambuf& sb);
int get();

istream& get(char* s, int n, char delim ="\n);

istream& get(unsigned char* s, int n, char

istream& get(signed char* s, int n, char delim

istream& get(char& c);
istream& get(unsigned char& c);
istream& get(signed char& c);

istream& get(streambuf& sb, char delim ='\n);

istream& getline(char* s, int n,char delim

istream& getline(unsigned char* s, int n, char

istreamé& getline(signed char* s, int n, char

istream& ignore(int n =1,int delim = EOF);

istream& read(char* s, int ny;
istreamé& read(unsigned char* s, int n
istreamé& read(signed char* s, int n
int readsome(char* s, int ny;
int peek();
istream& putback(char c);
istream& unget();
int gcount() const;
int sync();

private:

I int checount ; exposition only

k

Library 17-63

=\n)

O

O
=1n’)

U

The classstream defines a number of member function signatures that assist in reading and interpreting

input from sequences controlled by a stream buffer.

Two groups of member function signatures share common propertiefrhatted input functiongor
extractorg and theunformatted input function®oth groups of input functions obtain (extrac) input

characters by calling the function signaturesb.sbumpc()

sb.sgetc() , and

sb.sputbackc(char) . If one of these called functions throws an exception, the input function calls

setstate(badbit) and rethrows the exception.

— The formatted input functions are:

17-64 Library DRAFT: 27 May 1994 17.4.3.1 Classstream

istream& operator>>(char* S);

istream& operator>>(unsigned char* S)
istream& operator>>(signed char* s);
istream& operator>>(char& c);

istream& operator>>(unsigned char& c)
istream& operator>>(signed char& c)
istream& operator>>(bool& ny; O
istream& operator>>(short& n);

istream& operator>>(unsigned short& n);
istream& operator>>(int& ny;

istream& operator>>(unsigned int& ny;
istream& operator>>(long& n);

istream& operator>>(unsigned long& ny;
istream& operator>>(float& f);

istream& operator>>(double& f);

istreamé& operator>>(long double& f);
istream& operator>>(void*& p);

istream& operator>>(streambuf& sb);

— The unformatted input functions are:

int get();

istream& get(char* s, int n, char delim ="\n’);

istream& get(unsigned char* s, int n,char delim ="\n’)
istream& get(signed char* s, int n,char delim ="\n")
istream& get(char& c);

istream& get(unsigned char& c);

istream& get(signed char& c);

istream& get(streambuf& sb, char delim ='\n");

istream& getline(char* s, int n,char delim ="\n");

istream& getline(unsigned char* s, int n,char delim ="\n")
istreamé& getline(signed char* s, int n,char delim ="\n’)
istream& ignore(int n =1,int delim = EOF);

istream& read(char* s, int ny;

istreamé& read(unsigned char* s, int n

istreamé& read(signed char* s, int n

int readsome(char* s, int ny; O
int peek();

istream& putback(char c);

istream& unget();

Each formatted input function begins execution by calipig() . If that function returns nonzero, the
function endeavors to obtain the requested input. In any case, the formatted input function ends by calling
isfx() , then returning the value specified for the formatted input function.

Some formatted input functions endeavor to obtain the requested input by parsing characters extracted from
the input sequence, converting the result to a value of some scalar data type, and storing the converted value
in an object of that scalar data type. The behavior of such functions is described in terms of the conversion
specification for an equivalent call to the function signatscanf(FILE*, const char*, ...) ,

declared irccstdio> (17.2), operating with the global locale setdo , with the following alterations: [

— The formglgt)ted input function extracts characters from a stream buffer, rather than reading them from an
input file.

— If flags() & skipws is zero, the function does not skip any leading white space. In that case, if
the next input character is white space, the scan fails.

99) The stream buffer can, of course, be associated with an input file, but it need not be.

17.4.3.1 Classstream DRAFT: 27 May 1994 Library 17-65

— If the converted data value cannot be represented as a value of the specified scalar data type, a scan fail-
ure occurs.

If the scan fails for any reason, the formatted input function seittate(failbit)

For conversion to an integral type other than a character type, the function determines the integral conver-
sion specifier as follows:

— If (flags() & basefield) == oct , the conversion specifier @s
— If (flags() & basefield) == hex , the conversion specifier xs
— If (flags() & basefield) == , the conversion specifieriis

Otherwise, the integral conversion specified ifor conversion to a signed integral type,uofor conver-
sion to an unsigned integral type.

Each unformatted input function begins execution by calffig1) . If that function returns nonzero,

the function endeavors to extract the requested input. It also counts the number of characters extracted. In
any case, the unformatted input function ends by storing the count in a member object andfgglling,

then returning the value specified for the unformatted input function.

For the sake of exposition, the data maintained by an object ofstl@ssn is presented here as:

— int chcount , stores the number of characters extracted by the last unformatted input membefTunc-
tion called for the object.

17.4.3.1.1istream::istream() [lib.cons.istream]

istream(streambuf* sb);

Constructs an object of classtream , assigning initial values to the base class by calling
ios::init(sb) , then assigning zero thcount .

17.4.3.1.2istream;:~istream() [lib.des.istream]

virtual ~istream();

Destroys an object of clasgream . O
17.4.3.1.3istream::ipfx(bool) (lib.istream::ipfx]
bool ipfx(bool noskipws = 0); O

If good() is nonzero, prepares for formatted or unformatted input. Firsg(Jf is not a null pointer,

the function callgie()->flush() to synchronize the output sequence with any associated external C
stream. (The catie()->flush() does not necessarily occur if the function can determine that no syn-
chronization is necessary.) tfoskipws is zero andflags() & skipws is nonzero, the function
extracts and discards each character as loigspace(c¢) is nhonzero for the next available input char-
acterc. The function signaturisspace(int) is declared irkcctype> (17.2). O

If, after any preparation is completeghod() is nonzero, the function returns a nonzero value. Other-
wise, it callssetstate(failbit) and returns zero. O

199 The function signaturapfx(int) andisfx() can also perform additional implementation-dependent operations.

17-66 Library DRAFT: 27 May 1994 17.4.3.1.4istream::isfx()

17.4.3.1.4istream::isfx() [lib.istream::isfx]
void isfx();

Returns.

17.4.3.1.5istream;:operator>>(istreamé& (*)(istream&)) [lib.istream::ext.imanip]
istream& operator>>(istreamé& (* pf)(istream&))

Returng* pf)(*this) .20

17.4.3.1.6istream::operator>>(ios& (*)(ios&)) [lib.istream::ext.iomanip]
istream& operator>>(ios& (* prf)(ios&))

Calls(*(ios*) pf)(*this) , then returngthis 1% O

17.4.3.1.7istream::operator>>(char*) [lib.istream::ext.str]
istreamé& operator>>(char* s); g

A formatted input function, extracts characters and stores them into successive locations of an array whose
first element is designated s/ If width() is greater than zero, the maximum number of characters
storedn iswidth() ; otherwise it iINT_MAX, defined in<climits> (17.2). g

Characters are extracted and stored until any of the following occurs: O
— n -1 characters are stored;
— end-of-file occurs on the input sequence;

— isspace(c¢) is nonzero for the next available input character

The function signaturisspace(int) is declared irccctype> (17.2). O

If the function stores no characters, it caki$state(failbit) . In any case, it then stores a null char-
acter into the next successive location of the array andwddlis(0) . The function return&his

17.4.3.1.8istream::operator>>(unsigned char*) [lib.istream::ext.ustr]

istream& operator>>(unsigned char* S)
Returnsoperator>>((char*) s). a

17.4.3.1.9istream;:operator>>(signed char*) [lib.istream::ext.sstr]

istream& operator>>(signed char* s);
Returnsoperator>>((char*) s). O

17.4.3.1.10istream::operator>>(char&) [lib.istream::ext.c]

istream& operator>>(char& c);

iU;)See, for example, the function signatws(istream&) .
0)See, for example, the function signatde(ios&) . O

17.4.3.1.10 DRAFT: 27 May 1994 Library 1767
istream::operator>>(char&)

A formatted input function, extracts a character, if one is available, and stores iOtherwise, the func-
tion callssetstate(failbit) . The function return¥his

17.4.3.1.11istream::operator>>(unsigned char&) [lib.istream::ext.uc]

istream& operator>>(unsigned char& c)
Returnsoperator>>((char&)). a

17.4.3.1.12istream::operator>>(signed char&) [lib.istream::ext.sc]

istream& operator>>(signed char& c)
Returnsoperator>>((char&)). O

17.4.3.1.13istream::operator>>(bool&) [lib.istream::ext.bool]
istream& operator>>(bool& ny; a

A formatted input function, converts a signed short integer, if one is available, and stoseslit inhas a O

value other than 0 or 1, a scan failure occurs. Otherwise, the functionsstores The function returns [

*this

17.4.3.1.14istream::operator>>(short&) [lib.istream::ext.si]
istream& operator>>(short& n);

A formatted input function, converts a signed short integer, if one is available, and storesThie func- [0
tion returnstthis

17.4.3.1.15istream::operator>>(unsigned short&) [lib.istream::ext.usi]

istream& operator>>(unsigned short& n);

A formatted input function, converts an unsigned short integer, if one is available, and storesTha O
function returngthis

17.4.3.1.16istream::operator>>(int&) [lib.istream::ext.i]

istream& operator>>(int& ny;

A formatted input function, converts a signed integer, if one is available, and stores iThe function O
returns*this

17.4.3.1.17istream::operator>>(unsigned int&) [lib.istream::ext.ui]

istream& operator>>(unsigned int& ny;

A formatted input function, converts an unsigned integer, if one is available, and stores ithe func- [0
tion returnstthis

17.4.3.1.18istream::operator>>(long&) [lib.istream::ext.li]

istream& operator>>(long& n);

A formatted input function, converts a signed long integer, if one is available, and stores The func- [0
tion returnstthis

17-68 Library DRAFT: 27 May 1994 17.4.3.1.19
istream::operator>>(unsigned long&)

17.4.3.1.19istream::operator>>(unsigned long&) [lib.istream::ext.uli]

istream& operator>>(unsigned long& ny;

A formatted input function, converts an unsigned long integer, if one is available, and stones ftha O
function returngthis

17.4.3.1.20istream::operator>>(float&) [lib.istream::ext.f]

istream& operator>>(float& f);

A formatted input function, convertsfi@at , if one is available, and stores itfin The function returns O
*this

17.4.3.1.21istream::operator>>(double&) [lib.istream::ext.d]

istream& operator>>(double& f);

A formatted input function, convertsdmuble , if one is available, and stores itfin The function returns O
*this

17.4.3.1.22istream::operator>>(long double&) [lib.istream::ext.Id]
istreamé& operator>>(long double& f);
A formatted input function, convertd@ng double | if one is available, and stores itfin The function O

returns*this

17.4.3.1.23istream::operator>>(void*&) [lib.istream::ext.ptr]

istream& operator>>(void*& p);

A formatted input function, converts a pointentmd , if one is available, and stores itpn The function O
returns*this

17.4.3.1.24istream::operator>>(streambuf&) [lib.istream::ext.sb]

istream& operator>>(streambuf& sb);

A formatted input function, extracts characters friihis and inserts them in the output sequence con-
trolled bysbh. Characters are extracted and inserted until any of the following occurs:

— end-of-file occurs on the input sequence;

— inserting in the output sequence fails (in which case the character to be inserted is not extracted);

— an exception occurs (in which case the exception is caught but not rethrown).

If the function inserts no characters, it caltgstate(failbit) . The function return&his

17.4.3.1.25istream::get() [lib.istream::get]

17.4.3.1.25istream::get() DRAFT: 27 May 1994 Library 17-69

HBox 114
HJbrary WG issue: Greg Bentz, October 22, 1993

OoOodood

O

] have been consulting the#Qibrary draft (X3J16/93-108,WG21/NO315) and | think | have found a stdfe-
Cment which is inconsistent with most existing implementations. While that doesn’t say much, it als%seems
Eto go against what | feel is the desired behaviour.

O

O
gThe functions: O
Cistream::get(char *, int, char) (was 17.4.1.8.27) g
Cistream::getline(char *, int, char) (was 17.4.1.8.34) a]
O

O
aooth declare the following: 0
0 O
O “If the function stores no characters, it calls 'setstate(failbit)’.” B
O
EI believe the line should read: B

O
g “If the function stores no characters and 'c != delim’, it calls O
] ’setstate(failbit).” B
O
Urhis change, particularly for 'istream::getline(char *, int, char)’, allows line oriented reading of inpl%files
Shat have 'delim’ terminated lines, some of which may be empty. 0

O

dif the call 'getline(buf, sizeof(buf), '0);’ is made when the next character in the input stream is 0 thé cur-
Crent wording causes 'failbit’ to be set. The proposed wording allows 'getline’ to return with no cha%cters
an 'buf’, but having consumed the '0 character. 0

O
Hn support of this proposal | also refer to the+'@OStreams Handbook" by Steve Teale (ISBN 0-201-
59641-5) pages 288-290. (example source t6.cpp) Mr. Teale indicates that the proposed wording li$, in his
Copinion, the correct behaviour. H

int get();

An unformatted input function, extracts a charaaterif one is available. The function then returns

(unsigned char) c. Otherwise, the function caléetstate(failbit) and then returne OF
17.4.3.1.26istream::get(char*, int, char) [lib.istream::get.str]
istream& get(char* s, int n,char delim ="\n");

An unformatted input function, extracts characters and stores them into successive locations of an array
whose first element is designated by Characters are extracted and stored until any of the following
occurs:

— n -1 characters are stored;

— end-of-file occurs on the input sequence (in which case the functiosettate(eofbit));
— ¢ == delim for the next available input characte(in which case is not extracted).
If the function stores no characters, it calidstate(failbit) . In any case, it then stores a null char-

acter into the next successive location of the array. The function réthiss .

17-70 Library DRAFT: 27 May 1994 17.4.3.1.27
istream::get(unsigned char*, int, char)

17.4.3.1.27istream::get(unsigned char*, int, char) [lib.istream::get.ustr]

istream& get(unsigned char* s, int n,char delim ="\n’)
Returngget((char*) s, n, delim).

17.4.3.1.28istream::get(signed char*, int, char) [lib.istream::get.sstr]

istream& get(signed char* s, int n,char delim ="\n")
Returngget((char*) s, n, delim).

17.4.3.1.29istream::get(char&) [lib.istream::get.c]

istreamé& get(char& c);

An unformatted input function, extracts a character, if one is available, and assigos Dtoerwise, the

function callssetstate(failbit) . The function return&his
17.4.3.1.30istream::get(unsigned char&) [lib.istream::get.uc]
istream& get(unsigned char& c);

Returngget((char&) c¢).

17.4.3.1.31istream::get(signed char&) [lib.istream::get.sc]
istreamé& get(signed char& c);

Returndstream::get((char&)). a

17.4.3.1.32istream::get(streambuf&, char) [lib.istream::get.sb]
istream& get(streambuf& sb, char delim ='\n);

An unformatted input function, extracts characters and inserts them in the output sequence controlled by
sb. Characters are extracted and inserted until any of the following occurs:

— end-of-file occurs on the input sequence;
— inserting in the output sequence fails (in which case the character to be inserted is not extracted);]
— ¢ == delim for the next available input characte(in which case is not extracted);

— an exception occurs (in which case, the exception is caught but not rethrown).

If the function inserts no characters, it caltgstate(failbit) . The function return&his
17.4.3.1.33istream::getline(char*, int, char) [lib.istream::getline.str]
istream& getline(char* s, int n,char delim ="\n");

An unformatted input function, extracts characters and stores them into successive locations of an array
whose first element is designated by Characters are extracted and stored until any of the following
occurs:

— n -1 characters are stored (in which case the function stiésate(failbit));
— end-of-file occurs on the input sequence (in which case the functiosestate(eofbit));
— ¢ == delim for the next available input characterin which case the input character is extracted

but not stored).

17.4.3.1.33 DRAFT: 27 May 1994 Library 1771
istream::getline(char*, int, char)

If the function stores no characters, it cak$state(failbit) . In any case, it then stores a null char-
acter into the next successive location of the array. The function rétiiss .

17.4.3.1.34istream::getline(unsigned char*, int, char) [lib.istream::getline.ustr]
istream& getline(unsigned char* s, int n,char delim ="\n’)

Returnggetline((char*) s, n, delim).

17.4.3.1.35istream::getline(signed char*, int, char) [lib.istream::getline.sstr]
istream& getline(signed char* s, int n,char delim ="\n")

Returnggetline((char*) s, n, delim).

17.4.3.1.36istream::ignore(int, int) [lib.istream::ignore]
istream& ignore(int n =1, int delim = EOF);

An unformatted input function, extracts characters and discards them. Characters are extracted until any of
the following occurs:

— if n 1= INT_MAX , n characters are extracted
— end-of-file occurs on the input sequence (in which case the functiosetstate(eofbit));

— ¢ == delim for the next available input characte(in which caser is extracted).

The last condition will never occurdfelim == EOF.
The macrdNT_MAXis defined in<climits>

The function return¥this

17.4.3.1.37istream::read(char*, int) [lib.istream::read.str]
istream& read(char* s, int n;
An unformatted input function, extracts characters and stores them into successive locations of an array

whose first element is designated $y Characters are extracted and stored until either of the following
occurs:

— n characters are stored;
— end-of-file occurs on the input sequence (in which case the functioseisliate(failbit)).

The function return¥this

17.4.3.1.38istream::read(unsigned char*, int) [lib.istream::read.ustr]

istreamé& read(unsigned char* s, int n
Returngread((char*) s, n).

17.4.3.1.39istream::read(signed char*, int) [lib.istream::read.sstr]

istream& read(signed char* s, int n

Returnsread((char*) s, n). O

17-72 Library DRAFT: 27 May 1994 17.4.3.1.40
istream::readsome(char*, int)

17.4.3.1.40istream::readsome(char?*, int) (lib.istream::readsome]

int readsome(char* s, int ny; O

An unformatted input function, extracts characters and stores them into successive locations of ai array
whose first element is designated fy The function first determinesavail , the value returned by call-O
ing in_avail() . If navail is<196>1, the function callsetstate(eofbit) and returns zero. a

Otherwise, the function determines the number of characters to extmadhe smaller off andnavail , O
and returnsead(s, n).

17.4.3.1.41istream::peek() [lib.istream::peekK]
int peek();

An unformatted input function, returns the next available input character, if possible.

If good() is zero, the function returfsOF Otherwise, it returnsdbuf()->sgetc()

17.4.3.1.42istream::putback(char) [lib.istream::putback]

istreamé& putback(char c);

An unformatted input function, callslbuf->sputbackc(c) . If that function return&€OF the func-
tion callssetstate(badbit) . The function return&his

17.4.3.1.43istream::unget() [lib.istream::unget]

istream& unget();

An unformatted input function, caliglbuf->sungetc() . If that function return€OF, the function
callssetstate(badbit) . The function returnthis
17.4.3.1.44istream::gcount() [lib.istream::gcount]

int gcount() const;

Returnschcount .

17.4.3.1.45istream::sync() [lib.istream::sync]
int sync();

If rdbuf() is a null pointer, returnEOF. Otherwise, the function caltdbuf()->pubsync() and, if

that function return&€OF, calls setstate(badbit) and return€EOF Otherwise, the function returns

zero.

17.4.3.2ws(istream&) [lib.ws]
istream& ws(istreamé& is);

Saves a copy ofs.fmtflags , then clearss .skipws in is.fmtflags . The function then calls

is .il%%() and s .isfx() , and restoress.fmtflags to its saved value. The function returns

is .

193] The effect okcin >>ws isto skip any white space in the input sequence controllethby

17.4.4 Headerkostream> DRAFT: 27 May 1994 Library 17-73

17.4.4 Headerxostream> [lib.header.ostream]

The headerkostream> defines a type and several function signatures that control output to a stream
buffer.

17.4.4.1 Clas®stream [lib.ostream]

HBox 115 B
[Library WG issue: Jerry Schwarz, January 3, 1994 0

O 0

G gain the San Diego rewrite omits definitions. In particular it is silent on what happens when exc%lﬁtions
rpre thrown by virtuals. 0

O 0

[Not fixed. J

class ostream : virtual public ios {

public: O
ostream(streambuf* sb);
virtual ~ostream();
bool opfx(); ad
void osfx();
ostreamé& operator<<(ostreamé& (* pf)(ostream&));
ostreamé& operator<<(ios& (* pf)(i0s&));
ostreamé& operator<<(const char* s);
ostreamé& operator<<(char c);
ostreamé& operator<<(unsigned char c);
ostreamé& operator<<(signed char c);
ostreamé& operator<<(bool ny; t
ostreamé& operator<<(short ny;
ostreamé& operator<<(unsigned short n;
ostreamé& operator<<(int n);
ostreamé& operator<<(unsigned int n);
ostreamé& operator<<(long ny;
ostreamé& operator<<(unsigned long n);
ostreamé& operator<<(float f);
ostreamé& operator<<(double f);
ostreamé& operator<<(long double f);
ostreamé& operator<<(void* p);
ostreamé& operator<<(streambuf& sb);
int put(char c); ad
ostreamé& write(const char* s, int ny;
ostreamé& write(const unsigned char* s, int ny;
ostreamé& write(const signed char* s, int n;

ostream& flush();

k

The classostream defines a number of member function signatures that assist in formatting and writing
output to output sequences controlled by a stream buffer.

Two groups of member function signatures share common properticariiatted output functiongor
inserterg and theunformatted output functionBoth groups of output functions generatei(mer)) output
characters by calling the function signatatesputc(int) . If the called function throws an exceptior,]
the output function callsetstate(badbit) and rethrows the exception.

— The formatted output functions are:

17-74 Library DRAFT: 27 May 1994 17.4.4.1 Classstream

ostreamé& operator<<(const char* s);
ostreamé& operator<<(char c);

ostreamé& operator<<(unsigned char c);
ostreamé& operator<<(signed char c);
ostreamé& operator<<(bool ny; t
ostreamé& operator<<(short ny;

ostreamé& operator<<(unsigned short n;
ostreamé& operator<<(int n);

ostreamé& operator<<(unsigned int n);
ostreamé& operator<<(long ny;

ostreamé& operator<<(unsigned long n);
ostreamé& operator<<(float f);

ostreamé& operator<<(double f);

ostreamé& operator<<(long double f);
ostreamé& operator<<(void* p);

ostreamé& operator<<(streambuf* sb);

— The unformatted output functions are:

ostream& put(char c);
ostreamé& write(const char* s, int ny;
ostreamé& write(const unsigned char* s, int ny;
ostreamé& write(const signed char* s, int n;
Each formatted output function begins execution by catipix() . If that function returns nonzero, thel

function endeavors to generate the requested output. In any case, the formatted output function ends by
callingosfx() , then returning the value specified for the formatted output function.

Some formatted output functions endeavor to generate the requested output by converting a value from
some scalar anTBs type to text form and inserting the converted text in the output sequence. The behavior
of such functions is described in terms of the conversion specification for an equivalent call to the function
signaturefprintf(FILE*, const char?*, ...) , declared irnccstdio> (17.2), operating with O

the global locale set tloc , with the following alterations:

— Thell(‘)(‘)lrmatted output function inserts characters in a stream buffer, rather than writing them to an output
file.

— The formatted output function uses the fill character returned@lify as the padding character
(rather than the space character for left or right paddir@farinternal padding).

If the operation fails for any reason, the formatted output functionse#itate(badbit)

For conversion from an integral type other than a character type, the function determines the integral con-
version specifier as follows:

— If (flags() & basefield) == oct , the integral conversion specifierds

— If (flags() & basefield) == hex , the integral conversion specifierxs If flags() &
uppercase is nonzerox is replaced with.

Otherwise, the integral conversion specified i®r conversion from a signed integral typeudior conver-
sion from an unsigned integral type.

For conversion from a floating-point type, the function determines the floating-point conversion specifier as
follows:

9% The stream buffer can, of course, be associated with an output file, but it need not be.

10

11

12

13

14

17.4.4.1 Clas®stream DRAFT: 27 May 1994 Library 17-75

— If (flags() & floatfield) == fixed , the floating-point conversion specifierfis

— If (flags() & floatfield) == scientific , the floating-point conversion specifieras If
flags() & uppercase is nonzeroeg is replaced witte.

Otherwise, the floating-point conversion specifiegis If flags() & uppercase is nonzerog is

replaced withG

The conversion specifier has the following additional qualifiers prepended to make a conversion specifica-
tion:

— For conversion from an integral type other than a character tyffsgs{) & showpos is nonzero,
the flag+ is prepended to the conversion specification; afldgs() & showbase is nonzero, the
flag # is prepended to the conversion specification.

— For conversion from a floating-point type, fibgs() & showpos is nonzero, the flagr is
prepended to the conversion specification; arfthgfs() & showpoint is nonzero, the flag is
prepended to the conversion specification.

— For any conversion, ifvidth() is nonzero, then a field width is specified in the conversion specifica-
tion. The value isvidth()

— For conversion from a floating-point type fifgs() & fixed is nonzero or iprecision() is
greater than zero, then a precision is specified in the conversion specification. The padog is
sion()

Moreover, for any conversion, padding with the fill character returnddi()y = behaves as follows:

— If (flags() & adjustfield) == right , ho flag is prepended to the conversion specification,
indicating right justification (any padding occurs before the converted text). A fill character occurs
wherevefrfprintf generates a space character as padding.

— If (flags() & adjustfield) == internal , the flagO0 is prepended to the conversion speci-
fication, indicating internal justification (any paddin% occurs within the converted text). A fill character
occurs wherevefprintf generates @ as paddingl.O

Otherwise, the flag is prepended to the conversion specification, indicating left justification (any padding
occurs after the converted text). A fill character occurs whefpvietf generates a space character as
padding.

Unless explicitly stated otherwise for a particular inserter, each formatted output functiomdiki{e) g
after determining the field width. O
Each unformatted output function begins execution by cadipfg() . If that function returns nonzero,]

the function endeavors to generate the requested output. In any case, the unformatted output function ends

by callingosfx() , then returning the value specified for the unformatted output function.

17.4.4.1.1ostream::ostream(streambuf*) [lib.cons.ostream.sb]

ostream(streambuf* sb);

Constructs an object of classstream , assigning initial values to the base class by calling
ios::init(sb) . a

199 The conversion specificatigfo generates a leadifywhich isnota padding character.

17-76 Library DRAFT: 27 May 1994 17.4.4.1.20stream::~ostream()

17.4.4.1.2ostream::~ostream() [lib.des.ostream]

virtual ~ostream();

Destroys an object of classtream .

17.4.4.1.3ostream::opfx() [lib.ostream::opfX]
bool opfx(); O

If good() is nonzero, prepares for formatted or unformatted outpuie(Jf is not a null pointer, the

function callgtie()->flush() . It returnsgood() 106) O

17.4.4.1.40stream::osfx() [lib.ostream::osfx]
void osfx();

If flags() & unitbuf is nonzero, callflush()

17.4.4.1.50stream::operator<<(ostreamé& (*)(ostream&)) [lib.ostream::ins.omanip]
ostreamé& operator<<(ostreamé& (* pf)(ostream&))

Returng(* pf)(*this) .207)

17.4.4.1.60stream::operator<<(ios& (*)(ios&)) [lib.ostream::ins.iomanip]
ostreamé& operator<<(ios& (* pf)(ios&))

Calls(*(ios*) pf)(*this) , then returngthis .1%%) 0

17.4.4.1.7 ostream::operator<<(const char*) [lib.ostream::ins.str]
ostreamé& operator<<(const char* s);

A formatted output function, converts thess s with the conversion specifies. The function returns
*this

17.4.4.1.80ostream::operator<<(char) [lib.ostream::ins.c]

ostreamé& operator<<(char c);

A formatted output function, converts tblear ¢ with the conversion specifierand a field width of zero.
The stored field widthigs:: wide) isnotset to zero. The function returtthis

17.4.4.1.90stream::operator<<(unsigned char) [lib.ostream::ins.uc]
ostreamé& operator<<(unsigned char c)

Returnsoperator<<((char) c) .

ig?;The function signaturespfx() andosfx() can also perform additional implementation-dependent operations. O

1 See, for example, the function signaterell(ostream&)
08)See, for example, the function signatudec(ios&) . O

17.4.4.1.10 DRAFT: 27 May 1994 Library 1777
ostream::operator<<(signed char)

17.4.4.1.100stream::operator<<(signed char) [lib.ostream::ins.sc]
ostreamé& operator<<(signed char c)

Returnsoperator<<((char)). a

17.4.4.1.11ostream::operator<<(bool) [{lib.ostream::ins.bool]
ostreamé& operator<<(bool ny; a

A formatted output function, converts the expressiot= 0 with the integral conversion specifier. Thél
function returngthis

17.4.4.1.120stream::operator<<(short) [lib.ostream::ins.si]

ostreamé& operator<<(short n);

A formatted output function, converts the signed short integeith the integral conversion specifier pre-
ceded byh. The function returnihis

17.4.4.1.130stream::operator<<(unsigned short) [lib.ostream::ins.usi]

ostreamé& operator<<(unsigned short ny;

A formatted output function, converts the unsigned short intageith the integral conversion specifier
preceded by. The function returnihis

17.4.4.1.140stream::operator<<(int) [lib.ostream::ins.i]

ostreamé& operator<<(int n);

A formatted output function, converts the signed integesth the integral conversion specifier. The func-
tion returnstthis

17.4.4.1.150stream::operator<<(unsigned int) [lib.ostream::ins.ui]

ostreamé& operator<<(unsigned int ny;

A formatted output function, converts the unsigned integeiith the integral conversion specifier. The
function returngthis

17.4.4.1.160stream::operator<<(long) [lib.ostream::ins.li]

ostreamé& operator<<(long ny;

A formatted output function, converts the signed long integeith the integral conversion specifier pre-
ceded by . The function return&his

17.4.4.1.170stream::operator<<(unsigned long) [lib.ostream::ins.uli]

ostreamé& operator<<(unsigned long n);

A formatted output function, converts the unsigned long integeith the integral conversion specifier
preceded by . The function returnihis

17-78 Library DRAFT: 27 May 1994 17.4.4.1.18
ostream::operator<<(float)

17.4.4.1.18ostream::operator<<(float) [lib.ostream::ins.f]

ostreamé& operator<<(float f);

A formatted output function, converts theat f with the floating-point conversion specifier. The func-
tion returnstthis

17.4.4.1.190stream::operator<<(double) [lib.ostream::ins.d]

ostreamé& operator<<(double f);

A formatted output function, converts tideuble f with the floating-point conversion specifier. The
function returngthis

17.4.4.1.200stream::operator<<(long double) [lib.ostream::ins.Id]

ostreamé& operator<<(long double f);

A formatted output function, converts theng double f with the floating-point conversion specifier
preceded by. The function returnihis

17.4.4.1.210stream::operator<<(void*) [lib.ostream::ins.ptr]

ostreamé& operator<<(void* p);

A formatted output function, converts the pointevtéid p with the conversion specifigr. The function
returns*this

17.4.4.1.220stream::operator<<(streambuf&) [lib.ostream::ins.sb]

ostreamé& operator<<(streambuf& sb);
A formatted output function, extracts characters from the input sequence contrafiechhd inserts them
in *this . Characters are extracted and inserted until any of the following occurs:
— end-of-file occurs on the input sequence;
— inserting in the output sequence fails (in which case the character to be inserted is not extracted);

— an exception occurs (in which case, the exception is rethrlé)\?)h).

If the function inserts no characters, it caklgstate(failbit) . The function return&his
17.4.4.1.23ostream::put(char) [lib.ostream::put]
int put(char c);

An unformatted output function, inserts the charaaterif possible. The function then returns

(unsigned char) c. Otherwise, the function calietstate(badbit) . It then return&€OF

17.4.4.1.240stream::write(const char*, int) [lib.ostream::write.str]
ostream& write(const char* s, int ny;

199) This behavior differs from that foistream::istream& operator>>(streambuf&) , Which doesnot rethrow the

exception.

17.4.4.1.24 DRAFT: 27 May 1994 Library 1779
ostream::write(const char*, int)

An unformatted output function, obtains characters to insert from successive locations of an array whose
first element is designated Isy Characters are inserted until either of the following occurs:

— n characters are inserted,;

— inserting in the output sequence fails (in which case the functiorsetdiste(badbit)).

The function return¥this

17.4.4.1.250stream::write(const unsigned char*, int) [lib.ostream::write.ustr]

ostreamé& write(const unsigned char* s, int n)
Returnswrite((const char*) s, n).

17.4.4.1.260stream::write(const signed char*, int) [lib.ostream::write.sstr]

ostreamé& write(const signed char* s, int n)
Returnswrite((const char*) s, n).

17.4.4.1.270stream::flush() [lib.ostream::flush]

ostream& flush();

If rdbuf() is not a null pointer, calldbuf()->pubsync() . If that function return&OF, the func-
tion callssetstate(badbit)

The function return¥this

17.4.4.2 endl(ostream&) [lib.endl]
ostreamé& endl(ostreamé& 0s);

Callsos.put(\n’) , thenos .flush() . The function returnes .11? g

17.4.4.3ends(ostream&) [lib.ends]
ostreamé& ends(ostreamé& 0s);

Calls 0s.put(\0’) . The function returngs.!*% a

17.4.4.4flush(ostream&) [lib.flush]
ostream& flush(ostream& 0s);

Calls os .flush() . The function returnes. O

17.4.5 Headexiomanip> [lib.header.iomanip]

The headexiomanip> defines three template classes and several related functions that use these template
classes to provide extractors and inserters that alter information maintained hip<lamsd its derived
classes. It also defines several instantiations of these template classes and functions.

119)The effect of executingout << endl is to insert a newline character in the output sequence controlleouby, then syn-
(]:Hrﬁnize it with any external file with which it might be associated.

The effect of executingstr << ends is to insert a null character in the output sequence controlledtpoy. If ostr is an
object of classtrstreambuf , the null character can terminatenamss constructed in an array object.

17-80 Library DRAFT: 27 May 1994 17.4.5.1 Template classmanip< T>

17.4.5.1 Template classmanip< T> [lib.template.smanip]
template<class T> class smanip {
public:
smanip(ios& (* pf_arg)(i0s&, n,
I i0s& (* pf)(ios&, T); exposition only
I T manarg ; exposition only
2

The template classmanip< T> describes an object that can store a function pointer and an object of type
T. The designated function accepts an argument of thisltypeor the sake of exposition, the maintained
data is presented here as:

— i0s& (* pf)(ios&, T) , the function pointer; O
— T manarg , the object of typd.

17.4.5.1.1smanip< T>::smanip(ios& (*)(i0s&, n, 7 [lib.cons.smanip.ios]
smanip(ios& (* pf_arg)(i0s&, T, Tmanarg_arg);

Constructs an object of classanip< T>, initializing pf to pf_arg andmanarg to manarg_arg .

17.4.5.1.20perator>>(istream&, const smanip< T>&) [lib.ext.smanip]

template <class T> istream& operator>>(istream& is , const smanip< T>& a); O

Calls(* a.pf)(is, a.manarg) and catches any exception the function call throws. If the function
catches an exception, it calis .setstate(ios::failbit) (the exception is not rethrown). The
function returnss .

17.4.5.1.3operator<<(ostreamé&, const smanip< T>&) [lib.ins.smanip]
template <class T> ostream& operator<<(ostreamé& 0s, const smanip< T>& a); O
Calls (* a.pf)(os, a.manarg) and catches any exception the function call throws. If the function

catches an exception, it calis.setstate(ios::failbit) (the exception is not rethrown). The
function returnos.

17.4.5.2 Template classnanip< T> [lib.template.imanip]
template<class T> class imanip {
public:
imanip(ios& (* pf_arg)(ios&, n, 1)
I ios& (* pf)(ios&, T); exposition only
I T manarg ; exposition only
2

The template classnanip< T> describes an object that can store a function pointer and an object of type
T. The designated function accepts an argument of thisTtypger the sake of exposition, the maintained
data is presented here as:

— i0s& (* pf)(ios&, T) , the function pointer; O
— T manarg , the object of typd.

17.45.2.1 DRAFT: 27 May 1994 Library 1781
imanip< T>:imanip(ios& (*)(i0s&, n, 1

17.4.5.2.1imanip< T>:imanip(ios& (*)(i0s&, n, 7 [lib.cons.imanip.ios]

imanip< T>:imanip(ios& (* pf_arg)(ios&, T), Tmanarg arg),
Constructs an object of clagssanip< T>, initializing pf to pf_arg andmanarg to manarg_arg .

17.4.5.2.20perator>>(istreamé&, const imanip< T>&) [lib.ext.imanip]

template <class T> istream& operator>>(istream& is , const imanip< T>& a); O
Calls(* a.pf)(is, a.manarg) and catches any exception the function call throws. If the function

catches an exception, it calis .setstate(ios::failbit) (the exception is not rethrown). The
function returngs .

17.4.5.3 Template classmanip< T> [lib.template.omanip]
template<class T> class omanip {
public:
omanip(ios& (* pf_arg)(ios&, n, 1)
I ios& (* prf)(ios&, 7); exposition only
I T manarg ; exposition only
I3

The template classmanip< T> describes an object that can store a function pointer and an object of type
T. The designated function accepts an argument of thisTtyger the sake of exposition, the maintained
data is presented here as:

— i0s& (* pf)(ios&, T) , the function pointer; O
— T manarg , the object of typd.

17.4.5.3.2omanip< T>::omanip(ios& (*)(i0s&, n, 7 [lib.cons.omanip.ios]

omanip< T>::omanip(ios& (* pf_arg)(ios&, T), Tmanarg arg),
Constructs an object of clasmanip< 7>, initializing pf to pf_ arg andmanarg to manarg_arg .

17.4.5.3.20perator<<(istreamé&, const omanip< T>&) [lib.ins.omanip]

template <class T> ostreamé& operator<<(ostreamé& 0s, const omanip< T>& a); O
Calls (* a.pf)(os, a.manarg) and catches any exception the function call throws. If the function
catches an exception, it calis.setstate(ios::failbit) (the exception is not rethrown). The
function returnos.

17.4.5.4 Instantiations of manipulators [lib.instantiations.of.manipulators]

17.4.5.4.1resetiosflags(ios::fmtflags) [lib.resetiosflags]

smanip<ios::fmtflags> resetiosflags(ios::fmtflags mask);

Returnssmanip<ios::fmtflags>(& f, mask) , wheref can be defined adt?

12 The expressiorcin >> resetiosflags(ios::skipws) clearsios::skipws in the format flags stored in the
istream objectcin (the same asin >> noskipws), and the expressiarout << resetiosflags(ios::showbase)
clearsios::showbase in the format flags stored in tlostream objectcout (the same asout << noshowbase).

17-82 Library DRAFT: 27 May 1994 17.45.4.1
resetiosflags(ios::fmtflags)

ios& f(ios& str , ios:fmtflags mask)
{ I reset specified flags
str .setf((ios::fmtflags)0, mask);
return (str);
}
17.4.5.4.2setiosflags(ios::fmtflags) [lib.setiosflags]
smanip<ios::fmtflags> setiosflags(ios::fmtflags mask);
Returnssmanip<ios::fmtflags>(& f, mask) , wheref can be defined as:
ios& f(ios& str ,ios:fmtflags mask)
{ /I set specified flags
str .setf(mask);
return (str);
}
17.4.5.4.3setbase(int) [lib.setbase]
smanip<int> setbase(int base);

Returnssmanip<int>(& f, base), wheref can be defined as:

ios& f(ios& str ,int base)
{ I set basefield
str .setf(n == 8 ? ios::oct : n == 10 ? ios::dec
:n==16 ?ios::hex : (ios::fmtflags)0, ios::basefield);
return (str);

17.4.5.4.4setfill(int) [lib.setfill]

smanip<int> setfill(int c);

Returnssmanip<int>(& f, c¢), wheref can be defined as:

ios& f(ios& str ,int c)
{ /I set fill character
strfill(c);
return (str);

17.4.5.4.5setprecision(int) [lib.setprecision]

smanip<int> setprecision(int ny; o

Returnssmanip<int>(& f, n), wheref can be defined as:

ios& f(ios& str ,int n)
{ /I set precision
str .precision(n);
return (str);

17.4.5.4.6setw(int)

DRAFT: 27 May 1994

17.4.5.4.6setw(int)

smanip<int> setw(int

Returnssmanip<int>(& f,

ny;

ios& f(ios& str ,int n)
{ /I set width
str .width(n);
return (str);
}

17.4.6 Headerstrstream>

The headekstrstream>

Library 17-83

[lib.setw]

n) , wheref can be defined as:

[lib.header.strstream]

defines three types that associate stream buffers with (single-byte) character

array objects and assist reading and writing such objects.

17.4.6.1 Classtrstreambuf

class strstreambuf : public streambuf {

[lib.strstreambuf]

public:
strstreambuf(int alsize_arg =0);
strstreambuf(void* (* palloc_arg)(size_t),
void (* pfree_arg)(void®));
strstreambuf(char* gnext_arg ,int n, char* pbeg_arg =0);
strstreambuf(unsigned char* gnext_arg ,int n,
unsigned char* pbeg _arg =0);
strstreambuf(signed char* gnext_arg ,int n,
signed char* pbeg_arg =0);
strstreambuf(const char* gnext_arg ,int ny;
strstreambuf(const unsigned char* gnext_arg ,int ny;
strstreambuf(const signed char* gnext_arg ,int ny;
virtual ~strstreambuf();
void freeze(bool = 1);
char* str();
int pcount();
protected:
I virtual int overflow(int ¢ =EOF); inherited
I virtual int pbackfail(int ¢ =EOF); inherited
I virtual int showmany(); inherited
I virtual int underflow(); inherited
1 virtual int uflow(); inherited
I virtual int xsgetn(char* s, int ny; inherited
I virtual int xsputn(const char* s, int n); inherited
I virtual streampos seekoff(streamoff off ,ios::seekdir way,
I ios::openmode which =ios::in | ios::out); inherited
I virtual streampos seekpos(streampos sp,
I ios::openmode which =ios::in | ios::out); inherited
/i virtual streambuf* setbuf(char* s, int n; inherited
I virtual int sync(); inherited
private:
I typedef T1 strstate ; exposition only
I static const strstate allocated ; exposition only
I static const strstate constant ; exposition only
I static const strstate dynamic exposition only
I static const strstate frozen ; exposition only
I strstate strmode ; exposition only
I int alsize ; exposition only
I void* (* palloc)(size_t); exposition only
I void (* pfree)(void*); exposition only

h

17-84 Library DRAFT: 27 May 1994 17.4.6.1 Classtrstreambuf

The classstrstreambuf is derived fromstreambuf to associate the input sequence and possibly the
output sequence with an object of some character array type, whose elements store arbitrary values. The
array object has several attributes. For the sake of exposition, these are represented as elements of a bit-
mask type (indicated here &$) calledstrstate . The elements are:

— allocated , set when a dynamic array object has been allocated, and hence should be freed by the
destructor for thstrstreambuf object;

— constant , set when the array object lamst elements, so the output sequence cannot be written;

— dynamic , set when the array object is allocated (or reallocated) as necessary to hold a character
sequence that can change in length;

— frozen , set when the program has requested that the array object not be altered, reallocated, or freed.

For the sake of exposition, the maintained data is presented here as:

— strstate strmode , the attributes of the array object associated witlstitséreambuf object;
— int alsize ,the suggested minimum size for a dynamic array object;

— void* (* palloc)(size_t) , points to the function to call to allocate a dynamic array object;

— void (* pfree)(void*) , points to the function to call to free a dynamic array object.

Each object of classtrstreambuf has aseekable areadelimited by the pointerseeklow and
seekhigh . If gnext is a null pointer, the seekable area is undefined. Othersésklow equals
gbeg andseekhigh is eitherpend, if pend is not a null pointer, ogend .

17.4.6.1.1strstreambuf::strstreambuf(int) [lib.cons.strstreambuf.i]
strstreambuf(int alsize_arg =0);

Constructs an object of classtreambuf | initializing the base class wittireambuf() , and initial-

izing:

— strmode with dynamic ;
— alsize with alsize_arg ;
— palloc with a null pointer;

— pfree with a null pointer.

17.4.6.1.2strstreambuf::strstreambuf(void* [lib.cons.strstreambuf.ff]
(*)(size_t), void (*)(void*))
strstreambuf(void* (* palloc_arg)(size_t), void (* pfree_arg)(void®));
Constructs an object of clasgstreambuf | initializing the base class wigtreambuf() , and initial-
izing:

— strmode with dynamic ;
— alsize with an unspecified value;
— palloc with palloc_arg ;

— pfree with pfree_arg

17.4.6.1.3 DRAFT: 27 May 1994 Library 1785
strstreambuf::strstreambuf(char*, int, char*)

17.4.6.1.3strstreambuf::strstreambuf(char*, int, [lib.cons.strstreambuf.str]
char*)
strstreambuf(char* gnext_arg ,int n,char* pbeg arg =0),
Constructs an object of clasgstreambuf | initializing the base class wigtireambuf() , and initial-
izing:

— strmode with zero;
— alsize with an unspecified value;
— palloc with a null pointer;

— pfree with a null pointer.

gnext_arg shall point to the first element of an array object whose number of eleientetermined
as follows:

— Ifn >0, Nisn.
— If n ==0, Nisstrlen(gnext arg).
— If n <0, NisINT_MAX

The function signaturestrlen(const char*) is declared in<cstring> (17.2). The macro O
INT_MAXis defined in<climits>

If pbeg_arg is a null pointer, the function executes:

setg(gnext_ arg , gnext arg , gnext arg + N

Otherwise, the function executes:

setg(gnext_arg , gnext_ arg , pbeg_arg);
setp(pbeg_arg , pbeg_arg + N);

17.4.6.1.4strstreambuf::strstreambuf(unsigned char*, [lib.cons.strstreambuf.ustr]
int, unsigned char*)

strstreambuf(unsigned char* gnext_arg ,int n,
unsigned char* pbeg _arg =0);
Behaves the same sigstreambuf((char*) gnext_arg , n,(char®) pbeg _arg) .

17.4.6.1.5strstreambuf::strstreambuf(signed char*, [lib.cons.strstreambuf.sstr]
int, signed char*)

strstreambuf(signed char* gnext_arg ,int n,
signed char* pbeg_arg =0);

Behaves the same stsstreambuf((char*) gnext_arg , n, (char*) pbeg arg).
17.4.6.1.6strstreambuf::strstreambuf(const char*, [lib.cons.strstreambuf.cstr]
int)
strstreambuf(const char* gnext_arg ,int ny; 0
Behaves the same sgstreambuf((char*) gnext_arg , n),exceptthat the constructor also sets

constant in strmode .

17-86 Library DRAFT: 27 May 1994 17.4.6.1.7
strstreambuf::strstreambuf(const unsigned char?*, int)

17.4.6.1.7 strstreambuf::strstreambuf(const unsigned [lib.cons.strstreambuf.custr]
char*, int)

strstreambuf(const unsigned char* gnext_arg ,int ny;
Behaves the same sisstreambuf((const char*) gnext arg , n).
17.4.6.1.8strstreambuf::strstreambuf(const signed [lib.cons.strstreambuf.csstr]

char*, int)

strstreambuf(const signed char* gnext_arg ,int ny;
Behaves the same sigstreambuf((const char*) gnext arg , n).

17.4.6.1.9strstreambuf::~strstreambuf() [lib.des.strstreambuf]

virtual ~strstreambuf();

Destroys an object of clas¢rstreambuf . The function frees the dynamically allocated array object
only if strmode & allocated is nonzero andstrmode & frozen is zero. (Subclause
_strstreambuf::overflowdescribes how a dynamically allocated array object is freed.)

17.4.6.1.10strstreambuf::freeze(int) [lib.strstreambuf::freeze]
void freeze(bool freezefl =1); O
If strmode & dynamic is nonzero, alters the freeze status of the dynamic array object as follows: If

freezefl is nonzero, the function sefsozen in strmode . Otherwise, it clear§ozen in str-
mode.

17.4.6.1.11strstreambuf::str() [lib.strstreambuf::str]

char* str();

Callsfreeze() , then returns the beginning pointer for the input sequgﬂx&g.lm)

17.4.6.1.12strstreambuf::pcount() [lib.strstreambuf::pcount]

int pcount() const;
If the next pointer for the output sequenpeext , is a null pointer, returns zero. Otherwise, the function
returns the current effective length of the array object as the next pointer minus the beginning pointer for
the output sequencpnext - pbeg.

17.4.6.1.13strstreambuf::overflow(int) [lib.strstreambuf::overflow]

113)The return value can be a null pointer.

17.4.6.1.13 DRAFT: 27 May 1994 Library 1787
strstreambuf::overflow(int)

[Box 116 B
aibrary WG issue: Jerry Schwarz, January 3, 1994 0
0 O
O overflow : L0
g This is essentially editorial. | think the words Library uses B
g here (and in general describing specializatiorstreambuf) are 0
0 wrong.Library says “Behaves the same stseambuf::underflow(int) 0
0 with the following specific behavior.” Bugtreambuf::underflow(int) ad
O returnsEOFunconditionally. B
O

g WhatLibrary is trying to say is something like “it implements B
0 the protocol defined fostreambuf::underflow with the fol- 0
0 lowing specific behavior.” ad
O g
g I think the right thing to do is make these descriptions self O
U contained. g
O g
O g
O g
0 was wrong here. Sorry. Comparihgrary with the current draft convinces me that when the function

Ltan be described as a specialization of a protocol it is better to do that. All the repetitions of the pratocol in
he current draft mean you have to compare lots of identical verbiage to see how various functiorsl differ
rpfrom each other.

O
O a
[But | think it is essential that the protocol itself indicate what needs to be specified in a specializatiofl

I virtual int overflow(int ¢ =EOF); inherited

Appends the character designatecthp the output sequence, if possible, in one of two ways:

— If ¢ 1= EOF and if either the output sequence has a write position available or the function makes a
write position available (as described below), the function assigas pnext ++. The function sig-
nals success by returnifignsigned char) c.

— If ¢ == EOF, there is no character to append. The function signals success by returning a value other
thanEOF

The function can alter the number of write positions available as a result of any call.
The function returnEOFto indicate failure.

To make a write position available, the function reallocates (or initially allocates) an array object with a suf-
ficient number of elementsto hold the current array object (if any), plus at least one additional write posi-
tion. How many additional write positions are made available is otherwise unsp&:‘ﬁiﬁdpa//oc is

not a null pointer, the function cal($ palloc)(n) to allocate the new dynamic array object. Other-
wise, it evaluates the expressioew char[n] . In either case, if the allocation fails, the function returns
EOF. Otherwise, it setallocated in strmode .

To free a previously existing dynamic array object whose first element addped$ idree is not a null
pointer, the function call& pfree)(p). Otherwise, it evaluates the expressietete[] p.

If strmode & dynamic is zero, or ifstrmode & frozen is nonzero, the function cannot extend the
array (reallocate it with greater length) to make a write position available.

% an implementation should consideisize in making this decision.

17-88 Library DRAFT: 27 May 1994 17.4.6.1.14
strstreambuf::pbackfail(int)

17.4.6.1.14strstreambuf::pbackfail(int) [lib.strstreambuf::pbackfail]
I virtual int pbackfail(int ¢ = EOF); inherited

Puts back the character designated Iy the input sequence, if possible, in one of three ways:

— If ¢ = EOF , if the input sequence has a putback position available, gndsfgned char) c
== unsigned char) gnext [-1] , the function assigngnext -1 to gnext . The function sig-
nals success by returnifignsigned char) c.

— If ¢ = EOF , if the input sequence has a putback position available, atdribde & constant
is zero, the function assigmsto *-- gnext . The function signals success by returnjngsigned
char) c.

— If ¢ == EOF and if the input sequence has a putback position available, the function agsgnhs
-1 tognext . The function signals success by returr(ungsigned char) c.

If the function can succeed in more than one of these ways, it is unspecified which way is chosen. The
function can alter the number of putback positions available as a result of any call.

The function returnEOFto indicate failure. O
17.4.6.1.15strstreambuf::showmany() (lib.strstreambuf::showmany]

1 virtual int showmany(); inherited a
Behaves the same stseambuf::showmany(int) . O
17.4.6.1.16strstreambuf::underflow() [lib.strstreambuf::underflow]

I virtual int underflow(); inherited

Reads a character from the input sequence, if possible, without moving the stream position past it, as fol-
lows:

— If the input sequence has a read position available the function signals success by returning
(unsigned char)* gnext .

— Otherwise, if the current write next pointemext is not a null pointer and is greater than the current
read end pointegend, the function makes a read position available by assignirgeta’ a value
greater thangnext and no greater thamnext . The function signals success by returning
(unsigned char)* gnext .

The function can alter the number of read positions available as a result of any call.
The function returnEOFto indicate failure.

17.4.6.1.17strstreambuf::uflow() [lib.strstreambuf::uflow]

I virtual int uflow(); inherited
Behaves the same stseambuf::uflow(int)

17.4.6.1.18strstreambuf::xsgetn(char*, int) [lib.strstreambuf::xsgetn]

I virtual int xsgetn(char* s, int ny; inherited

Behaves the same siseambuf::xsgetn(char*, int)

17.4.6.1.19 DRAFT: 27 May 1994 Library 1789
strstreambuf::xsputn(const char*, int)

17.4.6.1.19strstreambuf::xsputn(const char*, int) [lib.strstreambuf::xsputn]

I virtual int xsputn(const char* s, int ny; inherited

Behaves the same siseambuf::xsputn(char*, int)

17.4.6.1.20strstreambuf::seekoff(streamoff, [lib.strstreambuf::seekoff]
ios::seekdir, ios::openmode)
I virtual streampos seekoff(streamoff off , ios::seekdir way, 0
I ios::openmode which =ios::in | ios::out); inherited

Alters the stream position within one of the controlled sequences, if possible, as described below. The
function returnstreampos(newoff) , constructed from the resultant offeewoff (of typestream-

off), that stores the resultant stream position, if possible. If the positioning operation fails, or if the con-
structed object cannot represent the resultant stream position, the object stores an invalid stream position.

If which & ios::in is nonzero, the function positions the input sequence. Otherwigdijdh &
ios::out is nonzero, the function positions the output sequence. Otherwigkiclfi & (ios::in
| ios::out) equalsios::in | ios::out and if way equals eitheios::beg orios::end

the function positions both the input and the output sequences. Otherwise, the positioning operation fails.

For a sequence to be positioned, if its next pointer is a null pointer, the positioning operation fails. Other-
wise, the function determinegwoff in one of three ways:

— If way ==ios::beg , newoff is zero.
— If way ==Iios::cur , hewoff is the next pointer minus the beginning pointerext - xbeg).

— If way ==ios:end , newoff isseekhigh minus the beginning pointeséekhigh - xbeg). 0O

If newoff + off is less tharseeklow - xbeg, or if seekhigh - xbeg is less thamewoff +
off , the positioning operation fails. Otherwise, the function asstgeg + newoff + off to the
next pointerxnext .

17.4.6.1.21strstreambuf::seekpos(streampos, [lib.strstreambuf::seekpos]
ios::openmode)
I virtual streampos seekpos(streampos sp,
I ios::openmode which =ios::in | ios::out); inherited

Alters the stream position within one of the controlled sequences, if possible, to correspond to the stream
position stored insp (as described below). The function retusteeampos(newoff), constructed

from the resultant offsetewoff (of typestreamoff), that stores the resultant stream position, if possi-

ble. If the positioning operation fails, or if the constructed object cannot represent the resultant stream posi-
tion, the object stores an invalid stream position.

If which & ios::in is nonzero, the function positions the input sequencevhith & ios::out
is nonzero, the function positions the output sequence. If the function positions neither sequence, the posi-
tioning operation fails.

For a sequence to be positioned, if its next pointer is a null pointer, the positioning operation fails. Other-
wise, the function determinggewoff from sp.offset() . If newoff is an invalid stream position,

has a negative value, or has a value greaterdbekhigh - seeklow , the positioning operation fails.
Otherwise, the function addsewoff to the beginning pointexbeg and stores the result in the next
pointerxnext .

17-90 Library DRAFT: 27 May 1994 17.4.6.1.22
strstreambuf::setbuf(char*, int)

17.4.6.1.22strstreambuf::setbuf(char?*, int) [lib.strstreambuf::setbuf]

1! virtual streambuf* setbuf(char* s, int ny; inherited

Performs an operation that is defined separately for each class derivedrfmeambuf

The default behavior is the same assfiveambuf::setbuf(char*, int)

17.4.6.1.23strstreambuf::sync() [lib.strstreambuf::sync]

I virtual int sync(); inherited

Behaves the same siseambuf::sync()

17.4.6.2 Classstrstream [lib.istrstream]
class istrstream : public istream {
public:
istrstream(const char* s); ad
istrstream(const char* s, int ny;
istrstream(char* s);
istrstream(char* s, int ny;
virtual ~istrstream();
strstreambuf* rdbuf() const;
char *str(); O
private:
I strstreambuf sb; exposition only
2
The classistrstream is a derivative ofistream that assists in the reading of objects of class
strstreambuf . It supplies astrstreambuf object to control the associated array object. For the

sake of exposition, the maintained data is presented here as:

— sb, thestrstreambuf object.

17.4.6.2.1istrstream::istrstream(const char*) [lib.cons.istrstream.cstr]
istrstream(const char* s);
Constructs an object of clasdrstream |, initializing the base class witktream(& sb), and initial-

izing sb with sb('s, 0) . s shall designate the first element ofnarss.

17.4.6.2.2istrstream::istrstream(const char*, int) [lib.cons.istrstream.cstrn]
istrstream(const char* s, int ny;
Constructs an object of clasdrstream |, initializing the base class witktream(& sb) , and initial-

izing sb with sb(s, n). s shall designate the first element of an array whose lengtlelisments, and
n shall be greater than zero.

17.4.6.2.3istrstream::istrstream(char*) [lib.cons.istrstream.str]
istrstream(char* s);
Constructs an object of clasdrstream |, initializing the base class witetream(& sb), and initial-

izing sb with sb((const char*) s, 0) . s shall designate the first element ofnams.

17.4.6.2.4
istrstream::istrstream(char*, int)

17.4.6.2 4distrstream::istrstream(char?*, int)

istrstream(char* s, int ny;

Constructs an object of clasdrstream
izing sb with sb((const char*) s,
is n elements, and shall be greater than zero.

17.4.6.2.5istrstream::~istrstream()

virtual ~istrstream();
Destroys an object of clasgrstream

17.4.6.2.6istrstream::rdbuf()

strstreambuf* rdbuf() const;
Returng(strstreambuf*)& sb.

17.4.6.2.7istrstream::str()

char* str();
Returnssb .str()

17.4.6.3 Clas®strstream

class ostrstream : public ostream {

public:
ostrstream();
ostrstream(char* s, int
virtual ~ostrstream();
strstreambuf* rdbuf() const;
void freeze(int freezefl
char* str();
int pcount() const;

private:

I strstreambuf sb;

I3

The classostrstream

strstreambuf It supplies astrstreambuf

DRAFT: 27 May 1994

is a derivative ofostream

Library 1791

[lib.cons.istrstream.strn]

, initializing the base class withtream(& sb), and initial-
n) . s shall designate the first element of an array whose length

[lib.des.istrstream]

[lib.istrstream::rdbuf]

0
(lib.istrstream::str]
O
0
[lib.ostrstream]
n, openmode mode = out);
=1); 0

exposition only

that assists in the writing of objects of class

object to control the associated array object. For the

sake of exposition, the maintained data is presented here as:

— Sb, thestrstreambuf object.

17.4.6.3.10strstream::ostrstream()

ostrstream();

Constructs an object of classtrstream
izing sb with sb() .

[lib.cons.ostrstream]

, initializing the base class wittstream(& sb) , and initial-

17-92 Library DRAFT: 27 May 1994 17.4.6.3.2
ostrstream::ostrstream(char*, int, openmode)

17.4.6.3.20strstream::ostrstream(char*, int, openmode) [lib.cons.ostrstream.str]

ostrstream(char* s, int n, openmode mode = out);

Constructs an object of classtrstream |, initializing the base class wittstream(& sb) , and initial-
izing sb with one of two constructors:

— If mode & app is zero, thers shall designate the first element of an arrayr@lements. The con-
structorissb(s, n, s).

— If mode & app is nonzero, thes shall designate the first element of an array efements that con-
tains anNTBS whose first element is designated By The constructor issb(s, n, s +
s:strlen(s)) .

The function signaturstrlen(const char*) is declared ir<cstring> (17.2).

17.4.6.3.30strstream::~ostrstream() [lib.des.ostrstream]

virtual ~ostrstream();
Destroys an object of classtrstream

17.4.6.3.40strstream::rdbuf() [lib.ostrstream::rdbuf]

strstreambuf* rdbuf() const;
Returng(strstreambuf*)& sb.

17.4.6.3.50strstream::freeze(int) [lib.ostrstream::freeze]

void freeze(int freezefl =1);
Callssb.freeze(freezefl).

17.4.6.3.60strstream::str() [lib.ostrstream::str]

char* str();
Returnssb .str()

17.4.6.3.7 ostrstream::pcount() [lib.ostrstream::pcount]

int pcount() const;
Returnssb.pcount()

17.4.7 Headerxsstream> [lib.neader.sstream]

The headexsstream> defines three types that associate stream buffers with objects oftciags , as
described in subclausstring .

17.4.7.1 Classtringbuf [lib.stringbuf]

17.4.7.1 Classtringbuf DRAFT: 27 May 1994 Library 17-93

HBox 117
El_ibrary WG issue: Jerry Schwarz, January 3, 1994

S:ormulating the “as if” rule is an interesting exercise. If the sequence is representediley the
sequence is (a[0], a[max]) and the put pointer i a&nd the get pointer is gk then the rule require
[the pointers to be such that.

wmiooood

O
: . C
a)pbeg==NULL or for alli such that ad
a . . .
0 px-(pnext-pbeg) <= < px, a[i]==pbeg][i-pxX] B
O
O b) gbeg==NULL or for alli s such that B
g ox-(gnext-gbeg) <=i < gx+(gend-gbeq), a[i]l==gnext[i-px] 0
g
g c) for anyi such that both g
0 px-(pnext-pbeg) <=i < px
O and
g gx-(gnext-gbeg) <= i < gx+(gend-gbeg) H
g pnext+(i-px) == gnext + (i-gx) ad
0 O
df my alternative protocols are accepted, essentially the same conditions are achieved by specializinglso that
[the input and output streams are represented by
g Stream's ; 0
0 size_t px; ad
0 size_t gx; U
0 g
I'll be happy to elaborate on any of the above. H
class stringbuf : public streambuf { 0
public:
stringbuf(ios::openmode which =ios:in | ios::out);
stringbuf(const string& str
ios::openmode which =ios::in | ios::out);
virtual ~stringbuf(); O
string str() const;
void str(const string& str_arg);
protected:
I virtual int overflow(int ¢ =EOF); inherited
I virtual int pbackfail(int ¢ = EOF); inherited
I virtual int showmany(); inherited O
I virtual int underflow(); inherited
I virtual int uflow(); inherited
I virtual int xsgetn(char* s, int n); inherited
I virtual int xsputn(const char* s, int ny; inherited
I virtual streampos seekoff(streamoff off , ios::seekdir way,
I ios::openmode which =ios:in | ios::out); inherited
I virtual streampos seekpos(streampos sp,
I ios::openmode which =ios::in | ios::out); inherited
1! virtual streambuf* setbuf(char* s, int ny; inherited
I virtual int sync(); inherited
private:
I ios::openmode mode, exposition only
I3

The classtringbuf is derived fromstreambuf
the output sequence with a sequence of arbitr
from, or made available as, an object of ckrag

to associate possibly the input sequence and possibly

ary (single-byte) characters. The sequence can be initialized

17-94 Library DRAFT: 27 May 1994 17.4.7.1 Classtringbuf

For the sake of exposition, the maintained data is presented here as:

— ios::openmode mode, hasios::in set if the input sequence can be read,iasdout set if
the output sequence can be written.

For the sake of exposition, the stored character sequence is described here as an array object.

17.4.7.1.1stringbuf::stringbuf(ios::openmode) [lib.cons.stringbuf.m]
stringbuf(ios::openmode which =ios:in | ios::out); 0
Constructs an object of classingbuf , initializing the base class wigtireambuf() , and initializing

modewith which . The function allocates no array object.

17.4.7.1.2stringbuf::stringbuf(const string&, [lib.cons.stringbuf.sm]
ios::openmode)
stringbuf(const string& str , ios::openmode which =ios:in | ios::out); 0
Constructs an object of classingbuf , initializing the base class wigtireambuf() , and initializing
modewith which .
If str .length() is nonzero, the function allocates an array objectwhose lengthn is
str .length() and whose elementg[/] are initialized tostr [/]. If which & ios:in is

nonzero, the function executes:

setg(x, x, X + n);

If which & ios::out is nonzero, the function executes:

setp(x, x + n);

17.4.7.1.3stringbuf::~stringbuf() [lib.des.stringbuf]

virtual ~stringbuf();
Destroys an object of clastingbuf

17.4.7.1.4stringbuf::str() [lib.stringbuf::str]

string str() const;

If mode & ios:in is nonzero angynext is not a null pointer, returnstring(gbeg, gend -
gbeg) . Otherwise, ifmode & ios::out is nonzero angnext is not a null pointer, the function
returnsstring(pbeg, pptr - pbeg) . Otherwise, the function returstring()

17.4.7.1.5stringbuf::str(const string&) [lib.stringbuf::str.s]

void str(const string& str_arg);

If str_arg .length() is zero, executes:

setg(0, 0, 0);
setp(0, 0);

and frees storage for any associated array object. Otherwise, the function allocates an arrayvbbpet
lengthnis str_arg .length() and whose elementq /] are initialized tostr_arg [1] . If which
& ios::in is nonzero, the function executes:

17.4.7.1.5 DRAFT: 27 May 1994 Library 1795
stringbuf::str(const string&)

setg(x, x, x + n);

If which & ios::out is nonzero, the function executes:

setp(x, x + n);

17.4.7.1.6stringbuf::overflow(int) [lib.stringbuf::overflow]

I virtual int overflow(int ¢ = EOF); inherited

Appends the character designatecchip the output sequence, if possible, in one of two ways:

— If ¢ 1= EOF and if either the output sequence has a write position available or the function makes a
write position available (as described below), the function assigas pnext ++. The function sig-
nals success by returnifignsigned char) c.

— If ¢ == EOF, there is no character to append. The function signals success by returning a value other
thanEOF.

The function can alter the number of write positions available as a result of any call.
The function returnEOFto indicate failure.

The function can make a write position available onlyndide & ios::out is nonzero. To make a
write position available, the function reallocates (or initially allocates) an array object with a sufficient
number of elements to hold the current array object (if any), plus one additional write positimrdelf&

ios::in is nonzero, the function alters the read end pogeed to point just past the new write position

(as does the write end poinfaend).

17.4.7.1.7 stringbuf::pbackfail(int) [lib.stringbuf::pbackfail]
I virtual int pbackfail(int ¢ =EOF); inherited

Puts back the character designated Ity the input sequence, if possible, in one of three ways:

— If ¢ = EOF , if the input sequence has a putback position available, gndsfgned char) c O
== (unsigned char) gnext [-1] , the function assigngnext - 1 to gnext . The function
signals success by returnifunsigned char) c.

— If ¢ = EOF , if the input sequence has a putback position available, anddé & ios::out is
nonzero, the function assigngdo *-- gnext . The function signals success by returnmgsigned
char) c.

— If ¢ == EOF and if the input sequence has a putback position available, the function agsgnhs
-1 tognext . The function signals success by returr(igsigned char) C.

If the function can succeed in more than one of these ways, it is unspecified which way is chosen.

The function return&EOFto indicate failure. O
17.4.7.1.8stringbuf::showmany() (lib.stringbuf::showmany]
I virtual int showmany(); inherited a

Behaves the same siseambuf::showmany(int) . a

17-96 Library DRAFT: 27 May 1994 17.4.7.1.9stringbuf::underflow()

17.4.7.1.9stringbuf::underflow() [lib.stringbuf::underflow]

HBox 118
HJbrary WG issue: Jerry Schwarz, January 3, 1994

OoOodood

O
Underflow needs to consider that the sequence might have been extendedesfkbw s from its ini- U
Ltial state.

1 virtual int underflow(); inherited

If the input sequence has a read position available, signals success by ref{umsiggmed
char)* gnext . Otherwise, the function returEOFto indicate failure.

17.4.7.1.10stringbuf::uflow() [lib.stringbuf::uflow]

I virtual int uflow(); inherited
Behaves the same siseambuf::uflow(int)

17.4.7.1.11stringbuf::xsgetn(char*, int) [lib.stringbuf::xsgetn]

I virtual int xsgetn(char* s, int n); inherited
Behaves the same siseambuf::xsgetn(char*, int)

17.4.7.1.12stringbuf::xsputn(const char*, int) [lib.stringbuf::xsputn]

I virtual int xsputn(const char* s, int ny; inherited

Behaves the same siseambuf::xsputn(char*, int)

17.4.7.1.13stringbuf::seekoff(streamoff, ios::seekdir, [lib.stringbuf::seekoff]
ios::openmode)
I virtual streampos seekoff(streamoff off ,ios::seekdir way,
I ios::openmode which =ios:in | ios::out); inherited

Alters the stream position within one of the controlled sequences, if possible, as described below. The
function returnstreampos(newoff), constructed from the resultant offeewoff (of typestream-

off), that stores the resultant stream position, if possible. If the positioning operation fails, or if the con-
structed object cannot represent the resultant stream position, the object stores an invalid stream position.

If which & ios::in is nonzero, the function positions the input sequence. Otherwisdijdh &
ios::out is nonzero, the function positions the output sequence. Otherwigkiclfi & (ios::in
| ios::out) equalsios::in | ios::out and if way equals eithefos::beg orios::end

the function positions both the input and the output sequences. Otherwise, the positioning operation fails.

For a sequence to be positioned, if its next pointer is a null pointer, the positioning operation fails. Other-
wise, the function determinegwoff in one of three ways:

— If way ==ios::beg , newoff is zero.
— If way ==ios:.cur , newoff is the next pointer minus the beginning pointerext - xbeg).

— If way ==ios::end , newoff is the end pointer minus the beginning pointemd - xbeg).

17.4.7.1.13 DRAFT: 27 May 1994 Library 1797
stringbuf::seekoff(streamoff, ios::seekdir, ios::openmode)

If newoff + off islessthan zero, or ¥end - xbeg is less thamewoff + off , the positioning
operation fails. Otherwise, the function assigheg + newoff + off to the next pointexnext .

17.4.7.1.14stringbuf::seekpos(streampos, ios::openmode) [lib.stringbuf::seekpos]
[Box 119 E O
aibrary WG issue: Jerry Schwarz, January 3, 1994 OO
O O

[Also it should be possible to seek the input stream anywhere in the sequence, even if it has been Bxténded.

EBox 120 B 0
aibrary WG issue: Jerry Schwarz, January 3, 1994 O a
O O
[Beeking to position 0 should be allowed even when the sequence is &mpty. M
I virtual streampos seekpos(streampos sp,
I ios::openmode which =ios:in | ios::out); inherited

Alters the stream position within one of the controlled sequences, if possible, to correspond to the stream
position stored insp (as described below). The function retusteeampos(newoff), constructed

from the resultant offsetewoff (of typestreamoff), that stores the resultant stream position, if possi-

ble. If the positioning operation fails, or if the constructed object cannot represent the resultant stream posi-
tion, the object stores an invalid stream position.

If which & ios::in is nonzero, the function positions the input sequencevhith & ios::out
is nonzero, the function positions the output sequence. If the function positions neither sequence, the posi-
tioning operation fails.

For a sequence to be positioned, if its next pointer is a null pointer, the positioning operation fails. Other-
wise, the function determinggewoff from sp.offset() . If newoff is an invalid stream position,

has a negative value, or has a value greaterxbad - xbeg, the positioning operation fails. Other-
wise, the function addsewoff to the beginning pointexbeg and stores the result in the next pointer
xnext .

17.4.7.1.15stringbuf::setbuf(char*, int) [lib.stringbuf::setbuf]

I virtual streambuf* setbuf(char* s, int n; inherited

Performs an operation that is defined separately for each class derivedringtouf

The default behavior is the same asstbeambuf::setbuf(char*, int)

17.4.7.1.16stringbuf::sync() [lib.stringbuf::sync]

I virtual int sync(); inherited
Behaves the same stseambuf::sync()

17.4.7.2 Classstringstream [lib.istringstream]

17-98 Library DRAFT: 27 May 1994 17.4.7.2 Classstringstream

class istringstream : public istream {

public:
istringstream(ios::openmode which =ios::in);
istringstream(const string& str , ios::openmode which =ios:in);
virtual ~istringstream();
stringbuf* rdbuf() const;
string str() const;
void str(const string& str);
private:
I stringbuf sh; exposition only
2
The classistringstream is a derivative ofistream that assists in the reading of objects of class
stringbuf . It supplies astringbuf object to control the associated array object. For the sake of

exposition, the maintained data is presented here as:

— sb, thestringbuf object.

17.4.7.2 1istringstream::istringstream(ios::openmode) [lib.cons.istringstream.m]
istringstream(ios::openmode which =ios::in);
Constructs an object of clas$ringstream , initializing the base class witktream(& sb) , and ini-

tializing sb with sb(which) .

17.4.7.2.2istringstream::istringstream(const string&, [lib.cons.istringstream.sm]
ios::openmode
istringstream(const string& str , ios::openmode which =ios:in);
Constructs an object of clas$ringstream , initializing the base class withtream(& sb) , and ini-

tializing sb with sb(str , which).

17.4.7.2.3istringstream::~istringstream() [lib.des.istringstream]

virtual ~istringstream();
Destroys an object of clasgringstream

17.4.7.2.4istringstream::rdbuf() [lib.istringstream::rdbuf]
stringbuf* rdbuf() const;

Returng(stringbuf*)& sh. O

17.4.7.2.5istringstream::str() [lib.istringstream::str]

string str() const;
Returnssb .str()

17.4.7.2.6istringstream::str(const string&) [lib.istringstream::str.s]

void str(const string& str_arg);

Callssb.str(str arg).

17.4.7.3 Clas®stringstream DRAFT: 27 May 1994 Library 17-99

17.4.7.3 Clas®stringstream [lib.ostringstream]

class ostringstream : public ostream {
public:
ostringstream(ios::openmode which =ios::out);
ostringstream(const string& str , ios::openmode which =ios::out);
virtual ~ostringstream();
stringbuf* rdbuf() const;
string str() const;
void str(const string& str);
private:
I stringbuf sh; exposition only

h

The classostringstream is a derivative ofostream that assists in the writing of objects of class
stringbuf . It supplies astringbuf object to control the associated array object. For the sake of
exposition, the maintained data is presented here as:

— sb, thestringbuf object.

17.4.7.3.10stringstream::ostringstream(ios::openmode) [lib.cons.ostringstream.m]
ostringstream(ios::openmode which =ios::out);
Constructs an object of clagstringstream , initializing the base class withstream(& sb) , and ini-

tializing sb with sb(which) .
17.4.7.3.2 [lib.cons.ostringstream.sm]

ostringstream::ostringstream(const string&,
ios::openmode

ostringstream(const string& str , ios::openmode which =ios::out);

Constructs an object of classtringstream , initializing the base class withstream(& sb) , and ini-
tializing sb with sb(str , which).

17.4.7.3.30stringstream::~ostringstream() [lib.des.ostringstream]

virtual ~ostringstream();
Destroys an object of classtringstream

17.4.7.3.4ostringstream::rdbuf() [lib.ostringstream::rdbuf]
stringbuf* rdbuf() const;

Returng(stringbuf*)& sh. O

17.4.7.3.50stringstream::str() [lib.ostringstream::str]

string str() const;

Returnssb .str()

17-100 Library DRAFT: 27 May 1994 17.4.7.3.6
ostringstream::str(const string&)

17.4.7.3.60stringstream::str(const string&) [lib.ostringstream::str.s]

void str(const string& str_arg);
Callssb.str(str arg).

17.4.8 Headerfstream> [lib.header.fstream]

The headekfstream> defines six types that associate stream buffers with files and assist reading and
writing files.

In this subclause, the type naf.E is a synonym for the typelLE defined in<cstdio> (17.2). a
17.4.8.1 Clasdilebuf [lib.filebuf]

Box 121 (o
%ibrary WG issue: Jerry Schwarz, January 3, 1994 ED
ESomething needs to be said about setting of pointgobeg, pend, pnext should all be set thiULL El]

DTheg pointers are more delicate. The intention was that you throw away the get area and (if ne%ssary)
rseek the file. Some implementor’'s haven't done the seek, or ignore failures. This gives you arWay to
rthrow away (some or all of) input from a terminal. We ought to say something about this. As the draff now

[reads it appears that thepointers can’t be modified. =N

class filebuf : public streambuf {

public:
filebuf();
virtual ~filebuf();
bool is_open() const; O
filebuf* open(const char* S, ios::openmode mode);
filebuf* close(); O
protected:
I virtual int overflow(int ¢ =EOF); inherited
I virtual int pbackfail(int ¢ = EOF); inherited
I virtual int showmany(); inherited O
I virtual int underflow(); inherited
I virtual int uflow(); inherited
I virtual int xsgetn(char* s int n); inherited ad
I virtual int xsputn(const char* s, int ny; inherited
I virtual streampos seekoff(streamoff off , ios::seekdir way,
I ios::openmode which =ios:in | ios::out); inherited
I virtual streampos seekpos(streampos sp,
I ios::openmode which =ios::in | ios::out); inherited
1! virtual streambuf* setbuf(char* s, int ny; inherited
I virtual int sync(); inherited
private:
I FILE* file ; exposition only
I3

The classfilebuf is derived fromstreambuf to associate both the input sequence and the oufput
sequence with an object of typtLE . For the sake of exposition, the maintained data is presented here as:

— FILE *file , points to thé-ILE associated with the object of clddsbuf

The restrictions on reading and writing a sequence controlled by an object dilelags are the same
as for reading and writing its associated file. In particular:

— If the file is not open for reading or for update, the input sequence cannot be read.

17.4.8.1 Clasdilebuf DRAFT: 27 May 1994 Library 17-101

— If the file is not open for writing or for update, the output sequence cannot be written.

— A joint file position is maintained for both the input sequence and the output sequence.

17.4.8.1.1filebuf::filebuf() [lib.cons.filebuf]
filebuf();
Constructs an object of clafilebuf , initializing the base class witstreambuf() , and initializing

file to a null pointer.

17.4.8.1.2filebuf::~filebuf() [lib.des.filebuf]

virtual ~filebuf();
Destroys an object of clafebuf . The function callglose()

17.4.8.1.3filebuf::is_open() [lib.filebuf::is.open]

bool is_open() const; O
Returns a nonzero valuefife is not a null pointer.

17.4.8.1.4filebuf::open(const char*, ios::openmode) [lib.filebuf::open]
filebuf* open(const char* s, ios::openmode mode);
If file is not a null pointer, returns a null pointer. Otherwise, the function opens a file, if possible, vihose

name is theTBs s, by callingfopen(s, modstr) and assigning the return valuefte . ThenTBs O
modstr is determined fronmode & ~ios::ate as follows: O

— j0s::in becomesr" ;

— ios::out | ios::trunc becomesw" ;

— ios::out | ios::app becomesa” ;

— ios:in | ios::binary becomesrb" ;

— ios::out | ios::trunc | ios::binary becomeswb" ;

— ios::out | ios::app | ios::binary becomesab” ;

— ios:in | ios::out becomesr+" ;

— ios:iin | ios::out | ios::trunc becomesw+" ;

— ios::in | ios::out | ios::app becomesa+" ;

— ios:in | ios::out | ios::binary becomesr+b"

— ios:in | ios::out | ios::trunc | ios::binary becomesw+b" ;
— ios::in | ios::out | ios::app | ios::biaary becomesa+b” .

If the resultingfile is not a null pointer andnode & ios::ate is nonzero, the function calls(]

fseek(file , 0, SEEK_END) . If that function returns a null pointer, the function calisse() O
and returns a null pointer. Otherwise, the function rettlniss .

The macroSEEK_ENDis defined, and the function signaturéspen(const char*, const
char*) andfseek(FILE*, long, int) are declared, iscstdio> (17.2). O

17-102 Library DRAFT: 27 May 1994 17.4.8.1.5filebuf::close()

17.4.8.1.5filebuf::close() [lib.filebuf::close]

HBox 122
El_ibrary WG issue: Jerry Schwarz, January 3, 19

gl think close should assign O tfile

EﬂjDDD@DD

O
[Not fixed.

filebuf* close();
If file is a null pointer, returns a null pointer. Otherwise, if the fthtlse(file) returns zero, the
function stores a null pointer file and returnshis . Otherwise, it returns a null pointer.

The function signaturielose(FILE*) is declared, irccstdio> (17.2). a

17.4.8.1.6filebuf::overflow(int) [lib.filebuf::overflow]

I virtual int overflow(int ¢ =EOF); inherited

Appends the character designatecchp the output sequence, if possible, in one of three ways:

— If ¢ = EOF and if either the output sequence has a write position available or the function makes a
write position available (in an unspecified manner), the function assitmspnext ++. The function
signals success by returniunsigned char) c.

— If ¢ = EOF , the function appends directly to the associated output sequence (as described below).
If pbeg < pnext ,thepnext - pbeg characters beginning gbeg are first appended directly to
the associated output sequence, beginning with the charagteegt The function signals success by
returning(unsigned char) c.

— If ¢ == EOF, there is no character to append. The function signals success by returning a value other
thanEOF

If the function can succeed in more than one of these ways, it is unspecified which way is chosen. The
function can alter the number of write positions available as a result of any call.

The function returnEOFto indicate failure. Ifile is a null pointer, the function always fails.
To append a characterdirectly to the associated output sequence, the function evaluates the expression:

fputc(x, file)== x

which must be nonzero. The function signafiprgc(int, FILE*) is declared irkcstdio> (17.2). O
17.4.8.1.7filebuf::pbackfail(int) [lib.filebuf::pbackfail]
I virtual int pbackfail(int ¢ =EOF); inherited

Puts back the character designated Ity the input sequence, if possible, in one of four ways:

— If ¢ '= EOF and if either the input sequence has a putback position available or the function makes a
putback position available (in an unspecified manner), the function assigrfs- gnext . The func-
tion signals success by returnifumnsigned char) c.

— If ¢ 1= EOF and if no putback position is available, the function puts lsadiectly to the associate
input sequence (as described below). The function signals success by ref(umsigned
char) c.

— If ¢ == EOF and if either the input sequence has a putback position available or the function makes a

17.4.8.1.7filebuf::pbackfail(int) DRAFT: 27 May 1994 Library 17-103

putback position available, the function assignext -1 to gnext . The function signals success
by returning(unsigned char) C.

— If ¢ == EOF, if no putback position is available, and if the function can determine the character
immediately before the current position in the associated input sequence (in an unspecified manner), the
function puts baclk directly to the associated input sequence. The function signals success by return-
ing a value other thalBOF.

If the function can succeed in more than one of these ways, it is unspecified which way is chosen. The
function can alter the number of putback positions available as a result of any call.

The function return&EOFto indicate failure. Ifile is a null pointer, the function always fails.

To put back a characterdirectly to the associated input sequence, the function evaluates the expression:

ungetc(x, file)== X
which must be nonzero. The function signaturgyetc(int, FILE*) is declared in<cstdio> a
(17.2). O
17.4.8.1.8filebuf::showmany() (lib.filebuf::showmany]

1 virtual int showmany(); inherited a
Behaves the same stseambuf::showmany() 119) O
17.4.8.1.9filebuf::underflow() [lib.filebuf::underflow]

I virtual int underflow(); inherited U

Reads a character from the input sequence, if possible, without moving the stream position past it, as fol-
lows:

— If the input sequence has a read position available the function signals success by returning
(unsigned char)* gnext .

— Otherwise, if the function can determine the charaxtet the current position in the associated input
sequence (as described below), it signals success by ret@unsigned char) x. If the function
makes a read position available, it also assigits* gnext .

The function can alter the number of read positions available as a result of any call.
The function return&EOFto indicate failure. Ifile is a null pointer, the function always fails.

To determine the charactgr(of typeint) at the current position in the associated input sequence, the
function evaluates the expression:

(x =ungetc(fgetc(file), file))!=EOF

which must be nonzero. The function signatuligestc(FILE*) and ungetc(int, FILE*) are [
declared irccstdio> (17.2).

5 an implementation might well provide an overriding definition for this function signature if it can determine that more characters
can be read from the input sequence.

17-104 Library DRAFT: 27 May 1994 17.4.8.1.10filebuf::uflow()

17.4.8.1.10filebuf::uflow() [lib.filebuf::uflow]

I virtual int uflow(); inherited

Reads a character from the input sequence, if possible, and moves the stream position past it, as follows:

— If the input sequence has a read position available the function signals success by returning
(unsigned char)* gnext ++.

— Otherwise, if the function can read the charaotatirectly from the associated input sequence (as
described below), it signals success by returfimgigned char) X. If the function makes a read
position available (in an unspecified manner), it also assiga$ gnext .

The function can alter the number of read positions available as a result of any call.
The function returnEOFto indicate failure. Ifile is a null pointer, the function always fails.

To read a character into an objacfof typeint) directly from the associated input sequence, the function
evaluates the expression:

(x =fgetc(file))'!'=EOF

which must be nonzero. The function signafgetc(FILE*) is declared irccstdio> (17.2). O
17.4.8.1.11filebuf::xsgetn(char*, int) [lib.filebuf::xsgetn]
I virtual int xsgetn(char* s, int n); inherited

Behaves the same siseambuf::xsgetn(char*, int)

17.4.8.1.12filebuf::xsputn(const char*, int) [lib.filebuf::xsputn]

I virtual int xsputn(const char* s, int ny; inherited

Behaves the same siseambuf::xsputn(char*, int)

17.4.8.1.13filebuf::seekoff(streamoff, ios::seekdir, [lib.filebuf::seekoff]
ios::openmode)
I virtual streampos seekoff(streamoff off , ios::seekdir way,
I ios::openmode which =ios:in | ios::out); inherited

Alters the stream position within the controlled sequences, if possible, as described below. The function
returns a newly constructetreampos object that stores the resultant stream position, if possible. If the
positioning operation fails, or if the object cannot represent the resultant stream position, the object stores
an invalid stream position.

If file is a null pointer, the positioning operation fails. Otherwise, the function determines one of three
values for the argumemthence, of typeint :

— If way ==ios::beg ,the argumentiSEEK SET
— If way ==ios:.cur , the argument ISEEK_CUR
— If way ==ios::end ,the argumentiSEEK END

The function then calliseek(file , off , whence) and, if that function returns nonzero, the posii
tioning operation fails.

17.4.8.1.13 DRAFT: 27 May 1994 Library 17105
filebuf::seekoff(streamoff, ios::seekdir, ios::openmode)

The macros SEEK_SET SEEK_CUR and SEEK_END are defined, and the function signature

fseek(FILE*, long, int) is declared, irkcstdio> (17.2). g
17.4.8.1.14filebuf::seekpos(streampos, ios::openmode) [lib.filebuf::seekpos]

I virtual streampos seekpos(streampos sp,

I ios::openmode which =ios:in | ios::out); inherited

Alters the stream position within the controlled sequences, if possible, to correspond to the stream position
stored insp.pos and sp.fp 118 The function returns a newly constructstleampos object that O
stores the resultant stream position, if possible. If the positioning operation fails, or if the object cannot
represent the resultant stream position, the object stores an invalid stream paosition.

If file is a null pointer, the positioning operation fails.

17.4.8.1.15filebuf::setbuf(char*, int) [lib.filebuf::setbuf]

I virtual streambuf* setbuf(char* s, int ny; inherited U
Makes the array af (single-byte) characters, whose first element is designated déyailable for use as a
buffer area for the controlled sequences, if possibldilelf is a null pointer, the function returns a null

pointer. Otherwise, if the cafletvbuf(file , s, _IOFBF, n) is nonzero, the function returns a
null pointer. Otherwise, the function returtkis

The macro_IOFBF is defined, and the function signatusetvbuf(FILE*, char*, int,

size_t) is declared, irkcstdio> (17.2). O
17.4.8.1.16filebuf::sync() [lib.filebuf::sync]
I virtual int sync(); inherited 0

Returns zero ifile is a null pointer. Otherwise, the function retufihssh(file).

The function signaturélush(FILE*) is declared irccstdio> (17.2). g
17.4.8.2 Clas#stream [lib.ifstream]
class ifstream : public istream {
public:
ifstream();
ifstream(const char* s, openmode mode =in);

virtual ~ifstream();
filebuf* rdbuf() const;

bool is_open(); O
void open(const char* s, openmode mode =in);
void close(); ad
private:
I filebuf b ; exposition only
I3

The clasdfstream is a derivative ofstream that assists in the reading of named files. It supplies a
filebuf object to control the associated sequence. For the sake of exposition, the maintained data is pre-
sented here as:

— filebuf fb , thefilebuf object.

%) The function may, for example, cédletpos(file , & sp.fp) andl/orfseek(file , sp.pos , SEEK_SET) , declared 0O
in <cstdio> . O

17-106 Library DRAFT: 27 May 1994

17.4.8.2 1ifstream::ifstream()

ifstream();

17.4.8.2.lifstream::ifstream()

[lib.cons.ifstream]

1 Constructs an object of clagstream |, initializing the base class witbtream(& b)) .

17.4.8.2.2ifstream::ifstream(const char*, openmode)

ifstream(const char* s, openmode

[lib.cons.ifstream.fn]

1 Constructs an object of claffistream |, initializing the base class witistream(& fb), then calls

open(s, mode) .

17.4.8.2.3ifstream::~ifstream()

virtual ~ifstream();
1 Destroys an object of clagstream

17.4.8.2.4ifstream::rdbuf()
filebuf* rdbuf() const;

1 Returng(filebuf*)& fb .

17.4.8.2.5ifstream::is_open()

bool is_open();
1 Returngb.is_open()

17.4.8.2.6ifstream::open(const char*, openmode)

void open(const char* s, openmode
1 Callsfb .open(s, mode . If the callis_open()

17.4.8.2.7ifstream::close()

void close();

1 Callsfb .close() and, if that function returns zero, callststate(failbit)

17.4.8.3 Clas®fstream

class ofstream : public ostream {
public:
ofstream();

ofstream(const char* s, openmode

virtual ~ofstream();
filebuf* rdbuf() const;
bool is_open();

void open(const char* s, openmode

void close();
private:

I filebuf b ; exposition only

h

mode = out);

[lib.des.ifstream]

[lib.ifstream::rdbuf]

[lib.ifstream::is.open]

[lib.ifstream::open]

returns zero, callsetstate(failbit) . O

[lib.ifstream::close]

[lib.ofstream]

mode = out | trunc); O

1 The clasofstream is a derivative obstream that assists in the writing of named files. It supplies a
filebuf object to control the associated sequence. For the sake of exposition, the maintained data is pre-

sented here as:

17.4.8.3 Clas®fstream DRAFT: 27 May 1994 Library 17-107

— filebuf fb , thefilebuf object.

17.4.8.3.1ofstream::ofstream() [lib.cons.ofstream]

ofstream();
Constructs an object of clasfstream , initializing the base class wittstream(& b)) .

17.4.8.3.20fstream::ofstream(const char*, openmode) [lib.cons.ofstream.fn]

ofstream(const char* s, openmode mode = out);

Constructs an object of clasgdstream , initializing the base class withstream(& fb), then calls
open(s, mode) .

17.4.8.3.3ofstream::~ofstream() [lib.des.ofstream]

virtual ~ofstream();
Destroys an object of clasfstream

17.4.8.3.40fstream::rdbuf() [lib.ofstream::rdbuf]
filebuf* rdbuf() const;

Returng(filebuf*)& fb .

17.4.8.3.50fstream::is_open() [lib.ofstream::is.open]

bool is_open();
Returnsfb .is_open()

17.4.8.3.60fstream::open(const char*, openmode) [lib.ofstream::open]

void open(const char* s, openmode mode = out);
Callsfb .open(s, mode . Ifis_open() is then false, callsetstate(failbit)

17.4.8.3.7ofstream::close() [lib.ofstream::close]

void close();
Callsfb .close() and, if that function returns zero, callststate(failbit)

17.4.8.4 Classtdiobuf [lib.stdiobuf]

17-108 Library DRAFT: 27 May 1994 17.4.8.4 Classtdiobuf

class stdiobuf : public streambuf {

public:
stdiobuf(FILE* file_arg =0);
virtual ~stdiobuf();
bool buffered() const; ad
void buffered(bool buf_fl); O
protected:
I virtual int overflow(int ¢ =EOF); inherited
I virtual int pbackfail(int ¢ = EOF); inherited
I virtual int showmany(); inherited O
I virtual int underflow(); inherited
I virtual int uflow(); inherited
I virtual int xsgetn(char* s, int ny; inherited
I virtual int xsputn(const char* s, int ny; inherited
I virtual streampos seekoff(streamoff off ,ios::seekdir way,
I ios::openmode which =ios::in | ios::out); inherited
I virtual streampos seekpos(streampos sp,
I ios::openmode which =ios:in | ios::out); inherited
I virtual streambuf* setbuf(char* s, int ny; inherited
I virtual int sync(); inherited
private:
I FILE* file ; exposition only
I bool is_buffered; exposition only O
I3

The classstdiobuf s derived fromstreambuf to associate both the input sequence and the oufput
sequence with an externally supplied object of tffieE . TypeFILE is defined in<cstdio> (17.2).
For the sake of exposition, the maintained data is presented here as:

— FILE *file , pointsto thé-ILE associated with the stream buffer;

— bool is_buffered , nonzero if thestdiobuf object isbuffered,and hence need not be kept symni
chronized with the associated file (as described below).

The restrictions on reading and writing a sequence controlled by an object stdialsaf are the same
as for an object of clas#ebuf

If an stdiobuf object is not buffered anflle is not a null pointer, it is kept synchronized with the
associated file, as follows:

— the callsputc(c¢) is equivalent to the cafputc(¢, file);
— the callsputbacke(¢) is equivalent to the calingetc(¢, file);

— the callsbumpc() is equivalent to the calgetc(file).

The functiondgetc(FILE*) , fputc(int, FILE¥) , andungetc(int, FILE*) are declared in [

<cstdio> (17.2).

17.4.8.4.1stdiobuf::stdiobuf(FILE *) [lib.cons.stdiobuf.fi]
stdiobuf(FILE* file_arg =0);

Constructs an object of clasgliobuf , initializing the base class witlitreambuf() , and initializing
file tofile_arg andis_buffered to zero.

17.4.8.4.2 stdiobuf::~stdiobuf() DRAFT: 27 May 1994 Library 17-109

17.4.8.4.2stdiobuf::~stdiobuf() [lib.des.stdiobuf]

virtual ~stdiobuf();

Destroys an object of clastdiobuf

17.4.8.4.3stdiobuf::buffered() [lib.stdiobuf::buffered]
bool buffered() const; O
Returns a nonzero valueisf_buffered is nonzero. O
17.4.8.4.4stdiobuf::buffered(bool) [({lib.stdiobuf::buffered.b]
void buffered(bool buf_fl); O

Assignsbuf_fl tois_buffered

17.4.8.4.5stdiobuf::overflow(int) [lib.stdiobuf::overflow]

I virtual int overflow(int ¢ =EOF); inherited
Behaves the same &kebuf::overflow(int) , Subject to the buffering requirements specified hy
is_buffered
17.4.8.4.6stdiobuf::pbackfail(int) [lib.stdiobuf::pbackfail]

I virtual int pbackfail(int ¢ = EOF); inherited
Behaves the same fikebuf::pbackfail(int) , subject to the buffering requirements specified hy
is_buffered . a
17.4.8.4.7 stdiobuf::showmany() [lib.stdiobuf::showmany]

1 virtual int showmany(); inherited a
Behaves the same stseambuf::showmany() 117 O
17.4.8.4.8stdiobuf::underflow() [lib.stdiobuf::underflow]

I virtual int underflow(); inherited
Behaves the same ditebuf::underflow() , Subject to the buffering requirements specified hy
is_buffered
17.4.8.4.9stdiobuf::uflow() [lib.stdiobuf::uflow]

I virtual int uflow(); inherited
Behaves the same didebuf::uflow() , Subject to the buffering requirements specified by
is_buffered

1 an implementation might well provide an overriding definition for this function signature if it can determine that more characters
can be read from the input sequence.

17-110 Library DRAFT: 27 May 1994 17.4.8.4.10
stdiobuf::xsgetn(char*, int)

17.4.8.4.10stdiobuf::xsgetn(char*, int) [lib.stdiobuf::xsgetn]

I virtual int xsgetn(char* s, int ny; inherited
Behaves the same siseambuf::xsgetn(char*, int)

17.4.8.4.11stdiobuf::xsputn(const char*, int) [lib.stdiobuf::xsputn]

I virtual int xsputn(const char* s, int ny; inherited

Behaves the same siseambuf::xsputn(char*, int)

17.4.8.4.12stdiobuf::seekoff(streamoff, ios::seekdir, [lib.stdiobuf::seekoff]
ios::openmode)
I virtual streampos seekoff(streamoff off ,ios::seekdir way,
I ios::openmode which =ios::in | ios::out); inherited

Behaves the same filgbuf::seekoff(streamoff, ios::seekdir, ios::openmode)

17.4.8.4.13stdiobuf::seekpos(streampos, ios::openmode) [lib.stdiobuf::seekpos]
I virtual streampos seekpos(streampos sp,
I ios::openmode which =ios:in | ios::out); inherited

Behaves the same filgbuf::seekpos(streampos, ios::openmode)

17.4.8.4.14stdiobuf::setbuf(char*, int) [lib.stdiobuf::setbuf]

I virtual streambuf* setbuf(char* s, int n; inherited
Behaves the same filgbuf::setbuf(char*, int) O
17.4.8.4.15stdiobuf::sync() [lib.stdiobuf::sync]

I virtual int sync(); inherited

Behaves the same filgbuf::sync()

17.4.8.5 Classstdiostream [lib.istdiostream]
class istdiostream : public istream {
public:
istdiostream(FILE* file_arg =0);
virtual ~istdiostream();
stdiobuf* rdbuf() const;
bool buffered() const; O
void buffered(bool buf_fl); O
private:
I stdiobuf fb; exposition only
2
The classgstdiostream is a derivative ofstream that assists in the reading of files controlled hy

objects of type-ILE . It supplies astdiobuf object to control the associated sequence. For the sakié of
exposition, the maintained data is presented here as:

— stdiobuf fb , thestdiobuf object.

17.4.85.1 DRAFT: 27 May 1994 Library 17111
istdiostream::istdiostream(FILE *)

17.4.8.5.1istdiostream::istdiostream(FILE *) [lib.cons.istdiostream.fi]
istdiostream(FILE* file_arg =0);
Constructs an object of clastdiostream , initializing the base class wiibtream(& fb) and ini-

tializing fo with stdiobuf(file_arg).

17.4.8.5.2istdiostream::~istdiostream() [lib.des.istdiostream]

virtual ~istdiostream();
Destroys an object of clasgtdiostream

17.4.8.5.3istdiostream::rdbuf() [lib.istdiostream::rdbuf]
stdiobuf* rdbuf() const;

Returng(stdiobuf*)& fb . O
17.4.8.5.4istdiostream::buffered() [lib.istdiostream::buffered]
bool buffered() const; O
Returns a nonzero valueisf buffered is nonzero. O
17.4.8.5.5istdiostream::buffered(bool) [lib.istdiostream::buffered.b]
void buffered(bool buf fl); ad

Assignsbuf fl tois_buffered

17.4.8.6 Clas®stdiostream [lib.ostdiostream]
class ostdiostream : public ostream {
public:
ostdiostream(FILE* file_arg =0);
virtual ~ostdiostream();
stdiobuf* rdbuf() const;
bool buffered() const; O
void buffered(bool buf fl); O
private:
I stdiobuf fb; exposition only
2

The classostdiostream is a derivative obstream that assists in the writing of files controlled byl
objects of typd-ILE . It supplies astdiobuf object to control the associated sequence. For the sakié of
exposition, the maintained data is presented here as:

— stdiobuf fb , thestdiobuf object.

17.4.8.6.1ostdiostream::ostdiostream(FILE *) [lib.cons.ostdiostream.fi]
ostdiostream(FILE* file_arg =0);
Constructs an object of claestdiostream , initializing the base class witbstream(& fb) and ini-

tializing fb with stdiobuf(file_arg).

17-112 Library DRAFT: 27 May 1994

17.4.8.6.20stdiostream::~ostdiostream()

virtual ~ostdiostream();
Destroys an object of classtdiostream

17.4.8.6.30ostdiostream::rdbuf()
stdiobuf* rdbuf() const;

Returng(stdiobuf*)& b .

17.4.8.6.40stdiostream::buffered()

bool buffered() const;
Returns a nonzero valueisf buffered is nonzero.

17.4.8.6.50stdiostream::buffered(bool)
void buffered(bool buf fl);

Assignsbuf fl tois_buffered

17.4.9 Headekiostream>

17.4.8.6.2
ostdiostream::~ostdiostream()

[lib.des.ostdiostream]

[lib.ostdiostream::rdbuf]

[lib.ostdiostream::buffered]

[[lib.ostdiostream::buffered.b]

[lib.header.iostream]

The headekiostream> declares four objects that associate objects of skassbuf with the stan-

dard C streams provided for by the functions declaredcstdio>
structed, and the associations are established, the first time an object adclass
The four objects areot destroyed during program executioR)

17.4.9.1 Objectcin

istream cin;

[lib.cin]

The objectcin controls input from an unbuffered stream buffer associated with the dliphnt |,

declared inccstdio>

After the objectin is initialized,cin.tie() returnscout .

17.4.9.2 Objectcout

ostream coult;

[lib.cout]

The objectcout controls output to an unbuffered stream buffer associated with the chjiect |,

declared irccstdio> (17.2).

17.4.9.3 Objectcerr

ostream cerr;

[lib.cerr]

The objectcerr controls output to an unbuffered stream buffer associated with the clject |

declared irccstdio> (17.2).

After the objecterr is initialized,cerr.flags() & unitbuf

is nonzero.

18] constructors and destructors for static objects can access these objects to read irgidinfroror write output tostdout or

stderr

(17.2). The four objects are confl
is constructed. O

17.4.9.4 Objectclog DRAFT: 27 May 1994 Library 17-113

17.4.9.4 Objectlog [lib.clog]

extern ostream clog;

The objecttlog controls output to a stream buffer associated with the ottidetr , declared in<cst- a
dio> (17.2).
17.5 Support classes [lib.support.classes]

The Standard € library defines several types, and their supporting macros, constants, and function signa-
tures, that support a variety of useful data structures.

17.5.1 Headerstring> [lib.header.string]
EBox 123 B O
%ibrary WG issue: Bjarne Stroustrup, November 10, 1993 a
O O

[(The string components should be specified as templates. |

The headexstring> defines a type and several function signatures for manipulating varying-lefigth
sequences of (single-byte) characters.

17.5.1.1 Classtring [lib.string]

%ox 124
[Library WG issue: Uwe Steinniiller, January 21, 1994
]

he clause
0 Returns NPOS if pos > len.
O
Lshould be removed. The functions should (as a convenience) calculate there starting position themselves. If
glou search forward it is for sure that you cannot find a stripgsf> len

gor all find operations (searching from the erfdd, fins_last_of and find_last_not_of

I:II__LUPI:IEIDI:II:ID

E the conditions obtainxpos < pos should be shanged txpos <= pos as this behaviour i
Ctonsistent with forward searches

U string s("1234");

g s.rfind("1", 0) should deliver 0

0 and

0 s.rfind("4", 3) should be 3 If the user wants to use the result for another sear
[has to decrement himself.

EBDE%UDD

he

o8 O

HBox 125

ELibrary WG issue: Uwe Steinniiller, January 4, 1994
%‘>M string& operator=(const string& rsh);
[f>M string& operator=(const char* s);
[(*>M _string& operator=(char c);

MOoOdOoooOod

OooOoOo

17-114 Library DRAFT: 27 May 1994 17.5.1.1 Classtring

HBox 126 B
[Library WG issue: Uwe Steinniiller, January 4, 1994 0
O 0
He>GENERAL h
Ebseperate different sections in the header constructors, assign,.. a]
O 0
Ctlass string { I
U>C char *ptr; // has this property, might be implemented different ™
>C size_tlen; // has this property, might be implemented different L0
%>C mutable size_t res; // does not change the string value !! a]
O N
O dislike the approach to have these private memgers len , res , because we specify only the pub}it!]
anterface. | understand, this only should help to get a better description. ™
O
aet me try a different way (a more ADT like approach): a]
O 0
[CA string can be thought of being a sequence of bytes (this does not imply it to be implemented tlpisl way)
Ebnd has three properties: ™
O
O . .
 len: number of bytes of this sequence a]
O 0
O res (res>= len) hint to implementation to keep more byte than len to do some growth in place. I
O 0
g string content: sequence of bytes counted from O to len - 1 ED
O
Now every function can be described to what it does to these properties and nothing is said how th%&e prop-
Certies are implemented. I
O 0
Ebomment (Library WG meeting, San Diego, 3/8/94): ED
O
[The general concern is that the text describes specifics of what happens to the “exposition only” %meer
[data, rather than behavior. I
O 0
%xample: g
O

O

7.5.1.1.1 describes the action of the default constructor in terms of how the “exposition only” data%]j\ould
[be initialized. It doesn’t say whether the string is the null string, an unitialized string of unspecified fgngth,
Ebr what...

Eﬁecommend:

O
Generic behaviour should be specified, possibly with the aid of the exposition implementation.

I:IDI:‘_I__,__IDB

HBox 127
HJbrary WG issue: Beman Dawes, December 19, 1993

O
CString/wstring/dynarray/ptrdynarray/bitstring classes are all missing destructmparator= . Bits is
Chmissing operator=

B]DI:II:IDI:I

17.5.1.1 Classtring DRAFT: 27 May 1994 Library 17-115

HBox 128 B
El_ibrary WG issue: Uwe Steinniiller, September 22, 1993 0

O
gThe dynarray and my formesstring class proposal followed this rule, we should get a consensl$ on
this by the library WG. a]
O

O
Ebomment (Library WG meeting, San Diego, 3/8/94): I

O

aJwe wants explicit destructor and (copy) assignment operator. Copy constructor is still there. ThisEhould
be done for all classes.

= 0
LRecommend: i
J 0

Eﬁll classes should explicitly list the copy constructor, assignment operator, and destructor in their déscrip-
[fion. But: 17.1.5.6 should state that an implementation can rely on the compiler to actually generafé such
[functions.

17-116 Library

class string {

public:

DRAFT: 27 May 1994 17.5.1.1 Classtring
string();
string(size_t size , capacity cap);
string(const string& str , size_t pos =0, size_t n =NPOS);
string(const char* s, size_t n = NPOS);
string(char c, size_t rep =1);
string(unsigned char c, size_t rep =1);
string(signed char c, size_t rep =1);
string& operator=(const string& str);
string& operator=(const char* s);
string& operator=(char c);
string& operator+=(const string& rhs);
string& operator+=(const char* s);
string& operator+=(char c);
string& append(const string& str , size_t pos =0,
size .t n =NPOS);
string& append(const char* s, size_t n = NPOS);
string& append(char c, size_t rep =1);
string& assign(const string& str , size_t pos =0,
size .t n =NPOS);
string& assign(const char* s, size_t n = NPQOS);
string& assign(char c, size_t rep =1);
string& insert(size_t pos1, const string& str , size_t pos2 =0,
size .t n =NPOS);
string& insert(size_t pos, const char* s,
size_t n =NPOS);
string& insert(size_t pos, char ¢, size_t rep =1);
string& remove(size_t pos =0, size_t n =NPOS);
string& replace(size_t posl, size_t nl, const string& str
size .t pos2 =0, size_t n2 = NPOS);
string& replace(size_t pos, size_t nl, const char* s,
size .t n2 =NPOS);
string& replace(size_t pos, size_t n,char ¢,
size t rep =1);
char get_at(size_t pos) const;
void put_at(size_t pos, char c¢);
char operator[](size_t pos) const;
char& operator[](size_t pos);

const char* data() const;
size_t length() const:

void resize(size_t n,char ¢ =0);
size_t reserve() const;
void reserve(size_t res_arg);
size_t copy(char* s, size_t n, size_t pos =0);
size_t find(const string& str , size_t pos = 0) const;
size_t find(const char* s, size_t pos =0, size_t n =NPOS) const;
size_t find(char c, size_t pos = 0) const;
size_t rfind(const string& str , size_t pos = NPOS) const;
size_t rfind(const char* s, size_t pos = NPOS,
size_t n =NPOS) const;
size_t rfind(char c, size_t pos = NPOS) const;
size_t find_first_of(const string& str , size_t pos = 0) const;
size_t find_first_of(const char* s, size_t pos =0,
size_t n =NPOS) const;
size_t find_first_of(char c, size_t pos = 0) const;
size_t find_last_of(const string& str , size_t pos = NPOS) const;
size_t find_last_of(const char* s, size_t pos = NPOS,
size_t n =NPOS) const;
size_t find_last_of(char c, size_t pos = NPOS) const;
size_t find_first_not_of(const string& str , size_t pos = 0) const;

size_t find_first_not_of(const char* s, size_t pos =0,

17.5.1.1 Classtring DRAFT: 27 May 1994 Library 17-117

size_.t n =NPOS) const;

size_t find_first_not_of(char c, size_t pos = 0) const;
size_t find_last_not_of(const string& str , size_t pos = NPOS)
const;
size_t find_last_not_of(const char* s, size_t pos = NPOS,
size .t n =NPOS) const;
size_t find_last_not_of(char c, size_t pos = NPOS) const;
string substr(size_t pos =0, size_t n = NPOS) const;
int compare(const string& str , size_t pos =0,
size .t n =NPOS) const;
int compare(const char* s, size_t pos =0, size_t n =NPOS) const; 0O
int compare(char c, size_t pos =0, size_t rep =1)const; O
private:
I char* ptr ; exposition only
I size_t len, res; exposition only
I3

The classstring describes objects that can store a sequence consisting of a varying number of arbitrary
(single-byte) characters. The first element of the sequence is at position zero. Such a sequence is also
called acharacter string(or simply astring if the type of the elements is clear from context). Storage for

the string is allocated and freed as necessary by the member functions sfreigss . For the sake of
exposition, the maintained data is presented here as:

— char* ptr , points to the initial character of the string;
— size_t len , counts the number of characters currently iU the string; O

— size_t res , for an unallocated string, holds the recommended allocation size of the string, while for
an allocated string, becomes the currently allocated size.

In all caseslen <= res.

The functions described in this subclause can report two kinds of errors, each associated with a distinct
exception:

— alengtherror is associated with exceptions of ty@mgth_error ;

— anout-of-rangeerror is associated with exceptions of typg of range

To report one of these errors, the function evaluates the expregsiaise() , whereex is an object of
the associated exception type.

17.5.1.1.1string::string() [lib.cons.string]
string();

Constructs an object of clasing initializing:
— ptr to an unspecified value;
— len to zero;

— res to an unspecified value.

17.5.1.1.2string::string(size_t, capacity) [lib.cons.string.cap]

string(size_t size , capacity cap);

17-118 Library DRAFT: 27 May 1994 17.5.1.1.2
string::string(size_t, capacity)

Constructs an object of classing . If cap is default_size , the function either reports a length
error if size equaldNPOSor initializes:

— ptr to point at the first element of an allocated arragigé elements, each of which is initialized to
zero;

— len tosize ;

— res to avalue at least as largeles . g

Otherwisecap shall bereserve and the function initializes:

— ptr to an unspecified value;

— len to zero;

— res tosize .

17.5.1.1.3string::string(const string&, size_t, size_t) [lib.cons.string.sub]
string(const string& str , size_t pos =0, size_t n =NPOS);

Reports an out-of-range errorgbs > str.len . Otherwise, the function constructs an object of cldss

string and determines the effective lengtlen of the initial string value as the smaller nfand
str.len - pos. Thus, the function initializes:

— ptr to point at the first element of an allocated copylefi elements of the string controlled by
beginning at positiopos;

— len torlen ;

— res to avalue at least as largeles . a

17.5.1.1.4string::string(const char*, size t) [lib.cons.string.str]

string(const char* s, size_t n = NPQOS);
If n equalsNPOS storesstrlen(s) in n. The function signaturetrlen(const char*) is
declared irccstring> (17.2). O

In any case, the function constructs an object of glasyy and determines its initial string value from
the array ofchar of lengthn whose first element is designated 4y s shall not be a null pointer. Thus,
the function initializes:

— ptr to point at the first element of an allocated copy of the array whose first element is pointed at by
— len ton;

— res to avalue at least as largeles . O

17.5.1.1.5string::string(char, size_t) [lib.cons.string.c]
string(char c, size_t rep =1);

Reports a length error iep equalsNPOS Otherwise, the function constructs an object of cdassg

and determines its initial string value by repeating the charadtrall rep elements. Thus, the function

initializes:

— ptr to point at the first element of an allocated arrayepf elements, each storing the initial valcie

17.5.1.15 DRAFT: 27 May 1994 Library 17119
string::string(char, size_t)

— len torep;

— res to avalue at least as largeles . g

17.5.1.1.6string::string(unsigned char, size_t) [lib.cons.string.uc]

string(unsigned char c, size_t rep =1); 0
Behaves the same sising((char) c, rep). a

17.5.1.1.7string::string(signed char, size t) [lib.cons.string.sc]

string(signed char c, size_t rep =1);
Behaves the same sising((char) c, rep). O

17.5.1.1.8string::operator=(const string&) (lib.string::op=.sub]

string& operator=(const string& str); a
Returnsassign(str). O

17.5.1.1.9string::operator=(const char*) [lib.string::op=.str]

string& operator=(const char* s); 0
Returnstthis = string(s).

17.5.1.1.10string::operator=(char) [lib.string::0p=.c]

string& operator=(char c);
Returnsthis = string().

17.5.1.1.11string::operator+=(const string&) [lib.string::op+=.sub]

string& operator+=(const string& rhs);

Returnsappend(rhs) .

17.5.1.1.12string::operator+=(const char*) [lib.string::op+=.str]
string& operator+=(const char* s);

Returns*this += string(S).

17.5.1.1.13string::operator+=(char) [lib.string::op+=.c]
string& operator+=(char c);

Returnstthis += string(c) .

17.5.1.1.14string::append(const string&, size _t, [lib.string::append.sub]

size t)

string& append(const string& str , size_t pos =0, size_t n =NPOS); 0

Reports an out-of-range error fibs > >str.len . Otherwise, the function determines the effectivé

lengthrlen of the string to append as the smallenandstr.len - pos. The function then reports

a length error ifen >=NPOS - rlen .

17-120 Library DRAFT: 27 May 1994 17.5.1.1.14
string::append(const string&, size_t, size_t)

Otherwise, the function replaces the string controlledthis with a string of lengthen + rlen

whose firstlen elements are a copy of the original string controlledtbis and whose remaining ele-
ments are a copy of the initial elements of the string controllestrbybeginning at positiopos .

The function return¥this

17.5.1.1.15string::append(const char*, size_t) [lib.string::append.str]
string& append(const char* s, size_t n =NPOS); 0

Returnsappend(string(s, n .

17.5.1.1.16string::append(char, size_t) [lib.string::append.c]
string& append(char c, size_t rep =1); 0

Returnsappend(string(c, rep)) .

17.5.1.1.17string::assign(const string&, size_t, size_t) [lib.string::assign.sub]
string& assign(const string& str , size_t pos =0, size_t n =NPOS);

Reports an out-of-range error fifos > strlen . Otherwise, the function determines the effective

lengthrien of the string to assign as the smallenandstr.len - pos.

The function then replaces the string controlledthis with a string of lengthlen whose elements are
a copy of the string controlled Isgr beginning at positiopos .

The function return¥this

17.5.1.1.18string::assign(const char*, size_t) [lib.string::assign.str]
string& assign(const char* s, size_t n =NPOS); 0

Returnsassign(string(s, n)) .

17.5.1.1.19string::assign(char, size_t) [lib.string::assign.c]
string& assign(char c, size_t rep =1);

Returnsassign(string(c, rep)) .

17.5.1.1.20string::insert(size_t, const string&, size_t, [lib.string::insert.sub]

size t)

string& insert(size_t pos1, const string& str , size_t pos2 =0,

size_t n =NPOS);

Reports an out-of-range errorgibsl > len or pos2 > strlen . Otherwise, the function deter-
mines the effective lengthien of the string to insert as the smallerrofind str.len - pos2. The
function then reports a length errodéfi >= NPOS - rlen .

Otherwise, the function replaces the string controlledthis with a string of lengthen + rlen

whose firstposl elements are a copy of the initial elements of the original string controll&thiby |,

whose nextlen elements are a copy of the elements of the string controlled bypeginning at position

pos2, and whose remaining elements are a copy of the remaining elements of the original string controlled
by *this

The function return¥this

17.5.1.1.21 DRAFT: 27 May 1994 Library 17121
string::insert(size_t, const char*, size_t)
17.5.1.1.21string::insert(size_t, const char*, size_t) [lib.string::insert.str]

string& insert(size_t pos, const char* S, size_t n =NPOS); 0
Returnsnsert(pos, string(s, n .

17.5.1.1.22string::insert(size_t, char, size_t) [lib.string::insert.c]

string& insert(size_t pos, char ¢, size_t rep =1);
Returnsnsert(pos, string(c, rep)) .

17.5.1.1.23string::remove(size_t, size_t) [lib.string::remove]

string& remove(size_t pos =0, size_t n =NPOS); 0

Reports an out-of-range error iios > len . Otherwise, the function determines the effective length
xlen of the string to be removed as the smallenahd/len - pos.

The function then replaces the string controlledthys with a string of lengthlen - xlen whose
first pos elements are a copy of the initial elements of the original string controll&tiby , and whose
remaining elements are a copy of the elements of the original string controlfedidoy beginning at
positionpos + xlen .

The function return¥this

17.5.1.1.24string::replace(size_t, size_t, [lib.string::replace.sub]
const string&, size_t, size t)

string& replace(size_t pos1, size_t nl, const string& str
size .t pos2 =0, size_t n2 = NPOS);

Reports an out-of-range errorgbsl > len or pos2 > strlen . Otherwise, the function deter-
mines the effective lengtklen of the string to be removed as the smallendfand/en - posl. It
also determines the effective lengtlyn of the string to be inserted as the smallen®fandstr.len -
pos2. The function then reports a length errdert - xlen >=NPOS- rlen .

Otherwise, the function replaces the string controlledthig with a string of lengtden - xlen +

rlen whose firstposl elements are a copy of the initial elements of the original string controlled by
*this , whose nextrlen elements are a copy of the initial elements of the string controllesirby
beginning at positiopos2, and whose remaining elements are a copy of the elements of the original string
controlled by*this beginning at positioposl + xlen .

The function returnsthis

17.5.1.1.25string::replace(size_t, size_t, const char*, [lib.string::replace.str]
size t)
string& replace(size_t pos, size_t nl, const char* s,

size_t n2 =NPOS);
Returngreplace(pos, nl1, string(s, n2)) .

17.5.1.1.26string::replace(size_t, size_t, char, size_t) [lib.string::replace.c]

string& replace(size_t pos, size_t n,char ¢, size_t rep =1);

Returngreplace(pos, n, string(c, rep)) .

17-122 Library DRAFT: 27 May 1994 17.5.1.1.27string::get_at(size_t)

17.5.1.1.27string::get_at(size_t) [lib.string::get.at]

[Box 129
0

rLibrary WG issue: Uwe Steinniiller, January 4, 1994
O
§>C const char get_at(size_t pos) const;

Epomment (Library WG meeting, San Diego, 3/8/94):

O
[(5hould member functions that return a value retucorest value? This issue arises by the decisio

EBan Jose no to retuconst from return values.

Eﬁecommend:

O
CAll value return types should be returned @sst value.

DD%DE%D%DEDDDD

char get_at(size_t pos) const;
Reports an out-of-range erromibs >= Jen . Otherwise, the function returp#r [pos] .

17.5.1.1.28string::put_at(size _t, char) [lib.string::put.at]

void put_at(size_t pos, char ¢);
Reports an out-of-range erromibs >= Jen . Otherwise, the function assigodo ptr [pos] . O

17.5.1.1.29string::operator[](size_t) [lib.string::op.array]

HBox 130
H_ibrary WG issue: Uwe Steinniiller, January 4, 1994

O
>C const char operator[](size_t pos) const;
O char& operator[](size t pos);

moOoOoOoOod

BBox 131

H_ibrary WG issue: Uwe Steinniiller, January 4, 1994

O
[>C const char operator[](size t pos) const;

mOodOoo

char operator[](size_t pos) const;
char& operator[](size_t pos);

If pos < len , returnsptr [pos] . Otherwise, ifpos == len , theconst version returns zero. Oth-
erwise, the behavior is undefined.

The reference returned by the nmomst version is invalid after a subsequent call to any member function
for the object. O

17.5.1.1.30string::data() DRAFT: 27 May 1994 Library 17-123

17.5.1.1.30string::data() (lib.string::data]

const char* data() const; ad

Returns a pointer to the initial element of an array of lefayth + 1 whose firstlen elements equal the
corresponding elements of the string controlledthis and whose last element is a null character. The
program shall not alter any of the values stored in the array. Nor shall the program treat the returned value
as a valid pointer value after any subsequent call to aowst: member function of the clas$ring

that designates the same objectths

17.5.1.1.31string::length() [lib.string::length]

size_t length() const:

Returnslen .
17.5.1.1.32string::resize(size_t, char) [lib.string::resize]
void resize(size_t n,char ¢ =0);

Reports a length error if equalsNPOS Otherwise, the function alters the length of the string designated
by *this as follows:

— If n <= len , the function replaces the string designatedthis with a string of lengtm whose
elements are a copy of the initial elements of the original string designattusby .

— If n > len , the function replaces the string designatedtbig with a string of lengtm whose first
len elements are a copy of the original string designatethiyy , and whose remaining elements are
all initialized toc.

17.5.1.1.33string::reserve() [lib.string::reserve]

HBox 132
El_ibrary WG issue: Uwe Steinniiller, January 4, 1994

g size_t reserve() const;

O
[*>C void reserve(size_t res_arg) const; //res is mutable
O

O
O
0
O
(g
0
0
Ebomment (Library WG meeting, San Diego, 3/8/94): N
O
O
H
O
ad]

O

Should this be aonst member function?
t
EReccomend:

Ht should not be a&onst member function. (If it were aonst member function an implementati
rwould have to use anutable member data which would then not be ROMable). However, fhe
Cdescription should state that the string should be semantically const.

size_t reserve() const;

Returnsres .

17-124 Library DRAFT: 27 May 1994 17.5.1.1.34
string::reserve(size_t)
17.5.1.1.34string::reserve(size_t) [lib.string::reserve.cap]
void reserve(size_t res_arg);
If no string is allocated, the function assiges _arg to res . Otherwise, whether or how the function
altersres is unspecified.
17.5.1.1.35string::copy(char*, size_t, size_t) [lib.string::copy]
size_t copy(char* s, size_t n, size_t pos =0); 0
Reports an out-of-range errorifios > len . Otherwise, the function determines the effective length

rlen of the string to copy as the smallermfand/en - pos. s shall designate an array of at least
rlen elements.

The function then replaces the string designated kyth a strinjg_;lg)f lengtirlen whose elements are a

copy of the string controlled byhis , beginning at positiopos. O

The function returnglen .

17.5.1.1.36string::find(const string&, size t) [lib.string::find.sub]
size_t find(const string& str , size_t pos = 0) const;

Determines the lowest positioos , if possible, such that both of the following conditions obtain:

— pos <= xpos andxpos + str.len <= len ;

— ptr [xpos + []1== str.ptr [1] forall elementd of the string controlled bgtr .

If the function can determine such a valuexpos , it returnsxpos . Otherwise, it returnslPOS

17.5.1.1.37string::find(const char*, size_t, size_t) [lib.string::find.str]
size_t find(const char* s, size_t pos =0, size_t n =NPOS) const; 0

Returngfind(string(s, n), pos).

17.5.1.1.38string::find(char, size_t) [lib.string::find.c]
size_t find(char c, size_t pos = 0) const;

Returndfind(string(c), pos).

17.5.1.1.39string::rfind(const string&, size_t) [lib.string::rfind.sub]
size_t rfind(const string& str , size_t pos = NPOS) const;

Determines the highest positiapos , if possible, such that both of the following conditions obtain:

— Xpos <= pos andxpos + str.len <= len ; O

— ptr [xpos + |]== str.ptr [1] forall elementd of the string controlled bgtr .

If the function can determine such a valuexpos , it returnsxpos . Otherwise, it returnslPOS

) The function does not append a null character to the string. O

17.5.1.1.40 DRAFT: 27 May 1994 Library 1#125
string::rfind(const char*, size_t, size_t)
17.5.1.1.40string::rfind(const char*, size _t, size_t) [lib.string::rfind.str]

size_t rfind(const char* s, size t pos = NPOS,
size .t n =NPOS) const;

Returngfind(string(s, n), pos).
17.5.1.1.41string::rfind(char, size_t) [lib.string::rfind.c]
size_t rfind(char c, size_t pos = NPOS) const;
Returngfind(string(c, n), pos).
17.5.1.1.42string::find_first_of(const string&, [lib.string::find.first.of.sub]
size t)
size_t find_first_of(const string& str , size_t pos = 0) const;

Determines the lowest positioqos , if possible, such that both of the following conditions obtain:
— pos <= xpos andxpos < len ;

— ptr [xpos]== str.ptr [1] for some element of the string controlled bgtr .

If the function can determine such a valuexpos , it returnsxpos . Otherwise, it returnslPOS

17.5.1.1.43string::find_first_of(const char*, size_t, [(lib.string::find.first.of.str]
size t) O
size_t find_first_of(const char* s, size t pos =0,

size .t n =NPOS) const;

Returndfind_first_of(string(s, n), pos).
17.5.1.1.44string::find_first_of(char, size t) [lib.string::find.first.of.c]
size_t find_first_of(char c, size_t pos = 0) const;
Returndind_first_of(string(c), pos).
17.5.1.1.45string::find_last_of(const string&, [lib.string::find.last.of.sub]
size t)
size_t find_last_of(const string& str , size_t pos = NPOS) const;

Determines the highest positiapos , if possible, such that both of the following conditions obtain:
— Xxpos <= pos and pos < len;

— ptr [xpos]== str.ptr [1] for some element of the string controlled bgtr .

If the function can determine such a valuexpos , it returnsxpos . Otherwise, it returnslPOS

17.5.1.1.46string::find_last_of(const char*, size t, [lib.string::find.last.of.str]
size t) O
size_t find_last_of(const char* s, size_t pos = NPOS,

size .t n =NPOS) const;

17-126 Library DRAFT: 27 May 1994 17.5.1.1.46
string::find_last_of(const char*, size_t, size_t)

Returndind_last_of(string(s, n), pos).
17.5.1.1.47string::find_last_of(char, size_t) [lib.string::find.last.of.c]
size_t find_last_of(char c, size t pos = NPOS) const;
Returndind_last_of(string(c, n), pos).
17.5.1.1.48 [(lib.string::find.first.not.of.sub]
string::find_first_not_of(const string&, a
size t) a
size_t find_first_not_of(const string& str

size .t pos =0)const;

Determines the lowest positioos , if possible, such that both of the following conditions obtain:
— pos <= xpos andxpos < len ;

— ptr [xpos]== str.ptr [1] for no element of the string controlled bgtr .

If the function can determine such a valuexpos , it returnsxpos . Otherwise, it returnslPOS

17.5.1.1.49string::find_first_not_of(const char*, (lib.string::find.first.not.of.str]
size t, size t) O
size_t find_first_not_of(const char* s, size_t pos =0,

size .t n =NPOS) const;

Returndfind_first_not_of(string(S, n), pos).
17.5.1.1.50string::find_first_not_of(char, size_t) [lib.string::find.first.not.of.c]
size_t find_first_not_of(char c, size_t pos = 0) const;
Returndind_first_not_of(string(c), pos).
17.5.1.1.51string::find_last_not_of(const string&, [lib.string::find.last.not.of.sub]
size t)
size_t find_last_not_of(const string& str , size_t pos = NPOS) const;

Determines the highest positiapos , if possible, such that both of the following conditions obtain:
— Xpos <= pos and pos < len ;

— ptr [xpos]== str.ptr [1] for no element of the string controlled bgtr .

If the function can determine such a valuexpos , it returnsxpos . Otherwise, it returnslPOS

17.5.1.1.52string::find_last_not_of(const char*, [lib.string::find.last.not.of.str]
size t, size t)

size_t find_last_not_of(const char* s, size_t pos =NPOS,
size .t n =NPOS) const;

Returndind_last_not_of(string(S, n), pos).

17.5.1.1.53 DRAFT: 27 May 1994 Library 17127
string::find_last_not_of(char, size_t)

17.5.1.1.53string::find_last_not_of(char, size_t) [lib.string::find.last.not.of.c]
size_t find_last_not_of(char c, size t pos = NPOS) const;
Returndind_last_not_of(string(c, n), pos).
17.5.1.1.54string::substr(size_t, size t) [lib.string::substr]
string substr(size_t pos =0, size_t n = NPOS) const; 0
Returnsstring(*this, pos, n). O
17.5.1.1.55string::compare(const string&, size _t, [lib.string::compare.sub]
size t)
int compare(const string& str , size_t pos =0, size_t n =NPOS) const; O
Reports an out-of-range error fos > len . Otherwise, ifstr.len < n, the function stores
strlen in n. The function then determines the effective lenggh of the strings to compare as thé!
smaller ofn andlen - pos. The function then compares the two strings by caliremcmpptr + O
pos, str.ptr , rlen). The function signaturenemcmp(const void*, const void*,
size_t) is declared irkcstring> (<$RS*,[Iib.standard.c.Iibrary]x>o<).120) O

If the result of that comparison is nonzero, the function returns the nonzero result. Otherwise, the function
returns:

— if len - pos < n,avalue less than zero;
— if len - pos == n, the value zero;

— if len - pos > n,avalue greater than zero.

17.5.1.1.56string::compare(const char*, size_t, (lib.string::compare.str]
size_t) O

size_t compare(const char* s, size_t pos =0, size_t n = NPOS) const; O
Returnscompare(string(s, n), pos). O

17.5.1.1.57string::compare(char, size_t, size_t) [(lib.string::compare.c]

size_t compare(char c, size_t pos =0, size_t rep =1)const; ad
Returnscompare(string(c, rep), pos).

17.5.1.2 operator+(const string&, const string&) [lib.op+.sub.sub]

string operator+(const string& Ihs , const string& rhs);
Returnsstring(/hs).append(rhs).

17.5.1.3 operator+(const char*, const string&) [lib.op+.str.sub]

string operator+(const char* Ihs , const string& rhs);

129 The elements are compared as if they had tyys@gned char . O

17-128 Library DRAFT: 27 May 1994

17513

operator+(const char*, const string&)

Returnsstring(lhs)+ rhs.

17.5.1.4 operator+(char, const string&)

string operator+(char Ihs , const string& rhs);

Returnsstring(lhs)+ rhs.

17.5.1.5 operator+(const string&, const char*)

string operator+(const string& Ihs , const char*

Returnslhs +string(rhs).

17.5.1.6 operator+(const string&, char)

string operator+(const string& Ihs ,char rhs);

Returnslhs + string(rhs).

17.5.1.7 operator==(const string&, const string&)

bool operator==(const string& Ihs , const string&

Returns a nonzero valuel{f lhs == rhs) is nonzero.

17.5.1.8 operator==(const char*, const string&)

bool operator==(const char* Ihs , const string&

Returnsstring(lhs)== rhs.

17.5.1.9 operator==(char, const string&)

bool operator==(char Ihs , const string& rhs);

Returnsstring(lhs)== rhs.

17.5.1.100perator==(const string&, const char*)

bool operator==(const string& Ihs , const char*

Returnsths ==string(rhs).

17.5.1.11 operator==(const string&, char)

bool operator==(const string& Ihs ,char rhs);

Returnslhs ==string(rhs).

17.5.1.12operator!=(const string&, const string&)

bool operator!=(const string& Ihs , const string&

Returns a nonzero valuelffs .compare(rhs) is nonzero.

[lib.op+.c.sub]

[lib.op+.sub.str]

rhs);
[lib.op+.str.c]
[lib.op==.sub.sub]
rhs);
[lib.op==.str.sub]
rhs);
[lib.op==.c.sub]
[lib.op==.sub.str]
rhs);
[lib.op==.sub.c]
[lib.op!=.sub.sub]
rhs);

17.5.1.13 DRAFT: 27 May 1994 Library 17129
operator!=(const char*, const string&)

17.5.1.130perator!=(const char*, const string&) [lib.op!=.str.sub]
bool operator!=(const char* Ihs , const string& rhs); ad

Returnsstring(lhs)!= rhs.

17.5.1.14operator!=(char, const string&) [lib.op!=.c.sub]
bool operator!=(char Ihs , const string& rhs); O

Returnsstring(/hs)!= rhs.

17.5.1.150perator!=(const string&, const char*) [lib.op!=.sub.str]
bool operator!=(const string& Ihs , const char* rhs); O

Returnslhs 1= string(rhs) .

17.5.1.160perator!=(const string&, char) [lib.op!=.sub.c]

bool operator!=(const string& Ihs ,char rhs); O
Returnslhs = string(rhs).

17.5.1.17 operator>>(istreamé&, string&) [lib.ext.sub]

istream& operator>>(istream& is , string& str);

A formatted input function, extracts characters and appends them to the string contradied. byhe

string is initially made empty by callingfr .remove() . Each extracted characieis appended as if by
calling str .append(c¢). If width() is greater than zero, the maximum number of characters stored
iswidth() ; otherwise it idNT_MAX, defined in<climits> (17.2). a

Characters are extracted and appended until any of the following occurs:
— n characters are appended;

— NPOS -1 characters are appended;

— end-of-file occurs on the input sequence;

— isspace(c¢) is nonzero for the next available input charactén which case the input character is
not extracted).

The function signaturesspace(int) is declared irccctype> .
If the function appends no characters, it calitstate(failbit) . In any case, it callwidth(0) . O
The function returnss .

17.5.1.18getline(istream&, string&, char) [lib.getline.sub]

istream& getline(istreamé& is , string& str ,char delim ="n");

An unformatted input function, extracts characters and appends them to the string contrstted e
string is initially made empty by callingfr .remove() . Each extracted characieis appended as if by
calling str .append(c¢). Characters are extracted and appended until any of the following occurs:

— NPOS -1 characters are appended (in which case the functiorsetdiste(failbit));
— end-of-file occurs on the input sequence (in which case the functiosetate(eofbit));

— ¢ == delim for the next available input characterin which case the input character is extracted

17-130 Library DRAFT: 27 May 1994 17.5.1.18
getline(istream&, string&, char)

but not appended).

If the function appends no characters, it ceditstate(failbit) . The function returnss .

17.5.1.190perator<<(ostreamé&, const string&) [lib.ins.sub]
ostreamé& operator<<(ostream& 0s, const string& str);

A formatted output function, behaves the samesawrrite(str .data(), str .length()) . a

The function returnss.

17.5.2 Headerwstring> [lib.header.wstring]

The headerkwstring> defines a type and several function signatures for manipulating varying-length
sequences of wide characters.

17.5.2.1 Classvstring [lib.wstring]

%ox 133
[Library WG issue: Ichiro Koshida, January 10, 1994
]

E{Nstring class lacks I/O functions:

] Istreamé& operator>>(istream&, wstring&)

] istreamé& getline(istream&, wstring&, wchar_t)
0 ostreamé& operator<<(ostream&, wstring&)

I o
I I

17.5.2.1 Classvstring DRAFT: 27 May 1994 Library 17-131

class wstring {

public:

wstring();

wstring(size_t Size , capacity cap);

wstring(const wstring& str , size_t pos =0, size_t n =NPOS);

wstring(const wchar_t* s, size_t n = NPOS);

wstring(wchar_t c, size_t rep =1);

wstring& operator=(const wstring& str);

wstring& operator=(const wchar_t* s);

wstring& operator=(wchar_t c);

wstring& operator+=(const wstring& rhs);

wstring& operator+=(const wchar_t* s);

wstring& operator+=(wchar_t c);

wstring& append(const wstring& str , size_t pos =0,
size_t n =NPOS);

wstring& append(const wchar_t* s, size_t n =NPOS);

wstring& append(wchar_t c, size_t rep =1);

wstring& assign(const wstring& str , size_t pos =0,
size_t n =NPOS);

wstring& assign(const wchar_t* s, size_t n =NPOS);

wstring& assign(wchar_t c, size_t rep =1);

wstring& insert(size_t pos1, const wstring& str , size_t pos2 =0,
size_t n =NPOS);

wstring& insert(size_t pos, const wchar_t* s,
size .t n =NPOS);

wstring& insert(size_t pos, wchar_t c, size_t rep =1);

wstring& remove(size_t pos =0, size_t n =NPOS);

wstring& replace(size_t pos1, size_t nl, const wstring& str
size .t pos2 =0, size_t n2 = NPOS);

wstring& replace(size_t pos, size_t nl, const wchar_t* s,
size_t n2 =NPOS);

wstring& replace(size_t pos, size_t n, wchar_t c,
size t rep =1)

wchar_t get_at(size_t pos) const;

void put_at(size_t pos, wchar_t c);

wchar_t operator[](size_t pos) const;

wchar_t& operator[](size_t pos);

const wchar_t* data() const;
size_t length() const:

void resize(size_t n, wchar_t c =0);

size_t reserve() const;

void reserve(size_t res_arg);

size_t copy(wchar_t* S, size_t n, size_t pos =0);

size_t find(const wstring& str , size_t pos = 0) const;

size_t find(const wchar_t* s, size t pos =0, size_t n = NPOS)
const;

size_t find(wchar_t c, size_t pos = 0) const;

size_t rfind(const wstring& str , size_t pos = NPOS) const;

size_t rfind(const wchar_t* s, size_t pos = NPOS,
size .t n =NPOS) const;

size_t rfind(wchar_t c, size_t pos = NPOS) const;

size_t find_first_of(const wstring& str , size_t pos = 0) const;

size_t find_first_of(const wchar_t* s, size_t pos =0,
size .t n =NPOS) const;

size_t find_first_of(wchar_t c, size_t pos = 0) const;

size_t find_last_of(const wstring& str , size_t pos = NPOS) const;

size_t find_last_of(const wchar_t* s, size t pos = NPOS,
size .t n =NPOS) const;

size_t find_last_of(wchar_t c, size_t pos = NPOS) const;

size_t find_first_not_of(const wstring& str , size_t pos =0)
const;

size_t find_first_not_of(const wchar_t* s, size_t pos =0,

17-132 Library DRAFT: 27 May 1994 17.5.2.1 Claswstring

size_.t n =NPOS) const;

size_t find_first_not_of(wchar_t c, size_t pos = 0) const;
size_t find_last_not_of(const wstring& str , size_t pos = NPOS)
const;
size_t find_last_not_of(const wchar_t* s, size t pos = NPOS,
size .t n =NPOS) const;
size_t find_last_not_of(wchar_t c, size_t pos = NPOS) const;
wstring substr(size_t pos =0, size_t n =NPOS) const;
int compare(const wstring& str , size_t pos =0,
size .t n =NPOS) const;
int compare(const wchar_t* s, size_t pos =0, size_t n =NPOS) const; 0O
int compare(wchar_t c, size_t pos =0, size_t rep =1)const; O
private:
I wchar_t* ptr ; exposition only
I size_t len, res; exposition only
I3

The clasavstring describes objects that can store a sequence consisting of a varying number of arbitrary
wide characters. The first element of the sequence is at position zero. Such a sequence is also called a
wide-character stringor simply astring if the type of the elements is clear from context). Storage for the
string is allocated and freed as necessary by the member functions ofvsfiasg . For the sake of
exposition, the maintained data is presented here as:

— wchar_t* ptr , points to the initial character of the string;
— size_t len , counts the number of characters currently in the string;

— size_t res , for an unallocated string, holds the recommended allocation size of the string, while for
an allocated string, becomes the currently allocated size.

In all caseslen <= res.

The functions described in this subclause can report two kinds of errors, each associated with a distinct
exception:

— alengtherror is associated with exceptions of ty@mgth_error ;

— anout-of-rangeerror is associated with exceptions of typg of range

To report one of these errors, the function evaluates the expregsiaise() , whereex is an object of
the associated exception type.

17.5.2.1.1wstring::wstring() [lib.cons.wstring]

wstring();

Constructs an object of claastring initializing:
— ptr to an unspecified value;
— len to zero;

— res to an unspecified value.

17.5.2.1.2wstring::wstring(size_t, capacity) [lib.cons.wstring.cap]

wstring(size_t size , capacity cap);

17.5.2.1.2 DRAFT: 27 May 1994 Library 17133
wstring::wstring(size_t, capacity)

Constructs an object of classtring . If cap is default_size , the function either reports a length
error if size equaldNPOSor initializes:

— ptr to point at the first element of an allocated arragigé elements, each of which is initialized to
zero;

— len tosize ;

— res to avalue at least as largeles . g

Otherwisecap shall bereserve and the function initializes:

— ptr to an unspecified value;

— len to zero;
— res tosize .
17.5.2.1.3wstring::wstring(const wstring&, size_t, [lib.cons.wstring.wsub]
size t)
wstring(const wstring& str , size_t pos =0, size_t n =NPOS);
Reports an out-of-range errorgbs > str.len . Otherwise, the function constructs an object of class

wstring and determines the effective lengthn of the initial wstring value as the smaller mfand
str.len - pos. Thus, the function initializes:

— ptr to point at the first element of an allocated copyl/efi elements of the wstring controlled by
str beginning at positiopos;

— len torlen ;

— res to avalue at least as largeles . a

17.5.2.1.4wstring::wstring(const wchar_t*, size t) [lib..cons.wstring.wstr]
wstring(const wchar_t* s, size_t ny;

If n equalsNPOS storeswcslen(s) in n. The function signatureicslen(const wchar_T*) is

declared irccwchar> (17.2). O

In any case, the function constructs an object of el@gsng and determines its initial string value from
the array ofwchar_t of lengthn whose first element is designated &y s shall not be a null pointer.O
hhus, the function initializes:

— ptr to point at the first element of an allocated copy of the array whose first element is pointed at by

— len ton;

— res to avalue at least as largeles . O

17.5.2.1.5wstring::wstring(wchar_t, size_t) [lib..cons.wstring.wc]
wstring(wchar_t c, size_t rep =1);

Reports a length error iep equalsNPOS Otherwise, the function constructs an object of clastsing
and determines its initial string value by repeating the charadtrall rep elements. Thus, the function
initializes:

— ptr to point at the first element of an allocated arrayepf elements, each storing the initial valcie

17-134 Library

— len torep;

— res to avalue at least as largeles .

17.5.2.1.6wstring::operator=(const wchar_t*)

wstring& operator=(const wstring&
Returnsassign(str).

17.5.2.1.7wstring::operator=(const wchar_t*)

wstring& operator=(const wchar_t*
Returnstthis = string(s).

17.5.2.1.8wstring::operator=(wchar_t)

wstring& operator=(wchar_t c);
Returns*this = string(c).

17.5.2.1.9wstring::operator+=(const wstring&)

wstring& operator+=(const wstring&

Returnsappend(rhs) .

17.5.2.1.10wstring::operator+=(const wchar_t*)

wstring& operator+=(const wchar_t*
Returnstthis += string(s).

17.5.2.1.11wstring::operator+=(wchar _t)

wstring& operator+=(wchar_t c);

Returnstthis += string().

17.5.2.1.12wstring::append(const wstring&, size_t,

size t)

wstring& append(const wstring&

Reports an out-of-range error fifos > str.len

a length error ifen >=NPOS - rlen .

DRAFT: 27 May 1994

str , size_t

17.5.2.1.5
wstring::wstring(wchar_t, size_t)

[lib.wstring::op=.sub]

str);
[lib.wstring::op=.wstr]
s);
[lib.wstring::op=.wc]
[lib.wstring::op+=.wsub]
rhs);
[lib.wstring::op+=.wstr]
S);

[lib.wstring::op+=.wc]

[lib.wstring::append.wsub]

pos =0, size_t n =NPOS);

Otherwise, the function determines the effective
lengthrlen of the string to append as the smallenaind str.len - pos. The function then reports

Otherwise, the function replaces the string controlledtbis with a string of lengthen + rlen

whose firstlen elements are a copy of the original string controlledtbis

ments are a copy of the initial elements of the string controllestrbybeginning at positiopos .

The function return¥this

and whose remaining ele-

17.5.2.1.13 DRAFT: 27 May 1994 Library 17135
wstring::append(const wchar_t*, size_t)

17.5.2.1.13wstring::append(const wchar_t*, size t) [lib.wstring::append.wstr]

wstring& append(const wchar_t* s, size_t n =NPOS);
Returnsappend(wstring(s, n .

17.5.2.1.14wstring::append(wchar _t, size_t) [lib.wstring::append.wc]

wstring& append(wchar_t c, size_t rep =1);

Returnsappend(wstring(c, rep)) .

17.5.2.1.15wstring::assign(const wstring&, size t, [lib.wstring::assign.wsub]
size t)
wstring& assign(const wstring& str , size_t pos =0, size_t n =NPOS);
Reports an out-of-range error fifos > strlen . Otherwise, the function determines the effective
lengthrien of the string to assign as the smallenandstr.len - pos.

The function then replaces the string controlledthis with a string of lengthlen whose elements are
a copy of the string controlled Isgr beginning at positiopos .

The function return¥this

17.5.2.1.16wstring::assign(const wchar_t*, size_t) [lib.wstring::assign.wstr]
wstring& assign(const wchar_t* s, size_t n =NPOS);

Returnsassign(wstring(s, n) .

17.5.2.1.17wstring::assign(wchar _t, size t) [lib.wstring::assign.wc]
wstring& assign(wchar_t c, size_t rep =1);

Returnsassign(wstring(c, rep)) .

17.5.2.1.18wstring::insert(size_t, const wstring&, [lib.wstring::insert.wsub]

size t, size t)

wstring& insert(size_t pos1, const wstring& str , size_tpos2 =0,
size_t n =NPOS);

Reports an out-of-range errorgibsl > len or pos2 > strlen . Otherwise, the function deter-
mines the effective lengthlen of the string to insert as the smallerrofind str.len - pos2. The
function then reports a length errodéfi >= NPOS - rlen .

Otherwise, the function replaces the string controlledthis with a string of lengthen + rlen

whose firstposl elements are a copy of the initial elements of the original string controll&thiby |,

whose nextlen elements are a copy of the elements of the string controlled bypeginning at position

pos2, and whose remaining elements are a copy of the remaining elements of the original string controlled
by *this

The function return¥this

17-136 Library DRAFT: 27 May 1994 17.5.2.1.19
wstring::insert(size_t, const wchar_t*, size_t)

17.5.2.1.19wstring::insert(size_t, const wchar_t*, [lib.wstring::insert.wstr]
size t)
wstring& insert(size_t pos, const wchar_t* s, size_t n =NPOS);
Returnsnsert(pos, wstring(s, n . a
17.5.2.1.20wstring::insert(size_t, wchar _t, size t) [lib.wstring::insert.wc]
wstring& insert(size_t pos, wchar_t c, size_t rep =1);

Returnsnsert(pos, wstring(c, rep)) .

17.5.2.1.21wstring::remove(size_t, size_t) [lib.wstring::remove]

wstring& remove(size_t pos =0, size_t n =NPOS);

Reports an out-of-range error iios > len . Otherwise, the function determines the effective length
xlen of the string to be removed as the smallenahd/len - pos.

The function then replaces the string controlledthys with a string of lengthlen - xlen whose
first pos elements are a copy of the initial elements of the original string controli>iby , and whose
remaining elements are a copy of the elements of the original string controlfedidoy beginning at
positionpos + xlen .

The function return¥this

17.5.2.1.22wstring::replace(size_t, size_t, [lib.wstring::replace.wsub]
const wstring&, size _t, size_t)

wstring& replace(size_t pos1, size_t nl, const wstring& str
size .t pos2 =0, size_t n2 = NPOS);

Reports an out-of-range errorgbsl > len or pos2 > strlen . Otherwise, the function deter-
mines the effective lengtklen of the string to be removed as the smallendfand/en - posl. It
also determines the effective lengtlyn of the string to be inserted as the smallen®fandstr.len -
pos2. The function then reports a length errdert - xlen >=NPOS- rlen .

Otherwise, the function replaces the string controlledthig with a string of lengtden - xlen +

rlen whose firstposl elements are a copy of the initial elements of the original string controlled by
*this , whose nextrlen elements are a copy of the initial elements of the string controllesirby
beginning at positiopos2, and whose remaining elements are a copy of the elements of the original string
controlled by*this beginning at positioposl + xlen .

The function returnsthis
17.5.2.1.23wstring::replace(size t, size_t, [lib.wstring::replace.wstr]
const wchar_t*, size_t)
wstring& replace(size_t pos, size_t nl, const wchar_t* s,
size .t n2 =NPOS);
Returngreplace(pos, nl, wstring(s, n2)) .
17.5.2.1.24wstring::replace(size_t, size_t, wchar _t, [lib.wstring::replace.wc]
size t)

wstring& replace(size_t pos, size_t n, wchar_t c, size_t rep =1);

17.5.2.1.24 DRAFT: 27 May 1994 Library 17137
wstring::replace(size_t, size_t, wchar_t, size_t)

Returngreplace(pos, n, wstring(c, rep)) .

17.5.2.1.25wstring::get_at(size_t) [lib.wstring::get.at]

wchar_t get_at(size_t pos) const;

Reports an out-of-range erromibs >= Jen . Otherwise, the function returp#r [pos] .

17.5.2.1.26wstring::put_at(size_t, wchar_t) [lib.wstring::put.at]
void put_at(size_t pos, wchar_t c);
Reports an out-of-range erromibs >= Jen . Otherwise, the function assigodo ptr [pos] . O
17.5.2.1.27wstring::operator[](size_t) [lib.wstring::op.array]
wchar_t operator[](size_t pos) const;
wchar_t& operator[](size_t pos);
If pos < len , returnsptr [pos] . Otherwise, ifpos == len , theconst version returns zero. Oth-

erwise, the behavior is undefined.

The reference returned by the nmomst version is invalid after a subsequent call to any member function

for the object. O
17.5.2.1.28wstring::data() [lib.wstring::data]
const wchar_t* data() const; ad

Returns a pointer to the initial element of an array of lefagth + 1 whose firstlen elements equal the
corresponding elements of the string controlledthis and whose last element is a null character. The
program shall not alter any of the values stored in the array. Nor shall the program treat the returned value
as a valid pointer value after any subsequent call to a&owesi- member function of the classstring

that designates the same objectths

17.5.2.1.29wstring::length() [lib.wstring::length]

size_t length() const:

Returnslen .
17.5.2.1.30wstring::resize(size_t, wchar_t) [lib.wstring::resize]
void resize(size_t n, wchar_t c =0);

Reports a length error if equalsNPOS Otherwise, the function alters the length of the string designated
by *this as follows:

— If n <= len , the function replaces the string designatedthis with a string of lengtm whose
elements are a copy of the initial elements of the original string designattusby .

— If n > len , the function replaces the string designatedtbis with a string of lengtm whose first
len elements are a copy of the original string designatethiyy , and whose remaining elements are
all initialized toc.

17-138 Library DRAFT: 27 May 1994 17.5.2.1.31wstring::reserve()

17.5.2.1.31wstring::reserve() [lib.wstring::reserve]

size_t reserve() const;

Returnsres .
17.5.2.1.32wstring::reserve(size_t) [lib.wstring::reserve.cap]
void reserve(size_t res_arg);

If no string is allocated, the function assiges _arg to res . Otherwise, whether or how the function

altersres is unspecified.

17.5.2.1.33wstring::copy(wchar_t*, size_t, size t) [lib.wstring::copy.wstr]
size_t copy(wchar_t* s, size_t n, size_t pos =0);

Reports an out-of-range error iios > len . Otherwise, the function determines the effective length

rlen of the string to copy as the smallermfand/en - pos. s shall designate an array of at least
rlen elements.

The function then replaces the string designated kyth a string of lengtirlen whose elements are a
copy of the string controlled byhis , beginning at positiopos. 21) O

The function returnglen .

17.5.2.1.34wstring::find(const wstring&, size_t) [lib.wstring::find.wsub]

size_t find(const wstring& str , size_t pos = 0) const;

Determines the lowest positioqos , if possible, such that both of the following conditions obtain:
— pos <= xpos andxpos + str.len <= len ;

— ptr [xpos + []== str.ptr [1] forall elementd of the string controlled bgtr .

If the function can determine such a valuexpos , it returnsxpos . Otherwise, it returnslPOS

17.5.2.1.35wstring::find(const wchar_t*, size t, [lib.wstring::find.wstr]
size t)
size_t find(const wchar_t* s, size t pos =0, size_t n = NPOS) const;

Returndfind(wstring(S, n), pos).

17.5.2.1.36wstring::find(wchar_t, size_t) [lib.wstring::find.wc]

size_t find(wchar_t c, size_t pos = 0) const;
Returndind(wstring(c), pos).

17.5.2.1.37wstring::rfind(const wstring&, size t) [lib.wstring::rfind.wsub]

size_t rfind(const wstring& str , size_t pos = NPOS) const;

Determines the highest positiapos , if possible, such that both of the following conditions obtain:

— Xpos <= pos andxpos + str.len <= len ; O

12 The function does not append a null wide character to the string. O

17.5.2.1.37 DRAFT: 27 May 1994 Library 17139
wstring::rfind(const wstring&, size_t)

— ptr [xpos + []== str.ptr [1] forall elementd of the string controlled bgtr .

If the function can determine such a valuexpos , it returnsxpos . Otherwise, it returnslPOS

17.5.2.1.38wstring::rfind(const wchar_t*, size_t, [lib.wstring::rfind.wstr]
size t)
size_t rfind(const wchar_t* s, size_t pos =NPOS, size_t n = NPOS)
const;
Returngrfind(wstring(s, n), pos).
17.5.2.1.39wstring::rfind(wchar _t, size t) [lib.wstring::rfind.wc]
size_t rfind(wchar_t c, size_t pos = NPQOS) const;
Returngfind(wstring(c, n), pos).
17.5.2.1.40wstring::find_first_of(const wstring&, [lib.wstring::find.first.of.wsub]
size t)
size_t find_first_of(const wstring& str , size_t pos = 0) const;

Determines the lowest positioqos , if possible, such that both of the following conditions obtain:
— pos <= xpos andxpos < len ;

— ptr [xpos]== str.ptr [1] for some element of the string controlled bgtr .

If the function can determine such a valuexpos , it returnsxpos . Otherwise, it returnslPOS

17.5.2.1.41wstring::find_first_of(const wchar_t*, [lib.wstring::find.first.of.wstr]
size_t, size_t)

size_t find_first_of(const wchar_t* s, size_t pos =0,
size .t n =NPOS) const;

Returndfind_first_of(wstring(s, n), pos).
17.5.2.1.42wstring::find_first_of(wchar _t, size t) [lib.wstring::find.first.of.wc]
size_t find_first_of(wchar_t c, size_t pos = 0) const;
Returndfind_first_of(wstring(c), pos).
17.5.2.1.43wstring::find_last_of(const wstring&, [lib.wstring::find.last.of.wsub]
size t)
size_t find_last_of(const wstring& str , size_t pos =NPOS) const;

Determines the highest positiapos , if possible, such that both of the following conditions obtain:
— Xpos <= pos and pos < len;

— ptr [xpos]== str.ptr [1] for some element of the string controlled bgtr .

If the function can determine such a valuexpos , it returnsxpos . Otherwise, it returnslPOS

17-140 Library DRAFT: 27 May 1994 17.5.2.1.44
wstring::find_last_of(const wchar_t*, size_t, size_t)

17.5.2.1.44wstring::find_last_of(const wchar_t*, [lib.wstring::find.last.of.wstr]
size_t, size_t)

size_t find_last_of(const wchar_t* s, size t pos = NPOS,
size .t n =NPOS) const;

Returndind_last_of(wstring(s, n), pos).
17.5.2.1.45wstring::find_last_of(wchar _t, size_t) [lib.wstring::find.last.of.wc]
size_t find_last_of(wchar_t c, size_t pos = NPOS) const;
Returndind_last_of(wstring(c, n), pos).
17.5.2.1.46 [lib.wstring::find.first.not.of.wsub]
wstring::find_first_not_of(const wstring&,
size t)
size_t find_first_not_of(const wstring& str , size_t pos = 0) const;

Determines the lowest positioqos , if possible, such that both of the following conditions obtain:
— pos <= xpos andxpos < len ;

— ptr [xpos]== str.ptr [1] for no element of the string controlled bgtr .

If the function can determine such a valuexpos , it returnsxpos . Otherwise, it returnslPOS

17.5.2.1.47 [lib.wstring::find.first.not.of.wstr]
wstring::find_first_not_of(const wchar_t*,
size_t, size_t)

size_t find_first_not_of(const wchar_t* s, size_t pos =0,
size .t n =NPOS) const;

Returndind_first_not_of(wstring(s, n), pos).
17.5.2.1.48wstring::find_first_not_of(wchar t, [lib.wstring::find.first.not.of.wc]
size t)
size_t find_first_not_of(wchar_t c, size_t pos = 0) const;
Returndind_first_not_of(wstring(c), pos).
17.5.2.1.49 [lib.wstring::find.last.not.of.wsub]
wstring::find_last_not_of(const wstring&,
size t)
size_t find_last_not_of(const wstring& str , size_t pos =NPOS) const;

Determines the highest positiapos , if possible, such that both of the following conditions obtain:
— Xxpos <= pos and pos < len ;

— ptr [xpos]== str.ptr [1] for no element of the string controlled bgtr .

If the function can determine such a valuexpos , it returnsxpos . Otherwise, it returnslPOS

17.5.2.1.50 DRAFT: 27 May 1994 Library 17141
wstring::find_last_not_of(const wchar_t*, size_t, size_t)

17.5.2.1.50 [lib.wstring::find.last.not.of.wstr]
wstring::find_last_not_of(const wchar_t*,
size t, size_t)

size_t find_last_not_of(const wchar_t* s, size t pos = NPOS,
size .t n =NPOS) const;

Returndind_last_not_of(wstring(s, n), pos).
17.5.2.1.51wstring::find_last_not_of(wchar_t, [lib.wstring::find.last.not.of.wc]
size t)
size_t find_last_not_of(wchar_t c, size_t pos = NPOS) const;
Returndind_last_not_of(wstring(c, n), pos).
17.5.2.1.52wstring::substr(size _t, size_t) [lib.wstring::substr]
wstring substr(size_t pos =0, size_t n =NPOS) const;
Returnswstring(*this, pos, n). O
17.5.2.1.53wstring::compare(const wstring&, size_t, [lib.wstring::compare.wsub]
size t)
int compare(const wstring& str , size_t pos, size_t n = NPOS) const;
Reports an out-of-range error fos > len . Otherwise, ifstr.len < n, the function stores[
str.len in n. The function then determines the effective lenggh of the strings to compare as thél
smaller ofn and/len - pos. The function then compares the two strings by calwegcmp(ptr + O
pos, strptr , rlen). The function signaturewvmemcmp(const wchar_t*, const
wchar_t*, size t) is declared irccwchar> . a

If the result of that comparison is nonzero, the function returns the nonzero result. Otherwise, the function
returns:

— if len < rlen , avalue less than zero;
— if len == rlen ,the value zero;

— if len > rlen , avalue greater than zero.

17.5.2.1.54wstring::compare(const wchar_t*, size t) [lib.wstring::compare.wstr]

size_t compare(const wchar_t* s, size_t n =NPOS) const;
Returnscompare(wstring(s, n), pos).

17.5.2.1.55wstring::compare(wchar _t, size_t) [lib.wstring::compare.wc]

size_t compare(wchar_t c, size_t rep =1)const;

Returnscompare(wstring(c, rep), pos).

17-142 Library DRAFT: 27 May 1994 17.5.2.2
operator+(const wstring&, const wstring&)

17.5.2.2 operator+(const wstring&, const wstring&) [lib.op+.wsub.wsub]

wstring operator+(const wstring& Ihs , const wstring& rhs);
Returnswstring(/hs).append(rhs).

17.5.2.3 operator+(const wchar_t*, const wstring&) [lib.op+.wstr.wsub]

wstring operator+(const wchar_t* Ihs , const wstring& rhs);
Returnswstring(/hs)+ rhs.

17.5.2.4 operator+(wchar_t, const wstring&) [lib.op+.wc.wsub]

wstring operator+(wchar_t Ihs , const wstring& rhs);
Returnswstring(/hs)+ rhs.

17.5.2.5operator+(const wstring&, const wchar_t*) [lib.op+.wsub.wstr]

wstring operator+(const wstring& Ihs , const wchar_t* rhs);
Returnslhs +wstring(rhs).

17.5.2.6 operator+(const wstring&, wchar_t) [lib.op+.wsub.wc]

wstring operator+(const wstring& Ihs , wechar_t rhs);
Returnslhs +wstring(rhs).

17.5.2.7 operator==(const wstring&, const wstring&) [lib.op==.wsub.wsub]

bool operator==(const wstring& Ihs , const wstring& rhs);

Returns a nonzero valuelffs .compare(rhs) is zero.

17.5.2.8 operator==(const wchar_t*, const wstring&) [lib.op==.wstr.wsub]
bool operator==(const wchar_t* Ihs , const wstring& rhs);

Returnswstring(/hs) == rhs .

17.5.2.9 operator==(wchar_t, const wstring&) [lib.op==.wc.wsub]
bool operator==(wchar_t Ihs , const wstring& rhs);

Returnswstring(ths)== rhs .

17.5.2.100perator==(const wstring&, const wchar_t*) [lib.op==.wsub.wstr]
bool operator==(const wstring& Ihs , const wchar_t* rhs);

Returnshs ==wstring(rhs).

17.5.2.11 operator==(const wstring&, wchar_t) [lib.op==.wsub.wc]

bool operator==(const wstring& Ihs , wchar_t rhs);

Returnslhs ==wstring(rhs).

17.5.2.12 DRAFT: 27 May 1994 Library 17143
operator!=(const wstring&, const wstring&)

17.5.2.12 operator!=(const wstring&, const wstring&) [lib.op!=.wsub.wsub]

bool operator!=(const wstring& Ihs , const wstring& rhs); ad
Returns a nonzero valuel{f lhs == rhs) is nonzero.

17.5.2.130perator!=(const wchar_t*, const wstring&) [lib.op!=.wstr.wsub]

bool operator!=(const wchar_t* Ihs , const wstring& rhs); O
Returnswstring(/hs)!= rhs .

17.5.2.14operator!=(wchar_t, const wstring&) [lib.op!=.wc.wsub]

bool operator!=(wchar_t Ihs , const wstring& rhs); O
Returnswstring(/hs)= rhs .

17.5.2.150perator!=(const wstring&, const wchar_t*) [lib.op!=.wsub.wstr]

bool operator!=(const wstring& Ihs , const wchar_t* rhs); O
Returnslhs 1= wstring(rhs).

17.5.2.160perator!=(const wstring&, wchar_t) [lib.op!=.wsub.wc]

bool operator!=(const wstring& Ihs , wchar_t rhs); ad
Returnslhs = wstring(rhs).

17.5.3 Headerxbits> [lib.header.bits]

The headexbits> defines a template class and several related functions for representing and manipulat-
ing fixed-size sequences of hits.

17.5.3.1 Template clasbits< N> [lib.template.bits]

17-144 Library DRAFT: 27 May 1994 17.5.3.1 Template cladsits< N>

template<size_t N> class bits { g
public:

bits();

bits(unsigned long val);

bits(const string& str , size_t pos =0, size_t n =NPOS);

bits< N>& operator&=(const bits< N>& rhs);

bits< N>& operator|=(const bits< N>& rhs);

bits< N>& operator*=(const bits< N>& rhs); g

bits< N>& operator<<=(size_t pos);

bits< N>& operator>>=(size_t pos);

bits< N>& set();

bits< N>& set(size_t pos, int val =1),

bits< N>& reset();

bits< N>& reset(size_t pos);

bits< N> operator~() const; O

bits< N>& toggle();

bits< N>& toggle(size_t pos);

unsigned short to_ushort() const;
unsigned long to_ulong() const;
string to_string() const;

size_t count() const;

size_t length() const;

bool operator==(const bits< N>& rhs) const; O
bool operator!=(const bits< N>& rhs) const; g
bool test(size_t pos) const; ad
bool any() const; O
bool none() const; O
bits< N> operator<<(size_t pos) const;
bits< N> operator>>(size_t pos) const;

private:

I char array [N; exposition only

I3

The template cladsits< N> describes an object that can store a sequence consisting of a fixed number of
bits, N

Each bit represents either the value zero (reset) or one (setpgdlea bit is to change the value zero to
one, or the value one to zero. Each bit has a non-negative pgzitlonWhen converting between an
object of clasbits< N> and a value of some integral type, bit positims corresponds to thisit valuel

<< pos. The integral value corresponding to two or more bits is the sum of their bit values.

For the sake of exposition, the maintained data is presented here as:

— char array [N, the sequence of bits, stored one bit per elefféht.

The functions described in this subclause can report three kinds of errors, each associated with a distinct
exception:

— aninvalid-argumentrror is associated with exceptions of typealid_argument ;
— anout-of-rangeerror is associated with exceptions of typ# of range ;

— anoverflowerror is associated with exceptions of typerflow

To report one of these errors, the function evaluates the expregsiaise() , whereex is an object of
the associated exception type.

1220 an implementation is free to store the bit sequence more efficiently.

17.5.3.1.1bits< Nb::bits() DRAFT: 27 May 1994 Library 17-145

17.5.3.1.1bits< N>::bits() [lib.cons.bits]
bits();

Constructs an object of clasigs< NAb, initializing all bits to zero.

17.5.3.1.2bits< N>::hits(unsigned long) [lib.cons.bits.ul]
bits(unsigned long val); 0

Constructs an object of clabis< N>, initializing the firstMbit positions to the corresponding bit values
in val . Mis the smaller olNand the valu€€HAR_BIT * sizeof (unsigned long) . The macro
CHAR_BITis defined in<climits> (17.2). O

If M < N, remaining bit positions are initialized to zero.

17.5.3.1.3bits< N>::bits(const string&, size_t, size t) [lib.cons.bits.subt]
bits(const string& str , size_t pos =0, size_t n =NPOS);

Reports an out-of-range error fifos > strlen . Otherwise, the function determines the effective

lengthrlen of the initializing string as the smaller ofandstr.len - pos. The function then reports

an invalid-argument error if any of thi#en characters irstr beginning at positiopos is other tharD
orl.

Otherwise, the function constructs an object of chasx N, initializing the firstMbit positions to val-
ues determined from the corresponding characters in the string Mis the smaller oiNandrlen . An
element of the constructed string has value zero if the corresponding charater eginning at posi-
tion pos, is0. Otherwise, the element has the value one. Character pgaitlor+ M -1 corresponds
to bit position zero. Subsequent decreasing character positions correspond to increasing bit positions.

If M < N remaining bit positions are initialized to zero.

17.5.3.1.4bits< N>::operator&=(const bits< N>&) [lib.bits::op&=.bt]
bits< N>& operator&=(const bits< N>& rhs);

Clears each bit irfthis for which the corresponding bit inhs is clear, and leaves all other bits
unchanged. The function returtilis

17.5.3.1.5bits< N>::operator|=(const bits< N>&) [lib.bits::op C=.bt]
bits< N>& operator|=(const bits< N>& rhs);

Sets each bit ifthis for which the corresponding bit iths is set, and leaves all other bits unchanged.
The function returnsthis

17.5.3.1.6bits< N>::operator*=(const bits< N>&) [lib.bits::op™=.bt]
bits< N>& operator*=(const bits< N>& rhs);

Toggles each bit irfthis for which the corresponding bit iths is set, and leaves all other bits
unchanged. The function returtthis

17.5.3.1.7bits< N>::operator<<=(size_t) [lib.bits::op.Ish=]

bits< N>& operator<<=(size_t pos);

17-146 Library DRAFT: 27 May 1994 17.5.3.1.7
bits< N>::operator<<=(size_t)

Replaces each bit at positiérin *this with a value determined as follows:
— If I < pos, the new value is zero;

— If I >= pos, the new value is the previous value of the bit at position pos.

The function return¥this

17.5.3.1.8bits< N>::operator>>=(size_t) [lib.bits::op.rsh=]

bits< N>& operator>>=(size_t pos);

Replaces each bit at positiérin *this with a value determined as follows:
— If pos >= N - [, the new value is zero;

— If pos < N - [, the new value is the previous value of the bit at position pos.

The function returnsthis

17.5.3.1.9bits< N>:iset() [lib.bits::set]
bits< N>& set();

Sets all bits irfthis . The function returnhis

17.5.3.1.10bits< N>::set(size _t, int) [lib.bits::set.n]

bits< N>& set(size_t pos, int val =1),
Reports an out-of-range errorgbs does not correspond to a valid bit position. Otherwise, the function
stores a new value in the bit at positjgms in *this . If val is nonzero, the stored value is one, other-
wise it is zero. The function returtihis

17.5.3.1.11bits< N>:reset() [lib.bits::reset]
bits< N>& reset();

Resets all bits ifithis . The function return&his

17.5.3.1.12bits< N>:reset(size_t) [lib.bits::reset.n]
bits< N>& reset(size_t pos);

Reports an out-of-range errorgbs does not correspond to a valid bit position. Otherwise, the function
resets the bit at positiquos in *this . The function returnhis

17.5.3.1.13bits< N>::operator~() [lib.bits::0p7]

bits< N> operator~() const; O

Constructs an object of classbhits< N> and initializes it with*this . The function then returns
x.toggle()

17.5.3.1.14bits< N>::toggle() DRAFT: 27 May 1994 Library 17-147

17.5.3.1.14bits< N>::toggle() [lib.bits::toggle]
bits< N>& toggle();

Toggles all bits irrthis . The function returnihis

17.5.3.1.15hits< N>::toggle(size t) [lib.bits::toggle.n]
bits< N>& toggle(size_t pos);

Reports an out-of-range errorgbs does not correspond to a valid bit position. Otherwise, the function
toggles the bit at positionos in *this . The function returnhis

17.5.3.1.16bits< N>::ito_ushort() [lib.bits::to.ushort]

unsigned short to_ushort() const;

If the integral valuex corresponding to the bits ifthis cannot be represented as typesigned
short , reports an overflow error. Otherwise, the function retutns

17.5.3.1.17bits< N>::to_ulong() [lib.bits::to.ulong]

unsigned long to_ulong() const;

If the integral valuex corresponding to the bits ifthis cannot be represented as typesigned
long , reports an overflow error. Otherwise, the function retutns

17.5.3.1.18bits< N>::to_string() [lib.bits::to.string]

string to_string() const;

Constructs an object of tymtring and initializes it to a string of lengticharacters. Each character is
determined by the value of its corresponding bit positiofthis . Character positiolV - 1 corre-

sponds to bit position zero. Subsequent decreasing character positions correspond to increasing bit posi-
tions. Bit value zero becomes the chara@teyit value one becomes the charadter

The function returns the created object.

17.5.3.1.19bits< N>::count() [lib.bits::count]

size_t count() const;
Returns a count of the number of bits settliis

17.5.3.1.20bits< N>::length() [lib.bits::length]

size_t length() const;
Returnsi\.

17.5.3.1.21bits< N>::operator==(const bits< N>&) [lib.bits::op==.bt]

bool operator==(const bits< N>& rhs) const; g

Returns a nonzero value if the value of each bithiis equals the value of the corresponding bittis .

17-148 Library DRAFT: 27 May 1994 17.5.3.1.22

bits< Nb::operator!=(const bits< N>&)
17.5.3.1.22bits< N>::operator!=(const bits< N>&) [lib.bits::op!=.bt]
bool operator!=(const bits< N>& rhs) const; t
Returns a nonzero value!{fthis == rhs).
17.5.3.1.23hits< N>::test(size t) [lib.bits::test]
bool test(size_t pos) const; O

Reports an out-of-range errorgbs does not correspond to a valid bit position. Otherwise, the function
returns a nonzero value if the bit at posit@os in *this has the value one.

17.5.3.1.24bits< N>::any() [lib.bits::any]

bool any() const; O
Returns a nonzero value if any bitthis is one.

17.5.3.1.25bits< A>::none() [lib.bits::none]

bool none() const; O

Returns a nonzero value if no bit*lis is one.

17.5.3.1.26bits< N>::operator<<(size_t) [lib.bits::op.Ish]
bits< N> operator<<(size_t pos) const;

Returnsbits< N>(*this) <<= pos.

17.5.3.1.27hits< N>:.operator>>(size t) [lib.bits::op.rsh]
bits< N> operator>>(size_t pos) const;

Returnsbits< A>(*this) >>= pos.

17.5.3.2 operator&(const bits< N>&, const bits< N>&) [lib.op&.bt.bt]
bits< N> operator&(const bits< N>& Ihs , const bits< N>& rhs);

Returnsbits< N>(lhs) &= pos.

17.5.3.3 operator|(const bits< N>&, const bits< N>&) [lib.op Obt.bt]
bits< N> operator|(const bits< N>& Ihs |, const bits< N>& rhs);

Returnshits< N>(lhs) |= pos.

17.5.3.4 operator™(const bits< N>&, const bits< N>&) [lib.op”.bt.bt]
bits< N> operator”(const bits< N>& Ihs , const bits< N>& rhs);

Returnsbits< N>(lhs) "= pos.

17.5.35 DRAFT: 27 May 1994 Library 17149
operator>>(istreamé&, bits< N>&)

17.5.3.5operator>>(istreamé&, bits< N>&) [lib.ext.bt]

istream& operator>>(istream& is , bits< N>& Xx);

A formatted input function, extracts up M(single-byte) characters froms . The function stores these
characters in a temporary objesttr of type string , then evaluates the expression =
bits< N>(str). Characters are extracted and stored until any of the following occurs:

— Ncharacters have been extracted and stored;
— end-of-file occurs on the input sequence;

— the next input character is neitleor 1 (in which case the input character is not extracted).
If no characters are storedstr , the function callss .setstate(ios::failbit)
The function returnss .

17.5.3.6 operator<<(ostreamé&, const bits< N>&) [lib.ins.bt]

ostreamé& operator<<(ostreamé& 0s, const bits< N>& X);
Returnsos << x.to_string()

17.5.4 Headerbitstring> [lib.header.bitstring]

The headexkbitstring> defines a class and several function signatures for representing and manipulat-
ing varying-length sequences of bits. O

17.5.4.1 Clas®it_string (lib.bit.string]

HBox 134

H_ibrary WG issue: Charles Allison, August 26, 1993

O

] don't appreciate the need foreserve() function. | need someone to convince me. O
O

ERecommend (Library WG meeting, San Diego, 3/8/94):

EFor symmetry with strings:
Get rid ofbitstring::trim()
UAdd bitstring::reserve()

mooooo0o03o0o000

17-150 Library DRAFT: 27 May 1994 17.5.4.1 Clasbit_string

class bit_string { ad

public:
bit_string(); O
bit_string(unsigned long val , size_t n; O
bit_string(const bit_string& str , size_t pos =0, size_t n =NPOS); O
bit_string(const string& str , size_t pos =0, size_t n = NPOS); O
bit_string& operator+=(const bit_string& rhs); O
bit_string& operator&=(const bit_string& rhs); O
bit_string& operator|=(const bit_string& rhs); ad
bit_string& operator*=(const bit_string& rhs); O
bit_string& operator<<=(size_t pos); O
bit_string& operator>>=(size_t pos); g
bit_string& append(const bit_string& str , pos =0, n =NPOS); ad
bit_string& assign(const bit_string& str , pos =0, n =NPOS); O
bit_string& insert(size_t pos1, const bit_string& str O

size t pos2 =0, size_t n =NPOS);

bit_string& remove(size_t pos =0, size_t n =NPOS); ad
bit_string& replace(size_t posl1, size_t nl, const bit_string& str , 0O

size .t pos2 =0, size_t n2 = NPOS);

bit_string& set(); O
bit_string& set(size_t pos, bool val =1); ad
bit_string& reset(); O
bit_string& reset(size_t pos); O
bit_string& toggle(); O
bit_string& toggle(size_t pos); ad
string to_string() const;
size_t count() const;
size_t length() const;
size_t resize(size_t n, bool val =0); O
size_t trim();
size_t find(bool val , size_t pos =0, size_t n = NPOS) const; O
size_t rfind(bool val , size_t pos =0, size_t n =NPOS) const; O
bit_string substr(size_t pos, size_t n = NPOS) const; ad
bool operator==(const bit_string& rhs) const; O
bool operator!=(const bit_string& rhs) const; O
bool test(size_t pos) const; O
bool any() const; ad
bool none() const; O
bit_string operator<<(size_t pos) const; O
bit_string operator>>(size_t pos) const; g
bit_string operator~() const; ad

private:

I char* ptr; exposition only

I size_t len ; exposition only

I3

The classhit_string describes an object that can store a sequence consisting of a varying numhber of

bits. Such a sequence is also calldgitastring (or simply astring if the type of the elements is clear from
context). Storage for the string is allocated and freed as necessary by the member functions af class
bit_string

Each bit represents either the value zero (reset) or one (setpgdlea bit is to change the value zero to
one, or the value one to zero. Each bit has a non-negative pgzitlon\When converting between ari]
object of clasdit_string of length/en and a value of some integral type, bit positmrs corre- O
sponds to théit valuel << (len - pos -1) 129 The integral value corresponding to two or more
bits is the sum of their bit values.

123)Note that bit position zero is timeost-significanbit for an object of cladsit_string , while it is theleast-significanbit foran [
object of clasbits< N>,

17.5.4.1 Clas®it_string DRAFT: 27 May 1994 Library 17-151

For the sake of exposition, the maintained data is presented here as:
— char* ptr , points to the sequence of bits, stored one bit per elell%@nt;

— size_t len , the length of the bit sequence.

The functions described in this subclause can report three kinds of errors, each associated with a distinct
exception:

— aninvalid-argumentrror is associated with exceptions of typealid_argument ;
— alengtherror is associated with exceptions of ty@mgth_error ;

— anout-of-rangeerror is associated with exceptions of typg of range

To report one of these errors, the function evaluates the expregsiaise() , whereex is an object of
the associated exception type. O
17.5.4.1.1bit_string::bit_string() [lib.cons.bit.string]
bit_string(); ad
Constructs an object of clalsé_string , initializing: a

— ptr to an unspecified value;

— len to zero.
17.5.4.1.2bit_string::bit_string(unsigned long, size_t) [(lib.cons.bit.string.ul]
bit_string(unsigned long val , size_t ny; O

Reports a length error ifh equals NPOS Otherwise, the function constructs an object of cldss
bit_string and determines its initial string value fraral . If val is zero, the corresponding string is

the empty string. Otherwise, the corresponding string is the shortest sequence of bits with the same bit
value asval . If the corresponding string is shorter thgrthe string is extended with elements whose val-

ues are all zero. Thus, the function initializes:

— ptr to point at the first element of the string;

— len to the length of the string.

17.5.4.1.3bit_string::bit_string(const bit_string&, [(lib.cons.bit.string.bs]
size t, size t) O
bit_string(const bit_string& str , size_t pos =0, size_t n =NPOS); O
Reports an out-of-range errorgbs > strlen . Otherwise, the function constructs an object of class
bit_string and determines the effective lengtan of the initial string value as the smallermfind O
str.len - pos. Thus, the uunction initializes:

— ptr to point at the first element of an allocated copylefi elements of the string controlled sy
beginning at positiopos;

— len torlen .

2% an implementation is, of course, free to store the bit sequence more efficiently.

17-152 Library DRAFT: 27 May 1994 17.54.1.3
bit_string::bit_string(const bit_string&, size_t, size_t)

17.5.4.1.4bit_string::bit_string(const string&, size_t, [lib.cons.bit.string.sub]
size t) O
bit_string(const string& str , size_t pos =0, size_t n =NPOS); ad
Reports an out-of-range error ifos > str.len . Otherwise, the function determines the effective
lengthrlen of the initializing string as the smaller nfandstr.len - pos. The function then reports

an invalid-argument error if any of then characters irstr beginning at positiopos is other tharD
orl.

Otherwise, the function constructs an object of chassstring and determines its initial string valué]l
from str . The length of the constructed stringrisn . An element of the constructed string has value
zero if the corresponding charactersin , beginning at positiopos, is0. Otherwise, the element has the
value one.

Thus, the function initializes:
— ptr to point at the first element of the string;

— len torlen .

17.5.4.1.5bit_string::operator+=(const bit_string&) (lib.bit.string::op+=.bs]
bit_string& operator+=(const bit_string& rhs); O

Reports a length erroréén >= NPOS - rhs.len

Otherwise, the function replaces the string controllettlg with a string of lengthen + rhs.len
whose firstlen elements are a copy of the original string controlledtbis and whose remaining ele-
ments are a copy of the elements of the string controlletidy

The function returnsthis . O
17.5.4.1.6bit_string::operator&=(const bit_string&) [(lib.bit.string::0p&=.bs]
bit_string& operator&=(const bit_string& rhs); O

Determines a lengthlen which is the larger ofen andrhs.len | then behaves as if the shorter of the
two strings controlled bythis andrhs were temporarily extended to lengtlen by adding elements
all with value zero. The function then replaces the string controlletthy with a string of length
rlen whose elements have the value one only if both of the corresponding elemthts ofandrhs

are one.

The function returnsthis . O
17.5.4.1.7bit_string::operator|=(const bit_string&) (lib.bit.string::op [=.bs]
bit_string& operator|=(const bit_string& rhs); O

Determines a lengthen which is the larger ofen andrhs.len , then behaves as if the shorter of the
two strings controlled bythis andrhs were temporarily extended to lengtlen by adding elements
all with value zero. The function then replaces the string controlletthiyy with a string of length
rlen whose elements have the value one only if either of the corresponding elemhits ofandrhs

are one.

The function returndthis . a

17.5.4.1.8 DRAFT: 27 May 1994 Library 17153
bit_string::operator*=(const bit_string&)

17.5.4.1.8bit_string::operator*=(const bit_string&) (lib.bit.string::op"=.bs]
bit_string& operator*=(const bit_string& rhs); ad

Determines a lengthen which is the larger ofen andrhs.len , then behaves as if the shorter of the
two strings controlled bythis andrhs were temporarily extended to lengtlen by adding elements
all with value zero. The function then replaces the string controlletthiyy with a string of length
rlen whose elements have the value one only if the corresponding eleméitfiis of andrhs have dif-
ferent values.

The function returnsthis . a
17.5.4.1.9bit_string::operator<<=(size_t) (lib.bit.string::op.Ish=]
bit_string& operator<<=(size_t pos); g

Replaces each element at positioim the string controlled bjthis with a value determined as follows:

— If pos >= len - [, the new value is zero;

— If pos < len - I,the new value is the previous value of the element at positionpos.

The function returnsthis . O

17.5.4.1.10bit_string::operator>>=(size_t) [(lib.bit.string::op.rsh=]
bit_string& operator>>=(size_t pos); O

Replaces each element at positioim the string controlled bjthis with a value determined as follows:
— If I < pos, the new value is zero;

— If I >= pos, the new value is the previous value of the element at positionpos.

17.5.4.1.11bit_string::append(const bit_string&, (lib.bit.string::append]
size t, size t) O
bit_string& append(const bit_string& str , size_t pos =0, O

size .t n =NPOS);

Reports an out-of-range error ifos > str.len . Otherwise, the function determines the effective
lengthrlen of the string to append as the smallenandstr.len - pos. The function then reports
a length error ifen >=NPOS - rlen .

Otherwise, the function replaces the string controlledthis with a string of lengthen + rlen
whose firstlen elements are a copy of the original string controlledtbis and whose remaining ele-
ments are a copy of the initial elements of the string controllestrbybeginning at positiopos .

The function returnsthis . a
17.5.4.1.12hbit_string::assign(const bit_string&, size t, [(lib.bit.string::assign]
size t) O
bit_string& assign(const bit_string& str , size_t pos =0, O

size_t n =NPOS);

Reports an out-of-range error fifos > strlen . Otherwise, the function determines the effective
lengthrien of the string to assign as the smallenandstr.len - pos.

17-154 Library DRAFT: 27 May 1994 17.5.4.1.12
bit_string::assign(const bit_string&, size_t, size_t)

The function then replaces the string controlledthis with a string of lengthrlen whose elements are
a copy of the string controlled 3yr beginning at positiopos .

The function returnsthis . O
17.5.4.1.13bit_string::insert(size_t, const bit_string&, (lib.bit.string::insert]
size_t, size_t) O
bit_string& insert(size_t pos1, const bit_string& str , size_t pos2 =0, ad

size t n =NPOS);

Reports an out-of-range errorgbsl > len or pos2 > strlen . Otherwise, the function deter-
mines the effective lengthien of the string to insert as the smallerrofind str.len - pos2. The
function then reports a length errodéfi >= NPOS - rlen .

Otherwise, the function replaces the string controlledthis with a string of lengthen + rlen

whose firstpos1 elements are a copy of the initial elements of the original string controlléthisy ,

whose nextlen elements are a copy of the elements of the string controlled byeginning at position

pos2, and whose remaining elements are a copy of the remaining elements of the original string controlled
by *this

The function returnsthis . O
17.5.4.1.14bit_string::remove(size _t, size_t) [(lib.bit.string::remove]
bit_string& remove(size_t pos =0, size_t n =NPOS); O

Reports an out-of-range error iios > len . Otherwise, the function determines the effective length
xlen of the string to be removed as the smallenahd/en - pos.

The function then replaces the string controlled‘thys with a string of lengthen - xlen whose
first pos elements are a copy of the initial elements of the original string controli>iby , and whose
remaining elements are a copy of the elements of the original string controlfedidoy beginning at
positionpos + xlen .

The function returnsthis . O
17.5.4.1.15bit_string::replace(size_t, size _t, (lib.bit.string::replace]
const bit_string&, size_t, size t) O
bit_string& replace(size_t pos1, size_t nl, const bit_string& str O

size .t pos2 =0, size_t n2 = NPOS);

Reports an out-of-range errorgbsl > len or pos2 > strlen . Otherwise, the function deter-
mines the effective lengtklen of the string to be removed as the smallendfand/en - posl. It
also determines the effective lengtlyn of the string to be inserted as the smallen®fandstr.len -
pos2. The function then reports a length errdert - xlen >=NPOS- rlen .

Otherwise, the function replaces the string controlledthig with a string of lengtdlen - xlen +

rlen whose firstposl elements are a copy of the initial elements of the original string controlled by
*this , whose nextrlen elements are a copy of the initial elements of the string controllesirby
beginning at positiopos2, and whose remaining elements are a copy of the elements of the original string
controlled by*this beginning at positioposl + xlen .

The function returnsthis . a

17.5.4.1.16bit_string::set() DRAFT: 27 May 1994 Library 17-155

17.5.4.1.16bit_string::set() (lib.bit.string::set]
bit_string& set(); ad
Sets all elements of the string controlled*this . The function returnhis . a
17.5.4.1.17hit_string::set(size_t, bool) [({lib.bit.string::set.n]
bit_string& set(size_t pos, bool val =1); O
Reports an out-of-range errorgibs > len . Otherwise, ifpos == len , the function replaces the

string controlled bythis with a string of lengtHhen + 1 whose firstlen elements are a copy of the
original string and whose remaining element is set accordimg/to Otherwise, the function sets the ele-
ment at positionpos in the string controlled bjthis . If val is nonzero, the stored value is one, other-

wise it is zero. The function returtihis . O
17.5.4.1.18bit_string::reset() (lib.bit.string::reset]
bit_string& reset(); O
Resets all elements of the string controlledthys . The function return&his . O
17.5.4.1.19bit_string::reset(size_t) [(lib.bit.string::reset.n]
bit_string& reset(size_t pos); O
Reports an out-of-range error fibs > len . Otherwise, ifpos == len , the function replaces the

string controlled bythis with a string of lengthen + 1 whose firstlen elements are a copy of the
original string and whose remaining element is zero. Otherwise, the function resets the element at position

pos in the string controlled bythis . O
17.5.4.1.20bit_string::toggle() (lib.bit.string::toggle]
bit_string& toggle(); ad
Toggles all elements of the string controlled*this . The function return&his . a
17.5.4.1.21bit_string::toggle(size_t) [(lib.bit.string::toggle.n]
bit_string& toggle(size_t pos); O

Reports an out-of-range errorgbs >= len . Otherwise, the function toggles the element at position
pos in *this . O
17.5.4.1.22hit_string::to_string() [(lib.bit.string::to.string]

string to_string() const;
Creates an object of tytring and initializes it to a string of lengtlken characters. Each character is

determined by the value of its corresponding element in the string controltgtidby . Bit value zero
becomes the charact@r bit value one becomes the charadter

The function returns the created object. O

17-156 Library DRAFT: 27 May 1994 17.5.4.1.23bit_string::count()

17.5.4.1.23bit_string::count() (lib.bit.string::count]

size_t count() const;
Returns a count of the number of elements set in the string controltéudy . a

17.5.4.1.24bit_string::length() (lib.bit.string::length]

size_t length() const;

Returnslen . O
17.5.4.1.25hit_string::resize(size _t, bool) [(lib.bit.string::resize]
size_t resize(size_t n, bool val =0); O

Reports a length error if equalsNPOS Otherwise, the function alters the length of the string controlled
by *this as follows:

— If n <= len , the function replaces the string controlled*tyis with a string of lengtin whose
elements are a copy of the initial elements of the original string controltgdiby .

— If n > len , the function replaces the string controlled*thys with a string of lengtlm whose first
len elements are a copy of the original string controlledtbis , and whose remaining elements all
have the value one ¥fal is nonzero, or zero otherwise.

The function returns the previous valuderi . O

17.5.4.1.26bit_string::trim() (lib.bit.string::trim]

size_t trim();

Determines the highest positigmos of an element with value one in the string controlled*thys , if
possible. If no such position exists, the function replaces the string with an empty /stnings (zero).
Otherwise, the function replaces the string with a string of lepgsh + 1 whose elements are a copy of
the initial elements of the original string controlled*tyis

The function returns the new valuelef . a
17.5.4.1.27bit_string::find(bool, size_t, size_t) (lib.bit.string::find]
size_t find(bool val , size_t pos =0, size_t n = NPOS) const; O

ReturnsNPOSIf pos >= len . Otherwise, the function determines the effective lemigh of the O
string to be scanned as the smallenaind/en - pos. The function then determines the lowest posi-
tion xpos , if possible, such that both of the following conditions obtain:

— poOS <= Xpos;

— The element at positioxpos in the string controlled bythis is one ifval is nonzero, or zero other-
wise.

If the function can determine such a valuexpos , it returnsxpos . Otherwise, it returnslPOS a

17.5.4.1.28 DRAFT: 27 May 1994 Library 17157

bit_string::rfind(bool, size_t, size_t)

17.5.4.1.28bit_string::rfind(bool, size_t, size_t) [lib.bit.string::rfind]
size_t rfind(bool val , size t pos =0, size_t n = NPOS) const; O

ReturnsNPOSIf pos >= len . Otherwise, the function determines the effective lemigh of the O

string to be scanned as the smallen@ind/en - pos. The function then determines the highest posi-
tion xpos , if possible, such that both of the following conditions obtain:

— pOS <= Xpos;

— The element at positioxpos in the string controlled bythis is one ifval is nonzero, or zero other-
wise.

If the function can determine such a valuexpos , it returnsxpos . Otherwise, it returnslPOS a
17.5.4.1.29bit_string::substr(size_t, size t) (lib.bit.string::substr]

bit_string substr(size_t pos, size_t n = NPOS) const; O
Returnsbit_string(*this, pos, n). O
17.5.4.1.30bit_string::operator==(const bit_string&) (lib.bit.string::op==.bs]

bool operator==(const bit_string& rhs) const; O
Returns zero ifen !'= rhs.len or if the value of any element of the string controlled*ifys dif-
fers from the value of the corresponding element of the string controllgts by O
17.5.4.1.31bit_string::operator!=(const bit_string&) (lib.bit.string::op!=.bs]

bool operator!=(const bit_string& rhs) const; O
Returns a nonzero valuel{fthis == rhs). O
17.5.4.1.32bit_string::test(size_t) (lib.bit.string::test]

bool test(size_t pos) const; ad

Reports an out-of-range errorgbs >= Jen . Otherwise, the function returns a nonzero value if the ele-

ment at positiopos in the string controlled b¥this is one. a
17.5.4.1.33bit_string::any() [(lib.bit.string::any]

bool any() const; O
Returns a nonzero value if any bit is set in the string controlléthlsy . O
17.5.4.1.34bit_string::none() (lib.bit.string::none]

bool none() const; O
Returns a nonzero value if no bit is set in the string controlléthiz/ . O
17.5.4.1.35bit_string::operator<<(size_t) [lib.bit.string::op.Ish]

bit_string operator<<(size_t pos) const; g
Constructs an object of classbit_string and initializes it with*this . The function then returns [

<<= pos. O

17-158 Library DRAFT: 27 May 1994 17.5.4.1.36
bit_string::operator>>(size_t)

17.5.4.1.36bit_string::operator>>(size_t) lib.bit.string::op.rsh]
bit_string operator>>(size_t pos) const; t
Constructs an object of classhit_string and initializes it with*this . The function then returns 0O
>>= pos. 0
17.5.4.1.37bit_string::operator~() [(lib.bit.string::0p
bit_string operator~() const; a
Constructs an object of classhit_string and initializes it with*this . The function then returnsd
x.toggle() . O
17.5.4.2 operator+(const bit_string&, const bit_string&) (lib.op+.bs.bs]
bit_string operator+(const bit_string& Ihs , const bit_string& rhs); O
Constructs an objeat of classhit_string and initializes it withths . The function then returns += [
rhs . O
17.5.4.3 operator&(const bit_string&, const bit_string&) (lib.op&.bs.bs]
bit_string operator&(const bit_string& Ihs , const bit_string& rhs); O
Constructs an objeot of classbit_string and initializes it withths . The function then returnms &= 0O
rhs . O
17.5.4.4 operator|(const bit_string&, const bit_string&) (lib.opbs.bs]
bit_string operator|(const bit_string& Ihs , const bit_string& rhs); ad
Constructs an objeot of classbit_string and initializes it withths . The function then returns |= O
rhs . O
17.5.4.5 operator®(const bit_string&, const bit_string&) [(lib.op”.bs.bs]
bit_string operator®(const bit_string& Ihs , const bit_string& rhs); O
Constructs an objeat of classhit_string and initializes it withlhs . The function then returns = [O
rhs . O
17.5.4.6 operator>>(istreamé&, bit_string&) [(lib.ext.bs]
istream& operator>>(istream& is , bit_string& X); ad

A formatted input function, extracts up MPOS - 1 (single-byte) characters froms . The function
behaves as if it stores these characters in a temporary sbjecdf type string , then evaluates the
expressionx = bit_string(str). Characters are extracted and stored until any of the followihg
occurs:

— NPOS -1 characters have been extracted and stored;
— end-of-file occurs on the input sequence;

— the next character to read is neitBesr 1 (in which case the input character is not extracted).

If no characters are storedstr , the function callgs .setstate(ios::failbit)

17.5.4.6 DRAFT: 27 May 1994 Library 17159
operator>>(istream&, bit_string&)

The function returnss . O
17.5.4.7 operator<<(ostream&, const bit_string&) (lib.ins.bs]
ostreamé& operator<<(ostream& 0s, const bit_string& X); t

Returnsos << x.to_string()

17.5.5 Headerdynarray> [lib.header.dynarray]

The headexdynarray> defines a template class and several related functions for representing and
manipulating varying-size sequences of some objectType a

17.5.5.1 Template clasdyn_array< T> [({lib.template.dyn.array]

HBox 135

ELibrary WG issue: Uwe Steinniiller, January 21, 1994
ao. .

nissing

0 ~dynarray()

O dynarray<T>& operator=(const dynarray<T>&);

MOoOdOoooOod

FBox 136
HJbrary WG issue: Dag Bitick, December 12, 1993

OoOoono

]
Crhe introduction (17.5.5.1) should have a summary of all operations that resize the array and possibly move
(its elements. B

17-160 Library DRAFT: 27 May 1994 17.5.5.1 Template clasdyn_array< T>

template<class T> class dyn_array { t

public:
dyn_array(); O
dyn_array(size_t Size , capacity cap); O
dyn_array(const dyn_array< T>& arr); t
dyn_array(const T& obj , size_t rep =1); O
dyn_array(const T parr ,size_t ny; O
dyn_array< T>& operator+=(const dyn_array< T>& rhs); g
dyn_array< T>& operator+=(const T& obj); t
dyn_array< T>& append(const T& obj , size_t rep =1); O
dyn_array< T>& append(const T parr ,size_t n =1), O
dyn_array< T>& assign(const T& obj , size_t rep =1); g
dyn_array< T>& assign(const T parr , size_t n =1); t
dyn_array< T>& insert(size_t pos, const dyn_array< T>& arr); O
dyn_array< T>& insert(size_t pos, const T& obj , size_t rep =1); O
dyn_array< T>& insert(size_t pos, const T parr ,size_t n =1), g
dyn_array< T>& remove(size_t pos =0, size_t n =NPOS); t
dyn_array< T>& sub_array(dyn_array< T>& arr , size_t pos, O

size_t n =NPOS);

void swap(dyn_array< T>& arr); g
const T& get_at(size_t pos) const;
void put_at(size_t pos, const T& obj);
T& operator[](size_t pos);
const T& operator[](size_t pos) const;
T* data(); ad
const T*data() const; O
size_t length() const;
void resize(size_t n;
void resize(size_t n, const T& obj);
size_t reserve() const;
void reserve(size_t res_arg);

private:

I T+ ptr ; exposition only

I size_t len , res; exposition only

2

The template clasdyn_array< T> describes an object that can store a sequence consisting of a varying
number of objects of typ& The first element of the sequence is at position zero. Such a sequence is also
called adynamic array An object of typeT shall have:

— a default constructor() ;
— acopy constructof(const T&);
— an assignment operat®& operator=(const T&);

— adestructor-T() .

For the function signatures described in this subclause:

— it is unspecified whether an operation described in this subclause as initializing an objectTovipe
a copy calls its copy constructor, calls its default constructor followed by its assignment operator, or
does nothing to an object that is already properly initialized,;

— it is unspecified how many times objects of typare copied, or constructed and destrojyzéaej. O

129) Objects that cannot tolerate this uncertainty, or that fail to meet the stated requirements, can sometimes be organized into dynamic
arrays through the intermediary of an object of n_array< T>. a
y 9 y J _array

17.5.5.1 Template clasdyn_array< 7> DRAFT: 27 May 1994 Library 17-161

For the sake of exposition, the maintained data is presented here as:
— T * ptr , points to the sequence of objects;
— size_t len , counts the number of objects currently in the sequence;

— size_t res, for an unallocated sequence, holds the recommended allocation size of the sequence,
while for an allocated sequence, becomes the currently allocated size.

In all caseslen <= res.

The functions described in this subclause can report three kinds of errors, each associated with a distinct
exception:

— aninvalid-argumentrror is associated with exceptions of typealid_argument ;
— alengtherror is associated with exceptions of ty@mgth_error

— anout-of-rangeerror is associated with exceptions of typg of range ;

To report one of these errors, the function evaluates the expregsiaise() , whereex is an object of
the associated exception type. O
17.5.5.1.1dyn_array< T>:dyn_array() (lib.cons.dyn.array]
dyn_array(); ad
Constructs an object of cladgn_array< T>, initializing: a

— ptr to an unspecified value;
— len to zero;

— res to an unspecified value.

17.5.5.1.2dyn_array< T>::dyn_array(size_t, capacity) [({lib.cons.dyn.array.cap]
dyn_array(size_t size , capacity cap); O

Reports a length error Hize equalsNPOSand cap is default_size . Otherwise, the function con-

structs an object of clagiyn_array< T>. If cap is default_size , the function initializes: O

— ptr to point at the first element of an allocated arragipé elements of typd, each initialized with
the default constructor for type

— len tosize ;

— res to avalue at least as largeles . O

Otherwisecap shall bereserve and the function initializes:
— ptr to an unspecified value;
— len to zero;

— res tosize .

17-162 Library DRAFT: 27 May 1994 175513

dyn_array< T>:dyn_array(const dyn_array< T>&)
17.5.5.1.3dyn_array< T>::dyn_array(const dyn_array< T>&) [(lib.cons.dyn.array.da]
dyn_array(const dyn_array< T>& arr); t

Constructs an object of cladgn_array< T> and determines its initial dynamic array value by copying
the elements from the dynamic array designatedrby Thus, the function initializes:

— ptr to point at the first element of an allocated arragmflen elements of typd, each initialized
with a copy of the corresponding element from the dynamic array designaaed by

— len toarr.len ;

— res to avalue at least as largeles . a
17.5.5.1.4dyn_array< T>::dyn_array(const T&, size_t) [({lib.cons.dyn.array.t]
dyn_array(const T& obj , size_t rep =1); O

Reports a length error ifep equalsNPOS Otherwise, the function constructs an object of cldss
dyn_array< T> and determines its initial dynamic array value by copyafiy into all rep values.
Thus, the function initializes:

— ptr to point at the first element of an allocated arrayepf elements of typ€l, each initialized by
copyingobyj ;

— len torep;

— res to avalue at least as largeles . O

17.5.5.1.5dyn_array< T>::dyn_array(const T*, size_t) [({lib.cons.dyn.array.pt]
dyn_array(const T parr ,size_t ny; O

Reports a length error if equalsNPOS Otherwise, the function reports an invalid-argument errpaif
is a null pointer. Otherwisgarr shall designate the first element of an array of at leadements of
type T.

The function then constructs an object of cldgs _array< T> and determines its initial dynamic array]
value by copying the elements from the array designatgabyy. Thus, the function initializes:

— ptr to point at the first element of an allocated arrayr@lements of typd, each initialized with a
copy of the corresponding element from the array designatpdmy;

— len ton;

— res to avalue at least as largelas . O

17.5.5.1.6 (lib.dyn.array::op+=.da]
dyn_array< T>:.operator+=(const dyn_array< T>&) O

17.55.1.6 DRAFT: 27 May 1994 Library 17163
dyn_array< T>:operator+=(const dyn_array< T>&)

HBox 137
El_ibrary WG issue: Dag Biiick, December 12, 1993

peilmimimlm

ctor +
nder-

H find it very questionable that dynarray is allowed to do initialization as a sequence of default const
rassignment. We know how to get around that problem (new with placement syntax). However, |
[ktand that the library WG has been through all this before, but | really don't like it.

O

Ebomment (Library WG meeting, San Diego, 3/8/94):

HpHR

O
What do we say about whether the default constructor is used, followed by assignment; versus @ng the
[topy constructor?

dyn_array< T>& operator+=(const dyn_array< T>& rhs); t

Reports a length error fen >= NPOS - rhs.len . Otherwise, the function replaces the dynamic
array designated bithis with a dynamic array of lengtlen + rhs.len whose firstlen elements
are a copy of the original dynamic array designatetitdg and whose remaining elements are a copy of
the elements of the dynamic array designatedhby.

The function returnsthis . O
17.5.5.1.7dyn_array< T>:.operator+=(const T&) (lib.dyn.array::op+=.]
dyn_array< T>& operator+=(const T& obj); O
Returnsappend(obj) . O
17.5.5.1.8dyn_array< T>::append(const T&, size_t) (lib.dyn.array::append.t]
dyn_array< T>& append(const T& obj , size_t rep =1); O

Reports a length error ién >= NPOS - rep . Otherwise, the function replaces the dynamic array des-
ignated by*this with a dynamic array of lengtlen + rep whose firstlen elements are a copy of the
original dynamic array designated tihis and whose remaining elements are each a coppjof

The function returnsthis . O
17.5.5.1.9dyn_array< T>:append(const T*, size_t) (lib.dyn.array::append.pt]
dyn_array< T>& append(const T parr ,size_t n =1), g

Reports a length error ilen >= NPOS - n. Otherwise, the function reports an invalid-argument error
if n >0 andparr is a null pointer. Otherwisgaarr shall designate the first element of an array of @t
leastn elements of typd.

The function then replaces the dynamic array designatéthisy with a dynamic array of lengtlen +
n whose firstlen elements are a copy of the original dynamic array designatéthisy and whose
remaining elements are a copy of the initial elements of the array designatead hy

The function returnsthis . O

17.5.5.1.10dyn_array< T>:assign(const T&, size_t) (lib.dyn.array::assign.t]
dyn_array< T>& assign(const T& obj , size_t rep =1), t

Reports a length error iep == NPOS. Otherwise, the function replaces the dynamic array designated

by *this with a dynamic array of lengttep each of whose elements is a copybf .

17-164 Library DRAFT: 27 May 1994 17.5.5.1.10

dyn_array< T>:assign(const T&, size_t)
The function returnsthis . O
17.5.5.1.11dyn_array< T>:assign(const T*, size_t) {lib.dyn.array::assign.pt]
dyn_array< T>& assign(const T parr ,size_t n =1); t

Reports a length errorii == NPOS. Otherwise, the function reports an invalid-argument error #0 [0
andparr is a null pointer. Otherwisgarr shall designate the first element of an array of at leas¢- O
ments of typeT.

The function then replaces the dynamic array designatedhizy with a dynamic array of length
whose elements are a copy of the initial elements of the array designated by

The function returnsthis . O
17.5.5.1.12dyn_array< T>:insert(size_t, (lib.dyn.array::insert.da]
const dyn_array< T>&) a

dyn_array< T>& insert(size_t pos, const dyn_array< T>& arr); O

Reports an out-of-range errorgbs > Jlen . Otherwise, the function reports a length errdeif >=
NPOS - arr.len

Otherwise, the function replaces the dynamic array designatethiby with a dynamic array of length

len + arrlen whose firstpos elements are a copy of the initial elements of the original dynamic
array designated bythis , whose nextarr.len elements are a copy of the initial elements of the
dynamic array designated layr , and whose remaining elements are a copy of the remaining elements of
the original dynamic array designated*tlyis

The function returnsthis . O
17.5.5.1.13dyn_array< T>:insert(size_t, const T&, (lib.dyn.array::insert.t]
size t) O
dyn_array< T>& insert(size_t pos, const T& obj , size_t rep =1); O

Reports an out-of-range errorgbs > len . Otherwise, the function reports a length erraeif >=
NPOS - rep.

Otherwise, the function replaces the dynamic array designat&thiby with a dynamic array of length

len + rep whose firstpos elements are a copy of the initial elements of the original dynamic array des-
ignated by*this , whose nextep elements are each a copyatfj , and whose remaining elements are a
copy of the remaining elements of the original dynamic array designat#idy .

The function returnsthis . O
17.5.5.1.14dyn_array< T>:insert(size _t, const T, (lib.dyn.array::insert.pt]
size t) O
dyn_array< T>& insert(size_t pos, const T parr ,size_t n =1), g

Reports an out-of-range errorgbs > len . Otherwise, the function reports a length erraeif >=
NPOS - n. Otherwise, the function reports an invalid-argument errer i O andparr is a null O
pointer. Otherwiseparr shall designate the first element of an array of at leatments of typd.

The function then replaces the dynamic array designatéthisy with a dynamic array of lengtlen +

n whose firstpos elements are a copy of the initial elements of the original dynamic array designated by
*this , whose nexin elements are a copy of the initial elements of the array designatedrby and

whose remaining elements are a copy of the remaining elements of the original dynamic array designated
by *this

17.55.1.14 DRAFT: 27 May 1994 Library 17165
dyn_array< T>:insert(size_t, const T*, size_t)

The function returndthis . a

17.5.5.1.15dyn_array< T>:remove(size_t, size t) {lib.dyn.array::remove]

BBox 138

aibrary WG issue: Dag Biick, December 12, 1993

O
0 find it unintuitive thatda.remove(4); removes all the elements starting at postion 4. l.e., | thin

Eblefault value fon should be 1 instead dfPOS

e

Eﬁecommend (Library WG meeting, San Diego, 3/8/94):

DD%DE‘J}IEDDDD

O
[(Bhoulddynarray<T>::remove(4) remove to end of string, or just element 4?

O

dyn_array< T>& remove(size_t pos =0, size_t n =NPOS);

Reports an out-of-range errorifios > len . Otherwise, the function determines the effective length
xlen of the sequence to be removed as the smalleraod/en - pos.

The function then replaces the dynamic array designatéthisy with a dynamic array of lengtlen -

xlen whose firstpos elements are a copy of the initial elements of the original dynamic array designated
by *this , and whose remaining elements are a copy of the elements of the original dynamic array desig-
nated by*this beginning at positiopos + xlen . The originalx/len elements beginning at position

pos are destroyed.

The function returnsthis . a

17.5.5.1.16dyn_array< T>::sub_array(dyn_array< T>&, ({lib.dyn.array::sub.array]
size t, size t) O

dyn_array< T>& sub_array(dyn_array< T>& arr , size_t pos, size_t n =NPOS); O

Reports an out-of-range errorifios > len . Otherwise, the function determines the effective lendth
rlen of the dynamic array designateditlgis as the smaller aof andarr.len - pos.

The function then replaces the dynamic array designatearrbywith a dynamic array of lengthien
whose elements are a copy of the elements of the dynamic array designétad bybeginning at posi-
tion pos.

The function returnarr . O
17.5.5.1.17dyn_array< T>::swap(dyn_array< T>&) (lib.dyn.array::swap]
void swap(dyn_array< T>& arr); ad

Replaces the dynamic array designatedtbis with the dynamic array designated &y , agd replaces O

the dynamic array designated &y with the dynamic array originally designated*tiyis 12 0

17.5.5.1.18dyn_array< T>::get at(size_t) (lib.dyn.array::get.at]
const T& get_at(size_t pos) const;

Reports an out-of-range erroibs >= len . Otherwise, the function returp# [pos] . g

lA’)Presumably, this operation occurs with no actual copying of array elements.

17-166 Library DRAFT: 27 May 1994 17.5.5.1.18
dyn_array< T>:get_at(size_t)

The reference returned is invalid after a subsequent call to any member function for the object. O
17.5.5.1.19dyn_array< T>:put_at(size_t, const T&) (lib.dyn.array::put.at]
void put_at(size_t pos, const T& obj);

Reports an out-of-range errorgbs >= Jen . Otherwise, the function assigo$; to the element at
positionpos in the dynamic array designatedlgis . a

17.5.5.1.20dyn_array< T>:.operator[](size_t) (lib.dyn.array::op.array]
T& operator[](size_t pos);
const T& operator[](size_t pos) const;

If pos < len , returns the element at positipos in the dynamic array designated tihis . Other-
wise, the behavior is undefined.

The reference returned is invalid after a subsequent call to any member function for the object. O
17.5.5.1.21dyn_array< T>:data() ({lib.dyn.array::data]
T* data(); O
const T*data() const; ad

Returnsptr if len is nonzero, otherwise a null pointer. The program shall not alter any of the values
stored in the dynamic array. Nor shall the program treat the returned value as a valid pointer value after any
subsequent call to a n@onst member function of the clastyn_array< T> that designates the samél
object aghis . a

17.5.5.1.22dyn_array< T>:length() (lib.dyn.array::length]

size_t length() const;

Returnslen . O

17.5.5.1.23dyn_array< T>::rresize(size_t) (lib.dyn.array::resize]
void resize(size_t ny;

Reports a length error i equalsNPOS Otherwise, ifn = len the function alters the length of the

dynamic array designated bhis as follows:

— If n < len , the function replaces the dynamic array designatetthily with a dynamic array of
length n whose elements are a copy of the initial elements of the original dynamic array designated by
*this . Any remaining elements are destroyed.

— If n > len , the function replaces the dynamic array designatetthily with a dynamic array of
length n whose firstlen elements are a copy of the original dynamic array designatétthiby , and
whose remaining elements are all initialized with the default constructor forTclass

17.5.5.1.24dyn_array< T>:rresize(size_t, const T&) (lib.dyn.array::resize.t]
void resize(size_t n, const T& obj);
Reports a length error i equalsNPOS Otherwise, ifn = len the function alters the length of the

dynamic array designated bhis as follows:

— If n < len , the function replaces the dynamic array designatetiisy with a dynamic array of
length n whose elements are a copy of the initial elements of the original dynamic array designated by

17.5.5.1.24 DRAFT: 27 May 1994 Library 17167
dyn_array< T>:resize(size_t, const T&)
*this . Any remaining elements are destroyed.

— If n > len , the function replaces the dynamic array designatetiisy with a dynamic array of
length n whose firstlen elements are a copy of the original dynamic array designat&ihisy , and
whose remaining elements are all initialized by copyibg.

17.5.5.1.25dyn_array< T>:rreserve() (lib.dyn.array::reserve]

size_t reserve() const;

Returnsres . g
17.5.5.1.26dyn_array< T>:rreserve(size_t) (lib.dyn.array::reserve.cap]
void reserve(size_t res_arg);

If no dynamic array is allocated, assiges_arg tores . Otherwise, whether or how the function alters

res is unspecified. O
17.5.5.2 operator+(const dyn_array< T>&, const dyn_array< T>&) ({lib.op+.da.da]
dyn_array< T> operator+(const dyn_array< T>& Ihs O
const dyn_array< T>& rhs); g
Returnsdyn_array< T>(lhs)+= rhs . O
17.5.5.3 operator+(const dyn_array< T>&, const T&) (lib.op+.da.t]
dyn_array< T> operator+(const dyn_array< T>& Ihs , const T& obj); t
Returnsdyn_array< T>(lhs)+= rhs . a
17.5.5.4 operator+(const T&, const dyn_array< T>&) [(lib.op+.t.da]
dyn_array< T> operator+(const T& obj , const dyn_array< T>& rhs); O
Returnsdyn_array< T>(lhs)+= rhs . O
17.5.6 Headerptrdynarray> [lib.header.ptrdynarray]

The headexptrdynarray> defines a template and several related functions for representing and nianip-
ulating varying-size sequences of pointers to some objecftype O

17.5.6.1 Template clasptrdyn_array< 7> (lib.template.ptr.dyn.array]

17-168 Library DRAFT: 27 May 1994 175.6.1
Template clasgptrdyn_array< 7>

template<class T> class ptr_dyn_array : public dyn_array<void*> { ad

public:
ptr_dyn_array(); O
ptr_dyn_array(size_t Size , capacity cap); O
ptr_dyn_array(const ptrdyn_array< T>& arr); t
ptr_dyn_array(T obj,size_t rep =1); O
ptr_dyn_array(T* parr ,size_t n =1), 0
ptrdyn_array< T>& operator+=(const ptrdyn_array< T>& rhs); g
ptrdyn_array< T>& operator+=(T* obj); t
ptrdyn_array< T>& append(T* obj, size_t rep =1); O
ptrdyn_array< T>& append(T** parr ,size_t n =1), 0
ptrdyn_array< T>& assign(T* obj , size_t rep =1), g
ptrdyn_array< T>& assign(T** parr ,size_t n =1); t
ptrdyn_array< T>& insert(size_t pos, const ptrdyn_array< T>& arr); 0O
ptrdyn_array< T>& insert(size_t pos, T * obj,size_t rep =1); O
ptrdyn_array< T>& insert(size_t pos, T ** parr ,size_t n =1), g
ptrdyn_array< T>& remove(size_t pos =0, size_t n =NPOS); t
ptrdyn_array< T>& sub_array(ptrdyn_array< T>& arr , size_t pos, O

size_t n =NPOS);

void swap(ptrdyn_array< T>& arr); g
T* get_at(size_t pos) const; ad
void put_at(size_t pos, T* obj);
T*& operator[](size_t pos); O
T* const& operator[](size_t pos) const;
T** data(); ad
const T** data() const; O
size_t length() const;
void resize(size_t n;
void resize(size_t n, T obj),
size_t reserve() const;
void reserve(size_t res_arg);

h

The template clagstrdyn_array< T> describes an object that can store a sequence consisting of a Mary-
ing number of objects of type pointer To Such a sequence is also calletlyaamic pointer arrayObjects [
of type T are never created, destroyed, copied, assigned, or otherwise accessed by the function sighatures

described in this subclause. O
17.5.6.1.1ptrdyn_array< T>:ptr_dyn_array() (lib.cons.ptr.dyn.array]
ptr_dyn_array(); O

Constructs an object of classptrdyn_array< 7>, initializing the base class withO

dyn_array<void*>() . a
17.5.6.1.2ptrdyn_array< T>:ptr_dyn_array(size_t, [({lib.cons.ptr.dyn.array.cap]
capacity) O
ptr_dyn_array(size_t size , capacity cap); O

Constructs an object of classptrdyn_array< 7>, initializing the base class withO

dyn_array<void*>(size , cap). O
17.5.6.1.3 [(lib.cons.ptr.dyn.array.pda]
ptrdyn_array< T>:ptr_dyn_array(const ptrdyn_array< >&) O

ptr_dyn_array(const ptrdyn_array< T>& arr); O

17.5.6.1.3 DRAFT: 27 May 1994 Library 17169
ptrdyn_array< T>:ptr_dyn_array(const ptrdyn_array< T>&)

Constructs an object of classptrdyn_array< 7>, initializing the base class with

dyn_array<void*>(arr). O
17.5.6.1.4ptrdyn_array< T>:ptr_dyn_array() (lib.cons.ptr.dyn.array.pt]
ptr_dyn_array(T obj ,size_t rep =1); ad

Constructs an object of classptrdyn_array< 7>, initializing the base class withO

dyn_array<void*>((void*) obj, rep). a
17.5.6.1.5ptrdyn_array< T>:ptr_dyn_array(const T**, [({lib.cons.ptr.dyn.array.ppt]
size t) a
ptr_dyn_array(const T* parr ,size_t ny; O

Constructs an object of classptrdyn_array< 7>, initializing the base class withO

dyn_array<void*>((void**) parr , ny. O
17.5.6.1.6 (lib.ptr.dyn.array::op+=.pda]
ptrdyn_array< T>:.operator+=(const ptrdyn_array< >&) O
ptrdyn_array< T>& operator+=(const ptrdyn_array< T>& rhs); O
Returns (ptrdyn_array< T>&)dyn_array<void*>::operator+=((const O
dyn_array<void*>&) rhs) . O
17.5.6.1.7ptrdyn_array< T>::operator+=(™) (lib.ptr.dyn.array::op+=.pt]
ptrdyn_array< T>& operator+=(T* obj); g
Returng(ptrdyn_array< T>&)dyn_array<void*>:: operator+=((void*) obj). g
17.5.6.1.8ptrdyn_array< T>:append(T* size_t) (lib.ptr.dyn.array::append.pt]
ptrdyn_array< T>& append(T* obj, size_t rep =1); t
Returng(ptrdyn_array< T>&)dyn_array<void*>::append((void*) obj, rep). a
17.5.6.1.9ptrdyn_array< T>:append(T**, size_t) (lib.ptr.dyn.array::append.ppt]
ptrdyn_array< T>& append(T** parr , size_t n =1); O
Returng(ptrdyn_array< T>&)dyn_array<void*>::append((void**) parr , ny. O
17.5.6.1.10ptrdyn_array< T>:assign(T*, size_t) (lib.ptr.dyn.array::assign.pt]
ptrdyn_array< T>& assign(T* obj, size_t rep =1); O
Returng(ptrdyn_array< T>&)dyn_array<void*>::assign((void*) obj, rep). O
17.5.6.1.11ptrdyn_array< T>:assign(T**, size_t) (lib.ptr.dyn.array::assign.ppt]
ptrdyn_array< T>& assign(T** parr ,size_t n =1), g

Returng(ptrdyn_array< T>&)dyn_array<void*>::assign((void**) parr , n). g

17-170 Library DRAFT: 27 May 1994 17.5.6.1.12
ptrdyn_array< T>:insert(size_t, const ptrdyn_array< T>&, size_t)
17.5.6.1.12ptrdyn_array< T>:insert(size _t, (lib.ptr.dyn.array::insert.pda]
const ptrdyn_array< T>&, size_t) g
ptrdyn_array< T>& insert(size_t pos, const ptrdyn_array< T>& arr);

Returns (ptrdyn_array< T>&)dyn_array<void*>::insert(pos, (const
dyn_array<void*>&) arr).

17.5.6.1.13ptrdyn_array<
size t)

ptrdyn_array<
Returng(ptrdyn_array<

17.5.6.1.14ptrdyn_array<
size t)

ptrdyn_array<
Returng(ptrdyn_array<

17.5.6.1.15ptrdyn_array<
ptrdyn_array<

Returng(ptrdyn_array<

T>:insert(size_t, T, (lib.ptr.dyn.array::insert.pt]
O
T>& insert(size_t pos, T*obj,size_t rep =1);
T>&)dyn_array<void*>::insert(pos, (void*) obj, rep).
T>:insert(size_t, T*, ({lib.ptr.dyn.array::insert.ppt]
O
T>& insert(size_t pos, T** parr ,size_t n =1);
T>&)dyn_array<void*>::insert(pos, (void**) parr , ny.
T>::remove(size_t, size t) (lib.ptr.dyn.array::remove]
T>& remove(size_t pos =0, size_t n =NPOS);
T>&)dyn_array<void*>::remove(pos, n).

17.5.6.1.16 (lib.ptr.dyn.array::sub.array]
ptrdyn_array< T>:sub_array(ptrdyn_array< T>&, O
size_t, size_t) O
ptrdyn_array< T>& sub_array(ptrdyn_array< T>& arr , size_t pos,
size t n =NPOS);
Returng(ptrdyn_array< T>&)dyn_array<void*>::sub_array(arr , pos, ny.
17.5.6.1.17ptrdyn_array< T>::swap(ptrdyn_array< T>&) ({lib.ptr.dyn.array::swap]
void swap(ptrdyn_array< T>& arr);
Callsdyn_array<void*>::swap(arr) .
17.5.6.1.18ptrdyn_array< T>::get_at(size_t) (lib.ptr.dyn.array::get.at]
T* get_at(size_t pos) const;
Returng(T)dyn_array<void*>::get_at(pos) .
17.5.6.1.19ptrdyn_array< T>:put_at(size_t, const T&) (lib.ptr.dyn.array::put.at]
void put_at(size_t pos, T* obj);

Callsdyn_array<void*>::put_at(pos, (void*) obj).

17.5.6.1.20 DRAFT: 27 May 1994
ptrdyn_array< T>::operator[](size_t)

17.5.6.1.20ptrdyn_array< T>::operator[](size_t)

T*& operator[](size_t pos);
T* const& operator[](size_t pos) const;
Returng T &)dyn_array<void*>::operatorf](pos) .

17.5.6.1.21ptrdyn_array< T>::.data()

T* data();
const T** data() const;

Returng(T)dyn_array<void*>::data()

17.5.6.1.22ptrdyn_array< T>::length()

size_t length() const;
Returnsdyn_array<void*>::length()

17.5.6.1.23ptrdyn_array< T>:resize(size_t)

void resize(size_t ny;
Callsdyn_array<void*>::resize(n.
17.5.6.1.24ptrdyn_array< T>::resize(size _t, ™)

void resize(size_t n, T obj);
Callsdyn_array<void*>::resize(n, (void*) obj).

17.5.6.1.25ptrdyn_array< T>:reserve()

size_t reserve() const;
Returnsdyn_array<void*>::reserve()

17.5.6.1.26ptrdyn_array< T>:reserve(size_t)

void reserve(size_t res_arg);
Returnsdyn_array<void*>::reserve(res arg).
17.5.6.2 operator+(const ptrdyn_array< T>&,
const ptrdyn_array< T>&)

ptrdyn_array< T> operator+(const ptrdyn_array<
const ptrdyn_array< T>& rhs);

Returnsptrdyn_array< 7><T>(lhs)+= rhs).

17.5.6.3 operator+(const ptrdyn_array< T>&, T¥)

ptrdyn_array< T> operator+(const ptrdyn_array<

Returnsptrdyn_array< 7><T>(lhs)+= rhs).

Library 17171

(lib.ptr.dyn.array::op.array]

(lib.ptr.dyn.array::data]

(lib.ptr.dyn.array::length]

(lib.ptr.dyn.array::resize]

(lib.ptr.dyn.array::resize.pt]

(lib.ptr.dyn.array::reserve]

(lib.ptr.dyn.array::reserve.cap]

T>& Ihs ,

T>& Ihs ,

[({lib.op+.pda.pda]
O

[([lib.op+.pda.pt]
™ obj);

17-172 Library DRAFT: 27 May 1994 17.5.6.4

operator+(T*, const ptrdyn_array< T>&)

17.5.6.40perator+(T*, const ptrdyn_array< T>&) [lib.op+.pt.pda]

ptrdyn_array< T>operator+(T* obj , const ptrdyn_array< T>& rhs); t
Returnsptrdyn_array< T><T>(/hs)+= rhs). a
17.5.7 Headexcomplex> [lib.header.complex]
EBox 139 B 0
%ibrary WG issue: Bjarne Stroustrup, November 10, 1993 a
O O
(The complex components should be specified as templétes. ™
EBox 140 g 0
%ibrary WG issue: Al Vermeulen , September 28, 1993 a
O]
(The complex classes need to be reviewed and verifid. ™

The headerxcomplex> defines a macro, three types, and numerous functions for representing and manip-
ulating complex numbers.

The macro is:
__STD_COMPLEX

whose definition is unspecified.

17.5.7.1 Complex numbers witlloat precision [lib.complex.with.float]
17.5.7.1.1 Clasfloat_complex [lib.float.complex]
class float_complex {
public:
float_complex(float re.arg =0, im_arg =0);
float_complex& operator+=(float_complex rhs);
float_complex& operator-=(float_complex rhs);
float_complex& operator*=(float_complex rhs);
float_complex& operator/=(float_complex rhs);
private:
I float re, im; exposition only
I3

The clasdloat_complex describes an object that can store the Cartesian components, tb&ype,
of a complex number.

For the sake of exposition, the maintained data is presented here as:
— float re, the real component;

— float im, the imaginary component.

17.5.7.1.1.1 DRAFT: 27 May 1994 Library 17173
float_complex::float_complex(float, float)

17.5.7.1.1.1float_complex::float_complex(float, float) [lib.cons.float.complex.f.f]
float_complex(float re.arg =0, im_arg =0);

Constructs an object of clafisat complex , initializingre tore_arg andim toim_arg .

17.5.7.1.1.2operator+=(float_complex) [lib.op+=.fc]
float_complex& operator+=(float_complex rhs);

Adds the complex valughs to the complex valuéthis and stores the sum fithis . The function
returns*this

17.5.7.1.1.3operator-=(float_complex) [lib.op-=.fc]

float_complex& operator-=(float_complex rhs);

Subtracts the complex valuks from the complex valughis and stores the differencefithis . The
function returnsthis

17.5.7.1.1.4operator*=(float_complex) [lib.op*=.fc]

float_complex& operator*=(float_complex rhs);

Multiplies the complex valuehs by the complex valuéthis and stores the product fithis . The
function returngthis

17.5.7.1.1.50perator/=(float_complex) [lib.op/=.fc]

float_complex& operator/=(float_complex rhs);

Divides the complex valughs into the complex valuéthis and stores the quotient fthis . The
function returngthis

17.5.7.1.2_float_complex(const double_complex&) [lib..float.complex.dc]
float_complex _float_complex(const double_complex& rhs);

Returndloat_complex((float)real(rhs), (float)imag(rhs)).

17.5.7.1.3_float_complex(const long_double_complex&) [lib..float.complex.ldc]
float_complex _float_complex(const long_double_complex& rhs);

Returndloat_complex((float)real(rhs), (float)imag(rhs)).

17.5.7.1.4operator+(float_complex, float_complex) [lib.op+.fc.fc]
float_complex operator+(float_complex Ihs , float_complex rhs);

Returndfloat_complex(Ihs) += rhs.

17.5.7.1.50perator+(float_complex, float) [lib.op+.fc.f]

float_complex operator+(float_complex Ihs , float rhs);

Returndfloat_complex(Ihs) += float_complex(rhs).

17-174 Library

17.5.7.1.6operator+(float, float_complex)

float_complex operator+(float
Returndfloat_complex(lhs) += rhs .

17.5.7.1.7operator-(float_complex, float_complex)

float_complex operator-(float_complex
Returndfloat_complex(lhs)-= rhs.

17.5.7.1.80operator-(float_complex, float)

float_complex operator-(float_complex

DRAFT: 27 May 1994

175.7.1.6

operator+(float, float_complex)

Ihs , float_complex rhs);

Ihs , float_complex

Ihs , float rhs);

Returnsfloat_complex(Ihs) -= float_complex(rhs) .
17.5.7.1.90operator-(float, float_complex)
float_complex operator-(float Ihs , float_complex rhs);

Returngfloat_complex(lhs)-= rhs.

17.5.7.1.100perator*(float_complex, float_complex)

float_complex operator*(float_complex
Returndfloat_complex(lhs Y*= rhs.

17.5.7.1.11operator*(float_complex, float)

float_complex operator*(float_complex

Ihs , float_complex

Ihs , float rhs);

Returndfloat_complex(Ihs) *= float_complex(rhs).
17.5.7.1.120perator*(float, float_complex)
float_complex operator*(float Ihs , float_complex rhs);

Returnsfloat_complex(Ihs)*= rhs .

17.5.7.1.13operator/(float_complex, float_complex)

float_complex operator/(float_complex
Returndfloat_complex(lhs)/= rhs.

17.5.7.1.140perator/(float_complex, float)

float_complex operator/(float_complex

Ihs , float_complex

Ihs , float rhs);

Returndfloat_complex(Ihs) /= float_complex(rhs).
17.5.7.1.150perator/(float, float_complex)
float_complex operator/(float Ihs , float_complex rhs);

Returndfloat_complex(Ilhs YI= rhs.

[lib.op+.f.fc]

[lib.op-.fc.fc]

rhs);

[lib.op-.fc.f]

[lib.op-.f.fc]

[lib.op*.fc.fc]

rhs);

[lib.op*.fc.f]

[lib.op*.f.fc]

[lib.op/.fc.fc]

rhs);

[lib.op/.fc.f]

[lib.op/.f.fc]

17.5.7.1.16 DRAFT: 27 May 1994
operator+(float_complex)

17.5.7.1.160perator+(float_complex)

float_complex operator+(float_complex Ihs);
Returndfloat_complex(Ihs).

17.5.7.1.17operator-(float_complex)

float_complex operator-(float_complex Ihs);
Returndfloat_complex(-real(Ihs), -imag(Ihs)) .

17.5.7.1.18operator==(float_complex, float_complex)

Library 1#175

[lib.op+.fc]

[lib.op-.fc]

[lib.op==.fc.fc]

bool operator==(float_complex Ihs , float_complex >rhs);

Returngreal(/hs) == real(rhs) && imag(/hs) == imag(

17.5.7.1.190perator==(float_complex, float)

bool operator==(float_complex Ihs , float rhs);
Returngreal(/hs)== rhs &&imag(lhs) ==

17.5.7.1.200perator==(float, float_complex)

bool operator==(float Ihs , float_complex rhs);
Returnshs ==real(rhs)&&imag(rhs)==

17.5.7.1.21operator!=(float_complex, float_complex)

bool operator!=(float_complex Ihs , float_complex
Returngreal(/hs) !=real(rhs) || imag(Ihs) = imag(

17.5.7.1.220perator!=(float_complex, float)

bool operator!=(float_complex Ihs , float rhs);
Returngreal(/hs)!= rhs ||imag(/hs)!=0

17.5.7.1.230perator!=(float, float_complex)

bool operator!=(float Ihs , float_complex rhs);
Returnslhs !=real(rhs) || imag(rhs)!1=0

17.5.7.1.240perator>>(istream&, float_complex&)

istream& operator>>(istream& is , float_complex&

Evaluates the expression:

is >>ch&&ch=="(
&& is >> re >>ch&&ch=="/
&& is >> im >>ch&&ch==");

wherech is an object of typehar andre andim are objects of typ#oat

function assignfioat_complex(re, im) tox.

rhs) .

[lib.op==.fc.f]

[lib.op==.f.fc]

[lib.op!=.fc.fc]
rhs);

rhs).

[lib.op!=.fc.f]

[lib.op!=.f.fc]

[lib.ext.fc]

X);

oOoo O

. If the result is nonzero, the

17-176 Library DRAFT: 27 May 1994 175.7.1.24

operator>>(istream&, float_complex&)
The function returnss .

17.5.7.1.250perator<<(ostream&, float_complex) [lib.ins.fc]

ostreamé& operator<<(ostream& os, float_complex X);

Returnsos <<’(’ << real(X) <<’,” << imag(X) <<’y

17.5.7.1.26abs(float_complex)

float abs(float_complex X);
Returns the magnitude sf

17.5.7.1.27arg(float_complex)

float arg(float_complex X);
Returns the phase anglexof

17.5.7.1.28conij(float_complex)

float_complex conj(float_complex
Returns the conjugate &f

17.5.7.1.29cos(float_complex)

float_complex cos(float_complex
Returns the cosine of.

17.5.7.1.30cosh(float_complex)

float_complex cosh(float_complex
Returns the hyperbolic cosine xf

17.5.7.1.31exp(float_complex)

float_complex exp(float_complex
Returns the exponential &f

17.5.7.1.32imag(float_complex)

float imag(float_complex X);
Returns the imaginary part mf

17.5.7.1.33log(float_complex)

float_complex log(float_complex

Returns the logarithm of.

[lib.abs.fc]

[lib.arg.fc]

[lib.conj.fc]

[lib.cos.fc]

X);

[lib.cosh.fc]

X);

[lib.exp.fc]

X);

[lib.imag.fc]

[lib.log.fc]

17.5.7.1.34norm(float_complex) DRAFT: 27 May 1994 Library 17-177

17.5.7.1.34norm(float_complex) [lib.norm.fc]

float norm(float_complex X);
Returns the squared magnitudexof

17.5.7.1.35polar(float, float) [lib.polar.f.f]

float_complex polar(float rho , float theta);

Returns thdloat_complex value corresponding to a complex number whose magnitud®isand
whose phase anglefiketa .

17.5.7.1.36pow(float_complex, float_complex) [lib.pow.fc.fc]

float_complex pow(float_complex X, float_complex)i
Returnsx raised to the power.

17.5.7.1.37pow(float_complex, float) [lib.pow.fc.f]

float_complex pow(float_complex X, float)
Returnsx raised to the power.

17.5.7.1.38pow(float_complex, int) [lib.pow.fc.i]

float_complex pow(float_complex X, int)
Returnsx raised to the power.

17.5.7.1.39pow(float, float_complex) [lib.pow.f.fc]

float_complex pow(float X, float_complex ¥);
Returnsx raised to the power.

17.5.7.1.40real(float_complex) [lib.real.fc]

float real(float_complex X);
Returns the real part af

17.5.7.1.41sin(float_complex) [lib.sin.fc]

float_complex sin(float_complex X);
Returns the sine of.

17.5.7.1.42sinh(float_complex) [lib.sinh.fc]

float_complex sinh(float_complex X);

Returns the hyperbolic sine »f

17-178 Library DRAFT: 27 May 1994 17.5.7.1.43sqrt(float_complex)

17.5.7.1.43sqrt(float_complex) [lib.sgrt.fc]

float_complex sqrt(float_complex X);

Returns the square root.of

17.5.7.2 Complex numbers witldouble precision [lib.complex.with.d]
17.5.7.2.1 Classlouble_complex [lib.double.complex]
class double_complex {
public:
double_complex(re_arg =0, im_arg =0);
double_complex(const float_complex& rhs);
double_complex& operator+=(double_complex rhs);
double_complex& operator-=(double_complex rhs);
double_complex& operator*=(double_complex rhs);
double_complex& operator/=(double_complex rhs);
private:
I double re, Iim; exposition only
I3

The classlouble_complex describes an object that can store the Cartesian components, dbtype
ble , of a complex number.

For the sake of exposition, the maintained data is presented here as:
— double re, the real component;

— double im, the imaginary component.

17.5.7.2.1.1double_complex::double_complex(double, [lib.cons.double.complex.d.d]
double)
double_complex(double re.arg =0, im_arg =0);

Constructs an object of cladsuble_complex , initializing re tore_arg andim toim_arg .

17.5.7.2.1.2 [lib.cons.double.complex.fc]
double_complex::double_complex(float_complex&)

double_complex(float_complex& rhs);

Constructs an object of cladsuble_complex , initializing re to (double)real(rhs) andim to
(double)imag(rhs).

17.5.7.2.1.3operator+=(double_complex) [lib.op+=.dc]

double_complex& operator+=(double_complex rhs);

Adds the complex valughs to the complex valuéthis and stores the sum fithis . The function
returns*this

17.5.7.2.1.4operator-=(double_complex) [lib.op-=.dc]

double_complex& operator-=(double_complex rhs);

Subtracts the complex valuks from the complex valughis and stores the difference’this . The
function returngthis

17.5.7.2.15 DRAFT: 27 May 1994
operator*=(double_complex)

17.5.7.2.1.50perator*=(double_complex)

double_complex& operator*=(double_complex rhs);

Library 17179

[lib.op*=.dc]

Multiplies the complex valuehs by the complex valuéthis and stores the product fithis . The

function returngthis

17.5.7.2.1.60perator/=(double_complex)

double_complex& operator/=(double_complex rhs);

[lib.op/=.dc]

Divides the complex valughs into the complex valuéthis and stores the quotient fthis . The

function returngthis

17.5.7.2.2_double_complex(const long_double_complex&) [lib..double.complex.ldc]

double_complex _double_complex(const long_double_complex&
Returnsdouble_complex((double)real(rhs), (double)imag(rhs)).

17.5.7.2.3operator+(double_complex, double_complex)

double_complex operator+(double_complex Ihs , double_complex
Returnsdouble_complex(lhs)+= rhs.

17.5.7.2.4operator+(double_complex, double)

double_complex operator+(double_complex Ihs , double rhs);
Returnsdouble_complex(lhs) += double_complex(rhs).

17.5.7.2.50perator+(double, double _complex)

double_complex operator+(double Ihs , double_complex rhs);
Returnsdouble_complex(lhs) += rhs.

17.5.7.2.60perator-(double_complex, double_complex)

double_complex operator-(double_complex Ihs , double_complex
Returnsdouble_complex(/hs)-= rhs.

17.5.7.2.7operator-(double_complex, double)

double_complex operator-(double_complex Ihs , double rhs);
Returnsdouble_complex(/hs) -= double_complex(rhs).

17.5.7.2.80operator-(double, double_complex)

double_complex operator-(double Ihs , double_complex rhs);

Returnsdouble_complex(lhs)-= rhs.

rhs);

[lib.op+.dc.dc]
rhs);

[lib.op+.dc.d]

[lib.op+.d.dc]

[lib.op-.dc.dc]

rhs);

[lib.op-.dc.d]

[lib.op-.d.dc]

17-180 Library DRAFT: 27 May 1994 17.5.7.2.9
operator*(double_complex, double_complex)

17.5.7.2.90operator*(double_complex, double_complex) [lib.op*.dc.dc]

double_complex operator*(double_complex Ihs , double_complex rhs);

Returnsdouble_complex(lhs)*= rhs.

17.5.7.2.100perator*(double_complex, double) [lib.op*.dc.d]
double_complex operator*(double_complex Ihs , double rhs);

Returnsdouble_complex(/hs) *= double_complex(rhs).

17.5.7.2.11operator*(double, double_complex) [lib.op*.d.dc]
double_complex operator*(double Ihs , double_complex rhs);

Returnsdouble_complex(/hs)*= rhs.

17.5.7.2.120perator/(double_complex, double_complex) [lib.op/.dc.dc]

double_complex operator/(double_complex Ihs , double_complex rhs);

Returnsdouble_complex(lhs)/= rhs.

17.5.7.2.13operator/(double_complex, double) [lib.op/.dc.d]
double_complex operator/(double_complex Ihs , double rhs);

Returnsdouble_complex(Ihs) /= double_complex(rhs).

17.5.7.2.140perator/(double, double_complex) [lib.op/.d.dc]
double_complex operator/(double Ihs , double_complex rhs);

Returnsdouble_complex(lhs)/= rhs.

17.5.7.2.150perator+(double_complex) [lib.op+.dc]

double_complex operator+(double_complex Ihs);

Returnsdouble_complex(/hs).

17.5.7.2.160perator-(double_complex) [lib.op-.dc]
double_complex operator-(double_complex Ihs);

Returnsdouble_complex(-real(Ihs), -imag(lhs)) .

17.5.7.2.170operator==(double_complex, double_complex) [lib.op==.dc.dc]
bool operator==(double_complex Ihs , double_complex rhs);

Returngreal(/hs) == real(rhs) && imag(I/hs)==imag(rhs).

17.5.7.2.180operator==(double_complex, double) [lib.op==.dc.d]
bool operator==(double_complex Ihs , double rhs);

Returngreal(/hs)== rhs &&imag(lhs) ==

17.5.7.2.19 DRAFT: 27 May 1994
operator==(double, double_complex)

Library 17181

17.5.7.2.190perator==(double, double_complex) [lib.op==.d.dc]
bool operator==(double Ihs , double_complex rhs); ad

Returnshs ==real(rhs)&&imag(rhs)==

17.5.7.2.200perator!=(double_complex, double_complex) [lib.op!=.dc.dc]
bool operator!=(double_complex Ihs , double_complex rhs); O

Returngreal(/hs) !=real(rhs) || imag(lhs)!=imag(rhs).

17.5.7.2.21operator!=(double_complex, double) [lib.op!=.dc.d]
bool operator!=(double_complex Ihs , double rhs); O

Returngreal(/hs)!= rhs ||imag(/hs)!=0

17.5.7.2.220perator!=(double, double_complex) [lib.op!=.d.dc]
bool operator!=(double Ihs , double_complex rhs); O

Returnslhs !=real(rhs) || imag(rhs)!1=0

17.5.7.2.23operator>>(istream&, double_complex&) [lib.ext.dc]
istream& operator>>(istream& is , double_complex& X);

Evaluates the expression: a
is >>ch&&ch=="(O
&& is >> re >>ch&&ch=="/ ad
&& is >> im >>ch &&ch=="); O

wherech is an object of typehar andre andim are objects of typdouble .

the function assigndouble_complex(re, im) tox.

The function returngs .

17.5.7.2.240perator<<(ostreamé&, double_complex)

ostreamé& operator<<(ostream& 0s, double_complex X);
Returnsos <<’(’ << real(X) <<’,” << imag(X) <<’y

17.5.7.2.25abs(double_complex)

double abs(double_complex X);
Returns the magnitude sf

17.5.7.2.26arg(double_complex)

double arg(double_complex X);

Returns the phase anglexof

If the result is nonzero,

[lib.ins.dc]

[lib.abs.dc]

[lib.arg.dc]

17-182 Library DRAFT: 27 May 1994 17.5.7.2.27conj(double_complex)

17.5.7.2.27conj(double_complex) [lib.conj.dc]

double_complex conj(double_complex X);
Returns the conjugate g&f

17.5.7.2.28cos(double_complex) [lib.cos.dc]

double_complex cos(double_complex X);
Returns the cosine of.

17.5.7.2.29cosh(double_complex) [lib.cosh.dc]

double_complex cosh(double_complex X);
Returns the hyperbolic cosine xf

17.5.7.2.30exp(double_complex) [lib.exp.dc]

double_complex exp(double_complex X);
Returns the exponential &f

17.5.7.2.31imag(double_complex) [lib.imag.dc]

double imag(double_complex X);
Returns the imaginary part sf

17.5.7.2.32log(double_complex) [lib.log.dc]

double_complex log(double_complex X);
Returns the logarithm of.

17.5.7.2.33norm(double_complex) [lib.norm.dc]

double norm(double_complex X);
Returns the squared magnitudexof

17.5.7.2.34polar(double, double) [lib.polar.d.d]

double_complex polar(double rho , double theta);

Returns thedouble_complex value corresponding to a complex number whose magnitudm isand
whose phase anglefiketa .

17.5.7.2.35pow(double_complex, double_complex) [lib.pow.dc.dc]

double_complex pow(double_complex X, double_complex)

Returnsx raised to the power.

17.5.7.2.36 DRAFT: 27 May 1994

pow(double_complex, double)

17.5.7.2.36pow(double_complex, double)

double_complex pow(double_complex
Returnsx raised to the power.

17.5.7.2.37pow(double_complex, int)

double_complex pow(double_complex
Returnsx raised to the power.

17.5.7.2.38pow(double, double_complex)

X, double)i

X, int y);

double_complex pow(double X, double_complex)

Returnsx raised to the power.

17.5.7.2.39real(double_complex)

double real(double_complex X);

Returns the real part of

17.5.7.2.40sin(double_complex)

double_complex sin(double_complex
Returns the sine of.

17.5.7.2.41sinh(double_complex)

double_complex sinh(double_complex
Returns the hyperbolic sine »f

17.5.7.2.42sqrt(double_complex)

double_complex sqrt(double_complex
Returns the square root xf
17.5.7.3 Complex numbers withong double

17.5.7.3.1 Clastong_double_complex

class long_double_complex {
public:

X);

X);

precision

long_double_complex(re_.arg =0, im_arg
long_double_complex(const float_complex&
long_double_complex(const double_complex&

private:
I long double re, im;

h

exposition only

Library 17183

[lib.pow.dc.d]

[lib.pow.dc.i]

[lib.pow.d.dc]

[lib.real.dc]

[lib.sin.dc]

[lib.sinh.dc]

[lib.sqrt.dc]

[lib.complex.with.Id]

[lib.long.double.complex]

rhs);
rhs);
long_double_complex& operator+=(long_double_complex
long_double_complex& operator-=(long_double_complex
long_double_complex& operator*=(long_double_complex
long_double_complex& operator/=(long_double_complex

rhs);
rhs);
rhs);
rhs);

17-184 Library DRAFT: 27 May 1994 17.5.7.3.1 Clask®ng_double_complex

The clasdong_double_complex describes an object that can store the Cartesian components, of type
long double , of a complex number.

For the sake of exposition, the maintained data is presented here as:
— long double re , the real component;

— long double im, the imaginary component.

17.5.7.3.1.1 [lib.cons.long.double.complex.ld.ld]
long_double_complex::long_double_complex(long
double, long double)

long_double_complex(long double re.arg =0, im_arg =0);

Constructs an object of clagsg_double_complex , initializing re tore_arg andim toim_arg .

17.5.7.3.1.2 [lib.cons.long.double.complex.fc]
long_double_complex::long_double_complex(float_complex&)
long_double_complex(float_complex& rhs);

Constructs an object of classlong _double complex , initializing re to (long

double)real(rhs) andim to (long double)imag(rhs).

17.5.7.3.1.3 [lib.cons.long.double.complex.dc]
long_double_complex::long_double_complex(double_complex&)
long_double_complex(double_complex& rhs);

Constructs an object of classlong_double_complex , initializing re to (long

double)real(rhs) andim to (long double)imag(rhs) .

17.5.7.3.1.4operator+=(long_double_complex) [lib.op+=.ldc]
long_double_complex& operator+=(long_double_complex rhs);

Adds the complex valughs to the complex valuéthis and stores the sum fthis . The function
returns*this

17.5.7.3.1.50perator-=(long_double_complex) [lib.op-=.1dc]

long_double_complex& operator-=(long_double_complex rhs);

Subtracts the complex valuks from the complex valughis and stores the differencefthis . The
function returngthis

17.5.7.3.1.60perator*=(long_double_complex) [lib.op*=.ldc]

long_double_complex& operator*=(long_double_complex rhs);

Multiplies the complex valuehs by the complex valuéthis and stores the product fithis . The
function returngthis

17.5.7.3.1.7
operator/=(long_double_complex)

DRAFT: 27 May 1994

17.5.7.3.1.7operator/=(long_double_complex)

long_double_complex& operator/=(long_double_complex

Divides the complex valughs into the complex valuéthis
function returngthis

17.5.7.3.20perator+(long_double_complex,
long_double_complex)

long_double_complex operator+(long_double_complex
long_double_complex rhs);

Returndong_double_complex(Ihs) += rhs .

17.5.7.3.3operator+(long_double_complex, long double)
long_double_complex operator+(long_double_complex
long double rhs);

Returndong_double_complex(Ihs) +=long_double_complex(

17.5.7.3.4operator+(long double, long_double_complex)
long_double_complex operator+(long double lhs ,
long_double_complex rhs);

Returndong_double_complex(Ihs) += rhs .

17.5.7.3.50perator-(long_double_complex, long_double_complex)
long_double_complex operator-(long_double_complex
long_double_complex rhs);

Returndong_double_complex(lhs)-= rhs.

17.5.7.3.60perator-(long_double_complex, long double)
long_double_complex operator-(long_double_complex
long double rhs);

Returndong_double_complex(Ihs) -=long_double_complex(

17.5.7.3.70operator-(long double, long_double_complex)
long_double_complex operator-(long double Ihs ,
long_double_complex rhs);

Returndong_double_complex(lhs)-= rhs.

17.5.7.3.80operator*(long_double_complex,
long_double_complex)

long_double_complex operator*(long_double_complex
long_double_complex rhs);

Returndong_double_complex(Ilhs Y*= rhs.

Library 17185

[lib.op/=.dc]
rhs);

and stores the quotient fthis . The

[lib.op+.ldc.ldc]

Ihs ,
[lib.op+.Idc.Id]
Ihs ,
rhs).
[lib.op+.1d.Idc]
[lib.op-.Idc.ldc]
Ihs ,
[lib.op-.1dc.Id]
Ihs ,
rhs) .
[lib.op-.1d.Idc]
[lib.op*.ldc.ldc]
Ihs ,

17-186 Library DRAFT: 27 May 1994 17.5.7.3.9
operator*(long_double_complex, long double)

17.5.7.3.90perator*(long_double_complex, long double) [lib.op*.Idc.Id]

long_double_complex operator*(long_double_complex Ihs ,
long double rhs);

Returndong_double_complex(Ihs) *=long_double_complex(rhs).
17.5.7.3.100perator*(long double, long_double_complex) [lib.op*.ld.ldc]
long_double_complex operator*(long double Ihs ,
long_double_complex rhs);

Returndong_double_complex(Ilhs Y*= rhs.
17.5.7.3.11operator/(long_double_complex, [lib.op/.Idc.Idc]
long_double_complex)
long_double_complex operator/(long_double_complex Ihs ,
long_double_complex rhs);

Returndong_double_complex(lhs YI= rhs.

17.5.7.3.120perator/(long_double_complex, long double) [lib.op/.Idc.Id]

long_double_complex operator/(long_double_complex Ihs ,
long double rhs);

Returndong_double_complex(Ihs) /= long_double_complex(rhs).
17.5.7.3.130perator/(long double, long_double_complex) [lib.op/.1d.ldc]
long_double_complex operator/(long double Ihs ,
long_double_complex rhs);

Returndong_double_complex(lhs YI= rhs.

17.5.7.3.140perator+(long_double_complex) [lib.op+.ldc]

long_double_complex operator+(long_double_complex Ihs);

Returndong_double_complex(Ihs) .

17.5.7.3.150perator-(long_double_complex) [lib.op-.ldc]
long_double_complex operator-(long_double_complex Ihs);

Returndong_double_complex(-real(Ihs), -imag(lhs)) .

17.5.7.3.160perator==(long_double_complex, [lib.op==.ldc.ldc]

long_double_complex)

bool operator==(long_double_complex Ihs , long_double_complex rhs);

Returngreal(/hs) == real(rhs) && imag(I/hs)==imag(rhs).

17.5.7.3.17 DRAFT: 27 May 1994
operator==(long_double_complex, long double)

Library 17187

17.5.7.3.170operator==(long_double_complex, long double) [lib.op==.ldc.Id]
bool operator==(long_double_complex Ihs , long double rhs);

Returngeal(/hs)== rhs &&imag(lhs) ==

17.5.7.3.180operator==(long double, long_double_complex) [lib.op==.ld.Idc]
bool operator==(long double Ihs , long_double_complex rhs);

Returnshs ==real(rhs)&&imag(rhs)==

17.5.7.3.190operator!=(long_double_complex, [lib.op!=.ldc.Idc]

long_double_complex)

bool operator!=(long_double_complex Ihs , long_double_complex rhs);

Returngreal(/hs) !=real(rhs) || imag(Ihs)!=imag(rhs).

17.5.7.3.200perator!=(long_double_complex, long double) [lib.op!=.ldc.Id]
bool operator!=(long_double_complex Ihs , long double rhs);

Returngreal(/hs)!= rhs ||imag(/hs)!=0

17.5.7.3.21operator!=(long double, long_double_complex) [lib.op!=.1d.ldc]
bool operator!=(long double Ihs , long_double_complex rhs);

Returnsths '=real(rhs) || imag(rhs)!1=0

17.5.7.3.220perator>>(istreamé&, long_double_complex&) [lib.ext.ldc]
istream& operator>>(istream& is , long_double_complex& X);

Evaluates the expression:

is >>ch&&ch=="(
&& is >> re >>ch&&ch==",
&& is >> im >>ch&&ch==");

wherech is an object of typehar andre andim are objects of typéong double

nonzero, the function assiglmg_double_complex(re, im) tox.

The function returnss .

17.5.7.3.230perator<<(ostreamé&, long_double_complex)

ostreamé& operator<<(ostreamé& 0s, long_double_complex
Returnsos <<’(’ << real(X) <<, << imag(X) <<’y

17.5.7.3.24abs(long_double _complex)

long double abs(long_double_complex X);

Returns the magnitude sf

[lib.ins.Idc]

X);

[lib.abs.ldc]

. If the result is

i o R |

OO

17-188 Library DRAFT: 27 May 1994

17.5.7.3.25arg(long_double_complex)

long double arg(long_double_complex X);
Returns the phase anglexof

17.5.7.3.26conj(long_double_complex)

long_double_complex conj(long_double_complex
Returns the conjugate g&f

17.5.7.3.27cos(long_double_complex)

long_double_complex cos(long_double_complex
Returns the cosine of.

17.5.7.3.28cosh(long_double_complex)

long_double_complex cosh(long_double_complex
Returns the hyperbolic cosine xf

17.5.7.3.29exp(long_double_complex)

long_double_complex exp(long_double_complex
Returns the exponential &f

17.5.7.3.30imag(long_double_complex)

long double imag(long_double_complex X);
Returns the imaginary part sf

17.5.7.3.31log(long_double_complex)

long_double_complex log(long_double_complex
Returns the logarithm of.

17.5.7.3.32norm(long_double_complex)

long double norm(long_double_complex X);
Returns the squared magnitudexof

17.5.7.3.33polar(long double, long double)

17.5.7.3.25
arg(long_double_complex)

[lib.arg.ldc]

[lib.conj.ldc]

X);

[lib.cos.ldc]

[lib.cosh.ldc]

X);

[lib.exp.ldc]

X);

[lib.imag.ldc]

[lib.log.ldc]

X);

[lib.norm.ldc]

[lib.polar.Id.Id]

long_double_complex polar(long double rho , long double theta);
Returns thdong_double_complex

rho and whose phase angletieta .

value corresponding to a complex number whose magnitude is

17.5.7.3.34 DRAFT: 27 May 1994 Library 17189
pow(long_double_complex, long_double_complex)

17.5.7.3.34pow(long_double_complex, long_double_complex) [lib.pow.ldc.ldc]

long_double_complex pow(long_double_complex X, long_double_complex)
Returnsx raised to the power.

17.5.7.3.35pow(long_double_complex, long double) [lib.pow.Idc.Id]

long_double_complex pow(long_double_complex X, long double ¥);
Returnsx raised to the power.

17.5.7.3.36pow(long_double_complex, int) [lib.pow.ldc.i]

long_double_complex pow(long_double_complex X, int)i
Returnsx raised to the power.

17.5.7.3.37pow(long double, long_double_complex) [lib.pow.Id.ldc]

long_double_complex pow(long double X, long_double_complex)
Returnsx raised to the power.

17.5.7.3.38real(long_double_complex) [lib.real.ldc]

long double real(long_double_complex X);
Returns the real part of

17.5.7.3.39sin(long_double_complex) [lib.sin.ldc]

long_double_complex sin(long_double_complex X);
Returns the sine of.

17.5.7.3.40sinh(long_double_complex) [lib.sinh.ldc]

long_double_complex sinh(long_double_complex X);

Returns the hyperbolic sine »f

17.5.7.3.41sqrt(long_double_complex) [lib.sgrt.ldc]
long_double_complex sqrt(long_double_complex X);

Returns the square root xf O

17.5.8 Headerobjcpy> (lib.header.objcpy]

The headerxobjcpy> defines several template functions that copy, construct, and destroy arraiys of

objects. O

17.5.8.1 Template functiorobjcpy< T>(T*, const T*, size_t) (lib.template.objcpy.t]
template<class T> T*objcpy(T* dest , const T src , size_t n); a

Assignssrc [I] to dest [1] for all non-negative values df less tham. The pointergdest andsrc [0
shall designate the initial elements of non-overlapping arraysatfjects of typel. The order in which O
assignments take place is unspecified. a

17-190 Library DRAFT: 27 May 1994 17.5.8.1
Template function objcpy< T>(T*, const T*, size_t)

The function returnglest . a
17.5.8.2 Template functiorobjmove< T>(T*, T*, size_t) (lib.template.objmove.t]
template<class T> T*objmove(T* dest, T* src,size_t ny; a

Assignssrc [I] to dest [I] for all non-negative values df less tham. The pointergdest andsrc [0
shall designate the initial elements of arraysiadbjects of typeT. If dest == src , no assignment
occurs. g

Otherwise, each element dést is destroyed after it has been assigned to its corresponding elemdnt in
src . An element ofdest that is also an element sfc is first assigned to its corresponding element i

src , then destroyed, before it is assigned to. a
The order in which elements are assigned or destroyed is otherwise unspecified. ad
The function returnglest . O
17.5.8.3 Template functiorobjcpy< T>(void*, const T*, {lib.template.objcpy.v]
size t) O
template<class T> T* objcpy(void* dest , const T* src , size_t ny; a

Constructs(() dest)[1] by copyingsrc [/] for all non-negative values df less thann. The 0O
pointer dest shall designate a region of storage suitable for representing an anmaybjfcts of typel. [0
The pointersrc shall designate the initial element of an arrayr@hbjects of typerl that does not overlap

the region designated lmlest . The order in which elements are constructed is unspecified. O
The function returng T*) dest . ad
17.5.8.4 Template functiorobjmove< T>(void*, T*, size 1) [{lib.template.objmove.v]
template<class T> T* objmove(void* dest , T* src,size_t ny; a
Constructs(() dest)[1] by copyingsrc [I] for all non-negative values df less thann. The 0O
pointerdest shall designate a region of storage suitable for representing an amwaybjects of typel. [
The pointersrc shall designate the initial element of an arraynobbjects of typeT. If dest == [
(void*) src , no construction occurs. O
Otherwise, each element dést is destroyed after it has been copied to its corresponding elensmnt.in O
An element ofdest that is also an element sfc is first copied to its corresponding elementsie , [
then destroyed, before it is constructed. O
The order in which elements are constructed or destroyed is otherwise unspecified. O
The function return§ T*) dest . ad
17.5.8.5 Template functiorobjconstruct< T>(void*, size_t) [lib.template.objcons]
template<class T> T* objconstruct(void* dest , size_t ny; a
Constructq(T*) dest)[1] with the constructo() for all non-negative values d@f less tham. The 0O
pointer dest shall designate a region of storage suitable for representing an anaybjgcts of typel. [0
The order in which elements are constructed is unspecified. O
The function return§ T*) dest . O

17.5.8.6 DRAFT: 27 May 1994 Library 17191
Template function objdestroy< T>(T*, size_t)

17.5.8.6 Template functiorobjdestroy< T>(T*, size_t) (lib.template.objdes]

template<class T> void* objdestroy(T* dest , size_t ny; a

Destroys((T*) dest)[1] for all non-negative values df less tham. The pointerdest shall desig- O

nate an array af objects of typel. The order in which elements are destroyed is unspecified. a

The function returngvoid*) dest . ad
17.5.9 Headexlocale> [({lib.header.locale]

The headexlocale> defines two classes and several functions that encapsulate and manipulate thélinfor-
mation peculiar to a locale. a

In this subclause, the type nasteuct tm is an incomplete type that is definedictime> . ad
17.5.9.1 Clas$ocale (lib.locale]

class locale {

public:
typedef T1 category;
static const category COLLATE;
static const category CTYPE;
static const category MESSAGES;
static const category MONETARY;
static const category NUMERIC;
static const category TIME;
static const category ALL;
typedef T2 ctype;
static const ctype ALPHA,;
static const ctype CNTRL;
static const ctype DIGIT,;
static const ctype LOWER,;
static const ctype PRINT,;
static const ctype PUNCT;
static const ctype SPACE;
static const ctype UPPER;
static const ctype XDIGIT;
static const ctype ALNUM,;
static const ctype GRAPH,;
static const ctype NO_MATCH;
typedef T3 dateorder;
static const dateorder DMY;
static const dateorder MDY;
static const dateorder NO_ORDER;
static const dateorder YDM,;
static const dateorder YMD;
typedef T4 moneysymbol;
static const moneysymbol LOCAL;
static const moneysymbol INTL;
static const moneysymbol NONE;
typedef T5 totype;
static const totype DOWN,;
static const totype NO_CHANGE;
static const totype UP;

OO0 oooooOooOooOooOoooooooooooaooo

17-192 Library

DRAFT: 27 May 1994

class virtuals {

protected:

private:

17.5.9.1 Claskocale

~
~

des

OO0O0O0OOooOOoOo00OoooooooOoooon

OooooOoooooooooogoooono

virtuals(size_t refs_arg);

virtual ~virtuals();

virtual virtuals* copybut(const char* name, category cat)
const;

virtual void name(ostreamé& 0s) const = 0;

virtual bool equal(const virtuals* vir_arg , category cat)
const;

virtual void insert(ostreamé& 0s, bool n) const;

virtual void insert(ostream& os, long n) const;

virtual void insert(ostream& 0s, unsigned long n) const;

virtual void insert(ostream& 0s, double n) const;

virtual void insert(ostreamé& 0s, long double n) const;

virtual void extract(istreamé& is , bool& n) const;

virtual void extract(istreamé& is ,long& n)const;

virtual void extract(istreamé& is , unsigned long& n) const;

virtual void extract(istream& is , double& n) const;

virtual void extract(istream& is , long double& n) const;

virtual int narrow(wchar_t we, char& ¢) const;

virtual int widen(char ¢, wchar_t& wc) const;

virtual bool is(ctype mask, wchar_t wc) const;

virtual size_t is(const wchar_t* src , size_t n, ctype*
const;

virtual ctype namedctype(const char * name) const;

virtual char to(totype way, char ¢) const;

virtual char to(totype way, wchar_t C) const;

virtual size_t to(totype way, char* s, size_t n) const;

virtual size_t to(totype way, wchar_t* s, size_t n) const;

virtual totype namedto(const char * name) const;

virtual int collate(const char* s1, size_t ni,
const char* s2, size_t n2) const;

virtual int collate(const wchar_t* s1,size t ni,
const wchar_t* s2, size_t n2) const;

virtual size_t transform(ostreamé& o0s, const char* s,
size_t n)const;

virtual size_t transform(ostream& 0s, const wchar_t* s,
size_t n)const;

virtual long hash(const char* s, size_t n) const;

virtual long hash(const wchar_t* s, size_t n) const;

virtual void insert(ostream& 0s, const struct tm* t,
char code); const

virtual void extracttime(istreamé& is , struct tm* t) const;

virtual void extractdate(istream& is , struct tm* t) const;

virtual void extractweekday(istream& is , struct tm* t) const;

virtual void extractmonthname(istreamé& is , struct tm* t)

const;

virtual dateorder date_order() const;

virtual void insert(ostream&

0s, double units

moneysymbol sym) const;

virtual void insert(ostream&

os, char* digits

moneysymbol sym) const;

virtual void extractmoney(istream&

is , double& units

moneysymbol sym) const;

virtual void extractmoney(istream&

is , ostream& digits

moneysymbol sym) const;
virtual int moneyfracdigits(moneysymbol Ssym) const;

const ctype* ctypetable ;

virtuals(const virtuals&); // not defined
const virtuals& operator=(const virtuals&); // not defined

void add_reference();

O OoooOooooooooogon

O

O

O

17.5.9.1 Clas$ocale

1

DRAFT: 27 May 1994

void remove_reference();

size_t

refs exposition only

Library 17-193

OooOoo

17-194 Library

DRAFT: 27 May 1994 17.5.9.1 Clasbkcale
locale(const char* name;
locale(virtuals* vir_arg);
locale(const locale& loc , const char* name, category cat);
~locale();
bool ok() const;
bool operator==(const locale& rhs) const;
bool operator!=(const locale& rhs) const;
bool equal(const locale& rhs , category cat =ALL) const;
void insert(ostreamé& 0s, bool n) const;
void insert(ostream& os, long n) const;
void insert(ostreamé& 0s, unsigned long n) const;
void insert(ostreamé& 0s, double n) const;
void insert(ostreamé& 0s, long double n) const;
void extract(istreamé& is , bool& n) const;
void extract(istreamé& is ,long& n) const;
void extract(istreamé& is , unsigned long& n) const;
void extract(istreamé& is , double& n) const;
void extract(istreamé& is , long double& n) const;
int narrow(wchar_t we, char& c) const;
int widen(char ¢, wchar_t& wc) const;
bool is(ctype mask, char ¢) const;
bool is(ctype mask, unsigned char C) const;
bool is(ctype mask, signed char C) const;
bool is(ctype mask, int C) const;
bool is(ctype mask, wchar_t wc) const;
size_tis(const char* src , size_t n, ctype* dest) const;
size_t is(const wchar_t* src , size_t n, ctype* dest) const;
ctype namedctype(const char * name) const;
char to(totype way, char c¢) const;
char to(totype way, unsigned char C) const;
char to(totype way, signed char c) const;
char to(totype way, wchar_t C) const;
size_t to(totype way, char* s, size_t n) const;
size_t to(totype way, wchar_t* s, size_t n) const;
totype namedto(const char * name) const;
int collate(const char* s1, size_t ni,
const char* s2, size t n2) const;
int collate(const wchar_t* s1, size_t ni,
const wchar_t* s2, size_t n2) const;
size_t transform(ostreamé& 0s, const char* s, size_t n) const;
size_t transform(ostream& 0s, const wchar_t* s, size t n) const;
long hash(const char* s, size_t n) const;
long hash(const wchar_t* s, size_t n) const;
void insert(ostreamé& 0s, const struct tm* t, const char* fmt)
const;
void insert(ostream& 0s, const struct tm* t,char code); const
void extracttime(istream& is , struct tm* t) const;
void extractdate(istreamé& is , struct tm* t) const;
void extractweekday(istream& is , struct tm* t) const;
void extractmonthname(istreamé& is , struct tm* t) const;
dateorder date_order() const;
void insert(ostreamé& 0s, double units , moneysymbol sym) const;
void insert(ostreamé& os, char* digits , moneysymbol sym) const;
void extractmoney(istream& is , double& units , moneysymbol sym)
const;
void extractmoney(istream& is ,ostream& digits , moneysymbol sym)
const;
int moneyfracdigits(moneysymbol Sym) const;
static locale global();
static locale global(const locale& loc);

static const locale& classic();
static const locale& transparent();

A

17.5.9.1 Classocale DRAFT: 27 May 1994 Library 17-195

private:
void name(ostream& 0s) const;
I virtuals* vir ; exposition only

OoOodgono

)

The clasdocale encapsulates the information peculiar to a locale. It defines several member types]

— the bitmask typesategory andctype ; g
— the enumerated typesteorder , moneysymbol , andtotype ; O
— the claswirtuals . O

The macrdJCHAR_MAIS defined in<ciimits>

For the sake of exposition, the maintained data is presented here as:

— virtuals* vir , points to the object of claggtuals that describes a specific locale. O
17.5.9.1.1 Typdocale::category [lib.locale::category]
typedef T1 category; a

The typecategory is a bitmask type (indicated here B%) with the elements (corresponding to macras
defined in<clocale>

— COLLATE set to select the categdrt€ COLLATE

— CTYPE set to select the categdr¢ CTYPE

— MESSAGESset to select the categdt MESSAGES
— MONETARet to select the categdt@ MONETARY
— NUMERIC set to select the categdr€ NUMERIC

— TIME, set to select the categdr€ TIME.

O 0o oooo o

Typecategory also defines the constant:

— ALL, the union of all elements of the typategory (corresponds tbC_ALL).

17.5.9.1.2 Typdocale::ctype [(lib.locale::ctype]
typedef T2 ctype; a

The typectype is a bitmask type (indicated here a8) with the elements (corresponding to functioris

declared irccctype> O
— ALPHA set to match characters for whishlpha(int) returns a nonzero value; O
— CNTRL, set to match characters for whishntrl(int) returns a nonzero value; O
— DIGIT , set to match characters for whisHigit(int) returns a nonzero value; O
— LOWERset to match characters for whislower(int) returns a nonzero value; O
— PRINT, set to match characters for whisprint(int) returns a nonzero value; O
— PUNCT set to match characters for whispunct(int) returns a nonzero value; O
— SPACE set to match characters for whishpace(int) returns a nonzero value; O

17-196 Library DRAFT: 27 May 1994 17.5.9.1.2 Typdocale::ctype

— UPPER et to match characters for whishpper(int) returns a nonzero value;

— XDIGIT , set to match characters for whiskdigit(int) returns a nonzero value;

Typectype also defines the constants:

— ALNUMthe valueALPHA | DIGIT (corresponds tsalnum(int)).

— GRAPHthe valueALPHA | DIGIT | PUNCT (corresponds tsgraph(int)).
— NO_MATCHhe value zero.

O o o o

17.5.9.1.3 Typdocale::dateorder (lib.locale::dateorder]

O

typedef T3 dateorder;

The typedateorder is an enumerated type (indicated her@ 8pswith the elements:

— DMY to specify that date components appear in the order date, month, and year;

— MDY to specify that date components appear in the order month, date, and year;

— NO_ORDEROo specify that the order of appearance of date components is not meaningful;

— YDMto specify that date components appear in the order year, date, and month;

O o o o o O

— YMDto specify that date components appear in the order year, month, and date.

17.5.9.1.4 Typdocale::moneysymbol [(lib.locale::moneysymbol]
typedef T4 moneysymbol, a

The typemoneysymbol is an enumerated type (indicated herddpswith the elements (corresponding tal
members o§truct Iconv defined in<clocale> : O
— LOCAL to specify that the currency symbol should be specified by the meobency symbol ; O
— INTL , to specify that the currency symbol should be specified by the mambarrr_symbol ; O
— NONE:to specify no currency symbol. O

17.5.9.1.5 Typdocale::totype (lib.locale::totype]
typedef T5 totype; a
The typetotype is an enumerated type (indicated herd &swith the elements (corresponding to fundd
tions declared ircctype> : O
— DOWNo specify translation of upper case characters to lower case (correspmholseo(int)), O
— NO_CHANGEo specify no translation; O
— UP, to specify translation of lower case characters to upper case (correspmugipéer(int)); O

17.5.9.1.6 Clasfocale::virtuals DRAFT: 27 May 1994 Library 17-197

17.5.9.1.6 Clas#ocale::virtuals (lib.locale::virtuals]

17-198 Library

DRAFT: 27 May 1994 17.5.9.1.6 Claskcale::virtuals

class virtuals {

protected:
virtuals(size_t refs_arg);
virtual ~virtuals();
virtual virtuals* copybut(const char* name, category cat) const;
virtual void name(ostreamé& 0s) const = 0;
virtual bool equal(const virtuals* vir_arg , category cat) const;
virtual void insert(ostreamé& 0s, bool n) const;
virtual void insert(ostream& 0s, long n) const;
virtual void insert(ostreamé& 0s, unsigned long n) const;
virtual void insert(ostreamé& 0s, double n) const;
virtual void insert(ostreamé& 0s, long double n) const;
virtual void extract(istreamé& is , bool& n) const;
virtual void extract(istream& is ,long& n) const;
virtual void extract(istreamé& is , unsigned long& n) const;
virtual void extract(istreamé& is , double& n) const;
virtual void extract(istreamé& is , long double& n) const;
virtual int narrow(wchar_t we, char& ¢) const;
virtual int widen(char ¢, wchar_t& wc) const;
virtual bool is(ctype mask, wchar_t wc) const;
virtual size_t is(const wchar_t* src , size_t n, ctype* dest)
const;
virtual ctype namedctype(const char * name) const;
virtual char to(totype way, char ¢) const;
virtual char to(totype way, wchar_t C) const;
virtual size_t to(totype way, char* s, size_t n) const;
virtual size_t to(totype way, wchar_t* s, size_t n) const;
virtual totype namedto(const char * name) const;
virtual int collate(const char* s1,size t ni,
const char* s2, size_t n2) const;
virtual int collate(const wchar_t* s1, size_t ni,
const wchar_t* s2, size_t n2) const;
virtual size_t transform(ostream& 0s, const char* s, size_t n
const;
virtual size_t transform(ostream& 0s, const wchar_t* s, size_t
const;
virtual long hash(const char* s, size_t n) const;
virtual long hash(const wchar_t* s, size_t n) const;
virtual void insert(ostreamé& 0s, const struct tm* t,char code)
const;
virtual void extracttime(istreamé& is , struct tm* t) const;
virtual void extractdate(istream& is , struct tm* t) const;
virtual void extractweekday(istreamé& is , struct tm* t) const;
virtual void extractmonthname(istreamé& is , struct tm* t) const;
virtual dateorder date_order() const;
virtual void insert(ostreamé& 0s, double units , moneysymbol sym)
const;
virtual void insert(ostreamé& os, char* digits , moneysymbol sym)
const;
virtual void extractmoney(istream& is , double& units
moneysymbol sym) const;
virtual void extractmoney(istream& is ,ostream& digits
moneysymbol sym) const;
virtual int moneyfracdigits(moneysymbol Sym) const;
const ctype* ctypetable ;
private:
virtuals(const virtuals&); /I not defined
const virtuals& operator=(const virtuals&); // not defined
void add_reference();
void remove_reference();
I size_t refs exposition only

n)

A

17.5.9.1.6 Clasfocale::virtuals DRAFT: 27 May 1994 Library 17-199

The claswirtuals describes a specific locale. The default behavior of all virtual member functions[is to

perform any locale-specific behavior consistent with that required fdCthdocale. O
The maintained data is: O
— const ctype* ctypetable , points to the initial element of an arrayW€HAR_MAX + 1object O
of typeconst ctype that describes the properties of all values of typgigned char O
For the sake of exposition, the additional maintained data is presented here as: O
— size_t refs , counts the number of references from other objects to the object ofidlasls . O
Objects of classocale alterrefs to match the number dbcale:: vir pointers that designate ari]
object of claswirtuals . O
17.5.9.1.6.1locale::virtuals::virtuals(size_t) [(lib.cons.locale::virtuals.refs]
virtuals(size_t refs_arg); a
Construct an object of classtuals , initializing ctypetable to values suitable for th&C" locale O
andrefs torefs _arg a
17.5.9.1.6.2locale::virtuals::~virtuals() [({lib.des.locale::virtuals]
virtual ~virtuals(); a
Destroys an object of clagstuals . ad
17.5.9.1.6.3locale::virtuals::copybut(const char*, (lib.locale::copybut]
category) O
virtual virtuals* copybut(const char* name, category cat) const; a
Creates an object of clagstuals by evaluating the expressiair = new (virtuals) , Where O
vir is an object of type pointer teirtuals . The function copies fromithis the locale-specific O
behavior for categories not selectedday . Otherwise, the locale-specific behavior is the same as forlthe
global locale established by the cadtlocale(name, cat) . O
The function returnsir . O
17.5.9.1.6.4locale::virtuals::name(ostream&) (lib.locale::virtuals::name]
virtual void name(ostreamé& 0s) const = 0; a
A pure virtual function, inserts ios the name of the locale described*tyis . O
17.5.9.1.6.5locale::virtuals::equal(const virtuals*, (lib.locale::virtuals::equal]
category) O
virtual bool equal(const virtuals* vir_arg , category cat) const; a

Returns a nonzero value if the locale described tay arg is the same as the locale described hy
*this for the categories selected bgt . In particular, the call a

locale("C").equal(locale::classic()) a

is nonzero. a

17-200 Library DRAFT: 27 May 1994 17.5.9.1.6.6
locale::virtuals::insert(ostreamé&, bool)

17.5.9.1.6.6locale::virtuals::insert(ostream&, (lib.locale::virtuals::insert.bool]
bool) O
virtual void insert(ostreamé& 0s, bool n) const;

Behaves the same as << n, with the locale-specific behavior described‘this

17.5.9.1.6.7locale::virtuals::insert(ostreamé&, long) [(lib.locale::virtuals::insert.li]

virtual void insert(ostreamé& os, long n) const;

Behaves the same as << n, with the locale-specific behavior described this

17.5.9.1.6.8locale::virtuals::insert(ostream&, [(lib.locale::virtuals::insert.uli]
unsigned long) O
virtual void insert(ostreamé& 0s, unsigned long n) const;

Behaves the same as << n, with the locale-specific behavior described‘this

17.5.9.1.6.9locale::virtuals::insert(ostream&, [(lib.locale::virtuals::insert.d]
double) O
virtual void insert(ostreamé& 0s, double n) const;

Behaves the same as << n, with the locale-specific behavior described‘this

17.5.9.1.6.10locale::virtuals::insert(ostream&, (lib.locale::virtuals::insert.ld]
long double) O
virtual void insert(ostream& 0s, long double n) const;

Behaves the same as << n, with the locale-specific behavior described‘this

17.5.9.1.6.11locale::virtuals::extract(instream&, [(lib.locale::virtuals::extract.bool]
bool&) a
virtual void extract(istream& is , bool& n) const;

Behaves the same as >> n, with the locale-specific behavior described this

17.5.9.1.6.12ocale::virtuals::extract(istream&, [lib.locale::virtuals::extract.li]
long&) O
virtual void extract(istreamé& is ,long& n) const;

Behaves the same as >> n, with the locale-specific behavior described this

17.5.9.1.6.13locale::virtuals::extract(istream&, [(lib.locale::virtuals::extract.uli]
unsigned long&) O
virtual void extract(istreamé& is , unsigned long& n) const;

Behaves the same as >> n, with the locale-specific behavior described‘this

17.59.1.6.14 DRAFT: 27 May 1994 Library 17201
locale::virtuals::extract(istreamé&, double&)

17.5.9.1.6.14locale::virtuals::extract(istream&, [lib.locale::virtuals::extract.d]
double&) O
virtual void extract(istreamé& is , double& n) const; O
Behaves the same as >> n, with the locale-specific behavior describedthys . ad
17.5.9.1.6.15locale::virtuals::extract(istream&, [({lib.locale::virtuals::extract.ld]
long double&) a
virtual void extract(istream& is , long double& n) const; a
Behaves the same as >> n, with the locale-specific behavior describedthys . ad
17.5.9.1.6.16locale::virtuals::narrow(wchar _t, (lib.locale::virtuals::narrow]
char&) O
virtual int narrow(wchar_t we, char& ¢) const; a

If wectob(we) == EOF |, returns zero. Otherwise, the function stometob(wc) in ¢ and returns a O

nonzero value. The function signatuvetob(wchar _t) is declared irccwchar> . O
17.5.9.1.6.17locale::virtuals::widen(char, wchar_t&) (lib.locale::virtuals::widen]
virtual int widen(char ¢, wchar_t& wc) const; a

If btowc(¢) == WEOF , returns zero. Otherwise, the function stdo&svc(¢) in we and returns a O
nonzero value. The function signatim@wc(wchar_t) is declared, and the macveEOFRs defined, in O
<cwchar> . g

17.5.9.1.6.18locale::virtuals::is(ctype, wchar_t) (lib.locale::virtuals::is.wc]

virtual bool is(ctype mask, wchar_t wc) const; a

Determines thetype valuex that characterizesc and returns a nonzero valueif& maskis nonzero. [0

17.5.9.1.6.190cale::virtuals::is(const wchar_t*, (lib.locale::virtuals::is.wcs]
size_t, ctype*) a
virtual size_t is(const wchar_t* src , size_t n, ctype* dest) const; a

Assigns todest [I] thectype valuex that characterizesrc [/], for successive non-negative values af

| starting with zero. Assignment proceeds until either: O
— nvalues have been stored; O
— The valuex equalsNO_MATCHnN which case the value is not stored. O

The pointersrc shall designate the initial element of an array»abjects of typevchar_t . The pointer O

dest shall designate the initial element of an array objects of typetype . O

The function returns a count of the number of values stored. O

17.5.9.1.6.20 [(lib.locale::virtuals::namedctype]
locale::virtuals::namedctype(const char*) O

virtual ctype namedctype(const char * name) const; a

17-202 Library DRAFT: 27 May 1994 17.5.9.1.6.20
locale::virtuals::namedctype(const char*)

Returns thectype value corresponding to therss name, or NO_MATCHf no corresponding valuel
exists. The function shall return the corresponditygpe value for each of theTss arguments in the [

minimum set accepted by the function signatucéype(const char*) , declared irkcwctype> . g
17.5.9.1.6.21locale::virtuals::to(totype, char) (lib.locale::virtuals::to.c]

virtual char to(totype way, char c¢) const; a
Returns thehar value that corresponds to the mapping specified byway. ad
17.5.9.1.6.22ocale::virtuals::to(totype, wchar_t) [(lib.locale::virtuals::to.wc]

virtual char to(totype way, wchar_t C) const; a
Returns thavchar_t value that corresponds to the mapping specified byway. ad
17.5.9.1.6.23locale::virtuals::to(totype, char*, [(lib.locale::virtuals::to.str]

size t) O

virtual size_t to(totype way, char* s, size_t n) const; a
Assignsto(way, s[/]) tos[/] for all non-negative values @fless tham. The pointers shall des- O
ignate the initial element of an arrayrobbjects of typehar . O
The function returng.
17.5.9.1.6.24locale::virtuals::to(totype, wchar_t*, [lib.locale::virtuals::to.wcs]

size_t) O

virtual size_t to(totype way, wchar_t* s, size_t n) const; a
Assignsto(way, s[/]) tos[/] for all non-negative values éfless tham. The pointers shall des- O
ignate the initial element of an arrayrobbjects of typavchar_t . O
17.5.9.1.6.25locale::virtuals::namedto(const char*) [lib.locale::virtuals::namedto]

virtual totype namedto(const char * name) const; a

Returns thdotype value corresponding to therBS name, or a unique if no corresponding value hds
been previously determined for that name. The function shall return the correspotyieg value for O

each of thenTBs arguments in the minimum set accepted by the function signatttrans(const a
char*) , declared irkcwctype> . a
17.5.9.1.6.26 [(lib.locale::virtuals::collate.str]
locale::virtuals::collate(const char*, a
size_t, const char*, size t) a
virtual int collate(const char* s1,size_t ni, a
const char* s2, size_t n2) const; a

Returns the same valuesscoll s1, s2) with null characters (conceptually) storedsib n1] and O
s2[n2] . The function signaturestrcoll(const char*, const char*) is declared in O
<cstring> . The pointersl shall designate the initial element of an arrayidfobjects of typechar . O
The pointers2 shall designate the initial element of an arrap®bbjects of typehar . O

17.5.9.1.6.27 DRAFT: 27 May 1994 Library 17203
locale::virtuals::collate(const wchar_t*, size_t, const wchar_t*, size_t)

17.5.9.1.6.27 [(lib.locale::virtuals::collate.wcs]
locale::virtuals::collate(const wchar_t*, O
size_t, const wchar_t*, size_t) O
virtual int collate(const wchar_t* s1,size t ni, O
const wchar_t* s2, size_t n2) const; a

Returns the same value agscoll(s1, s2) with null wide characters (conceptually) stored in
s1[n1] ands2[n2] . The function signatureicscoll(const wchar_t*, const wchar_t*) O
is declared inrccwchar> . The pointersl shall designate the initial element of an array1dfobjects of [0
type wchar_t . The pointers2 shall designate the initial element of an arrayngf objects of type O

wchar_t . O
17.5.9.1.6.28 ({lib.locale::virtuals::transform.str]
locale::virtuals::transform(ostreamg&, O
const char*, size t) O
virtual int transform(ostreamé& 0s, const char* s, size_t n) const; a

Behaves the same as.write(x, m =strxfrm(x, s, M) with a null character (conceptually)d
stored ins[n] . Here,mis an object of typsize t , x is an array oflobjects of typechar , andMis O

larger thanm The function signaturstrxfrm(char*, const char*, size_t) is declared in O
<cstring> . The pointess shall designate the initial element of an array objects of typehar . O
The function returng O
17.5.9.1.6.29 [(lib.locale::virtuals::transform.wcs]
locale::virtuals::transform(ostream&, O
const wchar_t*, size_t) O
virtual size_t transform(ostream& os, const wchar_t* s, size_t n a
const; O
Behaves the same aes.write((char*) X, m = wesxfrm(x, s, M * sizeof ad

(wchar_t)) with a null wide character (conceptually) storedsinn] . Here, mis an object of type O
size t , x is an array ofMobjects of typewchar_t , and Mis larger thannm The function signature O

wesxfrm(wchar_t*, const wchar_t*, size t) is declared inccwchar> . The pointers [
shall designate the initial element of an array objects of typavchar_t . a
The function returngn O
17.5.9.1.6.30locale::virtuals::hash(const char*, [(lib.locale::virtuals::hash.str]
size t) a
virtual long hash(const char* s, size_t n) const; a

Returns a value that is a function of the elemsfits] , for all non-negative values éfless tham. The O

pointers shall designate the initial element of an array objects of typehar . O
17.5.9.1.6.31locale::virtuals::hash(const wchar_t*, [(lib.locale::virtuals::hash.wcs]
size t) O
virtual long hash(const wchar_t* s, size_t n) const; a

Returns a value that is a function of the elemsfits] , for all non-negative values ¢fless tham. The 0O
pointers shall designate the initial element of an array objects of typevchar t . O

17-204 Library DRAFT: 27 May 1994 17.5.9.1.6.32
locale::virtuals::insert(ostreamé&, const struct tm*, char)

17.5.9.1.6.32ocale::virtuals::insert(ostream&, (lib.locale::virtuals::insert.tm]
const struct tm*, char) O
virtual void insert(ostreamé& 0s, const struct tm* t, char code) const; O
Behaves the same as.write(X, strftime(x, fmt, M t)) . Here,fmt is an array othar 0O
with fmt [0] == '%’ ,fmt [1] == code, andfmt [2] =="\0’ ; X is an array oMobjects of type O
char ; and Mis large enough that the value returnedshyjtime is nonzero. The function signaturé]
stritime(char*, size_t, const char*, struct tm*) is declared ir<ctime> . a
17.5.9.1.6.33 [({lib.locale::virtuals::extracttime]
locale::virtuals::extracttime(istream&, a
struct tm*) a
virtual void extracttime(istream& is , struct tm* t) const; a

Extracts characters frofs to determine the encoded time values to stotetm_hour , t->tm_min , 0O
andt->tm_sec . The character sequence insertedrtsert(os, t1,'X) shall be extracted by

extracttime(is , t2) such thattl ->tm_hour == t2 ->tm_hour && t1 ->tm_min == O
2 ->tm_min && t1 ->tm_hour == t2 ->tm_hour is nonzero. The character sequences recag-
nized are otherwise locale specific. O
17.5.9.1.6.34 [({lib.locale::virtuals::extractdate]
locale::virtuals::extractdate(istream&, O
struct tm*) O
virtual void extractdate(istreamé& is , struct tm* t) const; O

Extracts characters fronis to determine the encoded time values to storet #mtm_year , t- 0O
>tm_mon,t->tm_mday , t->tm_yday , and t->tm_wday . The character sequence inserted KBy
insert(o0s, t1,°X) shall be extracted bgxtractdate(is , t2) such thattl ->tm_year O

== {2 ->tm_year && t1 ->tm_mon == {2 ->tm_mon && t1 ->tm_mday == {2 ->tm_mday O
is nonzero. The character sequences recognized are otherwise locale specific. O
17.5.9.1.6.35 (lib.locale::virtuals::extractweekday]
locale::virtuals::extractweekday(istream&, O
struct tm*) O
virtual void extractweekday(istreamé& is , struct tm* t) const; a

Extracts characters frois to determine the encoded time value to store-itm_wday . The character O
sequence inserted bygsert(os, t1,'A) shall be extracted bgxtractweekday(is, t2) O

such thatl ->tm_wday == {2 ->tm_wday is nonzero. The character sequences recognized are other-
wise locale specific. O
17.5.9.1.6.36 [lib.locale::virtuals::extractmonthname]
locale::virtuals::extractmonthname(istream&, O
struct tm*) O
virtual void extractmonthname(istream& is , struct tm* t) const; a

Extracts characters froms to determine the encoded time value to store-ktm_mon . The character O
sequence inserted lysert(os, t1,'B’) shall be extracted bgxtractmonthname(is, t2) O
such thattl ->tm_mon == 2 ->tm_mon is nonzero. The character sequences recognized are ofher-
wise locale specific. a

17.5.9.1.6.37 DRAFT: 27 May 1994 Library 17205
locale::virtuals::date_order()

17.5.9.1.6.37locale::virtuals::date_order() (lib.locale::virtuals::date.order]

virtual dateorder date_order() const; a
Returns the value of tymtateorder that describes the locale-specific date order. ad

17.5.9.1.6.38locale::virtuals::insert(ostream&, [({lib.locale::virtuals::insert. money.u]
double, moneysymbol) O

O

virtual void insert(ostreamé& os, double units , moneysymbol sym) const;

Inserts inos a sequence of characters that represent the monetaryuwtsie .

If sym is LOCAL the function displays the currency symimtaleconv()->currency_symbol

(for a global locale that matches the locale designatetthig<F25D>), and divides units
by 10 raised to the power localeconv()->frac_digits. Otherwise, if sym
is INTL, the function displays the currency symbol localeconv()-

>int_curr_symbol, and divides units by 10 raised to the power
localeconv()->int_frac_digits. Otherwise, the function displays no cur-

rency symbol. The function signature localeconv() is declared in <clo-

cale>.

Oooooogooo 4

17.5.9.1.6.39%0cale::virtuals::insert(ostream&, [({lib.locale::virtuals::insert. money.d]
char*, moneysymbol) O

O

virtual void insert(ostreamé& os, char* digits , moneysymbol sym) const;

Inserts inos a sequence of characters that represent the monetary valuenoBthdigits , which shall
consist only of decimal digits.

If sym is LOCAL the function displays the currency symimtaleconv()->currency_symbol
(for a global locale that matches the locale designatedtiig<F25D>), and displays
localeconv()->frac_digits to the right of the monetary decimal point.

Otherwise, if sym is INTL, the function displays the currency symbol
localeconv()->int_curr_symbol, and displays localeconv()-
>int_frac_digits to the right of the monetary decimal point. Otherwise,

the function displays no currency symbol. The function signature

localeconv() is declared in <clocale>.

OooOoooooo oo

17.5.9.1.6.40 (lib.locale::virtuals::extractmoney.u]
locale::virtuals::extractmoney(istream&, O
double&, moneysymbol) O

virtual void extractmoney(istream& is , double& units O
moneysymbol sym) const; a

Extracts characters froms to determine the encoded monetary value to stowmits . The character O
sequence inserted liysert(o0s, x, sym) shall be extracted bgxtractmoney(is, y, sym) O

such thatx == y is nonzero. The character sequences recognized are otherwise locale specific. O
17.5.9.1.6.41 [(lib.locale::virtuals::extractmoney.d]
locale::virtuals::extractmoney(istream&, a
ostream&, moneysymbol) O
virtual void extractmoney(istreamé& is ,ostream& digits , moneysymbol sym)const; [

Extracts characters frons to determine the sequence of digits to insert ohpts to represent the
monetary value. The character sequence insertethdeyt(o0s, X, sym) shall be extracted byl
extractmoney(is, y, Sym) such that the digit sequence in thess x is the same as the digit]

17-206 Library DRAFT: 27 May 1994 17.5.9.1.6.41
locale::virtuals::extractmoney(istream&, ostream&, moneysymbol)

sequence inserted in tostream objecty. The character sequences recognized are otherwise localel$pe-

cific. O
17.5.9.1.6.42 (lib.locale::virtuals::moneyfracdigits]
locale::virtuals::moneyfracdigits(moneysymbol) O
virtual int moneyfracdigits(moneysymbol Sym) const; a
If symis LOCAL returnslocaleconv()->frac_digits (for a global locale that matches the localé
designated bythis<F25D>). Otherwise, if sym<F25D> is INTL, the function a
returns localeconv()->int_frac_digits. Otherwise, the function returns a
zero. The function signature localeconv() is declared in <clocale>. a
17.5.9.1.6.43 [({lib.cons.locale::virtuals]
locale::virtuals::virtuals(const virtuals&) O
virtuals(const virtuals&); /I not defined a

Constructs an object of clasgtuals and initializes it by copying its argument. The Standard 1

library provides no definition for this function”) O
17.5.9.1.6.44 [lib.locale::virtuals::op=]
locale::virtuals::operator=(const virtuals&) O
const virtuals& operator=(const virtuals&); // not defined a

Assigns a value of clasartuals to *this . The Standard+€ library provides no definition for thisO

function. 0
17.5.9.1.6.45locale::virtuals::add_reference() [lib.locale::virtuals::add.reference]
void add_reference(); a
Adds one taefs . O
17.5.9.1.6.46 (lib.locale::virtuals::remove.reference]
locale::virtuals::remove_reference() O
void remove_reference(); a

Subtracts one fromefs . If the resulting stored value is zero, the object designatethilsy may be O

deleted. O
17.5.9.1.7locale::locale(const char*) [(lib.cons.locale.str]
locale(const char* name); a
Constructs an object of claggale , initializing vir with localev_byname(name ,0) . ad
17.5.9.1.8locale::locale(virtuals*) ({lib.cons.locale.vir]
locale(virtuals* vir_arg); a
Constructs an object of clalegale |, initializing vir with vir_arg . O

120an object of clastocale::virtuals cannot be copied or assigned to.

17.5.9.1.9 DRAFT: 27 May 1994 Library 1#207
locale::locale(const locale&, const char*, category)

17.5.9.1.9locale::locale(const locale&, const char*, [(lib.cons.locale.cat]
category) O
locale(const locale& loc , const char* name, category cat),

Constructs an object of claegale |, initializing vir with loc .copybut(name, cat).

17.5.9.1.10locale::~locale() ({lib.des.locale]

~locale();
Destroys an object of clakscale

17.5.9.1.11locale::ok() [(lib.locale::0k]

bool ok() const;
Returns a nonzero valueuir is not a null pointer.

17.5.9.1.12locale::operator==(const locale&) (lib.locale::op==

bool operator==(const locale& rhs) const;

Returns a nonzero valuevir ->equal(rhs , ALL) is nonzero.

17.5.9.1.13locale::operator!=(const locale&) (lib.locale::op!=]
bool operator!=(const locale& rhs) const;

Returns a nonzero valuel{fthis == rhs).

17.5.9.1.14locale::equal(const locale&, category) [(lib.locale::equal]
bool equal(const locale& rhs , category cat =ALL) const;

Returns a nonzero valuevifr ->equal(rhs, cat) is honzero.

17.5.9.1.15locale::insert(ostreamé&, bool) (lib.locale::insert.bool]

void insert(ostreamé& 0s, bool n) const;
Callsvir ->insert(os, n).

17.5.9.1.16locale::insert(ostreamé&, long) (lib.locale::insert.li]

void insert(ostreamé& os, long n) const;
Callsvir ->insert(o0s, n).

17.5.9.1.17locale::insert(ostream&, unsigned long) (lib.locale::insert.uli]

void insert(ostreamé& 0s, unsigned long n) const;

Callsvir ->insert(o0s, n).

17-208 Library DRAFT: 27 May 1994 17.5.9.1.18
locale::insert(ostreamé&, double)

17.5.9.1.18locale::insert(ostream&, double) (lib.locale::insert.d]

void insert(ostreamé& 0s, double n) const;
Callsvir ->insert(o0s, n).

17.5.9.1.19locale::insert(ostream&, long double) (lib.locale::insert.Id]

void insert(ostream& 0s, long double n) const;
Callsvir ->insert(o0s, n).

17.5.9.1.20locale::extract(istreamé&, bool&) [(lib.locale::extract.bool]

void extract(istreamé& is , bool& n) const;
Callsvir ->extract(is, n).

17.5.9.1.21locale::extract(istream&, long&) [(lib.locale::extract.li]

void extract(istreamé& is ,long& n)const;
Callsvir ->extract(is, n).

17.5.9.1.22locale::extract(istreamé&, unsigned long&) (lib.locale::extract.uli]

void extract(istreamé& is , unsigned long& n) const;
Callsvir ->extract(is, n).

17.5.9.1.23locale::extract(istreamé&, double&) [(lib.locale::extract.d]

void extract(istreamé& is , double& n) const;
Callsvir ->extract(is, n).

17.5.9.1.24locale::extract(istreamé&, long double&) [(lib.locale::extract.ld]

void extract(istreamé& is , long double& n) const;
Callsvir ->extract(is, n).

17.5.9.1.25locale::narrow(wchar_t, char&) (lib.locale::narrow]

int narrow(wchar_t we, char& ¢) const;
Returnsvir ->narrow(we, c).

17.5.9.1.26locale::widen(char, wchar_t&) (lib.locale::widen]

int widen(char ¢, wchar_t& wc) const;
Returnsvir ->widen(¢, wc).

17.5.9.1.27locale::is(ctype, char) [(lib.locale::is.c]

bool is(ctype mask, char ¢) const;

Returns a nonzero valuevilr ->ctypetable[(unsigned char) c] & maskis nonzero.

17.5.9.1.28 DRAFT: 27 May 1994 Library 17209
locale::is(ctype, unsigned char)

17.5.9.1.28locale::is(ctype, unsigned char) [lib.locale::is.uc]

bool is(ctype mask, unsigned char C) const;

Returns a nonzero valuevilr ->ctypetable[c] & maskis nonzero.

17.5.9.1.29locale::is(ctype, signed char) [(lib.locale::is.sc]
bool is(ctype mask, signed char C) const;

Returns a nonzero valuevifr ->ctypetable[(unsigned char) c] & maskis nonzero.

17.5.9.1.30locale::is(ctype, int) (lib.locale::is.i]
bool is(ctype mask, int C) const;

Returns a nonzero value {tinsigned char)c == ¢ && vir->ctypetable[(unsigned

char) c] & maskis nonzero.

17.5.9.1.31locale::is(ctype, wchar_t) (lib.locale::is.wc]

bool is(ctype mask, wchar_t wc) const;
Returns a nonzero valuevir ->is(wc) is nonzero.

17.5.9.1.32locale::is(const char*, size_t, ctype*) (lib.locale::is.str]

size_tis(const char* src , size_t n, ctype* dest) const;
Returnsvir ->is(src, n, dest).

17.5.9.1.33locale::is(const wchar_t*, size_t, ctype*) (lib.locale::is.wcs]

size_t is(const wchar_t* src , size_t n, ctype* dest) const;
Returnsvir ->is(src, n, dest).

17.5.9.1.34locale::namedctype(const char*) [(lib.locale::namedctype]

ctype namedctype(const char * name) const;
Returnsvir ->namedctype(name) .

17.5.9.1.35locale::to(totype, char) (lib.locale::to.c]

char to(totype way, char ¢) const;
Returnsvir ->to(way, c).

17.5.9.1.36locale::to(totype, unsigned char) (lib.locale::to.uc]

char to(totype way, unsigned char C) const;

Returnsvir ->to(way, (char) ¢).

17-210 Library DRAFT: 27 May 1994 17.5.9.1.37
locale::to(totype, signed char)

17.5.9.1.37locale::to(totype, signed char) (lib.locale::to.sc]

char to(totype way, signed char C) const;
Returnsvir ->to(way, (char) ¢).

17.5.9.1.38locale::to(totype, wchar_t) (lib.locale::to.wc]

char to(totype way, wchar_t C) const;
Returnsvir ->to(way, c).

17.5.9.1.39locale::to(totype, char*, size_t) (lib.locale::to.str]

size_t to(totype way, char* s, size_t n) const;
Returnsvir ->to(way, s, n).

17.5.9.1.40locale::to(totype, wchar_t*, size_t) [lib.locale::to.wcs]

size_t to(totype way, wchar_t* s, size_t n) const;
Returnsvir ->to(way, s, n).

17.5.9.1.41locale::namedto(const char*) (lib.locale::namedto]

totype namedto(const char * name) const;

Returnsvir ->namedto(name) .

17.5.9.1.42locale::collate(const char*, size t, [(lib.locale::collate.str]
const char*, size t) O
int collate(const char* s1,size_t nl, const char* s2, size_t n2)
const;

Returnsvir ->collate(sl, nl, s2, n2).

17.5.9.1.43locale::collate(const wchar_t*, size_t, [(lib.locale::collate.wcs]
const wchar_t*, size_t) O
int collate(const wchar_t* s1, size_t nl, const wchar_t* s2,

size_t n2) const;

Returnsvir ->collate(sl, nl, s2, n2).

17.5.9.1.44locale::transform(ostream&, const char*, [(lib.locale::transform.str]
size t) a
size_t transform(ostreamé& 0s, const char* s, size_t n) const;

Returnsvir ->transform(o0s, s, n).

17.5.9.1.45locale::transform(ostream&, [(lib.locale::transform.wcs]
const wchar_t*, size_t) O

size_t transform(ostreamé& 0s, const wchar_t* s, size_t n) const;

17.5.9.1.45 DRAFT: 27 May 1994 Library 17211
locale::transform(ostream&, const wchar_t*, size_t)

Returnsvir ->transform(os, s, n). g
17.5.9.1.46locale::hash(const char*, size_t) (lib.locale::hash.str]

long hash(const char* s, size_t n) const; a
Returnsvir ->hash(s, n). ad
17.5.9.1.47locale::hash(const wchar_t*, size t) [(lib.locale::hash.wcs]

long hash(const wchar_t* s, size_t n) const; a
Returnsvir ->hash(s, n). ad
17.5.9.1.48locale::insert(ostream&, const struct tm*, (lib.locale::insert.tm.str]

const char*) O
void insert(ostream& 0s, const struct tm* t, const char* fmt) const; O

Inserts characters intas under control of a format stringmt shall be amTss. The function processed]

each element in succession, up to but not including the terminating null character. O
For each element, i is not'%’ , or if the charactey following x is not a null character, the functiori]
insertsx into os. Otherwise, the function calissert(os, t, y). O
17.5.9.1.49locale::insert(ostream&, const struct tm*, (lib.locale::insert.tm]
char) O
void insert(ostreamé& 0s, const struct tm* t, char code) const; O
Callsvir ->insert(os, t, code). g
17.5.9.1.50locale::extracttime(istream&, struct tm*) [(lib.locale::extracttime]
void extracttime(istreamé& is , struct tm* t) const; O
Callsvir ->extracttime(is, t). ad
17.5.9.1.51locale::extractdate(istream&, struct tm*) [(lib.locale::extractdate]
void extractdate(istreamé& is , struct tm* t) const; a
Callsvir ->extractdate(is, t). O
17.5.9.1.52locale::extractweekday(istreamé&, struct [(lib.locale::extractweekday]
tm*) O
void extractweekday(istream& is , struct tm* t) const; a
Callsvir ->extractweekday(is, t). O
17.5.9.1.53locale::extractmonthname(istreamé&, [lib.locale::extractmonthname]
struct tm*) O
void extractmonthname(istream& is , struct tm* t) const; O

Callsvir ->extractmonthname(is, t). g

17-212 Library DRAFT: 27 May 1994 17.5.9.1.54locale::date_order()

17.5.9.1.54locale::date_order() (lib.locale::date.order]
dateorder date_order() const; a
Returnsvir ->date_order() . ad
17.5.9.1.55locale::insert(ostreamé&, double, [(lib.locale::insert.money.u]
moneysymbol) a
void insert(ostream& os, double units , moneysymbol sym) const; a
Callsvir ->insert(o0s, units , sym). ad
17.5.9.1.56locale::insert(ostream&, char*, (lib.locale::insert.money.d]
moneysymbol) O
void insert(ostreamé& os, char* digits , moneysymbol sym) const; a
Callsvir ->insert(os, digits , sym). O
17.5.9.1.57locale::extractmoney(istreamé&, double&, [(lib.locale::extractmoney.u]
moneysymbol) O
void extractmoney(istream& is , double& units , moneysymbol sym) const; a
Callsvir ->extractmoney(is, units , syn). g
17.5.9.1.58locale::extractmoney(istream&, ostream&, [lib.locale::extractmoney.d]
moneysymbol) O
void extractmoney(istream& is ,ostream& digits , moneysymbol sym) a
const; 0
Callsvir ->extractmoney(is, digits , syn). ad
17.5.9.1.59locale::moneyfracdigits(moneysymbol) [({lib.locale::moneyfracdigits]
int moneyfracdigits(moneysymbol Sym) const; a
Returnsvir ->moneyfracdigits(sym) . O
17.5.9.1.60locale::global() (lib.locale::global]
static locale global(); a

Constructs an objectew _loc of classlocale and initializes it to describe the same locale as the curifént

global locale. The function returmew _loc . O
17.5.9.1.61locale::global() [lib.locale::global.loc]
static locale global(const locale& loc); a

Constructs an objecetew loc of classlocale and initializes it to describe the same localdoas. The 0O
function then alters the global locale to matmh and returnsiew _Jloc . a

17.5.9.1.62locale::classic() DRAFT: 27 May 1994 Library 17-213

17.5.9.1.62locale::classic() (lib.locale::classic]
static const locale& classic(); a
The function returns an object of cldssale that describes th&€" locale. ad
17.5.9.1.63locale::transparent() [(lib.locale::transparent]
static const locale& transparent(); a
The function returns an object of cldsesale that, at all times, describes the global locale. ad
17.5.9.1.64locale::name() [(lib.locale::name]
void name(ostream& 0Ss) const; a
Callsvir ->name(0s) . O
17.5.9.2 Clas$ocalev_byname (lib.localev.byname]
class localev_byname : public locale::virtuals { a
public: a
localev_byname(const char* name, size_t refs); a
2 a
The clasdocalev_byname is derived from clastocale::virtuals to assist in constructing and
object that describes a named locale. O
17.5.9.2.1localev_byname::localev_byname(const char*, ({lib.cons.localev.byname]
size_t) O
localev_byname(const char* name, size_t refs); a
Constructs an object of classlocalev_byname , initializing the base class with[
locale::virtuals(refs), then altering the object to describe the locale whose nanagria g
17.5.9.3 collate(const string&, const string&, (lib.locale.collate.string]
const locale&) O
int collate(const string& s1, const string& s2, a
const locale& loc = locale::global()); a
Returnsloc .collate(s1.data(), s1.length(), s2.data(), s2.length()) . ad
17.5.9.4 collate(const wstring&, const wstring&, [({lib.locale.collate.wstring]
const locale&) O
int collate(const wstring& s1, const wstring& s2, a
const locale& loc = locale::global()); a
Returnsloc .collate(s1.data(), s1.length(), s2.data(), s2 .length()) . O
17.5.9.5 operator<<(ostream&, const locale&) (lib.locale.ins]
ostreamé& operator<<(ostream& 0s, const locale& loc); a

A formatted output function, executke®.name (0s) and return®s. ad

17-214 Library DRAFT: 27 May 1994 17.5.9.6
operator>>(istreamé&, locale&)

17.5.9.6 operator>>(istream&, locale&) (lib.locale.ext]

istream& operator>>(istream& is , locale& loc); a
A formatted input function, evaluates the expres&@on>> name, wherenameis an array othar large 0O

enough to hold an arbitrary locale name. istgood() is nonzero, the function then storesl
localev_byname(name ,0) in loc.vir

Annex A (informative)
Grammar summary [gram]

This summary of & syntax is intended to be an aid to comprehension. It is not an exact statement of the
language. In particular, the grammar described here accepts a superset otvalichsfructs. Disam-
biguation rules (6.8, 7.1class.ambig) must be applied to distinguish expressions from declarations. Fur-
ther, access control, ambiguity, and type rules must be used to weed out syntactically valid but meaningless
constructs.

A.1 Keywords [gram.key]

New context-dependent keywords are introduced into a progragpesglef (7.1.3), namespace (7.3.1),
class (9), enumeration (7.2), atednplate (14) declarations.

typedef-name:
identifier

namespace-name:
original-namespace-name
namespace-alias

original-namespace-name:
identifier

namespace-alias:
identifier

class-name:
identifier
template-class-id

enum-name:
identifier

template-name:
identifier

Note that aypedef-nameaming a class is alscclass-namé9.1).

A.2 Lexical conventions [gram.lex]

A-2 Grammar summary

preprocessing-token:
header-name
identifier
pp-number
character-constant
string-literal
operator
digraph
punctuator

DRAFT: 27 May 1994

A.2 Lexical conventions

each non-white-space character that cannot be one of the above

digraph:
<%
%>
<
>
%:

token:
identifier
keyword
literal
operator
punctuator

identifier:
nondigit
identifier nondigit
identifier digit

nondigit one of
_abcdefghijklm
nopqrstuvwxyz
ABCDEFGHIJKLM
NOPQRSTUVWXYZ

digit: one of
0123456789

literal:
integer-literal
character-literal
floating-literal
string-literal
boolean-literal

integer-literal:
decimal-literal integer-suffiy,
octal-literal integer-suffix,
hexadecimal-literal integer-suffjx

decimal-literal:
nonzero-digit
decimal-literal digit

octal-literal:
0
octal-literal octal-digit

A.2 Lexical conventions DRAFT: 27 May 1994 Grammar summary A3

hexadecimal-literal:
0x hexadecimal-digit
0X hexadecimal-digit
hexadecimal-literal hexadecimal-digit

nonzero-digit: one of
1234567829

octal-digit: one of
012 3 4586 7

hexadecimal-digit: one of
01234567829
abocdef

A B CDEF

integer-suffix:
unsigned-suffix long-suffjx
long-suffix unsigned-suffjx

unsigned-suffix:one of
u u

long-suffix: one of
I L

character-literal:
' c-char-sequence
L’ c-char-sequence

c-char-sequence:
c-char
c-char-sequence c-char

c-char:
any member of the source character set except
the single-quoté, backslash , or new-line character
escape-sequence

escape-sequence:
simple-escape-sequence
octal-escape-sequence
hexadecimal-escape-sequence

simple-escape-sequencene of
LS S VAR
\a \b \ff \n \r \t \v

octal-escape-sequence:
\ octal-digit
\ octal-digit octal-digit
\ octal-digit octal-digit octal-digit

hexadecimal-escape-sequence:
\x hexadecimal-digit
hexadecimal-escape-sequence hexadecimal-digit

A-4 Grammar summary DRAFT: 27 May 1994

floating-constant:
fractional-constant exponent-pggtfloating-suffixy
digit-sequence exponent-part floating-siffix

fractional-constant:
digit-sequencs; .
digit-sequence.

digit-sequence

exponent-part:
e sign,, digit-sequence
E sign,, digit-sequence

sign: one of
+ -

digit-sequence:
digit
digit-sequence digit

floating-suffix: one of
fl FL

string-literal:
" s-char-sequengg’
L" s-char-sequengg’

s-char-sequence:
s-char
s-char-sequence s-char

s-char:
any member of the source character set except
the double-quot&, backslash , or new-line character
escape-sequence

boolean-literal:
false
true

A.3 Basic concepts

translation unit:
declaration-seg,

A.4 Expressions

primary-expression:

literal

this
identifier
operator-function-id
qualified-id

(expression)

id-expression

A.2 Lexical conventions

[gram.basic]

[gram.expr]

A.4 Expressions DRAFT: 27 May 1994 Grammar summary A5

id-expression:
unqualified-id
qualified-id

unqualified-id:
identifier
operator-function-id
conversion-function-id
" class-name

qualified-id:
nested-name-specifier unqualified-id

postfix-expression:
primary-expression
postfix-expressior] expression]
postfix-expression(expression-ligf,)
simple-type-specifie(expression-ligf,)
postfix-expression id-expression
postfix-expression> id-expression
postfix-expressiont+
postfix-expression-
dynamic_cast < type-id > (expression)
static_cast < type-id > (expression)
reinterpret_cast < type-id > (expression)
const_cast < type-id > (expression)
typeid (expression)
typeid (type-id)

expression-list:
assignment-expression
expression-list, assignment-expression

unary-expression:
postfix-expression
++ unary-expression
-~ unary-expression
unary-operator cast-expression
sizeof unary-expression
sizeof (type-id)
new-expression
delete-expression

unary-operator: one of
* & + - 1 ~

new-expression:
T opt NEW new-placemepy new-typ_e-id new-?n_it?alﬁzg;;t
T opt NEW new-placemegy, (type-id) new-initializeg,

new-placement:
(expression-list)

new-type-id:
type-specifier-seq new-declaraigr

A-6 Grammar summary DRAFT: 27 May 1994 A.4 Expressions

new-declarator:
* cv-qualifier-segy, new-dt_ac_:larato(;pt 3
I oopt nested-name-specifief cv-qualifier-seg, new-declaratog,,
direct-new-declarator

direct-new-declarator:
[expression]
direct-new-declarator[constant-expression

new-initializer:
(expression-ligf,)

delete-expression:
opt delete cast-expression
opt delete [] cast-expression

cast-expression:
unary-expression
(type-id) cast-expression

pm-expression:
cast-expression
pm-expression* cast-expression
pm-expression->* cast-expression

multiplicative-expression:
pm-expression
multiplicative-expressiort pm-expression
multiplicative-expression’ pm-expression
multiplicative-expressiorf pm-expression

additive-expression:
multiplicative-expression
additive-expression+ multiplicative-expression
additive-expression multiplicative-expression

shift-expression:
additive-expression
shift-expression<< additive-expression
shift-expression>> additive-expression

relational-expression:
shift-expression
relational-expression< shift-expression
relational-expression> shift-expression
relational-expression<=shift-expression
relational-expression>=shift-expression

equality-expression:
relational-expression
equality-expression==relational-expression
equality-expression= relational-expression

and-expression:
equality-expression
and-expression& equality-expression

A.4 Expressions DRAFT: 27 May 1994 Grammar summary A7

exclusive-or-expression:
and-expression
exclusive-or-expressiort and-expression

inclusive-or-expression:
exclusive-or-expression
inclusive-or-expressior] exclusive-or-expression

logical-and-expression:
inclusive-or-expression
logical-and-expression&& inclusive-or-expression

logical-or-expression:
logical-and-expression
logical-or-expression|| logical-and-expression

conditional-expression:
logical-or-expression
logical-or-expression? expression: assignment-expression

assignment-expression:
conditional-expression
unary-expression assignment-operator assignment-expression
throw-expression

assignment—operatornne of
= *= [= Op= += = >>= <<= &= N= |=

expression:
assignment-expression
expression, assignment-expression

constant-expression:
conditional-expression

A.5 Statements [gram.stmt.stmt]

statement:
labeled-statement
expression-statement
compound-statement
selection-statement
iteration-statement
jump-statement
declaration-statement
try-block

labeled-statement:
identifier : statement
case constant-expression statement
default : statement

expression-statement:
expressiog},t ;

compound-statement:
{ statement-seg }

A-8 Grammar summary DRAFT: 27 May 1994 A.5 Statements

statement-seq:
statement
statement-seq statement

selection-statement:
if (condition) statement
if (condition) statementelse statement
switch (condition) statement

condition:
expression
type-specifier-seq declarator assignment-expression

iteration-statement:
while (condition) statement
do statement while (expression) ;
for (for-init-statement conditiq, ; expressiog,) statement

for-init-statement:
expression-statement
declaration-statement

jump-statement:
break ;
continue ;
return expressiog), ;
goto identifier ;

declaration-statement:
declaration

A.6 Declarations [gram.dcl.dcl]

declaration:
decl-specifier-seg, init-declarator-list, ;
function-definition
template-declaration
asm-definition
linkage-specification
namespace-definition
namespace-alias-definition
using-declaration
using-directive

decl-specifier-seg, init-declarator-list,,; ;

decl-specifier:
storage-class-specifier
type-specifier
function-specifier
friend
typedef

decl-specifier-seq;:
decl-specifier-seg, decl-specifier

A.6 Declarations DRAFT: 27 May 1994 Grammar summary A9

storage-class-specifier:
auto
register
static
extern
mutable

function-specifier:
inline
virtual

typedef-name:
identifier

type-specifier:
simple-type-specifier
class-specifier
enum-specifier
elaborated-type-specifier
cv-qualifier

simple-type-specifier:
L opt Nested-name-specifigrtype-name
char
wchar_t
bool
short
int
long
signed
unsigned
float
double
void

type-name:
class-name
enum-name
typedef-name

elaborated-type-specifier:
class-key:: o, nested-name-specifigyidentifier
enum ::,, nested-name-specifigridentifier

class-key:
class
struct
union

enum-name:
identifier

enum-specifier:
enum identifier,,, { enumerator-lisf, }

enumerator-list:
enumerator-definition
enumerator-list, enumerator-definition

A—-10 Grammar summary DRAFT: 27 May 1994 A.6 Declarations

enumerator-definition:
enumerator
enumerator=constant-expression

enumerator:
identifier

original-namespace-name:
identifier

namespace-definition:
original-namespace-definition
extension-namespace-definition
unnamed-namespace-definition

original-namespace-definition:
namespace identifier{ namespace-body

extension-namespace-definition:
namespace original-namespace-namg namespace-body

unnamed-namespace-definition:
namespace { namespace-body

namespace-body:
declaration-seg,

namespace-alias:
identifier

namespace-alias-definition:
namespace identifier = qualified-namespace-specifier ;

qualified-namespace-specifier:
2 opt NESted-name-specifigy class-or-namespace-name

using-declaration:
using :: o, nested-name-specifier unqualifiedsid
using :: unqualified-id;

using-directive:
using namespace :: opt Nested-name-specifigrnamespace-name ;

id-expression
unqualified-id
qualified-id

nested-name-specifier:
class-or-namespace-name nested-name-specifigy

class-or-namespace-name:
class-name
namespace-name

namespace-name:
original-namespace-name
namespace-alias

asm-definition:
asm (string-literal) ;

A.6 Declarations DRAFT: 27 May 1994 Grammar summary A1l

linkage-specification:
extern string-literal { declaration-seg, }
extern string-literal declaration

declaration-seq:
declaration
declaration-seq declaration

A.7 Declarators [gram.dcl.decl]

init-declarator-list:
init-declarator
init-declarator-list , init-declarator

init-declarator:
declarator initializeg,,

declarator:
direct-declarator
ptr-operator declarator

direct-declarator:
declarator-id
direct-declarator (parameter-declaration-clausg¢ cv-qualifier-seg, exception-specificatiop
direct-declarator [constant-expressigg]
(declarator)

ptr-operator:
* cv-qualifier-segy
& 0
i1 optNested-name-specifier cv-qualifier-segqy,]

cv-qualifier-seq:
cv-qualifier cv-qualifier-segy

cv-qualifier:
const
volatile

declarator-id:
id-expression
nested-name-specifigftype-name

type-id:
type-specifier-seq abstract-declaragr

type-specifier-seq:
type-specifier type-specifier-sgg

abstract-declarator:
ptr-operator abstract-declaratgg;
direct-abstract-declarator

direct-abstract-declarator:
direct-abstract-declaratqy, (parameter-declaration-clausg¢ cv-qualifier-seg, exception-specificatiqp
direct-abstract-declaratqy, [constant-expressigy]
(abstract-declarator)

A-12 Grammar summary DRAFT: 27 May 1994 A.7 Declarators

parameter-declaration-clause:
parameter-declarat@on—lig;;t o opt
parameter-declaration-list, ...

parameter-declaration-list:
parameter-declaration
parameter-declaration-list, parameter-declaration

parameter-declaration:
decl-specifier-seq declarator
decl-specifier-seq declarator assignment-expression
decl-specifier-seq abstract-declaraggr
decl-specifier-seq abstract-declarajgr = assignment-expression

function-definition:
decl-specifier-segj; declarator ctor-initializeg, function-body

function-body:
compound-statement

initializer:
= initializer-clause
(expression-list)

initializer-clause:
assignment-expression
{ initializer-list , o }

{}

initializer-list:
initializer-clause
initializer-list , initializer-clause

A.8 Classes [gram.class]

class-name:
identifier
template-id

class-specifier:
class-head{ member-specificatiqp, }

class-head:
class-key identifigf, base-clausgy,
class-key nested-name-specifier identifier base-clguse

class-key:
class
struct
union

member-specification:
member-declaration member-specificatjpn
access-specifier. member-specificatiqp

A.8 Classes DRAFT: 27 May 1994

member-declaration:
decl-specifier-seg, member-declarator-lig; ;
function-definition ;
qualified-id ;
using-declaration

member-declarator-list:
member-declarator
member-declarator-list, member-declarator

member-declarator:
declarator pure-specifigy,
declarator constant-initializey,
identifier,, : constant-expression

pure-specifier:
=0

constant-initializer:
= constant-expression

A.9 Derived classes

base-clause:
base-specifier-list

base-specifier-list:
base-specifier
base-specifier-list, base-specifier

base-specifier:
2 opt NESted-name-specifigy class-name

virtual access-specifigy; :: o, Nested-name-specifigy class-name
access-specifier virtug} :: ., nested-name-specifigyclass-name

access-specifier:
private
protected
public

A.10 Special member functions
class-name(expression-ligf;)

conversion-function-id:
operator conversion-type-id

conversion-type-id:
type-specifier-seq conversion-declarafpr

conversion-declarator:
ptr-operator conversion-declaratgy

ctor-initializer:
mem-initializer-list

Grammar summary Al3

[gram.class.derived]

[gram.special]

A-14 Grammar summary DRAFT: 27 May 1994 A.10 Special member functions

mem-initializer-list:
mem-initializer
meme-initializer, meme-initializer-list

mem-initializer:
T opt NESted-name-specifigrclass-name(expression-ligf,)
identifier (expression-ligf,)

A.11 Overloading

postfix-expression:
primary-expression
postfix-expression id-expression
postfix-expression> id-expression

operator-function-id:
operator operator

operator: one of

new delete new([] delete]]

+ - * / % N & | ~

! = < > += = *= = %=
N= &= [= << >> >>= <= == 1=
<= >= && || ++ - , Sk >

0 0

A.12 Templates

template-declaration:
template < template-parameter-list- declaration

template-parameter-list:
template-parameter
template-parameter-list template-parameter

template-id:
template-name< template-argument-list-

template-name:
identifier

template-argument-list:
template-argument
template-argument-list template-argument

template-argument:
assignment-expression
type-id
template-name

type-name-declaration:
typedef qualified-name;

instantiation:
template specialization

specialization:
template-name< template-argument-list> declaration

[gram.over]

[gram.temp]

A.12 Templates DRAFT: 27 May 1994 Grammar summary Al15

template-parameter:
type-parameter
parameter-declaration

type-parameter:
class identifier,y,
class identifier,,, = type-name
typedef identifier,,
typedef identifier,,, = type-name
template < template-parameter-list class identifier,,
template < template-parameter-list- class identifier,,, = template-name

A.13 Exception handling [gram.except]

try-block:
try compound-statement handler-seq

handler-seq:
handler handler-seg)

handler:
catch (exception-declaration) compound-statement

exception-declaration:
type-specifier-seq declarator
type-specifier-seq abstract-declarator
type-specifier-seq

throw-expression:
throw assignment-expressigp

exception-specification:
throw (type-id-list,)

type-id-list:
type-id
type-id-list , type-id

Annex B (informative)
Implementation quantities [limits]

Because computers are finitestGmplementations are inevitably limited in the size of the programs they

can successfully process. Every implementation shall O

EBox 141 ED

[This clause is non-normative, which means that this sentence must be restated in elsewhere as aormative
[requirement on implementations. ™

document those limitations where known. This documentation may cite fixed limits where they exidf, say
how to compute variable limits as a function of available resources, or say that fixed limits do not ekist or
are unknown.

The limits may constrain quantities that include those described below or others. The bracketed aumber
following each quantity is recommended as the minimum for that quantity. However, these quantities are
only guidelines and do not determine compliance.

— Nesting levels of compound statements, iteration control structures, and selection control structures
[256].

— Nesting levels of conditional inclusion [256].

— Pointer, array, and function declarators (in any combination) modifying an arithmetic, structure, union,
or incomplete type in a declaration [256].

— Nesting levels of parenthesized expressions within a full expression [256].

— Significant initial characters in an internal identifier or macro name [1 024].

HBox 142 B

Us there any reason that &Gmplementation should ever be permitted quietly to treat two different identi-

a‘iers as identical, merely because they're long? | don’t think so. il
O

0
CEditorial proposal. Change ‘“Significant initial characters in” to “Length of” in thie two quantities s@]
Crounding this box.

— Significant initial characters in an external identifier [1 024].

— External identifiers in one translation unit [65 536].

— Identifiers with block scope declared in one block [1 024].

— Macro identifiers simultaneously defined in one transation unit [65 536].
— Parameters in one function definition [256].

— Arguments in one function call [256].

— Parameters in one macro definition [256].

B—2 Implementation quantities DRAFT: 27 May 1994 B Implementation quantities

— Arguments in one macro invocation [256].
— Characters in one logical source line [65 536].
— Characters in a character string literal or wide string literal (after concatenation) [65 536].

— Size of an object [262 144].

%ox 143 E
[rhis is trivial for some implementations to meet and very hard for others.

— Nesting levels fo#include files [256].

— Case labels for switch statement (excluding those for any nesteiich statements) [16 384].
— Data members in a single class, structure, or union [16 384].

— Enumeration constants in a single enumeration [4 096].

— Levels of nested class, structure, or union definitions in a sstigiet-declaration-lis{256].

— Functions registered katexit() [32].

— Direct and indirect base classes [16 384].

— Direct base classes for a single class [1 024].

— Members declared in a single class [4 096].

— Final overriding virtual functions in a class, accessible or not [16 384].

%ox 144 E
0’m not quite sure what this means, but it was passed in Munich in this form.

— Direct and indirect virtual bases of a class [1 024].

— Static members of a class [1 024].

— Friend declarations in a class [4 096].

— Access control declarations in a class [4 096].

— Member initializers in a constructor definition [6 144].
— Scope qualifications of one identifier [256].

— Nested external specifications [1 024].

— Template arguyments in a template declaration [1 024].
— Handlers petry block [256].

— Throw specifications on a single function declaration [256].

© 00 N o o b

11
12

13
14
15

Annex C (informative)
Compatibility [diff]

This Annex summarizes the evolution oftGince the first edition ofhe G+ Programming Language

and explains in detail the differences between &d C. Because the C language as described by this
International Standard differs from the dialects of Classic C used up till now, we discuss the differences
between & and ISO C as well as the differences betweera@d Classic C.

CH+ is based on C (K&R78) and adopts most of the changes specified by the ISO C standard. Converting
programs among+E, K&R C, and ISO C may be subject to vicissitudes of expression evaluation. All dif-
ferences betweent€and ISO C can be diagnosed by a compiler. With the exceptions listed in this Annex,
programs that are bothHand ISO C have the same meaning in both languages.

C.1 Extensions [diff.c]

This subclause summarizes the major extensions to C provided by C

C.1.1 G+ features available in 1985 [diff.early]
This subclause summarizes the extensions to C provideti-biy e 1985 version of its manual:

The types of function parameters can be specified (8.3.5) and will be checked (5.2.2). Type conversions
will be performed (5.2.2). Thisis also in ISO C.

Single-precision floating point arithmetic may be usedfifiat expressions; 3.7.1 and 4.3. This is also
in ISO C.

Function names can be overloaded; 13.

Operators can be overloaded; 13.4.

Functions can be inline substituted; 7.1.2.

Data objects can bmnst ; 7.1.5. This is also in ISO C.

Objects of reference type can be declared; 8.3.2 and 8.5.3.

A free store is provided by thmew anddelete operators; 5.3.4, 5.3.5.

Classes can provide data hiding (11), guaranteed initialization (12.1), user-defined conversions (12.3), and
dynamic typing through use of virtual functions (10.3).

The name of a class or enumeration is a type name; 9.

A pointer to any nortonst and nonvolatile object type can be assigned to@d* ; 4.6. This is
also in ISO C.

A pointer to function can be assigned teoéd* ; 4.6.
A declaration within a block is a statement; 6.7.

Anonymous unions can be declared; 9.6.

a A W N P

© 00 ~N o

11
12
13
14
15
16
17
18
19
20

C-2 Compatibility DRAFT: 27 May 1994 C.1.2 G+ features added since 1985

C.1.2 G+ features added since 1985 [diff.c++]
This subclause summarizes the major extensionstodi@ice the 1985 version of this manual:

A class can have more than one direct base class (multiple inheritance); 10.1.

Class members can peotected ; 11.

Pointers to class members can be declared and used; 8.3.3, 5.5.

Operatorsiew anddelete can be overloaded and declared for a class; 5.3.4, 5.3.5, 12.5. This allows the
“assignment tohis " technique for class specific storage management to be removed to the anachronism
subclause; C.3.3.

Objects can be explicitly destroyed; 12.4.

Assignment and initialization are defined as memberwise assignment and initialization; 12.8.
Theoverload keyword was made redundant and moved to the anachronism subclause; C.3.
General expressions are allowed as initializers for static objects; 8.5.

Data objects can belatile ; 7.1.5. Also in ISO C.

Initializers are allowed fostatic class members; 9.5.

Member functions can Istatic ; 9.5.

Member functions can eonst andvolatile ; 9.4.1.

Linkage to non-& program fragments can be explicitly declared; 7.5.

Operators> , ->* | and, can be overloaded; 13.4.

Classes can be abstract; 10.4.

Prefix and postfix application af+ and-- on a user-defined type can be distinguished.
Templates; 14.

Exception handling; 15.

Thebool type (3.7.1).

C.2 CHandISOC [diff.is0]

The subclauses of this subclause list the differences betweean@ ISO C, by the chapters of this docu-
ment.

C.2.1 Clause 2: lexical conventions [diff.lex]

Subclause 2.2

Change: G+ style commentd/() are added

A pair of slashes now introduce a one-line comment.

Rationale: This style of comments is a useful addition to the language.

Effect on original feature: Change to semantics of well-defined feature. A valid ISO C expression con-
taining a division operator followed immediately by a C-style comment will now be treated+astyl€
comment. For example:

{
inta=4;
int b = 8 //* divide by a*/ a;
+a;

C.2.1 Clause 2: lexical conventions DRAFT: 27 May 1994 Compatibility €3

Difficulty of converting: Syntactic transformation. Just add white space after the division operator.
How widely used:The token sequend¢® probably occurs very seldom.

Subclause 2.8

Change:New Keywords

New keywords are added ta+Csee 2.8.

Rationale: These keywords were added in order to implement the new semantigs of C

Effect on original feature: Change to semantics of well-defined feature. Any ISO C programs that used
any of these keywords as identifiers are not vatilftograms.

Difficulty of converting: Syntactic transformation. Converting one specific program is easy. Converting a
large collection of related programs takes more work.

How widely used:Common.

Subclause 2.9.2

Change: Type of character literal is changed framh to char
Rationale: This is needed for improved overloaded function argument type matching. For example:

int function(int i);
int function(char ¢);

function(’x’);

It is preferable that this call match the second version of function rather than the first.
Effect on original feature: Change to semantics of well-defined feature. ISO C programs which depend
on

sizeof(’x’) == sizeof(int)

will not work the same as+€ programs.
Difficulty of converting: Simple.
How widely used:Programs which depend upsizeof(’x’) are probably rare.

C.2.2 Clause 3: basic concepts [diff.basic]

Subclause 3.1

Change: G+ does not havé&tentative definitionsas in C
E.g., at file scope,
inti;
inti;
is valid in C, invalid in €. This makes it impossible to define mutually referential file-local static objects,
if initializers are restricted to the syntactic forms of C. For example,

struct X { int i; struct X *next; };

static struct X a;
static struct X b={0, &a };
static struct Xa={1, &b };

Rationale: This avoids having different initialization rules for built-in types and user-defined types.
Effect on original feature: Deletion of semantically well-defined feature.

Difficulty of converting: Semantic transformation. In+€ the initializer for one of a set of mutually-
referential file-local static objects must invoke a function call to achieve the initialization.

How widely used:Seldom.

C—-4 Compatibility DRAFT: 27 May 1994 C.2.2 Clause 3: basic concepts

Subclause 3.3

Change:A struct is a scope in€, notin C

Rationale: Class scope is crucial ta+; and a struct is a class.

Effect on original feature: Change to semantics of well-defined feature.

Difficulty of converting: Semantic transformation.

How widely used:C programs usstruct extremely frequently, but the change is only noticeable when
struct , enumeration, or enumerator names are referred to outsicdéraice . The latter is probably
rare.

Subclause 3.4 [also 7.1.5]

Change: A name of file scope that is explicitly declareshst , and not explicitly declareeixtern , has
internal linkage, while in C it would have external linkage

Rationale: Becauseonst objects can be used as compile-time valuesHn is feature urges program-
mers to provide explicit initializer values for eacbnst . This feature allows the user to prdnst
objects in header files that are included in many compilation units.

Effect on original feature: Change to semantics of well-defined feature.

Difficulty of converting: Semantic transformation

How widely used:Seldom

Subclause 3.5

Change:Main cannot be called recursively and cannot have its address taken
Rationale: The main function may require special actions.

Effect on original feature: Deletion of semantically well-defined feature

Difficulty of converting: Trivial: create an intermediary function such egymain(argc, argv)
How widely used:Seldom

Subclause 3.7

Change:C allows"compatible typéesin several places# does not

For example, otherwise-identicgttuct types with different tag names dmompatiblé in C but are dis-

tinctly different types in &-.

Rationale: Stricter type checking is essential farC

Effect on original feature: Deletion of semantically well-defined feature.

Difficulty of converting: Semantic transformation THeypesafe linkagemechanism will find many, but

not all, of such problems. Those problems not found by typesafe linkage will continue to function properly,
according to thélayout compatibility rulesof this International Standard.

How widely used:Common.

Subclause 4.6

Change: Convertingvoid* to a pointer-to-object type requires casting

char a[10];
void *b=a;
void foo() {
char *c=b;

}

ISO C will accept this usage of pointer to void being assigned to a pointer to objectypsl Qot.
Rationale: G+ tries harder than C to enforce compile-time type safety.
Effect on original feature: Deletion of semantically well-defined feature.

C.2.2 Clause 3: basic concepts DRAFT: 27 May 1994 Compatibility -&

Difficulty of converting: Could be automated. Violations will be diagnosed by thetanslator. The fix
is to add a cast. For example:

char *c = (char *) b;

How widely used: This is fairly widely used but it is good programming practice to add the cast when
assigning pointer-to-void to pointer-to-object. Some ISO C translators will give a warning if the cast is not
used.

Subclause 4.6

Change:Only pointers to non-const and non-volatile objects may be implicitly convertedto

Rationale: This improves type safety.

Effect on original feature: Deletion of semantically well-defined feature.

Difficulty of converting: Could be automated. A C program containing such an implicit conversion from
(e.g.) pointer-to-const-object to void* will receive a diagnostic message. The correction is to add an
explicit cast.

How widely used:Seldom.

C.2.3 Clause 5: expressions [diff.expr]

Subclause 5.2.2

Change:Implicit declaration of functions is not allowed

Rationale: The type-safe nature of-€

Effect on original feature: Deletion of semantically well-defined feature. Note: the original feature was
labeled agobsolescefitin ISO C.

Difficulty of converting: Syntactic transformation. Facilities for producing explicit function declarations
are fairly widespread commercially.

How widely used:Common.

Subclause 5.3.3, 5.4

Change: Types must be declared in declarations, not in expressions
In C, a sizeof expression or cast expression may create a new type. For example,

p = (void*)(struct x {int i;} *)0;

declares a new type, struct x .

Rationale: This prohibition helps to clarify the location of declarations in the source code.
Effect on original feature: Deletion of a semantically well-defined feature.

Difficulty of converting: Syntactic transformation.

How widely used:Seldom.

C.2.4 Clause 6: statements [diff.stat]

Subclause 6.4.2, 6.6.4\itch and goto statements)

Change: It is now invalid to jump past a declaration with explicit or implicit initializer (except across
entire block not entered)

Rationale: Constructors used in initializers may allocate resources which need to be de-allocated upon
leaving the block. Allowing jump past initializers would require complicated run-time determination of
allocation. Furthermore, any use of the uninitialized object could be a disaster. With this simple compile-
time rule, G+ assures that if an initialized variable is in scope, then it has assuredly been initialized.

Effect on original feature: Deletion of semantically well-defined feature.

C-6 Compatibility DRAFT: 27 May 1994 C.2.4 Clause 6: statements

Difficulty of converting: Semantic transformation.
How widely used:Seldom.

Subclause 6.6.3

Change: It is now invalid to return (explicitly or implicitly) from a function which is declared to return a
value without actually returning a value

Rationale: The caller and callee may assume fairly elaborate return-value mechanisms for the return of
class objects. If some flow paths execute a return without specifying any value, the compiler must embody
many more complications. Besides, promising to return a value of a given type, and then not returning such
a value, has always been recognized to be a questionable practice, tolerated only because very-old C had no
distinction between void functions and int functions.

Effect on original feature: Deletion of semantically well-defined feature.

Difficulty of converting: Semantic transformation. Add an appropriate return value to the source code,
e.g. zero.

How widely used:Seldom. For several years, many existing C compilers have produced warnings in this
case.

C.2.5 Clause 7: declarations [diff.dcl]

Subclause 7.1.1

Change:In G+, thestatic orextern specifiers can only be applied to names of objects or functions
Using these specifiers with type declarations is illegatih @ C, these specifiers are ignored when used
on type declarations. Example:

static struct S { // valid C, invalid in C +
inti;
...
5

Rationale: Storage class specifiers don’t have any meaning when associated with a type, dfass
members can be defined with thatic storage class specifier. Allowing storage class specifiers on
type declarations could render the code confusing for users.

Effect on original feature: Deletion of semantically well-defined feature.

Difficulty of converting: Syntactic transformation.

How widely used:Seldom.

Subclause 7.1.3

Change: A G+ typedef name must be different from any class type name declared in the same scope
(except if the typedef is a synonym of the class nhame with the same name). In C, a typedef name and a
struct tag name declared in the same scope can have the same name (because they have different name

spaces)

Example:
typedef struct namel { /*...*/ } namel; // valid C and C +
struct name { /*...*/ };
typedef int name; // valid C, invalid C +

Rationale: For ease of use,+€ doesn't require that a type name be prefixed with the keywdads ,
struct orunion when used in object declarations or type casts. Example:

class name { /*..*/ };
name i; Il i has type 'class name’

Effect on original feature: Deletion of semantically well-defined feature.

C.2.5 Clause 7: declarations DRAFT: 27 May 1994 Compatibility €7

Difficulty of converting: Semantic transformation. One of the 2 types has to be renamed.
How widely used:Seldom.

Subclause 7.1.5 [see also 3.4]

Change:const objects must be initialized irtCbut can be left uninitialized in C

Rationale: A const object cannot be assigned to so it must be initialized to hold a useful value.
Effect on original feature: Deletion of semantically well-defined feature.

Difficulty of converting: Semantic transformation.

How widely used:Seldom.

Subclause 7.2

Change: G+ objects of enumeration type can only be assigned values of the same enumeration type. In C,
objects of enumeration type can be assigned values of any integral type
Example:

enum color { red, blue, green };
colorc=1; //validC,invalidC +

Rationale: The type-safe nature of€

Effect on original feature: Deletion of semantically well-defined feature.

Difficulty of converting: Syntactic transformation. (The type error produced by the assignment can be
automatically corrected by applying an explicit cast.)

How widely used:Common.

Subclause 7.2

Change:In C+, the type of an enumerator is its enumeration. In C, the type of an enumeirdtor is
Example:

enume{A};
sizeof(A) == sizeof(int) //inC
sizeof(A) == sizeof(e) /lin C +

/* and sizeof(int) is not necessary equal to sizeof(e) */

Rationale: In CH, an enumeration is a distinct type.

Effect on original feature: Change to semantics of well-defined feature.

Difficulty of converting: Semantic transformation.

How widely used:Seldom. The only time this affects existing C code is when the size of an enumerator is
taken. Taking the size of an enumerator is not a common C coding practice.

C.2.6 Clause 8: declarators [diff.decl]

Subclause 8.3.5

Change:In C+, a function declared with an empty parameter list takes no arguments.
In C, an empty parameter list means that the number and type of the function arguments are unknown"
Example:

intf(); // means int f(void) inC +
I int flunknown) inC

Rationale: This is to avoid erroneous function calls (i.e. function calls with the wrong number or type of
arguments).
Effect on original feature: Change to semantics of well-defined feature. This feature was marked as

C-8 Compatibility DRAFT: 27 May 1994 C.2.6 Clause 8: declarators

“obsolesceritin C.

Difficulty of converting: Syntactic transformation. The function declarations using C incomplete declara-
tion style must be completed to become full prototype declarations. A program may need to be updated
further if different calls to the same (non-prototype) function have different numbers of arguments or if the
type of corresponding arguments differed.

How widely used:Common.

Subclause 8.3.5 [see 5.3.3]

Change: In CH, types may not be defined in return or parameter types. In C, these type definitions are
allowed
Example:

void f(struct S{inta; } arg) {} /l valid C, invalid C +
enumE{A,B,C}f(){} I valid C, invalid C +

Rationale: When comparing types in different compilation unitst €lies on name equivalence when C

relies on structural equivalence. Regarding parameter types: since the type defined in an parameter list
would be in the scope of the function, the only legal callsHw®uld be from within the function itself.

Effect on original feature: Deletion of semantically well-defined feature.

Difficulty of converting: Semantic transformation. The type definitions must be moved to file scope, or in
header files.

How widely used:Seldom. This style of type definitions is seen as poor coding style.

Subclause 8.4

Change: In C+, the syntax for function definition excludes thad-style’ C function. In C,“old-styl€’
syntax is allowed, but deprecated absolescerit.

Rationale: Prototypes are essential to type safety.

Effect on original feature: Deletion of semantically well-defined feature.

Difficulty of converting: Syntactic transformation.

How widely used:Common in old programs, but already known to be obsolescent.

Subclause 8.5.2

Change:In CH, when initializing an array of character with a string, the number of characters in the string
(including the terminatind0’) must not exceed the number of elements in the array. In C, an array can
be initialized with a string even if the array is not large enough to contain the string termiifating

Example:

char array[4] = "abcd"; // valid C, invalid C +

Rationale: When these non-terminated arrays are manipulated by standard string routines, there is potential
for major catastrophe.

Effect on original feature: Deletion of semantically well-defined feature.

Difficulty of converting: Semantic transformation. The arrays must be declared one element bigger to
contain the string terminatiri’

How widely used:Seldom. This style of array initialization is seen as poor coding style.

C.2.7 Clause 9: classes [diff.class]

Subclause 9.1 [see also 7.1.3]

C.2.7 Clause 9: classes DRAFT: 27 May 1994 Compatibility -®

Change:In CH, a class declaration introduces the class name into the scope where it is declared and hides
any object, function or other declaration of that name in an enclosing scope. In C, an inner scope declara-
tion of a struct tag name never hides the name of an object or function in an outer scope

Example:

int x[99];
void f()
{
struct x {int a; };
sizeof(x); /* size of the array in C */
/* size of the structin C + ¥
}

Rationale: This is one of the few incompatibilities between C amdt@at can be attributed to the newC

name space definition where a name can be declared as a type and as a nontype in a single scope causing
the nontype name to hide the type name and requiring that the keyelasds, struct , union or

enum be used to refer to the type name. This nhew name space definition provides important notational
conveniences to+#€ programmers and helps making the use of the user-defined types as similar as possible
to the use of built-in types. The advantages of the new name space definition were judged to outweigh by
far the incompatibility with C described above.

Effect on original feature: Change to semantics of well-defined feature.

Difficulty of converting: Semantic transformation. If the hidden name that needs to be accessed is at glo-
bal scope, the: CH operator can be used. If the hidden name is at block scope, either the type or the
struct tag has to be renamed.

How widely used:Seldom.

Subclause 9.8

Change:In G+, the name of a nested class is local to its enclosing class. In C the name of the nested class
belongs to the same scope as the name of the outermost enclosing class

Example:
struct X {
struct Y {/* ... */ }vy;
2
struct Y yy; /[valid C, invalid C +

Rationale: CH classes have member functions which require that classes establish scopes. The C rule
would leave classes as an incomplete scope mechanism which would preverdggtammers from main-

taining locality within a class. A coherent set of scope rules forb@sed on the C rule would be very
complicated and€ programmers would be unable to predict reliably the meanings of nontrivial examples
involving nested or local functions.

Effect on original feature: Change of semantics of well-defined feature.

Difficulty of converting: Semantic transformation. To make the struct type name visible in the scope of
the enclosing struct, the struct tag could be declared in the scope of the enclosing struct, before the enclos-
ing struct is defined. Example:

struct Y; // struct Y and struct X are at the same scope
struct X {
struct Y {/*...*/ }vy;

b
All the definitions of C struct types enclosed in other struct definitions and accessed outside the scope of
the enclosing struct could be exported to the scope of the enclosing struct. Note: this is a consequence of
the difference in scope rules, which is documented at subclause 3.3 above.
How widely used:Seldom.

Subclause 9.10

C-10 Compatibility DRAFT: 27 May 1994 C.2.7 Clause 9: classes

Change:In G+, a typedef name may not be redefined in a class declaration after being used in the declara-
tion
Example:

typedef int [;
struct S {

li;

intl; // valid C, invalid C +
h

Rationale: When classes become complicated, allowing such a redefinition after the type has been used can
create confusion for#€ programmers as to what the meaning of 'I' really is.

Effect on original feature: Deletion of semantically well-defined feature.

Difficulty of converting: Semantic transformation. Either the type or the struct member has to be
renamed.

How widely used:Seldom.

C.2.8 Clause 16: preprocessing directives [diff.cpp]

Subclause 16.8 (predefined names)

Change:Whether_STDC__ is defined and if so, what its value is, are implementation-defined

Rationale: G+ is not identical to ISO C. Mandating thatSTDC _ be defined would require that transla-

tors make an incorrect claim. Each implementation must choose the behavior that will be most useful to its
marketplace.

Effect on original feature: Change to semantics of well-defined feature.

Difficulty of converting: Semantic transformation.

How widely used:Programs and headers that referencBTDC _ are quite common.

C.3 Anachronisms [diff.anac]

The extensions presented here may be provided by an implementation to ease the use of C programs as C
programs or to provide continuity from earlierGmplementations. Note that each of these features has
undesirable aspects. An implementation providing them should also provide a way for the user to ensure
that they do not occur in a source file. A-@mplementation is not obliged to provide these features.

The wordoverload may be used asdecl-specifiel(7) in a function declaration or a function definition.
When used as@ecl-specifieroverload is a reserved word and cannot also be used as an identifier.

The definition of a static data member of a class for which initialization by default to all zeros applies (8.5,
9.5) may be omitted.

An old style (that is, pre-ISO C) C preprocessor may be used.
Anint may be assigned to an object of enumeration type.

The number of elements in an array may be specified when deleting an array of a type for which there is no
destructor; 5.3.5.

A single functionoperator++() may be used to overload both prefix and postfixand a single func-
tion operator--() may be used to overload both prefix and postfix 13.4.6.

C.3.1 Old style function definitions [diff.fct.def]

The C function definition syntax

old-function-definition:
decl-specifiers, old-function-declarator declaration-sgg function-body

C.3.1 Old style function definitions DRAFT: 27 May 1994 Compatibility G-11

old-function-declarator:
declarator (parameter-lisf,)

parameter-list:
identifier
parameter-list, identifier

For example,
max(a,b) int b; { return (a<b) ? b : a; }

may be used. If a function defined like this has not been previously declared its parameter type will be
taken to be...) , thatis, unchecked. If it has been declared its type must agree with that of the declara-
tion.

Class member functions may not be defined with this syntax.

C.3.2 Old style base class initializer [diff.base.init]

In amem-initialize(12.6.2), theclass-namaaming a base class may be left out provided there is exactly
one immediate base class. For example,

class B {
...
public:
B (int);
2

class D : public B {
...
D(inti): (i) {/*...*/}

causes th8 constructor to be called with the argumient

C.3.3 Assignment tahis [diff.this]

Memory management for objects of a specific class can be controlled by the user by suitable assignments to
thethis pointer. By assigning to theis pointer before any use of a member, a constructor can imple-
ment its own storage allocation. By assigning the null pointthigo , a destructor can avoid the standard
deallocation operation for objects of its class. Assigning the null pointhisto in a destructor also sup-
pressed the implicit calls of destructors for bases and members. For example,

class Z {
int z[10];
Z() {this = my_allocator(sizeof(Z)); }
~Z() { my_deallocator(this); this = 0; }
I3

On entry into a constructaihis is nonnull if allocation has already taken place (as it will havaiito ,
static , and member objects) and null otherwise.

Calls to constructors for a base class and for member objects will take place (only) after an assignment to
this . If a base class’s constructor assignthi® , the new value will also be used by the derived class’s
constructor (if any).

Note that if this anachronism exists either the type ofttise pointer cannot be ‘&onst or the enforce-
ment of the rules for assignment to a constant pointer must be subvertedtics theointer.

C-12 Compatibility DRAFT: 27 May 1994 C.3.4 Cast of bound pointer

C.3.4 Cast of bound pointer [diff.bound]

A pointer to member function for a particular object may be cast into a pointer to function, for example,
@int(*)())p->f . The result is a pointer to the function that would have been called using that member
function for that particular object. Any use of the resulting pointerds ever undefined.

C.3.5 Nonnested classes [diff.class.nonnested]

Where a class is declared within another class and no other class of that name is declared in the program
that class can be used as if it was declared outside its enclosing class (exactstast Q. For exam-
ple,

struct S {
struct T {
int a;
3
int b;
h

struct T x; /l meaning ‘S::T x;’

