
_ ___ ___

1 General [intro]
_ ___ ___

[intro.scope] 1.1 Scope

1 This International Standard specifies requirements for processors of the C + + programming language. The
first such requirement is that they implement the language, and so this Standard also defines C + +. Other
requirements and relaxations of the first requirement appear at various places within the Standard.

2 C + + is a general purpose programming language based on the C programming language as described in
ISO/IEC 9899 (1.2). In addition to the facilities provided by C, C + + provides additional data types, classes,
templates, exceptions, inline functions, operator overloading, function name overloading, references, free
store management operators, function argument checking and type conversion, and additional library facili-
ties. These extensions to C are summarized in C.1. The differences between C + + and ISO C1) are summa-
rized in C.2. The extensions to C + + since 1985 are summarized in C.1.2.

[intro.refs] 1.2 Normative references

1 The following standards contain provisions which, through reference in this text, constitute provisions of
this International Standard. At the time of publication, the editions indicated were valid. All standards are
subject to revision, and parties to agreements based on this International Standard are encouraged to investi-
gate the possibility of applying the most recent editions of the standards indicated below. Members of IEC
and ISO maintain registers of currently valid International Standards.

— ANSI X3/TR– 1– 82:1982,American National Dictionary for Information Processing Systems.

— ISO/IEC 9899:1990,C Standard

— ISO/IEC xxxx:199xAmendment 1 to C Standard

Box 1

This last title must be filled in when Amendment 1 is approved. The other titles have not been checked for
accuracy._ __





_ __





[intro.defs] 1.3 Definitions

1 For the purposes of this International Standard, the definitions given in ANSI X3/TR– 1– 82 and the follow-
ing definitions apply.

— argument: An expression in the comma-separated list bounded by the parentheses in a function call
expression, a sequence of preprocessing tokens in the comma-separated list bounded by the parentheses
in a function-like macro invocation, the operand ofthrow , or an expression in the comma-separated
list bounded by the angle brackets in a template instantiation. Also known as an“actual argument” or
“actual parameter.”

— diagnostic message: A message belonging to an implementation-defined subset of the
implementation’s message output.

— dynamic type: The dynamic typeof an expression is determined by its current value and may change
during the execution of a program. If a pointer (8.3.1) whose static type is“pointer to classB” is point-
ing to an object of classD, derived from B (10), the dynamic type of the pointer is“pointer toD.”

1– 2 General DRAFT: 27 May 1994 1.3 Definitions

References (8.3.2) are treated similarly.

— implementation-defined behavior: Behavior, for a correct program construct and correct data, that
depends on the implementation and that each implementation shall document. The range of possible
behaviors is delineated by the standard.

— implementation limits: Restrictions imposed upon programs by the implementation.

— locale-specific behavior:Behavior that depends on local conventions of nationality, culture, and lan-
guage that each implementation shall document.

— multibyte character: A sequence of one or more bytes representing a member of the extended charac-
ter set of either the source or the execution environment. The extended character set is a superset of the
basic character set.

— parameter: an object or reference declared as part of a function declaration or definition ir the catch
clause of an exception handler that acquires a value on entry to the function or handler, an identifier
from the comma-separated list bounded by the parentheses immediately following the macro name in a
function-like macro definition, or atemplate-parameter. A function may said to“take arguments” or to
“have parameters.” Parameters are also known as a“formal arguments” or “formal parameters.”

— signature: The signature of a function is the information about that function that participates in over-
load resolution (13.2): the types of its parameters and, if the function is a non-static member of a class,
the CV-qualifiers (if any) on the function itself and whether the function is a direct member of its class
or inherited from a base class.

— static type: The static typeof an expression is the type (3.7) resulting from analysis of the program
without consideration of execution semantics. It depends only on the form of the program and does not
change.

— undefined behavior: Behavior, such as might arise upon use of an erroneous program construct or of
erroneous data, for which the standard imposes no requirements. Permissible undefined behavior
ranges from ignoring the situation completely with unpredictable results, to behaving during translation
or program execution in a documented manner characteristic of the environment (with or without the
issuance of a diagnostic message), to terminating a translation or execution (with the issuance of a diag-
nostic message). Note that many erroneous program constructs do not engender undefined behavior;
they are required to be diagnosed.

— unspecified behavior:Behavior, for a correct program construct and correct data, that depends on the
implementation. The range of possible behaviors is delineated by the standard. The implementation is
not required to document which behavior occurs.

[syntax] 1.4 Syntax notation

1 In the syntax notation used in this manual, syntactic categories are indicated byitalic type, and literal words
and characters inconstant width type. Alternatives are listed on separate lines except in a few cases
where a long set of alternatives is presented on one line, marked by the phrase“one of.” An optional termi-
nal or nonterminal symbol is indicated by the subscript“opt,” so

{ expressionopt }

indicates an optional expression enclosed in braces.

2 Names for syntactic categories have generally been chosen according to the following rules:

— X-nameis a use of an identifier in a context that determines its meaning (e.g.class-name, typedef-
name).

1) Function signatures do not include return type, because that does not participate in overload resolution.

1.4 Syntax notation DRAFT: 27 May 1994 General 1– 3

— X-id is an identifier with no context-dependent meaning (e.g.qualified-id).

— X-seqis one or moreX’s without intervening delimiters (e.g.declaration-seqis a sequence of declara-
tions).

— X-list is one or moreX’s separated by intervening commas (e.g.expression-listis a sequence of expres-
sions separated by commas).

[intro.memory] 1.5 The C + + memory model

1 The fundamental storage unit in the C + + memory model is thebyte. A byte is at least large enough to con-
tain any member of the basic execution character set and is composed of a contiguous sequence of bits, the
number of which is implementation-defined. The least significant bit is called thelow-order bit; the most
significant bit is called thehigh-orderbit. The memory accessible to a C + + program is one or more con-
tiguous sequences of bytes. Each byte (except perhaps registers) has a unique address.

2 The constructs in a C + + program create, refer to, access, and manipulateobjectsin memory. Each object
(except bit-fields) occupies one or more contiguous bytes. Objects are created by definitions (3.1) and
new-expressions(5.3.4). Each object has atypedetermined by the construct that creates it. The type in
turn determines the number of bytes that the object occupies and the interpretation of their contents.
Objects may contain other objects, calledsub-objects(9.2, 10). An object that is not a sub-object of any
other object is called acomplete object. For every objectx , there is some object calledthe complete object
of x , determined as follows:

— If x is a complete object, thenx is the complete object ofx .

— Otherwise, the complete object ofx is the complete object of the (unique) object that containsx .

3 C + + provides a variety of built-in types and several ways of composing new types from existing types.

4 Certain types havealignmentrestrictions. An object of one of those types may appear only at an address
that is divisible by a particular integer.

[intro.compliance] 1.6 Processor compliance

1 Every conforming C + + processor shall, within its resource limits, accept and correctly execute well-formed
C + + programs, and shall issue at least one diagnostic error message when presented with any ill-formed pro-
gram that contains a violation of any rule that is identified as diagnosable in this Standard or of any syntax
rule, except as noted herein.

2 Well-formed C + + programs are those that are constructed according to the syntax rules, semantic rules iden-
tified as diagnosable, and the One Definition Rule (3.1). If a program is not well-formed but does not con-
tain any diagnosable errors, this Standard places no requirement on processors with respect to that program.

[intro.execution] 1.7 Program execution

1 The semantic descriptions in this Standard define a parameterized nondeterministic abstract machine. This
Standard places no requirement on the structure of conforming processors. In particular, they need not
copy or emulate the structure of the abstract machine. Rather, conforming processors are required to emu-
late (only) the observable behavior of the abstract machine as explained below.

2 Certain aspects and operations of the abstract machine are described in this Standard as implementation
defined (for example,sizeof(int)). These constitute the parameters of the abstract machine. Each
implementation shall include documentation describing its characteristics and behavior in these respects,
which documentation defines the instance of the abstract machine that corresponds to that implementation
(referred to as the ‘‘corresponding instance’’ below).

3 Certain other aspects and operations of the abstract machine are described in this Standard as unspecified
(for example, order of evaluation of arguments to a function). In each case the Standard defines a set of
allowable behaviors. These define the nondeterministic aspects of the abstract machine. An instance of the
abstract machine may thus have more than one possible execution sequence for a given program and a

1– 4 General DRAFT: 27 May 1994 1.7 Program execution

given input.

4 Certain other operations are described in this International Standard as undefined (for example, the effect of
dereferencing the null pointer).

5 A conforming processor executing a well-formed program shall produce the same observable behavior as
one of the possible execution sequences of the corresponding instance of the abstract machine with the
same program and the same input. However, if any such execution sequence contains an undefined opera-
tion, this Standard places no requirement on the processor executing that program with that input (not even
with regard to operations previous to the first undefined operation).

6 The observable behavior of the abstract machine is its sequence of reads and writes tovolatile data and
calls to library I/O functions.2)

2) An implementation can offer additional library I/O functions as an extension. Implementations that do so should treat calls to those
functions as ‘‘observable behavior’’ as well.

_ ___ ___

2 Lexical conventions [lex]
_ ___ ___

1 A C + + program need not all be translated at the same time. The text of the program is kept in units called
source filesin this standard. A source file together with all the headers (17.1.2) and source files included
(16.2) via the preprocessing directive#include , less any source lines skipped by any of the conditional
inclusion (16.1) preprocessing directives, is called atranslation unit. Previously translated translation units
may be preserved individually or in libraries. The separate translation units of a program communicate
(3.4) by (for example) calls to functions whose identifiers have external linkage, manipulation of objects
whose identifiers have external linkage, or manipulation of data files. Translation units may be separately
translated and then later linked to produce an executable program. (3.4).

[lex.phases] 2.1 Phases of translation

1 The precedence among the syntax rules of translation is specified by the following phases.3)

1 Physical source file characters are mapped to the source character set (introducing new-line charac-
ters for end-of-line indicators) if necessary. Trigraph sequences (2.2) are replaced by corresponding
single-character internal representations.

2 Each instance of a new-line character and an immediately preceding backslash character is deleted,
splicing physical source lines to form logical source lines. A source file that is not empty shall end
in a new-line character, which shall not be immediately preceded by a backslash character.

3 The source file is decomposed into preprocessing tokens (2.3) and sequences of white-space charac-
ters (including comments). A source file shall not end in a partial preprocessing token or comment.
Each comment is replaced by one space character. New-line characters are retained. Whether each
nonempty sequence of white-space characters other than new-line is retained or replaced by one
space character is implementation-defined. The process of dividing a source file’s characters into
preprocessing tokens is context-dependent. For example, see the handling of< within a#include
preprocessing directive.

4 Preprocessing directives are executed and macro invocations are expanded. A#include prepro-
cessing directive causes the named header or source file to be processed from phase 1 through phase
4, recursively.

5 Each source character set member and escape sequence in character constants and string literals is
converted to a member of the execution character set.

6 Adjacent character string literal tokens are concatenated and adjacent wide string literal tokens are
concatenated.

7 White-space characters separating tokens are no longer significant. Each preprocessing token is
converted into a token. (See 2.4). The resulting tokens are syntactically and semantically analyzed
and translated. The result of this process starting from a single source file is called atranslation
unit.

8 The translation units that will form a program are combined. All external object and function refer-
ences are resolved.

3) Implementations must behave as if these separate phases occur, although in practice different phases may be folded together.

2– 2 Lexical conventions DRAFT: 27 May 1994 2.1 Phases of translation

Box 2

What about shared libraries?_ ___________________________



_ ___________________________




Library components are linked to satisfy external references to functions and objects not defined in the
current translation. All such translator output is collected into a program image which contains infor-
mation needed for execution in its execution environment.

[lex.trigraph] 2.2 Trigraph sequences

1 Before any other processing takes place, each occurrence of one of the following sequences of three charac-
ters (“trigraph sequences”) is replaced by the single character indicated in Table 1.

Table 1—trigraph sequences
_ __
trigraph replacement trigraph replacement trigraph replacement_ ___ __

??= # ??([??< {_ __
??/ \ ??)] ??> }_ __
??’ ^ ??! | ??- ~_ __ 
























2 For example,

??=define arraycheck(a,b) a??(b??) ??!??! b??(a??)

becomes

#define arraycheck(a,b) a[b] || b[a]

[lex.pptoken] 2.3 Preprocessing tokens

preprocessing-token:
header-name
identifier
pp-number
character-constant
string-literal
operator
digraph
punctuator
each non-white-space character that cannot be one of the above

1 Each preprocessing token that is converted to a token (2.5) shall have the lexical form of a keyword, an
identifier, a constant, a string literal, an operator, a digraph, or a punctuator.

2 A preprocessing tokenis the minimal lexical element of the language in translation phases 3 through 6.
The categories of preprocessing token are:header names, identifiers, preprocessing numbers, character
constants, string literals, operators, punctuators, digraphs, and single non-white-space characters that do
not lexically match the other preprocessing token categories. If a’ or a" character matches the last cate-
gory, the behavior is undefined. Preprocessing tokens can be separated bywhite space; this consists of
comments (2.6), orwhite-space characters(space, horizontal tab, new-line, vertical tab, and form-feed), or
both. As described in Clause 16, in certain circumstances during translation phase 4, white space (or the
absence thereof) serves as more than preprocessing token separation. White space may appear within a pre-
processing token only as part of a header name or between the quotation characters in a character constant
or string literal.

2.3 Preprocessing tokens DRAFT: 27 May 1994 Lexical conventions 2– 3

3 If the input stream has been parsed into preprocessing tokens up to a given character, the next preprocessing
token is the longest sequence of characters that could constitute a preprocessing token.

4 The program fragment1Ex is parsed as a preprocessing number token (one that is not a valid floating or
integer constant token), even though a parse as the pair of preprocessing tokens1 andEx might produce a
valid expression (for example, ifEx were a macro defined as+1). Similarly, the program fragment1E1 is
parsed as a preprocessing number (one that is a valid floating constant token), whether or notE is a macro
name.

5 The program fragmentx+++++y is parsed asx ++ ++ + y , which violates a constraint on increment
operators, even though the parsex ++ + ++ y might yield a correct expression.

[lex.digraph] 2.4 Digraph sequences

1 Alternate representations are provided for the operators and punctuators whose primary representations use
the“national characters.” These include digraphs and additional reserved words.

digraph:
<%
%>
<:
:>
%: 

2 In translation phase 3 (2.1) the digraphs are recognized as preprocessing tokens. Then in translation phase
7 the digraphs and the additional identifiers listed below are converted into tokens identical to those from
the corresponding primary representations, as shown in Table 2.

Table 2—identifiers that are treated as operators
__
alternate primary alternate primary alternate primary__

<% { and && and_eq &=__
%> } bitor | or_eq |=__
<: [or || xor_eq ^=__
:>] xor ^ not !__
%: # compl ~ not_eq != __

bitand &__ 











































[lex.token] 2.5 Tokens

token:
identifier
keyword
literal
operator
punctuator

1 There are five kinds of tokens: identifiers, keywords, literals (which include strings and character and
numeric constants), operators, and other separators. Blanks, horizontal and vertical tabs, newlines, form-
feeds, and comments (collectively,“white space”), as described below, are ignored except as they serve to
separate tokens. Some white space is required to separate otherwise adjacent identifiers, keywords, and lit-
erals.

2 If the input stream has been parsed into tokens up to a given character, the next token is taken to be the
longest string of characters that could possibly constitute a token.

2– 4 Lexical conventions DRAFT: 27 May 1994 2.6 Comments

[lex.comment] 2.6 Comments

1 The characters/* start a comment, which terminates with the characters*/ . These comments do not nest.
The characters// start a comment, which terminates the next new-line character. If there is a form-feed or
a vertical-tab character in such a comment, only white-space characters may appear between it and the
new-line that terminates the comment; no diagnostic is required. The comment characters// , /* , and*/
have no special meaning within a// comment and are treated just like other characters. Similarly, the
comment characters// and/* have no special meaning within a/* comment.

[lex.name] 2.7 Identifiers

identifier:
nondigit
identifier nondigit
identifier digit

nondigit: one of
_ a b c d e f g h i j k l m

n o p q r s t u v w x y z
A B C D E F G H I J K L M
N O P Q R S T U V W X Y Z

digit: one of
0 1 2 3 4 5 6 7 8 9

1 An identifier is an arbitrarily long sequence of letters and digits. The first character must be a letter; the
underscore_ counts as a letter. Upper- and lower-case letters are different. All characters are significant.

[lex.key] 2.8 Keywords

1 The identifiers shown in Table 3 are reserved for use as keywords, and may not be used otherwise in phases
7 and 8:

Table 3—keywords

asm delete if reinterpret_cast true
auto do inline return try
bool double int short typedef
break dynamic_cast long signed typeid
case else mutable sizeof union
catch enum namespace static unsigned
char extern new static_cast using
class false operator struct virtual
const float private switch void
const_cast for protected template volatile
continue friend public this wchar_t
default goto register throw while___ 






























2 Furthermore, the alternate representations shown in Table 4 for certain operators and punctuators (2.4) are
reserved and may not be used otherwise:

2.8 Keywords DRAFT: 27 May 1994 Lexical conventions 2– 5

Table 4—alternate representations
_ __
bitand and bitor or xor compl
and_eq or_eq xor_eq not not_eq_ __ 





3 In addition, identifiers containing a double underscore (_ _) are reserved for use by C + + implementations
and standard libraries and should be avoided by users; no diagnostic is required.

4 The ASCII representation of C + + programs uses as operators or for punctuation the characters shown in
Table 5.

Table 5—operators and punctuation characters
_ ___
! % ^ & * () - +

_ __ _ { } | ~
[] \ ; ’ : " < > ? , . /_ ___ 





Table 6 shows the character combinationations that are used as operators.

Table 6—character combinations used as operators
_ ___
-> ++ -- .* ->* << >> <= >= == != &&
|| *= /= %= += -= <<= >>= &= ^= |= ::_ ___ 





Each is converted to a single token in translation phase 7 (2.1).

5 Table 7 shows character combinations that are used as alternative representations for certain operators and
punctuators (2.4).

Table 7—digraphs

<% %> <: :> %: __________________________  

Each of these is also recognized as a single token in translation phases 3 and 7.

6 Table 8 shows additional tokens that are used by the preprocessor.

Table 8—preprocessing tokens
_ ___________________________
%: %:%: _ ___________________________  

7 Certain implementation-dependent properties, such as the type of asizeof (5.3.3) and the ranges of fun-
damental types (3.7.1), are defined in the standard header files (16.2)

<float.h> <limits.h> <stddef.h>

These headers are part of the ISO C standard. In addition the headers

<new.h> <stdarg.h> <stdlib.h>

define the types of the most basic library functions. The last two headers are part of the ISO C standard;
<new.h> is C + + specific.

2– 6 Lexical conventions DRAFT: 27 May 1994 2.9 Literals

[lex.literal] 2.9 Literals

1 There are several kinds of literals (often referred to as“constants”).

literal:
integer-literal
character-literal
floating-literal
string-literal
boolean-literal

[lex.icon] 2.9.1 Integer literals

integer-literal:
decimal-literal integer-suffixopt

octal-literal integer-suffixopt

hexadecimal-literal integer-suffixopt

decimal-literal:
nonzero-digit
decimal-literal digit

octal-literal:
0
octal-literal octal-digit

hexadecimal-literal:
0x hexadecimal-digit
0X hexadecimal-digit
hexadecimal-literal hexadecimal-digit

nonzero-digit: one of
1 2 3 4 5 6 7 8 9

octal-digit: one of
0 1 2 3 4 5 6 7

hexadecimal-digit:one of
0 1 2 3 4 5 6 7 8 9
a b c d e f
A B C D E F

integer-suffix:
unsigned-suffix long-suffixopt

long-suffix unsigned-suffixopt

unsigned-suffix:one of
u U

long-suffix: one of
l L

1 An integer literal consisting of a sequence of digits is taken to be decimal (base ten) unless it begins with0
(digit zero). A sequence of digits starting with0 is taken to be an octal integer (base eight). The digits8
and9 are not octal digits. A sequence of digits preceded by0x or 0X is taken to be a hexadecimal integer
(base sixteen). The hexadecimal digits includea or A throughf or F with decimal values ten through fif-
teen. For example, the number twelve can be written12 , 014 , or0XC.

2.9.1 Integer literals DRAFT: 27 May 1994 Lexical conventions 2– 7

2 The type of an integer literal depends on its form, value, and suffix. If it is decimal and has no suffix, it has
the first of these types in which its value can be represented:int , long int , unsigned long int . If
it is octal or hexadecimal and has no suffix, it has the first of these types in which its value can be repre-
sented:int , unsigned int , long int , unsigned long int . If it is suffixed byu or U, its type is
the first of these types in which its value can be represented:unsigned int , unsigned long int . If
it is suffixed byl or L, its type is the first of these types in which its value can be represented:long int ,
unsigned long int . If it is suffixed byul , lu , uL , Lu , Ul , lU , UL, or LU, its type isunsigned
long int .

3 A program is ill-formed if it contains an integer literal that cannot be represented by any of the allowed
types.

[lex.ccon] 2.9.2 Character literals

character-literal:
’ c-char-sequence’
L’ c-char-sequence’

c-char-sequence:
c-char
c-char-sequence c-char

c-char:
any member of the source character set except

the single-quote’ , backslash\ , or new-line character
escape-sequence

escape-sequence:
simple-escape-sequence
octal-escape-sequence
hexadecimal-escape-sequence

simple-escape-sequence:one of
\’ \" \? \\
\a \b \f \n \r \t \v

octal-escape-sequence:
\ octal-digit
\ octal-digit octal-digit
\ octal-digit octal-digit octal-digit

hexadecimal-escape-sequence:
\x hexadecimal-digit
hexadecimal-escape-sequence hexadecimal-digit

1 A character literal is one or more characters enclosed in single quotes, as in’x’ , optionally preceded by
the letterL, as inL’x’ . Single character literals that do not begin withL have typechar , with value
equal to the numerical value of the character in the machine’s character set. Multicharacter literals that do
not begin withL have typeint and implementation-defined value.

2 A character literal that begins with the letterL, such asL’ab’ , is a wide-character literal. Wide-character
literals have typewchar_t . They are intended for character sets where a character does not fit into a sin-
gle byte.

3 Certain nongraphic characters, the single quote’ , the double quote" , ?, and the backslash\ , may be repre-
sented according to Table 9.

2– 8 Lexical conventions DRAFT: 27 May 1994 2.9.2 Character literals

Table 9—escape sequences
_ ______________________________
new-line NL (LF) \n
horizontal tab HT \t
vertical tab VT \v
backspace BS \b
carriage return CR \r
form feed FF \f
alert BEL \a
backslash \ \\
question mark ? \?
single quote ’ \’
double quote " \"
octal number ooo \ooo
hex number hhh \xhhh_ ______________________________ 


































If the character following a backslash is not one of those specified, the behavior is undefined. An escape
sequence specifies a single character.

4 The escape\ oooconsists of the backslash followed by one, two, or three octal digits that are taken to spec-
ify the value of the desired character. The escape\x hhhconsists of the backslash followed byx followed
by a sequence of hexadecimal digits that are taken to specify the value of the desired character. There is no
limit to the number of hexadecimal digits in the sequence. A sequence of octal or hexadecimal digits is ter-
minated by the first character that is not an octal digit or a hexadecimal digit, respectively. The value of a
character literal is implementation dependent if it exceeds that of the largestchar .

[lex.fcon] 2.9.3 Floating literals

floating-constant:
fractional-constant exponent-partopt floating-suffixopt

digit-sequence exponent-part floating-suffixopt

fractional-constant:
digit-sequenceopt . digit-sequence
digit-sequence.

exponent-part:
e signopt digit-sequence
E signopt digit-sequence

sign: one of
+ -

digit-sequence:
digit
digit-sequence digit

floating-suffix: one of
f l F L

1 A floating literal consists of an integer part, a decimal point, a fraction part, ane or E, an optionally signed
integer exponent, and an optional type suffix. The integer and fraction parts both consist of a sequence of
decimal (base ten) digits. Either the integer part or the fraction part (not both) may be missing; either the
decimal point or the lettere (or E) and the exponent (not both) may be missing. The type of a floating lit-
eral isdouble unless explicitly specified by a suffix. The suffixesf andF specifyfloat , the suffixesl
andL specifylong double .

2.9.4 String literals DRAFT: 27 May 1994 Lexical conventions 2– 9

[lex.string] 2.9.4 String literals

string-literal:
" s-char-sequenceopt"
L" s-char-sequenceopt"

s-char-sequence:
s-char
s-char-sequence s-char

s-char:
any member of the source character set except

the double-quote" , backslash\ , or new-line character
escape-sequence

1 A string literal is a sequence of characters (as defined in 2.9.2) surrounded by double quotes, optionally
beginning with the letterL, as in"..." or L"..." . A string literal that does not begin withL has type
“array ofchar ” andstaticstorage duration (3.6), and is initialized with the given characters. Whether all
string literals are distinct (that is, are stored in nonoverlapping objects) is implementation dependent. The
effect of attempting to modify a string literal is undefined.

2 A string literal that begins withL, such asL"asdf" , is a wide-character string. A wide-character string is
of type“array ofwchar_t .” Concatenation of ordinary and wide-character string literals is undefined.

Box 3

Should this render the program ill-formed? Or is it deliberately undefined to encourage extensions?_ ___



_ ___




3 Adjacent string literals are concatenated. Characters in concatenated strings are kept distinct. For example,

"\xA" "B"

contains the two characters’\xA’ and ’B’ after concatenation (and not the single hexadecimal character
’\xAB’).

4 After any necessary concatenation’\0’ is appended so that programs that scan a string can find its end.
The size of a string is the number of its characters including this terminator. Within a string, the double
quote character" must be preceded by a\ .

[lex.bool] 2.9.5 Boolean literals

boolean-literal:
false
true

1 The Boolean literals are the keywordsfalse andtrue . Such literals have typebool and the given val-
ues. They are not lvalues.

_ ___ ___

3 Basic concepts [basic]
_ ___ ___

1 This clause presents the basic concepts of the C + + language. It explains the difference between anobject
and anameand how they relate to the notion of anlvalue. It introduces the concepts of adeclarationand a
definition and presents C + +’s notion of type, scope, linkage, andstorage duration. The mechanisms for
starting and terminating a program are discussed. Finally, this clause presents the fundamental types of the
language and lists the ways of constructingcompoundtypes from these. 

2 This clause does not cover concepts that affect only a single part of the language. Such concepts are dis-
cussed in the relevant clauses.

3 An entity is a value, object, subobject, base class subobject, array element, variable, function, set of func-
tions, instance of a function, enumerator, type, class member, template, or namespace.

4 A nameis a use of an identifier (2.7) that denotes an entity orlabel (6.6.4, 6.1). 

5 Every name that denotes an entity is introduced by adeclaration. Every name that denotes a label is intro-
duced either by agoto statement (6.6.4) or alabeled-statement(6.1). Every name is introduced in some
contiguous portion of program text called adeclarative region(3.3), which is the largest part of the pro-
gram in which that name can possibly be valid. In general, each particular name is valid only within some
possibly discontiguous portion of program text called itsscope(3.3). To determine the scope of a declara-
tion, it is sometimes convenient to refer to thepotential scopeof a declaration. The scope of a declaration
is the same as its potential scope unless the potential scope contains another declaration of the same name.
In that case, the potential scope of the declaration in the inner (contained) declarative region is excluded
from the scope of the declaration in the outer (containing) declarative region.

6 For example, in

int j = 24;

main()
{

int i = j, j;

j = 42;
}

the identifierj is declared twice as a name (and used twice). The declarative region of the firstj includes
the entire example. The potential scope of the firstj begins immediately after thatj and extends to the end
of the program, but its (actual) scope excludes the text between the, and the} . The declarative region of
the second declaration ofj (the j immediately before the semicolon) includes all the text between{ and} , 
but its potential scope excludes the declaration ofi . The scope of the second declaration ofj is the same 
as its potential scope.

7 Some names denote types, classes, or templates. In general, it is necessary to determine whether or not a
name denotes one of these entities before parsing the program that contains it. The process that determines
this is calledname lookup.

8 An identifier used in more than one translation unit may potentially refer to the same entity in these transla-
tion units depending on the linkage (3.4) specified in the translation units.

3– 2 Basic concepts DRAFT: 27 May 1994 3 Basic concepts

9 An objectis a region of storage (3.8). In addition to giving it a name, declaring an object gives the object a
storage duration, (3.6), which determines the object’s lifetime. Some objects arepolymorphic; the imple-
mentation generates information carried in each such object that makes it possible to determine that object’s
type during program execution. For other objects, the meaning of the values found therein is determined by
the type of the expressions used to access them.

Box 4

Most of this section needs more work._ ________________________________



_ ________________________________




[basic.def] 3.1 Declarations and definitions

1 A declaration (7) introduces one or more names into a program and gives each name a meaning.

2 A declaration is adefinition unless it declares a function without specifying the function’s body (8.4), it
contains theextern specifier (7.1.1) and neither aninitializer nor afunction-body, it declares a static data
member in a class declaration (9.5), it is a class name declaration (9.1), or it is atypedef declaration
(7.1.3), ausing declaration(7.3.3), or ausing directive(7.3.4).

3 The following, for example, are definitions:

int a; // definesa
extern const int c = 1; // definesc
int f(int x) { return x+a; } // definesf
struct S { int a; int b; }; // definesS
struct X { // definesX

int x; // defines nonstatic data memberx
static int y; // declares static data membery
X(): x(0) { } // defines a constructor ofX

};
int X::y = 1; // definesX::y
enum { up, down }; // definesup and down
namespace N { int d; } // definesN and N::d
namespace N1 = N; // definesN1
X anX; // definesanX

whereas these are just declarations:

extern int a; // declaresa
extern const int c; // declaresc
int f(int); // declaresf
struct S; // declaresS
typedef int Int; // declaresInt
extern X anotherX; // declaresanotherX
using N::d; // declaresN::d

4 In some circumstances, C + + implementations generate definitions automatically. These definitions include
default constructors, copy constructors, assignment operators, and destructors. For example, given

struct C {
string s; // string is the standard library class (17.5.1.1)

};

main()
{

C a;
C b=a;
b=a;

}

the implementation will generate functions to make the definition ofCequivalent to

3.1 Declarations and definitions DRAFT: 27 May 1994 Basic concepts 3– 3

struct C {
string s;
C(): s() { }
C(const C& x): s(x.s) { }
C& operator=(const C& x) { s = x.s; return *this; }
~C() { }

};

[basic.def.odr] 3.2 One definition rule

Box 5

This is still very much under review by the Committee._ __



_ __




1 No translation unit shall contain more than one definition of any variable, function, class type, enumeration
type or template.

2 A function is usedif it is called, its address is taken, or it is a virtual member function that is not pure
(10.4). Every program shall contain at least one definition of every function that is used in that program.
That definition may appear explicitly in the program, it may be found in the standard or a user-defined
library, or (when appropriate) the implementation may generate it. If a non-virtual function is not defined,
a diagnostic is required only if an attempt is actually made to call that function.

Box 6

This says nothing about user-defined libraries. Probably it shouldn’t, but perhaps it should be more explicit
that it isn’t discussing it._ __





_ __





3 Exactly one definition in a program is required for a non-local variable with static storage duration, unless
it has a builtin type or is an aggregate and also is unused or used only as the operand of thesizeof opera-
tor.

Box 7

This is still uncertain._ ___________________



_ ___________________




4 At least one definition of a class is required in a translation unit if the class is used other than in the forma-
tion of a pointer type.

Box 8

This is not quite right, because it is possible to declare a function that has an undefined class type as its
return type, that has arguments of undefined class type._ __





_ __





Box 9

There may be other situations that do not require a class to be defined: extern declarations (i.e. "extern X
x;"), declaration of static members, others???_ __





_ __





For example the following complete translation unit is well-formed, even though it never definesX:

struct X; // declareX is a struct type
struct X* x1; // useX in pointer formation
X* x2; // useX in pointer formation

3– 4 Basic concepts DRAFT: 27 May 1994 3.2 One definition rule

5 There may be more than one definition of a named enumeration type in a program provided that each defi-
nition appears in a different translation unit and the values of the enumerators are the same.

Box 10

This will need to be revisited when the ODR is made more precise_ ___



_ ___




6 There may be more than one definition of a class type in a program provided that each definition appears in
a different translation unit and the definitions describe the same type. 

7 No diagnostic is required for a violation of the ODR rule.

Box 11

This will need to be revisited when the ODR is made more precise_ ___



_ ___




[basic.scope] 3.3 Declarative regions and scopes

1 The scope rules are summarized in 10.5.

[basic.scope.local] 3.3.1 Local scope

1 A name declared in a block (6.3) is local to that block. Its scope begins at its point of declaration (3.3.10)
and ends at the end of its declarative region.

2 Names of parameters of a function are local to the function and shall not be redeclared in the outermost
block of that function.

3 The name in acatch exception-declaration is local to the handler and shall not be redeclared in the outer-
most block of the handler.

4 Names in a declaration in theconditionpart of anif , while , for , do , or switch statement are local to
the controlled statement and shall not be redeclared in the outermost block of that statement.

[basic.scope.proto] 3.3.2 Function prototype scope

1 In a function declaration, names of parameters (if supplied) have function prototype scope, which termi-
nates at the end of the function declarator.

3.3.3 Function scope

1 Labels (6.1) can be used anywhere in the function in which they are declared. Only labels have function
scope.

[basic.file.scope] 3.3.4 File scope

1 A name declared outside all named namespaces (_namespace_), blocks (6.3) and classes (9) hasfile scope.
The potential scope of such a name begins at its point of declaration (3.3.10) and ends at the end of the
translation unit that is its declarative region. Names declared with file scope are said to beglobal.

2 File scope can be treated as a special case of namespace scope (3.3.5) by viewing an entire translation unit
as an unnamed namespace called theglobal namespace.

[basic.scope.namespace] 3.3.5 Namespace scope

1 A name declared in a namespace (_namespace_) has namespace scope. Its potential scope includes its
namespace from the name’s point of declaration (3.3.10) onwards, as well as the potential scope of any
using directive(7.3.4) that nominates its namespace. A namespace member can be also be used after the
:: scope resolution operator (5.1) applied to the name of its namespace. 

3.3.5 Namespace scope DRAFT: 27 May 1994 Basic concepts 3– 5

2 A function may be defined only in namespace or class scope.

[basic.scope.class] 3.3.6 Class scope

1 The name of a class member is local to its class and can be used only in a member of that class (9.4) or a
class derived from that class, after the. operator applied to an expression of the type of its class (5.2.4) or a
class derived from (10) its class, after the-> operator applied to a pointer to an object of its class (5.2.4) or
a class derived from (10) its class, after the:: scope resolution operator (5.1) applied to the name of its
class or a class derived from its class, or after ausing directive(7.3.4). 

Box 12

What does: "can be used only in a member of that class" mean? It should be phrased to include: body of
member functions, ctor-init-list, static member initializers.  _ __





_ __





2 The scope of names introduced by friend declarations is described in 7.3.1. 

3 A function may be defined only in namespace or class scope. 

4 The scope rules for classes are summarized in 9.3.

[basic.scope.hiding] 3.3.7 Name hiding

1 A name may be hidden by an explicit declaration of that same name in a nested declarative region or
derived class.

2 A class name (9.1) may be hidden by the name of an object, function, or enumerator declared in the same
scope. If a class and an object, function, or enumerator are declared in the same scope (in any order) with
the same name the class name is hidden.

3 If a name is in scope and is not hidden it is said to bevisible.

4 The region in which a name is visible is called thereachof the name.

Box 13

The term ’reach’ is defined here but never used. More work is needed with the "descriptive terminology"._ __



_ __




[basic.scope.exqual] 3.3.8 Explicit qualification

Box 14 
The information in this section is very similar to the one provided in 7.3.5. The information in these two
sections (3.3.8 and 7.3.5) should be consolidated in one place.  _ __





_ __



 

1 A hidden name can still be used when it is qualified by its class or namespace name using the:: operator
(5.1, 9.5, 10). A hidden file scope name can still be used when it is qualified by the unary:: operator
(5.1).

[basic.scope.elab] 3.3.9 Elaborated type specifier

1 A class name or enumeration name can be hidden by the name of an object, function, or enumerator in
local, class or namespace scope. A hidden class name can still be used when appropriately prefixed with
class , struct , or union (7.1.5), or when followed by the:: operator. A hidden enumeration name
can still be used when appropriately prefixed withenum (7.1.5). For example:

3– 6 Basic concepts DRAFT: 27 May 1994 3.3.9 Elaborated type specifier

class A {
public:

static int n;
};

main()
{

int A;

A::n = 42; // OK
class A a; // OK
A b; // ill-formed: A does not name a type

}

The scope of class names first introduced inelaborated-type-specifiersis described in (7.1.5.3). 

[basic.scope.pdecl] 3.3.10 Point of declaration

1 Thepoint of declarationfor a name is immediately after its complete declarator (8) and before itsinitializer
(if any), except as noted below. For example,

int x = 12;
{ int x = x; }

2 Here the secondx is initialized with its own (unspecified) value.

3 For the point of declaration for an enumerator, see 7.2.

4 The point of declaration of a function with theextern or friend specifier is in the innermost enclosing
namespace just after outermost nested scope containing it which is contained in the namespace.

Box 15

The terms "just after the outermost nested scope" imply name injection. We avoided introducing the con-
cept of name injection in the working paper up until now. We should probably continue to do without. _ __





_ __





5 The point of declaration of a class first declared in anelaborated-type-specifieris immediately after the
identifier;

6 A nonlocal name remains visible up to the point of declaration of the local name that hides it. For example,

const int i = 2;
{ int i[i]; }

declares a local array of two integers. 

7 The point of instantiation of a template is described in 14.3.

[basic.link] 3.4 Program and linkage

1 A programconsists of one or moretranslation units(2) linked together. The process of linking together
translation units. A translation unit consists of a sequence of declarations.

translation unit: ∗
declaration-seqopt

2 A name is said to havelinkagewhen it may denote the same object, function, type, template, or value as a
name introduced by a declaration in another scope: 

— When a name hasexternal linkage, the entity it denotes may be referred to by names from scopes of
other translation units or from other scopes of the same translation unit. 

— When a name hasinternal linkage, the entity it denotes may be referred to by names from other scopes

3.4 Program and linkage DRAFT: 27 May 1994 Basic concepts 3– 7

of the same translation unit. 

— When a name hasno linkage, the entity it denotes cannot be referred to by names from other scopes.

3 A name is said to be ‘‘of namespace scope’’ if its immediate scope is the file scope or the scope of a named
or unnamed namespace. 

Box 16 
The definition of ‘‘of namespace scope’’ should probably appear elsewhere.  _ __




_ __


 

A name of namespace scope has internal linkage if it is the name of 

— a variable that is explicitly declaredstatic or is explicitly declaredconst and not explicitly
declaredextern ; or 

— a function that is explicitly declaredstatic or is explicitly declaredinline and not explicitly 
declaredextern . In addition, the name of a data member of an anonymous union declared at name-
space scope has internal linkage.

4 A name of namespace scope has external linkage if it is the name of 

— a variable, unless it has internal linkage; or 

— a function, unless it has internal linkage; or 

— a class that has any static data members (9.5), any member functions that are not defined within the
class definition and are not explicitly declaredinline (9.4.2), or any member types with external link-
age; or 

— a template (14). Moreover, the name of a class (9) or enumeration (7.2) has external linkage if it is used
to declare a function, variable, or type with external linkage, to declare a template, or to specify a tem-
plate argument. Using a class object in athrow-expressiondoes not affect the linkage of the class. 

Box 17 
This was voted in San Diego but was probably a mistake. There can, after all, be no issue of C compatibil-
ity where exceptions are involved. Moreover, this treatment creates a bad pitfall: 

// file a.h 
struct A { }; 

// file main.c 
#include "a.h" 
extern void f(); 

main() 
{ 

try { 
f(); 

} catch (A) { 
} 

} 

// file f.c 
void f() { throw A(); } 

5 It is reasonable to expect that the throw and the catch refer to the same type, but according to the San Diego
resolutions they don’t.  _ __




























_ __


























 

The names of class members and enumerators has external linkage if the class or enumeration to which they
belong has external linkage. 

3– 8 Basic concepts DRAFT: 27 May 1994 3.4 Program and linkage

6 The name of a function declared in a block scope or a variable declaredextern in a block scope has link-
age, either internal or external to match the linkage of prior declarations of the name in the same translation
unit, but if there is no prior declaration it has external linkage.

7 Names not covered by these rules have no linkage. Moreover, except as noted, a name declared in a local
scope (3.3.1) has no linkage and shall not be used in a way that also requires it to have external linkage.
For example: 

void f() 
{ 

struct A { int x; }; // no linkage 
extern A a; // ill-formed 

} 

Here, there are conflicting constraints onA: its use as the type of an object with external linkage requires it
to have external linkage, but because it is declared in a local scope, it has no linkage.

8 Two names are the same if 

— they are identifiers composed of the same character sequence; or 

— they are the names of overloaded operator functions formed with the same operator; or 

— they are the names of user-defined conversion functions formed with the same type.

Box 18

A definition of name-sameness should probably appear elsewhere, since it is also assumed in
[basic.scope.hiding]._ __





_ __





Two names that are the same and that are declared in different scopes shall denote the same object, func-
tion, type, enumerator, or template if 

— both names have external linkage or else both names have internal linkage and are declared in the same
translation unit; and 

— both names refer to members of the same namespace or to members, not by inheritance, of the same
class; and 

— when both names denote functions or function templates, the function types are identical for purposes of
overloading.

9 Inline class member functions must have exactly one definition in a program. ∗

Box 19

To be reworked when the ODR is clarified._ ____________________________________



_ ____________________________________




10 After all adjustments of types (during which typedefs (7.1.3) are replaced by their definitions), the types∗
specified by all declarations of a particular external name must be identical, except that such types may dif-
fer by the presence or absence of a major array bound (8.3.4). A violation of this rule does not require a
diagnostic. 

Box 20 
This needs to specified more precisely to deal with function name overloading.  _ ___




_ ___


 

11 Linkage to non-C + + declarations can be achieved using alinkage-specification(7.5). ∗

3.5 Start and termination DRAFT: 27 May 1994 Basic concepts 3– 9

[basic.start] 3.5 Start and termination

[basic.start.main] 3.5.1 Main function

1 A program shall contain a function calledmain , which is the designated start of the program.

2 This function is not predefined by the compiler, it cannot be overloaded, and its type is implementation
dependent. The two examples below are allowed on any implementation. It is recommended that any fur-
ther (optional) parameters be added afterargv . The functionmain() may be defined as

int main() { /* ... */ }

or

int main(int argc, char* argv[]) { /* ... */ }

In the latter formargc shall be the number of arguments passed to the program from an environment in
which the program is run. Ifargc is nonzero these arguments shall be supplied as zero-terminated strings
in argv[0] throughargv[argc-1] andargv[0] shall be the name used to invoke the program or
"" . It is guaranteed thatargv[argc]==0 .

3 The functionmain() shall not be called from within a program. The linkage (3.4) ofmain() is imple-
mentation dependent. The address ofmain() shall not be taken andmain() shall not be declared
inline or static .

4 Calling the function

void exit(int);

declared in<cstdlib> (17.2.4.5) terminates the program without leaving the current block and hence
without destroying any local variables (12.4). The argument value is returned to the program’s environ-
ment as the value of the program.

5 A return statement inmain() has the effect of leaving the main function (destroying any local variables)
and callingexit() with the return value as the argument. If control reaches the end ofmain without
encountering areturn statement, the effect is that of executing

return 0;

[basic.start.init] 3.5.2 Initialization of non-local objects

Box 21

This is still under active discussion by the committee._ __



_ __




1 The initialization of nonlocal static objects (3.6) in a translation unit is done before the first use of any func-
tion or object defined in that translation unit. Such initializations (8.5, 9.5, 12.1, 12.6.1) may be done
before the first statement ofmain() or deferred to any point in time before the first use of a function or
object defined in that translation unit. The default initialization of all static objects to zero (8.5) is per-
formed before any dynamic (that is, run-time) initialization. No further order is imposed on the initial-
ization of objects from different translation units. The initialization of local static objects is described in
6.7. ∗

2 If construction or destruction of a non-local static object ends in throwing an uncaught exception, the result
is to callterminate() (_exccept.terminate_). 

3– 10 Basic concepts DRAFT: 27 May 1994 3.5.3 Termination

[basic.start.term]3.5.3 Termination 

1 Destructors (12.4) for initialized static objects are called when returning frommain() and when calling
exit() (17.2.4.5). Destruction is done in reverse order of initialization. The functionatexit() from 
<cstdlib> can be used to specify that a function must be called at exit. Ifatexit() is to be called,
objects initialized before anatexit() call may not be destroyed until after the function specified in the
atexit() call has been called.

2 Where a C + + implementation coexists with a C implementation, any actions specified by the C implementa-
tion to take place after theatexit() functions have been called take place after all destructors have been
called.

3 Calling the function

void abort();

declared in<cstdlib> terminates the program without executing destructors for static objects and with-
out calling the functions passed toatexit() .

[basic.stc] 3.6 Storage duration

1 The storage duration of an object determines its lifetime.

2 The storage class specifiersstatic , auto , andmutable are related to storage duration as described
below.

[basic.stc.static] 3.6.1 Static storage duration

1 All non-local variables have static storage duration; such variables are created and destroyed as described in
3.5 and_stmt.decl_.

2 Note that if an object of static storage duration has a constructor or a destructor with side effects, it shall not
be eliminated even if it appears to be unused.

Box 22

This awaits committee action on the ‘‘as-if’’ rule._ ___



_ ___




3 The keywordstatic may be used to declare a local variable with static storage duration; for a description
of initialization and destruction of local variables, see 6.7.

4 The keywordstatic applied to a class variable in a class definition also determines that it has static stor-
age duration.

[basic.stc.auto] 3.6.2 Automatic storage duration

1 Local objects not declaredstatic or explicitly declaredauto or register haveautomaticstorage 
duration and are associated with an invocation of a block (7.1.1). 

2 Each object with automatic storage duration is initialized (8.5) each time the control flow reaches its defini-
tion and destroyed (12.4) whenever control passes from within the scope of the object to outside that scope
(6.6).

3 A named automatic object with a constructor or destructor with side effects may not be destroyed before the
end of its block, nor may it be eliminated even if it appears to be unused. 

3.6.3 Dynamic storage duration DRAFT: 27 May 1994 Basic concepts 3– 11

[basic.stc.dynamic]3.6.3 Dynamic storage duration 

1 Objects can be created dynamically during program execution (1.7), usingnew-expressions (5.3.4), and 
destroyed usingdelete-expressions (5.3.5). A C + + implementation provides access to, and management of,
dynamic storage via the globalallocation functionsoperator new (17.3.3.4) andoperator new[] 
(17.3.3.5), and the globaldeallocation functionsoperator delete (17.3.3.2) andoperator 
delete[] (17.3.3.3). 

2 These functions are always implicitly declared. The library provides default definitions for them (17.3.3).
A C + + program may provide at most one definition of any of the functions::operator 
new(size_t) , ::operator new[](size_t) , ::operator delete(void*) , and/or 
::operator delete[](void*) . Any such function definitions replace the default versions. This
replacement is global and takes effect upon program startup (3.5).Allocation and/or deallocation functions
may also be declared and defined for any class (12.5). 

3 Any allocation and/or deallocation functions defined in a C + + program shall conform to the semantics spec-
ified in this subclause. 

[basic.stc.dynamic.allocation]3.6.3.1 Allocation functions 

1 Allocation functions can be static class member functions or global functions. They may be overloaded,
but the return type shall always bevoid* and the first parameter type shall always besize_t (5.3.3), an 
implementation-defined integral type defined in the standard header<cstddef> (17.3). 

2 The function shall return the address of a block of available storage at least as large as the requested size.
The order, contiguity, and initial value of storage allocated by successive calls to an allocation function is
unspecified. The pointer returned is suitably aligned so that it may be assigned to a pointer of any type and
then used to access such an object or an array of such objects in the storage allocated (until the storage is
explicitly deallocated by a call to a corresponding deallocation function). Each such allocation shall yield a
pointer to storage (1.5) disjoint from any other currently allocated storage. The pointer returned points to
the start (lowest byte address) of the allocated storage. If the size of the space is requested is zero, the value
returned shall be nonzero and disjoint from any other currently allocated storage. The results of dereferenc-
ing a pointer returned as a request for zero size are undefined.4)

3 If an allocation function is unable to obtain an appropriate block of storage, it may invoke the currently
installednew_handler 5) and/or throw an exception (15) of classalloc (17.3.2.9) or a class derived
from alloc . 

4 If the allocation function returns the null pointer the result is implementation defined. 

[basic.stc.dynamic.deallocation]3.6.3.2 Deallocation functions 

1 Like allocation functions, deallocation functions may be static class member functions or global functions.

2 Each deallocation function shall returnvoid and its first parameter shall bevoid* . For class member
deallocation functions, a second parameter of typesize_t may be added but deallocation functions may
not be overloaded. 

3 The value of the first parameter supplied to a deallocation function shall be zero, or refer to storage allo-
cated by the corresponding allocation function. If the value of the first argument is null, the call to the deal-
location function has no effect. If the value of the first argument refers to a pointer already deallocated, the
effect is undefined. 

__________________ 
4) The intent is to haveoperator new() implementable by callingmalloc() or calloc() , so the rules are substantially the
same. C + + differs from C in requiring a zero request to return a non-null pointer. 
5) A program-supplied allocation function may obtain the address of the currently installednew_handler using the 
set_new_handler() function (17.3.3.1). 

3– 12 Basic concepts DRAFT: 27 May 1994 3.6.3.2 Deallocation functions

4 A deallocation function may free the storage referenced by the pointer given as its argument and renders the
pointer invalid. The storage may be available for further allocation. An invalid pointer contains an unus-
able value: it cannot even be used in an expression. 

5 If the argument is non-null, the value of a pointer that refers to deallocated space isindeterminate. The 
effect of dereferencing an indeterminate pointer value is undefined.6)

[basic.stc.inherit] 3.6.4 Duration of sub-objects

1 The storage duration of class subobjects, base class subobjects and array elements is that of their complete
object (1.5).

[basic.stc.mutable] 3.6.5 Themutable keyword

1 The keywordmutable is grammatically a storage class specifier but is unrelated to the storage duration
(lifetime) of the class member it describes. The mutable keyword is described in 3.8, 5.2.4, 7.1.1 and
7.1.5.1.

[basic.stc.ref] 3.6.6 Reference duration

1 Except in the case of a reference declaration initialised by an rvalue (8.5.3), a reference may be used to
name an existing object denoted by an lvalue.

2 The reference has static storage duration if it is declared non-locally, automatic storage duration if declared
locally including as a function parameter, and inherited storage duration if declared in a class. 

3 References may or may not require storage.

4 The duration of a reference is distinct from the duration of the object it refers to except in the case of a ref-
erence declaration initialized by an rvalue.

5 Access through a reference to an object which no longer exists or has not yet been constructed yields unde-
fined behaviour.

Box 23

Can references be declared auto or static? This section probably does not belong here._ ___



_ ___




[basic.types] 3.7 Types

Box 24 
Section 9.2 describes the concept oflayout-compatibletypes. Shouldn’t this information be described here? _ __




_ __


 

1 There are two kinds of types: fundamental types and compound types. Types may describe objects, refer-
ences (8.3.2), or functions (8.3.5).

2 Arrays of unknown size and classes that have been declared but not defined are calledincompletetypes
because the size and structure of an instance of the type is unknown. Also, thevoid type represents an
empty set of values, so that no objects of typevoid ever exist;void is an incomplete type. The term
incompletely-defined object typeis a synonym forincomplete type; the termcompletely-defined object type
is a synonym forcomplete type;

3 A class type (such as“class X ”) may be incomplete at one point in a translation unit and complete later
on; the type“class X ” is the same type at both points. The declared type of an array may be incomplete
at one point in a translation unit and complete later on; the array types at those two points (“array of
unknown bound ofT” and“array of NT”) are different types. However, the type of a pointer to array of
__________________ 
6) On some architectures, it causes a system-generated runtime fault. 

3.7 Types DRAFT: 27 May 1994 Basic concepts 3– 13

unknown size cannot be completed.

4 Expressions that have incomplete type are prohibited in some contexts. For example: 

class X; // X is an incomplete type 
extern X* xp; // xp is a pointer to an incomplete type
extern int arr[]; // the type of arr is incomplete
typedef int UNKA[]; // UNKA is an incomplete type
UNKA* arrp; // arrp is a pointer to an incomplete type
UNKA** arrpp;

void foo()
{

xp++; // ill-formed: X is incomplete
arrp++; // ill-formed: incomplete type
arrpp++; // okay: sizeof UNKA* is known

}

struct X { int i; }; // now X is a complete type
int arr[10]; // now the type of arr is complete

X x;
void bar()
{

xp = &x; // okay; type is ‘‘pointer to X’’
arrp = &arr; // ill-formed: different types
xp++; // okay: X is complete
arrp++; // ill-formed: UNKA can’t be completed

}

[basic.fundamental] 3.7.1 Fundamental types

1 There are several fundamental types. The standard header<climits> specifies the largest and smallest
values of each for an implementation.

2 Objects declared as characters (char) are large enough to store any member of the implementation’s basic
character set. If a character from this set is stored in a character variable, its value is equivalent to the inte-
ger code of that character. Characters may be explicitly declaredunsigned or signed . Plain char ,
signed char , and unsigned char are three distinct types. Achar , a signed char , and an
unsigned char consume the same amount of space.

3 An enumerationcomprises a set of named integer constant values. Each distinct enumeration constitutes a
differentenumerated type. Each constant has the type of its enumeration.

4 There are foursigned integer types: “signed char ”, “short int ”, “int ”, and“long int .” In this
list, each type provides at least as much storage as those preceding it in the list, but the implementation may
otherwise make any of them equal in storage size. Plainint s have the natural size suggested by the
machine architecture; the other signed integer types are provided to meet special needs.

5 For each of the signed integer types, there exists a corresponding (but different)unsigned integer type: 
“unsigned char ”, “unsigned short int ”, “unsigned int ”, and “unsigned long
int, ” each of which occupies the same amount of storage and has the same alignment requirements (1.5)
as the corresponding signed integer type.7) An alignment requirementis an implementation-dependent
restriction on the value of a pointer to an object of a given type (5.4, 1.5).

6 Unsigned integers, declaredunsigned , obey the laws of arithmetic modulo 2n wheren is the number of
bits in the representation of that particular size of integer. This implies that unsigned arithmetic does not
overflow.
__________________ 
7) See 7.1.5.2 regarding the correspondence between types and the sequences oftype-specifiers that designate them. 

3– 14 Basic concepts DRAFT: 27 May 1994 3.7.1 Fundamental types

7 Typewchar_t is a distinct type whose values can represent distinct codes for all members of the largest
extended character set specified among the supported locales (17.5.9.1). Typewchar_t has the same size,
signedness, and alignment requirements (1.5) as one of the other integral types, called itsunderlying type.

8 Values of typebool can be eithertrue or false .8) There are nosigned , unsigned , short , or
long bool types or values. As described below,bool values behave as integral types. Thus, for exam-
ple, they participate in integral promotions (4.1, 5.2.3). Although values of typebool generally behave as
signed integers, for example by promoting (4.1) toint instead ofunsigned int , a bool value can
successfully be stored in a bit-field of any (nonzero) size.

9 There are threefloating pointtypes:float , double , andlong double . The typedouble provides 
at least as much precision asfloat , and the typelong double provides at least as much precision as
double . Each implementation defines the characteristics of the fundamental floating point types in the
standard header<cfloat> . 

10 Typesbool , char , and the signed and unsigned integer types are collectively calledintegral types. A
synonym for integral type isinteger type. Enumerations (7.2) are not integral, but they can be promoted
(4.1) to signed or unsignedint . Integralandfloating types are collectively calledarithmetictypes.

11 Thevoid type specifies an empty set of values. It is used as the return type for functions that do not return
a value. No object of typevoid may be declared. Any expression may be explicitly converted to type
void (5.4); the resulting expression may be used only as an expression statement (6.2), as the left operand
of a comma expression (5.18), or as a second or third operand of?: (5.16).

[basic.compound] 3.7.2 Compound types

1 There is a conceptually infinite number of compound types constructed from the fundamental types in the
following ways: ∗

— arraysof objects of a given type, 8.3.4;

— functions, which have parameters of given types and return objects of a given type, 8.3.5;

— pointersto objects or functions (including static members of classes) of a given type, 8.3.1;

— referencesto objects or functions of a given type, 8.3.2;

— constants, which are values of a given type, 7.1.5;

— classescontaining a sequence of objects of various types (9), a set of functions for manipulating these
objects (9.4), and a set of restrictions on the access to these objects and functions, 11;

— structures, which are classes without default access restrictions, 11;

— unions, which are classes capable of containing objects of different types at different times, 9.6;

— pointers to non-static9) class members, which identify members of a given type within objects of a
given class, 8.3.3. ∗

2 In general, these methods of constructing types can be applied recursively; restrictions are mentioned in
8.3.1, 8.3.4, 8.3.5, and 8.3.2.

3 Any type so far mentioned is anunqualified type. Each unqualified type has three correspondingqualified
versionsof its type:10) a const-qualifiedversion, avolatile-qualifiedversion, and aconst-volatile-qualified
version (see 7.1.5). The cv-qualified or unqualified versions of a type are distinct types that belong to the
same category and have the same representation and alignment requirements.11) A compound type is not
__________________ 
8) Using abool value in ways described by this International Standard as ‘‘undefined,’’ such as by examining the value of an unini-
tialized automatic variable, might cause it to behave as if is neithertrue nor false . 
9) Static class members are objects or functions, and pointers to them are ordinary pointers to objects or functions. 
10)See 8.3.4 and 8.3.5 regarding cv-qualified array and function types. 
11)The same representation and alignment requirements are meant to imply interchangeability as arguments to functions, return values
from functions, and members of unions. 

3.7.2 Compound types DRAFT: 27 May 1994 Basic concepts 3– 15

cv-qualified (3.7.3) by the cv-qualifiers (if any) of the type from which it is compounded. However, an
array type is considered to be cv-qualified by the cv-qualifiers of its element type.

4 A pointer to objects of a typeT is referred to as a“pointer toT.” For example, a pointer to an object of type
int is referred to as“pointer toint ” and a pointer to an object of classX is called a“pointer toX.” Point-
ers to incomplete types are allowed although there are restrictions on what can be done with them (3.7).

5 Objects of cv-qualified (3.7.3) or unqualified typevoid* (pointer to void), can be used to point to objects
of unknown type. Avoid* must have enough bits to hold any object pointer.

6 Except for pointers to static members, text referring to“pointers” does not apply to pointers to members.

[basic.type.qualifier] 3.7.3 CV-qualifiers

Box 25 
This section covers the same information as section 7.1.5.1. This information should probably be consoli-
dated in one place.  _ __





_ __



 

1 There are twocv-qualifiers, const andvolatile . When applied to an object,const means the pro-
gram may not change the object, andvolatile has an implementation-defined meaning.12) An object
may have both cv-qualifiers.

2 There is a (partial) ordering on cv-qualifiers, so that one object or pointer may be said to bemore cv-
qualified than another. Table 10 shows the relations that constitute this ordering.

Table 10—relations onconst and volatile
_ _____________________________________
no cv-qualifier < const
no cv-qualifier < volatile
no cv-qualifier < const volatile

const < const volatile
volatile < const volatile_ _____________________________________ 














3 A pointer or reference to cv-qualified type (sometimes called a cv-qualified pointer or reference) need not
actually point to a cv-qualified object, but it is treated as if it does. For example, a pointer toconst int
may point to an unqualifiedint , but a well-formed program may not attempt to change the pointed-to
object through that pointer even though it may change the same object through some other access path.
CV-qualifiers are supported by the type system so that a cv-qualified object or cv-qualified access path to
an object may not be subverted without casting (5.4). For example:

void f()
{

int i = 2; // not cv-qualified
const int ci = 3; // cv-qualified (initialized as required)
ci = 4; // error: attempt to modify const
const int* cip; // pointer to const int
cip = &i; // okay: cv-qualified access path to unqualified
*cip = 4; // error: attempt to modify through ptr to const
int* ip;
ip = cip; // error: attempt to convert const int* to int*

}

__________________ 
12)Roughly,volatile means the object may change of its own accord (that is, the processor may not assume that the object contin-
ues to hold a previously held value). 

3– 16 Basic concepts DRAFT: 27 May 1994 3.7.4 Type names

[basic.type.name] 3.7.4 Type names

1 Fundamental and compound types can be given names by thetypedef mechanism (7.1.3), and families of
types and functions can be specified and named by thetemplate mechanism (14).

[basic.lval] 3.8 Lvalues and rvalues

1 Every expression is either anlvalueor rvalue.

2 An lvalue refers to an object or function. Some rvalue expressions—those of class or cv-qualified class
type—also refer to objects.13)

3 Some builtin operators and function calls yield lvalues. For example, ifE is an expression of pointer type,
then*E is an lvalue expression referring to the object or function to whichE points. As another example,
the function

int& f();

yields an lvalue, so the callf() is an lvalue expression. 

4 Some builtin operators expect lvalue operands, for example the builtin assignment operators all expect their
left hand operands to be lvalues. Other builtin operators yield rvalues, and some expect them. For example
the unary and binary+ operator expect rvalue arguments and yield rvalue results. The discussion of each
builtin operator in 5 indicates whether it expects lvalue operands and whether it yields an lvalue. ∗

5 Constructor invocations and calls to functions that do not return references are always rvalues. User
defined operators are functions, and whether such operators expect or yield lvalues is determined by their
type.

6 The discussion of reference initialization in 8.5.3 and of temporaries in 12.2 indicates the behavior of lval-
ues and rvalues in other significant contexts. 

7 Rvalues may be qualified types, however the unqualified type is used unless the rvalue is of class type and
a member function is called on the rvalue.

8 Whenever an lvalue that refers to a non-array14) non-class object appears in a context where an lvalue is not
expected, the value contained in the referenced object is used. When this occurs, the value has the unquali-
fied type of the lvalue. For example:

const int* cip;
int i = *cip // "*cip" has type int

If this type is incomplete, the program is ill-formed. ∗

const int* cip; int i = *cip // "*cip" has type int

When an lvalue is used as the operand ofsizeof the value contained in the referenced object is
not accessed, since that operator does not evaluate its operand.

9 An lvalue or rvalue of class type can also be used to modify its referent under certain circumstances.

Box 26

Provide example and cross-reference.  ________________________________







__________________ 
13)Expressions such as invocations of constructors and of functions that return a class type do in some sense refer to an object, and the
implementation may invoke a member function upon such objects, but the expressions are not lvalues. 
14)An lvalue that refers to an array object is usually converted to a (rvalue) pointer to the initial element of the array (4.6). 

3.8 Lvalues and rvalues DRAFT: 27 May 1994 Basic concepts 3– 17

10 Functions cannot be modified, but pointers to functions may be modifiable.

11 A pointer to an incomplete type may be modifiable. At some point in the program when this pointer type is
complete, the object at which the pointer points may also be modified.

12 Array objects cannot be modified, but their elements may be modifiable.

13 The referent of aconst -qualified expression shall not be modified (through that expression), except that if
it is of class type and has amutable component, that component may be modified.

14 If an expression can be used to modify its object, it is calledmodifiable. A program that attempts to modify
an object through a nonmodifiable lvalue or rvalue expression is ill-formed.

_ ___ ___

4 Standard conversions [conv]
_ ___ ___

1 Some operators may, depending on their operands, cause conversion of the value of an operand from one
type to another. This section summarizes the conversions demanded by most ordinary operators and
explains the result to be expected from such conversions; it will be supplemented as required by the discus-
sion of each operator. These conversions are also used in initialization (8.5, 8.5.3, 12.8, 12.1). 12.3 and
13.2 describe user-defined conversions and their interaction with standard conversions. The result of a con-
version is an lvalue only if the result is a reference (8.3.2).

[conv.prom] 4.1 Integral promotions

1 A char , wchar_t , bool , short int , enumerator, object of enumeration type (7.2), or anint bit-
field (9.7) (in both their signed and unsigned varieties) may be used wherever an integer rvalue may be
used. In contexts where a constant integer is required, thebool , char , wchar_t , short int , object of
enumeration type (7.2), or bit-field must be constant. (Enumerators are always constant).

2 Except for enumerators, objects of enumeration type, and typewchar_t , if an int can represent all the
values of the original type, the value is converted toint ; otherwise it is converted tounsigned int .

3 For enumerators, objects of enumeration type, and typewchar_t , if an int can represent all the values of
the underlying type, the value is converted to anint ; otherwise if anunsigned int can represent all the
values, the value is converted to anunsigned int ; otherwise, if along can represent all the values, the
value is converted to along ; otherwise it is converted tounsigned long .

4 A Boolean value may be converted toint , takingfalse to zero andtrue to one.

5 This process is calledintegral promotion.

[conv.integral] 4.2 Integral conversions

1 An integer rvalue may be converted to any integral type. If the target type isunsigned, the resulting value
is the least unsigned integer congruent to the source integer (modulo 2n wheren is the number of bits used
to represent the unsigned type). In a two’s complement representation, this conversion is conceptual and
there is no change in the bit pattern.

2 When an integer is converted to a signed type, the value is unchanged if it can be represented in the new
type; otherwise the value is implementation dependent.

3 When an integer is converted tobool , see 4.9.

[conv.double] 4.3 Float and double

1 Single-precision floating point arithmetic may be used forfloat expressions. When a less precise float-
ing value is converted to an equally or more precise floating type, the value is unchanged. When a more
precise floating value is converted to a less precise floating type and the value is within representable range,
the result may be either the next higher or the next lower representable value. If the result is out of range,
the behavior is undefined.

4– 2 Standard conversions DRAFT: 27 May 1994 4.4 Floating and integral

[conv.float] 4.4 Floating and integral

1 Conversion of a floating value to an integral type truncates; that is, the fractional part is discarded. Such
conversions are machine dependent; for example, the direction of truncation of negative numbers varies
from machine to machine. The result is undefined if the value cannot be represented in the integral type.

2 Conversions of integral values to floating type are as mathematically correct as the hardware allows. Loss
of precision occurs if an integral value cannot be represented exactly as a value of the floating type.

[conv.arith] 4.5 Arithmetic conversions

1 Many binary operators that expect operands of arithmetic type cause conversions and yield result types in a
similar way. The purpose is to yield a common type, which is also the type of the result. This pattern is
called the“usual arithmetic conversions.”

2
— If either operand is of typelong double , the other is converted tolong double .

— Otherwise, if either operand isdouble , the other is converted todouble .

— Otherwise, if either operand isfloat , the other is converted tofloat .

— Otherwise, the integral promotions (4.1) are performed on both operands.

— Then, if either operand isunsigned long the other is converted tounsigned long .

— Otherwise, if one operand is along int and the otherunsigned int , then if along int can
represent all the values of anunsigned int , theunsigned int is converted to along int ;
otherwise both operands are converted tounsigned long int .

— Otherwise, if either operand islong , the other is converted tolong .

— Otherwise, if either operand isunsigned , the other is converted tounsigned .

— Otherwise, both operands areint .

[conv.ptr] 4.6 Pointer conversions

1 The following conversions may be performed wherever pointers (8.3.1) are assigned, initialized, compared,
or otherwise used:

— A constant expression (5.19) that evaluates to zero (the null pointer constant) when assigned to,
compared with, alternated with (5.16), or used as an initializer of an operand of pointer type is con-
verted to a pointer of that type. It is guaranteed that this value will produce a pointer distinguishable
from a pointer to any object or function.

— A pointer to a cv-qualified or unqualified object type may be converted to a pointer to the same type
with greater cv-qualifications (3.7.3). That is, for any unqualified typeT, aT* may be converted to
a const T* , a volatile T* , or aconst volatile T* ; a const T* may be converted to a
const volatile T* ; or avolatile T* may be converted to aconst volatile T* .

— A pointer to any object type may be converted to avoid* with the greater or equal cv-
qualifications (3.7.3). That is, for any unqualified typeT, a T* may be converted to avoid* , a 
const void* , avolatile void* , or aconst volatile void* ; a const T* may be con-
verted to aconst void* or aconst volatile void* ; a volatile T* may be converted to
a volatile void* or aconst volatile void* ; and aconst volatile T* may be con-
verted to aconst volatile void* .

— Two pointer types T1 and T2 aresimilar if there exists a typeT and integerN > 0 such that: 

T1 is Tcv1 ,n * . . . cv1 , 1 * cv1 , 0

and

4.6 Pointer conversions DRAFT: 27 May 1994 Standard conversions 4– 3

T2 is Tcv2 ,n * . . . cv2 , 1 * cv2 , 0

where eachcvi , j is const , volatile , const volatile , or nothing. An expression of type
T1 may be converted to typeT2 if and only if the following conditions are satisfied:

— the pointer types are similar.

— for everyj > 0, if const is in cv1 ,j thenconst is in cv2 ,j , and similarly forvolatile .

— thecv1 ,j andcv2 ,j are different, thenconst is in everycv2 ,k for 0< k < j.

— A pointer to function may be converted to avoid* provided avoid* has sufficient bits to hold it.

— A pointer to a cv-qualified or unqualified class type may be converted to a pointer to an accessi-
ble15) base class type (10) with greater or equal cv-qualifications (3.7.3) provided the conversion is
unambiguous (_class.ambig_); a base class is accessible if its public members are accessible (11.1).
If D is a derived class type andB one of its unambiguous base classes, aD* may be converted to a
B* , a const B* , a volatile B* , or a const volatile B* ; a const D* may be con- 
verted to aconst B* , or aconst volatile B* ; a volatile D* may be converted to a
volatile B* , or aconst volatile B* ; or aconst volatile D* may be converted to
a const volatile B* . The result of the conversion is a pointer to the base class sub-object of
the derived class object. The null pointer (0) is converted into itself.

— An expression with type“array ofT” is converted to a pointer to the initial element of the array (5)
except when used as the operand of the address-of operator& or thesizeof operator.

— An expression with type“function returningT” is converted to“pointer to function returningT”
except when used as the operand of the address-of operator& or the function call operator() or the
sizeof operator, or when the expression refers to a non-static member function. 

— A pointer may be converted to typebool , see 4.9.

[conv.ref] 4.7 Reference conversions

1 The following conversion may be performed wherever references (8.3.2) are initialized (including argument
passing (5.2.2) and function value return (6.6.3)):

— An lvalue of a cv-qualified or unqualified object type may be converted to a reference to the same
type with increased cv-qualifications.

— An lvalue of cv-qualified or unqualified class type may be converted to a reference to an accessible
base class type (10) with greater or equal cv-qualifications (3.7.3) provided the conversion is unam-
biguous (_class.ambig_); base class is accessible if its public members are accessible (11.1). IfD is 
a derived class type andB one of its unambiguous base classes, an lvalue of typeD may be con- 
verted to aB&, a const B& , a volatile B& , or a const volatile B& ; an lvalue of type 
const D may be converted to aconst B& , or a const volatile B& ; an lvalue of type 
volatile D may be converted to avolatile B&, or aconst volatile B&; or an lvalue of 
typeconst volatile Dmay be converted to aconst volatile B&. The result of the conver-
sion is a reference to the base class sub-object of the derived class object.

[conv.mem] 4.8 Pointers to members

1 The following conversion may be performed wherever pointers to members (8.3.3) are initialized, assigned,
compared, or otherwise used:

— A constant expression (5.19) that evaluates to zero is converted to a pointer to member. It is guaran-
teed that this value will produce a pointer to member distinguishable from any other pointer to

__________________ 
15)A pointer to a class may be explicitly converted to a pointer to a base class, regardless of accessibility, using a cast (5.2.3 or 5.4).

4– 4 Standard conversions DRAFT: 27 May 1994 4.8 Pointers to members

member.

— A pointer to member of typeT1 B::* can be converted to a pointer to member of typeT2 D::* 
provided the classB is an accessible base class of classD (11.1), provided the (inverse) conversion
from a pointer toD to a pointer to base classB can be done unambiguously (_class.ambig_), and 
provided thatT1 andT2 are the same type or differ only in thatT2 has greater cv-qualifications
thanT1 (3.7.3). The result of this conversion refers to the same member as the pointer to member
before the conversion took place, but refers to the member as a member of the derived classD. That 
is, the result of this conversion refers to the member inD’s instance ofB.

2 The rule for conversion of pointers to members (from pointer to member of base to pointer to member of
derived) appears inverted compared to the rule for pointers to objects (from pointer to derived to pointer to
base) (4.6, 10). This inversion is necessary to ensure type safety.

3 Note that a pointer to member is not a pointer to object or a pointer to function and the rules for conversions
of such pointers do not apply to pointers to members. In particular, a pointer to member cannot be con-
verted to avoid* .

4 A pointer to member may be converted to typebool , see 4.9.

[conv.bool] 4.9 Boolean conversions

1 Conversion tobool is required in several contexts, such as initializing abool variable, or in thecondition
of anif or while statement or the first operand of the?: operator.

2 In all such cases, the expression to be converted must be of arithmetic, pointer, or pointer to member type
or of a class type for which only one unambiguous conversion exists to arithmetic, pointer, pointer to mem-
ber, orbool . Otherwise, the program is ill-formed.

3 A zero value (or a pointer that would compare equal to zero) becomesfalse ; any other value becomes
true .

_ ___ ___

5 Expressions [expr]
_ ___ ___

1 This clause defines the syntax, order of evaluation, and meaning of expressions. An expression is a
sequence of operators and operands that specifies a computation. An expression may result in a value and
may cause side effects.

2 Operators can be overloaded, that is, given meaning when applied to expressions of class type (9). Uses of
overloaded operators are transformed into function calls as described in 13.4. Overloaded operators obey
the rules for syntax specified in this clause, but the requirements of operand type, lvalue, and evaluation
order are replaced by the rules for function call. Relations between operators, such as++a meaninga+=1 ,
are not guaranteed for overloaded operators (13.4).16)

3 This clause defines the operators when applied to types for which they have not been overloaded. Operator
overloading cannot modify the rules for operators applied to types for which they are defined by the lan-
guage itself.

4 Operators may be regrouped according to the usual mathematical rules only where the operators really are
associative or commutative. Overloaded operators are never assumed to be associative or commutative.
Except where noted, the order of evaluation of operands of individual operators and subexpressions of indi-
vidual expressions is unspecified. In particular, if a value is modified twice in an expression, the result of
the expression is unspecified except where an ordering is guaranteed by the operators involved. For exam-
ple,

i = v[i++]; // the value of ‘i’ is undefined
i=7,i++,i++; // ‘i’ becomes 9

5 The handling of overflow and divide by zero in expression evaluation is implementation dependent. Most
existing implementations of C + + ignore integer overflows. Treatment of division by zero and all floating
point exceptions vary among machines, and is usually adjustable by a library function.

6 Except where noted, operands of typesconst T , volatile T , T&, const T& , andvolatile T& 
can be used as if they were of the plain typeT. Similarly, except where noted, operands of type
T* const andT* volatile can be used as if they were of the plain typeT* . Similarly, a plainT can
be used where avolatile T or a const T is required. These rules apply in combination so that,
except where noted, aconst T* volatile can be used where aT* is required. Such uses do not
count as standard conversions when considering overloading resolution (13.2).

7 If an expression initially has the type“reference toT” (8.3.2, 8.5.3), the type is adjusted to“ T” prior to any
further analysis, the expression designates the object or function denoted by the reference, and the expres-
sion is an lvalue. A reference can be thought of as a name of an object.

8 User-defined conversions of class objects to and from fundamental types, pointers, and so on, can be
defined (12.3). If unambiguous (13.2), such conversions will be applied by the compiler wherever a class
object appears as an operand of an operator, as an initializer (8.5), as the controlling expression in a selec-
tion (6.4) or iteration (6.5) statement, as a function return value (6.6.3), or as a function argument (5.2.2).

16)Nor is it guaranteed for typebool ; the left operand of+= must not have typebool . 

5– 2 Expressions DRAFT: 27 May 1994 5.1 Primary expressions

[expr.prim] 5.1 Primary expressions

1 Primary expressions are literals, names, and names qualified by the scope resolution operator:: .

primary-expression:
literal
this
:: identifier
:: operator-function-id
:: qualified-id
(expression)
id-expression

2 A literal is a primary expression. Its type depends on its form (2.9).

3 In the body of a nonstatic member function (9.4), the keywordthis names a pointer to the object for
which the function was invoked. The keywordthis cannot be used outside a class member function
body.

Box 27

In a constructor it is common practice to allowthis in mem-initializers._ __



_ __




4 The operator:: followed by anidentifier, a qualified-id, or anoperator-function-idis a primary expres-
sion. Its type is specified by the declaration of the identifier, name, oroperator-function-id. The result is
the identifier, name, oroperator-function-id. The result is an lvalue if the identifier is. The identifier or
operator-function-idmust be of file scope. Use of:: allows a type, an object, a function, or an enumerator
to be referred to even if its identifier has been hidden (3.3).

5 A parenthesized expression is a primary expression whose type and value are identical to those of the
unadorned expression. The presence of parentheses does not affect whether the expression is an lvalue.

6 A id-expressionis a restricted form of aprimary-expressionthat can appear after. and-> (5.2.4):

id-expression:
unqualified-id
qualified-id

unqualified-id:
identifier
operator-function-id
conversion-function-id
˜ class-name

Box 28

Issue: now it’s allowed to invoke~int() , but~class-name doesn’t allow for that._ ___



_ ___




7 An identifier is anid-expressionprovided it has been suitably declared (7). Foroperator-function-ids, see
13.4. Forconversion-function-ids, see 12.3.2. Aclass-nameprefixed by~ denotes a destructor; see 12.4.

qualified-id:
nested-name-specifier unqualified-id

8 A nested-name-specifierthat names a class (7.1.5) followed by:: and the name of a member of that class
(9.2), or a member of a base of that class (10), is aqualified-id; its type is the type of the member. The
result is the member. The result is an lvalue if the member is. Theclass-namemay be hidden by a nontype
name, in which case theclass-nameis still found and used. Whereclass-name:: class-nameis used, and
the twoclass-names refer to the same class, this notation names the constructor (12.1). Whereclass-name 
:: ~ class-nameis used, the twoclass-names must refer to the same class; this notation names the

5.1 Primary expressions DRAFT: 27 May 1994 Expressions 5– 3

destructor (12.4). Multiply qualified names, such asN1::N2::N3::n , can be used to refer to nested
types (9.8). 

9 In a qualified-id, if the id-expressionis a ,conversion-functionid its conversion-type-idshall denote the 
same type in both the context in which the entirequalified-idoccurs and in the context of the class denoted
by thenested-name-specifier. For the purpose of this evaluation, the name, if any, of each class is also con-
sidered a nested class member of that class.

[expr.post] 5.2 Postfix expressions

1 Postfix expressions group left-to-right.

postfix-expression:
primary-expression
postfix-expression[expression]
postfix-expression(expression-listopt)
simple-type-specifier(expression-listopt)
postfix-expression. id-expression
postfix-expression-> id-expression
postfix-expression++
postfix-expression--
dynamic_cast < type-id > (expression)
static_cast < type-id > (expression)
reinterpret_cast < type-id > (expression)
const_cast < type-id > (expression)
typeid (expression) 
typeid (type-id) 

expression-list:
assignment-expression
expression-list, assignment-expression

[expr.sub] 5.2.1 Subscripting

1 A postfix expression followed by an expression in square brackets is a postfix expression. The intuitive
meaning is that of a subscript. One of the expressions must have the type“pointer toT” and the other must
be of enumeration or integral type. The type of the result is“T.” The type“T” must be complete. The
expressionE1[E2] is identical (by definition) to*((E1)+(E2)) . See 5.3 and 5.7 for details of* and+
and 8.3.4 for details of arrays.

[expr.call] 5.2.2 Function call

1 There are two kinds of function call: ordinary function call and member function17) (9.4) call. A function
call is a postfix expression followed by parentheses containing a possibly empty, comma-separated list of
expressions which constitute the arguments to the function. For ordinary function call, the postfix expres-
sion must be a function name, or a pointer or reference to function. For member function call, the postfix
expression must be an implicit (9.4) or explicit class member access (5.2.4) whoseid-expressionis a func-
tion member name, or a pointer-to-member expression (5.5) selecting a function member. The first expres-
sion in the postfix expression is then called theobject expression, and the call is as a member of the object
pointed to or referred to. If a function or member function name is used, the name may be overloaded (13),
in which case the appropriate function will be selected according to the rules in 13.2. The function called in
a member function call is normally selected according to the static type of the object expression (see 10),
but if that function isvirtual the function actually called will be the final overrider (10.3) of the selected
function in the dynamic type of the object expression (i.e., the type of the object pointed or referred to by
the current value of the object expression).

17)A static member function (9.5) is an ordinary function.

5– 4 Expressions DRAFT: 27 May 1994 5.2.2 Function call

2 The type of the function call expression is the return type of the statically chosen function (i.e., ignoring the
virtual keyword), even if the type of the function actually called is different. This type must be com-
plete or the typevoid .

3 When a function is called, each parameter (8.3.5) is initialized (8.5.3, 12.8, 12.1) with its corresponding
argument. Standard (4) and user-defined (12.3) conversions are performed. The value of a function call is
the value returned by the called function except in a virtual function call if the return type of the final over-
rider is different from the return type of the statically chosen function, the value returned from the final
overrider is converted to the return type of the statically chosen function. A function may change the val-
ues of its nonconstant parameters, but these changes cannot affect the values of the arguments except where
a parameter is of a non-const reference type (8.3.2). Where a parameter is of reference type a temporary
variable is introduced if needed (7.1.5, 2.9, 2.9.4, 8.3.4, 12.2). In addition, it is possible to modify the val-
ues of nonconstant objects through pointer parameters.

4 A function may be declared to accept fewer arguments (by declaring default arguments (8.3.6)) or more
arguments (by using the ellipsis,... 8.3.5) than the number of parameters in the function definition (8.4).

5 If no declaration of the called function is accessible from the scope of the call the program is ill-formed.
This implies that, except where the ellipsis (...) is used, a parameter is available for each argument.

6 Any argument of typefloat for which there is no parameter is converted todouble before the call; any
of char , short , enumeration, or a bit-field type for which there is no parameter are converted toint or
unsigned by integral promotion (4.1). An object of a class for which no parameter is declared is passed
as a data structure.

Box 29

To ‘‘pass a parameter as a data structure’’ means, roughly, that the parameter must be a PODS, and that
otherwise the behavior is undefined. This must be made more precise._ __





_ __





7 An object of a class for which a parameter is declared is passed by initializing the parameter with the argu-
ment by a constructor call before the function is entered (12.2, 12.8).

8 The order of evaluation of arguments is unspecified; take note that compilers differ. All side effects of
argument expressions take effect before the function is entered. The order of evaluation of the postfix
expression and the argument expression list is unspecified.

9 Recursive calls are permitted.

10 A function call is an lvalue if and only if the result type is a reference.

[expr.type.conv] 5.2.3 Explicit type conversion (functional notation)

1 A simple-type-specifier(7.1.5) followed by a parenthesizedexpression-listconstructs a value of the speci-
fied type given the expression list. If the expression list specifies a single value, the expression is equiva-
lent (in definedness, and if defined in meaning) to the corresponding cast expression (5.4). If the expres-
sion list specifies more than a single value, the type must be a class with a suitably declared constructor
(8.5, 12.1).

2 A simple-type-specifier(7.1.5) followed by a (empty) pair of parentheses constructs a value of the specified
type. If the type is a class with a default constructor (12.1), that constructor will be called; otherwise the
result is the default value given to a static object of the specified type. See also (5.4).

[expr.ref] 5.2.4 Class member access

1 A postfix expression followed by a dot (.) or an arrow (->) followed by anid-expressionis a postfix 
expression. The postfix expression before the dot or arrow is evaluated;18) the result of that evaluation,

18) This evaluation happens even if the result is unnecessary to determine the value of the entire postfix expression, for example if the
id-expressiondenotes a static member.

5.2.4 Class member access DRAFT: 27 May 1994 Expressions 5– 5

together with theid-expression, determine the result of the entire postfix expression. 

2 For the first option (dot) the type of the first expression (theobject expression) shall be“class object” (of a 
complete type). For the second option (arrow) the type of the first expression (thepointer expression) shall 
be “pointer to class object” (of a complete type). Theid-expressionshall name a member of that class,
except that an imputed destructor may be explicitly invoked for a built-in type, see 12.4. Therefore, ifE1
has the type“pointer to classX,” then the expressionE1->E2 is converted to the equivalent form
(*(E1)).E2 ; the remainder of this subclause will address only the first option (dot)19). 

3 If the id-expressionis aqualified-id, the class specified by the thenested-name-specifierof thequalified-id
is looked up as a type both in the class of the object expression (or the class pointed to by the pointer
expression) and the context in which the entirepostfix-expressionoccurs. If thenested-name-specifiercon-
tains atemplate-class-id(_temp.class_), its template-arguments are evaluated in the context in which the
entirepostfix-expressionoccurs. For the purpose of this type lookup, the name, if any, of each class is also
considered a nested class member of that class. These searches shall yield a single type which might be
found in either or both contexts. 

4 Similarly, if the id-expressionis aconversion-function-id, its conversion-type-idshall denote the same type
in both the context in which the entirepostfix-expressionoccurs and in the context of the class of the object
expression (or the class pointed to by the pointer expression). For the purpose of this evaluation, the name,
if any, of each class is also considered a nested class member of that class. 

5 Abbreviatingobject-expression.id-expressionasE1.E2 , then the type and lvalue properties of this expres-
sion are determined as follows. In the remainder of this subclause,cq represents eitherconst or the
absence ofconst ; vq represents eithervolatile or the absence ofvolatile .

6 If E2 is declared to have type“reference toT”, thenE1.E2 is an lvalue; the type ofE1.E2 is “T”. Other-
wise, one of the following rules applies.

— If E2 is a static data member, and the type ofE2 is “cq vqT”, thenE1.E2 is an lvalue; the expres-
sion designates the named member of the class. The type ofE1.E2 is “cq vqT”.

— If E2 is a (possibly overloaded) static member function, and the type ofE2 is “cv-qualifier function
of(parameter type list) returningT”, thenE1.E2 is an lvalue; the expression designates the static
member function. The type ofE1.E2 is the same type as that ofE2, namely“cv-qualifier function
of(parameter type list) returningT”.

— If E2 is a non-static data member, and the type ofE1 is “cq1 vq1X”, and the type ofE2 is “cq2 vq2
T”, the expression designates the named member of the object designated by the first expression. If
E1 is an lvalue, thenE1.E2 is an lvalue. Let the notationvq12stand for the“union” of vq1 and
vq2 ; that is, ifvq1or vq2 is volatile , thenvq12is volatile . Similarly, let the notationcq12
stand for the“union” of cq1andcq2; that is, ifcq1or cq2 is const , thencq12is const . If E2 is
declared to be amutable member, then the type ofE1.E2 is “vq12T”. If E2 is not declared to be
amutable member, then the type ofE1.E2 is “cq12 vq12T”.

— If E2 is a (possibly overloaded) non-static member function, and the type ofE2 is “cv-qualifier
function of(parameter type list) returningT”, thenE1.E2 is not an lvalue. The expression desig-
nates a member function (of some classX). The expression may be used only as the left-hand
operand of a member function call (9.4) or as the operand of the parenthesis operator (13.4.4). The
type ofE1.E2 is “classX’s cv-qualifier member function of(parameter type list) returningT”.

— If E2 is a nested type, the expressionE1.E2 is ill-formed.

— If E2 is a member constant, and the type ofE2 is “T,” the expressionE1.E2 is not an lvalue. The
type ofE1.E2 is “T”.

19)Note that ifE1 has the type“pointer to classX”, then(*(E1)) is an lvalue.

5– 6 Expressions DRAFT: 27 May 1994 5.2.4 Class member access

7 Note that“class objects” can be structures (9.2) and unions (9.6). Classes are discussed in 9.

[expr.post.incr] 5.2.5 Increment and decrement

1 The value obtained by applying a postfix++ is the value of the operand. The operand must be a modifiable
lvalue. The type of the operand must be an arithmetic type or a pointer to object type. After the result is
noted, the object is incremented by1, unless the object is of typebool , in which case it is set totrue
(this use is deprecated). The type of the result is the same as the type of the operand, but it is not an lvalue.
See also 5.7 and 5.17.

2 The operand of postfix-- is decremented analogously to the postfix++ operator, except that the operand
shall not be of typebool .

[expr.dynamic.cast] 5.2.6 Dynamic cast

1 The result of the expressiondynamic_cast<T>(v) is of typeT, which must be a pointer or a reference
to a complete class type or“pointer tocv void ”. The type ofv must be a complete pointer type ifT is a
pointer, or a complete reference type ifT is a reference.

2 If T is a pointer to classB andv is a pointer to classD such thatB is an unambiguous accessible direct or
indirect base class ofD, the result is a pointer to the uniqueB sub-object of theD object pointed to byv .
Similarly, if T is a reference to classB andv is a reference to classD such thatB is an unambiguous acces-
sible direct or indirect base class ofD, the result is a reference to the unique20) B sub-object of theD object
referred to byv . For example,

struct B {};
struct D : B {};
void foo(D* dp)
{

B* bp = dynamic_cast<B*>(dp); // equivalent to B* bp = dp;
}

Otherwisev must be a pointer or reference to a polymorphic type (10.3).

3 If T is void* then the result is a pointer to the complete object (12.6.2) pointed to byv . Otherwise, a run-
time check is applied to see if the object pointed or referred to byv can be converted to the type pointed or
referred to byT.

4 The run-time check logically executes like this: If, in the complete object pointed (referred) to byv , v
points (refers) to an umambiguous base class sub-object of aT object, the result is a pointer (reference) to
thatT object. Otherwise, if the type of the complete object has an unambiguous public base class of typeT,
the result is a pointer (reference) to theT sub-object of the complete object. Otherwise, the run-time check
fails.

5 The value of a failed cast to pointer type is the null pointer. A failed cast to reference type throws
bad_cast (17.3). For example,

20)The complete object pointed or refereed to byv may contain otherB objects as base classes, but these are ignored.

5.2.6 Dynamic cast DRAFT: 27 May 1994 Expressions 5– 7

class A { virtual void f(); };
class B { virtual void g(); };
class D : public virtual A, private B {};
void g()
{

D d;
B* bp = (B*)&d; // cast needed to break protection
A* ap = &d; // public derivation, no cast needed
D& dr = dynamic_cast<D&>(*bp); // succeeds
ap = dynamic_cast<A*>(bp); // succeeds
bp = dynamic_cast<B*>(ap); // fails
ap = dynamic_cast<A*>(&dr); // succeeds
bp = dynamic_cast<B*>(&dr); // fails

}

class E : public D , public B {};
class F : public E, public D {}
void h()
{

F f;
A* ap = &f; // okay: finds unique A
D* dp = dynamic_cast<D*>(ap); // fails: ambiguous
E* ep = (E*)ap; // error: cast from virtual base
E* ep = dynamic_cast<E*>(ap); // succeeds

}

[expr.typeid] 5.2.7 Type identification

1 The result of atypeid expression is of typeconst type_info& (17.3). The value is a reference to a
type_info object that represents thetype-idor the type of theexpressionrespectively.

2 If the expressionis a reference to a polymorphic type (10.3) thetype_info for the complete object 
(12.6.2) referred to is the result. Where theexpressionis a pointer to a polymorphic type dereferenced
using* or [expression] the type_info for the complete object pointed to is the result. If the pointer is
zero, the expression throws thebad_typeid exception (17.3). Otherwise, if the pointer does not point to
a valid object, the result is undefined. 

3 If the expression is neither a pointer nor a reference to a polymorphic type, the result is thetype_info
representing the (static) type of theexpression.

[expr.static.cast] 5.2.8 Static cast

1 The result of the expressionstatic_cast<T>(v) is of type T. Types may not be defined in a
static_cast. Any type conversion not mentioned below and not explicitly defined by the user (12.3)
is ill-formed.

2 Thestatic_cast operator cannot cast away constness. See below.

3 Any implicit conversion (including standard conversions and user-defined conversions) can be performed
explicitly usingstatic_cast.

4 A pointer to a complete classB may be explicitly converted to a pointer to a complete classD that hasB as
a direct or indirect base class if an unambiguous conversion fromD to B exists (4.6,_class.ambig_) and ifB
is not a virtual base class (10.1). Such a cast from a base to a derived class is valid only if the pointer
points to an object of the base class that is actually a sub-object of an object of the derived class; the result-
ing pointer points to the enclosing object of the derived class. Otherwise (the object of the base class is not
a sub-object of an object of the derived class) the result of the cast is undefined.

5– 8 Expressions DRAFT: 27 May 1994 5.2.8 Static cast

Box 30

The two proposals differed in the preceding behavior. We believe this is the intended behavior;_ __



_ __




Aside from this pointer conversion (base-to-derived), the inverse of any implicit conversion can be per-
formed explicitly usingstatic_cast subject to the restriction that the explicit conversion does not cast
away constness.

5 Additional conversions that may be performed explicitly usingstatic_cast are listed below. No other
conversions may be performed explicitly usingstatic_cast.

6 A value of integral type may be explicitly converted to an enumeration type. The result of the conversion
will compare equal to the integral value provided that the value is within the range of the enumeration’s
underlying type (7.2). Otherwise, the result is undefined.

7 A “pointer to member ofclass A of type T1” may be explicitly converted to a“pointer to member of
class B of typeT2” whenclass A andclass B are either the same class or one is is unambiguously
derived from the other (4.6), and the typesT1 andT2 are the same.

Box 31

The proposal implied the above without direct statement. Check this._ ___



_ ___




The effect of calling a member function through a pointer to member function type that differs from the
type used in the definition of the member function is undefined.

8 The effect of calling a member function through a pointer to member function type that differs from the
type used in the definition of the member function is undefined.

9 An lvalue expression of type“T” may be explicitly converted to the type“reference toX” if an expression 
of type“pointer toT” may be explicitly converted to the type“pointer toX” with a static_cast . The
implementation shall not copy a sub-object to bind a reference; for example,

struct B {};
struct D : public B {};
const B &r = D(); // copying only B sub-object not allowed

Box 32

Issue (core#1, editorial): An rvalue expression of type“T” may be explicitly converted to the type“refer-
ence toconst X ” if a variable of type“reference toconst X ” can be initialized with an rvalue expres-
sion of type“T”._ __






_ __






Constructors or conversion functions are not called as the result of a cast to a reference. Conversion of a
reference to a base class to a reference to a derived class is exactly analogous to the conversion of a pointer
to a base class to a pointer to a derived class, with respect to restrictions and semantics.

10 The result of a cast to a reference type is an lvalue; the results of other casts are not. Operations performed
on the result of a pointer or reference cast refer to the same object as the original (uncast) expression.

11 An expression may be converted to a class type (only) if an appropriate constructor or conversion operator
has been declared; see12.3.

12 If a null pointer value is converted to a type“pointer toT”, the resulting pointer value is a null pointer
value.

13 In the description of types, the notationcv represents a set of cv-qualifiers (one of {const }, { vola-
tile }, { const, volatile }, or the empty set).

5.2.8 Static cast DRAFT: 27 May 1994 Expressions 5– 9

Box 33

This probably should be moved to the discussion of types._ __



_ __




14 Any expression may be explicitly converted to type“cvvoid .”

Box 34

We believe this was the intent; check this._ ___________________________________



_ ___________________________________




15 The following rules define casting away constness. In these rulesTn and Xn represent types. For two
pointer types:

X1 = T1 cv11 * cv12 * ... cv1N * where T1 is not a pointer type and
X2 = T2 cv21 * cv22 * ... cv2M * where T2 is not a pointer type and
K is the minimum of N and M,

Box 35

Editor: re-format this into subscripts, etc._ __________________________________



_ __________________________________




casting from X1 to X2 casts away constness if, for a non-pointer typeT (e.g.,int), there does not exist an
implicit conversion from:

T cv1(N-K+1) * cv1(N-K+2) * ... cv1N * to
T cv2(N-K+1) * cv2(M-K+2) * ... cv2M *

16 Casting from a type“reference toT1” to “reference toT2” casts away constness if a cast from“pointer to
T1” to “pointer toT2” casts away constness.

17 Casting from“pointer toC1 member of typeT1” to “pointer toC2 member of typeT2” casts away const-
ness if a cast from“pointer toT1” to “pointer toT2” casts away constness.

18 For static_cast or const_cast , N and M must be equal, otherwise areinterpret_cast is
required. Note that these rules are not intended to protect constness in all cases -- in particular, conversions
between pointers to functions are not covered because such conversions lead to values whose use causes
undefined behavior.

[expr.reinterpret.cast] 5.2.9 Reinterpret cast

1 The result of the expressionreinterpret_cast<T>(v) is of type“T.” Types shall not be defined in a
reinterpret_cast. Any type conversion not mentioned below and not explicitly defined by the user
(12.3) is ill-formed.

2 Conversions that can be performed explicitly usingreinterpret_cast are listed below. The mapping∗
performed byreinterpret_cast is implementation-defined; it may, or may not, produce a representa-
tion different from the original value.

3 Thereinterpret_cast operator cannot cast away constness; seestatic_cast (_expr.static.cast_). 

4 A pointer can be explicitly converted to any integral type large enough to hold it. The mapping function is
implementation-defined, but is intended to be unsurprising to those who know the addressing structure of
the underlying machine.

5 A value of integral type can be explicitly converted to a pointer. A pointer converted to an integer of suffi-
cient size (if any such exists on the implementation) and back to the same pointer type will have its original
value; mappings between pointers and integers are otherwise implementation-defined.

6 An incomplete class can be used in a pointer cast. If there is any inheritance relationship between the
source and target classes, the behavior is undefined.

5– 10 Expressions DRAFT: 27 May 1994 5.2.9 Reinterpret cast

7 A pointer to function may be explicitly converted to a pointer to an object type provided the object pointer
type has enough bits to hold the function pointer. A pointer to an object type may be explicitly converted
to a pointer to function provided the function pointer type has enough bits to hold the object pointer. In
both cases, use of the resulting pointer may cause addressing exceptions if the subject pointer does not refer
to suitable storage.

8 A pointer to a function may be explicitly converted to a pointer to a function of a different type. The effect
of calling a function through a pointer to a function type that differs from the type used in the definition of
the function is undefined. See also 4.6.

9 A pointer to an object can be explicitly converted to a pointer to an object of different type. In general, the
results of this are unspecified; except that converting a pointer into a pointer to a smaller object and back to
its original type will yield the original pointer. 

10 A “pointer to member ofclass A of type T1” may be explicitly converted to a“pointer to member of
class B of typeT2” whenclass A andclass B are either the same class or one is is unambiguously
derived from the other (4.6), and the typesT1 andT2 differ. (The case whenT1 andT2 are the same type
is covered bystatic_cast , (5.2.8).

11 The effect of calling a member function through a pointer to member function type that differs from the
type used in the definition of the member function is undefined.

12 If a null pointer value is converted to a type“pointer toT”, the resulting pointer value is a null pointer
value.

13 An lvalue expression of type“ T” may be explicitly converted to the type“reference toX” if an expression 
of type“pointer toT” may be explicitly converted to the type“pointer toX” usingreinterpret_cast .
Constructors or conversion functions are not called as the result of a cast to a reference. Conversion of a
reference to a base class to a reference to a derived class is exactly analogous to the conversion of a pointer
to a base class to a pointer to a derived class, with respect to restrictions and semantics.

14 The result of a cast to a reference type is an lvalue; the results of other casts are not. Operations performed
on the result of a pointer or reference cast refer to the same object as the original (uncast) expression.

[expr.const.cast] 5.2.10 Const cast

1 The result of the expressionconst_cast<T>(v) is of type “T.” Types may not be defined in a
const_cast. Any type conversion not mentioned below and not explicitly defined by the user (12.3) is
ill-formed.

2 A pointer or reference to any object type, or a pointer to data member may be explicitly converted to a type
that is identical except forconst andvolatile qualifiers. For pointers and references, the result will
refer to the original object. For pointers to data members, the result will refer to the same member as the
original (uncast) pointer to data member. Depending on the type of the referenced object, a write operation
through the resulting pointer, reference or pointer to data member may produce undefined behavior (7.1.5).

3 If a null pointer value is converted to a type“pointer toT”, the resulting pointer value is a null pointer
value.

[expr.unary] 5.3 Unary expressions

1 Expressions with unary operators group right-to-left.

5.3 Unary expressions DRAFT: 27 May 1994 Expressions 5– 11

unary-expression:
postfix-expression
++ unary-expression
-- unary-expression
unary-operator cast-expression
sizeof unary-expression
sizeof (type-id)
new-expression
delete-expression

unary-operator: one of
* & + - ! ~

[expr.unary.op] 5.3.1 Unary operators

1 The unary* operator meansindirection: the expression must be a pointer, and the result is an lvalue refer-
ring to the object to which the expression points. If the type of the expression is“pointer toT,” the type of
the result is“T.”

2 The result of the unary& operator is a pointer to its operand. The operand must be an lvalue, or a
qualified-id. In the first two cases, if the type of the expression is“T,” the type of the result is“pointer to
T.” In particular, the address of an object of type“cv T” is “pointer tocv T,” with the same cv-qualifiers.
For example, the address of an object of type“const int ” has type“pointer toconst int .” For a
qualified-id, if the member is not static and of type“T” in class C , the type of the result is“pointer to
member ofclass C of typeT.” For a static member of type“T”, the type is plain“pointer toT.”

3 The address of an object of incomplete type may be taken, but only if the complete type of that object does
not have the address-of operator (operator&()) overloaded; no diagnostic is required.

4 The address of an overloaded function (13) can be taken only in a context that uniquely determines which
version of the overloaded function is referred to (see 13.3).

5 The operand of the unary+ operator must have arithmetic or pointer type and the result is the value of the
argument. Integral promotion is performed on integral operands. The type of the result is the type of the
promoted operand.

6 The operand of the unary- operator must have arithmetic type and the result is the negation of its operand.
Integral promotion is performed on integral operands. The negative of an unsigned quantity is computed by
subtracting its value from 2n, wheren is the number of bits in the promoted operand. The type of the result
is the type of the promoted operand.

7 The operand of the logical negation operator! is converted tobool (4.9); its value istrue if the con-
verted operand isfalse andfalse otherwise. The type of the result isbool .

8 The operand of~ must have integral type; the result is the one’s complement of its operand. Integral pro-
motions are performed. The type of the result is the type of the promoted operand.

[expr.pre.incr] 5.3.2 Increment and decrement

1 The operand of prefix++ is incremented by1, or set totrue if it is bool (this use is deprecated). The
operand must be a modifiable lvalue. The type of the operand must be an arithmetic type or a pointer to a
completely-defined object type. The value is the new value of the operand; it is an lvalue. Ifx is not of
type bool , the expression++x is equivalent tox+=1 . See the discussions of addition (5.7) and assign-
ment operators (5.17) for information on conversions.

2 The operand of prefix-- is decremented analogously to the prefix++ operator, except that the operand
shall not be of typebool .

5– 12 Expressions DRAFT: 27 May 1994 5.3.3 Sizeof

[expr.sizeof] 5.3.3 Sizeof

1 Thesizeof operator yields the size, in bytes, of its operand. The operand is either an expression, which
is not evaluated, or a parenthesized type name. Thesizeof operator may not be applied to an expression
that has function or incomplete type, or to the parenthesized name of such a type, or to an lvalue that desig-
nates a bit-field. Abyte is unspecified by the language except in terms of the value ofsizeof ;
sizeof(char) is 1, butsizeof(bool) is implementation-defined.21)

2 When applied to a reference, the result is the size of the referenced object. When applied to a class, the
result is the number of bytes in an object of that class including any padding required for placing such
objects in an array. The size of any class or class object is greater than zero. When applied to an array, the
result is the total number of bytes in the array. This implies that the size of an array ofn elements isn times
the size of an element.

3 Thesizeof operator may be applied to a pointer to a function, but not to a function.

4 Types may not be defined in asizeof expression.

5 The result is a constant of typesize_t , an implementation-dependent unsigned integral type defined in
the standard header<cstddef> . 

[expr.new] 5.3.4 New

1 Thenew-expressionattempts to create an object of thetype-id(8.1) to which it is applied. This type shall
be a complete object or array type (1.5, 3.7).

new-expression:
:: opt new new-placementopt new-type-id new-initializeropt

:: opt new new-placementopt (type-id) new-initializeropt

new-placement:
(expression-list)

new-type-id:
type-specifier-seq new-declaratoropt

new-declarator:
* cv-qualifier-seqopt new-declaratoropt

:: opt nested-name-specifier* cv-qualifier-seqopt new-declaratoropt

direct-new-declarator

direct-new-declarator:
[expression]
direct-new-declarator[constant-expression]

new-initializer:
(expression-listopt)

Entities created by anew-expressionhave dynamic storage duration (3.6.3). That is, the lifetime of such an
entity is not restricted to the scope in which it is created. If the entity is an object, thenew-expression 
returns a pointer to the object created. If it is an array, thenew-expressionreturns a pointer to the initial
element of the array. 

2 Thenew-typein anew-expressionis the longest possible sequence ofnew-declarators. This prevents ambi-
guities between declarator operators&, * , [] , and their expression counterparts. For example, 

new int*i; // syntax error: parsed as ‘(new int*) i’ 
// not as ‘(new int)*i’ 

The* is the pointer declarator and not the multiplication operator. 

21)sizeof(bool) is not required to be1.

5.3.4 New DRAFT: 27 May 1994 Expressions 5– 13

3 Parenthese must not appear in anew-type-idused as the operand fornew. For example, 

4 new int(*[10])(); // error 

is ill-formed because the binding is 

(new int) (*[10])(); // error 

The explicitly parenthesized version of thenew operator can be used to create objects of compound types
(3.7.2). For example, 

new (int (*[10])()); 

allocates an array of10 pointers to functions (taking no argument and returningint). 

5 The type-specifier-seqshall not containconst , volatile , class declarations, or enumeration declara-
tions. 

6 When the allocated object is an array (that is, thedirect-new-declaratorsyntax is used or thenew-type-idor 
type-id denotes an array type), thenew-expressionyields a pointer to the initial element (if any) of the
array. Thus, bothnew int andnew int[10] return anint* and the type ofnew int[i][10] is 
int (*)[10] . 

7 Every constant-expressionin a direct-new-declaratorshall be a constant integral expression (5.19) with a
strictly positive value. Theexpressionin a direct-new-declaratorshall be of integral type (3.7.1) with a
non-negative value. For example, ifn is a variable of typeint , thennew float[n][5] is well-formed 
(becausen is theexpressionof a direct-new-declarator), but new float[5][n] is ill-formed (because 
n is not aconstant-expression). If n is negative, the effect ofnew float[n][5] is undefined.

8 When the value of theexpressionin adirect-new-declaratoris zero, an array with no elements is allocated.
The pointer returned by thenew-expressionwill be non-null and distinct from the pointer to any other
object. 

9 Storage for the object created by anew-expressionis obtained from the appropriateallocation function 
(3.6.3.1). When the allocation function is called, the first argument will be amount of space requested
(which may be larger than the size of the object being created only if that object is an array). 

10 An implementation provides default definitions of the global allocation functionsoperator new() for 
non-arrays (17.3.3.4) andoperator new[]() for arrays (17.3.3.5). A C + + program may provide alter-
native definitions of these functions (17.1.5.4), and/or class-specific versions (12.5). 

11 Thenew-placementsyntax can be used to supply additional arguments to an allocation function. Overload-
ing resolution is done by assembling an argument list from the amount of space requested (the first argu-
ment) and the expressions in thenew-placementpart of thenew-expression, if used (the second and suc-
ceeding arguments). 

12 For example: 

— new T results in a call ofoperator new(sizeof(T)) , 

— new(2,f) T results in a call ofoperator new(sizeof(T),2,f) , 

— new T[5] results in a call ofoperator new[](x) , and 

— new(2,f) T[5] results in a call ofoperator new[](y,2,f) . 

13 The return value from the allocation function, if non-null, will be assumed to point to a block of appropri-
ately aligned available storage of the requested size, and the object will be created in that block (but not
necessarily at the beginning of the block, if the object is an array). 

14 If a class has one or more constructors (12.1), anew-expressionfor that class calls one of them to initialize
the object. An object of a class can be created bynew only if suitable arguments are provided to the class’
constructors, or if the class has a default constructor (3.1).22) If the class does not have a default

22)This means thatstruct s{}; s x; s y(x); is allowed on the grounds thatclass s has an implicitly declared copy con-
structor, to which the argumentx is being provided.

5– 14 Expressions DRAFT: 27 May 1994 5.3.4 New

constructor, suitable arguments (13.2) must be provided in anew-initializer. If there is no constructor and a
new-initializer is used, it must be of the form(expression) or () . If an expression is present it will be
used to initialize the object; if not, or anew-initializeris not used, the object will start out with an unspeci-
fied value.

15 No initializers can be specified for arrays. Arrays of objects of a class can be created by anew-expression ∗
only if the class has a default constructor.23) In that case, the default constructor will be called for each ele-
ment of the array, in order of increasing address.

16 Access and ambiguity control are done for both the allocation function and the constructor (12.1, 12.5).

17 The allocation function may indicate failure by throwing analloc exception (15, 17.3.2.9). In this case
no initialization is done. 

18 If the constructor throws an exception and thenew-expressiondoes not contain anew-placement, then the 
deallocation function (3.6.3.2, 12.5) is used to free the memory in which the object was being constructed,
after which the exception continues to propagate in the context of thenew-expression. 

19 The way the object was allocated determines how it is freed: if it is allocated by::new , then it is freed by 
::delete , and if it is an array, it is freed bydelete[] or ::delete[] as appropriate. 

Box 36 
This is a correction to San Diego resolution 3.5, which on its face seems to require that whether to use
delete or delete[] must be decided purely on syntactic grounds. I believe the intent of the committee
was to make the form ofdelete correspond to the form of the correspondingnew.  _ __






_ __




 

20 Whether the allocation function is called before evaluating the constructor arguments, after evaluating the
constructor arguments but before entering the constructor, or by the constructor itself is unspecified. It is
also unspecified whether the arguments to a constructor are evaluated if the allocation function returns the
null pointer or throws an exception. ∗

[expr.delete] 5.3.5 Delete

1 Thedelete-expressionoperator destroys a complete object (1.5) or array created by anew-expression. 

delete-expression:
:: opt delete cast-expression
:: opt delete [] cast-expression

The first alternative is for non-array objects, and the second is for arrays. The result has typevoid .

2 In either alternative, if the value of the operand ofdelete is the null pointer the operation has no effect.
Otherwise, in the first alternative (delete object), the value of the operand ofdelete shall be a pointer to a
non-array object created by anew-expressionwithout anew-placementspecification, or a pointer to a sub-
object (1.5) representing a base class of such an object (10).

Box 37

Issue: ... or a class with an unambiguous conversion to such a pointer type ..._ ___



_ ___




In the second alternative (delete array), the value of the operand ofdelete shall be a pointer to an array
created by anew-expressionwithout anew-placementspecification. 

3 In the first alternative (delete object), if the static type of the operand is different from its dynamic type and
the class of the complete object has a destructor (12.4), the static type must have a virtual destructor or the
result is undefined. In the second alternative (delete array) if the dynamic type of the object to be deleted is
a class that has a destructor and its static type is different from its dynamic type, the result is undefined.

23)PODS structs have an implicitly-declared default constructor.

5.3.5 Delete DRAFT: 27 May 1994 Expressions 5– 15

4 The deletion of an object may change its value. If the expression denoting the object in adelete-expression
is a modifiable lvalue, any attempt to access its value after the deletion is undefined (3.6.3.2).

5 A C + + program that appliesdelete to a pointer to constant is ill formed (1.6, 1.7). 

6 If the class of the object being deleted is incomplete at the point of deletion and the class has a destructor or
an allocation function or a deallocation function, the result is undefined.

7 The delete-expressionwill invoke the destructor (if any) for the object or the elements of the array being
deleted. In the case of an array, the elements will be destroyed in order of decreasing address (that is, in
reverse order of construction).

8 To free the storage pointed to, thedelete-expressionwill call a deallocation function(3.6.3.2). 

9 An implementation provides default definitions of the global deallocation functions
operator delete() for non-arrays (17.3.3.2) andoperator delete[]() for arrays (17.3.3.3). 
A C + + program may provide alternative definitions of these functions (17.1.5.4), and/or class-specific ver-
sions (12.5). 

10 Access and ambiguity control are done for both the deallocation function and the destructor (12.4, 12.5).

[expr.cast] 5.4 Explicit type conversion (cast notation)

1 The result of the expression(T) cast-expressionis of type T. An explicit type conversion can be
expressed using functional notation (5.2.3), a type conversion operator (dynamic_cast,
static_cast, reinterpret_cast, const_cast), or thecastnotation.

cast-expression:
unary-expression
(type-id) cast-expression

2 Types may not be defined in casts.

3 Any type conversion not mentioned below and not explicitly defined by the user (12.3) is ill-formed.

4 The conversions performed bystatic_cast , reinterpret_cast , const_cast , or any sequence
thereof, may be performed using the cast notation of explicit type conversion. The same semantic restric-
tions and behaviors apply.

5 In addition to those conversions, a pointer to an object of a derived class (10) may be explicitly converted
to a pointer to any of its base classes regardless of accessibility restrictions (11.2), provided the conversion
is unambiguous (_class.ambig_). The resulting pointer will refer to the contained object of the base class.

[expr.mptr.oper] 5.5 Pointer-to-member operators

1 The pointer-to-member operators->* and.* group left-to-right.

pm-expression:
cast-expression
pm-expression.* cast-expression
pm-expression->* cast-expression

2 The binary operator.* binds its second operand, which must be of type“pointer to member ofT” to its
first operand, which must be of classT or of a class of whichT is an unambiguous and accessible base
class. The result is an object or a function of the type specified by the second operand.

3 The binary operator->* binds its second operand, which must be of type“pointer to member ofT” to its
first operand, which must be of type“pointer toT” or “pointer to a class of whichT is an unambiguous and
accessible base class.” The result is an object or a function of the type specified by the second operand.

4 If the result of.* or ->* is a function, then that result can be used only as the operand for the function
call operator() . For example,

5– 16 Expressions DRAFT: 27 May 1994 5.5 Pointer-to-member operators

(ptr_to_obj->*ptr_to_mfct)(10);

calls the member function denoted byptr_to_mfct for the object pointed to byptr_to_obj . The
result of an.* expression or a->* expression is an lvalue only if its first operand is an lvalue and its sec-
ond operand refers to an lvalue.

[expr.mul] 5.6 Multiplicative operators

1 The multiplicative operators* , / , and%group left-to-right.

multiplicative-expression:
pm-expression
multiplicative-expression* pm-expression
multiplicative-expression/ pm-expression
multiplicative-expression% pm-expression

2 The operands of* and/ must have arithmetic type; the operands of%must have integral type. The usual
arithmetic conversions (4.5) are performed on the operands and determine the type of the result.

3 The binary* operator indicates multiplication.

4 The binary/ operator yields the quotient, and the binary%operator yields the remainder from the division
of the first expression by the second. If the second operand of/ or %is zero the result is undefined; other-
wise(a/b)*b + a%b is equal toa. If both operands are nonnegative then the remainder is nonnegative;
if not, the sign of the remainder is implementation dependent.

[expr.add] 5.7 Additive operators

1 The additive operators+ and - group left-to-right. The usual arithmetic conversions (4.5) are performed
for operands of arithmetic type.

additive-expression:
multiplicative-expression
additive-expression+ multiplicative-expression
additive-expression- multiplicative-expression

For addition, either both operands shall have arithmetic type, or one operand shall be a pointer to a com-
pletely defined object type and the other shall have integral type.

2 For subtraction, one of the following shall hold:

— both operands have arithmetic type;

— both operands are pointers to qualified or unqualified versions of the same completely defined object
type; or

— the left operand is a pointer to a completely defined object type and the right operand has integral type.

3 If both operands have arithmetic type, the usual arithmetic conversions are performed on them. The result
of the binary+ operator is the sum of the operands. The result of the binary- operator is the difference
resulting from the subtraction of the second operand from the first.

4 For the purposes of these operators, a pointer to a nonarray object behaves the same as a pointer to the first
element of an array of length one with the type of the object as its element type.

5 When an expression that has integral type is added to or subtracted from a pointer, the result has the type of
the pointer operand. If the pointer operand points to an element of an array object, and the array is large
enough, the result points to an element offset from the original element such that the difference of the sub-
scripts of the resulting and original array elements equals the integral expression. In other words, if the
expressionP points to thei-th element of an array object, the expressions(P)+N (equivalently,N+(P))
and (P)-N (whereN has the valuen) point to, respectively, thei+n-th andi– n-th elements of the array
object, provided they exist. Moreover, if the expressionP points to the last element of an array object, the
expression(P)+1 points one past the last element of the array object, and if the expressionQ points one

5.7 Additive operators DRAFT: 27 May 1994 Expressions 5– 17

past the last element of an array object, the expression(Q)-1 points to the last element of the array object.
If both the pointer operand and the result point to elements of the same array object, or one past the last ele-
ment of the array object, the evaluation shall not produce an overflow; otherwise, the behavior is undefined.
If the result is used as an operand of the unary* operator, the behavior is undefined unless both the pointer
operand and the result point to elements of the same array object, or the pointer operand points one past the
last element of an array object and the result points to an element of the same array object.

6 When two pointers to elements of the same array object are subtracted, the result is the difference of the
subscripts of the two array elements. The type of the result is an implementation-defined signed integral
type; this type shall be the same type that is defined asptrdiff_t in the<cstddef> header (17.3). As 
with any other arithmetic overflow, if the result does not fit in the space provided, the behavior is unde-
fined. In other words, if the expressionsP and Q point to, respectively, thei-th andj-th elements of an
array object, the expression(P)-(Q) has the valuei– j provided the value fits in an object of type
ptrdiff_t . Moreover, if the expressionP points either to an element of an array object or one past the
last element of an array object, and the expressionQpoints to the last element of the same array object, the
expression((Q)+1)-(P) has the same value as((Q)-(P))+1 and as-((P)-((Q)+1)) , and has
the value zero if the expressionP points one past the last element of the array object, even though the
expression(Q)+1 does not point to an element of the array object. Unless both pointers point to elements
of the same array object, or one past the last element of the array object, the behavior is undefined.24)

[expr.shift] 5.8 Shift operators

1 The shift operators<< and>> group left-to-right.

shift-expression:
additive-expression
shift-expression<< additive-expression
shift-expression>> additive-expression

The operands must be of integral type and integral promotions are performed. The type of the result is that
of the promoted left operand. The result is undefined if the right operand is negative, or greater than or
equal to the length in bits of the promoted left operand. The value ofE1 << E2 is E1 (interpreted as a bit
pattern) left-shiftedE2 bits; vacated bits are zero-filled. The value ofE1 >> E2 is E1 right-shiftedE2 bit
positions. The right shift is guaranteed to be logical (zero-fill) ifE1 has an unsigned type or if it has a non-
negative value; otherwise the result is implementation dependent.

[expr.rel] 5.9 Relational operators

1 The relational operators group left-to-right, but this fact is not very useful;a<b<c means(a<b)<c and
not (a<b)&&(b<c) .

relational-expression:
shift-expression
relational-expression< shift-expression
relational-expression> shift-expression
relational-expression<= shift-expression
relational-expression>= shift-expression

The operands must have arithmetic or pointer type. The operators< (less than),> (greater than),<= (less
than or equal to), and>= (greater than or equal to) all yieldfalse or true . The type of the result is
bool .

24) Another way to approach pointer arithmetic is first to convert the pointer(s) to character pointer(s): In this scheme the integral
expression added to or subtracted from the converted pointer is first multiplied by the size of the object originally pointed to, and the
resulting pointer is converted back to the original type. For pointer subtraction, the result of the difference between the character point-
ers is similarly divided by the size of the object originally pointed to.

7 When viewed in this way, an implementation need only provide one extra byte (which may overlap another object in the program) just
after the end of the object in order to satisfy the“one past the last element” requirements.

5– 18 Expressions DRAFT: 27 May 1994 5.9 Relational operators

2 The usual arithmetic conversions are performed on arithmetic operands. Pointer conversions are performed
on pointer operands to bring them to the same type, which must be a qualified or unqualified version of the
type of one of the operands. This implies that any pointer may be compared to a constant expression evalu-
ating to zero and any pointer can be compared to a pointer of qualified or unqualified typevoid* (in the
latter case the pointer is first converted tovoid*). Pointers to objects or functions of the same type (after
pointer conversions) may be compared; the result depends on the relative positions of the pointed-to objects
or functions in the address space.

3 If two pointers of the same type point to the same object or function, or both point one past the end of the
same array, or are both null, they compare equal. If two pointers of the same type point to different objects
or functions, or only one of them is null, they compare unequal. If two pointers point to nonstatic data
members of the same object, the pointer to the later declared member compares higher provided the two
members not separated by anaccess-specifierlabel (11.1) and provided their class is not a union. If two
pointers point to nonstatic members of the same object separated by anaccess-specifierlabel (11.1) the
result is unspecified. If two pointers point to data members of the same union, they compare equal (after
conversion tovoid* , if necessary). If two pointers point to elements of the same array or one beyond the
end of the array, the pointer to the object with the higher subscript compares higher. Other pointer compar-
isons are implementation dependent.

[expr.eq] 5.10 Equality operators

1 equality-expression:
relational-expression
equality-expression== relational-expression
equality-expression!= relational-expression

The== (equal to) and the!= (not equal to) operators have the same semantic restrictions, conversions, and
result type as the relational operators except for their lower precedence and truth-value result. (Thusa<b
== c<d is true whenevera<b andc<d have the same truth-value.)

2 In addition, pointers to members of the same type may be compared. Pointer to member conversions (4.8)
are performed. A pointer to member may be compared to a constant expression that evaluates to zero.

[expr.bit.and] 5.11 BitwiseAND operator

1 and-expression:
equality-expression
and-expression& equality-expression

The usual arithmetic conversions are performed; the result is the bitwiseAND function of the operands. The
operator applies only to integral operands.

[expr.xor] 5.12 Bitwise exclusiveOR operator

1 exclusive-or-expression:
and-expression
exclusive-or-expression̂ and-expression

The usual arithmetic conversions are performed; the result is the bitwise exclusiveOR function of the
operands. The operator applies only to integral operands.

[expr.or] 5.13 Bitwise inclusiveOR operator

1 inclusive-or-expression:
exclusive-or-expression
inclusive-or-expression| exclusive-or-expression

The usual arithmetic conversions are performed; the result is the bitwise inclusiveOR function of its
operands. The operator applies only to integral operands.

5.14 LogicalAND operator DRAFT: 27 May 1994 Expressions 5– 19

[expr.log.and] 5.14 LogicalAND operator

1 logical-and-expression:
inclusive-or-expression
logical-and-expression&& inclusive-or-expression

The && operator groups left-to-right. The operands are both converted to typebool (4.9). The result is
true if both operands aretrue andfalse otherwise. Unlike&, && guarantees left-to-right evaluation:
the second operand is not evaluated if the first operand isfalse .

2 The result is abool . All side effects of the first expression except for destruction of temporaries (12.2)
happen before the second expression is evaluated.

[expr.log.or] 5.15 LogicalOR operator

1 logical-or-expression:
logical-and-expression
logical-or-expression|| logical-and-expression

The || operator groups left-to-right. The operands are both converted tobool (4.9). It returnstrue if
either of its operands istrue , and false otherwise. Unlike| , || guarantees left-to-right evaluation;
moreover, the second operand is not evaluated if the first operand evaluates totrue .

2 The result is abool . All side effects of the first expression except for destruction of temporaries (12.2)
happen before the second expression is evaluated.

[expr.cond] 5.16 Conditional operator

1 conditional-expression:
logical-or-expression
logical-or-expression? expression: assignment-expression

Conditional expressions group right-to-left. The first expression is converted tobool (4.9). It is evaluated
and if it is true , the result of the conditional expression is the value of the second expression, otherwise
that of the third expression. All side effects of the first expression except for destruction of temporaries
(12.2) happen before the second or third expression is evaluated.

2 If either the second or third expression is athrow-expression(15.1), the result is of the type of the other.

3 If both the second and the third expressions are of arithmetic type, then if they are of the same type the
result is of that type; otherwise the usual arithmetic conversions are performed to bring them to a common
type. Otherwise, if both the second and the third expressions are either a pointer or a constant expression
that evaluates to zero, pointer conversions (4.6) are performed to bring them to a common type which must
be a qualified or unqualified version of the type of either the second or the third expression. Otherwise, if
both the second and the third expressions are either a pointer to member or a constant expression that evalu-
ates to zero, pointer to member conversions (4.8) are performed to bring them to a common type25) which
must be a qualified or unqualified version of the type of either the second or the third expression. Other-
wise, if both the second and the third expressions are lvalues of related class types, they are converted to a
common type as if by a cast to a reference to the common type (4.7). Otherwise, if both the second and the
third expressions have type“cv void ”, the common type is“cv void .” Otherwise, if both the second and
the third expressions are of the same classT, the common type isT. Otherwise the expression is ill formed.
The result has the common type; only one of the second and third expressions is evaluated. The result is an
lvalue if the second and the third operands are of the same type and both are lvalues.

25)This is one instance in which the“composite type”, as described in the C Standard, is still employed in C + +.

5– 20 Expressions DRAFT: 27 May 1994 5.17 Assignment operators

[expr.ass] 5.17 Assignment operators

1 There are several assignment operators, all of which group right-to-left. All require a modifiable lvalue as
their left operand, and the type of an assignment expression is that of its left operand. The result of the
assignment operation is the value stored in the left operand after the assignment has taken place; the result
is an lvalue.

assignment-expression:
conditional-expression
unary-expression assignment-operator assignment-expression
throw-expression

assignment-operator:one of
= *= /= %= += -= >>= <<= &= ^= |=

2 In simple assignment (=), the value of the expression replaces that of the object referred to by the left
operand. If both operands have arithmetic type, the right operand is converted to the type of the left
preparatory to the assignment. There is no implicit conversion to an enumeration (7.2), so if the left
operand is of an enumeration type the right operand must be of the same type. If the left operand is of
pointer type, the right operand must be the null pointer (4.6) or of a type that can be converted to the type of
the left operand, which conversion takes place before the assignment.

3 An expression of type“pointer tocv1 T” can be assigned to a pointer of type“pointer tocv2 T” if the set
of cv-qualifierscv1 is a subset ofcv2(7.1.5 see also 8.5).

4 If the left operand is of pointer to member type, the right operand must be of pointer to member type or a
constant expression that evaluates to zero; the right operand is converted to the type of the left before the
assignment.

5 Assignment to objects of a class (9)X is defined by the functionX::operator=() (13.4.3). Unless the
user defines anX::operator=() , the default version is used for assignment (12.8). This implies that an
object of a class derived fromX (directly or indirectly) by unambiguous public derivation (4.6) can be
assigned to anX.

6 A pointer to a member of classB may be assigned to a pointer to a member of classD of the same type pro-
videdD is derived fromB (directly or indirectly) by unambiguous public derivation (_class.ambig_).

7 Assignment to an object of type“reference toT” assigns to the object of typeT denoted by the reference.

8 If E1 is not of typebool , the behavior of an expression of the formE1 op= E2 is equivalent to
E1 = E1 op E2 except thatE1 is evaluated only once. In+= and-= , the left operand may be a pointer to
completely defined object type, in which case the (integral) right operand is converted as explained in 5.7;
all right operands and all nonpointer left operands must have arithmetic type.

9 For class objects, assignment is not in general the same as initialization (8.5, 12.1, 12.6, 12.8).

10 See 15.1 for throw expressions.

[expr.comma] 5.18 Comma operator

1 The comma operator groups left-to-right.

expression:
assignment-expression
expression, assignment-expression

A pair of expressions separated by a comma is evaluated left-to-right and the value of the left expression is
discarded. All side effects of the left expression are performed before the evaluation of the right expres-
sion. The type and value of the result are the type and value of the right operand; the result is an lvalue if
its right operand is.

5.18 Comma operator DRAFT: 27 May 1994 Expressions 5– 21

2 In contexts where comma is given a special meaning, for example, in lists of arguments to functions (5.2.2)
and lists of initializers (8.5), the comma operator as described in this clause can appear only in parentheses;
for example,

f(a, (t=3, t+2), c);

has three arguments, the second of which has the value5.

[expr.const] 5.19 Constant expressions

1 In several places, C + + requires expressions that evaluate to an integral constant: as array bounds (8.3.4), as
case expressions (6.4.2), as bit-field lengths (9.7), and as enumerator initializers (7.2).

constant-expression:
conditional-expression

A constant-expressioncan involve only literals (2.9), enumerators,const values of integral types initial-
ized with constant expressions (8.5), andsizeof expressions. Floating constants (2.9.3) must be cast to
integral types. Only type conversions to integral types may be used. In particular, except insizeof
expressions, functions, class objects, pointers, and references cannot be used. The comma operator and
assignment-operators may not be used in a constant expression. ∗

_ ___ ___

6 Statements [stmt.stmt]
_ ___ ___

1 Except as indicated, statements are executed in sequence.

statement:
labeled-statement
expression-statement
compound-statement
selection-statement
iteration-statement
jump-statement
declaration-statement
try-block

[stmt.label] 6.1 Labeled statement

1 A statement may be labeled.

labeled-statement:
identifier : statement
case constant-expression: statement
default : statement

An identifier label declares the identifier. The only use of an identifier label is as the target of agoto . The
scope of a label is the function in which it appears. Labels cannot be redeclared within a function. A label
can be used in agoto statement before its definition. Labels have their own name space and do not inter-
fere with other identifiers.

2 Case labels and default labels may occur only in switch statements.

[stmt.expr] 6.2 Expression statement

1 Most statements are expression statements, which have the form

expression-statement:
expressionopt ;

Usually expression statements are assignments or function calls. All side effects from an expression state-
ment are completed before the next statement is executed. An expression statement with the expression
missing is called a null statement; it is useful to carry a label just before the} of a compound statement and
to supply a null body to an iteration statement such aswhile (6.5.1).

[stmt.block] 6.3 Compound statement or block

1 So that several statements can be used where one is expected, the compound statement (also, and equiva-
lently, called“block”) is provided.

compound-statement:
{ statement-seqopt }

6– 2 Statements DRAFT: 27 May 1994 6.3 Compound statement or block

statement-seq:
statement
statement-seq statement

A compound statement defines a local scope (3.3).

2 Note that a declaration is astatement(6.7).

[stmt.select] 6.4 Selection statements

1 Selection statements choose one of several flows of control.

selection-statement:
if (condition) statement
if (condition) statementelse statement
switch (condition) statement

condition:
expression
type-specifier-seq declarator= assignment-expression

Thestatementin a selection-statement(both statements, in theelse form of theif statement) implicitly
defines a local scope (3.3). That is, if the statement in a selection-statement is a single statement and not a
compound-statement,it is as if it was rewritten to be a compound-statement containing the original state-
ment. For example,

if (x)
for (int i;;) {

// ...
}

may be equivalently rewritten as

if (x) {
for (int i;;) {

// ...
}

}

Thus after theif statement,i is no longer in scope.

2 The rules forconditions apply both toselection-statements and to thefor and while statements (6.5).
The declaratormay not specify a function or an array. Thetype-specifiermay not declare a new class or
enumeration.

3 A name introduced by a declaration in acondition is in scope from its point of declaration until the end of
the statements controlled by the condition. The value of aconditionthat is an initialized declaration is the
value of the initialized variable; the value of aconditionthat is an expression is the value of the expression.
The value of the condition will be referred to as simply“the condition” where the usage is unambiguous.

4 A variable, constant, etc. in the outermost block of a statement controlled by a condition may not have the
same name as a variable, constant, etc. declared in the condition.

5 If a conditioncan be syntactically resolved as either an expression or the declaration of a local name, it is
interpreted as a declaration.

[stmt.if] 6.4.1 Theif statement

1 The condition is converted to typebool ; if that is not possible, the program is ill-formed. If it yields
true the first substatement is executed. Ifelse is used and the condition yieldsfalse , the second sub-
statement is executed. Theelse ambiguity is resolved by connecting anelse with the last encountered
else -lessif .

6.4.2 Theswitch statement DRAFT: 27 May 1994 Statements 6– 3

[stmt.switch] 6.4.2 Theswitch statement

1 Theswitch statement causes control to be transferred to one of several statements depending on the value
of a condition.

2 The condition must be of integral type or of a class type for which an unambiguous conversion to integral
type exists (12.3). Integral promotion is performed. Any statement within the statement may be labeled
with one or more case labels as follows:

case constant-expression:

where theconstant-expression(5.19) is converted to the promoted type of the switch condition. No two of
the case constants in the same switch may have the same value.

3 There may be at most one label of the form

default :

within aswitch statement.

4 Switch statements may be nested; acase or default label is associated with the smallest switch enclos-
ing it.

5 When theswitch statement is executed, its condition is evaluated and compared with each case constant.
If one of the case constants is equal to the value of the condition, control is passed to the statement follow-
ing the matched case label. If no case constant matches the condition, and if there is adefault label,
control passes to the statement labeled by the default label. If no case matches and if there is nodefault
then none of the statements in the switch is executed.

6 case and default labels in themselves do not alter the flow of control, which continues unimpeded
across such labels. To exit from a switch, seebreak , 6.6.1.

7 Usually, the statement that is the subject of a switch is compound. Declarations may appear in the
statementof a switch-statement.

[stmt.iter] 6.5 Iteration statements

1 Iteration statements specify looping.

iteration-statement:
while (condition) statement
do statement while (expression) ;
for (for-init-statement conditionopt ; expressionopt) statement

for-init-statement:
expression-statement
declaration-statement

2 Note that afor-init-statementends with a semicolon.

3 The statementin an iteration-statementimplicitly defines a local scope (3.3) which is entered and exited
each time through the loop. That is, if the statement in an iteration-statement is a single statement and not a
compound-statement,it is as if it was rewritten to be a compound-statement containing the original state-
ment. For example,

while (x)
for (int i;;) {

// ...
}

may be equivalently rewritten as

6– 4 Statements DRAFT: 27 May 1994 6.5 Iteration statements

while (x) {
for (int i;;) {

// ...
}

}

Thus after thewhile statement,i is no longer in scope.

4 See 6.4 for the rules onconditions.

[stmt.while] 6.5.1 Thewhile statement

1 In thewhile statement the substatement is executed repeatedly until the value of the condition becomes
false . The test takes place before each execution of the statement.

2 The condition is converted tobool (4.9).

[stmt.do] 6.5.2 Thedo statement

1 In the do statement the substatement is executed repeatedly until the value of the condition becomes
false . The test takes place after each execution of the statement.

2 The condition is converted tobool (4.9).

[stmt.for] 6.5.3 Thefor statement

1 Thefor statement

for (for-init-statement conditionopt ; expressionopt) statement

is equivalent to

for-init-statement
while (condition) {

statement
expression;

}

except that acontinue in statement(not enclosed in another iteration statement) will executeexpression
before re-evaluatingcondition. Thus the first statement specifies initialization for the loop; the condition
specifies a test, made before each iteration, such that the loop is exited when the condition becomes
false ; the expression often specifies incrementing that is done after each iteration. The condition is con-
verted tobool (4.9).

2 Either or both of the condition and the expression may be dropped. A missingconditionmakes the implied
while clause equivalent towhile(true) .

3 If the for-init-statementis a declaration, the scope of the name(s) declared extends to the end of thefor- 
statement. For example: 

int i = 42; 
int a[10]; 

for (int i = 0; i < 10; i++) 
a[i] = i; 

int j = i; // j = 42 

6.6 Jump statements DRAFT: 27 May 1994 Statements 6– 5

[stmt.jump] 6.6 Jump statements

1 Jump statements unconditionally transfer control.

jump-statement:
break ;
continue ;
return expressionopt ;
goto identifier ;

2 On exit from a scope (however accomplished), destructors (12.4) are called for all constructed objects with
automatic storage duration (3.6.2) (named objects or temporaries) that are declared in that scope, in the
reverse order of their declaration. Transfer out of a loop, out of a block, or back past an initialized variable
with automatic storage duration involves the destruction of variables with automatic storage duration that
are in scope at the point transferred from but not at the point transferred to. (See 6.7 for transfers into
blocks). However, the program may be terminated (by callingexit() or abort() , for example) with- 
out destroying class objects with automatic storage duration.

[stmt.break] 6.6.1 Thebreak statement

1 Thebreak statement may occur only in aniteration-statementor aswitch statement and causes termi-
nation of the smallest enclosingiteration-statementor switch statement; control passes to the statement
following the terminated statement, if any.

[stmt.cont] 6.6.2 Thecontinue statement

1 Thecontinue statement may occur only in aniteration-statementand causes control to pass to the loop-
continuation portion of the smallest enclosingiteration-statement, that is, to the end of the loop. More pre-
cisely, in each of the statements

while (foo) { do { for (;;) {
// ... // ... // ...

contin: ; contin: ; contin: ;
} } while (foo); }

acontinue not contained in an enclosed iteration statement is equivalent togoto contin .

[stmt.return] 6.6.3 Thereturn statement

1 A function returns to its caller by thereturn statement.

2 A return statement without an expression can be used only in functions that do not return a value, that is, a
function with the return value typevoid , a constructor (12.1), or a destructor (12.4). A return statement
with an expression can be used only in functions returning a value; the value of the expression is returned to
the caller of the function. If required, the expression is converted, as in an initialization (8.5), to the return
type of the function in which it appears. A return statement may involve the construction and copy of a
temporary object (12.2). Flowing off the end of a function is equivalent to areturn with no value; this
results in undefined behavior in a value-returning function.

[stmt.goto] 6.6.4 Thegoto statement

1 Thegoto statement unconditionally transfers control to the statement labeled by the identifier. The identi-
fier must be a label (6.1) located in the current function.

[stmt.dcl] 6.7 Declaration statement

1 A declaration statement introduces one or more new identifiers into a block; it has the form

declaration-statement:
declaration

If an identifier introduced by a declaration was previously declared in an outer block, the outer declaration

6– 6 Statements DRAFT: 27 May 1994 6.7 Declaration statement

is hidden for the remainder of the block, after which it resumes its force.

2 Variables with automatic storage duration (3.6.2) are initialized each time theirdeclaration-statementis 
executed. Variables with automatic storage duration declared in the block are destroyed on exit from the
block (6.6).

3 It is possible to transfer into a block, but not in a way that bypasses declarations with initialization. A pro-
gram that jumps from a point where a local variable with automatic storage duration is not in scope to a
point where it is in scope is ill-formed unless the variable has pointer or arithmetic type or is an aggregate
(8.5.1), and is declared without aninitializer (8.5). For example,

void f()
{

// ...
goto lx; // ill-formed: jump into scope of ‘a’
// ...

ly:
X a = 1;
// ...

lx:
goto ly; // ok, jump implies destructor

// call for ‘a’ followed by construction
// again immediately following label ly

}

4 A local object with static storage duration (3.6.1) is initialized the first time control passes completely
through its declaration. If the initialization exits by throwing an exception, the initialization is not com-
plete, so it will be tried again the next time the function is called. Where a variable with static storage dura-
tion is initialized with an expression that is not aconstant-expression, default initialization to zero of the
appropriate type (8.5) happens before its block is first entered.

5 The destructor for a local object with static storage duration will be executed if and only if the variable was
constructed. The destructor must be called either immediately before or as part of the calls of the
atexit() functions (3.5). Exactly when is unspecified.

[stmt.ambig] 6.8 Ambiguity resolution

1 There is an ambiguity in the grammar involvingexpression-statements anddeclarations: An expression-
statementwith a function-style explicit type conversion (5.2.3) as its leftmost subexpression can be indis-
tinguishable from adeclarationwhere the firstdeclaratorstarts with a(. In those cases thestatementis a
declaration.

2 To disambiguate, the wholestatementmay have to be examined to determine if it is anexpression-
statementor a declaration. This disambiguates many examples. For example, assumingT is a simple-
type-specifier(7.1.5),

T(a)->m = 7; // expression-statement
T(a)++; // expression-statement
T(a,5)<<c; // expression-statement

T(*d)(int); // declaration
T(e)[]; // declaration
T(f) = { 1, 2 }; // declaration
T(*g)(double(3)); // declaration

In the last example above,g, which is a pointer toT, is initialized todouble(3) . This is of course ill-
formed for semantic reasons, but that does not affect the syntactic analysis.

3 The remaining cases aredeclarations. For example,

6.8 Ambiguity resolution DRAFT: 27 May 1994 Statements 6– 7

T(a); // declaration
T(*b)(); // declaration
T(c)=7; // declaration
T(d),e,f=3; // declaration
T(g)(h,2); // declaration

4 The disambiguation is purely syntactic; that is, the meaning of the names, beyond whether they aretype-ids
or not, is not used in the disambiguation.

5 A slightly different ambiguity betweenexpression-statements anddeclarations is resolved by requiring a
type-idfor function declarations within a block (6.3). For example,

void g()
{

int f(); // declaration
int a; // declaration
f(); // expression-statement
a; // expression-statement

}

_ ___ ___

7 Declarations [dcl.dcl]
_ ___ ___

1 A declaration introduces one or more names into a program and specifies how those names are to be inter-
preted. Declarations have the form

declaration:
decl-specifier-seqopt init-declarator-listopt ;
function-definition
template-declaration
asm-definition
linkage-specification
namespace-definition
namespace-alias-definition
using-declaration
using-directive

asm-definitions are described in 7.4, andlinkage-specifications are described in 7.5.Function-definitions
are described in 8.4 andtemplate-declarations are described in_temp.dcls_. Namespace-definitions are 
described in 7.3.1,using-declarations are described in 7.3.3 andusing-directives are described in 7.3.4.
The description of the general form of declaration

decl-specifier-seqopt init-declarator-listopt ;

is divided into two parts:decl-specifiers, the components of adecl-specifier-seq, are described in 7.1 and
declarators, the components of aninit-declarator-list, are described in 8.

2 A declaration occurs in a scope (3.3); the scope rules are summarized in 10.5. A declaration that declares a
function or defines a class, namespace, template, or function also has one or more scopes nested within it.
These nested scopes, in turn, may have declarations nested within them. Unless otherwise stated, utterances
in this chapter about components in, of, or contained by a declaration or subcomponent thereof refer only to
those components of the declaration that arenot nested within scopes nested within the declaration.

3 In the general form of declaration, the optionalinit-declarator-list may be omitted only when declaring a
class (9), enumeration (7.2) or namespace (7.3.1), that is, when thedecl-specifier-seqcontains either a
class-specifier, an elaborated-type-specifierwith a class-key(9.1), anenum-specifier, or a namespace- 
definition. In these cases and whenever aclass-specifier, enum-specifier, or namespace-definitionis pre- 
sent in thedecl-specifier-seq, the identifiers in these specifiers are among the names being declared by the
declaration (asclass-names, enum-names, enumerators, ornamespace-name, depending on the syntax). 

4 Each init-declarator in the init-declarator-list contains exactly onedeclarator-id, which is the name
declared by thatinit-declaratorand hence one of the names declared by the declaration. Thetype-specifiers 
(7.1.5) in thedecl-specifier-seqand the recursivedeclaratorstructure of theinit-declaratordescribe a type 
(8.3), which is then associated with the name being declared by theinit-declarator.

5 If the decl-specifier-seqcontains thetypedef specifier, the declaration is called atypedef declarationand
the name of eachinit-declarator is declared to be atypedef-name, synonymous with its associated type
(7.1.3). If thedecl-specifier-seqcontains notypedef specifier, the declaration is called afunction
declarationif the type associated with the name is a function type (8.3.5) and anobject declarationother-
wise.

7– 2 Declarations DRAFT: 27 May 1994 7 Declarations

6 Syntactic components beyond those found in the general form of declaration are added to a function decla-
ration to make afunction-definition. An object declaration, however, is also a definition unless it contains
theextern specifier and has no initializer (3.1). A definition causes the appropriate amount of storage to
be reserved and any appropriate initialization (8.5) to be done.

7 Only in function-definitions(8.4) and in function declarations for constructors, destructors, and type con-
versions may thedecl-specifier-seqbe omitted.

8 Generally speaking, the names declared by a declaration are introduced into the scope in which the declara-
tion occurs. The presence of afriend specifier, certain uses of theelaborated-type-specifer,andusing- 
directives alter this general behavior, however (see 11.4, 9.1 and 7.3.4)

[dcl.spec] 7.1 Specifiers

1 The specifiers that can be used in a declaration are

decl-specifier:
storage-class-specifier
type-specifier
function-specifier
friend
typedef

decl-specifier-seq:
decl-specifier-seqopt decl-specifier

2 The longest sequence ofdecl-specifiers that could possibly be a type name is taken as thedecl-specifier-seq
of adeclaration. The sequence must be self-consistent as described below. For example,

typedef char* Pc;
static Pc; // error: name missing

Here, the declarationstatic Pc is ill-formed because no name was specified for the static variable of
type Pc. To get a variable of typeint calledPc, the type-specifierint must be present to indicate that
the typedef-namePc is the name being (re)declared, rather than being part of thedecl-specifiersequence.
For example,

void f(const Pc); // void f(char* const) (not const char*)
void g(const int Pc); // void g(const int)

3 Note that sincesigned , unsigned , long , andshort by default implyint , a type-nameappearing
after one of those specifiers is treated as the name being (re)declared. For example,

void h(unsigned Pc); // void h(unsigned int)
void k(unsigned int Pc); // void k(unsigned int)

[dcl.stc] 7.1.1 Storage class specifiers

1 The storage class specifiers are

storage-class-specifier:
auto
register
static
extern
mutable

At most onestorage-class-specifiermay appear in a givendecl-specifier-seq. If a storage-class-specifier
appears in adecl-specifier-seq, there can be notypedef specifier in the samedecl-specifier-seqand the
init-declarator-list of the declaration must not be empty. Thestorage-class-specifierapplies to the name
declared by eachinit-declarator in the list and not to any names declared by other specifiers.

7.1.1 Storage class specifiers DRAFT: 27 May 1994 Declarations 7– 3

2 Theauto or register specifiers can be applied only to names of objects declared in a block (6.3) or to
function parameters (8.4). They specify that the named object has automatic storage duration (3.6.2). An
object declared without astorage-class-specifierat block scope or declared as a function parameter has
automatic storage duration by default. Hence, theauto specifier is almost always redundant and not often
used; one use ofauto is to distinguish adeclaration-statementfrom anexpression-statement(6.2) explic-
itly.

3 A register specifier has the same semantics as anauto specifier together with a hint to the compiler
that the object so declared will be heavily used. The hint may be ignored and in most implementations it
will be ignored if the address of the object is taken.

4 The static specifier can be applied only to names of objects and functions and to anonymous unions
(9.6). There can be nostatic function declarations within a block, nor anystatic function parame-
ters. A static specifier used in the declaration of an object declares the object to have static storage
duration (3.6.1). Astatic specifier may be used in the declaration of class members and its affect is
described in 9.5. A name declared with astatic specifier in a scope other than class scope (3.3.6) has
internal linkage. For a nonmember function, aninline specifier is equivalent to astatic specifier for 
linkage purposes (3.4).

5 The extern specifier can be applied only to the names of objects and functions. Theextern specifier
cannot be used in the declaration of class members or function parameters. A name declared at file scope∗
with the extern specifier has external linkage. An object or function declared at block scope with the
extern specifier has external linkage unless the declaration matches a previous file scope declaration that
has internal linkage, in which case the object or function has internal linkage and refers to the same object
or function denoted by the file scope declaration.26)

6 A name declared at file scope without astorage-class-specifierhas external linkage unless it has internal
linkage because of a previous declaration and provided it is not declaredconst . Objects declaredconst 
and not explicitly declaredextern have internal linkage.

7 The linkages implied by successive declarations for a given entity must agree. That is, within a given
scope, each declaration declaring the same object name or the same overloading of a function name must
imply the same linkage. Each function in a given set of overloaded functions may have a different linkage,
however. For example,

static char* f(); // f() has internal linkage
char* f() // f() still has internal linkage

{ /* ... */ }

char* g(); // g() has external linkage
static char* g() // error: inconsistent linkage

{ /* ... */ }

static int a; // ‘a’ has internal linkage
int a; // error: two definitions

static int b; // ‘b’ has internal linkage
extern int b; // ‘b’ still has internal linkage

int c; // ‘c’ has external linkage
static int c; // error: inconsistent linkage

extern d; // ‘d’ has external linkage
static int d; // error: inconsistent linkage

26) Here, ‘‘previously’’ includes enclosing scopes. This implies that a name specifiedstatic and then specifiedextern in an
inner scope still has internal linkage.

7– 4 Declarations DRAFT: 27 May 1994 7.1.1 Storage class specifiers

8 The name of a declared but undefined class can be used in anextern declaration. Such a declaration,
however, cannot be used before the class has been defined. For example,

struct S;
extern S a;
extern S f();
extern void g(S);

void h()
{

g(a); // error: S undefined
f(); // error: S undefined

}

Themutable specifier can be applied only to names of class data members (9.2) and can not be applied to
names declaredconst or static . For example

class X {
mutable const int* p; // ok
mutable int* const q; // ill-formed

};

9 Themutable specifier on a class data member nullifies aconst specifier applied to the containing class
object and permits modification of the mutable class member even though the rest of the object isconst 
(7.1.5.1).

[dcl.fct.spec] 7.1.2 Function specifiers

1 Function-specifierscan be used only in function declarations.

function-specifier:
inline
virtual

2 The inline specifier is a hint to the compiler that inline substitution of the function body is to be pre-
ferred to the usual function call implementation. The hint may be ignored. For a nonmember function, the
inline specifier also gives the function internal linkage (3.4). A function (5.2.2, 8.3.5) defined within the
declaration of a class is inline by default.

3 An inline member function must have exactly the same definition in every compilation in which it appears.

4 A class member function need not be explicitly declared with theinline specifier in the class declaration
to be inline. When noinline specifier is used, linkage will be external unless a definition with the
inline specifer appears before the first call.

class X {
public:

int f();
inline int g(); // X::g() has internal linkage
int h();

};

void k(X* p)
{

int i = p->f(); // now X::f() has external linkage
int j = p->g();
// ...

}

7.1.2 Function specifiers DRAFT: 27 May 1994 Declarations 7– 5

inline int X::f() // error: called before defined
// as inline

{
// ...

}

inline int X::g()
{

// ...
}

inline int X::h() // now X::h() has internal linkage
{

// ...
}

5 The virtual specifier may be used only in declarations of nonstatic class member functions within a
class declaration; see 10.3.

[dcl.typedef] 7.1.3 Thetypedef specifier

1 Declarations containing thedecl-specifiertypedef declare identifiers that can be used later for naming
fundamental (3.7.1) or compound (3.7.2) types. Thetypedef specifier may not be used in afunction- 
definition(8.4), and it may not be combined in adecl-specifier-seqwith any other kind of specifier except a
type-specifier.

typedef-name:
identifier

A name declared with thetypedef specifier becomes atypedef-name. Within the scope of its declaration,
a typedef-nameis syntactically equivalent to a keyword and names the type associated with the identifier in
the way described in 8. If, in adecl-specifier-seqcontaining thedecl-specifiertypedef , there is notype-
specifier, or the onlytype-specifiers arecv-qualifiers, thetypedef declaration is ill-formed. Atypedef-
nameis thus a synonym for another type. Atypedef-namedoes not introduce a new type the way a class
declaration (9.1) or enum declaration does. For example, after

typedef int MILES, *KLICKSP;

the constructions

MILES distance;
extern KLICKSP metricp;

are all correct declarations; the type ofdistance is int ; that ofmetricp is “pointer toint .”

2 In a given scope, atypedef specifier may be used to redefine the name of any type declared in that scope
to refer to the type to which it already refers. For example,

typedef struct s { /* ... */ } s;
typedef int I;
typedef int I;
typedef I I;

3 In a given scope, atypedef specifier may not be used to redefine the name of any type declared in that
scope to refer to a different type. For example,

class complex { /* ... */ };
typedef int complex; // error: redefinition

Similarly, in a given scope, a class may not be declared with the same name as atypedef-namethat is
declared in that scope and refers to a type other than the class itself. For example,

7– 6 Declarations DRAFT: 27 May 1994 7.1.3 Thetypedef specifier

typedef int complex;
class complex { /* ... */ }; // error: redefinition

4 A typedef-namethat names a class is aclass-name(9.1). The typedef-namemay not be used after a
class , struct , or union prefix and not in the names for constructors and destructors within the class
declaration itself. For example,

struct S {
S();
~S();

};

typedef struct S T;

S a = T(); // ok
struct T * p; // error

5 An unnamed class defined in a declaration with atypedef specifier gets a dummy name. For linkage
purposes only (3.4), thetypedef-namedeclared by the declaration is used to denote the class type in place of
the dummy name. Thetypedef-nameis still only a synonym for the dummy name and may not be used
where a true class name is required. Such a class cannot have explicit constructors or destructors because
they cannot be named by the user. For example,

typedef struct {
S(); // error: requires a return type since S is

// an ordinary member function, not a constructor
} S;

6 A typedef-namethat names an enumeration is anenum-name(7.2). Thetypedef-namemay not be used
after anenum prefix.

[dcl.friend] 7.1.4 Thefriend specifier

1 Thefriend specifier is used to specify access to class members; see 11.4.

[dcl.type] 7.1.5 Type specifiers

1 The type-specifiers are

type-specifier:
simple-type-specifier
class-specifier
enum-specifier
elaborated-type-specifier
cv-qualifier

As a general rule, at most onetype-specifieris allowed in the completedecl-specifier-seqof a declaration.
The only exceptions to this rule are the following:

2
— const or volatile may be combined with any othertype-specifier.

— signed or unsigned may be combined withchar , long , short , or int .

— short or long may be combined withint .

— long may be combined withdouble .

3 At least onetype-specifieris required in a typedef declaration. At least onetype-specifieris required in a
function declaration unless it declares a constructor, destructor or type conversion operator. If there is no
type-specifieror if the only type-specifiers present in adecl-specifier-seqarecv-qualifiers, then theint
specifier is assumed as default.27) Regarding the prohibition of the defaultint specifier in typedef

27)Redundant cv-qualifiers are allowed to be introduced through the use of typedefs or template type arguments and are ignored.

7.1.5 Type specifiers DRAFT: 27 May 1994 Declarations 7– 7

declarations, see_typedef_; in all other instances, the use ofdecl-specifier-seqs which contain nosimple-
type-specifiers (and thus default to plainint) is deprecated.

4 class-specifiers andenum-specifiers are discussed in 9 and 7.2, respectively. The remainingtype-specifiers
are discussed in the rest of this section.

[dcl.type.cv] 7.1.5.1 Thecv-qualifiers

Box 38 
This section covers the same information as section 3.7.3. This information should probably be consoli-
dated in one place.  _ __





_ __



 

1 The presence of aconst specifier in adecl-specifier-seqspecifies aconst object. Except that any class
member declaredmutable (7.1.1) may be modified, any attempt to modify aconst object after it has 
been initialized and before it is destroyed results in undefined behavior.

2 Example

class X {
public:

mutable int i;
int j;

};
class Y { public: X x; }
const Y y;
y.x.i++; // defined behavior
y.x.j++; // undefined behavior
Y* p = const_cast<Y*>(&y); // cast away const-ness of y
p->x.i = 99; // defined behavior
p->x.j = 99; // undefined behavior

Unless explicitly declaredextern , aconst object does not have external linkage and must be initialized
(8.5; 12.1). An integralconst initialized by a constant expression may be used in constant expressions
(5.19). Each element of aconst array isconst and each non-function, non-static, non-mutable member
of aconst class object isconst (9.4.1).

3 There are no implementation-independent semantics forvolatile objects;volatile is a hint to the
compiler to avoid aggressive optimization involving the object because the value of the object may be
changed by means undetectable by a compiler. Each element of avolatile array isvolatile and
each nonfunction, nonstatic member of avolatile class object isvolatile (9.4.1). An object may be
bothconst andvolatile , with thetype-specifiers appearing in either order.

Box 39

Notwithstanding the description above, the semantics ofvolatile are intended to be the same in C + + as
they are in C. However, it’s not possible simply to copy the wording from the C standard until we under-
stand the ramifications of sequence points, etc._ __






_ __






[dcl.type.simple] 7.1.5.2 Simple type specifiers

1 The simple type specifiers are

7– 8 Declarations DRAFT: 27 May 1994 7.1.5.2 Simple type specifiers

simple-type-specifier:
:: opt nested-name-specifieropt type-name
char
wchar_t
bool
short
int
long
signed
unsigned
float
double
void

type-name:
class-name
enum-name
typedef-name

Thesimple-type-specifiers specify either a previously-declared user-defined type or one of the fundamental
types (3.7.1). Table 11 summarizes the valid combinations ofsimple-type-specifers and the types they
specify.

Table 11—simple-type-specifiers and the types they specify
__
Specifier(s) Type__
type-name the type named
char “char ”
unsigned char “unsigned char ”
signed char “signed char ”
bool “bool ”
unsigned “unsigned int ”
unsigned int “unsigned int ”
signed “int ”
signed int “int ”
int “int ”
unsigned short int “unsigned short int ”
unsigned short “unsigned short int ”
unsigned long int “unsigned long int ”
unsigned long “unsigned long int ”
signed long int “long int ”
signed long “long int ”
long int “long int ”
long “long int ”
signed short int “short int ”
signed short “short int ”
short int “short int ”
short “short int ”
wchar_t “wchar_t ”
float “float ”
double “double ”
long double “long double ”
void “void ”__ 









































































































When multiplesimple-type-specifiersare allowed, they may be freely intermixed with otherdecl-specifiers
in any order. It is implementation-defined whether bit-fields and objects ofchar type are represented as

7.1.5.2 Simple type specifiers DRAFT: 27 May 1994 Declarations 7– 9

signed or unsigned quantities. Thesigned specifier forceschar objects and bit-fields to be signed; it is
redundant with other integral types.

[dcl.type.elab] 7.1.5.3 Elaborated type specifiers

1 Generally speaking, theelaborated-type-specifieris used to refer to a previously declaredclass-nameor
enum-nameeven though the name may be hidden by an intervening object, function, or enumerator declara-
tion (3.3), but in some cases it also can be used to declare aclass-name.

elaborated-type-specifier:
class-key :: opt nested-name-specifieropt identifier
enum :: opt nested-name-specifieropt identifier

class-key:
class
struct
union

2 If an elaborated-type-specifieris the sole constituent of adeclarationof the form

class-key identifier;

then theelaborated-type-specifierdeclares theidentifier to be aclass-namein the scope that contains the
declaration (9.1). Otherwise, theidentifier following the class-keyor enum keyword is resolved as
described in 10.5 according to its qualifications, if any, but ignoring any objects, functions, or enumerators
that have been declared. If theidentifier resolves to aclass-nameor enum-name, the elaborated-type-
specifierintroduces it into the declaration the same way asimple-type-speciferintroduces itstype-name. If
the identifier resolves to atypedef-name, the elaborated-type-specifieris ill-formed. If the resolution is
unsuccessful, theelaborated-type-specifieris ill-formed unless it is of the simple formclass-key identifier.
In this case, theidentifier is declared in the smallest non-class, non-function prototype scope enclosing the
elaborated-type-specifier(3.3).

3 Theclass-keyor enum keyword present in theelaborated-type-specifiermust agree in kind with the decla-
ration to which the name in theelaborated-type-specifierrefers. This rule also applies to the form of
elaborated-type-specifierthat declares aclass-namesince it can be construed as refering to the definition of
the class. Thus, in anyelaborated-type-specifier, theenum keyword must be used to refer to an enumera-
tion (7.2), theunion class-keymust be used to refer to a union (9), and either theclass or struct
class-keymust be used to refer to a structure (9) or to a class declared using theclass class-key. For
example:

7– 10 Declarations DRAFT: 27 May 1994 7.1.5.3 Elaborated type specifiers

struct Node {
struct Node* Next; // ok: Refers to Node at file scope
struct Data* Data; // ok: Declares type Data

// at file scope and member Data
};

struct Data {
struct Node* Node; // ok: Refers to Node at file scope
/* ... */

};

struct Base {
struct Data; // ok: Declares nested Data
struct ::Data* thatData; // ok: Refers to ::Data
struct Base::Data* thisData; // ok: Refers to nested Data

struct Data { /* ... */ }; // Defines nested Data

struct Data; // ok: Redeclares nested Data
};

struct Data; // ok: Redeclares Data at file scope

struct ::Data; // error: qualified and nothing declared.
struct Base::Data; // error: qualified and nothing declared.
struct Base::Datum; // error: Datum undefined

struct Base::Data* pBase; // ok: refers to nested Data

[dcl.enum] 7.2 Enumeration declarations

1 An enumeration is a distinct type (3.7.1) with named constants. Its name becomes anenum-name, that is, a
reserved word within its scope.

enum-name:
identifier

enum-specifier:
enum identifieropt { enumerator-listopt }

enumerator-list:
enumerator-definition
enumerator-list , enumerator-definition

enumerator-definition:
enumerator
enumerator = constant-expression

enumerator:
identifier

The identifiers in anenumerator-listare declared as constants, and may appear wherever constants are
required. If noenumerator-definitions with = appear, then the values of the corresponding constants begin
at zero and increase by one as theenumerator-listis read from left to right. Anenumerator-definitionwith
= gives the associatedenumeratorthe value indicated by theconstant-expression; subsequentenumerators
without initializers continue the progression from the assigned value. Theconstant-expressionmust be of
integral type.

2 For example,

7.2 Enumeration declarations DRAFT: 27 May 1994 Declarations 7– 11

enum { a, b, c=0 };
enum { d, e, f=e+2 };

definesa, c , andd to be zero,b ande to be1, andf to be3.

3 The point of declaration for an enumerator is immediately after itsenumerator-definition. For example:

const int x = 12;
{ enum { x = x }; }

Here, the enumeratorx is initialized with the value of the constantx , namely 12.

4 Each enumeration defines a type that is different from all other types. The type of an enumerator is its enu-
meration.

5 Theunderlying typeof an enumeration is an integral type, not gratuitously larger thanint ,28) that can rep-
resent all enumerator values defined in the enumeration. If theenumerator-listis empty, the underlying
type is as if the enumeration had a single enumerator with value 0. The value ofsizeof() applied to an
enumeration type, an object of enumeration type, or an enumerator, is the value ofsizeof() applied to
the underlying type.

6 For an enumeration whereemin is the smallest enumerator andemax is the largest, the values of the enumer-
ation are the values of the underlying type in the rangebmin to bmax, wherebmin andbmax are, respectively,
the smallest and largest values of the smallest bit-field that can storeemin and emax. On a two’s-
complement machine,bmax is the smallest value greater than or equal to max (abs(emin) ,abs(emax)) of the
form 2M − 1; bmin is zero ifemin is non-negative and− (bmax + 1) otherwise. It is possible to define an enu-
meration that has values not defined by any of its enumerators.

7 The value of an enumerator or an object of an enumeration type is converted to an integer by integral pro-
motion (4.1). For example,

enum color { red, yellow, green=20, blue };
color col = red;
color* cp = &col;
if (*cp == blue) // ...

makescolor a type describing various colors, and then declarescol as an object of that type, andcp as a
pointer to an object of that type. The possible values of an object of typecolor are red , yellow ,
green , blue ; these values can be converted to the integral values0, 1, 20 , and21 . Since enumerations
are distinct types, objects of typecolor may be assigned only values of typecolor . For example,

color c = 1; // error: type mismatch,
// no conversion from int to color

int i = yellow; // ok: yellow converted to integral value 1
// integral promotion

See also C.3.

8 An expression of arithmetic type or of typewchar_t may be converted to an enumeration type explicitly.
The value is unchanged if it is in the range of enumeration values of the enumeration type; otherwise the
resulting enumeration value is unspecified.

Box 40

This means the program does not crash._ _________________________________



_ _________________________________




9
The enum-name and each enumerator declared by an enum-specifier is declared in the scope that immedi-
ately contains the enum-specifier. These names obey the scope rules defined for all names in (3.3) and

28)The type should be larger thanint only if the value of an enumerator won’t fit in anint .

7– 12 Declarations DRAFT: 27 May 1994 7.2 Enumeration declarations

(10.5). An enumerator declared in class scope may be referred to using the class member access operators (
:: , . (dot) and-> (arrow)), see 5.2.4. For example,

class X {
public:

enum direction { left=’l’, right=’r’ };
int f(int i)

{ return i==left ? 0 : i==right ? 1 : 2; }
};

void g(X* p)
{

direction d; // error: ‘direction’ not in scope
int i;
i = p->f(left); // error: ‘left’ not in scope
i = p->f(X::right); // ok
i = p->f(p->left); // ok 
// ...

}

[basic.namespace] 7.3 Namespaces

1 A namespace is a kind of declarative region that effectively attaches an additional identifier to any names
declared inside it. Unlike other declarative regions, the definition of a namespace may be split over several
parts of a single translation unit.

2 The declarations in file scope of a translation unit behave as if they appeared in a namespace called the
global namespace.

[namespace.def] 7.3.1 Namespace definition

1 The grammar for anamespace-definitionis

original-namespace-name:
identifier

namespace-definition:
original-namespace-definition
extension-namespace-definition
unnamed-namespace-definition

original-namespace-definition:
namespace identifier { namespace-body}

extension-namespace-definition:
namespace original-namespace-name{ namespace-body}

unnamed-namespace-definition:
namespace { namespace-body}

namespace-body:
declaration-seqopt

2 The identifier in anoriginal-namespace-definitionshall not have been previously defined in the declarative
region in which theoriginal-namespace-definitionappears. Theidentifier in an original-namespace-
definition is the name of the namespace. Subsequently in that declarative region, it is treated as an
original-namespace-name.

3 Theoriginal-namespace-namein anextension-namespace-definitionshall have previously been defined in
anoriginal-namespace-definitionin the same declarative region. 

7.3.1 Namespace definition DRAFT: 27 May 1994 Declarations 7– 13

4 Every namespace-definitionmust appear either at file scope or immediately within anothernamespace-
definition.

5 An unnamed-namespace-definitionbehaves as if it were replaced by

namespace unique { namespace-body}
using namespace unique;

where, for each translation unit, all occurrences ofunique in that translation unit are replaced by an identi-
fier that differs from all other identifiers in the entire program.29) For example:

namespace { int i; } // unique::i
void f() { i++; } // unique::i++
namespace A {

namespace {
int i; // A:: unique::i
int j; // A:: unique::j

}
void f() { i++; } // A:: unique::i++

}
using namespace A;
void h() {

i++; // error: unique::i or A:: unique::i
A::i++; // error: A::i undefined
j++; // A:: unique::j

}

6 The declarative region of anamespace-definitionis itsnamespace-body. The potential scope denoted by an
original-namespace-nameis the concatenation of the declarative regions established by each of the
namespace-definitions in the same declarative region with thatoriginal-namespace-name. Entities declared
in a namespace-bodyare said to bemembers of the namespace, and names introduced by these declarations
into the declarative region of the namespace are said to bemember namesof the namespace. For example

namespace N
{

int i;
int g(int a) { return a; }
void k();
void q();

}
namespace { int k=1; }
namespace N
{

int g(char a) // overloads N::g(int)
{

return k+a; // k is from unnamed namespace
}
int i; // error, duplicate definition
void k(); // OK, duplicate function declaration
void k() { // OK, definition of N::k()

return g(a); // calls N::g(int)
}
int q(); // error, different return type

}

7 Because anamespace-definitioncontainsdeclarations in itsnamespace-bodyand anamespace-definitionis
itself adeclaration, it follows thatnamespace-definitions may be nested. For example:

29) Although entities in an unnamed namespace might have external linkage, they are effectively qualified by a name unique to their
translation unit and therefore can never be seen from any other translation unit.

7– 14 Declarations DRAFT: 27 May 1994 7.3.1 Namespace definition

namespace Outer {
int i;
namespace Inner {

void f() { i++; } // Outer::i
int i;
void g() { i++; } // Inner::i

}
}

8 The use of thestatic keyword is deprecated when declaring objects in a namespace scope (see
future.directions); theunnamed-namespaceprovides a superior alternative.

9 Members of a namespace may be defined within that namespace. For example:

namespace X { void f() { } } ∗

10 Members of a named namespace may also be defined outside that namespace by explicit qualification
(7.3.5) of the name being defined, provided that the entity being defined was already declared in the name-
space and the definition appears after the point of declaration in a namespace that encloses the declaration’s
namespace. For example:

namespace Q {
namespace V {

void f();
}
void V::f() { } // fine
void V::g() { } // error, g() is not yet a member of V
namespace V {

void g();
}

}

11 Every name first declared in a namespace is a member of that namespace. Afriend function first
declared within a class is a member of the innermost enclosing namespace. For example: 

// Assume f and g have not yet been defined.
namespace A {

class X {
friend void f(X); // declaration of f
class Y {

friend void g();
};

};

void f(X) { } // definition of f declared above
X x;
void g() { f(x); } // f and g are members of A

}
using A::x;

main() {
A::f(x);
A::X::f(x); // error, f is not a member of A::X
A::X::Y::g(); // error, g is not a member of A::X::Y

}

The scope of class names first introduced inelaborated-type-specifiersis described in (7.1.5.3). 

12 When an entity declared with theextern specifier is not found to refer to some other declaration, then
that entity is a member of the innermost enclosing non-class namespace. For example:

7.3.1 Namespace definition DRAFT: 27 May 1994 Declarations 7– 15

namespace X {
void p() {

q(); // error: q not yet declared
extern void q(); // q is a member of namespace X

}
void q() { } // definition of q

}
void q() { } // some other, unrelated q

13
[namespace.alias] 7.3.2 Namespace or class alias

1 A namespace-alias-definitiondeclares an alternate name for a namespace according to the following gram-
mar:

namespace-alias:
identifier

namespace-alias-definition:
namespace identifier = qualified-namespace-specifier ;

qualified-namespace-specifier:
:: opt nested-name-specifieropt class-or-namespace-name

2 The identifier in a namespace-alias-definitionis a synonym for the name of the namespace denoted by the
qualified-namespace-specifierand becomes anamespace-alias.

3 In a declarative region, anamespace-alias-definitioncan be used to redefine anamespace-aliasdeclared in 
that declarative region to refer to the namespace to which it already refers. For example, the following dec-
larations are well-formed: 

namespace Company_with_very_long_name { /* ... */ } 
namespace CWVLN = Company_with_very_long_name; 
namespace CWVLN = Company_with_very_long_name; // duplicate 
namespace CWVLN = CWVLN; 

4 A namespace-nameshall not be declared as the name of any other entity in the same declarative region. A
namespace-namedefined at global scope shall not be declared as the name of any other entity in any global
scope of the program.

[namespace.udecl] 7.3.3 Theusing declaration

1 A using-declarationintroduces a name into the declarative region in which it appears. That name is a syn-
onym for the name of some entity declared elsewhere.

using-declaration:
using :: opt nested-name-specifier unqualified-id;
using :: unqualified-id;

Box 41

There is still an open issue regarding the "opt" on the nested-name-specifier._ ___



_ ___




2 The member names specified in ausing-declarationare declared in the declarative region in which the
using-declarationappears.

3 Every using-declarationis adeclarationand amember-declarationand so may be used in a class defini-
tion. For example:

7– 16 Declarations DRAFT: 27 May 1994 7.3.3 Theusing declaration

struct Base {
void f(char);
void g(char);

};
struct Derived: Base
{

using Base::f;
void f(int) { f(’c’); } // calls Base::f(char)
void g(int) { g(’c’); } // recursively calls Derived::g(int)

};

4 An entity with the name of theunqualified-idshall be known to the nominated class or namespace at the
point that theusing-declarationappears. Additional definitions added to the namespace after theusing-
declarationare not considered when a use of the name is made.

Box 42

Please check this example carefully._______________________________







For example:

namespace A {
void f(int);

}

using A::f; // f is a synonym for A::f
namespace A {

void f(char);
}

void foo() {
f(’a’); // calls f(int),

} // even though f(char) exists

void bar() {
using A::f;
f(’a’); // calls f(char)

}

5 The names thus defined are aliases for their original declarations so that theusing-declarationdoes not
affect the type, linkage or other attributes of the members refered to.

6 If the set of local declarations andusing-declarations for a single name are given in a declarative region,
they shall all refer to the same entity, or all refer to functions. For example

namespace B
{

int i;
void f(int);
void f(double);

}
void g()
{

int i;
using B::i; // error: i declared twice
void f(char);
using B::f; // fine, each f is a function

}

7.3.3 Theusing declaration DRAFT: 27 May 1994 Declarations 7– 17

Box 43

This reflects paper 93-0105 but does not reflect the original namespace paper. According to the original
paper, the previous example should read:

void g()
{

int i;
using B::i; // error: i declared twice
void f(char);
using B::f; // error: f declared twice

}
_ __
















_ __
















7 During overload resolution, a locally declared function is prefered over an injected one when both have the
same signature. If the signature with the best match refers to more than one function, an ambiguity exists
and the program is ill-formed.

Box 44

This treatment is a mistake, but it was voted in San Jose.

Editorial proposal: if a local declaration conflicts with one introduced by ausing-declaration, the program
is ill-formed. Thus, in the example below, the declaration off(int) in function h should render the
example ill-formed._ __








_ __








For example:

namespace C
{

void f(int);
void f(double);
void f(char);

}
void h()
{

using B::f; // B::f(int) and B::f(double)
using C::f;
f(1); // ambiguity B::f(int) or C::f(int)
void f(int);
f(1); // calls local f(int)
f(’h’); // calls C::f(char)
f(2.0); // ambiguity B::f(double) or C::f(double);

}

8 Even in the presence ofusing declarations, member function declarations hide or override members with
the same signature in a base class. For example: 

7– 18 Declarations DRAFT: 27 May 1994 7.3.3 Theusing declaration

struct B { 
virtual void f(int); 
void g(int); 

}; 

struct D: B { 
using B::f; 
using B::g; 
void f(int); // overrides B::f 
void g(int); // hides B::g 

}; 

void h(D* p) { 
p->f(1); // OK 
p->g(1); // OK 

} 

9 Omitting the name before:: implies a reference to the global namespace:

void f();
namespace X {

using ::f; // global f
};

main()
{

X::f(); // calls ::f
}

10 All instances of the name mentioned in ausing-declarationmust be accessible. In particular, if a derived
class uses ausing-declarationto access a non-static member of a base class, the member name must be
accessible, and if the name is that of a non-static member function, then all functions named must be acces-
sible.

11 The alias created by theusing-declarationhas the usual accessibility for amember-declaration. For exam-
ple:

class A {
private:

void f(char);
public:

void f(int);
protected:

void g();
};
class B: public A {

using A::f; // error, A::f(char) is inaccessible
public:

using A::g; // B::g is a public synonym for A::g
};

12 Use ofaccess-declarations (11.3) is deprecated; memberusing-declarations provide a better alternative. 

[namespace.udir] 7.3.4 Using directive

1 using-directive:
using namespace :: opt nested-name-specifieropt namespace-name ;

2 A using-directivespecifies that the names in the namespace with the givennamespace-name, including
those specified by anyusing-directives in that namespace, can be used in the scope in which theusing-

7.3.4 Using directive DRAFT: 27 May 1994 Declarations 7– 19

directiveappears after the using directive, exactly as if the names from the namespace had been declared
outside a namespace at the points where the namespace was defined. Ausing-directivedoes not add any
members to the declarative region in which it appears. If a namespace is extended by anextended-
namespace-definitionafter ausing-directiveis given, the additional members of the extended namespace
may be used after theextended-namespace-definition.

3 The using-directiveis transitive: if a namespace contains ausing-directivethat nominates a second name-
space that itself containsusing-directives, the effect is as if theusing-directives from the second namespace
also appeared in the first. In particular, a name in a namespace does not hide names in a second namespace
which is the subject of ausing-directivein the first namespace. For example: 

namespace M { 
int i; 

} 
namespace N { 

int i; 
using namespace M; 

} 
... N::i ... // ambiguous: M::i or N::i? 

4 During overload resolution, all functions from the transitive search must be considered for argument match-
ing. An ambiguity exists if the best match finds two functions with the same signature, even if one might
seem to ‘‘hide’’ the other in theusing-directivelattice.

5 For example:

namespace D
{

int d1;
void f(int);
void f(char);

}
using namespace D;

int d1; // OK: no conflict with D::d1

namespace E
{

int e;
void f(int);

}
namespace D // namespace extension
{

int d2;
using namespace E;
void f(int);

}
void f()
{

d1++; // ambiguous ::d1 or D::d1
::d1++; // OK
D::d1++; // OK
d2++; // OK: D::d2
e++; // OK: E::e
f(1); // ambiguous D::f(int) or E::f(int)
f(’a’); // OK D::f(char)

}

7– 20 Declarations DRAFT: 27 May 1994 7.3.5 Explict qualification

[namespace.qual] 7.3.5 Explict qualification

Box 45 
The infomation in this section is very similar to the information provided in section 3.3.8. The information
should probably be consolidated in one place.  _ __





_ __



 

1 A name in a class or namespace may be accessed using qualification according to the grammar:

id-expression
unqualified-id
qualified-id

nested-name-specifier:
class-or-namespace-name:: nested-name-specifieropt

class-or-namespace-name:
class-name
namespace-name

namespace-name:
original-namespace-name
namespace-alias

2 The namespace-names in a nested-name-specifiershall have been previously defined by anamed-
namespace-definitionor anamespace-alias-definition.

Box 46

I believe "class-specifier" and "namespace-alias-definition" above should be replaced with "type-name" to
include "original-namespace-specifier" and "typedef" as well._ __





_ __





Theclass-names in anested-namespace-specifiershall have been previously defined by aclass-specifieror
anamespace-alias-definition.

3 The search for the initial qualifier preceding any:: operator locates only the names of types or name-
spaces. The search for a name after a:: locates only names members of a namespace or class. In particu-
lar, using-directives are ignored, as is any enclosing declarative region.

[dcl.asm] 7.4 Theasm declaration

1 An asm declaration has the form

asm-definition:
asm (string-literal) ;

The meaning of anasm declaration is implementation dependent. Typically it is used to pass information
through the compiler to an assembler.

[dcl.link] 7.5 Linkage specifications

1 Linkage (3.4) between C + + and non-C + + code fragments can be achieved using alinkage-specification:

linkage-specification:
extern string-literal { declaration-seqopt }
extern string-literal declaration

declaration-seq:
declaration
declaration-seq declaration

The string-literal indicates the required linkage. The meaning of thestring-literal is implementation

7.5 Linkage specifications DRAFT: 27 May 1994 Declarations 7– 21

dependent. Every implementation shall provide for linkage to functions written in the C programming lan-
guage,"C" , and linkage to C + + functions,"C++" . Default linkage is"C++" . For example, 

complex sqrt(complex); // C++ linkage by default
extern "C" {

double sqrt(double); // C linkage
}

Box 47

This example may need to be revisited depending on what the rules ultimately are concerning C + + linkage
to standard library functions from the C library._ __





_ __





2 Linkage specifications nest. A linkage specification does not establish a scope. Alinkage-specification
may occur only infile scope (3.3). Alinkage-specificationfor a class applies to nonmember functions and
objects declared within it. Alinkage-specificationfor a function also applies to functions and objects
declared within it. A linkage declaration with a string that is unknown to the implementation is ill-formed.

3 If a function has more than onelinkage-specification, they must agree; that is, they must specify the same
string-literal. Except for functions with C + + linkage, a function declaration without a linkage specification
may not precede the first linkage specification for that function. A function may be declared without a link-
age specification after an explicit linkage specification has been seen; the linkage explicitly specified in the
earlier declaration is not affected by such a function declaration.

4 At most one of a set of overloaded functions (13) with a particular name can have C linkage.

5 Linkage can be specified for objects. For example,

extern "C" {
// ...
_iobuf _iob[_NFILE];
// ...
int _flsbuf(unsigned,_iobuf*);
// ...

}

Functions and objects may be declaredstatic within the {} of a linkage specification. The linkage
directive is ignored for such a function or object. Otherwise, a function declared in a linkage specification
behaves as if it was explicitly declaredextern . For example,

extern "C" double f();
static double f(); // error

is ill-formed (7.1.1). An object defined within an

extern "C" { /* ... */ }

construct is still defined (and not just declared).

6 Linkage from C + + to objects defined in other languages and to objects defined in C + + from other languages
is implementation and language dependent. Only where the object layout strategies of two language imple-
mentations are similar enough can such linkage be achieved.

7 When the name of a programming language is used to name a style of linkage in thestring-literal in a
linkage-specification, it is recommended that the spelling be taken from the document defining that lan-
guage, for example,Ada (notADA) andFORTRAN(notFortran).

_ ___ ___

8 Declarators [dcl.decl]
_ ___ ___

1 A declarator declares a single object, function, or type, within a declaration. Theinit-declarator-list
appearing in a declaration is a comma-separated sequence of declarators, each of which may have an initial-
izer.

init-declarator-list:
init-declarator
init-declarator-list , init-declarator

init-declarator:
declarator initializeropt

2 The two components of adeclarationare the specifiers (decl-specifier-seq; 7.1) and the declarators (init-
declarator-list). The specifiers indicate the fundamental type, storage class, or other properties of the
objects and functions being declared. The declarators specify the names of these objects and functions and
(optionally) modify the type with operators such as* (pointer to) and() (function returning). Initial val-
ues can also be specified in a declarator; initializers are discussed in 8.5 and 12.6.

3 Eachinit-declarator in a declaration is analyzed separately as if it was in a declaration by itself.30)

4 Declarators have the syntax

declarator:
direct-declarator
ptr-operator declarator

direct-declarator:
declarator-id
direct-declarator (parameter-declaration-clause) cv-qualifier-seqopt exception-specificationopt

direct-declarator [constant-expressionopt]
(declarator)

30) A declaration with several declarators is usually equivalent to the corresponding sequence of declarations each with a single
declarator. That is

T D1, D2, ... Dn;

is usually equvalent to

T D1; T D2; ... T Dn;

whereT is adecl-specifier-seqand eachDi is a init-declarator. The exception occurs when one declarator modifies the name environ-
ment used by a following declarator, as in

struct S { ... };
S S, T; // declare two instances of struct S

which is not equivalent to

struct S { ... };
S S;
S T; // error

8– 2 Declarators DRAFT: 27 May 1994 8 Declarators

ptr-operator:
* cv-qualifier-seqopt

& 
:: opt nested-name-specifier* cv-qualifier-seqopt 

cv-qualifier-seq:
cv-qualifier cv-qualifier-seqopt

cv-qualifier:
const
volatile

declarator-id:
id-expression
nested-name-specifieropt type-name

A class-namehas special meaning in a declaration of the class of that name and when qualified by that
name using the scope resolution operator:: (12.1, 12.4). Thecv-qualifier const shall not appear more
than once in acv-qualifier-seq; similarly forvolatile .

[dcl.name] 8.1 Type names

1 To specify type conversions explicitly, and as an argument ofsizeof or new, the name of a type must be
specified. This can be done with atype-id, which is syntactically a declaration for an object or function of
that type that omits the name of the object or function.

type-id:
type-specifier-seq abstract-declaratoropt

type-specifier-seq:
type-specifier type-specifier-seqopt

abstract-declarator:
ptr-operator abstract-declaratoropt

direct-abstract-declarator

direct-abstract-declarator:
direct-abstract-declaratoropt (parameter-declaration-clause) cv-qualifier-seqopt exception-specificationopt

direct-abstract-declaratoropt [constant-expressionopt]
(abstract-declarator)

It is possible to identify uniquely the location in theabstract-declaratorwhere the identifier would appear
if the construction were a declarator in a declaration. The named type is then the same as the type of the
hypothetical identifier. For example,

int // int i
int * // int *pi
int *[3] // int *p[3]
int (*)[3] // int (*p3i)[3]
int *() // int *f()
int (*)(double) // int (*pf)(double)

name respectively the types“integer,” “pointer to integer,” “array of 3 pointers to integers,” “pointer to
array of 3 integers,” “function having no parameters and returning pointer to integer,” and“pointer to func-
tion of double returning an integer.”

2 A type can also be named (often more easily) by using atypedef(7.1.3).

3 Note that anexception-specificationdoes not affect the function type, so its appearance in anabstract-
declaratorwill have empty semantics.

8.2 Ambiguity resolution DRAFT: 27 May 1994 Declarators 8– 3

[dcl.ambig.res] 8.2 Ambiguity resolution

1 The ambiguity arising from the similarity between a function-style cast and a declaration mentioned in 6.8
can also occur in the context of a declaration. In that context, it surfaces as a choice between a function
declaration with a redundant set of parentheses around a parameter name and an object declaration with a
function-style cast as the initializer. Just as for statements, the resolution is to consider any construct that
could possibly be a declaration a declaration. A declaration can be explicitly disambiguated by a
nonfunction-style cast or a= to indicate initialization. For example,

struct S {
S(int);

};

void foo(double a)
{

S x(int(a)); // function declaration
S y((int)a); // object declaration
S z = int(a); // object declaration

}

2 The ambiguity arising from the similarity between a function-style cast and atype-idcan occur in many dif-
ferent contexts. The ambiguity surfaces as a choice between a function-style cast expression and a declara-
tion of a type. The resolution is that any construct that could possibly be atype-id in its syntactic context
shall be considered atype-id.

3 For example,

#include <stddef.h>
char *p;
void *operator new(size_t, int);
void foo(int x) {

new (int(*p)) int; // new-placement expression
new (int(*[x])); // new type-id

}

4 For example,

template <class T>
struct S {
T *p;
};
S<int()> x; // type-id
S<int(1)> y; // expression (ill-formed)

5 For example,

void foo()
{

sizeof(int(1)); // expression
sizeof(int()); // type-id (ill-formed)

}

6 For example,

void foo()
{

(int(1)); // expression
(int())1; // type-id (ill-formed)

}

8– 4 Declarators DRAFT: 27 May 1994 8.3 Meaning of declarators

[dcl.meaning] 8.3 Meaning of declarators

1 A list of declarators appears after an optional (7)decl-specifier-seq(7.1). Each declarator contains exactly
one declarator-id; it names the identifier that is declared. Adeclarator-id shall be a simpleidentifier,
except for the following cases: the declaration of some special functions (12.3, 12.4, 13.4), the definition of
a member function (9.4), the definition of a static data member (9.5), the declaration of a friend function
that is a member of another class (11.4). Anauto , static , extern , register , friend , inline ,
virtual , or typedef specifier applies directly to eachdeclarator-id in a init-declarator-list; the type
specified for eachdeclarator-iddepends on both thedecl-specifier-seqand itsdeclarator.

2 Thus, a declaration of a particular identifier has the form

T D

whereT is adecl-specifier-seqandD is a declarator. The following subsections give an inductive proce-
dure for determining the type specified for the containeddeclarator-idby such a declaration.

3 First, thedecl-specifier-seqdetermines a type. For example, in the declaration

int unsigned i;

the type specifiersint unsigned determine the type“unsigned int .” Or in general, in the declara-
tion

T D

thedecl-specifier-seqT determines the type“T.”

4 In a declarationT DwhereD is an unadorned identifier the type of this identifier is“T.”

5 In a declarationT DwhereDhas the form

(D1)

the type of the containeddeclarator-idis the same as that of the containeddeclarator-idin the declaration

T D1

Parentheses do not alter the type of the embeddeddeclarator-id, but they may alter the binding of complex
declarators.

[dcl.ptr] 8.3.1 Pointers

1 In a declarationT DwhereDhas the form

* cv-qualifier-seqopt D1

and the type of the identifier in the declarationT D1 is “type-modifierT,” then the type of the identifier ofD
is “type-modifier cv-qualifier-seqpointer toT.” Thecv-qualifiers apply to the pointer and not to the object
pointed to.

2 For example, the declarations

const int ci = 10, *pc = &ci, *const cpc = pc, **ppc;
int i, *p, *const cp = &i;

declareci , a constant integer;pc , a pointer to a constant integer;cpc , a constant pointer to a constant
integer,ppc , a pointer to a pointer to a constant integer;i , an integer;p, a pointer to integer; andcp , a
constant pointer to integer. The value ofci , cpc , andcp cannot be changed after initialization. The value
of pc can be changed, and so can the object pointed to bycp . Examples of correct operations are

8.3.1 Pointers DRAFT: 27 May 1994 Declarators 8– 5

i = ci;
*cp = ci;
pc++;
pc = cpc;
pc = p;
ppc = &pc;

Examples of ill-formed operations are

ci = 1; // error
ci++; // error
*pc = 2; // error
cp = &ci; // error
cpc++; // error
p = pc; // error
ppc = &p; // error

Each is unacceptable because it would either change the value of an object declaredconst or allow it to be
changed through an unqualified pointer later, for example:

*ppc = &ci; // okay, but would make p point to ci ...
// ... because of previous error

*p = 5; // clobber ci

3 volatile specifiers are handled similarly.

4 See also 5.17 and 8.5.

5 There can be no pointers to references (8.3.2) or pointers to bit-fields (9.7).

[dcl.ref] 8.3.2 References

1 In a declarationT DwhereDhas the form

& D1 

and the type of the identifier in the declarationT D1 is “type-modifierT,” then the type of the identifier ofD 
is “type-modifierreference toT.” At all times during the determination of a type, types of the form“cv- 
qualifiedreference toT” is adjusted to be“reference toT”. For example, in 

typedef int& A; 
const A aref = 3; 

the type ofaref is “reference toint ”, not “const reference toint ”. A declarator that specifies the
type“reference tocvvoid” is ill-formed. ∗

2 For example,

void f(double& a) { a += 3.14; }
// ...

double d = 0;
f(d);

declaresa to be a reference parameter off so the callf(d) will add 3.14 to d.

int v[20];
// ...
int& g(int i) { return v[i]; }
// ...
g(3) = 7;

declares the functiong() to return a reference to an integer sog(3)=7 will assign7 to the fourth element
of the arrayv .

8– 6 Declarators DRAFT: 27 May 1994 8.3.2 References

struct link {
link* next;

};

link* first;

void h(link*& p) // ‘p’ is a reference to pointer
{

p->next = first;
first = p;
p = 0;

}

void k()
{

link* q = new link;
h(q);

}

declaresp to be a reference to a pointer tolink soh(q) will leaveq with the value zero. See also 8.5.3.

3 There can be no references to references, no references to bit-fields (9.7), no arrays of references, and no
pointers to references. The declaration of a reference must contain aninitializer (8.5.3) except when the
declaration contains an explicitextern specifier (7.1.1), is a class member (9.2) declaration within a class
declaration, or is the declaration of an parameter or a return type (8.3.5); see 3.1. A reference must be ini-
tialized to refer to a valid object. In particular, null references are prohibited; no diagnostic is required.

[dcl.mptr] 8.3.3 Pointers to members

1 In a declarationT DwhereDhas the form

:: opt nested-name-specifier:: * cv-qualifier-seqopt D1

and thenested-name-specifiernames a class, and the type of the identifier in the declarationT D1 is “type-
modifier T,” then the type of the identifier ofD is “type-modifier cv-qualifier-seqpointer to member of
class nested-name-specifier of typeT.”

2 For example,

class X {
public:

void f(int);
int a;

};
class Y;

int X::* pmi = &X::a;
void (X::* pmf)(int) = &X::f;
double X::* pmd;
char Y::* pmc;

declarespmi , pmf , pmdandpmc to be a pointer to a member ofX of typeint , a pointer to a member ofX
of typevoid(int) , a pointer to a member ofX of typedouble and a pointer to a member ofY of type
char respectively. The declaration ofpmd is well-formed even thoughX has no members of type
double . Similarly, the declaration ofpmc is well-formed even thoughY is an incomplete type.pmi and
pmf can be used like this:

8.3.3 Pointers to members DRAFT: 27 May 1994 Declarators 8– 7

X obj;
//...
obj.*pmi = 7; // assign 7 to an integer

// member of obj
(obj.*pmf)(7); // call a function member of obj

// with the argument 7

3 Note that a pointer to member cannot point to a static member of a class (9.5), a member with reference
type, or“cv void .” There are no references to members. See also 5.5 and 5.3.

[dcl.array] 8.3.4 Arrays

1 In a declarationT DwhereDhas the form

D1 [constant-expressionopt]

and the type of the identifier in the declarationT D1 is “type-modifierT,” then the type of the identifier ofD
is an array type. If theconstant-expression(5.19) is present, it must be of enumeration or integral type and
have a value greater than zero. The constant expression specifies theboundof (number of elements in) the
array. If the value of the constant expression isN, the array hasN elements numbered0 to N-1 , and the
type of the identifier ofD is “type-modifierarray ofN T.” If the constant expression is omitted, the type of
the identifier ofD is “type-modifierarray of unknown bound ofT,” an incomplete object type. Any cv-
qualifiers that appear intype-modifierare applied to the typeT and not to the array type, as in this example:

typedef int A[5], AA[2][3];
const A x; // type is ‘‘array of 5 const int’’
const AA y; // type is ‘‘array of 2 array of 3 const int’’

2 An array may be constructed from one of the fundamental types31) (exceptvoid), from a pointer, from a
pointer to member, from a class, or from another array.

3 When several“array of” specifications are adjacent, a multidimensional array is created; the constant
expressions that specify the bounds of the arrays may be omitted only for the first member of the sequence.
This elision is useful for function parameters of array types, and when the array is external and the defini-
tion, which allocates storage, is given elsewhere. The firstconstant-expressionmay also be omitted when
the declarator is followed by aninitializer (8.5). In this case the bound is calculated from the number of
initial elements (say,N) supplied (8.5.1), and the type of the identifier ofD is “array ofN T.”

4 The declaration

float fa[17], *afp[17];

declares an array offloat numbers and an array of pointers tofloat numbers. The declaration

static int x3d[3][5][7];

declares a static three-dimensional array of integers, with rank 3×5×7. In complete detail,x3d is an array
of three items; each item is an array of five arrays; each of the latter arrays is an array of seven integers.
Any of the expressionsx3d , x3d[i] , x3d[i][j] , x3d[i][j][k] may reasonably appear in an
expression.

5 Conversions affecting lvalues of array type are described in 4.6. Except where it has been declared for a
class (13.4.5), the subscript operator[] is interpreted in such a way thatE1[E2] is identical to
*((E1)+(E2)) . Because of the conversion rules that apply to+, if E1 is an array andE2 an integer,
thenE1[E2] refers to theE2-th member ofE1. Therefore, despite its asymmetric appearance, subscript-
ing is a commutative operation.

31)The enumeration types are included in the fundamental types.

8– 8 Declarators DRAFT: 27 May 1994 8.3.4 Arrays

6 A consistent rule is followed for multidimensional arrays. IfE is an n-dimensional array of rank
i × j × . . . ×k, thenE appearing in an expression is converted to a pointer to an (n − 1)-dimensional array
with rankj × . . . ×k. If the* operator, either explicitly or implicitly as a result of subscripting, is applied to
this pointer, the result is the pointed-to (n − 1)-dimensional array, which itself is immediately converted
into a pointer.

7 For example, consider

int x[3][5];

Herex is a 3×5 array of integers. Whenx appears in an expression, it is converted to a pointer to (the first
of three) five-membered arrays of integers. In the expressionx[i] , which is equivalent to*(x+i) , x is
first converted to a pointer as described; thenx+i is converted to the type ofx , which involves multiplying
i by the length of the object to which the pointer points, namely five integer objects. The results are added
and indirection applied to yield an array (of five integers), which in turn is converted to a pointer to the first
of the integers. If there is another subscript the same argument applies again; this time the result is an inte-
ger.

8 It follows from all this that arrays in C + + are stored row-wise (last subscript varies fastest) and that the first
subscript in the declaration helps determine the amount of storage consumed by an array but plays no other
part in subscript calculations.

[dcl.fct] 8.3.5 Functions

1 In a declarationT DwhereDhas the form

D1 (parameter-declaration-clause) cv-qualifier-seqopt

and the type of the containeddeclarator-id in the declarationT D1 is “type-modifierT1,” the type of the
declarator-id in D is “type-modifier cv-qualifier-seqopt function with parameters of typeparameter-
declaration-clauseand returningT1”; a type of this form is afunction type32).

parameter-declaration-clause:
parameter-declaration-listopt ... opt

parameter-declaration-list, ...

parameter-declaration-list:
parameter-declaration
parameter-declaration-list, parameter-declaration

parameter-declaration:
decl-specifier-seq declarator
decl-specifier-seq declarator= assignment-expression
decl-specifier-seq abstract-declaratoropt

decl-specifier-seq abstract-declaratoropt = assignment-expression

2 The parameter-declaration-clausedetermines the arguments that can be specified, and their processing,
when the function is called. If theparameter-declaration-clauseterminates with an ellipsis, the number of
arguments is known only to be equal to or greater than the number of parameters specified; if it is empty,
the function takes no arguments. The parameter list(void) is equivalent to the empty parameter list.
Except for this special casevoid may not be a parameter type (though types derived fromvoid , such as
void* , may). Where syntactically correct,“, ... ” is synonymous with“... ”. The standard header
<stdarg.h> contains a mechanism for accessing arguments passed using the ellipsis, see 17.1.2. 

32)As indicated by the syntax, cv-qualifiers are a significant component in function return types.

8.3.5 Functions DRAFT: 27 May 1994 Declarators 8– 9

Box 48 
Something should probably be said about how... arguments work in C + +. For example, do they work
for member functions? Virtual member functions? If so, what are the rules?  _ __





_ __



 

See 12.1 for the treatment of array arguments.

3 A single name may be used for several different functions in a single scope; this is function overloading
(13). All declarations for a function with a given parameter list must agree exactly both in the type of the
value returned and in the number and type of parameters; the presence or absence of the ellipsis is consid-
ered part of the function type. The type of each parameter is determined from its owndecl-specifier-seq
anddeclarator. After determining the type of each parameter, any parameter of type“array ofT” or “func-
tion returningT” is adjusted to be“pointer toT” or “pointer to function returningT,” respectively. After
producing the list of parameter types, several transformations take place upon the types. Anycv-qualifier
modifying a parameter type is deleted; e.g., the typevoid(const int) becomesvoid(int) . Such
cv-qualifiers affect only the definition of the parameter within the body of the function. If thestorage-
class-specifierregister modifies a parameter type, the specifier is deleted; e.g.,register char*
becomeschar* . Suchstorage-class-qualifiers affect only the definition of the parameter within the body
of the function. The resulting list of transformed parameter types is the function’s listparametertype

Box 49

Issue: a definition for“signature” will be added as soon as the semantics are made precise._ __



_ __




The return type and the parameter type list, but not the default arguments (8.3.6), are part of the function
type. If the type of a parameter includes a type of the form“pointer to array of unknown bound ofT” “ref-
erence to array of unknown bound ofT,” the program is ill-formed.33) A cv-qualifier-seqcan only be part
of a declaration or definition of a nonstatic member function, and of a pointer to a member function; see
9.4.1. It is part of the function type.

4 Functions cannot return arrays or functions, although they can return pointers and references to such things.
There are no arrays of functions, although there may be arrays of pointers to functions.

5 Types may not be defined in return or parameter types.

6 Theparameter-declaration-clauseis used to check and convert arguments in calls and to check pointer-to-
function and reference-to-function assignments and initializations.

7 An identifier can optionally be provided as a parameter name; if present in a function declaration, it cannot
be used since it goes out of scope at the end of the function declarator (3.3); if present in a function defini-
tion (8.4), it names a parameter (sometimes called“formal argument”). In particular, parameter names are
also optional in function definitions and names used for a parameter in different declarations and the defini-
tion of a function need not be the same.

8 The declaration

int i,
*pi,
f(),
*fpi(int),
(*pif)(const char*, const char*);
(*fpif(int))(int);

declares an integeri , a pointerpi to an integer, a functionf taking no arguments and returning an integer,
a functionfpi taking an integer argument and returning a pointer to an integer, a pointerpif to a function
which takes two pointers to constant characters and returns an integer, a functionfpif taking an integer

33) This excludes parameters of type“ptr-arr-seq T2” whereT2 is “pointer to array of unknown bound ofT” and whereptr-arr-seq
means any sequence of“pointer to” and“array of” modifiers. This exclusion applies to the parameters of the function, and if a parame-
ter is a pointer to function then to its parameters also, etc.

8– 10 Declarators DRAFT: 27 May 1994 8.3.5 Functions

argument and returning a pointer to a function that takes an integer argument and returns an integer. It is
especially useful to comparefpi andpif . The binding of*fpi(int) is *(fpi(int)) , so the decla-
ration suggests, and the same construction in an expression requires, the calling of a functionfpi , and then
using indirection through the (pointer) result to yield an integer. In the declarator(*pif)(const
char*, const char*) , the extra parentheses are necessary to indicate that indirection through a pointer
to a function yields a function, which is then called.

9 Typedefs are sometimes convenient when the return type of a function is complex. For example, the func-
tion fpif above could have been declared

typedef int IFUNC(int);
IFUNC* fpif(int);

10 The declaration

fseek(FILE*, long, int);

declares a function taking three arguments of the specified types. Since no return value type is specified it
is taken to beint (7.1.5). The declaration

printf(const char* ...);

declares a function that can be called with varying numbers and types of arguments. For example,

printf("hello world");
printf("a=%d b=%d", a, b);

It must always have a value, however, that can be converted to aconst char* as its first argument.

[dcl.fct.default] 8.3.6 Default arguments

1 If an expression is specified in a parameter declaration this expression is used as a default argument. All
subsequent parameters must have default arguments supplied in this or previous declarations of this func-
tion. Default arguments will be used in calls where trailing arguments are missing. A default argument
shall not be redefined by a later declaration (not even to the same value). A declaration may add default
arguments, however, not given in previous declarations.

2 The declaration

point(int = 3, int = 4);

declares a function that can be called with zero, one, or two arguments of typeint . It may be called in any
of these ways:

point(1,2); point(1); point();

The last two calls are equivalent topoint(1,4) andpoint(3,4) , respectively.

3 Default argument expressions in non-member functions have their names bound and their types checked at
the point of declaration, and are evaluated at each point of call. In member functions, names in default
argument expressions are bound at the end of the class declaration, like names in inline member function
bodies (9.4.2). In the following example,g will be called with the valuef(2) :

int a = 1;
int f(int);
int g(int x = f(a)); // default argument: f(::a)

void h() {
a = 2;
{

int a = 3;
g(); // g(f(::a))

}
}

8.3.6 Default arguments DRAFT: 27 May 1994 Declarators 8– 11

Local variables shall not be used in default argument expressions. For example,

void f()
{

int i;
extern void g(int x = i); // error
// ...

}

4 Note that default arguments are evaluated before entry into a function and that the order of evaluation of
function arguments is implementation dependent. Consequently, parameters of a function may not be used
in default argument expressions. Paramaters of a function declared before a default argument expression
are in scope and may hide global and class member names. For example,

int a;
int f(int a, int b = a); // error: parameter ‘a’

// used as default argument
typedef int I;
int g(float I, int b = I(2)); // error: ‘float’ called

5 Similarly, the declaration ofX::mem1() in the following example is undefined because no object is sup-
plied for the nonstatic memberX::a used as an initializer.

int b;
class X {

int a;
mem1(int i = a); // error: nonstatic member ‘a’

// used as default argument
mem2(int i = b); // ok; use X::b
static b;

};

The declaration ofX::mem2() is meaningful, however, since no object is needed to access the static
memberX::b . Classes, objects, and members are described in 9.

6 A default argument is not part of the type of a function.

int f(int = 0);

void h()
{

int j = f(1);
int k = f(); // fine, means f(0)

}

int (*p1)(int) = &f;
int (*p2)() = &f; // error: type mismatch

7 An overloaded operator (13.4) shall not have default arguments.

[dcl.fct.def] 8.4 Function definitions

1 Function definitions have the form

function-definition:
decl-specifier-seqopt declarator ctor-initializeropt function-body

function-body:
compound-statement

Thedeclaratorin a function-definitionmust contain a declarator with the form

D1 (parameter-declaration-clause) cv-qualifier-seqopt

8– 12 Declarators DRAFT: 27 May 1994 8.4 Function definitions

as described in 8.3.5.

2 The parameters are in the scope of the outermost block of thefunction-body.

3 A simple example of a complete function definition is

int max(int a, int b, int c)
{

int m = (a > b) ? a : b;
return (m > c) ? m : c;

}

Hereint is thedecl-specifier-seq; max(int a, int b, int c) is thedeclarator; { /* ... */ } is
thefunction-body.

4 A ctor-initializer is used only in a constructor; see 12.1 and 12.6.

5 A cv-qualifier-seqcan be part of a non-static member function declaration, non-static member function def-
inition, or pointer to member function only; see 9.4.1. It is part of the function type.

6 Note that unused parameters need not be named. For example,

void print(int a, int)
{

printf("a = %d\n",a);
}

[dcl.init] 8.5 Initializers

1 A declarator may specify an initial value for the identifier being declared.34) The identifier designates an
object or reference being initialized. The process of initialization described in the remainder of this sub-
clause (8.5) applies also to initializations specified by other syntactic contexts, such as the initialization of
function parameters with argument expressions (5.2.2) or the initialization of return values (6.6.3).

initializer:
= initializer-clause
(expression-list)

initializer-clause:
assignment-expression
{ initializer-list , opt }
{ }

initializer-list:
initializer-clause
initializer-list , initializer-clause

2 Automatic, register, static, and external variables at file scope may be initialized by arbitrary expressions
involving constants and previously declared variables and functions.

int f(int);
int a = 2;
int b = f(a);
int c(b);

3 An expression of type“pointer tocv1 T” can initialize a pointer of type“pointer tocv2 T” if the set of
cv-qualifierscv1 is a subset ofcv2. An expression of type“cv1 T” can initialize an object of type“cv2 T”
independently of the cv-qualifierscv1andcv2. For example,

34)The syntax provides for empty initializer clauses, but nonetheless C + + does not have zero length arrays.

8.5 Initializers DRAFT: 27 May 1994 Declarators 8– 13

int a;
const int b = a;
int c = b;

const int* p0 = &a;
const int* p1 = &b;
int* p2 = &b; // error: makes a pointer to

// nonconst point to a const

int *const p3 = p2;
int *const p4 = p1; // error: makes a pointer to

// nonconst point to a const
const int* p5 = p1;

The declarations ofp2 andp4 are ill-formed for the same reason: had those initializations been allowed,
they would have allowed the value of something declaredconst to be changed through an unqualified
pointer.

4 Default argument expressions are more restricted; see 8.3.6.

5 The order of initialization of static objects is described in 3.5 and 6.7. ∗

6 Variables with storage class static (3.6) that are not initialized and do not have a constructor are guaranteed
to start off as zero converted to the appropriate type. If the object is aclass or struct , its data mem-
bers start off as zero converted to the appropriate type. If the object is aunion , its first data member starts
off as zero converted to the appropriate type. The initial values of automatic and register variables that are
not initialized are indeterminate.

7 When an initializer applies to a pointer or an object of enumeration or arithmetic type, it consists of a single
expression, perhaps in braces. The initial value of the object is taken from the expression; the same conver-
sions as for assignment are performed.

8 Note that since() is not an initializer,

X a();

is not the declaration of an object of classX, but the declaration of a function taking no argument and
returning anX.

9 An initializer for a static member is in the scope of the member’s class. For example,

int a;

struct X {
static int a;
static int b;

};

int X::a = 1;
int X::b = a; // X::b = X::a

See 8.3.6 for initializers used as default arguments. 

10 The semantics of initializers are as follows. In this discussion, thetarget typeis the type of the object or
reference being initialized and aclass reference typeis any type of the form“reference tocvclass” type. 

— If the target type is neither a class nor a class reference type, and the initializer type is not a class
type35), the behavior of the initialization is determined by the preceding rules of this subclause and
Clause 4; no user-defined conversions are considered. 

35) Note that expressions of type“reference to T” are adjusted to be lvalues of type“T”, so there are no special rules for initializer
expressions of ref-to-class type.

8– 14 Declarators DRAFT: 27 May 1994 8.5 Initializers

— If the initializer is of type“reference tocv1T1”, and the target type is either“cv2T1” or “cv2class 
B” (where B is an accessible unambiguous base class of the class type denoted byT1), then the initial- 
ization is accomplished by causing the identifier to denote a reference bound to the object or function
denoted by the initializer expression; the restrictions and semantics of reference conversion are applied.

— If the initializer is of class type, a set of candidate functions is created (13.2.1), each of which is a con-
structor or conversion function that is a valid step in a conversion sequence leading from the initializer
type to the target type.36) From this set of candidate functions a function is chosen as described in
13.2.37) 

Box 50 
This must be reconciled with the rules for template argument/parameter matching.  _ ___




_ ___


 

— Otherwise, the initializer type is not a class type. If the target type is a class or class reference type with
a constructor, the candidate functions are all the constructors accepting the initializer type as an argu-
ment without user-defined conversions. From this set of candidate functions a function is chosen by the
process described in 13.2.38) 

Box 51 
Revise 12.6.1 (12.6.1) to reference this.  _ __________________________________




_ __________________________________


 

— If the target type is a class (not a class reference) type without a constructor, the behavior is determined
by 8.5.1 below. 

11 Any other cases are ill-formed.

[dcl.init.aggr] 8.5.1 Aggregates

1 An aggregateis an array or an object of a class (9) with no user-declared constructors (12.1), no private or
protected members (11), no base classes (10), and no virtual functions (10.3). When an aggregate is initial-
ized theinitializer may be aninitializer-clauseconsisting of a brace-enclosed, comma-separated list of ini-
tializers for the members of the aggregate, written in increasing subscript or member order. If the aggregate
contains subaggregates, this rule applies recursively to the members of the subaggregate. If there are fewer
initializers in the list than there are members of the aggregate, then the aggregate is padded with zeros of
the appropriate types.

2 For example,

struct S { int a; char* b; int c; };
S ss = { 1, "asdf" };

initializesss.a with 1, ss.b with ,asdf"" andss.c with zero.

3 An aggregate that is a class may also be initialized with an object of its class or of a class publicly derived
from it (12.8).

4 Braces may be elided as follows. If theinitializer-clausebegins with a left brace, then the succeeding
comma-separated list of initializers initializes the members of the aggregate; it is erroneous for there to be
more initializers than members. If, however, theinitializer-clauseor a subaggregate does not begin with a

36) If the target type is a class or ref-to-nonconst-class type, these candidate functions include constructors of the target type. If the ini-
tializer type can be converted to the argument type of a target-type constructor (without using user-defined conversions) then that con-
structor is a candidate.
37) Note that as described in 13.2, an extra "tie-breaker" is used in the overload resolution of initialization contexts: a conversion
sequence containing a standard conversion after a user-defined conversion is worse than a conversion sequence in which the user-
defined conversion is not followed by a standard conversion.
38)The same "standard conversion tie-breaker" applies here.

8.5.1 Aggregates DRAFT: 27 May 1994 Declarators 8– 15

left brace, then only enough elements from the list are taken to account for the members of the aggregate;
any remaining members are left to initialize the next member of the aggregate of which the current aggre-
gate is a part.

5 For example,

int x[] = { 1, 3, 5 };

declares and initializesx as a one-dimensional array that has three members, since no size was specified
and there are three initializers.

float y[4][3] = {
{ 1, 3, 5 },
{ 2, 4, 6 },
{ 3, 5, 7 },

};

is a completely-bracketed initialization: 1, 3, and 5 initialize the first row of the arrayy[0] , namely
y[0][0] , y[0][1] , andy[0][2] . Likewise the next two lines initializey[1] andy[2] . The initial-
izer ends early and thereforey[3] is initialized with zeros. Precisely the same effect could have been
achieved by

float y[4][3] = {
1, 3, 5, 2, 4, 6, 3, 5, 7

};

The last (rightmost) index varies fastest (8.3.4).

6 The initializer fory begins with a left brace, but the one fory[0] does not, therefore three elements from
the list are used. Likewise the next three are taken successively fory[1] andy[2] . Also,

float y[4][3] = {
{ 1 }, { 2 }, { 3 }, { 4 }

};

initializes the first column ofy (regarded as a two-dimensional array) and leaves the rest zero.

7 Initialization of arrays of objects of a class with constructors is described in 12.6.1.

8 The initializer for a union with no constructor is either a single expression of the same type, or a brace-
enclosed initializer for the first member of the union. For example,

union u { int a; char* b; };

u a = { 1 };
u b = a;
u c = 1; // error
u d = { 0, "asdf" }; // error
u e = { "asdf" }; // error

9 There may not be more initializers than there are members or elements to initialize. For example,

char cv[4] = { ’a’, ’s’, ’d’, ’f’, 0 }; // error

is ill-formed.

10 A POD-struct39) is an aggregate structure that contains neither references nor pointers to members. Simi-
larly, aPOD-unionis an aggregate union that contains neither references nor pointers to members.

39)The acronym POD stands for“plain ol’ data.”

8– 16 Declarators DRAFT: 27 May 1994 8.5.2 Character arrays

[dcl.init.string] 8.5.2 Character arrays

1 A char array (whether signed or unsigned) may be initialized by a string; awchar_t array may be ini-
tialized by a wide-character string; successive characters of the string initialize the members of the array.
For example,

char msg[] = "Syntax error on line %s\n";

shows a character array whose members are initialized with a string. Note that because’\n’ is a single
character and because a trailing’\0’ is appended,sizeof(msg) is 25 .

2 There may not be more initializers than there are array elements. For example,

char cv[4] = "asdf"; // error

is ill-formed since there is no space for the implied trailing’\0’ .

[dcl.init.ref] 8.5.3 References

1 A variable declared to be aT&, that is“reference to typeT” (8.3.2), must be initialized by an object, or
function, of typeT or by an object that can be converted into aT. For example,

void f()
{

int i;
int& r = i; // ‘r’ refers to ‘i’
r = 1; // the value of ‘i’ becomes 1
int* p = &r; // ‘p’ points to ‘i’
int& rr = r; // ‘rr’ refers to what ‘r’ refers to,

// that is, to ‘i’
}

2 A reference cannot be changed to refer to another object after initialization. Note that initialization of a ref-
erence is treated very differently from assignment to it. Argument passing (5.2.2) and function value return
(6.6.3) are initializations.

3 The initializer may be omitted for a reference only in a parameter declaration (8.3.5), in the declaration of a
function return type, in the declaration of a class member within its class declaration (9.2), and where the
extern specifier is explicitly used. For example,

int& r1; // error: initializer missing
extern int& r2; // ok

4 If the initializer for a reference to typeT is an lvalue of typeT or of a type derived (10) fromT for whichT
is an unambiguous accessible base (4.6), the reference will refer to the (T part of the) initializer; otherwise,
if and only if the reference is to aconst and an object of typeT can be created from the initializer, such an
object will be created. The reference then becomes a name for that object. For example,

double d = 2.0;

double& rd = d; // rd refers to ‘d’
const double& rcd = d; // rcd refers to ‘d’

double& rd2 = 2.0; // error: not an lvalue
int i = 2;
double& rd3 = i; // error: type mismatch
const double& rcd2 = 2; // rcd2 refers to temporary

// with value ‘2’

5 A reference to aconst object is required to beconst . Similarly a reference to avolatile or const
volatile object is required to bevolatile or const volatile (respectively). However, aconst ,
volatile , orconst volatile reference can refer to a plain object. For example,

8.5.3 References DRAFT: 27 May 1994 Declarators 8– 17

const double d = 2.0;
double& rd = d; // error: non-const reference to const
const volatile double& rcvd = d; // okay: rcvd refers to ‘d’
const double& rcd = rcvd; // error: non-volatile reference to volatile

6 The lifetime of a temporary object created in this way is the scope in which it is created (3.6).

_ ___ ___

9 Classes [class]
_ ___ ___

1 A class is a type. Its name becomes aclass-name(9.1), that is, a reserved word within its scope.

class-name:
identifier
template-id

Class-specifiers andelaborated-type-specifiers (7.1.5.3) are used to makeclass-names. An object of a class
consists of a (possibly empty) sequence of members.

class-specifier:
class-head{ member-specificationopt }

class-head:
class-key identifieropt base-clauseopt

class-key nested-name-specifier identifier base-clauseopt

class-key:
class
struct
union

2 The name of a class can be used as aclass-nameeven within themember-specificationof the class specifier
itself. A class-specifieris commonly referred to as a class definition. A class is considered defined after
the closing brace of itsclass-specifierhas been seen even though its member functions are in general not
yet defined.

3 Objects of an empty class have a nonzero size.

4 Class objects may be assigned, passed as arguments to functions, and returned by functions (except objects
of classes for which copying has been restricted; see 12.8). Other plausible operators, such as equality
comparison, can be defined by the user; see 13.4.

5 A structureis a class declared with theclass-keystruct ; its members and base classes (10) are public by
default (11). Aunion is a class declared with theclass-keyunion ; its members are public by default and it
holds only one member at a time (9.6).

[class.name] 9.1 Class names

1 A class definition introduces a new type. For example,

struct X { int a; };
struct Y { int a; };
X a1;
Y a2;
int a3;

declares three variables of three different types. This implies that

a1 = a2; // error: Y assigned to X
a1 = a3; // error: int assigned to X

are type mismatches, and that

9– 2 Classes DRAFT: 27 May 1994 9.1 Class names

int f(X);
int f(Y);

declare an overloaded (13) functionf() and not simply a single functionf() twice. For the same reason,

struct S { int a; };
struct S { int a; }; // error, double definition

is ill-formed because it definesS twice.

2 A class definition introduces the class name into the scope where it is defined and hides any class, object,
function, or other declaration of that name in an enclosing scope (3.3). If a class name is declared in a
scope where an object, function, or enumerator of the same name is also declared the class can be referred
to only using anelaborated-type-specifier(7.1.5.3). For example,

struct stat {
// ...

};

stat gstat; // use plain ‘stat’ to
// define variable

int stat(struct stat*); // redefine ‘stat’ as function

void f()
{

struct stat* ps; // ‘struct’ prefix needed
// to name struct stat

// ...
stat(ps); // call stat()
// ...

}

A declarationconsisting solely of:class-keyidentifier; is a forward declaration of the identifier as a class
name. It introduces the class name into the current scope. For example,

struct s { int a; };

void g()
{

struct s; // hide global struct ‘s’
s* p; // refer to local struct ‘s’
struct s { char* p; }; // declare local struct ‘s’

}

Such declarations allow definition of classes that refer to each other. For example,

class vector;

class matrix {
// ...
friend vector operator*(matrix&, vector&);

};

class vector {
// ...
friend vector operator*(matrix&, vector&);

};

Declaration offriend s is described in 11.4, operator functions in 13.4.

3 An elaborated-type-specifier(7.1.5.3) can also be used in the declarations of objects and functions. It dif-
fers from a class declaration in that if a class of the elaborated name is in scope the elaborated name will
refer to it. For example,

9.1 Class names DRAFT: 27 May 1994 Classes 9– 3

struct s { int a; };

void g(int s)
{

struct s* p = new struct s; // global ‘s’
p->a = s; // local ‘s’

}

4 A name declaration takes effect immediately after theidentifier is seen. For example,

class A * A;

first specifiesA to be the name of a class and then redefines it as the name of a pointer to an object of that
class. This means that the elaborated formclass A must be used to refer to the class. Such artistry with
names can be confusing and is best avoided.

5 A typedef-name(7.1.3) that names a class is aclass-name; see also 7.1.3.

[class.mem] 9.2 Class members

member-specification:
member-declaration member-specificationopt

access-specifier: member-specificationopt

member-declaration:
decl-specifier-seqopt member-declarator-listopt ;
function-definition ; opt

qualified-id ;
using-declaration 

member-declarator-list:
member-declarator
member-declarator-list, member-declarator

member-declarator:
declarator pure-specifieropt

declarator constant-initializeropt 
identifieropt : constant-expression

pure-specifier:
= 0

constant-initializer: 
= constant-expression 

1 Themember-specificationin a class definition declares the full set of members of the class; no member can
be added elsewhere. Members of a class are data members, member functions (9.4), nested types, and
member constants. Data members and member functions are static or nonstatic; see 9.5. Nested types are
classes (9.1, 9.8) and enumerations (7.2) defined in the class, and arbitrary types declared as members by
use of a typedef declaration (7.1.3). The enumerators of an enumeration (7.2) defined in the class are mem-
ber constants of the class. Except when used to declare friends (11.4) or to adjust the access to a member of
a base class (11.3),member-declarations declare members of the class, and each suchmember-declaration
must declare at least one member name of the class. A member may not be declared twice in themember-
specification, except that a nested class may be declared and then later defined.

2 Note that a single name can denote several function members provided their types are sufficiently different
(13). 

9– 4 Classes DRAFT: 27 May 1994 9.2 Class members

3 A member-declaratorcan contain aconstant-initializeronly if it declares astatic member (9.5) of inte- 
gral type. In that case, the member can appear in constant expressions (5.19) within its declarative region
after its declaration. The member must still be defined elsewhere and the declarator that defines the mem-
ber shall not contain aninitializer. 

4 A member can be initialized using a constructor; see 12.1.

5 A member may not beauto , extern , or register .

6 The decl-specifier-seqcan be omitted in function declarations only. Themember-declarator-listcan be
omitted only after aclass-specifier, an enum-specifier, or a decl-specifier-seqof the form friend
elaborated-type-specifier. A pure-specifiermay be used only in the declaration of a virtual function (10.3).

7 Non-static (9.5) members that are class objects must be objects of previously declared classes. In par-
ticular, a classcl may not contain an object of classcl , but it may contain a pointer or reference to an
object of classcl . When an array is used as the type of a nonstatic member all dimensions must be speci-
fied.

8 A simple example of a class definition is

struct tnode {
char tword[20];
int count;
tnode *left;
tnode *right;

};

which contains an array of twenty characters, an integer, and two pointers to similar structures. Once this
definition has been given, the declaration

tnode s, *sp;

declaress to be atnode andsp to be a pointer to atnode . With these declarations,sp->count refers
to thecount member of the structure to whichsp points;s.left refers to theleft subtree pointer of
the structures ; ands.right->tword[0] refers to the initial character of thetword member of the
right subtree ofs .

9 Nonstatic data members of a class declared without an interveningaccess-specifierare allocated so that
later members have higher addresses within a class object. The order of allocation of nonstatic data mem-
bers separated by anaccess-specifieris implementation dependent (11.1). Implementation alignment
requirements may cause two adjacent members not to be allocated immediately after each other; so may
requirements for space for managing virtual functions (10.3) and virtual base classes (10.1); see also 5.4.

10 If two typesT1 andT2 are the same type, thenT1 andT2 arelayout-compatibletypes.

11 Two POD-struct (8.5.1) types are layout-compatible if they have the same number of members, and corre-
sponding members (in order) have layout-compatible types.

12 Two POD-union (8.5.1) types are layout-compatible if they have the same number of members, and corre-
sponding members (in any order) have layout-compatible types.

Box 52

Shouldn’t this be the samesetof types?_ _________________________________



_ _________________________________




13 Two enumeration types are layout-compatible if they have the same sets of enumerator values.

Box 53

Shouldn’t this be the sameunderlying type?_ _____________________________________



_ _____________________________________




9.2 Class members DRAFT: 27 May 1994 Classes 9– 5

14 If a POD-union contains several POD-structs that share a common initial sequence, and if the POD-union
object currently contains one of these POD-structs, it is permitted to inspect the common initial part of any
of them. Two POD-structs share a common initial sequence if corresponding members have layout-
compatible types (and, for bit-fields, the same widths) for a sequence of one or more initial members.

15 A pointer to a POD-struct object, suitably converted, points to its initial member (or if that member is a
bit-field, then to the unit in which it resides) and vice versa. There may therefore be unnamed padding
within a POD-struct object, but not at its beginning, as necessary to achieve appropriate alignment.

16 The range of nonnegative values of a signed integral type is a subrange of the corresponding unsigned inte-
gral type, and the representation of the same value in each type is the same.

17 Even if the implementation defines two or more basic types to have the same representation, they are never-
theless different types.

18 The representations of integral types shall define values by use of a pure binary numeration system.

Box 54

Does this mean two’s complement? Is there a definition of“pure binary numeration system?”_ ___



_ ___




19 The qualified or unqualified versions of a type are distinct types that have the same representation and
alignment requirements.

20 A qualified or unqualifiedvoid* shall have the same representation and alignment requirements as a qual-
ified or unqualifiedchar* .

21 Similarly, pointers to qualified or unqualified versions of layout-compatible types shall have the same rep-
resentation and alignment requirements.

22 If the program attempts to access the stored value of an object other than through an lvalue of one of the
following types:

• the dynamic type of the object, 

• a qualified version of the declared type of the object,

• a type that is the signed or unsigned type corresponding to the declared type of the object,

• a type that is the signed or unsigned type corresponding to a qualified version of the declared type of the
object,

• an aggregate or union type that includes one of the aforementioned types among its members (includ-
ing, recursively, a member of a subaggregate or contained union), or

• a character type.40)

the result is undefined.

23 A function member (9.4) with the same name as its class is a constructor (12.1). A static data member, enu-
merator, member of an anonymous union, or nested type may not have the same name as its class.

[class.scope0] 9.3 Scope rules for classes

1 The following rules describe the scope of names declared in classes.

1) The scope of a name declared in a class consists not only of the text following the name’s declarator,
but also of all function bodies, default arguments, and constructor initializers in that class (including
such things in nested classes).

2) A nameN used in a classS must refer to the same declaration when re-evaluated in its context and

40)The intent of this list is to specify those circumstances in which an object may or may not be aliased.

9– 6 Classes DRAFT: 27 May 1994 9.3 Scope rules for classes

in the completed scope of S.

3) If reordering member declarations in a class yields an alternate valid program under (1) and (2), the
program’s meaning is undefined.

4) A declaration in a nested declarative region hides a declaration whose declarative region contains
the nested declarative region.

5) A declaration within a member function hides a declaration whose scope extends to or past the end
of the member function’s class.

6) The scope of a declaration that extends to or past the end of a class definition also extends to the
regions defined by its member definitions, even if defined lexically outside the class (this includes
both function member bodies and static data member i nitializations).

2 For example:

typedef int c;
enum { i = 1 };

class X {
char v[i]; // error: ’i’ refers to ::i

// but when reevaluated is X::i
int f() { return sizeof(c); } // okay: X::c
char c;
enum { i = 2 };

};

typedef char* T;
struct Y {

T a; // error: ’T’ refers to ::T
// but when reevaluated is Y::T

typedef long T;
T b;

};

struct Z {
int f(const R); // error: ’R’ is parameter name

// but swapping the two declarations
// changes it to a type

typedef int R;
};

[class.mfct] 9.4 Member functions

1 A function declared as a member (without thefriend specifier; 11.4) is called a member function, and is
called for an object using the class member syntax (5.2.4). For example,

struct tnode {
char tword[20];
int count;
tnode *left;
tnode *right;
void set(char*, tnode* l, tnode* r);

};

Hereset is a member function and can be called like this:

9.4 Member functions DRAFT: 27 May 1994 Classes 9– 7

void f(tnode n1, tnode n2)
{

n1.set("abc",&n2,0);
n2.set("def",0,0);

}

2 The definition of a member function is considered to be within the scope of its class. This means that (pro-
vided it is nonstatic 9.5) it can use names of members of its class directly. Such names then refer to the
members of the object for which the function was called.

3 A static local variable in a member function always refers to the same object. A static member function can
use only the names of static members, enumerators, and nested types directly. If the definition of a member
function is lexically outside the class definition, the member function name must be qualified by the class
name using the:: operator. For example,

void tnode::set(char* w, tnode* l, tnode* r)
{

count = strlen(w+1);
if (sizeof(tword)<=count)

error("tnode string too long");
strcpy(tword,w);
left = l;
right = r;

}

The notationtnode::set specifies that the functionset is a member of and in the scope of class
tnode . The member namestword , count , left , andright refer to members of the object for which
the function was called. Thus, in the call ,n1.set(abc",&n2,0)"tword refers ton1.tword, and in the
call n2.set(def",0,0)" it refers ton2.tword . The functionsstrlen , error , andstrcpy must be
declared elsewhere.

4 Members may be defined (3.1) outside their class definition if they have already been declared but not
defined in the class definition; they may not be redeclared. See also 3.4. Function members may be men-
tioned in friend declarations after their class has been defined. Each member function that is called must
have exactly one definition in a program, (no diagnostic required).

5 The effect of calling a nonstatic member function (9.5) of a classX for something that is not an object of
classX is undefined.

[class.this] 9.4.1 Thethis pointer

1 In a nonstatic (9.4) member function, the keywordthis is a non-lvalue expression whose value is the
address of the object for which the function is called. The type ofthis in a member function of a classX
is X* unless the member function is declaredconst or volatile ; in those cases, the type ofthis is
const X* or volatile X* , respectively. A function declaredconst andvolatile has athis with
the typeconst volatile X* . See also C.3.3. For example,

struct s {
int a;
int f() const;
int g() { return a++; }
int h() const { return a++; } // error

};

int s::f() const { return a; }

The a++ in the body ofs::h is ill-formed because it tries to modify (a part of) the object for which
s::h() is called. This is not allowed in aconst member function wherethis is a pointer toconst ,
that is,*this is aconst .

9– 8 Classes DRAFT: 27 May 1994 9.4.1 Thethis pointer

2 A const member function (that is, a member function declared with theconst qualifier) may be called
for const and non-const objects, whereas a non-const member function may be called only for a
non-const object. For example,

void k(s& x, const s& y)
{

x.f();
x.g();
y.f();
y.g(); // error

}

The cally.g() is ill-formed becausey is const and s::g() is a non-const member function that
could (and does) modify the object for which it was called.

3 Similarly, only volatile member functions (that is, a member function declared with thevolatile
specifier) may be invoked forvolatile objects. A member function can be bothconst and
volatile .

4 Constructors (12.1) and destructors (12.4) may be invoked for aconst or volatile object. Construc-
tors (12.1) and destructors (12.4) cannot be declaredconst or volatile .

[class.inline] 9.4.2 Inline member functions

1 A member function may be defined (8.4) in the class definition, in which case it isinline (7.1.2). Defin-
ing a function within a class definition is equivalent to declaring itinline and defining it immediately
after the class definition; this rewriting is considered to be done after preprocessing but before syntax analy-
sis and type checking of the function definition. Thus

int b;
struct x {

char* f() { return b; }
char* b;

};

is equivalent to

int b;
struct x {

inline char* f(); 
char* b;

};

inline char* x::f() { return b; } // moved

Thus theb used inx::f() is X::b and not the globalb. See also_class.local.type_.

2 Member functions can be defined even in local or nested class definitions where this rewriting would be
syntactically incorrect. See 9.9 for a discussion of local classes and 9.8 for a discussion of nested classes.

[class.static] 9.5 Static members

1 A data or function member of a class may be declaredstatic in the class definition. There is only one
copy of a static data member, shared by all objects of the class and any derived classes in a program. A
static member is not part of objects of a class. Static members of a global class have external linkage (3.4).
The declaration of a static data member in its class definition isnot a definition and may be of an incom-
plete type. A definition is required elsewhere; see also C.3. A static data member cannot be mutable.

2 A static member function does not have athis pointer so it can access nonstatic members of its class only
by using. or -> . A static member function cannot bevirtual . There cannot be a static and a nonstatic
member function with the same name and the same parameter types.

9.5 Static members DRAFT: 27 May 1994 Classes 9– 9

3 Static members of a local class (9.9) have no linkage and cannot be defined outside the class definition. It
follows that a local class cannot have static data members.

4 A static membermemof classcl can be referred to ascl::mem (5.1), that is, independently of any object.
It can also be referred to using the. and -> member access operators (5.2.4). The static membermem ∗
exists even if no objects of classcl have been created. For example, in the following,run_chain ,
idle , and so on exist even if noprocess objects have been created:

class process {
static int no_of_processes;
static process* run_chain;
static process* running;
static process* idle;
// ...

public:
// ...
int state();
static void reschedule();
// ...

};

andreschedule can be used without reference to aprocess object, as follows:

void f()
{

process::reschedule();
}

5 Static members of a global class are initialized exactly like global objects and only in file scope. For exam-
ple,

void process::reschedule() { /* ... */ };
int process::no_of_processes = 1;
process* process::running = get_main();
process* process::run_chain = process::running;

Static members obey the usual class member access rules (11) except that they can be initialized (in file
scope). The initializer of a static member of a class has the same access rights as a member function, as in
process::run_chain above.

6 The type of a static member does not involve its class name; thus the type ofprocess ::
no_of_processes is int and the type of&process :: reschedule is void(*)() .

[class.union] 9.6 Unions

1 A union may be thought of as a class whose member objects all begin at offset zero and whose size is suffi-
cient to contain any of its member objects. At most one of the member objects can be stored in a union at
any time. A union may have member functions (including constructors and destructors), but not virtual
(10.3) functions. A union may not have base classes. A union may not be used as a base class. An object
of a class with a constructor or a destructor or a user-defined assignment operator (13.4.3) cannot be a
member of a union. A union can have nostatic data members.

Box 55

Shouldn’t we prohibit references in unions?_____________________________________







2 A union of the form

union { member-specification} ;

is called an anonymous union; it defines an unnamed object (and not a type). The names of the members of
an anonymous union must be distinct from other names in the scope in which the union is declared; they are

9– 10 Classes DRAFT: 27 May 1994 9.6 Unions

used directly in that scope without the usual member access syntax (5.2.4). For example,

void f()
{

union { int a; char* p; };
a = 1;
// ...
p = "Jennifer";
// ...

}

Herea andp are used like ordinary (nonmember) variables, but since they are union members they have
the same address.

3 A global anonymous union must be declaredstatic . An anonymous union may not haveprivate or
protected members (11). An anonymous union may not have function members.

4 A union for which objects or pointers are declared is not an anonymous union. For example,

union { int aa; char* p; } obj, *ptr = &obj;
aa = 1; // error
ptr->aa = 1; // ok

The assignment to plainaa is ill formed since the member name is not associated with any particular
object.

5 Initialization of unions that do not have constructors is described in 8.5.1.

[class.bit] 9.7 Bit-fields

1 A member-declaratorof the form

identifieropt : constant-expression

specifies a bit-field; its length is set off from the bit-field name by a colon. Allocation of bit-fields within a
class object is implementation dependent. Fields are packed into some addressable allocation unit. Fields
straddle allocation units on some machines and not on others. Alignment of bit-fields is implementation
dependent. Fields are assigned right-to-left on some machines, left-to-right on others.

2 An unnamed bit-field is useful for padding to conform to externally-imposed layouts. Unnamed fields are
not members and cannot be initialized. As a special case, an unnamed bit-field with a width of zero speci-
fies alignment of the next bit-field at an allocation unit boundary.

3 A bit-field may not be a static member. A bit-field must have integral or enumeration type (3.7.1). It is
implementation dependent whether a plain (neither explicitly signed nor unsigned)int field is signed or
unsigned. The address-of operator& may not be applied to a bit-field, so there are no pointers to bit-fields.
Nor are there references to bit-fields.

[class.nest] 9.8 Nested class declarations

1 A class may be defined within another class. A class defined within another is called anestedclass. The
name of a nested class is local to its enclosing class. The nested class is in the scope of its enclosing class.
Except by using explicit pointers, references, and object names, declarations in a nested class can use only
type names, static members, and enumerators from the enclosing class.

int x;
int y;

class enclose {
public:

int x;
static int s;

9.8 Nested class declarations DRAFT: 27 May 1994 Classes 9– 11

class inner {

void f(int i)
{

x = i; // error: assign to enclose::x
s = i; // ok: assign to enclose::s
::x = i; // ok: assign to global x
y = i; // ok: assign to global y

}

void g(enclose* p, int i)
{

p->x = i; // ok: assign to enclose::x
}

};
};

inner* p = 0; // error ‘inner’ not in scope

Member functions of a nested class have no special access to members of an enclosing class; they obey the
usual access rules (11). Member functions of an enclosing class have no special access to members of a
nested class; they obey the usual access rules. For example,

class E {
int x;

class I {
int y;
void f(E* p, int i)
{

p->x = i; // error: E::x is private
}

};

int g(I* p)
{

return p->y; // error: I::y is private
}

};

Member functions and static data members of a nested class can be defined in the global scope. For exam-
ple,

class enclose {
class inner {

static int x;
void f(int i);

};
};

typedef enclose::inner ei;
int ei::x = 1;

void enclose::inner::f(int i) { /* ... */ }

A nested class may be declared in a class and later defined in the same or an enclosing scope. For example:

9– 12 Classes DRAFT: 27 May 1994 9.8 Nested class declarations

class E {
class I1; // forward declaration of nested class
class I2;
class I1 {}; // definition of nested class

};
class E::I2 {}; // definition of nested class

Like a member function, a friend function defined within a class is in the lexical scope of that class; it
obeys the same rules for name binding as the member functions (described above and in 10.5) and like
them has no special access rights to members of an enclosing class or local variables of an enclosing func-
tion (11).

[class.local] 9.9 Local class declarations

1 A class can be defined within a function definition; such a class is called alocal class. The name of a local
class is local to its enclosing scope. The local class is in the scope of the enclosing scope. Declarations in a
local class can use only type names, static variables,extern variables and functions, and enumerators
from the enclosing scope. For example,

int x;
void f()
{

static int s ;
int x;
extern int g();

struct local {
int g() { return x; } // error: ‘x’ is auto
int h() { return s; } // ok
int k() { return ::x; } // ok
int l() { return g(); } // ok

};
// ...

}

local* p = 0; // error: ‘local’ not in scope

2 An enclosing function has no special access to members of the local class; it obeys the usual access rules
(11). Member functions of a local class must be defined within their class definition. A local class may not
have static data members.

[class.nested.type] 9.10 Nested type names

1 Type names obey exactly the same scope rules as other names. In particular, type names defined within a
class definition cannot be used outside their class without qualification. For example,

class X {
public:

typedef int I;
class Y { /* ... */ };
I a;

};

I b; // error
Y c; // error
X::Y d; // ok
X::I e; // ok

_ ___ ___

10 Derived classes [class.derived]
_ ___ ___

1 A list of base classes may be specified in a class declaration using the notation:

base-clause:
: base-specifier-list

base-specifier-list:
base-specifier
base-specifier-list, base-specifier

base-specifier:
:: opt nested-name-specifieropt class-name
virtual access-specifieropt :: opt nested-name-specifieropt class-name
access-specifier virtualopt :: opt nested-name-specifieropt class-name

access-specifier:
private
protected
public

Theclass-namein abase-specifiermust denote a previously declared class (9), which is called adirect base
classfor the class being declared. A classB is a base class of a classD if it is a direct base class ofD or a
direct base class of one ofD’s base classes. A class is anindirect base class of another if it is a base class
but not a direct base class. A class is said to be (directly or indirectly)derivedfrom its (direct or indirect)
base classes. For the meaning ofaccess-specifiersee 11. Unless redefined in the derived class, members
of a base class can be referred to in expressions as if they were members of the derived class. The base
class members are said to beinheritedby the derived class. The scope resolution operator:: (5.1) may be
used to refer to a base member explicitly. This allows access to a name that has been redefined in the
derived class. A derived class can itself serve as a base class subject to access control; see 11.2. A pointer
to a derived class may be implicitly converted to a pointer to an accessible unambiguous base class (4.6). A
reference to a derived class may be implicitly converted to a reference to an accessible unambiguous base
class (4.7).

2 For example,

class Base {
public:

int a, b, c;
};

class Derived : public Base {
public:

int b;
};

class Derived2 : public Derived {
public:

int c;
};

10– 2 Derived classes DRAFT: 27 May 1994 10 Derived classes

3 Here, an object of classDerived2 will have a sub-object of classDerived which in turn will have a
sub-object of classBase . A derived class and its base class sub-objects can be represented by a directed
acyclic graph (DAG) where an arrow means“directly derived from.” A DAG of sub-objects is often referred
to as a“sub-object lattice.” For example,

Base

Derived

Derived2

Note that the arrows need not have a physical representation in memory and the order in which the sub-
objects appear in memory is unspecified. ∗

4 Initialization of objects representing base classes can be specified in constructors; see 12.6.2. 

[class.mi] 10.1 Multiple base classes

1 A class may be derived from any number of base classes. For example,

class A { /* ... */ };
class B { /* ... */ };
class C { /* ... */ };
class D : public A, public B, public C { /* ... */ };

The use of more than one direct base class is often called multiple inheritance.

2 The order of derivation is not significant except possibly for default initialization by constructor (12.1), for
cleanup (12.4), and for storage layout (5.4, 9.2, 11.1).

3 A class may not be specified as a direct base class of a derived class more than once but it may be an indi-
rect base class more than once.

class B { /* ... */ };
class D : public B, public B { /* ... */ }; // illegal

class L { /* ... */ };
class A : public L { /* ... */ };
class B : public L { /* ... */ };
class C : public A, public B { /* ... */ }; // legal

Here, an object of classCwill have two sub-objects of classL as shown below.

L L

A B

C

4 The keywordvirtual may be added to a base class specifier. A single sub-object of the virtual base
class is shared by every base class that specified the base class to be virtual. For example,

class V { /* ... */ };
class A : virtual public V { /* ... */ };
class B : virtual public V { /* ... */ };
class C : public A, public B { /* ... */ };

Here classChas only one sub-object of classV, as shown below.

10.1 Multiple base classes DRAFT: 27 May 1994 Derived classes 10– 3

V

A B

C

5 A class may have both virtual and nonvirtual base classes of a given type.

class B { /* ... */ };
class X : virtual public B { /* ... */ };
class Y : virtual public B { /* ... */ };
class Z : public B { /* ... */ };
class AA : public X, public Y, public Z { /* ... */ };

Here classAAhas two sub-objects of classB: Z’s B and the virtualB shared byX andY, as shown below.

B B

X Y Z

AA

[class.member.lookup]10.2 Member Name Lookup 

1 Member name lookup determines the meaning of a name (id-expressionor qualified-id) in a class scope.
Name lookup can result in anambiguity, in which case the program is ill-formed. For anid-expression, 
name lookup begins in the class scope ofthis ; for aqualified-id, name lookup begins in the scope of the
nested-name-specifier. Name lookup takes place before access control (11). 

2 The following steps define the result of name lookup in a class scope. First, we consider every declaration
for the name in the class and in each of its base class sub-objects. A member name onef in B hidesa mem- 
ber name af in Aif aAis B. We eliminate from consideration any declarations that are so hidden. If the
resulting set of declarations are not all from sub-objects of the same type, or the set has a nonstatic member
and includes declarations from distinct sub-objects, there is an ambiguity and the program is ill-formed.
Otherwise that set is the result of the lookup. 

3 For example,

class A {
public:

int a;
int (*b)();
int f();
int f(int);
int g();

};

class B {
int a;
int b();

public:
int f();
int g;
int h();
int h(int);

};

class C : public A, public B {};

10– 4 Derived classes DRAFT: 27 May 1994 10.2 Member Name Lookup

void g(C* pc)
{

pc->a = 1; // error: ambiguous: A::a or B::a
pc->b(); // error: ambiguous: A::b or B::b
pc->f(); // error: ambiguous: A::f or B::f
pc->f(1); // error: ambiguous: A::f or B::f
pc->g(); // error: ambiguous: A::g or B::g
pc->g = 1; // error: ambiguous: A::g or B::g
pc->h(); // ok
pc->h(1); // ok

}

If the name of an overloaded function is unambiguously found overloading resolution also takes place
before access control. Ambiguities can often be resolved by qualifying a name with its class name. For
example,

class A {
public:

int f();
};

class B {
public:

int f();
};

class C : public A, public B {
int f() { return A::f() + B::f(); }

};

The definition of ambiguity allows a nonstatic object to be found in more than one sub-object. When vir-
tual base classes are used, two base classes can share a common sub-object. For example,

class V { public: int v; };
class A {
public:

int a;
static int s;
enum { e };

};
class B : public A, public virtual V {};
class C : public A, public virtual V {};

class D : public B, public C { };

void f(D* pd)
{

pd->v++; // ok: only one ‘v’ (virtual)
pd->s++; // ok: only one ‘s’ (static)
int i = pd->e; // ok: only one ‘e’ (enumerator)
pd->a++; // error, ambiguous: two ‘a’s in ‘D’

}

When virtual base classes are used, a hidden declaration may be reached along a path through the sub-
object lattice that does not pass through the hiding declaration. This is not an ambiguity. The identical use
with nonvirtual base classes is an ambiguity; in that case there is no unique instance of the name that hides
all the others. For example,

10.2 Member Name Lookup DRAFT: 27 May 1994 Derived classes 10– 5

class V { public: int f(); int x; };
class W { public: int g(); int y; };
class B : public virtual V, public W
{
public:

int f(); int x;
int g(); int y;

};
class C : public virtual V, public W { };

class D : public B, public C { void g(); };

V W W

B C

D

The names defined inV and the left hand instance ofWare hidden by those inB, but the names defined in
the right hand instance ofWare not hidden at all.

void D::g()
{

x++; // ok: B::x hides V::x
f(); // ok: B::f() hides V::f()
y++; // error: B::y and C’s W::y
g(); // error: B::g() and C’s W::g()

}

An explicit or implicit conversion from a pointer to or an lvalue of a derived class to a pointer or reference
to one of its base classes must unambiguously refer to a unique object representing the base class. For
example,

class V { };
class A { };
class B : public A, public virtual V { };
class C : public A, public virtual V { };
class D : public B, public C { };

void g()
{

D d;
B* pb = &d;
A* pa = &d; // error, ambiguous: C’s A or B’s A ?
V* pv = &d; // fine: only one V sub-object

}

[class.virtual] 10.3 Virtual functions

1 Virtual functions support dynamic binding and object-oriented programming. A class that declares or
inherits a virtual function is called apolymorphic class.

2 If a virtual member functionvf is declared in a classBase and in a classDerived , derived directly or
indirectly fromBase , a member functionvf with the same name and same parameter list asBase::vf is
declared, thenDerived::vf is also virtual (whether or not it is so declared) and itoverrides41)

41) A function with the same name but a different parameter list (see 13) as a virtual function is not necessarily virtual and does not
override. The use of thevirtual specifier in the declaration of an overriding function is legal but redundant (has empty semantics).
Access control (11) is not considered in determining overriding.

10– 6 Derived classes DRAFT: 27 May 1994 10.3 Virtual functions

Base::vf . For convenience we say that any virtual function overrides itself. Then in any well-formed
class, for each virtual function declared in that class or any of its direct or indirect base classes there is a
uniquefinal overriderthat overrides that function and every other overrider of that function.

3 A program is ill-formed if the return type of any overriding function differs from the return type of the
overridden function unless the return type of the latter is pointer or reference (possibly cv-qualified) to a
classB, and the return type of the former is pointer or reference (respectively) to a classD such thatB is an
unambiguous direct or indirect base class ofD, accessible in the class of the overriding function, and the
cv-qualification in the return type of the overriding function is less than or equal to the cv-qualification in
the return type of the overridden function. In that case when the overriding function is called as the final
overrider of the overridden function, its result is converted to the type returned by the (statically chosen)
overridden function. See 5.2.2. For example,

class B {};
class D : private B { friend class Derived; };
struct Base {

virtual void vf1();
virtual void vf2();
virtual void vf3();
virtual B* vf4();
void f();

};

struct No_good : public Base {
D* vf4(); // error: B (base class of D) inaccessible

};

struct Derived : public Base {
void vf1(); // virtual and overrides Base::vf1()
void vf2(int); // not virtual, hides Base::vf2()
char vf3(); // error: invalid difference in return type only
D* vf4(); // okay: returns pointer to derived class
void f();

};

void g()
{

Derived d;
Base* bp = &d; // standard conversion:

// Derived* to Base*
bp->vf1(); // calls Derived::vf1()
bp->vf2(); // calls Base::vf2()
bp->f(); // calls Base::f() (not virtual)
B* p = bp->vf4(); // calls Derived::pf() and converts the

// result to B*
Derived* dp = &d;
D* q = dp->vf4(); // calls Derived::pf() and does not

// convert the result to B*
dp->vf2(); // ill-formed: argument mismatch

}

4 That is, the interpretation of the call of a virtual function depends on the type of the object for which it is
called (the dynamic type), whereas the interpretation of a call of a nonvirtual member function depends
only on the type of the pointer or refe rence denoting that object (the static type). See 5.2.2.

5 Thevirtual specifier implies membership, so a virtual function cannot be a global (nonmember) (7.1.2)
function. Nor can a virtual function be a static member, since a virtual function call relies on a specific
object for determining which function to invoke. A virtual function can be declared afriend in another
class. A virtual function declared in a class must be defined or declared pure (10.4) in that class.

10.3 Virtual functions DRAFT: 27 May 1994 Derived classes 10– 7

6 Following are some examples of virtual functions used with multiple base classes:

struct A {
virtual void f();

};

struct B1 : A { // note non-virtual derivation
void f();

};

struct B2 : A {
void f();

};

struct D : B1, B2 { // D has two separate A sub-objects
};

void foo()
{

D d;
// A* ap = &d; // would be ill-formed: ambiguous
B1* b1p = &d;
A* ap = b1p;
D* dp = &d;
ap->f(); // calls D::B1::f
dp->f(); // ill-formed: ambiguous

}

In classD above there are two occurrences of classA and hence two occurrences of the virtual member
function A::f . The final overrider ofB1::A::f is B1::f and the final overrider ofB2::A::f is
B2::f .

7 The following example shows a function that does not have a unique final overrider:

struct A {
virtual void f();

};

struct VB1 : virtual A { // note virtual derivation
void f();

};

struct VB2 : virtual A {
void f();

};

struct Error : VB1, VB2 { // ill-formed
};

struct Okay : VB1, VB2 {
void f();

};

Both VB1::f andVB2::f overrideA::f but there is no overrider of both of them in classError . This
example is therefore ill-formed. ClassOkay is well formed, however, becauseOkay::f is a final over-
rider.

8 The following example uses the well-formed classes from above.

struct VB1a : virtual A { // does not declare f
};

10– 8 Derived classes DRAFT: 27 May 1994 10.3 Virtual functions

struct Da : VB1a, VB2 {
};

void foe()
{

VB1a* vb1ap = new Da;
vb1ap->f(); // calls VB2:f

}

9 Explicit qualification with the scope operator (5.1) suppresses the virtual call mechanism. For example,

class B { public: virtual void f(); };
class D : public B { public: void f(); };

void D::f() { /* ... */ B::f(); }

Here, the function call inD::f really does callB::f and notD::f .

[class.abstract] 10.4 Abstract classes

1 The abstract class mechanism supports the notion of a general concept, such as ashape , of which only
more concrete variants, such ascircle andsquare , can actually be used. An abstract class can also be
used to define an interface for which derived classes provide a variety of implementations.

2 An abstract classis a class that can be used only as a base class of some other class; no objects of an
abstract class may be created except as sub-objects of a class derived from it. A class is abstract if it has at
least onepure virtual function(which may be inherited: see below). A virtual function is specifiedpureby
using apure-specifier(9.2) in the function declaration in the class declaration. A pure virtual function need
be defined only if explicitly called with thequalified-idsyntax (5.1). For example,

class point { /* ... */ };
class shape { // abstract class

point center;
// ...

public:
point where() { return center; }
void move(point p) { center=p; draw(); }
virtual void rotate(int) = 0; // pure virtual
virtual void draw() = 0; // pure virtual
// ...

};

An abstract class may not be used as an parameter type, as a function return type, or as the type of an
explicit conversion. Pointers and references to an abstract class may be declared. For example,

shape x; // error: object of abstract class
shape* p; // ok
shape f(); // error
void g(shape); // error
shape& h(shape&); // ok

3 Pure virtual functions are inherited as pure virtual functions. For example,

class ab_circle : public shape {
int radius;

public:
void rotate(int) {}
// ab_circle::draw() is a pure virtual

};

Sinceshape::draw() is a pure virtual functionab_circle::draw() is a pure virtual by default.
The alternative declaration,

10.4 Abstract classes DRAFT: 27 May 1994 Derived classes 10– 9

class circle : public shape {
int radius;

public:
void rotate(int) {}
void draw(); // must be defined somewhere

};

would make classcircle nonabstract and a definition ofcircle::draw() must be provided.

4 An abstract class may be derived from a class that is not abstract, and a pure virtual function may override a
virtual function which is not pure.

5 Member functions can be called from a constructor of an abstract class; the effect of calling a pure virtual
function directly or indirectly for the object being created from such a constructor is undefined.

[class.scope] 10.5 Summary of scope rules

1 The scope rules for C + + programs can now be summarized. These rules apply uniformly for all names
(including typedef-names(7.1.3) andclass-names(9.1)) wherever the grammar allows such names in the
context discussed by a particular rule. This section discusses lexical scope only; see 3.4 for an explanation
of linkage issues. The notion of point of declaration is discussed in (3.3).

2 Any use of a name must be unambiguous (up to overloading) in its scope (_class.ambig_). Only if the
name is found to be unambiguous in its scope are access rules considered (11). Only if no access control
errors are found is the type of the object, function, or enumerator named considered.

3 A name used outside any function and class or prefixed by the unary scope operator:: (andnot qualified
by the binary:: operator or the-> or . operators) must be the name of a global object, function, or enu-
merator.

4 A name specified afterX:: , afterobj. , whereobj is anX or a reference toX, or afterptr-> , where
ptr is a pointer toX must be the name of a member of classX or be a member of a base class ofX. In
addition, ptr in ptr-> may be an object of a classY that hasoperator->() declared soptr-
>operator->() eventually resolves to a pointer toX (13.4.6).

5 A name that is not qualified in any of the ways described above and that is used in a function that is not a
class member must be declared before its use in the block in which it occurs or in an enclosing block or
globally. The declaration of a local name hides previous declarations of the same name in enclosing blocks
and at file scope. In particular, no overloading occurs of names in different scopes (13.4).

6 A name that is not qualified in any of the ways described above and that is used in a function that is a non-
static member of classX must be declared in the block in which it occurs or in an enclosing block, be a
member of classX or a base class of classX, or be a global name. The declaration of a local name hides
declarations of the same name in enclosing blocks, members of the function’s class, and global names. The
declaration of a member name hides declarations of the same name in base classes and global names.

7 A name that is not qualified in one of the ways described above and is used in a static member function of a
classX must be declared in the block in which it occurs, in an enclosing block, be a static member of class
X, or a base class of classX, or be a global name.

8 A function parameter name in a function definition (8.4) is in the scope of the outermost block of the func-
tion (in particular, it is a local name). A function parameter name in a function declaration (8.3.5) that is
not a function definition is in a local scope that disappears immediately after the function declaration. A
default argument is in the scope determined by the point of declaration (3.3) of its parameter, but may not
access local variables or nonstatic class members; it is evaluated at each point of call (8.3.6).

9 A ctor-initializer (12.6.2) is evaluated in the scope of the outermost block of the constructor it is specified
for. In particular, it can refer to the constructor’s parameter names.

_ ___ ___

11 Member access control [class.access]
_ ___ ___

1 A member of a class can be

— private ; that is, its name can be used only by member functions and friends of the class in
which it is declared.

— protected ; that is, its name can be used only by member functions and friends of the class in
which it is declared and by member functions and friends of classes derived from this class (see
11.5).

— public ; that is, its name can be used by any function.

2 Members of a class declared with the keywordclass areprivate by default. Members of a class
declared with the keywordsstruct or union arepublic by default. For example,

class X {
int a; // X::a is private by default

};

struct S {
int a; // S::a is public by default

};

[class.access.spec] 11.1 Access specifiers

1 Member declarations may be labeled by anaccess-specifier(10):

access-specifier: member-specificationopt

An access-specifierspecifies the access rules for members following it until the end of the class or until
anotheraccess-specifieris encountered. For example,

class X {
int a; // X::a is private by default: ‘class’ used

public:
int b; // X::b is public
int c; // X::c is public

};

Any number of access specifiers is allowed and no particular order is required. For example,

struct S {
int a; // S::a is public by default: ‘struct’ used

protected:
int b; // S::b is protected

private:
int c; // S::c is private

public:
int d; // S::d is public

};

11– 2 Member access control DRAFT: 27 May 1994 11.1 Access specifiers

2 The order of allocation of data members with separateaccess-specifierlabels is implementation dependent
(9.2).

[class.access.base] 11.2 Access specifiers for base classes

1 If a class is declared to be a base class (10) for another class using thepublic access specifier, the
public members of the base class are accessible aspublic members of the derived class and
protected members of the base class are accessible asprotected members of the derived class (but
see 13.1). If a class is declared to be a base class for another class using theprotected access specifier,
the public andprotected members of the base class are accessible asprotected members of the
derived class. If a class is declared to be a base class for another class using theprivate access specifier,
the public and protected members of the base class are accessible asprivate members of the
derived class42).

2 In the absence of anaccess-specifierfor a base class,public is assumed when the derived class is
declaredstruct andprivate is assumed when the class is declaredclass . For example,

class B { /* ... */ };
class D1 : private B { /* ... */ };
class D2 : public B { /* ... */ };
class D3 : B { /* ... */ }; // ‘B’ private by default
struct D4 : public B { /* ... */ };
struct D5 : private B { /* ... */ };
struct D6 : B { /* ... */ }; // ‘B’ public by default
class D7 : protected B { /* ... */ };
struct D8 : protected B { /* ... */ };

HereB is a public base ofD2, D4, andD6, a private base ofD1, D3, andD5, and a protected base ofD7
andD8.

3 Because of the rules on pointer conversion (4.6), a static member of a private base class may be inaccessi-
ble as an inherited name, but accessible directly. For example,

class B {
public:

int mi; // nonstatic member
static int si; // static member

};
class D : private B {
};
class DD : public D {

void f();
};

void DD::f() {
mi = 3; // error: mi is private in D
si = 3; // error: si is private in D
B b;
b.mi = 3; // okay (b.mi is different from this->mi)
b.si = 3; // okay (b.si is the same as this->si)
B::si = 3; // okay
B* bp1 = this; // error: B is a private base class
B* bp2 = (B*)this; // okay with cast
bp2->mi = 3; // okay and bp2->mi is the same as this->mi

}

42) As specified previously in 11, private members of a base class remain inaccessible even to derived classes unlessfriend declara-
tions within the base class declaration are used to grant access explicitly.

11.2 Access specifiers for base classes DRAFT: 27 May 1994 Member access control 11– 3

4 Members and friends of a classX can implicitly convert anX* to a pointer to a private or protected immedi-
ate base class ofX.

[class.access.dcl] 11.3 Access declarations

1 The access of public or protected member of a private or protected base class can be restored to the same
level in the derived class by mentioning itsqualified-id in the public (for public members of the base
class) orprotected (for protected members of the base class) part of a derived class declaration. Such
mention is called anaccess declaration.

2 For example,

class A {
public:

int z;
int z1;

};

class B : public A {
int a;

public:
int b, c;
int bf();

protected:
int x;
int y;

};

class D : private B {
int d;

public:
B::c; // adjust access to ‘B::c’
B::z; // adjust access to ‘A::z’
A::z1; // adjust access to ‘A::z1’
int e;
int df();

protected:
B::x; // adjust access to ‘B::x’
int g;

};

class X : public D {
int xf();

};

int ef(D&);
int ff(X&);

The external functionef can use only the namesc , z , z1 , e, anddf . Being a member ofD, the function
df can use the namesb, c , z , z1 , bf , x , y , d, e, df , andg, but nota. Being a member ofB, the function
bf can use the membersa, b, c , z , z1 , bf , x , andy . The functionxf can use the public and protected
names fromD, that is,c , z , z1 , e, anddf (public), andx , andg (protected). Thus the external function
ff has access only toc , z , z1 , e, anddf . If D were a protected or private base class ofX, xf would have
the same privileges as before, butff would have no access at all.

3 An access declaration may not be used to restrict access to a member that is accessible in the base class, nor
may it be used to enable access to a member that is not accessible in the base class. For example,

11– 4 Member access control DRAFT: 27 May 1994 11.3 Access declarations

class A {
public:

int z;
};

class B : private A {
public:

int a;
int x;

private:
int b;

protected:
int c;

};

class D : private B {
public:

B::a; // make ‘a’ a public member of D
B::b; // error: attempt to grant access

// can’t make ‘b’ a public member of D
A::z; // error: attempt to grant access

protected:
B::c; // make ‘c’ a protected member of D
B::x; // error: attempt to reduce access

// can’t make ‘x’ a protected member of D
};

class E : protected B {
public:

B::a; // make ‘a’ a public member of E
};

The namesc andx are protected members ofE by virtue of its protected derivation fromB. An access dec-
laration for the name of an overloaded function adjusts the access to all functions of that name in the base
class. For example,

class X {
public:

f();
f(int);

};

class Y : private X {
public:

X::f; // makes X::f() and X::f(int) public in Y
};

4 The access to a base class member cannot be adjusted in a derived class that also defines a member of that
name. For example,

class X {
public:

void f();
};

class Y : private X {
public:

void f(int);
X::f; // error: two declarations of f

};

11.4 Friends DRAFT: 27 May 1994 Member access control 11– 5

[class.friend] 11.4 Friends

1 A friend of a class is a function that is not a member of the class but is permitted to use the private and pro-
tected member names from the class. The name of a friend is not in the scope of the class, and the friend is
not called with the member access operators (5.2.4) unless it is a member of another class. The following
example illustrates the differences between members and friends:

class X {
int a;
friend void friend_set(X*, int);

public:
void member_set(int);

};

void friend_set(X* p, int i) { p->a = i; }
void X::member_set(int i) { a = i; }

void f()
{

X obj;
friend_set(&obj,10);
obj.member_set(10);

}

2 When afriend declaration refers to an overloaded name or operator, only the function specified by the
parameter types becomes a friend. A member function of a classX can be a friend of a classY. For exam-
ple,

class Y {
friend char* X::foo(int);
// ...

};

All the functions of a classX can be made friends of a classY by a single declaration using anelaborated-
type-specifier43) (9.1):

class Y {
friend class X;
// ...

};

Declaring a class to be a friend also implies that private and protected names from the class granting friend-
ship can be used in the class receiving it. For example,

class X {
enum { a=100 };
friend class Y;

};

class Y {
int v[X::a]; // ok, Y is a friend of X

};

class Z {
int v[X::a]; // error: X::a is private

};

43)Note that theclass-keyof theelaborated-type-specifieris required.

11– 6 Member access control DRAFT: 27 May 1994 11.4 Friends

3 If a class or function mentioned as a friend has not been declared, see 7.3.1.

4 A function first declared in a friend declaration is equivalent to anextern declaration (3.4, 7.1.1).

5 A global (but not a member)friend function may be defined in a class definition other than a local class
definition (9.9). The function is theninline and the rewriting rule specified for member functions (9.4.2)
is applied. Afriend function defined in a class is in the (lexical) scope of the class in which it is defined.
A friend function defined outside the class is not.

6 Friend declarations are not affected byaccess-specifiers(9.2).

7 Friendship is neither inherited nor transitive. For example,

class A {
friend class B;
int a;

};

class B {
friend class C;

};

class C {
void f(A* p)
{

p->a++; // error: C is not a friend of A
// despite being a friend of a friend

}
};

class D : public B {
void f(A* p)
{

p->a++; // error: D is not a friend of A
// despite being derived from a friend

}
};

[class.protected] 11.5 Protected member access

1 A friend or a member function of a derived class can access a protected static member of a base class. A
friend or a member function of a derived class can access a protected nonstatic member of one of its base
classes only through a pointer to, reference to, or object of the derived class itself (or any class derived from
that class). When a protected member of a base class appears in aqualified-id in a friend or a member
function of a derived class, thenested-name-specifiermust name the derived class. For example,

class B {
protected:

int i;
};

class D1 : public B {
};

class D2 : public B {
friend void fr(B*,D1*,D2*);
void mem(B*,D1*);

};

11.5 Protected member access DRAFT: 27 May 1994 Member access control 11– 7

void fr(B* pb, D1* p1, D2* p2)
{

pb->i = 1; // illegal
p1->i = 2; // illegal
p2->i = 3; // ok (access through a D2)
int B::* pmi_B = &B::i; // illegal
int D2::* pmi_D2 = &D2::i; // ok

}

void D2::mem(B* pb, D1* p1)
{

pb->i = 1; // illegal
p1->i = 2; // illegal
i = 3; // ok (access through ‘this’)

}

void g(B* pb, D1* p1, D2* p2)
{

pb->i = 1; // illegal
p1->i = 2; // illegal
p2->i = 3; // illegal

}

[class.access.virt] 11.6 Access to virtual functions

1 The access rules (11) for a virtual function are determined by its declaration and are not affected by the
rules for a function that later overrides it. For example,

class B {
public:

virtual f();
};

class D : public B {
private:

f();
};

void f()
{

D d;
B* pb = &d;
D* pd = &d;

pb->f(); // ok: B::f() is public,
// D::f() is invoked

pd->f(); // error: D::f() is private
}

Access is checked at the call point using the type of the expression used to denote the object for which the
member function is called (B* in the example above). The access of the member function in the class in
which it was defined (D in the example above) is in general not known.

[class.paths] 11.7 Multiple access

1 If a name can be reached by several paths through a multiple inheritance graph, the access is that of the path
that gives most access. For example,

11– 8 Member access control DRAFT: 27 May 1994 11.7 Multiple access

class W { public: void f(); };
class A : private virtual W { };
class B : public virtual W { };
class C : public A, public B {

void f() { W::f(); } // ok
};

SinceW::f() is available toC::f() along the public path throughB, access is allowed.

_ ___ ___

12 Special member functions [special]
_ ___ ___

1 Some member functions are special in that they affect the way objects of a class are created, copied, and
destroyed, and how values may be converted to values of other types. Often such special functions are
called implicitly. Also, the compiler may generate instances of these functions when the programmer does
not supply them. Compiler-generated special functions may be referred to in the same ways that
programmer-written functions are.

2 These member functions obey the usual access rules (11). For example, declaring a constructor
protected ensures that only derived classes and friends can create objects using it.

[class.ctor] 12.1 Constructors

1 A member function with the same name as its class is called a constructor; it is used to construct values of
its class type. An object of class type will be initialized before any use is made of the object; see 12.6.

2 A constructor can be invoked for aconst or volatile object.44) A constructor may not be declared
const or volatile (9.4.1). A constructor may not bevirtual . A constructor may not bestatic .

3 Constructors are not inherited. Default constructors and copy constructors, however, are generated (by the
compiler) where needed (12.8). Generated constructors arepublic .

4 A default constructorfor a classX is a constructor of classX that can be called without an argument. If no
constructor has been declared for classX, a default constructor is implicitly declared. The definition for an
implicitly-declared default constructor is generated only if that constructor is called. An implicitly-declared
default constructor is non-trivial if and only if either the class has direct virtual bases or virtual functions or
if the class has direct bases or members of a class (or array thereof) requiring non-trivial initialization
(12.6).

5 A copy constructorfor a classX is a constructor whose first parameter is of typeX& or const X& and
whose other parameters, if any, all have defaults, so that it can be called with a single argument of typeX.
For example,X::X(const X&) andX::X(X&, int=0) are copy constructors. If no copy constructor is
declared in the class definition, a copy constructor is implicitly declared45). The definition for an
implicitly-declared copy constructor is generated only if that copy constructor is called.

Box 56 
Do we need a definition for_trivial_ implicitly-declared copy constructors?  _ __




_ __


 

44)Volatile semantics might or might not be used.
45)Thus the class definition

struct X {
X(const X&, int);

};

causes a copy constructor to be generated and the member function definition

X::X(const X& x, int i =0) { ... }

is ill-formed because of ambiguity.

12– 2 Special member functions DRAFT: 27 May 1994 12.1 Constructors

6 A constructor for a classX whose first parameter is of typeX or const X (not reference types), is not a
copy constructor, and must have other parameters. For example,X::X(X) is ill-formed.

7 Constructors for array elements are called in order of increasing addresses (8.3.4).

8 If a class has base classes or member objects with constructors, their constructors are called before the con-
structor for the derived class. The constructors for base classes are called first. See 12.6.2 for an explana-
tion of how arguments can be specified for such constructors and how the order of constructor calls is deter-
mined.

9 An object of a class with a constructor cannot be a member of a union.

10 No return type (not evenvoid) can be specified for a constructor. Areturn statement in the body of a
constructor may not specify a return value. It is not possible to take the address of a constructor.

11 A constructor can be used explicitly to create new objects of its type, using the syntax

class-name(expression-listopt)

For example,

complex zz = complex(1,2.3);
cprint(complex(7.8,1.2));

An object created in this way is unnamed (unless the constructor was used as an initializer for a named vari-
able as forzz above), with its lifetime limited to the expression in which it is created; see 12.2.

12 Member functions may be called from within a constructor; see 12.7.

[class.temporary] 12.2 Temporary objects

1 In some circumstances it may be necessary or convenient for the compiler to generate a temporary object.
Precisely when such temporaries are introduced is implementation dependent. When a compiler introduces
a temporary object of a class that has a constructor it must ensure that a constructor is called for the tempo-
rary object. Similarly, the destructor must be called for a temporary object of a class where a destructor is
declared. For example,

class X {
// ...

public:
// ...
X(int);
X(const X&);
~X();

};

X f(X);

void g()
{

X a(1);
X b = f(X(2));
a = f(a);

}

Here, one might use a temporary in which to constructX(2) before passing it tof() by X(X&) ; alterna-
tively, X(2) might be constructed in the space used to hold the argument for the first call off() . Also, a
temporary might be used to hold the result off(X(2)) before copying it tob by X(X&) ; alternatively,
f() ’s result might be constructed inb. On the other hand, for many functionsf() , the expression
a=f(a) requires a temporary for either the argumenta or the result off(a) to avoid undesired aliasing of
a. Even if the copy constructor is not called, all the semantic restrictions, such as accessibility, must be sat-
isfied.

12.2 Temporary objects DRAFT: 27 May 1994 Special member functions 12– 3

2 The compiler must ensure that every temporary object is destroyed. Ordinarily, temporary objects are
destroyed as the last step in evaluating the (unique) expression that (lexically) contains the point where they
were created and is not a subexpression of another expression. This is true even if that evaluation ends in
throwing an exception. Temporaries created while evaluating default argument expressions (8.3.6) are con-
sidered to be created in the expression that calls the function, not the expression that defines the default
argument.

3 The only context in which temporaries are destroyed at a different point is when an expression appears as a
declarator initializer. In that context, the temporary that holds the result of the expression must persist at
least until the initialization implied by the declarator is complete. If the declarator declares a reference, all
temporaries in the expression persist until the end of the scope in which the reference is declared. Other-
wise, the declarator defines an object that is initialized from a copy of the temporary; during this copying,
an implementation may call the copy constructor many times; the temporary is destroyed as soon as it has
been copied. In all cases, temporaries are destroyed in reverse order of creation.

Another form of temporaries is discussed in 8.5.3.

[class.conv] 12.3 Conversions

1 Type conversions of class objects can be specified by constructors and by conversion functions.

2 Such conversions, often calleduser-defined conversions, are used implicitly in addition to standard conver-
sions (4). For example, a function expecting an argument of typeX can be called not only with an argu-
ment of typeX but also with an argument of typeT where a conversion fromT to X exists. User-defined
conversions are used similarly for conversion of initializers (8.5), function arguments (5.2.2, 8.3.5), func-
tion return values (6.6.3, 8.3.5), expression operands (5), expressions controlling iteration and selection
statements (6.4, 6.5), and explicit type conversions (5.2.3, 5.4).

3 User-defined conversions are applied only where they are unambiguous (_class.ambig_, 12.3.2). Conver-
sions obey the access control rules (11). As ever access control is applied after ambiguity resolution (10.5).

4 See 13.2 for a discussion of the use of conversions in function calls as well as examples below.

[class.conv.ctor] 12.3.1 Conversion by constructor

1 A constructor with a single parameter specifies a conversion from its parameter type to the type of its class.
For example,

class X {
// ...

public:
X(int);
X(const char*, int =0);

};

void f(X arg) {
X a = 1; // a = X(1)
X b = "Jessie"; // b = X("Jessie",0)
a = 2; // a = X(2)
f(3); // f(X(3))

}

When no constructor for classX accepts the given type, no attempt is made to find other constructors or
conversion functions to convert the assigned value into a type acceptable to a constructor for classX. For
example,

class X { /* ... */ X(int); };
class Y { /* ... */ Y(X); };
Y a = 1; // illegal: Y(X(1)) not tried

12– 4 Special member functions DRAFT: 27 May 1994 12.3.2 Conversion functions

[class.conv.fct] 12.3.2 Conversion functions

1 A member function of a classX with a name of the form

conversion-function-id:
operator conversion-type-id

conversion-type-id:
type-specifier-seq conversion-declaratoropt

conversion-declarator:
ptr-operator conversion-declaratoropt

specifies a conversion fromX to the type specified by theconversion-type-id. Such member functions are
called conversion functions. Classes, enumerations, andtypedef-names may not be declared in thetype-
specifier-seq. Neither parameter types nor return type may be specified. A conversion operator is never
used to convert a (possibly qualified) object (or reference to an object) to the (possibly qualified) same
object type (or a reference to it), or to a (possibly qualified) base class of that type (or a reference to it). If
conversion-type-idis void or cv-qualifiedvoid , the program is ill-formed.

2 Here is an example:

class X {
// ...

public:
operator int();

};

void f(X a)
{

int i = int(a);
i = (int)a;
i = a;

}

In all three cases the value assigned will be converted byX::operator int() . User-defined conver- 
sions are not restricted to use in assignments and initializations. For example,

void g(X a, X b)
{

int i = (a) ? 1+a : 0;
int j = (a&&b) ? a+b : i;
if (a) { // ...
}

}

3 The conversion-type-idin a conversion-function-idis the longest possible sequence ofconversion-
declarators. This prevents ambiguities between the declarator operator * and its expression counterparts.
For example:

&ac.operator int*i; // syntax error:
// parsed as: ’&(ac.operator int *) i’
// not as: ’&(ac.operator int)*i’

The * is the pointer declarator and not the multiplication operator.

4 Conversion operators are inherited.

5 Conversion functions can be virtual.

6 At most one user-defined conversion (constructor or conversion function) is implicitly applied to a single
value. For example,

12.3.2 Conversion functions DRAFT: 27 May 1994 Special member functions 12– 5

class X {
// ...

public:
operator int();

};

class Y {
// ...

public:
operator X();

};

Y a;
int b = a; // illegal:

// a.operator X().operator int() not tried
int c = X(a); // ok: a.operator X().operator int()

7 User-defined conversions are used implicitly only if they are unambiguous. A conversion function in a
derived class does not hide a conversion function in a base class unless the two functions convert to the
same type. For example,

class X {
public:

// ...
operator int();

};

class Y : public X {
public:

// ...
operator void*();

};

void f(Y& a)
{

if (a) { // error: ambiguous
// ...

}
}

[class.dtor] 12.4 Destructors

1 A member function of classcl named~cl is called a destructor; it is used to destroy values of typecl
immediately before the object containing them is destroyed. A destructor takes no parameters, and no
return type can be specified for it (not evenvoid). It is not possible to take the address of a destructor. A
destructor can be invoked for aconst or volatile object.46) A destructor may not be declaredconst
or volatile (9.4.1). A destructor may not bestatic .

2 Destructors are not inherited. If a base or a member of a class has a destructor and no destructor is declared
for the class itself a default destructor is generated.

Box 57

A default destructor should be generated if the class has a deallocation function._ ___



_ ___




This generated destructor calls the destructors for bases and members of its class. Generated destructors are
public .

46)Volatile semantics might or might not be used.

12– 6 Special member functions DRAFT: 27 May 1994 12.4 Destructors

3 The body of a destructor is executed before the destructors for member or base objects. Destructors for
nonstatic member objects are executed in reverse order of their declaration before the destructors for base
classes. Destructors for nonvirtual base classes are executed in reverse order of their declaration in the
derived class before destructors for virtual base classes. Destructors for virtual base classes are executed in
the reverse order of their appearance in a depth-first left-to-right traversal of the directed acyclic graph of
base classes;“left-to-right” is the order of appearance of the base class names in the declaration of the
derived class. Destructors for elements of an array are called in reverse order of their construction.

4 A destructor may be declaredvirtual or purevirtual . In either case if any objects of that class or
any derived class are created in the program the destructor must be defined.

5 Member functions may be called from within a destructor; see 12.7.

6 An object of a class with a destructor cannot be a member of a union.

7 Destructors are invoked implicitly (1) when an automatic variable (3.6) or temporary (12.2, 8.5.3) object
goes out of scope, (2) for constructed static (3.6) objects at program termination (3.5), and (3) through use
of a delete-expression(5.3.5) for objects allocated by anew-expression(5.3.4). Destructors can also be
invoked explicitly. A delete-expressioninvokes the destructor for the referenced object and passes the
address of its memory to a dealloation function (5.3.5, 12.5). For example,

class X {
// ...

public:
X(int);
~X();

};

void g(X*);

void f() // common use:
{

X* p = new X(111); // allocate and initialize
g(p);
delete p; // cleanup and deallocate

}

8 Explicit calls of destructors are rarely needed. One use of such calls is for objects placed at specific
addresses using anew-expressionwith the placement option. Such use of explicit placement and
destruction of objects can be necessary to cope with dedicated hardware resources and for writing memory
management facilities. For example,

void* operator new(size_t, void* p) { return p; }

void f(X* p);

static char buf[sizeof(X)];

void g() // rare, specialized use:
{

X* p = new(buf) X(222); // use buf[]
// and initialize

f(p);
p->X::~X(); // cleanup

}

9 Invocation of destructors is subject to the usual rules for member functions, e.g., an object of the appropri-
ate type is required (except invokingdelete on a null pointer has no effect). When a destructor is
invoked for an object, the object no longer exists; if the destructor is explicitly invoked again for the same
object the behavior is undefined. For example, if the destructor for an automatic object is explicitly
invoked, and the block is subsequently left in a manner that would ordinarily invoke implicit destruction of

12.4 Destructors DRAFT: 27 May 1994 Special member functions 12– 7

the object, the behavior is undefined.

10 The notation for explicit call of a destructor may be used for any simple type name. For example,

int* p;
// ...
p->int::~int();

Using the notation for a type that does not have a destructor has no effect. Allowing this enables people to
write code without having to know if a destructor exists for a given type. 

11 The effect of destroying an object more than once is undefined. This implies that that explicitly destroying
a local variable causes undefined behavior on exit from the block, because exiting will attempt to destroy
the variable again. This is true even if the block is exited because of an exception.

[class.free] 12.5 Free store

1 When an object is created with anew-expression(5.3.4), anallocation function(operator new() for 
non-array objects oroperator new[]() for arrays) is (implicitly) called to get the required storage
(3.6.3.1). 

2 When a non-array object or an array of classT is created by anew-expression, the allocation function is
looked up in the scope of classT using the usual rules.

3 When anew-expressionis executed, the selected allocation function will be called with the amount of space∗
requested (possibly zero) as its first argument. ∗

4 Any allocation function for a classX is a static member (even if not explicitly declaredstatic). 

5 For example,

class Arena; class Array_arena;
struct B {

void* operator new(size_t, Arena*);
};
struct D1 : B {
};

Arena* ap; Array_arena* aap;
void foo(int i)
{

new (ap) D1; // calls B::operator new(size_t, Arena*)
new D1[i]; // calls ::operator new[](size_t)
new D1; // ill-formed: ::operator new(size_t) hidden

}

6 When an object is deleted with adelete-expression(5.3.5), a deallocation function 
(operator delete() for non-array objects oroperator delete[]() for arrays) is (implicitly) 
called to reclaim the storage occupied by the object. ∗

7 When an object is deleted by adelete-expression, the deallocation function is looked up in the scope of∗
class of the executed destructor (see 5.3.5) using the usual rules.

8 When adelete-expressionis executed, the selected deallocation function will be called with the address of
the block of storage to be reclaimed as its first argument and (if the two-parameter style is used) the size of
the block as its second argument.47)

9 Any deallocation function for a classX is a static member (even if not explicitly declaredstatic). For 
example,

47) If the static class in thedelete-expressionis different from the dynamic class and the destructor is not virtual the size might be
incorrect, but that case is already undefined.

12– 8 Special member functions DRAFT: 27 May 1994 12.5 Free store

class X {
// ...
void operator delete(void*);
void operator delete[](void*, size_t);

};

class Y {
// ...
void operator delete(void*, size_t);
void operator delete[](void*);

};

10 Since member allocation and deallocation functions arestatic they cannot be virtual. However, the
deallocation function actually called is determined by the destructor actually called, so if the destructor is
virtual the effect is the same. For example, ∗

struct B {
virtual ~B();
void operator delete(void*, size_t);

};

struct D : B {
void operator delete(void*);
void operator delete[](void*, size_t);

};

void f(int i)
{

B* bp = new D;
delete bp; // uses D::operator delete(void*) 
D* dp = new D[i];
delete [] dp; // uses D::operator delete[](void*, size_t) 

}

Here, storage for the non-array object of classD is deallocated byD::operator delete() , due to the 
virtual destructor. 

11 Access to the deallocation function is checked statically. Thus even though a different one may actually be
executed, the statically visible deallocation function must be accessible. Thus in the example above, if
B::operator delete() had beenprivate , the delete expression would have been ill-formed.

[class.init] 12.6 Initialization

1 A class having a user-defined constructor or having a non-trivial implicitly-declared default constructor is
said to require non-trivial initialization.

2 An object of a class (or array thereof) with no private or protected non-static data members and that does
not require non-trivial initialization can be initialized using an initializer list; see 8.5.1. An object of a class
(or array thereof) with a user-declared constructor must either be initialized or have a default constructor
(12.1) (whether user- or compiler-declared). The default constructor is used if the object (or array thereof) is
not explicitly initialized.

[class.expl.init] 12.6.1 Explicit initialization

1 Objects of classes with constructors (12.1) can be initialized with a parenthesized expression list. This list
is taken as the argument list for a call of a constructor doing the initialization. Alternatively a single value
is specified as the initializer using the= operator. This value is used as the argument to a copy constructor.
Typically, that call of a copy constructor can be eliminated. For example,

12.6.1 Explicit initialization DRAFT: 27 May 1994 Special member functions 12– 9

class complex {
// ...

public:
complex();
complex(double);
complex(double,double);
// ...

};

complex sqrt(complex,complex);

complex a(1); // initialize by a call of
// complex(double)

complex b = a; // initialize by a copy of ‘a’
complex c = complex(1,2); // construct complex(1,2)

// using complex(double,double)
// copy it into ‘c’

complex d = sqrt(b,c); // call sqrt(complex,complex)
// and copy the result into ‘d’

complex e; // initialize by a call of
// complex()

complex f = 3; // construct complex(3) using
// complex(double)
// copy it into ‘f’

Overloading of the assignment operator= has no effect on initialization.

2 The initialization that occurs in argument passing and function return is equivalent to the form

T x = a;

The initialization that occurs innew expressions (5.3.4) and in base and member initializers (12.6.2) is
equivalent to the form

T x(a);

3 Arrays of objects of a class with constructors use constructors in initialization (12.1) just as do individual
objects. If there are fewer initializers in the list than elements in the array, a default constructor (12.1) must
be declared (whether by the compiler or the user), and it is used; otherwise theinitializer-clausemust be
complete. For example,

complex cc = { 1, 2 }; // error; use constructor
complex v[6] = { 1,complex(1,2),complex(),2 };

Here,v[0] and v[3] are initialized withcomplex::complex(double) , v[1] is initialized with
complex::complex(double,double) , and v[2] , v[4] , and v[5] are initialized with
complex::complex() .

4 An object of classMcan be a member of a classX only if (1) Mhas a default constructor, or (2)X has a
user-declared constructor and if every user-declared constructor of classX specifies actor-initializer
(12.6.2) for that member. In case 1 the default constructor is called when the aggregate is created. If a
member of an aggregate has a destructor, then that destructor is called when the aggregate is destroyed.

5 Constructors for nonlocal static objects are called in the order they occur in a file; destructors are called in
reverse order. See also 3.5, 6.7, 9.5.

[class.base.init] 12.6.2 Initializing bases and members

1 The definition of a constructor can specify initializers for direct and virtual base classes and for members
not inherited from a base class. This is most useful for class objects, constants, and references where the
semantics of initialization and assignment differ. Actor-initializer has the form

12– 10 Special member functions DRAFT: 27 May 1994 12.6.2 Initializing bases and members

ctor-initializer:
: mem-initializer-list

mem-initializer-list:
mem-initializer
mem-initializer , mem-initializer-list

mem-initializer:
:: opt nested-name-specifieropt class-name(expression-listopt)
identifier (expression-listopt)

The argument list is used to initialize the named nonstatic member or base class object. This (or for an
aggregate (8.5.1), initialization by a brace-enclosed list) is the only way to initialize nonstaticconst and
reference members. For example,

struct B1 { B1(int); /* ... */ };
struct B2 { B2(int); /* ... */ };

struct D : B1, B2 {
D(int);
B1 b;
const c;

};

D::D(int a) : B2(a+1), B1(a+2), c(a+3), b(a+4)
{ /* ... */ }

D d(10);

First, the base classes are initialized in declaration order (independent of the order ofmem-initializers), then
the members are initialized in declaration order (independent of the order ofmem-initializers), then the
body ofD::D() is executed (12.1). The declaration order is used to ensure that sub-objects and members
are destroyed in the reverse order of initialization.

2 Virtual base classes constitute a special case. Virtual bases are constructed before any nonvirtual bases and
in the order they appear on a depth-first left-to-right traversal of the directed acyclic graph of base classes;
“left-to-right” is the order of appearance of the base class names in the declaration of the derived class.

3 The class of acomplete object(1.5) is said to be themost derivedclass for the sub-objects representing base
classes of the object. All sub-objects for virtual base classes are initialized by the constructor of the most
derived class. If a constructor of the most derived class does not specify amem-initializerfor a virtual base
class then that virtual base class must have a default constructor. Anymem-initializers for virtual classes
specified in a constructor for a class that is not the class of the complete object are ignored. For example,

class V {
public:

V();
V(int);
// ...

};

class A : public virtual V {
public:

A();
A(int);
// ...

};

12.6.2 Initializing bases and members DRAFT: 27 May 1994 Special member functions 12– 11

class B : public virtual V {
public:

B();
B(int);
// ...

};

class C : public A, public B, private virtual V {
public:

C();
C(int);
// ...

};

A::A(int i) : V(i) { /* ... */ }
B::B(int i) { /* ... */ }
C::C(int i) { /* ... */ }

V v(1); // use V(int)
A a(2); // use V(int)
B b(3); // use V()
C c(4); // use V()

4 In a ctor-initializer, the effect of calling a non-static member function of a class object whose base classes
have not all been initialized is undefined. For example, 

class A { 
public: 

A(int x); 
}; 

class B : public A { 
public: 

int f(); 
B() : A(f()) {} // undefined: calls B::f() but B’s A not yet initialized 

}; 

A mem-initializeris evaluated in the scope of the constructor in which it appears. For example,

class X {
int a;

public:
const int& r;
X(): r(a) {}

};

initializesX::r to refer toX::a for each object of classX. 

5 The identifier of actor-initializer’s mem-initializerin a class’ constructor is looked up in the scope of the
class. It must denote a nonstatic data member or the type of a direct or virtual base class. For the purpose
of this name lookup, the name, if any, of each class is considered a nested class member of that class. A
constructor’smem-initializer-listcan initialize a base class using any name that denotes that base class type;
the name used may differ from the class definition. The type shall not designate both a direct non-virtual
base class and an inherited virtual base class. For example: 

struct A { A(); }; 
struct B: public virtual A { }; 
struct C: public A, public B { C(); }; 

C::C(): A() { } // ill-formed: which A? 

12– 12 Special member functions DRAFT: 27 May 1994 12.7 Constructors and destructors

[class.cdtor] 12.7 Constructors and destructors

1 Member functions may be called in constructors and destructors. This implies that virtual functions may be
called (directly or indirectly). The function called will be the one defined in the constructor’s (or
destructor’s) own class or its bases, butnot any function overriding it in a derived class. This ensures that
unconstructed parts of objects will not be accessed in the body of the constructor or destructor. For exam-
ple,

class X {
public:

virtual void f();
X() { f(); } // calls X::f()
~X() { f(); } // calls X::f()

};

class Y : public X {
int& r;

public:
void f()
{

r++; // disaster if ‘r’ is uninitialized
}
Y(int& rr) :r(rr) {} // calls X::X() which calls X::f()

};

2 The effect of calling a pure virtual function directly or indirectly for the object being constructed from a
constructor, except using explicit qualification, is undefined (10.4).

[class.copy] 12.8 Copying class objects

1 A class object can be copied in two ways, by assignment (5.17) and by initialization (12.1, 8.5) including
function argument passing (5.2.2) and function value return (6.6.3). Conceptually, for a classX these two
operations are implemented by an assignment operator and a copy constructor (12.1). If not declared by the
programmer, they will if possible be automatically defined (“synthesized”) as memberwise assignment and
memberwise initialization of the base classes and non-static data members ofX, respectively. An explicit
declaration of either of them will suppress the synthesized definition.

2 If all bases and members of a classX have copy constructors acceptingconst parameters, the synthesized
copy constructor forX will have a single parameter of typeconst X& , as follows: 

X::X(const X&)

Otherwise it will have a single parameter of typeX&:

X::X(X&)

and programs that attempt initialization by copying ofconst X objects will be ill-formed. 

3 Similarly, if all bases and members of a classX have assignment operators acceptingconst parameters,
the synthesized assignment operator forX will have a single parameter of typeconst X& , as follows: 

X& X::operator=(const X&)

Otherwise it will have a single parameter of typeX&:

X& X::operator=(X&)

and programs that attempt assignment by copying ofconst X objects will be ill-formed. The synthesized
assignment operator will return a reference to the object for which is invoked.

4 Objects representing virtual base classes will be initialized only once by a generated copy constructor.
Objects representing virtual base classes will be assigned only once by a generated assignment operator.

12.8 Copying class objects DRAFT: 27 May 1994 Special member functions 12– 13

5 Memberwise assignment and memberwise initialization implies that if a classX has a member or base of a
classM, M’s assignment operator andM’s copy constructor are used to implement assignment and initial-
ization of the member or base, respectively, in the synthesized operations. The default assignment opera-
tion cannot be generated for a class if the class has:

— a non-static data member that is aconst or a reference,

— a non-static data member or base class whose assignment operator is inaccessible to the class, or

— a non-static data member or base class with no assignment operator for which a default assign-
ment operation cannot be generated.

Similarly, the default copy constructor cannot be generated for a class if a non-static data member or a
base of the class has an inaccessible copy constructor, or has no copy constructor and the default copy
constructor cannot be generated for it.

6 The default assignment and copy constructor will be declared, but they will not be defined (that is, a
function body generated) unless needed. That is,X::operator=() will be generated only if no
assignment operation is explicitly declared and an object of classX is assigned an object of classX or an
object of a class derived fromX or if the address ofX::operator= is taken. Initialization is handled
similarly.

7 If implicitly declared, the assignment and the copy constructor will be public members and the assign-
ment operator for a classX will be defined to return a reference of typeX& referring to the object
assigned to.

8 If a classX has anyX::operator=() that has a parameter of classX, the default assignment will not
be generated. If a class has any copy constructor defined, the default copy constructor will not be gen-
erated. For example,

class X {
// ...

public:
X(int);
X(const X&, int = 1);

};

X a(1); // calls X(int);
X b(a, 0); // calls X(const X&, int);
X c = b; // calls X(const X&, int);

9 Assignment of class objectsX is defined in terms ofX::operator=(const X&) . This implies (12.3) 
that objects of a derived class can be assigned to objects of a public base class. For example,

class X {
public:

int b;
};

class Y : public X {
public:

int c;
};

12– 14 Special member functions DRAFT: 27 May 1994 12.8 Copying class objects

void f()
{

X x1;
Y y1;

x1 = y1; // ok
y1 = x1; // error

}

Herey1.b is assigned tox1.b andy1.c is not copied.

10 Copying one object into another using the default copy constructor or the default assignment operator does
not change the structure of either object. For example,

struct s {
virtual f();
// ...

};

struct ss : public s {
f();
// ...

};

void f()
{

s a;
ss b;
a = b; // really a.s::operator=(b)
b = a; // error
a.f(); // calls s::f
b.f(); // calls ss::f
(s&)b = a; // assign to b’s s part

// really ((s&)b).s::operator=(a)
b.f(); // still calls ss::f

}

The calla.f() will invoke s::f() (as is suitable for an object of classs (10.3)) and the callb.f() will
call ss::f() (as is suitable for an object of classss).

_ ___ ___

13 Overloading [over]
_ ___ ___

1
Box 58

This intro and section 13.1 need to be rewritten. I would introduce the notion of acall profile, which is
related to a full parameter type profile, but is defined such that two functions with the same call profile can-
not be overloaded._ __






_ __






When several different function declarations are specified for a single name in the same scope, that name is
said to beoverloaded. When that name is used, the correct function is selected by comparing the types of
the arguments with the types of the parameters. For example,

double abs(double);
int abs(int);

abs(1); // call abs(int);
abs(1.0); // call abs(double);

Since for any typeT, aT and aT& accept the same set of initializer values, functions with parameter types
differing only in this respect may not have the same name. For example,

int f(int i)
{

// ...
}

int f(int& r) // error: function types
// not sufficiently different

{
// ...

}

It is, however, possible to distinguish betweenconst T&, volatile T&, and plainT& so functions that
differ only in this respect may be defined. Similarly, it is possible to distinguish betweenconst T* ,
volatile T* , and plainT* so functions that differ only in this respect may be defined.

2 Functions that differ only in the return type may not have the same name.

3 Member functions that differ only in that one is astatic member and the other isn’t may not have the
same name (9.5).

4 A typedef is not a separate type, but only a synonym for another type (7.1.3). Therefore, functions that
differ by typedef“types” only may not have the same name. For example,

typedef int Int;

void f(int i) { /* ... */ }
void f(Int i) { /* ... */ } // error: redefinition of f

Enumerations, on the other hand, are distinct types and can be used to distinguish overloaded functions.
For example,

13– 2 Overloading DRAFT: 27 May 1994 13 Overloading

enum E { a };

void f(int i) { /* ... */ }
void f(E i) { /* ... */ }

5 Parameter types that differ only in a pointer* versus an array[] are identical, that is, the array declaration
is adjusted to become a pointer declaration (8.3.5). Note that only the second and subsequent array dimen-
sions are significant in parameter types (8.3.4).

f(char*);
f(char[]); // same as f(char*);
f(char[7]); // same as f(char*);
f(char[9]); // same as f(char*);

g(char(*)[10]);
g(char[5][10]); // same as g(char(*)[10]);
g(char[7][10]); // same as g(char(*)[10]);
g(char(*)[20]); // different from g(char(*)[10]);

6 Parameter types that differ only in the presence or absence ofconst and/orvolatile are identical. That
is, theconst andvolatile type-specifiers for each parameter type are ignored when determining which
function is being declared, defined, or called. For example,

typedef const int cInt;

int f (int);
int f (const int); // redeclaration of f (int);
int f (int) { ... } // definition of f (int)
int f (cInt) { ... } // error: redefinition of f (int)

Only theconst andvolatile type-specifiers at the outermost level of the parameter type specification
are ignored in this fashion;const andvolatile type-specifiers buried within a parameter type specifi-
cation are significant and may be used to distinguish overloaded function. In particular, for any typeT, T* ,
const T* , and volatile T* are considered distinct parameter types, as areT&, const T& , and
volatile T&.

[over.dcl] 13.1 Declaration matching

1 Two function declarations of the same name refer to the same function if they are in the same scope and
have identical parameter types (13). A function member of a derived class isnot in the same scope as a
function member of the same name in a base class. For example,

class B {
public:

int f(int);
};

class D : public B {
public:

int f(char*);
};

HereD::f(char*) hidesB::f(int) rather than overloading it.

void h(D* pd)
{

pd->f(1); // error:
// D::f(char*) hides B::f(int)

pd->B::f(1); // ok
pd->f("Ben"); // ok, calls D::f

}

13.1 Declaration matching DRAFT: 27 May 1994 Overloading 13– 3

A locally declared function is not in the same scope as a function in a containing scope.

int f(char*);
void g()
{

extern f(int);
f("asdf"); // error: f(int) hides f(char*)

// so there is no f(char*) in this scope
}

void caller ()
{

void callee (int, int);
{

void callee (int); // hides callee (int, int)
callee (88, 99); // error: only callee (int) in scope

}
)

2 Different versions of an overloaded member function may be given different access rules. For example,

class buffer {
private:

char* p;
int size;

protected:
buffer(int s, char* store) { size = s; p = store; }
// ...

public:
buffer(int s) { p = new char[size = s]; }
// ...

};

[over.match] 13.2 Overload resolution

1 Recall from 5.2.2, that a function call is apostfix-expressionfollowed by an optionalexpression-list
enclosed in parentheses. Of interest in this section are only those function calls in which thepostfix-
expressionhas the following forms:

postfix-expression:
primary-expression
postfix-expression. id-expression
postfix-expression-> id-expression

In these cases, thepostfix-expressionultimately contains a name that must be resolved against visible decla-
rations to identify which function is being called.

2 Since, through overloading declarations, a name may refer to more than one function, the function refer-
enced by a function call is determined not only by the name, but also by the kind of function call, the num-
ber of arguments present, and their types. The name and the kind of function call determine a set of
candidate functionsthat could be referenced by the name. From this set of candidate functions a function is
chosen whose parameters best match the arguments in the call in number and type.

[over.match.funcs] 13.2.1 Candidate functions

1 There are two kinds of function calls: member function calls and ordinary (or non-member) function calls.

2 In member function calls, the name to be resolved is anid-expressionand is preceded by an-> or . opera-
tor. Since the constructA.B is generally equivalent to(&A) -> B, the rest of this chapter assumes, without
loss of generality, that all member function calls have beennormalizedto the form that uses an object

13– 4 Overloading DRAFT: 27 May 1994 13.2.1 Candidate functions

pointer and the-> operator. Furthermore, the left operand of the-> operator has typeT* , whereT denotes
some classX optionally qualified byconst and/orvolatile .48) Thus, in a member function call, the
id-expressionin the call is looked up as a member function ofX following the rules for looking up names in
classes (10). If a member function is found, that function and its overloaded declarations (in the same
scope) constitute the set of candidate functions submitted to argument matching (13.2.2).

3 In non-member calls, the name is not qualified by an-> or . operator and has the more general form of a
primary-expression. The name is looked up in the context of the function call following the normal rules
for name lookup. If the name resolves to a function declaration, that function and its overloaded declara-
tions (in the same scope) constitute the set of candidate functions submitted to argument matching (13.2.2).

4 If the name in the ordinary function call resolves to a member function and the keywordthis is in scope
and refers to the class of that member function, then the ordinary-looking function call is actually a member
function call using an implicitthis pointer. In this case, the function call is put into normalized member
call form using an explicitthis pointer.

5 In either kind of function call, the name may resolve to something other than a function name. This section,
13.2, will not consider this case further since such a name cannot be overloaded.

6 Section 13.4.8 describes the set of candidate functions constructed for the resolution of an overloaded oper-
ator in an expression.

[over.match.args] 13.2.2 Argument matching

1 From the set of candidate functions constructed for a function call (13.2.1) or an operator in an expression
(13.4.8), a function is chosen whose parameters best match the arguments in the call according to the rules
described in this section.

2 To be considered at all, a candidate function must have enough parameters to satisfy the arguments in the
call. If there arem arguments in the call, all candidate functions having exactlymparameters remain candi-
dates unconditionally. A candidate function having fewer thanm parameters remains a candidate only if it
has an ellipsis in its parameter list (8.3.5). For the purposes of argument matching, its parameter list is
extended to the right with ellipses so that there are exactlym parameters. A candidate function having
more thanm parameters remains a candidate only if them+1st parameter has a default initializer (8.3.6).
For the purposes of argument matching, the parameter list is truncated on the right, so that there are exactly
mparameters.

3 From the subset of candidate functions with the correct number of parameters a function is chosen that best
matches the arguments in the call. The choice is made in two steps. First, for each individual argument in
the call, the subset of the candidate functions that best match that argument is determined according to the
rules forbest-matchdescribed below. Then, the function that best matches the call is obtained by forming
the intersection of the subsets obtained for each argument. Unless this intersection has exactly one func-
tion, the call is ill-formed.

4 The function thus selected must be a better match to the call than any other candidate function. Otherwise,
the call is ill-formed. One function is a better match to the call than another if for each argument in the call,
the first function is at least as good a match as the second function, and for some argument the first function
is a better match.

5 For purposes of argument matching, a non-static member function is considered to have an extra parameter,
which must match the pointer specified in the normalized member function call (13.2.1) as if the pointer
were also an argument in the call. No temporaries will be introduced for this extra parameter and no user-
defined conversions will be applied to achieve a type match. The type of this extra parameter is the type of
the keywordthis (9.4.1) within the member function. For example, for aconst member function of
classX, the extra parameter is assumed to have typeconst X* .

48)Note thatcv-qualifierson the type of objects are significant in overload resolution for both lvalue and rvalue objects.

13.2.2 Argument matching DRAFT: 27 May 1994 Overloading 13– 5

6 How well a functionmatchesan argument is based on the sequence of implicit conversions that can be
applied to the argument to yield a value of the type required by the corresponding parameter of the func-
tion. For the purposes of argument matching, no sequence of conversions is considered that

(a) does not lead to the type required by the parameter, or

(b) contains more than one user-defined conversion, or

(c) can be shortened into another considered sequence by deleting one or more conversions. (For
example,int →float →double is a sequence of conversions fromint to double , but it is
not considered because it contains the shorter sequenceint →double .)

7 Some sequences of conversions are better than others according to rules that are given below. If,
according to these rules, there is a single sequence of conversions that is uniquely better than all the rest,
it is called the function’sbest-matchingsequence for the argument. One function matches an argument
better than another if it has a best-matching sequence for that argument and its best-matching sequence
is better than the best-matching sequence of the other function. A function is a best match for an argu-
ment if it has a best-matching sequence for that argument and no other function is a better match for the
argument.

Box 59

I feel I’ve gone out on a limb with the preceding paragraph. I don’t honestly believe that earlier drafts
actually explained how a best-matching function is derived from best-matching sequences. Nor did it
explain what happens if there is more than one best-matching sequence._ __






_ __






8 An ellipsis in a parameter list (8.3.5) is a match for an argument of any type.

9 Except as mentioned below, the followingtrivial conversionsinvolving a typeT do not affect which of
two conversion sequences is better: the conversion of an argument of type“pointer tocv1 T” to the
type“pointer tocv2 T” if the set of cv-qualifierscv1 is a subset ofcv2(7.1.5 see also 8.5). Where nec-
essary,const andvolatile are used as tie-breakers as described in rule [1] below.

Box 60

The table was removed. "T"->"T&", "T&"- >"T", "T&"- >"const T&", "T&"->"volatile T&", "T&"-
>"const volatile T&" were removed because a reference initialization is considered a binding and not a
conversion. As well, expressions of reference type are transformed into lvalue expressions very early
during expression processing, before argument matching takes place. "T[]"->"T*", "T(args)"-
>"(*T)(args)" were removed because expressions of type "array of" and of type "function of" are trans-
formed into expressions of type "pointer to" and "pointer to function of" very early during expression
processing, before argument matching takes place. "T"->"const T", "T"->"volatile T", "T"->"const
volatile T" were removed because the cv-qualifiers of pass-by-value parameters do not participate in the
function type._ __













_ __













10 If a parameter is of typeconst T&, the effect of binding the reference to a temporary (8.5.3) does not
affect argument matching. Any function that would require initializing a non-const reference with a
temporary (8.3.2) is excluded as a match during overload resolution.

11 Sequences of conversions are considered according to these rules:

12
[1] Exact match: Sequences of zero or more trivial conversions are better than all other sequences.

[2] Match with promotions: Of sequences not mentioned in [1], those that contain only integral pro-
motions (4.1), conversions fromfloat to double , and trivial conversions are better than all
others.

[3] Match with standard conversions: Of sequences not mentioned in [2], those with only standard
(4) and trivial conversions are better than all others. Of these, ifB is derived directly or

13– 6 Overloading DRAFT: 27 May 1994 13.2.2 Argument matching

indirectly fromA, converting aB* to A* is better than converting tovoid* or const void* .
Further, if C is publicly derived directly or indirectly fromB, converting aC* to B* is better
than converting toA* and converting aC to B& is better than converting toA&. Similarly, con-
verting anA::* to B::* is better than converting anA::* to C::*.

[4] Match with user-defined conversions: Of sequences not mentioned in [3], those that involve only
user-defined conversions (12.3), standard (4) and trivial conversions are better than all other
sequences.

[5] Match with ellipsis: Sequences that involve matches with the ellipsis are worse than all others.

13 User-defined conversions are selected based on the type of variable being initialized or assigned to.

14
Box 61

Where did this come from? It relates to conversion sequences and ambiguities therein, but it is not in
the context of overload resolution. Are there other places that these conversion sequences are used in
the language?_ __






_ __






15 class Y {
// ...

public:
operator int();
operator double();

};

void f(Y y)
{

int i = y; // call Y::operator int()
double d;
d = y; // call Y::operator double()
float f = y; // error: ambiguous

}

16 Standard conversions (4) may be applied to the argument of a user-defined conversion, and to the result of a
user-defined conversion.

struct S { S(long); operator int(); };

void f(long), f(char*);
void g(S), g(char*);
void h(const S&), h(char*);

void k(S& a)
{

f(a); // f(long(a.operator int()))
g(1); // g(S(long(1)))
h(1); // h(S(long(1)))

}

Except when one conversion sequence is a subsequence of another, if two conversion sequences each con-
tain a user-defined conversion, any standard conversions also used in the sequences do not affect which
sequence is better. For example,

13.2.2 Argument matching DRAFT: 27 May 1994 Overloading 13– 7

class X {
public:

X(int);
};

class Y {
public:

Y(long);
};
class Z {
public:

operator int();
};

void f(X);
void f(Y);
void g(int);
void g(double);

void g()
{

f(1); // ambiguous
Z z;
g(z); // okay -- g(int(z))

}

The call f(1) is ambiguous despitef(y(long(1))) needing one more standard conversion than
f(x(1)) , and the callg(z) is unambiguous even thoughg(double(int(z)) has only one user-
defined conversion. The difference is that the two conversion sequences found forf() contain two
differentuser-defined conversions and neither sequence is a subsequence of the other, while the two con-
version sequences found forg() contain the same user-defined conversion and one is a subsequence of the
other.

17 No preference is given to conversion by constructor (12.1) over conversion by conversion function (12.3.2)
or vice versa.

struct X {
operator int();

};

struct Y {
Y(X);

};

Y operator+(Y,Y);

void f(X a, X b)
{

a+b; // error, ambiguous:
// operator+(Y(a), Y(b)) or
// a.operator int() + b.operator int()

}

[over.over] 13.3 Address of overloaded function

1 A use of a function name without arguments selects, among all functions of that name that are in scope, the
(only) function that exactly matches the target. The target may be

— an object being initialized (8.5)

— the left side of an assignment (5.17)

13– 8 Overloading DRAFT: 27 May 1994 13.3 Address of overloaded function

— a parameter of a function (5.2.2)

— a parameter of a user-defined operator (13.4)

— the return value of a function, operator function, or conversion (6.6.3)

— an explicit type conversion (5.2.3, 5.4)

2 Note that iff() andg() are both overloaded functions, the cross product of possibilities must be con-
sidered to resolvef(&g) , or the equivalent expressionf(g) .

3 For example,

int f(double);
int f(int);
(int (*)(int))&f; // cast expression as selector
int (*pfd)(double) = &f; // selects f(double)
int (*pfi)(int) = &f; // selects f (int)
int (*pfe)(...) = &f; // error: type mismatch

The last initialization is ill-formed because nof() with type int(...) has been defined, and not
because of any ambiguity.

4 Note also that there are no standard conversions (4) of one pointer to function type into another (4.6). In
particular, even ifB is a public base ofDwe have

D* f();
B* (*p1)() = &f; // error

void g(D*);
void (*p2)(B*) = &g; // error

[over.oper] 13.4 Overloaded operators

1 A function declaration having one of the followingoperator-function-ids as its name declares anoperator
function. An operator function is said toimplementthe operator named in itsoperator-function-id.

operator-function-id:
operator operator

operator: one of
new delete new[] delete[]
+ - * / % ^ & | ~
! = < > += -= *= /= %=
^= &= |= << >> >>= <<= == !=
<= >= && || ++ -- , ->* ->
() []

The last two operators are function call (5.2.2) and subscripting (5.2.1).

2 Both the unary and binary forms of

+ - * &

can be overloaded.

3 The following operators cannot be overloaded:

. .* :: ?:

nor can the preprocessing symbols# and## (16).

4 Operator functions are usually not called directly; instead they are invoked to evaluate the operators they
implement (13.4.1 - 13.4.7). They can be explicitly called, though. For example,

13.4 Overloaded operators DRAFT: 27 May 1994 Overloading 13– 9

complex z = a.operator+(b); // complex z = a+b;
void* p = operator new(sizeof(int)*n);

5 The allocation and deallocation functions,operator new , operator new[] , operator delete
andoperator delete[] , are described completely in 12.5. The attributes and restrictions found in the
rest of this section do not apply to them unless explicitly stated in 12.5.

6 An operator function must either be a non-static member function or have at least one parameter whose
type is a class, a reference to a class, an enumeration, or a reference to an enumeration. It is not possible to
change the precedence, grouping, or number of operands of operators. The meaning of the operators=,
(unary)&, and, (comma), predefined for each type, may be changed for specific types by defining operator
functions that implement these operators. Except foroperator= , operator functions are inherited; see
12.8 for the rules foroperator= .

7 The identities among certain predefined operators applied to basic types (for example,++a ≡ a+=1) need
not hold for operator functions. Some predefined operators, such as+=, require an operand to be an lvalue
when applied to basic types; this is not required by operator functions.

8 An operator function cannot have default arguments (8.3.6).

9 Operators not mentioned explicitly below in 13.4.3 to 13.4.7 act as ordinary unary and binary operators
obeying the rules of section 13.4.1 or 13.4.2.

[over.unary] 13.4.1 Unary operators

1 A prefix unary operator may be implemented by a non-static member function (9.4) with no parameters or a
non-member function with one parameter. Thus, for any prefix unary operator@, @xcan be interpreted as
eitherx.operator@() or operator@(x) . If both forms of the operator function have been declared,
the rules in 13.4.8 determine which, if any, interpretation is used. See 13.4.7 for an explanation of the post-
fix unary operators++ and-- . 

2 The unary and binary forms of the same operator are considered to have the same name. Consequently, a
unary operator can hide a binary operator from an enclosing scope, and vice versa.

[over.binary] 13.4.2 Binary operators

1 A binary operator may be implemented either by a non-static member function (9.4) with one parameter or
by a non-member function with two parameters. Thus, for any binary operator@, x@ycan be interpreted as
either x.operator@(y) or operator@(x,y) . If both forms of the operator function have been
declared, the rules in 13.4.8 determines which, if any, interpretation is used.

[over.ass] 13.4.3 Assignment

1 The assignment functionoperator= must be a non-static member function with exactly one parameter.
It implements the assigment operator,=. It is not inherited (12.8). Instead, unless the user defines
operator= for a classX, operator= is defined, by default, as memberwise assignment of the members
of classX.

X& X::operator=(const X& from)
{

// copy members of X
}

[over.call] 13.4.4 Function call

1 operator() must be a non-static member function. It implements the function call syntax

postfix-expression(expression-listopt)

where thepostfix-expressionevaluates to a class object and the possibly emptyexpression-listmatches the

13– 10 Overloading DRAFT: 27 May 1994 13.4.4 Function call

parameter list of anoperator() member function of the class. Thus, a callx(arg1,arg2,arg3) is
interpreted asx.operator()(arg1,arg2,arg3) for a class objectx .

[over.sub] 13.4.5 Subscripting

1 operator[] must be a non-static member function. It implements the subscripting syntax

postfix-expression[expression]

Thus, a subscripting expressionx[y] is interpreted asx.operator[](y) for a class objectx .

[over.ref] 13.4.6 Class member access

1 operator-> must be a non-static member function taking no parameters. It implements class member
access using->

postfix-expression-> primary-expression

An expressionx->m is interpreted as(x.operator->())->m for a class objectx . It follows that
operator-> must return either a pointer to a class that has a membermor an object of or a reference to a
class for whichoperator-> is defined.

[over.inc] 13.4.7 Increment and decrement

1 The prefix and postfix increment operators can be implemented by a function calledoperator++ . If this
function is a member function with no parameters, or a non-member function with one class parameter, it
defines the prefix increment operator++ for objects of that class. If the function is a member function with
one parameter (which must be of typeint) or a non-member function with two parameters (the second
must be of typeint), it defines the postfix increment operator++ for objects of that class. When the post-
fix increment is called, theint argument will have value zero. For example,

class X {
public:

const X& operator++(); // prefix ++a
const X& operator++(int); // postfix a++

};

class Y {
public:
};
const Y& operator++(Y&); // prefix ++b
const Y& operator++(Y&, int); // postfix b++

void f(X a, Y b)
{

++a; // a.operator++();
a++; // a.operator++(0);
++b; // operator++(b);
b++; // operator++(b, 0);

a.operator++(); // explicit call: like ++a;
a.operator++(0); // explicit call: like a++;
operator++(b); // explicit call: like ++b;
operator++(b, 0); // explicit call: like b++;

}

2 The prefix and postfix decrement operators-- are handled similarly.

13.4.8 DRAFT: 27 May 1994 Overloading 13– 11
Overloaded operators in expressions

[over.oper.funcs] 13.4.8 Overloaded operators in expressions

1 To determine which operator function is to be invoked to implement an expression involving an operator,
the operator notation is first transformed to the equivalent function-call notation as summarized in the Table
12 (where @ denotes one of the operators covered in the specified section).

Table 12—relationship between operator and function call notation
_ __
Section Expression Member function Non-member function_ ___ __
13.4.1 @a (&a)->operator@ () operator@ (a)
13.4.2 a@b (&a)->operator@ (b) operator@ (a, b)
13.4.3 a=b (&a)->operator= (b) ---
13.4.4 a(b,...) (&a)->operator()(b,...) ---
13.4.5 a[b] (&a)->operator[](b) ---
13.4.6 a-> (&a)->operator-> () ---
13.4.7 a@ (&a)->operator@ (1) operator@ (a, 1)_ __ 























































2 If no operand of the operator has a type that is a class, a reference to a class, an enumeration, or a reference
to an enumeration, the operator is assumed to be a built-in operator and interpreted accordingly. For exam-
ple: 

struct Thing { 
Thing(char*); 
Thing operator+(char*); 
operator char*(); 

}; 

void f() 
{ 

char* p = "one" + "two"; // ill-formed 
int i = 1 + 1; // i = 2 

} 

The declaration ofp is ill-formed because neither operand of+ is a (pointer or reference to a) class or
enum. The operands are not implicitly converted toThing and the + does not refer to 
Thing::operator+(char*) . Similarly, 1+1 is always 2 regardless of any other definitions of
operator+ .

3 If the first operand of the operator is an object or reference to an object of classX, the operator could be
implemented by a member operator function ofX. A set of candidate member functions is constructed for
theoperator-function-idas if it were named in a member call as a member of the first operand according to
the rules in 13.2.1.

4 If the operator is either a unary or binary operator (sections 13.4.1, 13.4.2, or 13.4.7) and either operand has
a type that is a class, reference to a class, an enumeration, or a reference to an enumeration, the operator
could be implemented by a non-member operator function. A set of candidate functions is constructed for
theoperator-function-idas if it were named in an ordinary call according to the rules in 13.2.1.

5 If both sets of candidate functions described above are empty, the operator is assumed to be a built-in oper-
ator and interpreted accordingly. Otherwise, the two sets are combined into one set of candidate functions
from which an appropriate function is selected according to the argument matching rules defined in 13.2.2.

_ ___ ___

14 Templates [temp]
_ ___ ___

1 A classtemplatedefines the layout and operations for an unbounded set of related types. For example, a
single class templateList might provide a common definition for list ofint , list of float , and list of
pointers toShapes. A functiontemplatedefines an unbounded set of related functions. For example, a
single function templatesort() might provide a common definition for sorting all the types defined by
theList class template.

2 A templatedefines a family of types or functions.

template-declaration:
template < template-parameter-list> declaration

template-parameter-list:
template-parameter
template-parameter-list, template-parameter

Thedeclarationin a template-declarationmust declare or define a function or a class, define a static data
member of a template class, or define a template member of a class. Atemplate-declarationis a
declaration. A template-declarationis a definition (also) if itsdeclarationdefines a function, a class, or a
static data member of a template class. There must be exactly one definition for each template in a pro-
gram. There can be many declarations.

3 The names of a template obeys the usual scope and access control rules. Atemplate-declarationmay 
appear only as a global declaration, as a member of a namespace, as a member of a class, or as a member of
a class template. A member template may not bevirtual . A destructor may not be a template. A local
class may not have a member template.

4 A template shall not have C linkage. If the linkage of a template is something other than C or C + +, the 
behavior is implementation-defined. 

5 A vector class template might be declared like this:

template<class T> class vector {
T* v;
int sz;

public:
vector(int);
T& operator[](int);
T& elem(int i) { return v[i]; }
// ...

};

The prefixtemplate <class T> specifies that a template is being declared and that atype-idT will be
used in the declaration. In other words,vector is a parameterized type withT as its parameter. A class
template definition specifies how individual classes can be constructed much as a class definition specifies
how individual objects can be constructed. 

6 A member template may be defined within its class or separately. For example: 

14– 2 Templates DRAFT: 27 May 1994 14 Templates

template<class T> class string { 
public: 

template<class T2> compare(const T2&); 
template<class T2> string(const string<T2>& s) { /* ... */ } 
// ... 

}; 

template<class T> template<class T2> string<T>::compare(const T2& s) 
{ 

// ... 
} 

[temp.names] 14.1 Template names

1 A template can be referred to by atemplate-id:

template-id:
template-name< template-argument-list>

template-name:
identifier

template-argument-list:
template-argument
template-argument-list, template-argument

template-argument:
assignment-expression
type-id
template-name 

2 A template-idthat names a template class is aclass-name(9).

3 A template-idthat names a defined template class can be used exactly like the names of other defined
classes. For example:

vector<int> v(10);
vector<int>* p = &v;

Template-ids that name functions are discussed in 14.9.

4 A template-idthat names a template class that has been declared but not defined can be used exactly like
the names of other declared but undefined classes. For example:

template<class T> class X; // X is a class template

X<int>* p; // ok: pointer to undefined class X<int>
X<int> x; // error: object of undefined class X<int>

5 The name of a template followed by a< is always taken as the beginning of atemplate-idand never as a
name followed by the less-than operator. Similarly, the first non-nested> is taken as the end of the
template-argument-listrather than a greater-than operator. For example:

template<int i> class X { /* ... */ }

X< 1>2 >x1; // syntax error
X<(1>2)>x2; // ok

template<class T> class Y { /* ... */ }
X< Y<1> > x3; // ok

14.1 Template names DRAFT: 27 May 1994 Templates 14– 3

Box 62

Should we bless a hack allowingX<Y<1>>? (yes)  _ __



_ __




6 The name of a class template may not be declared to refer to any other template, class, function, object,
namespace, value, or type in the same scope. A global template name shall be unique in a program.

[temp.res] 14.2 Name resolution

1 A name used in a template is assumed not to name a type unless it has been explicitly declared to refer to a
type in the context enclosing the template declaration or in the template itself before its use. For example:

// no B declared here

class X;

template<class T> class Y {
class Z; // forward declaration of member class
typedef T::A; // A is a type name

void f() {
X* a1; // declare pointer to X 
T* a2; // declare pointer to T 
Y* a3; // declare pointer to Y 
Z* a4; // declare pointer to Z 
T::A* a5; // declare pointer to T’s A 
B* a6; // B is not a type name: 

// multiply B by a6 
}

};

2 The construct: 

type-name-declaration: 
typedef qualified-name ; 

is adeclarationthat states thatqualified-namemust name a type, but gives no clue to what that type might
be. The leftmost identifier of thequalified-namemust be atemplate-argumentname.

Box 63

I have chosen the most restrictive variant of this idea. We ought to consider if the construct should be
allowed for a nonqualified name, and if the construct would be useful outside templates._ __





_ __





3 Knowing which names are type names allows the syntax of every template declaration to be checked. Syn-
tax errors in a template declaration can therefore be diagnosed at the point of the declaration exactly as
errors for non-template constructs. Other errors, such as type errors, cannot be diagnosed until later; such
errors may be diagnosed at the point of instantiation or at the point where member functions are generated
(14.3). Errors that can be diagnosed at the point of a template declaration, may be diagnosed there or later
together with the type errors.

4 Three kinds of names can be used within a template definition:

— The name of the template itself, the names of thetemplate-parameters, and names declared within
the template itself.

— Names from the scope of the template definition.

— Names dependent on atemplate-argumentfrom the scope of a template instantiation. 

14– 4 Templates DRAFT: 27 May 1994 14.2 Name resolution

5 For example:

#include<iostream.h>

template<class T> class Set {
T* p;
int cnt;

public:
Set();
Set<T>(const Set<T>&);
void printall()
{

for (int i = 0; i<cnt; i++)
cout << p[i] << ’\n’;

}
// ...

};

When looking for the declaration of a name used in a template definition the usual lookup rules (9.3) are
first applied. Thus, in the example,i is the local variablei declared inprintall, cnt is the member
cnt declared inSet , andcout is the standard output stream declared iniostream.h . However, not 
every declaration can be found this way, the resolution of some names must be postponed until the actual
template-argumentis known. For example, theoperator<< needed to printp[i] cannot be known
until it is known what typeT is (14.2.3).

[temp.local] 14.2.1 Locally declared names

1 Within the scope of a template or a specialization of a template the name of the template is equivalent to the
name of the template qualified by thetemplate-parameter. Thus, the constructor forSet can be referred to
asSet() or Set<T>() . Other specializations (14.5) of the class can be referred to by explicitly qualify-
ing the template name with appropriatetemplate-arguments. For example: 

template<class T> class X {
X* p; // meaning X<T>
X<T>* p2;
X<int>* p3;

};

template<class T> class Y; 

class Y<int> { 
Y* p; // meaning Y<int> 

}; 

See 14.6 for the scope oftemplate-parameters.

[temp.encl] 14.2.2 Names from the template’s enclosing scope

1 If a name used in a template isn’t defined in the template definition itself, names declared in the scope
enclosing the template are considered. If the name used is found there, the name used refers to the name in
the enclosing context. For example:

14.2.2 DRAFT: 27 May 1994 Templates 14– 5
Names from the template’s enclosing scope

void g(double);
void h();

template<class T> class Z {
public:

void f() {
g(1); // calls g(double)
h++; // error: cannot increment function

}
};

void g(int); // not in scope at the point of the template
// definition, not considered for the call g(1)

In this, a template definition behaves exactly like other definitions. For example:

void g(double);
void h();

class ZZ {
public:

void f() {
g(1); // calls g(double)
h++; // error: cannot increment function

}
};

void g(int); // not in scope at the point of class ZZ
// definition, not considered for the call g(1)

Note that if an implementation somehow replicates class or template definitions so that names used in the
class or template bind to different names in different compilations, the one-definition rule has been violated
and any use of the class or template is ill-formed. Violation of the one-definition rule by template instantia-
tion is a non-required diagnostic.

Box 64

Are violations of the one-definition rule required if violation is in a single file? (no)_ ___



_ ___




[temp.dep] 14.2.3 Dependent names

1 Some names used in a template are neither known at the point of the template definition nor declared within
the template definition. Such names shall depend on atemplate-argumentand shall be in scope at the point
of the template instantiation (14.3). For example:

class Horse {
// ...

};

ostream& operator<<(ostream&,const Horse&); 

void hh(Set<Horse>& h)
{

h.printall();
}

In the call ofSet<Horse>::printall() , the meaning of the<< operator used to printp[i] in the
definition ofSet<T>::printall() (14.2), is

operator<<(ostream&,const Horse&);

This function takes an argument of typeHorse and is called from a template with atemplate-parameterT 

14– 6 Templates DRAFT: 27 May 1994 14.2.3 Dependent names

for which thetemplate-argumentis Horse . Because this function depends on atemplate-argumentthe call 
is well-formed.

2 A function calldepends ona template-argumentif the call would have a different resolution or no resolu-
tion if the actual template type were missing from the program. Examples of calls that depend on an argu-
ment typeT are: 

1) The function called has a parameter that depends onT according to the type deduction rules (14.9.2).
For example:f(T) , f(Vector<T>) , andf(const T*) . 

2) The type of the actual argument depends onT. For example:f(T(1)) , f(t) , f(g(t)) , and
f(&t) assuming thatt is aT. 

3) A call is resolved by the use of a conversion toT without either an argument or a parameter of the
called function being of a type that depended onT as specified in (1) and (2). For example: 

struct B { }; 
struct T : B { }; 
struct X { operator T(); }; 

void f(B); 

void g(X x) 
{ 

f(x); // meaning f(B(x.operator T())) 
// so the call f(x) depends on T 

} 

Box 65

It has been suggested that a full list of cases would be a better definition than the general rule we
decided on in San Jose. I strongly prefer a general rule, but we should be open to clarifications if people
feel the need for them._ __






_ __






3 This ill-formed template instantiation uses a function that does not depend on atemplate-arguments: 

template<class T> class Z { ∗
public:

void f() {
g(1); // g() not found in Z’s context.

// Look again at point of instantiation
}

};

void g(int);

void h(const Z<Horse>& x) 
{

x.f(); // error: g(int) called by g(1) does not depend 
// on template-parameter ‘‘Horse’’ 

}

The callx.f() gives raise to the specialization: 

Z<Horse>::f() { g(1); }

The call g(1) would call g(int) , but since that call in no way depends on thetemplate-argument 
Horse and becauseg(int) wasn’t in scope at the point of the definition of the template, the callx.f() 
is ill-formed.

14.2.3 Dependent names DRAFT: 27 May 1994 Templates 14– 7

4 On the other hand:

void h(const Z<int>& y) ∗
{

y.f(); // fine: g(int) called by g(1) depends 
// on template-parameter ‘‘int’’ 

}

Here, the cally.f() gives raise to the specialization: 

Z<int>::f() { g(1); }

The callg(1) callsg(int) , and since that call depends on thetemplate-argumentint , the cally.f() 
is acceptable eventhoughg(int) wasn’t in scope at the point of the template definition. 

5 A name from a base class may hide the name of atemplate-parameter. For example: 

struct A { 
struct B { /* ... */ }; 

}; 

template<class B> struct X : A { 
B b; // A’s B 

}; 

A name of a member may hide the name of atemplate-parameterin a member function definition. For
example: 

template<class T> struct A { 
struct B { /* ... */ }; 
void f(); 

}; 

template<class B> void A::f() 
{ 

B b; // A’s B, not the template parameter 
} 

[temp.inject] 14.2.4 Non-local names declared within a template

1 Names that are not template members can be declared within a template class or function. However, such
declarations must match declarations in the scope at the point of their declaration or instantiation. For
example:

void f(); ∗
// no Y, Z, or g here 

template<class T> class X { 
friend class Y; // error: No Y in scope 
class Z * p; // error: No Z in scope 
friend X operator+(const X&, const X&); // checking delayed 
friend void f(); // ok 
friend void f(T); // checking delayed 

}; 

class C { 
friend C operator+(const C&, const C&); 

}; 
void f(C); 

class D { }; 

14– 8 Templates DRAFT: 27 May 1994 14.2.4
Non-local names declared within a template

void g() 
{ 

X<C> c; // ok: operator+(const C&, const C&) and f(C) in scope 
X<D> d; // error: no operator+(const D&, const D&) or f(D) 

} 

[temp.inst]14.3 Template instantiation

1 A class generated from a class template is called a generated class. A function generated from a function
template is called a generated function. A static data member generated from a static data member template
is called a generated static data member. A class defined with atemplate-idas its name is called an explic-
itly specialized class. A function defined with atemplate-idas its name is called an explicitly specialized
function. A static data member defined with atemplate-idas its name is called an explicitly specialized
static data member. A specialization is a class, function, or static data member that is either generated or
explicitly specialized; see_temp.dcls_.

2 The act of generating a class, function, or static data member from a template is commonly referred to as
template instantiation.

3 The point of instantiation of a template is the point where names dependent on thetemplate-argumentare 
bound. That point is immediately before the global declaration containing the first use of the template
requiring its definition. This implies that names used in a template definition cannot be bound to local
names. For example:

// void g(int); not declared here

template<class T> class Y {
public:

void f() { g(1); }
};

void k(const Z<int>& h)
{

void g(int);
h.f(); // error: g(int) called by g(1) not found

}

Each compilation unit in which the definition of a template is used has a point of instantiation for the class.
If this causes names used in the template definition to bind to different names in different compilations, the
one-definition rule has been violated and any use of the template is ill-formed Such violation does not
require a diagnostic.

4 A template can be either explicitly instantiated for a given argument list or be implicitly instantiated. A
template that has been used in a way that require a specialization of its definition will have the specializa-
tion implicitly generated unless it has either been explicitly instantiated (14.4) or explicitly specialized
(14.5). A specialization will not be implicitly generated unless the definition of a template specialization is
required. For example:

template<class T> class Z {
void f();
void g();

};

14.3 Template instantiation DRAFT: 27 May 1994 Templates 14– 9

void h()
{

Z<int> a; // instantiation of class Z<int> required
Z<char>* p; // instantiation of class Z<char> not required
Z<double>* q; // instantiation of class Z<double> not required

a.f(); // instantiation of Z<int>::f() required
p->g(); // instantiation of class Z<char> required, and

// instantiation of Z<char>::g() required
}

Nothing in this example requiresclass Z<double> , Z<int>::g() , or Z<char>::f() to be instan-
tiated. An implementation shall not instantiate a function or a class that does not require instantiation.
However, virtual functions may be instantiated for implementation purposes.

5 If a template for which a definition is in scope is used in a way that involves overload resolution or conver-
sion to a base class, the definition of a template specialization is required. For example:

template<class T> class B { /* ... */ };
template<class T> class D : public B<T> { /* ... */ }; 

void f(void*);
void f(B<int>*);

void g(D<int>* p, D<char>* pp) 
{

f(p); // instantiation of D<int> required: call f(B<int>*)

B<char>* q = pp; // instantiation of D<char> required: 
// convert D<char>* to B<char>* 

}

6 If an instantiation of a class template is required and the template is declared but not defined, the program is
ill-formed. For example: 

template<class T> class X; 

A<char> ch; // error: definition of X required 

7 The result of an infinite recursion in instantiation is undefined. In particular, an implementation is allowed
to report an infinite recursion as being ill-formed. For example:

template<class T> class X {
X<T>* p; // ok
X<T*> a; // instantiation of X<T> requires

// the instantiation of X<T*> which requires
// the instantiation of X<T**> which ...

};

8 No program shall explicitly instantiate any template more than once, both explicitly instantiate and explic-
itly specialize a template, or specialize a template more than once for a given set oftemplate-arguments. 
An implementation is not required to diagnose a violation of this rule.

9 An explicit specialization or explicit instantiation of a template must be in the namespace in which the tem-
plate was defined. Implicitly generated template classes, functions, and static data members are placed in
the namespace where the template was defined. For example: 

14– 10 Templates DRAFT: 27 May 1994 14.3 Template instantiation

namespace N { 
template<class T> class X { /* ... */ }; 
template<class T> class Y { /* ... */ }; 
template<class T> class Z { 

void f(int i) { g(i); } 
// ... 

}; 

class X<int> { /* ... */ }; // ok: specialization in same namspace 
} 

template class Y<int> { // error: explicit instantiation 
// in different namespace 

// ... 
}; 

void g(int); 
namespace M { 

void g(int); 
N::Z<int> nz; // which g() does N::Z<int>::f() call? 

// ::g() 
nx.f(2); 

} 

The reason::g() is called is that the point of instantiation is before M_ _. 

Box 66 
This resolution hasn’t specifically been voted on. The behavior is chosen to match template uses in classes
and functions.  _ __





_ __



 

10 Recursive instantiation is possible. For example: 

template<int i> int fac() { return i>1 ? i*fac<i-1>() : 1; } 

int f() 
{ 

return fac<17>(); 
} 

There shall be an implementation quantity that specifies the limit on the depth of recursive instantiations.

[temp.explicit] 14.4 Explicit instantiation

1 The syntax for explicit instantiation is:

instantiation:
template specialization

For example: 

template class vector<char> { /* ... */ }; 

// instantiate sort(vector<char>&): 
template void sort<char>(vector<char>&); 

2 A trailing template-argumentmay be left unspecified in an explicit instantiation or explicit specialization of
a template function provided it can be deduced from the function argument type. For example: 

// deduce template-argument: 
template void sort<>(vector<int>&);

14.4 Explicit instantiation DRAFT: 27 May 1994 Templates 14– 11

Box 67 ∗
Can we instantiate if there is no definition in scope? Yes, but answering this question requires a model for
compilation of templates. See §4 of N0413/94– 0026._ __





_ __





3 The explicit instantiation of a class implies the instantiation of all of its members. Thus, it is not possible to
both explicitly instantiate a class and to specialize some of its members for a giventemplate-argument-list.

Box 68

Can we instantiate a class if the definition of some of its member functions are not in scope? Yes, but
answering this question requires a model for compilation of templates. See §4 of ANSI X3J16/94-0026,
ISO WG21/N0413._ __






_ __






[temp.spec] 14.5 Template specialization

1 ∗A specialized template function, template class, or static member of a template can be declared by a decla-
ration where the declared name is atemplate-id, that is:

specialization: 
template-name< template-argument-list> declaration 

For example:

template<class T> class stream; 

class stream<char> { /* ... */ };

template<class T> void sort(vector<T>& v) { /* ... */ }

void sort<char*>(vector<char*>& v) { /* ... */ } 

Given these declarations,stream<char> will be used as the definition of streams ofchar s; other
streams will be handled by template classes generated from the class template. Similarly,sort<char*> 
will be used as the sort function for arguments of typevector<char*> ; othervector types will be
sorted by functions generated from the template.

2 A declaration of the template being specialized must be in scope at the point of declaration of a specializa-
tion. For example:

class X<int> { /* ... */ }; // error: X not a template

template<class T> class X { ... };

class X<char*> { /* ... */ }; // fine: X is a template

3 An explicitly specialized class or an explicitly specialized function must be declared before it can be used.
Specializing a class or a function after it has been used in a translation unit or in another translation unit is
ill-formed. For example:

template<class T> void sort(vector<T>& v) { /* ... */ }

void f(vector<String>& v)
{

sort(v); // use general template
// sort(vector<T>&), T is String

}

void sort<String>(vector<String>& v); // error: specialize after use
void sort<>(vector<char*>& v); // fine sort<char*> not yet used

If a function or class template has been explicitly specialized for atemplate-argumentlist no specialization 

14– 12 Templates DRAFT: 27 May 1994 14.5 Template specialization

will be implicitly generated for thattemplate-argumentlist.

4 Note that a function with the same name as a template and a type that exactly matches that of a template is
not a specialization (14.9.4).

[temp.param] 14.6 Template parameters

1 The syntax fortemplate-parameters is: 

template-parameter:
type-parameter
parameter-declaration

type-parameter:
class identifieropt

class identifieropt = type-name
typedef identifieropt

typedef identifieropt = type-name
template < template-parameter-list> class identifieropt 
template < template-parameter-list> class identifieropt = template-name 

For example: 

template<class T> myarray { /* ... */ }; 

template<class K, class V, template<class T> class C = myarray> 
class Map { 

C<K> key; 
C<V> value; 
// ... 

}; 

Box 69

This grammar leaves out namespacetemplate-parameters. See §2 of ANSI X3J16/94-0026, ISO
WG21/N0413._ __





_ __





Box 70 
This grammar should be modified to acceptstruct as well asclass for templatetemplate-parameters.  _ ___




_ ___


 

2 Default arguments may not be specified in a declaration or a definition of a specialization. 

3 A type-parameterdefines itsidentifier to be atype-id in the scope of the template declaration. Atype-
parametermay not be redeclared within its scope (including nested scopes). A non-typetype-parameter
may not be assigned to or in any other way have its value changed. For example:

template<class T, int i> class Y {
int T; // error: template-parameter redefined 
void f() {

char T; // error: template-parameter redefined 
i++; // error: change of template-argument value 

}
};

template<class X> class X; // error: template-parameter redefined 

4 A template-parameterthat could be interpreted as either anparameter-declarationor a type-parameter
(because itsidentifier is the name of an already existing class) is taken as atype-parameter. A template- 
parameterhides a variable, type, constant, etc. of the same name in the enclosing scope. For example:

14.6 Template parameters DRAFT: 27 May 1994 Templates 14– 13

class T { /* ... */ };
int i; 

template<class T, T i> void f(T t) 
{ 

T t1 = i; // template-arguments T and i 
::T t2 = ::i; // globals T and i 

} 

Here, the templatef has atype-parametercalledT, rather than an unnamed non-type parameter of classT.
There is no semantic difference betweenclass andtypedef in a template-parameter.

5 There are no restrictions on what can be atemplate-argumenttype beyond the constraints imposed by the
set of argument types (14.7). In particular, reference types and types containingcv-qualifiers are
allowed. A non-referencetemplate-argumentcannot have its address taken. When a non-reference
template-argumentis used as an initializer for a reference a temporary is always used. For example:

template<const X& x, int i> void f()
{

&x; // ok
&i; // error: address of non-reference template-argument 

int& ri = i; // error: non-const reference bound to temporary 
const int& cri = i; // ok: reference bound to temporary 

}

6 Note that because there are no constant expression of floating type and standard conversions are not applied
to template-arguments atemplate-parametercannot be of floating type. For example: 

template<double d> class X; // error 
template<double* pd> class X; // ok 
template<double& rd> class X; // ok 

7 A default template-argumentis a type or a value specified after= in a template-parameter. A default 
template-argumentmay be specified in a template declaration or a template definition. A function template
may not have defaulttemplate-arguments. The set of defaulttemplate-arguments available for use with a
template declaration or definition is obtained by merging the default arguments from the definition (if in
scope) and all declarations in scope in the same way default function arguments are (8.3.6). For example:

template<class T1, class T2 = int> class A;
template<class T1 = int, class T2> class A;

is equivalent to

template<class T1 = int, class T2 = int> class A;

If a template-parameterhas a default argument all subsequenttemplate-parameters must have a default
argument supplied in the same or previous declarations of the template. For example:

template<class T1 = int, class T2> class B; // error

A template-parametermay not be given default arguments by two different declarations in the same scope.

template<class T = int> class X;
template<class T = int> class X { /*... */ }; // error

The scope of atemplate-argumentextends from its point of declaration until the end of its template. In par-
ticular, atemplate-parametercan be used in the declaration of subsequenttemplate-parameters and their 
default arguments. For example:

template<class T, T* p, class U = T> class X { /* ... */ };
template<class T> void f(T* p = new T);

A template-parametercannot be used in precedingtemplate-parametersor their default arguments. 

14– 14 Templates DRAFT: 27 May 1994 14.6 Template parameters

8 Similarly, atemplate-argumentmay be used in the specification of base classes. For example: 

template<class T> class X : public vector<T> { /* ... */ };
template<class T> class Y : public T { /* ... */ };

Note that the use of atemplate-parameteras a base class implies that a class used as atemplate-argument 
must be defined and not just declared.

[temp.arg] 14.7 Template arguments

1 The types of thetemplate-arguments specified in atemplate-idmust match the types specified for the tem-
plate in itstemplate-parameter-list. For example,vector s as defined in 14 can be used like this:

vector<int> v1(20);
vector<complex> v2(30);

typedef vector<complex> cvec; // make cvec a synonym
// for vector<complex>

cvec v3(40); // v2 and v3 are of the same type

v1[3] = 7;
v2[3] = v3.elem(4) = complex(7,8);

2 Non-type non-referencetemplate-arguments must beconstant-expressions or addresses of objects or func-
tions with external linkage. In particular, a string literal (2.9.4) isnot an acceptabletemplate-argument 
because a string literal is the address of an object with static linkage. For example:

template<class T, char* p> class X {
// ...
X(const char* q) { /* ... */ } 

};

X<int,"Studebaker"> x1; // error: string literal as template-argument 

char* p = "Vivisectionist";
X<int,p> x2; // ok

Nor is a local type or an unnamed type an acceptabletemplate-argument. For example: 

void f()
{

struct S { /* ... */ };

X<S,p> x3; // error: local type used as template-argument 
}

Similarly, a referencetemplate-parametercannot be be bound to a temporary: 

template<const int& CRI) struct B { /* ... */ }; 

B<1> b2; // error: temporary required for template argument 

int c = 1; 
B<c> b1; // ok 

A template has no special access rights to itstemplate-argumenttypes. However, often a template doesn’t
need any. For example:

14.7 Template arguments DRAFT: 27 May 1994 Templates 14– 15

class Y {
private:

struct S { /* ... */ };
X<S> x; // most operations by X on S do not lead to errors

};

X<Y::S> y; // most operations by X on Y::S leads to errors

The templateX can useY::S without violating any access rules as long as it uses only the access through a
template-argumentthat does not explicitly mention A templatetype-parametercan be used in an
elaborated-type-specifier. However, a specialization of a template for which atype-parameterused this 
way is not in agreement with theelaborated-type-specifier(7.1.5) is ill-formed. For example:

template<class T> class X {
class T* p;

};

struct S { /* ... */ };
union U { /* ... */ };
enum E { /* ... */ };

X<S> s; // fine
X<int> i; // error: template-argument must be a class 
X<U> u; // error: template-argument must be a class 
X<E> e; // error: template-argument must be a class 

3 An argument for atemplate-parameterof reference type must be aconstant-expression, an object or func-
tion with external linkage, or a static class member. A temporary object is not an acceptable argument to a
template-parameterof reference type.

4 When defaulttemplate-argumentsare used, atemplate-argumentlist can be empty. In that case the empty
<> brackets must still be used. For example:

template<class T = char> class String;
String<>* p; // ok: String<char>
String* q; // syntax error

The notion of ‘‘array type decay’’ does not apply totemplate-parameters. For example: 

template<int a[5]> struct S { /* ... */ }; 
int v[5];
int* p = v;
S<v> x; // fine
S<p> y; // error

[temp.type] 14.8 Type equivalence

1 Two template-ids refer to the same class or function if theirtemplatenames are identical and their argu-
ments have identical values. For example,

template<class E, int size> class buffer;

buffer<char,2*512> x;
buffer<char,1024> y;

declaresx andy to be of the same type, and

14– 16 Templates DRAFT: 27 May 1994 14.8 Type equivalence

template<class T, void(*err_fct)()>
class list { /* ... */ };

list<int,&error_handler1> x1;
list<int,&error_handler2> x2;
list<int,&error_handler2> x3;
list<char,&error_handler2> x4;

declaresx2 andx3 to be of the same type. Their type differs from the types ofx1 andx4 .

[temp.fct] 14.9 Function templates

1 A function template specifies how individual functions can be constructed. A family of sort functions, for
example, might be declared like this:

template<class T> void sort(vector<T>);

A function template specifies an unbounded set of (overloaded) functions. A function generated from a
function template is called a template function, so is an explicit specialization of a function template; see
temp.dcls. Template arguments can either be explicitly specified in a call or be deduced from the func-
tion arguments.

[temp.arg.explicit] 14.9.1 Explicit template argument specification

1 Template arguments can be specified in a call by qualifying the template function name by the list of
template-arguments exactly astemplate-arguments are specified in uses of a class template. For example:

void f(vector<complex>& cv, vector<int>& ci)
{

sort<complex>(cv); // sort(vector<complex>)
sort<int>(ci); // sort(vector<int>)

}

and

template<class U, class V> U convert(V v);

void g(double d) 
{

int i = convert<int,double>(d); // int convert(double) 
char c = convert<char,double>(d); // char convert(double) 

}

Implicit conversions (4) are accepted for a function argument for which the parameter has been fixed by
explicit specification of atemplate-argument. For example:

template<class T> void f(T);

class complex {
// ...
complex(double);

};

void g()
{

f<complex>(1); // ok, means f<complex>((complex(1))
}

14.9.2 Template argument deduction DRAFT: 27 May 1994 Templates 14– 17

[temp.deduct] 14.9.2 Template argument deduction

1 Template arguments that can be deduced from the function arguments need not be explicitly specified. For
example,

void f(vector<complex>& cv, vector<int>& ci)
{

sort(cv); // sort(vector<complex>)
sort(ci); // sort(vector<int>)

}

and

void g(double d) 
{

int i = convert<int>(d); // int convert(double) 
int c = convert<char>(d); // char convert(double) 

}

A template type argumentT or a template non-type argumenti can be deduced from a function argument
composed from these elements:

T
cv-list T
T*
T&
T[integer-constant]
class-template-name<T>
type(*)(T) 
type T::*
T(*)()
type[i] 
class-template-name<i>

where theT in argument list form

type (*)(T)

includes argument lists with more than one arguments where at least one argument contains aT. Also, 
these forms can be used in the same way asT is for further composition of types. For example, 

X<int>(*)(v[6]) 

is of the form 

class-template-name<T> (*)(type[i]) 

which is a variant of 

type (*)(T) 

wheretypeis X<int> andT is v[6] . 

2 Note that a major array bound is not part of a function parameter type so it can’t be deduced from an argu-
ment:

14– 18 Templates DRAFT: 27 May 1994 14.9.2 Template argument deduction

template<int i> void f1(int a[10][i]);

template<int i> void f2(int a[i][10]);

void g(int v[10][10]) 
{

f1(v); // ok: i deduced to be 10
f1<10>(v); // ok 
f2(v); // error: cannot deduce template-argument i 
f2<10>(v); // ok 

}

Nontype parameters may not be used in expressions in the function declaration. The type of the function
template-parametermust match the type of thetemplate-argumentexactly. For example:

template<char c> class A { /* ... */ }; 
template<int i> void f(A<i>); // error: conversion not allowed 
template<int i> void f(A<i+1>); // error: expression not allowed

3 Every template-parameterspecified in thetemplate-parameter-listmust be either explicitly specified or
deduced from a function argument. If functiontemplate-arguments are specified in a call they are specified
in declaration order. Trailing arguments can be left out of a list of explicittemplate-arguments. For exam-
ple,

template<class X, class Y, class Z> X f(Y,Z);

void g()
{

f<int,char*,double>("aa",3.0);
f<int,char*>("aa",3.0); // Z is deduced to be double
f<int>("aa",3.0); // Y is deduced to be char*, and

// Z is deduced to be double
f("aa",3.0); // error X cannot be deduced

} 

A template-parametercannot be deduced from a default function argument. For example: 

template <class T> void f(T = 5, T = 7);

void g()
{

f(1); // fine: call f<int>(1,7)
f(); // error: cannot deduce T
f<int>(); // fine: call f<int>(5,7)

}

[temp.over] 14.9.3 Overload resolution

1 A template function may be overloaded either by (other) functions of its name or by (other) template func-
tions of that same name. Overloading resolution for template functions and other functions of the same
name is done in the following three steps: 

1) Look for an exact match (13.2) on functions; if found, call it. 

2) Look for a function template from which a function that can be called with an exact match can be
generated; if found, call it. 

3) Look for match with conversions. For arguments to ordinary functions and for arguments to a tem-
plate function that corresponds to parameters whose type does not depend on a deducedtemplate- 
parameter, the ordinary best match rules apply. For template functions, only the following

14.9.3 Overload resolution DRAFT: 27 May 1994 Templates 14– 19

conversions listed below applies. After the best matches are found for individual arguments, the
intersection rule (13.2.2) is used to look for a best match; if found, call it. 

2 For arguments that correspond to parameters whose type depends on a deduced template parameter, the
following conversions are allowed: 

— For a parameter of the formB<params> , whereparams is a template parameter list contain-
ing one or more deduced parameters, and argument of type ‘‘class derived fromB<params> ’’ 
may be converted toB<params> . Additionally, for a parameter of the formB<params>* , an 
argument of type ‘‘pointer to class derived fromB<params> ’’ may be converted to 
B<params>* . Similarly for references. 

— A pointer (reference) may be converted to a more qualified pointer (reference) type, according to
the rules in 4.6 (4.7). 

— ‘‘array of T’’ to ‘‘pointer to T.’’ 

— ‘‘function ...’’ to ‘‘pointer to function to’’

3 If no match is found the call is ill-formed. In each case, if there is more than one alternative in the first
step that finds a match, the call is ambiguous and is ill-formed.

4 A match on a template (step (2)) implies that a specific template function with parameters that exactly
match the types of the arguments will be generated (_temp.dcls_). Not even trivial conversions (13.2)
will be applied in this case.

Box 71

This is too strict. To match existing usage, a proposal for allowing at least some trivial conversions will
undoubtedly be accepted. See the proposal for a more general overloaded mechanism in
N0407/94– 0020 (issue 3.9)._ __






_ __






5 The same process is used for type matching for pointers to functions (13.3).

6 Here is an example:

template<class T> T max(T a, T b) { return a>b?a:b; };

void f(int a, int b, char c, char d)
{

int m1 = max(a,b); // max(int a, int b)
char m2 = max(c,d); // max(char a, char b)
int m3 = max(a,c); // error: cannot generate max(int,char)

}

7 For example, adding

int max(int,int);

to the example above would resolve the third call, by providing a function that could be called for
max(a,c) after using the standard conversion ofchar to int for c .

8 Here is an example involving conversions on a function argument involved intemplate-parameterdeduc- 
tion: 

template<class T> struct B { /* ... */ }; 
template<class T> struct D : public<T> { /* ... */ }; 
template<class T> void f(B<T>&); 

14– 20 Templates DRAFT: 27 May 1994 14.9.3 Overload resolution

void g(B<int>& bi, D<int>& di) 
{ 

f(bi); // f(bi) 
f(di); // f((B<int>&)di) 

} 

9 Here is an example involving conversions on a function argument not involved intemplate-parameter 
deduction: 

template<class T> void f(T*,int); 
template<class T> void f(T,char); 

void h(int* pi, int i, char c) 
{ 

f(pi,i); // f<int>(pi,i) 
f(pi,c); // f<char*>(pi,c) 
f(i,c); // f<int>(i,c); 
f(i,i); // f<int>(i,char(i)) 

} 

10 A function template definition is needed to generate specific versions of the template; only a function tem-
plate declaration is needed to generate calls to specific versions.

11 In case a call has explicitly qualifiedtemplate-arguments and requires overload resolution, the explicit
qualification is used first to determine the set of overloaded functions to be considered and overload resolu-
tion then takes place for the remaining arguments. For example:

template<class X, class Y, class Z> void f(X,Y*,Z); 
template<class X, class Y, class Z> void f(X*,Y,Z); 

void g(char* pc, int* pi)
{

f(0,0,0); // error: ambiguous: f<int,int,int>(int,int*,int)
// or f<int,int,int>(int*,int,int) ?

f<char>(pc,pi,0); // f<char,int*,int>(char*,int*,int)
f<char*>(pc,pi,0); // f<char*,int,int>(char*,int*,int) 

}

[temp.over.spec] 14.9.4 Overloading and specialization

1 A template function can be overloaded by a function with the same type as a potentially generated function.
For example:

template<class T> T max(T a, T b) { return a>b?a:b; }
int max(int a, int b);

int min(int a, int b);
template<class T> T min(T a, T b) { return a<b?a:b; }

Such an overloaded function is not a specialization. The declaration simply guides the overload resolution.
This implies that a definition ofmax(int,int) andmin(int,int) will be implicitly generated from
the templates. If such implicit instantiation is not wanted, the specialization syntax should be used instead:

template<class T> T max(T a, T b) { return a>b?a:b; }
int max<int>(int a, int b);

Defining a function with the same type as a template specialization that is called is ill-formed. For exam-
ple:

14.9.4 Overloading and specialization DRAFT: 27 May 1994 Templates 14– 21

template<class T> T max(T a, T b) { return a>b?a:b; }
int max(int a, int b) { return a>b?a:b; }

void f(int x, int y)
{

max(x,y); // error: duplicate definition of max() 
}

If the two definitions ofmax() are not in the same translation unit the diagnostic is not required. If a sepa-
rate definition of a functionmax(int,int) is needed, the specialization syntax can be used. If the con-
versions enabled by an ordinary declaration is also needed, both can be used. For example: 

template<class T> T max(T a, T b) { return a>b?a:b; } 
int max<>(int a, int b) { /* ... */ } 

void g(char x, char y) 
{ 

max(x,y); // max<char>(a,b) 
} 

int max(int,int); 

void f(char x, char y) 
{ 

max(x,y); // max<int>(iny(x),int(y)) 
} 

[temp.mem.func] 14.10 Member function templates

1 A member function of a template class is implicitly a template function with thetemplate-parameters of its 
class as itstemplate-parameters. For example,

template<class T> class vector {
T* v;
int sz;

public:
vector(int);
T& operator[](int);
T& elem(int i) { return v[i]; }
// ...

};

declares three function templates. The subscript function might be defined like this:

template<class T> T& vector<T>::operator[](int i)
{

if (i<0 || sz<=i) error("vector: range error");
return v[i];

}

2 The template-argumentfor vector<T>::operator[]() will be determined by the vector to which
the subscripting operation is applied.

vector<int> v1(20);
vector<complex> v2(30);

v1[3] = 7; // vector<int>::operator[]()
v2[3] = complex(7,8); // vector<complex>::operator[]()

14– 22 Templates DRAFT: 27 May 1994 14.11 Friends

[temp.friend] 14.11 Friends

1 A friend function of a template may or may not be a template function. For example,

template<class T> class task {
// ...
friend void next_time();
friend task<T>* preempt(task<T>*);
friend task* prmt(task*); // task is task<T>
friend class task<int>;
// ...

};

Here,next_time() andtask<int> become friends of alltask classes, and eachtask has appropri- 
ately typed functionspreempt() andprmt() as friends. Thepreempt functions might be defined as a
template.

template<class T> task<T>* preempt(task<T>* t) { /* ... */ } 

2 A friend template may not be defined within a class. For example: 

class A { 
friend template<class T> B; // ok 
friend template<class T> f(T); // ok 

friend template<class T> BB { /* ... /* }; // error 
friend template<class T> ff(T){ /* ... /* } // error 

}; 

[temp.static] 14.12 Static members and variables

1 Each template class or function generated from a template has its own copies of any static variables or
members. For example,

template<class T> class X {
static T s;
// ...

};

X<int> aa;
X<char*> bb;

HereX<int> has a static members of typeint andX<char*> has a static members of typechar* .

2 Static class member templates are defined similarly to member function templates. For example,

template<class T> T X<T>::s = 0;

int X<int>::s = 3;

3 Similarly,

template<class T> f(T* p)
{

static T s;
// ...

};

void g(int a, char* b)
{

f(&a);
f(&b);

}

14.12 Static members and variables DRAFT: 27 May 1994 Templates 14– 23

Here f(int*) has a static members of type int and f(char**) has a static members of type
char* . 

_ ___ ___

15 Exception handling [except]
_ ___ ___

1 Exception handling provides a way of transferring control and information from a point in the execution of∗
a program to anexception handlerassociated with a point previously passed by the execution. A handler
will be invoked only by athrow-expressioninvoked in code executed in the handler’stry-blockor in func-
tions called from the handler’stry-block.

try-block:
try compound-statement handler-seq

handler-seq:
handler handler-seqopt

handler:
catch (exception-declaration) compound-statement

exception-declaration:
type-specifier-seq declarator
type-specifier-seq abstract-declarator
type-specifier-seq
...

throw-expression:
throw assignment-expressionopt

A try-block is a statement(6). A throw-expressionis of typevoid . A throw-expressionis sometimes
referred to as a“throw-point.” Code that executes athrow-expressionis said to“throw an exception;” code
that subsequently gets control is called a“handler.”

2 A goto , break , return , or continue statement can be used to transfer control out of atry-block or 
handler, but not into one. When this happens, each variable declared in thetry-blockwill be destroyed in 
the context that directly contains its declaration. For example, 

lab: try { 
T1 t1; 
try { 

T2 t2; 
if (condition) 

goto lab; 
} catch(...) { /* handler 2 */ } 

} catch(...) { /* handler 1 */ } 

Here, executinggoto lab; will destroy first t2 , then t1 . Any exception raised while destroyingt2 
will result in executinghandler 2; any exception raised while destroyingt1 will result in executing 
handler 1.

[except.throw] 15.1 Throwing an exception

1 Throwing an exception transfers control to a handler. An object is passed and the type of that object deter-
mines which handlers can catch it. For example,

throw "Help!";

15– 2 Exception handling DRAFT: 27 May 1994 15.1 Throwing an exception

can be caught by ahandlerof somechar* type:

try {
// ...

}
catch(const char* p) {

// handle character string exceptions here
}

and

class Overflow {
// ...

public:
Overflow(char,double,double);

};

void f(double x)
{

// ...
throw Overflow(’+’,x,3.45e107);

}

can be caught by a handler

try {
// ...
f(1.2);
// ...

}
catch(Overflow& oo) {

// handle exceptions of type Overflow here
}

2 When an exception is thrown, control is transferred to the nearest handler with an appropriate type;“near-
est” means the handler whosetry-block was most recently entered by the thread of control and not yet
exited;“appropriate type” is defined in 15.3.

3 The operand of athrow shall be of a type with no ambiguous base classes. That is, it shall be possible to
convert the value thrown unambiguously to each of its base classes.49) 

4 A throw-expressioninitializes a temporary object of the static type of the operand ofthrow and uses that
temporary to initialize the appropriately-typed variable named in the handler. If the static type of the
expression thrown is a class or a pointer or reference to a class, there shall be an unambiguous conversion
from that class type to each of its accessible base classes. Except for that restriction and forthe restrictions
on type matching mentioned in 15.3 and the use of a temporary variable, the operand ofthrow is treated
exactly as a function argument in a call (5.2.2) or the operand of areturn statement.

5 The memory for the temporary copy of the exception being thrown is allocated in an implementation-
defined way. The temporary persists as long as there is a handler being executed for that exception. In par-
ticular, if a handler exits by executing athrow; statement, that passes control to another handler for the
same exception, so the temporary remains. If the use of the temporary object can be eliminated without
changing the meaning of the program except for the execution of constructors and destructors associated
with the use of the temporary object (12.2), then the exception in the handler may be initialized directly
with the argument of the throw expression.

6 A throw-expressionwith no operand rethrows the exception being handled without copying it. For exam-
ple, code that must be executed because of an exception yet cannot completely handle the exception can be
written like this:

49) If the value thrown has no base classes or is not of class type, this condition is vacuously satisfied.

15.1 Throwing an exception DRAFT: 27 May 1994 Exception handling 15– 3

try {
// ...

}
catch (...) { // catch all exceptions

// respond (partially) to exception

throw; // pass the exception to some
// other handler

}

7 The exception thrown is the one most recently caught and not finished. An exception is considered caught
when initialization is complete for the formal parameter of the corresponding catch clause, or when
terminate() or unexpected() is entered due to a throw. An exception is considered finished when
the corresponding catch clause exits. 

8 If no exception is presently being handled, executing athrow-expressionwith no operand calls 
terminate() (15.5.1).

[except.ctor] 15.2 Constructors and destructors

1 As control passes from a throw-point to a handler, destructors are invoked for all automatic objects con-
structed since thetry-blockwas entered.

2 An object that is partially constructed will have destructors executed only for its fully constructed sub-
objects. Should a constructor for an element of an automatic array throw an exception, only the constructed
elements of that array will be destroyed. If the object or array was allocated in anew-expression, the stor- 
age occupied by that object is sometimes deleted also (5.3.4).

3 The process of calling destructors for automatic objects constructed on the path from atry-block to a
throw-expressionis called“stack unwinding.”

[except.handle] 15.3 Handling an exception

1 Theexception-declarationin a handlerdescribes the type(s) of exceptions that can cause that handler to be
executed. Theexception-declarationshall not denote an incomplete type. 

2 A handlerwith typeT, const T, T&, or const T& is a match for athrow-expressionwith an object of
typeE if

[1] T andE are the same type, or

[2] T is an accessible (4.6) base class ofE at the throw point, or

[3] T is a pointer type andE is a pointer type that can be converted toT by a standard pointer con-
version (4.6) at the throw point.

3 For example,

class Matherr { /* ... */ virtual vf(); };
class Overflow: public Matherr { /* ... */ };
class Underflow: public Matherr { /* ... */ };
class Zerodivide: public Matherr { /* ... */ };

void f()
{

try {
g();

}

15– 4 Exception handling DRAFT: 27 May 1994 15.3 Handling an exception

catch (Overflow oo) {
// ...

}
catch (Matherr mm) {

// ...
}

}

Here, theOverflow handler will catch exceptions of typeOverflow and theMatherr handler will
catch exceptions of typeMatherr and all types publicly derived fromMatherr includingUnderflow
andZerodivide .

4 The handlers for atry-blockare tried in order of appearance. That makes it possible to write handlers that
can never be executed, for example by placing a handler for a derived class after a handler for a correspond-
ing base class.

5 A ... in a handler’sexception-declarationfunctions similarly to... in a function parameter declara-
tion; it specifies a match for any exception. If present, a... handler must be the last handler for itstry-
block.

6 If no match is found among the handlers for atry-block, the search for a matching handler continues in a
dynamically surroundingtry-block. If no matching handler is found in a program, the function
terminate() (15.5.1) is called.

7 An exception is considered handled upon entry to a handler. The stack will have been unwound at that
point.

[except.spec] 15.4 Exception specifications

1 A function declaration lists exceptions that its function might directly or indirectly throw by using an
exception-specificationas a suffix of its declarator. 

Box 72 
Should it be possible to use more general types thantype-ids inexception-specifications?  _ ___




_ ___


 

exception-specification:
throw (type-id-listopt)

type-id-list:
type-id
type-id-list , type-id

An exception-specificationshall appear only in a context that causes it to apply directly to a declaration or
definition of a function or member function. For example: 

extern void f() throw(int); // OK 
extern void (*fp) throw (int); // ill-formed 
extern void g(void f() throw(int)); // ill-formed 

If any declaration of a function has anexception-specification, all declarations, including the definition, of
that function shall have anexception-specificationwith the same set oftype-ids. If a virtual function has an
exception-specification, all declarations, including the definition, of any function that overrides that virtual
function in any derived class must have anexception-specificationat least as restrictive as that in the base
class. For example: 

15.4 Exception specifications DRAFT: 27 May 1994 Exception handling 15– 5

struct B { 
virtual void f() throw (int, double); 
virtual void g(); 

}; 

struct D: B { 
void f(); // ill-formed 
void g() throw (int); // OK 

}; 

The declaration ofD::f is ill-formed because it allows all exceptions, whereasB::f allows onlyint and 
double .

2 Types may not be defined inexception-specifications. 

3 An exception-specificationcan include the same class more than once and can include classes related by
inheritance, even though doing so is redundant. Anexception-specificationcan include classes with
ambiguous base classes, even though throwing objects of such classes is ill-formed (15.1). An exception
specification can also include identifiers that represent incomplete types.50) 

4 If a classX is in thetype-id-listof theexception-specificationof a function, that function is said toallow
exception objects of classX or any class publicly derived fromX. Similarly, if a pointer typeY* is in the
type-id-listof the exception-specificationof a function, the function allows exceptions of typeY* or that
are pointers to any type publicly derived fromY* .

Box 73

This still needs to deal withconst andvolatile_ __



_ __




Whenever an exception is thrown and the search for a handler (15.3) encounters the outermost block of a
function with anexception-specification, the functionunexpected() is called (15.5.2) if theexception-
specificationdoes not allow the exception. For example,

class Z: public X { };
class W { };

void f() throw (X,Y)
{

int n = 0;
if (n) throw X(); // OK
if (n) throw Y(); // also OK
throw W(); // will call unexpected()

}

5 An implementation shall not reject an expression merely because when executed it throws or might throw
an exception that the containing function does not allow. For example,

extern void f() throw(X,Y);

void g() throw(X)
{

f(); // OK
}

the call tof is well-formed even though when called,f might throw exceptionY thatg does not allow.

50)This makes sense, for example, in declaring a function that is defined elsewhere. It probably does not make sense in a function def-
inition, because the type would have to be completed before an object of that type could be constructed and thrown.

15– 6 Exception handling DRAFT: 27 May 1994 15.4 Exception specifications

6 A function with noexception-specificationallows all exceptions. A function with an emptyexception-
specification, throw() , does not allow any exceptions.

7 An exception-specificationis not considered part of a function’s type.

[except.special] 15.5 Special functions

1 The exception handling mechanism relies on two functions,terminate() and unexpected() , for
coping with errors related to the exception handling mechanism itself. These functions are declared in
<exception> and<exception.ns> (17.3.2).

[except.terminate] 15.5.1 Theterminate() function

1 Occasionally, exception handling must be abandoned for less subtle error handling techniques. For exam-
ple, 

— when a exception handling mechanism, after completing evaluation of the object to be thrown, calls
a user function that exits via an uncaught exception,51) 

— when the exception handling mechanism cannot find a handler for a thrown exception, 

— when the exception handling mechanism finds the stack corrupted, or 

— when a destructor called during stack unwinding caused by an exception tries to exit using an excep-
tion. ∗

2 In such cases,

void terminate();

is called;terminate() calls the function given on the most recent call ofset_terminate() :

typedef void(*PFV)();
PFV set_terminate(PFV);

3 The previous function given toset_terminate() will be the return value; this enables users to imple-
ment a stack strategy for usingterminate() . The default function called byterminate() is
abort() .

4 The function given as argument toset_terminate , if called, shall not return to its caller. It should
either terminate execution by explicitly callingexit() or abort() or loop infinitely. The effect of such
a function trying to return to its caller, either by executing areturn statement or throwing an exception,
is undefined.

[except.unexpected] 15.5.2 Theunexpected() function

1 If a function with anexception-specificationthrows an exception that is not listed in theexception-
specification, the function

void unexpected();

is called;unexpected() calls the function given on the most recent call ofset_unexpected() :

typedef void(*PFV)();
PFV set_unexpected(PFV);

The previous function given toset_unexpected() will be the return value; this enables users to imple-
ment a stack strategy for usingunexpected() . The default function called byunexpected() is
terminate() . Since the default function called byterminate() is abort() , this leads to immedi-
ate and precise detection of the error.

51)For example, if the object being thrown is of a class with a copy constructor,terminate() will be called if that copy constructor
exits with an exception during athrow .

15.5.2 Theunexpected() function DRAFT: 27 May 1994 Exception handling 15– 7

2 Theunexpected() function shall not return, but it can throw (or re-throw) an exception. Handlers for
this exception will be looked for starting at the call of the function whoseexception-specificationwas vio-
lated. Thus anexception-specificationdoes not guarantee that only the listed classes will be thrown. For
example,

void pass_through() { throw; }
void f(PFV pf) throw() // f claims to throw no exceptions
{

(*pf)(); // but the argument function might
}
void g(PFV pf)
{

set_unexpected(&pass_through);
f(pf);

}

After the call ing() to set_unexpected() , f() behaves as if it had noexception-specificationat all.

[except.access] 15.6 Exceptions and access

1 The parameter of a catch clause obeys the same access rules as a parameter of the function in which the
catch clause occurs.

2 An object may be thrown if it can be copied and destroyed in the context of the function in which the throw
occurs.

_ ___ ___

16 Preprocessing directives [cpp]
_ ___ ___

1 A preprocessing directive consists of a sequence of preprocessing tokens that begins with a# preprocessing
token that is either the first character in the source file (optionally after white space containing no new-line
characters) or that follows white space containing at least one new-line character, and is ended by the next
new-line character.52)

preprocessing-file:
groupopt

group:
group-part
group group-part

group-part:
pp-tokensopt new-line
if-section
control-line

if-section:
if-group elif-groupsopt else-groupopt endif-line

if-group:
if constant-expression new-line groupopt

ifdef identifier new-line groupopt

ifndef identifier new-line groupopt

elif-groups:
elif-group
elif-groups elif-group

elif-group:
elif constant-expression new-line groupopt

else-group:
else new-line groupopt

endif-line:
endif new-line

52)Thus, preprocessing directives are commonly called“lines.” These“lines” have no other syntactic significance, as all white space is
equivalent except in certain situations during preprocessing (see the# character string literal creation operator in 16.3.2, for example).

16– 2 Preprocessing directives DRAFT: 27 May 1994 16 Preprocessing directives

control-line:
include pp-tokens new-line
define identifier replacement-list new-line
define identifier lparen identifier-listopt) replacement-list new-line
undef identifier new-line
line pp-tokens new-line
error pp-tokensopt new-line
pragma pp-tokensopt new-line
new-line

lparen:
the left-parenthesis character without preceding white-space

replacement-list:
pp-tokensopt

pp-tokens:
preprocessing-token
pp-tokens preprocessing-token

new-line:
the new-line character

2 The only white-space characters that shall appear between preprocessing tokens within a preprocessing
directive (from just after the introducing# preprocessing token through just before the terminating new-line
character) are space and horizontal-tab (including spaces that have replaced comments or possibly other
white-space characters in translation phase 3).

3 The implementation can process and skip sections of source files conditionally, include other source files,
and replace macros. These capabilities are calledpreprocessing, because conceptually they occur before
translation of the resulting translation unit.

4 The preprocessing tokens within a preprocessing directive are not subject to macro expansion unless other-
wise stated.

[cpp.cond] 16.1 Conditional inclusion

1 The expression that controls conditional inclusion shall be an integral constant expression except that: it
shall not contain a cast; identifiers (including those lexically identical to keywords) are interpreted as
described below;53) and it may contain unary operator expressions of the form

defined identifier
or

defined (identifier)

which evaluate to1 if the identifier is currently defined as a macro name (that is, if it is predefined or if it
has been the subject of a#define preprocessing directive without an intervening#undef directive with
the same subject identifier), zero if it is not.

2 Each preprocessing token that remains after all macro replacements have occurred shall be in the lexical
form of a token (2.5).

3 Preprocessing directives of the forms

if constant-expression new-line groupopt

elif constant-expression new-line groupopt

check whether the controlling constant expression evaluates to nonzero.

53)Because the controlling constant expression is evaluated during translation phase 4, all identifiers either are or are not macro names
— there simply are no keywords, enumeration constants, and so on.

16.1 Conditional inclusion DRAFT: 27 May 1994 Preprocessing directives 16– 3

4 Prior to evaluation, macro invocations in the list of preprocessing tokens that will become the controlling
constant expression are replaced (except for those macro names modified by thedefined unary operator),
just as in normal text. If the tokendefined is generated as a result of this replacement process or use of
the defined unary operator does not match one of the two specified forms prior to macro replacement,
the behavior is undefined. After all replacements due to macro expansion and thedefined unary operator
have been performed, all remaining identifiers are replaced with the pp-number0, and then each prepro-
cessing token is converted into a token. The resulting tokens comprise the controlling constant expression
which is evaluated according to the rules of 5.19 using arithmetic that has at least the ranges specified in
<<<<<<???>>>>>>, except thatint andunsigned int act as if they have the same representation as,
respectively,long and unsigned long . This includes interpreting character constants, which may
involve converting escape sequences into execution character set members. Whether the numeric value for
these character constants matches the value obtained when an identical character constant occurs in an
expression (other than within a#if or #elif directive) is implementation-defined.54) Also, whether a
single-character character constant may have a negative value is implementation-defined.

5 Preprocessing directives of the forms

ifdef identifier new-line groupopt

ifndef identifier new-line groupopt

check whether the identifier is or is not currently defined as a macro name. Their conditions are equivalent
to #if defined identifier and#if !defined identifier respectively.

6 Each directive’s condition is checked in order. If it evaluates to false (zero), the group that it controls is
skipped: directives are processed only through the name that determines the directive in order to keep track
of the level of nested conditionals; the rest of the directives’ preprocessing tokens are ignored, as are the
other preprocessing tokens in the group. Only the first group whose control condition evaluates to true
(nonzero) is processed. If none of the conditions evaluates to true, and there is a#else directive, the
group controlled by the#else is processed; lacking a#else directive, all the groups until the#endif
are skipped.55)

[cpp.include] 16.2 Source file inclusion

1 A #include directive shall identify a header or source file that can be processed by the implementation.

2 A preprocessing directive of the form

include < h-char-sequence> new-line

searches a sequence of implementation-defined places for a header identified uniquely by the specified
sequence between the< and> delimiters, and causes the replacement of that directive by the entire contents
of the header. How the places are specified or the header identified is implementation-defined.

3 A preprocessing directive of the form

include " q-char-sequence" new-line

causes the replacement of that directive by the entire contents of the source file identified by the specified
sequence between the" delimiters. The named source file is searched for in an implementation-defined
manner. If this search is not supported, or if the search fails, the directive is reprocessed as if it read

include < h-char-sequence> new-line

with the identical contained sequence (including> characters, if any) from the original directive.

54) Thus, the constant expression in the following#if directive andif statement is not guaranteed to evaluate to the same value in
these two contexts.

#if ’z’ - ’a’ = = 25

if (’z’ - ’a’ = = 25)

55) As indicated by the syntax, a preprocessing token shall not follow a#else or #endif directive before the terminating new-line
character. However, comments may appear anywhere in a source file, including within a preprocessing directive.

16– 4 Preprocessing directives DRAFT: 27 May 1994 16.2 Source file inclusion

4 A preprocessing directive of the form

include pp-tokens new-line

(that does not match one of the two previous forms) is permitted. The preprocessing tokens afterinclude
in the directive are processed just as in normal text. (Each identifier currently defined as a macro name is
replaced by its replacement list of preprocessing tokens.)The directive resulting after all replacements shall
match one of the two previous forms.56) The method by which a sequence of preprocessing tokens between
a < and a> preprocessing token pair or a pair of" characters is combined into a single header name prepro-
cessing token is implementation-defined.

5 There shall be an implementation-defined mapping between the delimited sequence and the external source
file name. The implementation shall provide unique mappings for sequences consisting of one or more
nondigits (2.7) followed by a period (.) and a singlenondigit. The implementation may ignore the distinc-
tions of alphabetical case and restrict the mapping to six significant characters before the period.

Box 74

Does this restriction still make sense for C + +?_ ______________________________________



_ ______________________________________




6 A #include preprocessing directive may appear in a source file that has been read because of a
#include directive in another file, up to an implementation-defined nesting limit (see<<<<???>>>>).

7 The most common uses of#include preprocessing directives are as in the following:

#include <stdio.h>
#include "myprog.h"

8 This example illustrates a macro-replaced#include directive:

#if VERSION = = 1
#define INCFILE "vers1.h"

#elif VERSION = = 2
#define INCFILE "vers2.h" /* and so on*/

#else
#define INCFILE "versN.h"

#endif
#include INCFILE

[cpp.replace] 16.3 Macro replacement

1 Two replacement lists are identical if and only if the preprocessing tokens in both have the same number,
ordering, spelling, and white-space separation, where all white-space separations are considered identical.

2 An identifier currently defined as a macro without use of lparen (anobject-likemacro) may be redefined by
another#define preprocessing directive provided that the second definition is an object-like macro defi-
nition and the two replacement lists are identical.

3 An identifier currently defined as a macro using lparen (afunction-likemacro) may be redefined by another
#define preprocessing directive provided that the second definition is a function-like macro definition
that has the same number and spelling of parameters, and the two replacement lists are identical.

4 The number of arguments in an invocation of a function-like macro shall agree with the number of parame-
ters in the macro definition, and there shall exist a) preprocessing token that terminates the invocation.

5 A parameter identifier in a function-like macro shall be uniquely declared within its scope.

56) Note that adjacent string literals are not concatenated into a single string literal (see the translation phases in 2.1); thus, an expan-
sion that results in two string literals is an invalid directive.

16.3 Macro replacement DRAFT: 27 May 1994 Preprocessing directives 16– 5

6 The identifier immediately following thedefine is called themacro name. There is one name space for
macro names. Any white-space characters preceding or following the replacement list of preprocessing
tokens are not considered part of the replacement list for either form of macro.

7 If a # preprocessing token, followed by an identifier, occurs lexically at the point at which a preprocessing
directive could begin, the identifier is not subject to macro replacement.

8 A preprocessing directive of the form

define identifier replacement-list new-line

defines an object-like macro that causes each subsequent instance of the macro name57) to be replaced by
the replacement list of preprocessing tokens that constitute the remainder of the directive. The replacement
list is then rescanned for more macro names as specified below.

9 A preprocessing directive of the form

define identifier lparen identifier-listopt) replacement-list new-line

defines a function-like macro with parameters, similar syntactically to a function call. The parameters are
specified by the optional list of identifiers, whose scope extends from their declaration in the identifier list
until the new-line character that terminates the#define preprocessing directive. Each subsequent
instance of the function-like macro name followed by a(as the next preprocessing token introduces the
sequence of preprocessing tokens that is replaced by the replacement list in the definition (an invocation of
the macro). The replaced sequence of preprocessing tokens is terminated by the matching) preprocessing
token, skipping intervening matched pairs of left and right parenthesis preprocessing tokens. Within the
sequence of preprocessing tokens making up an invocation of a function-like macro, new-line is considered
a normal white-space character.

10 The sequence of preprocessing tokens bounded by the outside-most matching parentheses forms the list of
arguments for the function-like macro. The individual arguments within the list are separated by comma
preprocessing tokens, but comma preprocessing tokens between matching inner parentheses do not separate
arguments. If (before argument substitution) any argument consists of no preprocessing tokens, the behav-
ior is undefined. If there are sequences of preprocessing tokens within the list of arguments that would oth-
erwise act as preprocessing directives, the behavior is undefined.

[cpp.subst] 16.3.1 Argument substitution

1 After the arguments for the invocation of a function-like macro have been identified, argument substitution
takes place. A parameter in the replacement list, unless preceded by a# or ## preprocessing token or fol-
lowed by a## preprocessing token (see below), is replaced by the corresponding argument after all macros
contained therein have been expanded. Before being substituted, each argument’s preprocessing tokens are
completely macro replaced as if they formed the rest of the translation unit; no other preprocessing tokens
are available.

[cpp.stringize] 16.3.2 The# operator

1 Each# preprocessing token in the replacement list for a function-like macro shall be followed by a parame-
ter as the next preprocessing token in the replacement list.

2 If, in the replacement list, a parameter is immediately preceded by a# preprocessing token, both are
replaced by a single character string literal preprocessing token that contains the spelling of the preprocess-
ing token sequence for the corresponding argument. Each occurrence of white space between the
argument’s preprocessing tokens becomes a single space character in the character string literal. White
space before the first preprocessing token and after the last preprocessing token comprising the argument is
deleted. Otherwise, the original spelling of each preprocessing token in the argument is retained in the
character string literal, except for special handling for producing the spelling of string literals and character

57) Since, by macro-replacement time, all character constants and string literals are preprocessing tokens, not sequences possibly con-
taining identifier-like subsequences (see 2.1.1.2, translation phases), they are never scanned for macro names or parameters.

16– 6 Preprocessing directives DRAFT: 27 May 1994 16.3.2 The# operator

constants: a\ character is inserted before each" and \ character of a character constant or string literal
(including the delimiting " characters). If the replacement that results is not a valid character string literal,
the behavior is undefined. The order of evaluation of# and## operators is unspecified.

[cpp.concat] 16.3.3 The## operator

1 A ## preprocessing token shall not occur at the beginning or at the end of a replacement list for either form
of macro definition.

2 If, in the replacement list, a parameter is immediately preceded or followed by a## preprocessing token,
the parameter is replaced by the corresponding argument’s preprocessing token sequence.

3 For both object-like and function-like macro invocations, before the replacement list is reexamined for
more macro names to replace, each instance of a## preprocessing token in the replacement list (not from
an argument) is deleted and the preceding preprocessing token is concatenated with the following prepro-
cessing token. If the result is not a valid preprocessing token, the behavior is undefined. The resulting
token is available for further macro replacement. The order of evaluation of## operators is unspecified.

[cpp.rescan] 16.3.4 Rescanning and further replacement

1 After all parameters in the replacement list have been substituted, the resulting preprocessing token
sequence is rescanned with all subsequent preprocessing tokens of the source file for more macro names to
replace.

2 If the name of the macro being replaced is found during this scan of the replacement list (not including the
rest of the source file’s preprocessing tokens), it is not replaced. Further, if any nested replacements
encounter the name of the macro being replaced, it is not replaced. These nonreplaced macro name prepro-
cessing tokens are no longer available for further replacement even if they are later (re)examined in con-
texts in which that macro name preprocessing token would otherwise have been replaced.

3 The resulting completely macro-replaced preprocessing token sequence is not processed as a preprocessing
directive even if it resembles one.

[cpp.scope] 16.3.5 Scope of macro definitions

1 A macro definition lasts (independent of block structure) until a corresponding#undef directive is
encountered or (if none is encountered) until the end of the translation unit.

2 A preprocessing directive of the form

undef identifier new-line

causes the specified identifier no longer to be defined as a macro name. It is ignored if the specified identi-
fier is not currently defined as a macro name.

3 The simplest use of this facility is to define a“manifest constant,” as in

#define TABSIZE 100

int table[TABSIZE];

4 The following defines a function-like macro whose value is the maximum of its arguments. It has the
advantages of working for any compatible types of the arguments and of generating in-line code without the
overhead of function calling. It has the disadvantages of evaluating one or the other of its arguments a sec-
ond time (including side effects) and generating more code than a function if invoked several times. It also
cannot have its address taken, as it has none.

#define max(a, b) ((a) > (b) ? (a) : (b))

The parentheses ensure that the arguments and the resulting expression are bound properly.

16.3.5 Scope of macro definitions DRAFT: 27 May 1994 Preprocessing directives 16– 7

5 To illustrate the rules for redefinition and reexamination, the sequence

#define x 3
#define f(a) f(x * (a))
#undef x
#define x 2
#define g f
#define z z[0]
#define h g(~
#define m(a) a(w)
#define w 0,1
#define t(a) a

f(y+1) + f(f(z)) % t(t(g)(0) + t)(1);
g(x+(3,4)-w) | h 5) & m

(f)^m(m);

results in

f(2 * (y+1)) + f(2 * (f(2 * (z[0])))) % f(2 * (0)) + t(1);
f(2 * (2+(3,4)-0,1)) | f(2 * (~ 5)) & f(2 * (0,1))^m(0,1);

6 To illustrate the rules for creating character string literals and concatenating tokens, the sequence

#define str(s) # s
#define xstr(s) str(s)
#define debug(s, t) printf("x" # s "= %d, x" # t "= %s", \

x ## s, x ## t)
#define INCFILE(n) vers ## n /* from previous#include example */
#define glue(a, b) a ## b
#define xglue(a, b) glue(a, b)
#define HIGHLOW "hello"
#define LOW LOW ", world"

debug(1, 2);
fputs(str(strncmp("abc\0d", "abc", ’\4’) /* this goes away */

= = 0) str(: @\n), s);
#include xstr(INCFILE(2).h)
glue(HIGH, LOW);
xglue(HIGH, LOW)

results in

printf("x" "1" "= %d, x" "2" "= %s", x1, x2);
fputs("strncmp(\"abc\\0d\", \"abc\", ’\\4’) = = 0" ": @\n", s);
#include "vers2.h" (after macro replacement, before file access)
"hello";
"hello" ", world"

or, after concatenation of the character string literals,

printf("x1= %d, x2= %s", x1, x2);
fputs("strncmp(\"abc\\0d\", \"abc\", ’\\4’) = = 0: @\n", s);
#include "vers2.h" (after macro replacement, before file access)
"hello";
"hello, world"

Space around the# and## tokens in the macro definition is optional.

7 And finally, to demonstrate the redefinition rules, the following sequence is valid.

16– 8 Preprocessing directives DRAFT: 27 May 1994 16.3.5 Scope of macro definitions

#define OBJ_LIKE (1-1)
#define OBJ_LIKE /* white space */ (1-1) /* other */
#define FTN_LIKE(a) (a)
#define FTN_LIKE(a)(/* note the white space */ \

a /* other stuff on this line
*/)

But the following redefinitions are invalid:

#define OBJ_LIKE (0) /* different token sequence*/
#define OBJ_LIKE (1 - 1) /* different white space*/
#define FTN_LIKE(b) (a) /* different parameter usage*/
#define FTN_LIKE(b) (b) /* different parameter spelling*/

[cpp.line] 16.4 Line control

1 The string literal of a#line directive, if present, shall be a character string literal.

2 The line numberof the current source line is one greater than the number of new-line characters read or
introduced in translation phase 1 (2.1) while processing the source file to the current token.

3 A preprocessing directive of the form

line digit-sequence new-line

causes the implementation to behave as if the following sequence of source lines begins with a source line
that has a line number as specified by the digit sequence (interpreted as a decimal integer). The digit
sequence shall not specify zero, nor a number greater than 32767.

4 A preprocessing directive of the form

line digit-sequence" s-char-sequenceopt" new-line

sets the line number similarly and changes the presumed name of the source file to be the contents of the
character string literal.

5 A preprocessing directive of the form

line pp-tokens new-line

(that does not match one of the two previous forms) is permitted. The preprocessing tokens afterline on
the directive are processed just as in normal text (each identifier currently defined as a macro name is
replaced by its replacement list of preprocessing tokens). The directive resulting after all replacements
shall match one of the two previous forms and is then processed as appropriate.

[cpp.error] 16.5 Error directive

1 A preprocessing directive of the form

error pp-tokensopt new-line

causes the implementation to produce a diagnostic message that includes the specified sequence of prepro-
cessing tokens.

[cpp.pragma] 16.6 Pragma directive

1 A preprocessing directive of the form

pragma pp-tokensopt new-line

causes the implementation to behave in an implementation-defined manner. Any pragma that is not recog-
nized by the implementation is ignored.

16.7 Null directive DRAFT: 27 May 1994 Preprocessing directives 16– 9

[cpp.null] 16.7 Null directive

1 A preprocessing directive of the form

new-line

has no effect.

[cpp.predefined] 16.8 Predefined macro names

1 The following macro names shall be defined by the implementation:

_ _LINE_ _The line number of the current source line (a decimal constant).

_ _FILE_ _The presumed name of the source file (a character string literal).

_ _DATE_ _The date of translation of the source file (a character string literal of the form
"Mmm dd yyyy" , where the names of the months are the same as those generated by the
asctime function, and the first character ofdd is a space character if the value is less than 10). If
the date of translation is not available, an implementation-defined valid date shall be supplied.

_ _TIME_ _The time of translation of the source file (a character string literal of the form
"hh:mm:ss" as in the time generated by theasctime function). If the time of translation is not
available, an implementation-defined valid time shall be supplied.

_ _STDC_ _Whether_ _STDC_ _ is defined and if so, what its value is, are implementation dependent.

_ _cplusplus The name_ _cplusplus is defined (to an unspecified value) when compiling a C + +
translation unit.

2 The values of the predefined macros (except for_ _LINE_ _ and_ _FILE_ _) remain constant throughout
the translation unit.

3 None of these macro names, nor the identifierdefined , shall be the subject of a#define or a#undef
preprocessing directive. All predefined macro names shall begin with a leading underscore followed by an
uppercase letter or a second underscore.

_ ___ ___

17 Library [lib.library]
_ ___ ___

Box 75

Library WG issue: Michael Vilot, January 14, 1994

This section ordering has not been discussed by the Library Working Group. Once they do have a chance
to discuss it, the section order, numbering, and names are likely to be changed._ __







_ __







[lib.introduction]17.1 Introduction

Box 76

Library WG issue: Michael Vilot, November 22, 1993 ∗

How much of ‘‘Introduction’’ section has to be made global to the entire clasue? The various C rules about
reserved identifiers could be made irrelevant if C in C + + programs were prohibited from defining macros
(except, presumably, for a few things likeassert) If we don’t define the standard namespace in a way
that obviates the need for so many rules, then we haven’t used the language feature effectively._ __










_ __










1 The Standard C + + library contains components for: language support, predefined exceptions, iostreams,
strings, bit sets, bit strings, dynamic arrays, complex numbers, and locale objects. The language support
components are required by certain parts of the C + + language, such as memory allocation (5.3.4, 5.3.5) and
exception processing (_except.intro_). The predefined exceptions provide support for uniform error report-
ing from the Standard C + + library. The iostreams components are the primary mechanism for C + + program 
input/output. The strings and other containers provide some of the most commonly used data types not
directly defined in the C + + language. And the complex components provide support for numeric process-
ing. This library also makes available the facilities of the Standard C library, suitably adjusted to ensure
static type safety.

[lib.intro.standard.c] 17.1.1 Standard C library

1 This International Standard includes by reference clause 7 of the C Standard and clause 4 of Amendment 1
to the C Standard (1.2). The combined library described in those clauses is hereinafter called theStandard
C library. With the qualifications noted in this subclause 17.1 and in 17.2, the Standard C library is a subset
of the Standard C + + library.

[lib.headers] 17.1.2 Headers

17– 2 Library DRAFT: 27 May 1994 17.1.2 Headers

Box 77

Library WG issue: Michael Vilot, November 22, 1993 ∗

The rule that ‘‘any of the C + + headers can include any of the other C + + headers’’ imposes a restriction on∗
C + + programmers beyond any that C programmers must endure. Since we are changing the names of the
headers from current usage anyway (by dropping the.h), we can be unambiguous about the declarations
used across components in the standard library. Implementations that support precompiled headers will do
just fine with a more precise specification._ __











_ __











1 ∗The elements of the Standard C + + library are declared or defined (as appropriate) in aheader,whose con- 
tents are made available to a translation unit when it contains the appropriate#include preprocessing 
directive.58) Objects and functions defined in the library and required by a C + + program are included in the
program prior to program startup. 

2 The Standard C + + library provides 41C + + headers,as shown in Table 13: 

Table 13—C++ Headers 

HEADER HEADER HEADER HEADER 


<all> <complex>17.5.7 <cwctype> <new>17.3.3 
<bits>17.5.3 <csetjmp> <defines>17.3.1 <objcpy>17.5.8 
<bitstring>17.5.4 <csignal> <dynarray>17.5.5 <ostream>17.4.4 
<cassert> <cstdarg> <exception>17.3.2 <ptrdynarray>17.5.6 
<cctype> <cstddef> <fstream>17.4.8 <sstream>17.4.7 
<cerrno> <cstdio> <iomanip>17.4.5 <streambuf>17.4.2 
<cfloat> <cstdlib> <ios>17.4.1 <string>17.5.1 
<ciso646> <cstring> <iostream>17.4.9 <strstream>17.4.6 
<climits> <ctime> <istream>17.4.3 <typeinfo>17.3.4 
<clocale> <cwchar> <locale>17.5.9 <wstring>17.5.2 
<cmath> 

3 For compatibility with the Standard C library, the Standard C + + library provides the 18C headers,as shown 
in Table 14: 

Table 14—C Headers 

HEADER HEADER HEADER HEADER 


<assert.h> <limits.h> <stdarg.h> <string.h> 
<ctype.h> <locale.h> <stddef.h> <time.h> 
<errno.h> <math.h> <stdio.h> <wchar.h> 
<float.h> <setjmp.h> <stdlib.h> <wctype.h> 
<iso646.h> <signal.h> 

58) A header is not necessarily a source file, nor are the sequences delimited by< and> in header names necessarily valid source file
names.

17.1.2 Headers DRAFT: 27 May 1994 Library 17– 3

4 The header<all> includes all the other C + + headers. 

5 If a header is implemented as a source file, the derivation of the file name from the header name is
implementation-defined. If a file has a name equivalent to the derived file name for one of the above head-
ers, is not provided as part of the implementation, and is placed in any of the standard places for a source
file to be included, the behavior is undefined.

6 A translation unit may include these headers in any order. Each may be included more than once, with no∗
effect different from being included exactly once, except that the effect of including either<cassert> or 
<assert.h> depends each time on the lexically current definition ofNDEBUG. A translation unit shall
include a header only outside of any external declaration or definition, and shall include the header lexically
before the first reference to any of the entities it declares or first defines in that translation unit.

7 Certain types and macros are defined in more than one header. For such an entity, a second or subsequent
header that also defines it may be included after the header that provides its initial definition.

8 None of the C headers includes any of the other headers, except that each C header includes its correspond-
ing C + + header, as described above, followed by an explicit using-directive (7.3.3) for each name that the
C + + header declares or defines in the namespacestd (17.1.4). Except for the header<all> , none of the
C + + headers includes any of the C headers. However, any of the C + + headers can include any of the other
C + + headers, and must include a C + + header that contains any needed definition.59) 

[lib.compliance]17.1.3 Processor Compliance 

1 Two kinds of implementations are defined:hostedand freestanding.For a hosted implementation, this
International Standard defines the set of available headers. A freestanding implementation is one in which
execution may take place without the benefit of an operating system, and has an implementation-defined set
of headers. This set shall include at least: 

— the headers that provide C + + language support (as described in 17.3) 

— the C + + headers<cfloat> , <climits> , <cstdarg> , and<cstddef> , and their corresponding C
headers 

— a version of the C + + header<cstdlib> that declares at least the functionsabort , atexit , and 
exit , and its corresponding C header. 

[lib.reserved.names] 17.1.4 Reserved names

Box 78

Library WG issue: Michael Vilot, January 14, 1994

This section has not been discussed by the Library Working Group. Once they do have a chance to discuss
it, the contents are likely to be removed or changed._ __







_ __







1 ∗A translation unit that includes a header shall not contain any macros that define names declared or defined
in that header. Nor shall such a translation unit define macros for names lexically identical to keywords.

2 Each C + + header defines the namespacestd . Each C + + header declares or defines all names listed in its
associated subclause within that namespace. 

3 Each header also optionally declares or defines names which are always reserved to the implementation for
any use and names reserved to the implementation for use at file scope.

59) Including any one of the C + + headers can introduce all of the C + + headers into a translation unit, or just the one that is named in the
#include preprocessing directive.

17– 4 Library DRAFT: 27 May 1994 17.1.4 Reserved names

4 Each name defined as a macro in a header is reserved to the implementation for any use if the translation
unit includes the header.60)

5 Certain sets of names and function signatures are reserved whether or not a translation unit includes a
header:

— Each name that begins with an underscore and either an uppercase letter or another underscore is
reserved to the implementation for any use.

— Each name that begins with an underscore is reserved to the implementation for use as a name with file
scope or within the namespacestd in the ordinary name space. 

— Each name declared as an object with external linkage in a header is reserved to the implementation to
designate that library object with external linkage.61) 

— Each global function signature declared with external linkage in a header is reserved to the implementa-
tion to designate that function signature with external linkage.62) 

— Each name having two consecutive underscores is reserved to the implementation for use as a name
with bothextern "C" andextern "C++" linkage.

— Each name declared with external linkage in a C header is reserved to the implementation for use as a
name withextern "C" linkage.

— Each function signature declared with external linkage in a C header is reserved to the implementation
for use as a function signature with bothextern "C" andextern "C++" linkage.63) 

6 It is unspecified whether a name declared with external linkage in a C header has eitherextern "C" or
extern "C++" linkage.64)

7 If the program declares or defines a name in a context where it is reserved, other than as explicitly allowed
by this clause, the behavior is undefined.

8 No other names or global function signatures are reserved to the implementation.65)

[lib.res.and.conventions] 17.1.5 Restrictions and conventions

Box 79

Library WG issue: Michael Vilot, January 14, 1994

This section has not been discussed by the Library Working Group. Once they do have a chance to discuss
it, the contents of this section and its subsections are likely to be removed or changed._ __







_ __







60) It is not permissible to remove a library macro definition by using the#undef directive.
61)The list of such reserved names includeserrno , declared or defined in<cerrno> . 
62) The list of such reserved function signatures with external linkage includessetjmp(jmp_buf) , declared or defined in 
<csetjmp> , andva_end(va_list) , declared or defined in<cstdarg> .
63) The function signatures declared in<cwchar> and<cwctype> are always reserved, notwithstanding the restrictions imposed in
subclause 4.5.1 of Amendment 1 to the C Standard for these headers.
64) The only reliable way to declare an object or function signature from the Standard C library is by including the header that declares
it, notwithstanding the latitude granted in subclause 7.1.7 of the C Standard.
65)A global function cannot be declared by the implementation as taking additional default arguments. Also, the use of masking mac-
ros for function signatures declared in C headers is disallowed, notwithstanding the latitude granted in subclause 7.1.7 of the C Stan-
dard. The use of a masking macro can often be replaced by defining the function signature asinline.

17.1.5.1 Restrictions on macro definitions DRAFT: 27 May 1994 Library 17– 5

[lib.res.on.macro.definitions] 17.1.5.1 Restrictions on macro definitions

1 All object-like macros defined by the Standard C + + library and described in this clause as expanding to inte-
gral constant expressions are also suitable for use in#if preprocessing directives, unless explicitly stated
otherwise.

[lib.res.on.arguments] 17.1.5.2 Restrictions on arguments

1 Each of the following statements applies to all arguments to functions defined in the Standard C + + library,
unless explicitly stated otherwise in this clause.

— If an argument to a function has an invalid value (such as a value outside the domain of the function, or
a pointer invalid for its intended use), the behavior is undefined.

— If a function argument is described as being an array, the pointer actually passed to the function shall
have a value such that all address computations and accesses to objects (that would be valid if the
pointer did point to the first element of such an array) are in fact valid.

[lib.res.on.exception.handling] 17.1.5.3 Restrictions on exception handling

Box 80

Library WG issue: Dag Br
. .
uck, January 23, 1994

> Jerry Schwarz writes:
>
>> I think this should be changed to allow any function
>> to throwxalloc .
>
> ‘‘Any of the functions defined in the Standard C + + library
> can report a failure to allocate storage by calling ex.raise()
> for an object ex of type xalloc.

Pardon me for being picky and generally difficult, but I think Jerry’s wording is significantly superior, and I
ask for a change.

I think the current wording is circuitous, and the prevailing terminology is "throw an exception" when talk-
ing about the concept, not the actual implementation.

Here’s my suggested wording:

‘‘Any of the functions defined in the Standard C + + library can report a failure to allocate storage by throw-
ing xalloc.’’_ __




























_ __




























1 ∗Any of the functions defined in the Standard C + + library can report a failure to allocate storage by calling
ex .raise() for an objectex of typealloc . Otherwise, none of the functions defined in the Standard
C + + library throw an exception that must be caught outside the function, unless explicitly stated otherwise.

2 None of the functions defined in the Standard C + + library catch any exceptions, unless explicitly stated oth-
erwise.66)

66)A function can catch an exception not documented in this clause provided it rethrows the exception.

17– 6 Library DRAFT: 27 May 1994 17.1.5.4 Alternate definitions for functions

[lib.alternate.definitions.for.functions] 17.1.5.4 Alternate definitions for functions

Box 81 
Library WG issue: Michael Vilot, November 22, 1993 

It took us 9 months or so to work out the wording in 93-0148/N0355 to describe ‘‘installing’’ handler func-
tions in such a way as to get reasonably clear semantics without overly constraining a multithreded imple-
mentation. There is no reason to discard that work lightly, although I would like to see a more precise
description of ‘‘installing’’ and ‘‘invoking’’ a handler function that doesn’t involve the overspecification of
requiring a global pointer. 

The following changes added in 93-0108 should be removed: 
‘‘Certain handler functions are determined by the values stored in pointer objects within the Standard C + + 

library. Initially, these pointer objects designate functions defined in the Standard C + + library. Other func- 
tions, however, when executed at run time, permit the program to alter these stored values to point at func-
tions defined in the program.’’  _ __


















_ __
















 

1 This clause describes the behavior of numerous functions defined by the Standard C + + library. Under some
circumstances, however, certain of these function descriptions also apply to functions defined in the pro-
gram:

— Four function signatures defined in the Standard C + + library may be displaced by definitions in the pro-
gram. Such displacement occurs prior to program startup.67)

— Certain handler functions are determined by the values stored in pointer objects within the Standard C + +
library. Initially, these pointer objects store null pointers or designate functions defined in the Standard
C + + library. Other functions, however, when executed at run time, permit the program to alter these
stored values to point at functions defined in the program.

— Virtual member function signatures defined for a base class in the Standard C + + library may be overrid-
den in a derived class by definitions in the program.

2 In all such cases, this clause distinguishes two behaviors for the functions in question:

— Required behaviordescribes both the behavior provided by the implementation and the behavior that
shall be provided by any function definition in the program.

— Default behaviordescribes any specific behavior provided by the implementation, within the scope of
the required behavior.

3 Where no distinction is explicitly made in the description, the behavior described is the required behavior.

4 If a function defined in the program fails to meet the required behavior when it executes, the behavior is
undefined.

[lib.objects.within.classes] 17.1.5.5 Objects within classes

67)The function signatures, all declared in<new>, areoperator delete(void*) , operator delete[](void*) , oper-
ator new(size_t) , andoperator new[](size_t) .

17.1.5.5 Objects within classes DRAFT: 27 May 1994 Library 17– 7

Box 82 
Library WG issue: Tom Keffer, March 8, 1994 

The San Diego rewrite dropped all uses of pre- and post-condition specifications on member functions.
[See: X3J16/93-0013R1, 93-0060, and 93-0064, as voted upon and accepted.] 

Comment (Library WG meeting, San Diego): 

The general concern is that the text describes specifics of what happens to the ‘‘exposition only’’ member
data, rather than behavior. 

Example: 

17.5.1.1.1 describes the action of the default constructor in terms of how the ‘‘exposition only’’ data should
be initialized. It doesn’t say whether the string is the null string, an unitialized string of unspecified length,
or what... 

Recommend: 

Generic behaviour should be specified, possibly with the aid of the exposition implementation.  _ __
























_ __























 

1 Objects of certain classes are sometimes required by the external specifications of their classes to store data,
apparently in member objects. For the sake of exposition, this clause provides representative declarations,
and semantic requirements, for private member objects of classes that meet the external specifications of
the classes. The declarations for such member objects and the definitions of related member types in this
clause are enclosed in a comment that ends withexposition only, as in:

// streambuf* sb ; exposition only

2 Any alternate implementation that provides equivalent external behavior is equally acceptable. ∗

[lib.functions.within.classes] 17.1.5.6 Functions within classes

Box 83

Library WG issue: Tom Keffer, March 8, 1994 

All classes should explicitly list the copy constructor, assignment operator, and destructor in their descrip-
tion.

But: 17.1.5.6 should state that an implementation can rely on the compiler to actually generate such func-
tions._ __











_ __











1 ∗For the sake of exposition, this clause repeats in a derived class declarations for all the virtual member
functions inherited from a base class. All such declarations are enclosed in a comment that ends with
inherited, as in:

// virtual void do_raise(); inherited

2 If a virtual member function in the base class meets the semantic requirements of the derived class, it is
unspecified whether the derived class provides an overriding definition for the function signature.

3 An implementation can declare additional non-virtual member function signatures within a class:

— by adding arguments with default values to a member function signature described in this clause;68)

68) Hence, taking the address of a member function has an unspecified type. The same latitude doesnot extend to the implementation
of virtual or global functions, however.

17– 8 Library DRAFT: 27 May 1994 17.1.5.6 Functions within classes

— by replacing a member function signature with default values by two or more member function signa-
tures with equivalent behavior;

— by adding a member function signature for a member function name described in this clause.

4 A call to a member function signature described in this clause behaves the same as if the implementation
declares no additional member function signatures.69)

5 For the sake of exposition, this clause describes no copy constructors, assignment operators, or (non-
virtual) destructors with the same apparent semantics as those that can be generated by default. It is
unspecified whether the implementation provides explicit definitions for such member function signatures,
or for virtual destructors that can be generated by default.

[lib.global.functions] 17.1.5.7 Global functions

1 A call to a global function signature described in this clause behaves the same as if the implementation
declares no additional global function signatures.70)

[lib.unreserved.names] 17.1.5.8 Unreserved names

1 ∗Certain types defined in C headers are sometimes needed to express declarations in other headers, where the
required type names are neither defined nor reserved. In such cases, the implementation provides a syn-
onym for the required type, using a name reserved to the implementation. Such cases are explicitly stated
in this clause, and indicated by writing the required type name inconstant-width italic charac-
ters.

2 Certain names are sometimes convenient to supply for the sake of exposition, in the descriptions in this
clause, even though the names are neither defined nor reserved. In such cases, the implementation either
omits the name, where that is permitted, or provides a name reserved to the implementation. Such cases are
also indicated in this clause by writing the convenient name inconstant-width italic characters.

3 For example:

4 The classfilebuf , defined in<fstream> , is described as containing the private member object:

FILE * file ;

5 This notation indicates that the memberfile is a pointer to the typeFILE , defined in<cstdio> , but the 
namesfile and FILE are neither defined nor reserved in<fstream> . An implementation need not
implement classfilebuf with an explicit member of typeFILE* . If it does so, it can choose 1) to
replace the namefile with a name reserved to the implementation, and 2) to replaceFILE with an
incomplete type whose name is reserved, such as in:

struct _Filet* _Fname;

6 If the program needs to have typeFILE defined, it must also include<cstdio> , which completes the
definition of_Filet .

[lib.implementation.types] 17.1.5.9 Implementation types

1 Certain types defined in this clause are based on other types, but with added constraints.

69) A valid C + + program always calls the expected library member function, or one with equivalent behavior. An implementation may
also define additional member functions that would otherwise not be called by a valid C + + program.
70) A valid C + + program always calls the expected library global function. An implementation may also define additional global func-
tions that would otherwise not be called by a valid C + + program.

17.1.5.9.1 Enumerated types DRAFT: 27 May 1994 Library 17– 9

[lib.enumerated.types] 17.1.5.9.1 Enumerated types

1 ∗Several types defined in this clause areenumerated types.Each enumerated type can be implemented as an
enumeration or as a synonym for an enumeration. The enumerated typeenumerated can be written: 

enum secret {
V0, V1, V2, V3,};

typedef secret enumerated ;
static const enumerated C0 (V0);
static const enumerated C1 (V1);
static const enumerated C2 (V2);
static const enumerated C3 (V3);

.....

2 Here, the namesC0, C1, etc. representenumerated elementsfor this particular enumerated type. All such
elements have distinct values.

[lib.bitmask.types] 17.1.5.9.2 Bitmask types

Box 84

Library WG issue: Mark Terribile, December 20, 1993

>Bitmask types
...
>The following terms apply to objects and values of bitmask
>types:

>To set a value Y in an object X is
>to evaluate the expression X= Y.

>To clear a value Y in an object X is
>to evaluate the expression X &= ˜Y.

>The value Y is set in the object
>X if the expression X & Y

ˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆ
>is nonzero.
ˆˆˆˆˆˆˆˆˆˆ

‘If the expression ... is non-zero’ or ‘if the expression ... is equal to Y’ ? The former only works if the value
Y is restricted to a single bit. I think that the I/O system requires multibit values (but I could be mistaken)._ __




























_ __




























1 Several types defined in this clause arebitmask types.Each bitmask type can be implemented as an enumer-
ated type that overloads certain operators. The bitmask typebitmask can be written:

17– 10 Library DRAFT: 27 May 1994 17.1.5.9.2 Bitmask types

enum secret {
V0 = 1 << 0, V1 = 1 << 1, V2 = 1 << 2, V3 = 1 << 3,};

typedef secret bitmask ;
static const bitmask C0 (V0);
static const bitmask C1 (V1);
static const bitmask C2 (V2);
static const bitmask C3 (V3);

.....
bitmask & operator&=(bitmask & X, bitmask Y)

{ X = (bitmask)(X & Y); return (X); }
bitmask & operator|=(bitmask & X, bitmask Y)

{ X = (bitmask)(X | Y); return (X); } 
bitmask & operator^=(bitmask & X, bitmask Y)

{ X = (bitmask)(X ^ Y); return (X); }
bitmask operator&(bitmask X , bitmask Y)

{return ((bitmask)(X & Y)); }
bitmask operator|(bitmask X , bitmask Y)

{return ((bitmask)(X | Y)); }
bitmask operator^(bitmask X , bitmask Y)

{return ((bitmask)(X ^ Y)); }
bitmask operator~(bitmask X)

{return ((bitmask)~ X); }

2 Here, the namesC0, C1, etc. representbitmask elementsfor this particular bitmask type. All such ele-
ments have distinct values such that, for any pairCi andCj , Ci & Ci is nonzero andCi & Cj is zero.

3 The following terms apply to objects and values of bitmask types:

— To seta valueY in an objectX is to evaluate the expressionX |= Y.

— To cleara valueY in an objectX is to evaluate the expressionX &= ~ Y.

— The valueY is setin the objectX if the expressionX & Y is nonzero.

[lib.derived.classes] 17.1.5.9.3 Derived classes

1 Certain classes defined in this clause are derived from other classes in the Standard C + + library:

— It is unspecified whether a class described in this clause as a base class is itself derived from other base
classes (with names reserved to the implementation).

— It is unspecified whether a class described in this clause as derived from another class is derived from
that class directly, or through other classes (with names reserved to the implementation) that are derived
from the specified base class.

2 In any case:

— A base class described as virtual in this clause is always virtual;

— A base class described as non-virtual in this clause is never virtual;

— Unless explicitly stated otherwise, types with distinct names in this clause are distinct types.71)

71)An implicit exception to this rule are types described as synonyms for basic integral types, such assize_t andstreamoff .

17.1.5.10 Protection within classes DRAFT: 27 May 1994 Library 17– 11

[lib.protection.within.classes] 17.1.5.10 Protection within classes

1 It is unspecified whether a member described in this clause as private is private, protected, or public. It is
unspecified whether a member described as protected is protected or public. A member described as public
is always public.

2 It is unspecified whether a function signature or class described in this clause is a friend of another class
described in this clause.

[lib.definitions] 17.1.5.11 Definitions

Box 85

Library WG issue: Michael Vilot, November 22, 1993

This subclause should be merged with Section 1.3.  _ __





_ __






1 The Standard C + + library makes widespread use of characters and character sequences that follow a few
uniform conventions:

— A letter is any of the 26 lowercase or 26 uppercase letters in the basic execution character set.

— The decimal-point characteris the (single-byte) character used by functions that convert between a
(single-byte) character sequence and a value of one of the floating-point types. It is used in the charac-
ter sequence to denote the beginning of a fractional part. It is represented in this clause by a period,
’.’ , which is also its value in the"C" locale, but may change during program execution by a call to
setlocale(int, const char*) , declared in<clocale> . 

— A character sequenceis an array objectA that can be declared asT A [N] , whereT is any of the types
char , unsigned char , or signed char , optionally qualified by any combination ofconst or
volatile . The initial elements of the array have defined contents up to and including an element
determined by some predicate. A character sequence can be designated by a pointer valueS that points
to its first element.

— A null-terminated byte string,or NTBS, is a character sequence whose highest-addressed element with
defined content has the value zero (theterminating nullcharacter).72) ∗

— The length of anNTBSis the number of elements that precede the terminating null character. Anempty
NTBShas a length of zero.

— Thevalue of anNTBSis the sequence of values of the elements up to and including the terminating null
character.

— A staticNTBSis anNTBS with static storage duration.73)

— A null-terminated multibyte string,or NTMBS, is anNTBS that constitutes a sequence of valid multibyte
characters, beginning and ending in the initial shift state.74)

— A staticNTMBSis anNTMBS with static storage duration. 

— A wide-character sequenceis an array objectA that can be declared asT A [N] , whereT is type
wchar_t , optionally qualified by any combination ofconst or volatile . The initial elements of
the array have defined contents up to and including an element determined by some predicate. A char-
acter sequence can be designated by a pointer valueS that designates its first element.

72) Many of the objects manipulated by function signatures declared in<cstring> are character sequences orNTBSs. The size of 
some of these character sequences is limited by a length value, maintained separately from the character sequence.
73)A string literal, such as"abc" , is a staticNTBS.
74) An NTBS that contains characters only from the basic execution character set is also anNTMBS. Each multibyte character then con-
sists of a single byte.

17– 12 Library DRAFT: 27 May 1994 17.1.5.11 Definitions

— A null-terminated wide-character string,or NTWCS, is a wide-character sequence whose highest-
addressed element with defined content has the value zero.75) ∗

— The length of anNTWCSis the number of elements that precede the terminating null wide character. An
emptyNTWCShas a length of zero.

— Thevalue of anNTWCSis the sequence of values of the elements up to and including the terminating null
character.

— A staticNTWCSis anNTWCS with static storage duration.76)

[lib.standard.c.library] 17.2 Standard C library

1 This subclause summarizes the explicit changes in definitions, declarations, or behavior within the Standard
C library when it is part of the Standard *C library. (Subclause 17.1 imposes some \&\f2implicit\fP\&
changes in the behavior of the Standard C library.)

[lib.mods.to.headers] 17.2.1 Modifications to headers

1 Each C header, whose name has the form \&\f6name\&\fP\f5.h\fP\&, includes its corresponding *C header
\&\f5c\&\fP\f6name\fP\&, followed by an explicit using-declaration (7.3.3) for each name placed in the
standard library namespace by the header.*f 

[lib.mods.to.definitions] 17.2.2 Modifications to definitions

[lib.wchar.t]17.2.2.1 Type \&\f7wchar_t\fP\& 

1 \&\f5wchar_t\fP\& is a keyword in this International Standard. It does not appear as a type name defined
in any of \&\f5<stddef.h>\fP\&, \&\f5<stdlib.h>\fP\&, or \&\f5<wchar.h>\fP\&. 

[lib.null]17.2.2.2 Macro \&\f7NULL\fP\& 

1 The macro \&\f5NULL\fP\&, defined in any of \&\f5<locale.h>\fP\&, \&\f5<stddef.h>\fP\&, 
\&\f5<stdio.h>\fP\&, \&\f5<stdlib.h>\fP\&, \&\f5<string.h>\fP\&, \&\f5<time.h>\fP\&, or 
\&\f5<wchar.h>\fP\&, is an implementation-defined *C null-pointer constant in this International
Standard.*f 

[lib.header.iso646.h]17.2.2.3 Header \&\f7<iso646.h>\fP\& 

1 The tokens \&\f5and\fP\&, \&\f5and_eq\fP\&, \&\f5bitand\fP\&, \&\f5bitor\fP\&, \&\f5compl\fP\&, 
\&\f5not_eq\fP\&, \&\f5not\fP\&, \&\f5or\fP\&, \&\f5or_eq\fP\&, \&\f5xor\fP\&, and \&\f5xor_eq\fP\& 
are keywords in this International Standard. They do not appear as macro names defined in
\&\f5<iso646.h>\fP\&.

[lib.mods.to.declarations] 17.2.3 Modifications to declarations

75)Many of the objects manipulated by function signatures declared in<cwchar> are wide-character sequences orNTWCSs. 
76)A wide string literal, such asL"abc" , is a staticNTWCS.
77) The header \&\f5<stdlib.h>\fP\&, for example, makes all declarations and definitions available in the global name space, much as
in the C Standard. The header \&\f5<cstdlib>\fP\& provides the same declarations and definitions within the namespace
\&\f5std\fP\&.
78)Possible definitions include \&\f50\fP\& and \&\f50L\fP\&, but not \&\f5(void*)0\fP\&. 

17.2.3.1 DRAFT: 27 May 1994 Library 17– 13
\&\f7memchr(const\ void*, int, size_t)\fP\&

[lib.memchr]17.2.3.1 \&\f7memchr(const\ void*, int, size_t)\fP\& 

1 The function signature \&\f5memchr(const void*, int, size_t)\fP\&, declared in \&\f5<string.h>\fP\& in the 
C Standard, does not have the declaration

void* memchr(const void* \&\fP\f6s\&\fP\f5, int \&\fP\f6c\&\fP\f5, size_t \&\fP\f

2 in this International Standard. Its declaration in \&\f5<string.h>\fP\& is replaced by the two declarations: 

const void* memchr(const void* \&\fP\f6s\&\fP\f5, int \&\fP\f6c\&\fP\f5, size_t \

3 both of which have the same behavior as the original declaration. 

[lib.strchr]17.2.3.2 \&\f7strchr(const\ char*, int)\fP\& 

1 The function signature \&\f5strchr(const char*, int)\fP\&, declared in \&\f5<string.h>\fP\& in the C Stan- 
dard, does not have the declaration:

char* strchr(const char* \&\fP\f6s\&\fP\f5, int \&\fP\f6c\&\fP\f5);.ix "[strchr]"

2 in this International Standard. Its declaration in \&\f5<string.h>\fP\& is replaced by the two declarations: 

const char* strchr(const char* \&\fP\f6s\&\fP\f5, int \&\fP\f6c\&\fP\f5);.ix "[st

3 both of which have the same behavior as the original declaration. 

[lib.strpbrk]17.2.3.3 \&\f7strpbrk(const\ char*, const\ char*)\fP\& 

1 The function signature \&\f5strpbrk(const char*, const char*)\fP\&, declared in \&\f5<string.h>\fP\& in the 
C Standard, does not have the declaration:

char* strpbrk(const char* \&\fP\f6s1\&\fP\f5, const char* \&\fP\f6s2\&\fP\f5);.ix

2 in this International Standard. Its declaration in \&\f5<string.h>\fP\& is replaced by the two declarations: 

const char* strpbrk(const char* \&\fP\f6s1\&\fP\f5, const char* \&\fP\f6s2\&\fP\f

3 both of which have the same behavior as the original function signature. 

[lib.strrchr]17.2.3.4 \&\f7strrchr(const\ char*, int)\fP\& 

1 The function signature \&\f5strrchr(const char*, int)\fP\&, declared in \&\f5<string.h>\fP\& in the C Stan- 
dard, does not have the declaration:

char* strrchr(const char* \&\fP\f6s\&\fP\f5, int \&\fP\f6c\&\fP\f5);.ix "[strrchr

2 in this International Standard. Its declaration in \&\f5<string.h>\fP\& is replaced by the two declarations: 

const char* strrchr(const char* \&\fP\f6s\&\fP\f5, int \&\fP\f6c\&\fP\f5);.ix "[s

3 both of which have the same behavior as the original declaration. 

[lib.strstr]17.2.3.5 \&\f7strstr(const\ char*, const\ char*)\fP\& 

1 The function signature \&\f5strstr(const char*, const char*)\fP\&, declared in \&\f5<string.h>\fP\& in the C 
Standard, does not have the declaration:

char* strstr(const char* \&\fP\f6s1\&\fP\f5, const char* \&\fP\f6s2\&\fP\f5);.ix

2 in this International Standard. Its declaration in \&\f5<string.h>\fP\& is replaced by the two declarations: 

const char* strstr(const char* \&\fP\f6s1\&\fP\f5, const char* \&\fP\f6s2\&\fP\f5

17– 14 Library DRAFT: 27 May 1994 17.2.3.5
\&\f7strstr(const\ char*, const\ char*)\fP\&

3 both of which have the same behavior as the original declaration.

[lib.mods.to.behavior] 17.2.4 Modifications to behavior

[lib.offsetof]17.2.4.1 Macro \&\f7offsetof\fP\& 

1 The macro \&\f5offsetof(\&\fP\f6type\&\fP\f5, \&\fP\f6member-designator\&\fP\f5)\fP\&, defined in
\&\f5<stddef.h>\fP\&, accepts a restricted set of \&\f6type\fP\& arguments in this International Standard.
\&\f6type\fP\& shall be a POD structure or a POD union. 

[lib.longjmp]17.2.4.2 \&\f7longjmp(jmp_buf, int)\fP\& 

1 The function signature \&\f5longjmp(jmp_buf \&\fP\f6jbuf\&\fP\f5, int \&\fP\f6val\&\fP\f5)\fP\&, declared 
in \&\f5<setjmp.h>\fP\&, has more restricted behavior in this International Standard. If any automatic
objects would be destroyed by a thrown exception transferring control to another (destination) point in the
program, then a call to \&\f5longjmp(\&\fP\f6jbuf\&\fP\f5, \&\fP\f6val\&\fP\f5)\fP\& at the throw point
that transfers control to the same (destination) point has undefined behavior.

[lib.storage.allocation.functions] 17.2.4.3 Storage allocation functions

1 The function signatures \&\f5calloc(size_t)\fP\&, \&\f5malloc(size_t)\fP\&, and \&\f5realloc(void*, 
size_t)\fP\&, declared in \&\f5<stdlib.h>\fP\&, do not attempt to allocate storage by calling \&\f5operator
new(size_t)\fP\&, declared in \&\f5<new>\fP\&. 

[lib.atexit]17.2.4.4 \&\f7atexit(void (*)(void))\fP\& 

1 The function signature \&\f5atexit(void (*\&\fP\f6f\&\fP\f5)(void))\fP\&, declared in \&\f5<stdlib.h>\fP\&, 
has additional behavior in this International Standard: 

— For the execution of a function registered with \&\f5atexit\fP\&, if control leaves the function because it
provides no handler for a thrown exception, \&\f5terminate()\fP\& is called. 

[lib.exit]17.2.4.5 \&\f7exit(int)\fP\& 

1 The function signature \&\f5exit(int \&\fP\f6status\&\fP\f5)\fP\&, declared in \&\f5<stdlib.h>\fP\&, has 
additional behavior in this International Standard:

— First, all functions \&\f6f\fP\& registered by calling \&\f5atexit(\&\fP\f6f\&\fP\f5)\fP\&, are called, in
the reverse order of their registration.*f The function signature \&\f5atexit(void (*)())\fP\&, is declared
in \&\f5<stdlib.h>\fP\&.

— Next, all static objects are destroyed in the reverse order of their construction. (Automatic objects are
not destroyed as a result of calling \&\f5exit(int)\fP\&.)*f

— Next, all open C streams (as mediated by the function signatures declared in \&\f5<stdio.h>\fP\&) with 
unwritten buffered data are flushed, all open C streams are closed, and all files created by calling
\&\f5tmpfile()\fP\& are removed.*f The function signature \&\f5tmpfile()\fP\& is declared in
\&\f5<stdio.h>\fP\&.

— Finally, control is returned to the host environment. If \&\f6status\fP\& is zero or
\&\f5EXIT _SUCCESS\fP\&, an implementation-defined form of the status \&\f2successful
termination\fP\& is returned. If \&\f6status\fP\& is \&\f5EXIT_FAILURE\fP\&, an implementation-

79)A function is called for every time it is registered. 
80) Automatic objects are all destroyed in a program whose function \&\f5main\fP\& contains no automatic objects and executes the
call to \&\f5exit\fP\&. Control can be transferred directly to such a \&\f5main\fP\& by throwing an exception that is caught in
\&\f5main\fP\&.
81) Any C streams associated with \&\f5cin\fP\&, \&\f5cout\fP\&, etc. are flushed and closed when static objects are destroyed in the
previous phase.

17.2.4.5 \&\f7exit(int)\fP\& DRAFT: 27 May 1994 Library 17– 15

defined form of the status \&\f2unsuccessful termination\fP\& is returned. Otherwise the status
returned is implementation-defined. The macros \&\f5EXIT_FAILURE\fP\& and 
\&\f5EXIT _SUCCESS\fP\& are defined in \&\f5<stdlib.h>\fP\&.

2 The function signature \&\f5exit(int)\fP\& never returns to its caller. 

[lib.language.support] 17.3 Language support

1 ∗This subclause describes the function signatures that are called implicitly, and the types of objects gener-
ated implicitly, during the execution of some C + + programs. It also describes the headers that declare these
function signatures and define any related types.

[lib.header.defines] 17.3.1 Header<defines>

1 The header<defines> defines a constant and several types used widely throughout the Standard C + +
library. Some are also defined in C headers.

2 The constant is:

const size_t NPOS = (size_t)(-1);

3 which is the largest representable value of typesize_t .

[lib.fvoid.t] 17.3.1.1 Typefvoid_t

typedef void fvoid_t();

1 The typefvoid_t is a function type used to simplify the writing of several declarations in this clause.

[lib.ptrdiff.t] 17.3.1.2 Typeptrdiff_t

typedef T ptrdiff_t;

1 The typeptrdiff_t is a synonym forT, the implementation-defined signed integral type of the result of
subtracting two pointers.

[lib.size.t] 17.3.1.3 Typesize_t

typedef T size_t;

1 The typesize_t is a synonym forT, the implementation-defined unsigned integral type of the result of
thesizeof operator.

[lib.wint.t] 17.3.1.4 Typewint_t

typedef T wint_t;

1 The typewint_t is a synonym forT, the implementation-defined integral type, unchanged by integral
promotions, that can hold any value of typewchar_t as well as at least one value that does not correspond
to the code for any member of the extended character set.82) 

82) The extra value is denoted by the macroWEOF, defined in<cwchar> . It is permissible forWEOFto be in the range of values rep-
resentable bywchar_t .

17– 16 Library DRAFT: 27 May 1994 17.3.1.5 Typecapacity

[lib.capacity] 17.3.1.5 Typecapacity

typedef T capacity;
static const capacity default_size;
static const capacity reserve;

1 The typecapacity is an enumerated type (indicated here asT), with the elements:

— default_size , as an argument value indicates that no reserve capacity argument is present in the
argument list;

— reserve , as an argument value indicates that the preceding argument specifies a reserve capacity.

[lib.header.exception] 17.3.2 Header<exception>

Box 86

Library WG issue: Michael Vilot, November 22, 1993 ∗

The San Diego rewrite dropped all uses of exception specifications. [See: X3J16/93-0012R1, 93-0013R1,
93-0060, and 93-0064, as voted upon and accepted.]

Dropping exception specifications was not a decision the Library WG reached. They need to be retained
until we make an explicit decision to remove them._ __











_ __











1 ∗The header<exception> defines several types and functions related to the handling of exceptions in a
C + + program. 

[lib.exception]17.3.2.1 Classexception 

Box 87

Library WG issue: Charles Allison, January 3, 1994

What is the current state ofchar * vs. string arguments to xmsg and xalloc constructors. Did we offi-
cially decide that we shouldn’t use string? I notice that 17 use null-terminated strings._ __







_ __







Box 88 
Library WG issue: Michael Vilot, November 22, 1993 

The use of a virtual.raise() member function, instead of actually throwing exceptions, is a significant
departure from the intent of the language. The rationale, ‘‘to provide a central point for debugging hooks,’’
seems to be inappropriate overspecification. It precludes other options that would achieve the same goal. _ __








_ __






 

17.3.2.1 Classexception DRAFT: 27 May 1994 Library 17– 17

class exception { 
public:

typedef void (*raise_handler)(exception&); 
static raise_handler set_raise_handler(raise_handler handler_arg);
exception(const string& what_arg); 
virtual ~exception(); 
void raise();
virtual string what() const; 

protected:
exception(); 
virtual void do_raise();

private: ∗
// static raise_handler handler ; exposition only
// const string* desc ; exposition only 
// bool alloced ; exposition only 
};

1 The classexception defines the base class for the types of objects thrown as exceptions by Standard C + + 
library functions, and certain expressions, to report errors detected during program execution. Every excep-
tion ex thrown by a function defined within the Standard C + + library is thrown by evaluating an expression
of the formex .raise() . The class maintains a ttaticraise handlerthat designates a function to be called
by the member functionraise . 

2 The class defines a member typeraise_handler and maintains several kinds of data. For the sake of
exposition, the stored data is presented here as:

— static raise_handler handler , points to the function called by the member function
raise . Its initial value designates no function to be called; 

— const string* what , stores a null pointer or points to an object of typestring whose value is 
intended to briefly describe the general nature of the exception thrown;

— bool alloced , stores a nonzero value if the string objectwhat has been allocated by the object of
classexception .

[lib.exception::raise.handler]17.3.2.1.1 Typeexception::raise_handler 

typedef void (*raise_handler)(exception&); 

1 The typeraise_handler describes a pointer to a function called by the member functionraise to per-
form operations common to all objects of classexception . 

[lib.exception::set.raise.handler]17.3.2.1.2 
exception::set_raise_handler(raise_handler) 

static raise_handler set_raise_handler(raise_handler handler_arg);

1 Assignshandler_arg to handler and then returns the previous value stored inhandler . 

[lib.cons.exception.str]17.3.2.1.3exception::exception(const string&) 

exception(const string& what_arg); 

1 Constructs an object of classexception and initializesdesc to &string(what_arg) andalloced 
to a nonzero value. 

17– 18 Library DRAFT: 27 May 1994 17.3.2.1.4exception::~exception()

[lib.des.exception]17.3.2.1.4exception::~exception() 

virtual ~exception(); 

1 Destroys an object of classexception . If alloced is nonzero, the function frees any object pointed to
by what . 

[lib.exception::raise]17.3.2.1.5exception::raise() 

void raise();

1 If handler is nonzero, calls(* handler)(*this) . The function then callsdo_raise() , then eval-
uates the expressionthrow *this . 

[lib.exception::what]17.3.2.1.6exception::what() 

virtual string what() const; 

1 If desc is not a null pointer, returnsstring(desc) . Otherwise, the value returned is implementation
defined. 

[lib.cons.exception]17.3.2.1.7exception::exception() 

exception(); 

1 Constructs an object of classexception and initializesdesc to an unspecified value andalloced to 
zero.83) 

[lib.exception::do.raise]17.3.2.1.8exception::do_raise() 

virtual void do_raise(); ∗

1 Called by the member functionraise to perform operations common to all objects of a class derived from
exception . The default behavior is to return. 

[lib.logic]17.3.2.2 Classlogic 

class logic : public exception { 
public:

logic(const string& what_arg); 
virtual ~logic(); 

// virtual string what() const; inherited 
protected:
// virtual void do_raise(); inherited
};

1 The classlogic defines the type of objects thrown as exceptions by the implementation to report errors
presumably detectable before the program executes, such as violations of logical preconditions or class
invariants. 

[lib.cons.logic]17.3.2.2.1logic::logic(const string&) 

logic(const string& what_arg); 

1 Constructs an object of classlogic , initializing the base class withexception(what_arg) . 

83)The protected default constructor forexception can, and should, avoid allocating any additional storage.

17.3.2.2.2 logic::~logic() DRAFT: 27 May 1994 Library 17– 19

[lib.des.logic]17.3.2.2.2logic::~logic() 

virtual ~logic(); 

1 Destroys an object of classlogic . 

[lib.logic::what]17.3.2.2.3logic::what() 

// virtual string what() const inherited; 

1 Behaves the same asexception::what() . 

[lib.logic::do.raise]17.3.2.2.4logic::do_raise() 

// virtual void do_raise(); inherited

1 Behaves the same asexception::do_raise() . 

[lib.runtime]17.3.2.3 Classruntime 

class runtime : public exception { 
public:

runtime(const string& what_arg); 
virtual ~runtime(); 

// virtual string what(); inherited 
protected:
// virtual void do_raise(); inherited

runtime(); 
};

1 The classruntime defines the type of objects thrown as exceptions by the implementation to report errors
presumably detectable only when the program executes. 

[lib.cons.runtime.str]17.3.2.3.1runtime::runtime(const string&) 

runtime(const string& what_arg); 

1 Constructs an object of classruntime , initializing the base class withexception(what_arg) . 

[lib.des.runtime]17.3.2.3.2runtime::~runtime() 

virtual ~runtime(); 

1 Destroys an object of classruntime . 

[lib.runtime::what]17.3.2.3.3runtime::what() 

// virtual string what() const inherited; 

1 Behaves the same asexception::what() . 

[lib.runtime::do.raise]17.3.2.3.4runtime::do_raise() 

// virtual void do_raise(); inherited

1 Behaves the same asexception::do_raise() . 

17– 20 Library DRAFT: 27 May 1994 17.3.2.3.5runtime::runtime()

[lib.cons.runtime]17.3.2.3.5runtime::runtime() 

runtime(); 

1 Constructs an object of classruntime , initializing the base class withexception() . 

[lib.bad.cast]17.3.2.4 Classbad_cast 

class bad_cast : public logic { 
public:

bad_cast(const string& what_arg); 
virtual ~bad_cast(); 

// virtual string what() const; inherited 
protected:
// virtual void do_raise(); inherited
};

1 The classbad_cast defines the type of objects thrown as exceptions by the implementation to report the
execution of an invaliddynamic-castexpression. 

[lib.cons.bad.cast]17.3.2.4.1bad_cast::bad_cast(const string&) 

bad_cast(const string& what_arg); 

1 Constructs an object of classbad_cast , initializing the base class withlogic(what_arg . 

[lib.des.bad.cast]17.3.2.4.2bad_cast::~bad_cast() 

virtual ~bad_cast(); 

1 Destroys an object of classbad_cast . 

[lib.bad.cast::what]17.3.2.4.3bad_cast::what() 

// virtual string what() const inherited; 

1 Behaves the same asexception::what() . 

[lib.bad.cast::do.raise]17.3.2.4.4bad_cast::do_raise() 

// virtual void do_raise(); inherited

1 Behaves the same asexception::do_raise() . 

[lib.invalid.argument]17.3.2.5 Classinvalid_argument 

class invalid_argument : public domain { 
public:

invalid_argument(const string& what_arg); 
virtual ~invalid_argument(); 

// virtual string what() const; inherited 
protected:
// virtual void do_raise(); inherited
};

1 The classinvalid_argument defines the base class for the types of all objects thrown as exceptions,
by functions in the Standard C + + library, to report an invalid argument. 

17.3.2.5.1 DRAFT: 27 May 1994 Library 17– 21
invalid_argument::invalid_argument(const string&)

[lib.cons.invalid.argument]17.3.2.5.1 
invalid_argument::invalid_argument(const string&) 

invalid_argument(const string& what_arg); 

1 Constructs an object of classinvalid_argument , initializing the base class with
domain(what_arg) . 

[lib.des.invalid.argument]17.3.2.5.2invalid_argument::~invalid_argument() 

virtual ~invalid_argument(); 

1 Destroys an object of classinvalid_argument . 

[lib.invalid.argument::what]17.3.2.5.3invalid_argument::what() 

// virtual string what() const inherited; 

1 Behaves the same asexception::what() . 

[lib.invalid.argument::do.raise]17.3.2.5.4invalid_argument::do_raise() 

// virtual void do_raise(); inherited

1 Behaves the same asexception::do_raise() . 

[lib.length.error]17.3.2.6 Classlength_error 

class length_error : public domain { 
public:

length_error(const string& what_arg); 
virtual ~length_error(); 

// virtual string what() const; inherited 
protected:
// virtual void do_raise(); inherited
};

1 The classlength_error defines the base class for the types of all objects thrown as exceptions, by func-
tions in the Standard C + + library, to report an attempt to produce an object whose length equals or exceeds
NPOS. 

[lib.cons.length.error]17.3.2.6.1length_error::length_error(const string&) 

length_error(const string& what_arg); 

1 Constructs an object of classlength_error , initializing the base class withdomain(what_arg) . 

[lib.des.length.error]17.3.2.6.2length_error::~length_error() 

virtual ~length_error(); 

1 Destroys an object of classlength_error . 

[lib.length.error::what]17.3.2.6.3length_error::what() 

// virtual string what() const; inherited 

1 Behaves the same asexception::what() . 

17– 22 Library DRAFT: 27 May 1994 17.3.2.6.4
length_error::do_raise()

[lib.length.error::do.raise]17.3.2.6.4length_error::do_raise() 

// virtual void do_raise(); inherited

1 Behaves the same asexception::do_raise() . 

[lib.out.of.range]17.3.2.7 Classout_of_range 

class out_of_range : public domain { 
public:

out_of_range(const string& what_arg); 
virtual ~out_of_range(); 

// virtual string what() const; inherited 
protected:
// virtual void do_raise(); inherited
};

1 The classout_of_range defines the base class for the types of all objects thrown as exceptions, by func-
tions in the Standard C + + library, to report an out-of-range argument. 

[lib.cons.out.of.range]17.3.2.7.1out_of_range::out_of_range(const string&) 

out_of_range(const string& what_arg); 

1 Constructs an object of classout_of_range , initializing the base class withdomain(what_arg) . 

[lib.des.out.of.range]17.3.2.7.2out_of_range::~out_of_range() 

virtual ~out_of_range(); 

1 Destroys an object of classout_of_range . 

[lib.out.of.range::what]17.3.2.7.3out_of_range::what() 

// virtual string what() const; inherited 

1 Behaves the same asexception::what() . 

[lib.out.of.range::do.raise]17.3.2.7.4out_of_range::do_raise() 

// virtual void do_raise(); inherited

1 Behaves the same asexception::do_raise() . 

[lib.overflow] 17.3.2.8 Classoverflow

class overflow : public range { 
public:

overflow(const string& what_arg); 
virtual ~overflow();

// virtual string what() const; inherited 
protected:
// virtual void do_raise(); inherited
};

1 The classoverflow defines the base class for the types of all objects thrown as exceptions, by functions
in the Standard C + + library, to report an arithmetic overflow. 

17.3.2.8.1 DRAFT: 27 May 1994 Library 17– 23
overflow::overflow(const string&)

[lib.cons.overflow]17.3.2.8.1overflow::overflow(const string&) 

overflow(const string& what_arg); 

1 Constructs an object of classoverflow , initializing the base class withrange(what_arg) . ∗

[lib.des.overflow] 17.3.2.8.2overflow::~overflow()

virtual ~overflow();

1 Destroys an object of classoverflow . 

[lib.overflow::what]17.3.2.8.3overflow::what() 

// virtual string what() const; inherited 

1 Behaves the same asexception::what() .

[lib.overflow::do.raise] 17.3.2.8.4overflow::do_raise()

// virtual void do_raise(); inherited

1 Behaves the same asexception::do_raise() . 

[lib.alloc]17.3.2.9 Classalloc 

class alloc : public runtime { 
public:

alloc(); 
virtual ~alloc(); 

// virtual void what() const; inherited 
protected:
// virtual void do_raise(); inherited
private: 
// static string alloc_msg ; exposition only 
};

1 The classalloc defines the type of objects thrown as exceptions by the implementation to report a failure
to allocate storage. For the sake of exposition, the maintained data is presented here as: 

— static string alloc_msg , an object of typestring whose value is intended to briefly
describe an allocation failure, initialized to an unspecified value. 

[lib.cons.alloc]17.3.2.9.1alloc::alloc() 

alloc(); 

1 Constructs an object of classalloc , initializing the base class withruntime() . 

[lib.des.alloc]17.3.2.9.2alloc::~alloc() 

virtual ~alloc(); 

1 Destroys an object of classalloc . 

17– 24 Library DRAFT: 27 May 1994 17.3.2.9.3alloc::what()

[lib.alloc::what]17.3.2.9.3alloc::what() 

// virtual int what() const; inherited 

1 Returns an implementation-defined value.84) 

[lib.alloc::do.raise]17.3.2.9.4alloc::do_raise() 

// virtual void do_raise(); inherited

1 Behaves the same asexception::do_raise() . 

[lib.domain]17.3.2.10 Classdomain 

class domain : public logic { 
public:

domain(const string& what_arg); 
virtual ~domain(); 

// virtual string what() const; inherited 
protected:
// virtual void do_raise(); inherited
};

1 The classdomain defines the type of objects thrown as exceptions by the implementation to report domain
errors. 

[lib.cons.domain]17.3.2.10.1domain::domain(const string&) 

domain(const string& what_arg); 

1 Constructs an object of classdomain , initializing the base class withlogic(what_arg) . 

[lib.des.domain]17.3.2.10.2domain::~domain() 

virtual ~domain(); 

1 Destroys an object of classdomain . 

[lib.domain::what]17.3.2.10.3domain::what() 

// virtual string what() const; inherited 

1 Behaves the same asexception::what() . 

[lib.domain::do.raise]17.3.2.10.4domain::do_raise() 

// virtual void do_raise(); inherited

1 Behaves the same asexception::do_raise() . 

[lib.range]17.3.2.11 Classrange 

84)A possible return value is&alloc_msg .

17.3.2.11 Classrange DRAFT: 27 May 1994 Library 17– 25

class range : public runtime { 
public: 

range(const string& what_arg); 
virtual ~range(); 

// virtual string what() const; inherited 
protected: 
// virtual void do_raise(); inherited 
}; 

1 The classrange defines the type of objects thrown as exceptions by the implementation to report range
errors. 

[lib.cons.range]17.3.2.11.1range::range(const string&) 

range(const string& what_arg); 

1 Constructs an object of classrange , initializing the base class withruntime(what_arg) . 

[lib.des.range]17.3.2.11.2range::~range() 

virtual ~range(); 

1 Destroys an object of classrange . 

[lib.range::what]17.3.2.11.3range::what() 

// virtual int what() const; inherited 

1 Behaves the same asexception::what() . 

[lib.range::do.raise]17.3.2.11.4range::do_raise() 

// virtual void do_raise(); inherited 

1 Behaves the same asexception::do_raise() .

[lib.set.terminate] 17.3.2.12set_terminate(fvoid_t*)

Box 89

Library WG issue: Michael Vilot, November 22, 1993 ∗

Requiring global objects is an overspecification: 

17.3.2.12 set_terminate ‘‘The function storesnew_p in a static object 
... The function returns the previous contents of terminate_handler.’’ 

17.3.2.13 ditto for unexpected_handler.

17.3.3.1 ditto for new_handler. 

The treatment of all 3 handlers in 93-0148/N0355 was simpler and clearer. The San Diego rewrite amounts
to overspecification, particularly in light of the ongoing interest in keeping this library viable in multi-
threaded environments._ __



















_ __



















fvoid_t* set_terminate(fvoid_t* new_p);

17– 26 Library DRAFT: 27 May 1994 17.3.2.12set_terminate(fvoid_t*)

1 Establishes a new handler for terminating exception processing. The function storesnew_p in a static
object that, for the sake of exposition, can be declared as:

fvoid_t* terminate_handler = &abort;

2 where the function signatureabort() is defined in<cstdlib> (17.2.4.5). new_p shall not be a null 
pointer.

3 The function returns the previous contents ofterminate_handler .

[lib.set.unexpected] 17.3.2.13set_unexpected(fvoid_t*)

fvoid_t* set_unexpected(fvoid_t* new_p);

1 Establishes a new handler for an unexpected exception thrown by a function with anexception-
specification.The function storesnew_p in a static object that, for the sake of exposition, can be declared
as:

fvoid_t* unexpected_handler = &terminate;

2 new_p shall not be a null pointer.

3 The function returns the previous contents ofunexpected_handler .

[lib.terminate] 17.3.2.14terminate()

void terminate();

1 Called by the implementation when exception handling must be abandoned for any of several reasons, such
as:

— when a thrown exception has no corresponding handler;

— when a thrown exception determines that the the execution stack is corrupted;

— when a thrown exception calls a destructor that tries to transfer control to a calling function by throwing
another exception.

2 Using the notation of subclause 17.3.2.12, the function evaluates the expression:

(* terminate_handler)()

3 The required behavior of any function called by this expression is to terminate execution of the program
without returning to the caller. The default behavior is to callabort() , declared in<cstdlib> 
(17.2.4.5).

[lib.unexpected] 17.3.2.15unexpected()

void unexpected(); ∗

1 Called by the implementation when a function with anexception-specificationthrows an exception that is
not listed in theexception-specification. Using the notation of subclause 17.3.2.13, the function evaluates
the expression:

(* unexpected_handler)()

2 The required behavior of any function called by this expression is to throw an exception or terminate execu-
tion of the program without returning to the caller. The called function may perform any of the following
operations:

— rethrow the exception;

17.3.2.15unexpected() DRAFT: 27 May 1994 Library 17– 27

— throw another exception;

— call terminate() ;

— call eitherabort() or exit(int) , declared in<cstdlib> (17.2.4.5). 

3 The default behavior is to callterminate() .

[lib.header.new] 17.3.3 Header<new>

Box 90

Library WG issue: Michael Vilot, November 22, 1993

The wording has disappeared that required an implementation that uses the global versions ofoperator
new anddelete to pick up program-supplied versions that replace them._ __







_ __







1 The header<new> defines several functions that manage the allocation of storage in a program, as
described in subclauses 5.3 and 12.5.

[lib.set.new.handler] 17.3.3.1set_new_handler(fvoid_t*)

Box 91

Library WG issue: Michael Vilot, November 22, 1993

This is part of a general issue on stating the requirements on types and functionsused bythe library. 

Keeping a separate subsection for the handlers in 93-0148/N0355 also served two other purposes.: 

First, it gave us a place to introduce appropriate typedefs. As indicated, ‘‘the typefvoid_t needs to be 
defined or replaced.’’ I suggestreplaced. Actually, the use offvoid_t is lessprecise than the use of the
three handler typedefs in 93-0148/N0355. 

Second, it gave us a place to describe the default implementation: the description of the new-handler in
93-0108 section 17.3.2.5 seems out of place, and artifically removed from 17.3.2.2.

We should retain the wording in 93-0148/N0355, because it avoids another global name and it conveys the
semantics of each handler more succinctly._ __




















_ __




















fvoid_t* set_new_handler(fvoid_t* new_p); ∗

1 Establishes a new handler to be called by the default versions ofoperator new(size_t) andoper-
ator new[](size_t) when they cannot satisfy a request for additional storage. The function stores
new_p in a static object that, for the sake of exposition, can be callednew_handler and can be declared
as:

fvoid_t* new_handler = & new_hand ;

2 where, in turn,new_hand can be defined as:

static void new_hand ()
{ // raise alloc exception 

static const alloc ex("operator new"); 
ex.raise();

}

17– 28 Library DRAFT: 27 May 1994 17.3.3.1
set_new_handler(fvoid_t*)

3 The function returns the previous contents ofnew_handler .

[lib.op.delete] 17.3.3.2operator delete(void*)

void operator delete(void* ptr); ∗

1 Called by adelete expression to render the value ofptr invalid. The program can define a function
with this function signature that displaces the default version defined by the Standard C + + library. The
required behavior is to accept a value ofptr that is null or that was returned by an earlier call toopera-
tor new(size_t) .

2 The default behavior for a null value ofptr is to do nothing. Any other value ofptr shall be a value
returned earlier by a call to the defaultoperator new(size_t) . 85) The default behavior for such a
non-null value ofptr is to reclaim storage allocated by the earlier call to the defaultoperator
new(size_t) . It is unspecified under what conditions part or all of such reclaimed storage is allocated
by a subsequent call tooperator new(size_t) or any ofcalloc(size_t) , malloc(size_t) ,
or realloc(void*, size_t) , declared in<cstdlib> (17.2.4.3). 

[lib.op.delete.array] 17.3.3.3operator delete[](void*)

void operator delete[](void* ptr);

1 Called by adelete[] expression to render the value ofptr invalid. The program can define a function
with this function signature that displaces the default version defined by the Standard C + + library.

2 The required behavior is to accept a value ofptr that is null or that was returned by an earlier call to
operator new[](size_t) .

3 The default behavior for a null value ofptr is to do nothing. Any other value ofptr shall be a value
returned earlier by a call to the defaultoperator new[](size_t) . 86) The default behavior for such
a non-null value ofptr is to reclaim storage allocated by the earlier call to the defaultoperator
new[](size_t) . It is unspecified under what conditions part or all of such reclaimed storage is allo-
cated by a subsequent call tooperator new(size_t) or any of calloc(size_t) ,
malloc(size_t) , or realloc(void*, size_t) , declared in<cstdlib> (17.2.4.3). 

[lib.op.new] 17.3.3.4operator new(size_t)

85) The value must not have been invalidated by an intervening call tooperator delete(size_t) , or it would be an invalid
argument for a Standard C + + library function call.
86) The value must not have been invalidated by an intervening call tooperator delete[](size_t) , or it would be an invalid
argument for a Standard C + + library function call.

17.3.3.4 operator new(size_t) DRAFT: 27 May 1994 Library 17– 29

Box 92

Library WG issue: Michael Vilot, November 22, 1993 

The 3 paragraphs of 93-0148/N0355 section 17.1.1 should be retained. 

The change to split these out and reorder them is counterproductive. By repeating the descriptions, you’ve
introduced a lot of wordiness and potential for error. In particular, the wording about storage allocation and
reclamation lost something in the translation.

The words in 93-0148/N0355 section 17.1.1.1, paragraph 4, were intentionally copied, in order, from the C∗
standard. The Rationale statement clearly expresses our intent to pattern our description of storage manage-
ment after the same words formalloc/calloc/free (17.2.4.3).

The concept of ‘‘invalidating’’ is probably more appropriate wording. Let’s see if we can’t keep the advan-
tages of the wording of 93-0148/N0355 with this suggested improvement._ __



















_ __



















void* operator new(size_t size); ∗

1 Called by anew expression to allocatesize bytes of storage suitably aligned to represent any object of
that size. The program can define a function with this function signature that displaces the default version
defined by the Standard C + + library.

2 The required behavior is to return a non-null pointer only if storage can be allocated as requested. Each
such allocation shall yield a pointer to storage disjoint from any other allocated storage. The order and con-
tiguity of storage allocated by successive calls tooperator new(size_t) is unspecified. The initial
stored value is unspecified. The returned pointer points to the start (lowest byte address) of the allocated
storage. Ifsize is zero, the value returned shall not compare equal to any other value returned byoper-
ator new(size_t) .87)

3 The default behavior is to execute a loop. Within the loop, the function first attempts to allocate the
requested storage. Whether the attempt involves a call to the Standard C library functionmalloc is
unspecified. If the attempt is successful, the function returns a pointer to the allocated storage. Otherwise
(using the notation of subclause 17.3.3.1), ifnew_handler is a null pointer, the result is
implementation-defined.88) Otherwise, the function evaluates the expression(* new_handler)() . If
the called function returns, the loop repeats. The loop terminates when an attempt to allocate the requested
storage is successful or when a called function does not return.

4 The required behavior of a function called by(* new_handler)() is to perform one of the following
operations:

— make more storage available for allocation and then return;

— execute an expression of the formex .raise() , whereex is an object of typealloc , declared in 
<exception> ;

— call eitherabort() or exit(int) , declared in<cstdlib> (17.2.4.5). 

5 The default behavior of a function called by(* new_handler)() is described by the function
new_hand , as shown in subclause 17.3.3.1.

87) The value cannot legitimately compare equal to one that has been invalidated by a call tooperator delete(size_t) , since
any such comparison is an invalid operation.
88) A common extension whennew_handler is a null pointer is foroperator new(size_t) to return a null pointer, in accor-
dance with many earlier implementations of C + +.

17– 30 Library DRAFT: 27 May 1994 17.3.3.4operator new(size_t)

6 The order and contiguity of storage allocated by successive calls tooperator new(size_t) is
unspecified, as are the initial values stored there.

[lib.op.new.array] 17.3.3.5operator new[](size_t)

void* operator new[](size_t size);

1 Called by anew[] expression to allocatesize bytes of storage suitably aligned to represent any array
object of that size or smaller.89) The program can define a function with this function signature that dis-
places the default version defined by the Standard C + + library.

2 The required behavior is the same as foroperator new(size_t) .

3 The default behavior is to returnoperator new(size) .

[lib.placement.op.new] 17.3.3.6operator new(size_t, void*)

void* operator new(size_t size , void* ptr); ∗

1 Returnsptr .

[lib.placement.op.new.array] 17.3.3.7operator new[](size_t, void*)

void* operator new[](size_t size , void* ptr);

1 Returnsptr .

[lib.header.typeinfo] 17.3.4 Header<typeinfo>

1 The header<typeinfo> defines two types associated with type information generated by the implemen-
tation. 

[lib.bad.type.id]17.3.4.1 Classbad_type_id 

class bad_type_id : public logic { 
public:

bad_type_id(); 
virtual ~bad_type_id(); 

protected:
// virtual void do_raise(); inherited
};

1 The classbad_type_id defines the type of objects thrown as exceptions by the implementation to report
a null pointerp in an expression of the formtypeid (* p) . 

[lib.cons.bad.type.id]17.3.4.1.1bad_type_id::bad_type_id() 

bad_type_id(); 

1 Constructs an object of classbad_type_id , initializing the base classlogic with an unspecified con- 
structor. 

89) It is not the direct responsibility ofoperator new[](size_t) or operator delete[](void*) to note the repetition
count or element size of the array. Those operations are performed elsewhere in the arraynew anddelete expressions. The array
new expression, may, however, increase thesize argument tooperator new[](size_t) to obtain space to store supplemental
information.

17.3.4.1.2 DRAFT: 27 May 1994 Library 17– 31
bad_type_id::~bad_type_id()

[lib.des.bad.type.id]17.3.4.1.2bad_type_id::~bad_type_id() 

virtual ~bad_type_id(); 

1 Destroys an object of classbad_type_id . 

[lib.bad.type.id::do.raise]17.3.4.1.3bad_type_id::do_raise() 

// virtual void do_raise(); inherited

1 Behaves the same asexception::do_raise() . 

[lib.type.info]17.3.4.2 Classtype_info 

class type_info { 
public:

virtual ~type_info(); 
bool operator==(const type_info& rhs) const; 
bool operator!=(const type_info& rhs) const; 
bool before(const type_info& rhs); 
const char* name() const;

private:
// const char* name; exposition only
// T desc ; exposition only 

type_info(const type_info& rhs); 
type_info& operator=(const type_info& rhs); 

};

1 The classtype_info describes type information generated within the program by the implementation.
Objects of this class effectively store a pointer to a name for the type, and an encoded value suitable for
comparing two types for equality or collating order. The names, encoding rule, and collating sequence for
types are all unspecified and may differ between programs.

2 For the sake of exposition, the stored objects are presented here as:

— const char* name, points at a staticNTMBS; 

— T desc , an object of a typeT that has distinct values for all the distinct types in the program, stores
the value corresponding toname.

[lib.des.type.info]17.3.4.2.1type_info::~type_info() 

virtual ~type_info(); 

1 Destroys an object of typetype_info . 

[lib.type.info::op==]17.3.4.2.2type_info::operator==(const type_info&) 

bool operator==(const type_info& rhs) const; 

1 Compares the value stored indesc with rhs . desc . Returns a nonzero value if the two values represent
the same type. 

[lib.type.info::op!=]17.3.4.2.3type_info::operator!=(const type_info&) 

bool operator!=(const type_info& rhs) const; 

1 Returns a nonzero value if!(*this == rhs) . 

17– 32 Library DRAFT: 27 May 1994 17.3.4.2.4
type_info::before(const type_info&)

[lib.type.info::before]17.3.4.2.4type_info::before(const type_info&) 

bool before(const type_info& rhs) const; 

1 Compares the value stored indesc with rhs . desc . Returns a nonzero value if*this precedesrhs in
the collation order. 

[lib.type.info::name]17.3.4.2.5type_info::name() 

const char* name() const;

1 Returnsname. 

[lib.cons.type.info]17.3.4.2.6type_info::type_info(const type_info&) 

type_info(const type_info& rhs); 

1 Constructs an object of classtype_info and initializesname to rhs . name anddesc to rhs . desc . 
90) 

[lib.type.info::op=]17.3.4.2.7type_info::operator=(const type_info&) 

type_info& operator=(const type_info& rhs); 

1 Assignsrhs . name to name andrhs . desc to desc . The function returns*this . 

[lib.input/output] 17.4 Input/output

Box 93

Library WG issue: Nobuo Saito, January 17, 1994

In the current library draft, there is nothing about the I/O functions for wide characters. For Asian nations
like Japan, it is crucial to be able to use the multibyte characters flexibly in all the areas like I/O functions.
Therefore, it is very important to prepare I/O functions for the wide characters in the current library draft.

We also want to prepare the sophisticated solutions using the high functionalities in the C + + language(like 
the overloading). Then, the following design policy will be reasonable.

1) Use the overloaded function names both for characters and wide
characters.

2) Use the character base buffers in the streambuf.

Comment (Library WG meeting, San Diego, 3/8/94): 

See pending proposals: 
94-0050/N0437 Takanori Adachi "An inserter and extractor for the unified string class" 
94-0052/N0439 Norohiro Kumagai "A Proposal for Widechar IOstream"_ __

























_ __

























1 ∗This subclause describes a number of headers that together support input, output, and internal data conver-
sions.

90) Since the copy constructor and assignment operator fortype_info are private to the class, objects of this type cannot be copied,
but objects of derived classes possibly can be.

17.4.1 Header<ios> DRAFT: 27 May 1994 Library 17– 33

[lib.header.ios] 17.4.1 Header<ios>

1 The Header<ios> defines a type and several function signatures for controlling how to interpret text input
from a sequence of characters and how to generate text output to a sequence of characters.

[lib.ios] 17.4.1.1 Classios

17– 34 Library DRAFT: 27 May 1994 17.4.1.1 Classios

class ios {
public:

class failure : public exception { 
public:

failure(const string& what_arg); 
virtual ~failure();

// virtual string what() const; inherited 
protected:

// virtual void do_raise(); inherited
};
typedef T1 fmtflags;
static const fmtflags dec;
static const fmtflags fixed;
static const fmtflags hex;
static const fmtflags internal;
static const fmtflags left;
static const fmtflags oct;
static const fmtflags right;
static const fmtflags scientific;
static const fmtflags showbase;
static const fmtflags showpoint;
static const fmtflags showpos;
static const fmtflags skipws;
static const fmtflags unitbuf;
static const fmtflags uppercase;
static const fmtflags adjustfield;
static const fmtflags basefield;
static const fmtflags floatfield;
typedef T2 iostate;
static const iostate badbit;
static const iostate eofbit;
static const iostate failbit;
static const iostate goodbit;
typedef T3 openmode;
static const openmode app;
static const openmode ate;
static const openmode binary;
static const openmode in; 
static const openmode out;
static const openmode trunc;
typedef T4 seekdir;
static const seekdir beg;
static const seekdir cur;
static const seekdir end;
class Init { ∗
public:

Init();
~Init();

private:
// static int init_cnt ; exposition only

};
ios(streambuf* sb_arg);
virtual ~ios();
operator bool() const 
bool operator!() const 
ios& copyfmt(const ios& rhs);
ostream* tie() const;
ostream* tie(ostream* tiestr_arg);
streambuf* rdbuf() const;
streambuf* rdbuf(streambuf* sb_arg);
iostate rdstate() const;
void clear(iostate state_arg = goodbit); 

17.4.1.1 Classios DRAFT: 27 May 1994 Library 17– 35

void setstate(iostate state_arg);
bool good() const; 
bool eof() const; 
bool fail() const; 
bool bad() const; 
iostate exceptions() const;
void exceptions(iostate except_arg);
fmtflags flags() const; ∗
fmtflags flags(fmtflags fmtfl_arg);
fmtflags setf(fmtflags fmtfl_arg);
fmtflags setf(fmtflags fmtfl_arg , fmtflags mask);
void unsetf(fmtflags mask);
int fill() const;
int fill(int ch);
int precision() const;
int precision(int prec_arg);
int width() const;
int width(int wide_arg);
locale imbue(const locale& loc_arg); 
locale rdloc() const; 
static int xalloc();
long& iword(int index_arg);
void*& pword(int index_arg);

protected:
ios();
void init(streambuf* sb_arg); 

private:
// streambuf* sb ; exposition only
// ostream* tiestr ; exposition only
// iostate state ; exposition only
// iostate except ; exposition only
// fmtflags fmtfl ; exposition only
// int prec ; exposition only
// int wide ; exposition only
// char fillch ; exposition only
// locale loc ; exposition only 
// static int index ; exposition only
// int* iarray ; exposition only
// void** parray ; exposition only
};

1 The classios serves as a base class for the classesistream andostream . It defines several member
types:

— a classfailure derived fromexception ; 

— a classInit ;

— three bitmask types,fmtflags , iostate , andopenmode;

— an enumerated type,seekdir .

2 It maintains several kinds of data:

— a pointer to astream buffer,an object of classstreambuf , that controls sources (input) and sinks
(output) of character sequences;

— state information that reflects the integrity of the stream buffer;

— control information that influences how to interpret (format) input sequences and how to generate (for-
mat) output sequences;

— additional information that is stored by the programffor its private use. 

17– 36 Library DRAFT: 27 May 1994 17.4.1.1 Classios

3 For the sake of exposition, the maintained data is presented here as:

— streambuf* sb , points to the stream buffer;

— <F1s2B>ostream*>tiestr , points to an output sequence that istied to (synchronized with) an input
sequence controlled by the stream buffer;

— iostate state , holds the control state of the stream buffer;

— iostate except , holds a mask that determines what elements set instate cause exceptions to be
thrown;

— fmtflags fmtfl , holds format control information for both input and output;

— int wide , specifies the field width (number of characters) to generate on certain output conversions;

— int prec , specifies the precision (number of digits after the decimal point) to generate on certain out-
put conversions;

— char fillch , specifies the character to use to pad (fill) an output conversion to the specified field
width;

— locale loc , specifies the locale in which to perform locale-dependent input and output operations;

— static int index , specifies the next available unique index for the integer or pointer arrays main-
tained for the private use of the program, initialized to an unspecified value;

— int* iarray , points to the first element of an arbitrary-length integer array maintained for the pri-
vate use of the program;

— void** parray , points to the first element of an arbitrary-length pointer array maintained for the
private use of the program.

[lib.ios::failure] 17.4.1.1.1 Classios::failure

Box 94

Library WG issue: Jerry Schwarz, September 28, 1993

The San Diego rewrite drops theios component fromios::failure .  _ ___





_ ___






class failure : public exception { 
public:

failure(const string& where_arg); 
virtual ~failure();

// virtual string what() const; inherited 
protected:
// virtual void do_raise(); inherited
};

1 The classfailure defines the base class for the types of all objects thrown as exceptions, by functions in
the Standard C + + library, to report errors detected during stream buffer operations. 

[lib.cons.ios::failure]17.4.1.1.1.1ios::failure::failure(const string&) 

failure(const char* where_arg = 0, const char* why_arg = 0);

1 Constructs an object of classfailure , initializing the base class withexception(what_arg) . ∗

17.4.1.1.1.2 DRAFT: 27 May 1994 Library 17– 37
ios::failure::~failure()

[lib.des.ios::failure] 17.4.1.1.1.2ios::failure::~failure()

virtual ~failure();

1 Destroys an object of classfailure . 

[lib.ios::failure::what]17.4.1.1.1.3ios::failure::what() 

// virtual string what() const; inherited 

1 Behaves the same asexception::what() .

[lib.ios::failure::do.raise] 17.4.1.1.1.4ios::failure::do_raise()

// virtual void do_raise(); inherited

1 Behaves the same asexception::do_raise() . 

[lib.ios::fmtflags] 17.4.1.1.2 Typeios::fmtflags

typedef T1 fmtflags;

1 The typefmtflags is a bitmask type (indicated here asT1) with the elements:

— dec , set to convert integer input or to generate integer output in decimal base;

— fixed , set to generate floating-point output in fixed-point notation;

— hex , set to convert integer input or to generate integer output in hexadecimal base;

— internal , set to add fill characters at a designated internal point in certain generated output;

— left , set to add fill characters on the left (initial positions) of certain generated output;

— oct , set to convert integer input or to generate integer output in octal base;

— right , set to add fill characters on the right (final positions) of certain generated output;

— scientific , set to generate floating-point output in scientific notation;

— showbase , set to generate a prefix indicating the numeric base of generated integer output;

— showpoint , set to generate a decimal-point character unconditionally in generated floating-point out-
put;

— showpos , set to generate a+ sign in non-negative generated numeric output;

— skipws , set to skip leading white space before certain input operations;

— unitbuf , set to flush output after each output operation;

— uppercase , set to replace certain lowercase letters with their uppercase equivalents in generated out-
put.

2 Typefmtflags also defines the constants:

— adjustfield , the valueleft | right | internal ;

— basefield , the valuedec | oct | hex ;

— floatfield , the valuescientific | fixed .

17– 38 Library DRAFT: 27 May 1994 17.4.1.1.3 Typeios::iostate

[lib.ios::iostate] 17.4.1.1.3 Typeios::iostate

typedef T2 iostate;

1 The typeiostate is a bitmask type (indicated here asT2) with the elements:

— badbit , set to indicate a loss of integrity in an input or output sequence (such as an irrecoverable read
error from a file);

— eofbit , set to indicate that an input operation reached the end of an input sequence;

— failbit , set to indicate that an input operation failed to read the expected characters, or that an output
operation failed to generate the desired characters.

2 Type iostate also defines the constant:

— goodbit , the value zero.

[lib.ios::openmode] 17.4.1.1.4 Typeios::openmode

Box 95

Library WG issue: Jerry Schwarz, January 3, 1994

openmode ’s are used in contexts that have nothing to do with files (or open for that matter). The name is
obviously a misnomer (as are many of the names in iostreams).

Not fixed. ∗ _ __









_ __










typedef T3 openmode; ∗

1 The typeopenmode is a bitmask type (indicated here asT3) with the elements:

— app , set to seek to end-of-file before each write to the file;

— ate , set to open a file and seek to end-of-file immediately after opening the file;

— binary , set to perform input and output in binary mode (as opposed to text mode);

— in , set to open a file for input;

— out , set to open a file for output;

— trunc , set to truncate an existing file when opening it. 

[lib.ios::seekdir] 17.4.1.1.5 Typeios::seekdir

typedef T4 seekdir;

1 The typeseekdir is an enumerated type (indicated here asT4) with the elements:

— beg , to request a seek (positioning for subsequent input or output within a sequence) relative to the
beginning of the stream;

— cur , to request a seek relative to the current position within the sequence;

— end , to request a seek relative to the current end of the sequence.

17.4.1.1.6 Classios::Init DRAFT: 27 May 1994 Library 17– 39

[lib.ios::init]17.4.1.1.6 Classios::Init

class Init {
public:

Init();
~Init();

private:
// static int init_cnt ; exposition only
};

1 The classInit describes an object whose construction ensures the construction of the four objects
declared in<iostream> that associate file stream buffers with the standard C streams provided for by the
functions declared in<cstdio> (17.2). For the sake of exposition, the maintained data is presented here
as:

— static int init_cnt , counts the number of constructor and destructor calls for classInit , ini-
tialized to zero.

[lib.cons.ios::init] 17.4.1.1.6.1ios::Init::Init()

Init();

1 Constructs an object of classInit . If init_cnt is zero, the function stores the value one ininit_cnt ,
then constructs and initializes the four objectscin (17.4.9.1),cout (17.4.9.2),cerr (17.4.9.3), and
clog (17.4.9.4). In any case, the function then adds one to the value stored ininit_cnt .

[lib.des.ios::init] 17.4.1.1.6.2ios::Init::~Init()

~Init();

1 Destroys an object of classInit . The function subtracts one from the value stored ininit_cnt and, if
the resulting stored value is one, callscout.flush() , cerr.flush() , andclog.flush() .

[lib.cons.ios.sb] 17.4.1.1.7ios::ios(streambuf*)

ios(streambuf* sb_arg);

1 Constructs an object of classios , assigning initial values to its member objects by calling
init(sb_arg) .

[lib.des.ios] 17.4.1.1.8ios::~ios()

virtual ~ios();

1 Destroys an object of classios . 

[lib.ios::operator.bool]17.4.1.1.9ios::operator bool() 

operator bool() const 

1 Returns a non-null pointer (whose value is otherwise unspecified) iffailbit | badbit is set in
state .

[lib.ios::operator!] 17.4.1.1.10ios::operator!()

bool operator!() const 

17– 40 Library DRAFT: 27 May 1994 17.4.1.1.10ios::operator!()

1 Returns a nonzero value iffailbit | badbit is set instate .

[lib.ios::copyfmt] 17.4.1.1.11ios::copyfmt(const ios&)

ios& copyfmt(const ios& rhs);

1 Assigns to the member objects of*this the corresponding member objects ofrhs , except that:

— sb andstate are left unchanged;

— except is altered last by callingexception(rhs.except) .

2 If any newly stored pointer values in*this point at objects stored outside the objectrhs , and those
objects are destroyed whenrhs is destroyed, the newly stored pointer values are altered to point at newly
constructed copies of the objects.

3 The function returns*this .

[lib.ios::tie] 17.4.1.1.12ios::tie()

ostream* tie() const;

1 Returnstiestr .

[lib.ios::tie.os] 17.4.1.1.13ios::tie(ostream*)

ostream* tie(ostream* tiestr_arg);

1 Assignstiestr_arg to tiestr and then returns the previous value stored intiestr .

[lib.ios::rdbuf] 17.4.1.1.14ios::rdbuf()

streambuf* rdbuf() const;

1 Returnssb .

[lib.ios::rdbuf.sb] 17.4.1.1.15ios::rdbuf(streambuf*)

streambuf* rdbuf(streambuf* sb_arg);

1 Assignssb_arg to sb , then callsclear() . The function returns the previous value stored insb .

[lib.ios::rdstate] 17.4.1.1.16ios::rdstate()

iostate rdstate() const;

1 Returnsstate .

[lib.ios::clear.ios] 17.4.1.1.17ios::clear(iostate)

Box 96

Library WG issue: Jerry Schwarz, September 28, 1993

The San Diego rewrite addsxmsg arguments toios::clear andios::setstate .  _ __





_ __






void clear(iostate state_arg = goodbit); 

17.4.1.1.17ios::clear(iostate) DRAFT: 27 May 1994 Library 17– 41

1 Assignsstate_arg to state . If sb is a null pointer, the function then setsbadbit in state . If
state & except is zero, the function returns. Otherwise, the function callsfail .raise() for an
objectfail of classfailure , constructed with argument values that are implementation-defined. ∗

[lib.ios::setstate.ios] 17.4.1.1.18ios::setstate(iostate)

void setstate(iostate state_arg);

1 Callsclear(state | state_arg) . ∗

[lib.ios::good] 17.4.1.1.19ios::good()

bool good() const; 

1 Returns a nonzero value ifstate is zero.

[lib.ios::eof] 17.4.1.1.20ios::eof()

bool eof() const; 

1 Returns a nonzero value ifeofbit is set instate .

[lib.ios::fail] 17.4.1.1.21ios::fail()

Box 97

Library WG issue: Jerry Schwarz, September 28, 1993

Should setfailbit when the input can’t be represented in the object.  _ ___





_ ___






bool fail() const; 

1 Returns a nonzero value iffailbit is set instate .

[lib.ios::bad] 17.4.1.1.22ios::bad()

bool bad() const; 

1 Returns a nonzero value ifbadbit is set instate .

[lib.ios::exceptions] 17.4.1.1.23ios::exceptions()

iostate exceptions() const;

1 Returnsexcept .

[lib.ios::exceptions.ios] 17.4.1.1.24ios::exceptions(iostate)

void exceptions(iostate except_arg);

1 Assignsexcept_arg to except , then callsclear(state) . ∗

[lib.ios::flags] 17.4.1.1.25ios::flags()

fmtflags flags() const;

1 Returnsfmtfl .

17– 42 Library DRAFT: 27 May 1994 17.4.1.1.26ios::flags(fmtflags)

[lib.ios::flags.f] 17.4.1.1.26ios::flags(fmtflags)

fmtflags flags(fmtflags fmtfl_arg);

1 Assignsfmtfl_arg to fmtfl and then returns the previous value stored infmtfl .

[lib.ios::setf.f] 17.4.1.1.27ios::setf(fmtflags)

fmtflags setf(fmtflags fmtfl_arg);

1 Setsfmtfl_arg in fmtfl and then returns the previous value stored infmtfl .

[lib.ios::setf.ff] 17.4.1.1.28ios::setf(fmtflags, fmtflags)

fmtflags setf(fmtflags fmtfl_arg , fmtflags mask);

1 Clearsmask in fmtfl , setsfmtfl_arg & mask in fmtfl , and then returns the previous value stored
in fmtfl .

[lib.ios::unsetf] 17.4.1.1.29ios::unsetf(fmtflags)

void unsetf(fmtflags mask);

1 Clearsmask in fmtfl .

[lib.ios::fill] 17.4.1.1.30ios::fill()

int fill() const;

1 Returnsfill .

[lib.ios::fill.i] 17.4.1.1.31ios::fill(int)

int fill(int fillch_arg);

1 Assignsfillch_arg to fillch and then returns the previous value stored infillch .

[lib.ios::precision] 17.4.1.1.32ios::precision()

int precision() const;

1 Returnsprec .

[lib.ios::precision.i] 17.4.1.1.33ios::precision(int)

int precision(int prec_arg);

1 Assignsprec_arg to prec and then returns the previous value stored inprec .

[lib.ios::width] 17.4.1.1.34ios::width()

int width() const;

1 Returnswide .

17.4.1.1.35ios::width(int) DRAFT: 27 May 1994 Library 17– 43

[lib.ios::width.i] 17.4.1.1.35ios::width(int)

int width(int wide_arg);

1 Assignswide_arg to wide and then returns the previous value stored inwide . 

[lib.ios::imbue]17.4.1.1.36ios::imbue(const locale&) 

locale imbue(const locale loc_arg); 

1 Assignsloc_arg to loc and then returns the previous value stored inloc . 

[lib.ios::rdloc]17.4.1.1.37ios::rdloc() 

locale rdloc() const; 

1 Returnsloc .

[lib.ios::xalloc] 17.4.1.1.38ios::xalloc()

Box 98

Library WG issue: Jerry Schwarz, September 28, 1993

Is it clear thatxalloc doesn’t have to start at zero?  ___











static int xalloc();

1 Returnsindex ++.

[lib.ios::iword] 17.4.1.1.39ios::iword(int)

long& iword(int idx);

1 If iarray is a null pointer, allocates an array ofint of unspecified size and stores a pointer to its first
element iniarray . The function then extends the array pointed at byiarray as necessary to include the
elementiarray [idx] . Each newly allocated element of the array is initialized to zero. The function
returnsiarray [idx] . After a subsequent call toiword(int) for the same object, the earlier return
value may no longer be valid.91)

[lib.ios::pword] 17.4.1.1.40ios::pword(int)

void* & pword(int idx);

1 If parray is a null pointer, allocates an array of pointers tovoid of unspecified size and stores a pointer
to its first element inparray . The function then extends the array pointed at byparray as necessary to
include the elementparray [idx] . Each newly allocated element of the array is initialized to a null
pointer. The function returnsparray [idx] . After a subsequent call topword(int) for the same
object, the earlier return value may no longer be valid.

91) An implementation is free to implement both the integer array pointed at byiarray and the pointer array pointed at byparray
as sparse data structures, possibly with a one-element cache for each.

17– 44 Library DRAFT: 27 May 1994 17.4.1.1.41ios::ios()

[lib.cons.ios] 17.4.1.1.41ios::ios()

ios(); ∗

1 Constructs an object of classios , assigning initial values to its member objects by callinginit(0) .

[lib.ios::init.sb] 17.4.1.1.42ios::init(streambuf*)

void init(streambuf* sb_arg); 

1 Assigns:

— sb_arg to sb ;

— a null pointer totiestr ;

— goodbit to state if sb_arg is not a null pointer, otherwisebadbit to state ; 

— goodbit to except ; 

— skipws | dec to fmtfl ;

— zero towide ;

— 6 toprec ;

— the space character tofillch ;

— locale::classic() to loc ; 

— a null pointer toiarray ;

— a null pointer toparray .

[lib.dec] 17.4.1.2dec(ios&)

ios& dec(ios& str);

1 Callsstr .setf(ios::dec, ios::basefield) and then returnsstr .92)

[lib.fixed] 17.4.1.3 fixed(ios&)

ios& fixed(ios& str);

1 Callsstr .setf(ios::fixed, ios::floatfield) and then returnsstr .

[lib.hex] 17.4.1.4hex(ios&)

ios& hex(ios& str);

1 Callsstr .setf(ios::hex, ios::basefield) and then returnsstr .

[lib.internal] 17.4.1.5 internal(ios&)

ios& internal(ios& str);

1 Callsstr .setf(ios::internal, ios::adjustfield) and then returnsstr .

92) The function signaturedec(ios&) can be called by the function signatureostream& stream::operator<<(ostream&
(*)(ostream&)) to permit expressions of the formcout << dec to change the format flags stored incout .

17.4.1.6 left(ios&) DRAFT: 27 May 1994 Library 17– 45

[lib.left] 17.4.1.6 left(ios&)

ios& left(ios& str);

1 Callsstr .setf(ios::left, ios::adjustfield) and then returnsstr .

[lib.noshowbase] 17.4.1.7noshowbase(ios&)

ios& noshowbase(ios& str);

1 Callsstr .unsetf(ios::showbase) and then returnsstr .

[lib.noshowpoint] 17.4.1.8noshowpoint(ios&)

ios& noshowpoint(ios& str);

1 Callsstr .unsetf(ios::showpoint) and then returnsstr .

[lib.noshowpos] 17.4.1.9noshowpos(ios&)

ios& noshowpos(ios& str); 

1 Callsstr .unsetf(ios::showpos) and then returnsstr .

[lib.noskipws] 17.4.1.10noskipws(ios&)

ios& noskipws(ios& str);

1 Callsstr .unsetf(ios::skipws) and then returnsstr .

[lib.nouppercase] 17.4.1.11nouppercase(ios&)

ios& nouppercase(ios& str);

1 Callsstr .unsetf(ios::uppercase) and then returnsstr .

[lib.oct] 17.4.1.12oct(ios&)

ios& oct(ios& str);

1 Callsstr .setf(ios::oct, ios::basefield) and then returnsstr .

[lib.right] 17.4.1.13right(ios&)

ios& right(ios& str);

1 Callsstr .setf(ios::right, ios::adjustfield) and then returnsstr .

[lib.scientific] 17.4.1.14scientific(ios&)

ios& scientific(ios& str);

1 Callsstr .setf(ios::scientific, ios::floatfield) and then returnsstr .

[lib.showbase] 17.4.1.15showbase(ios&)

ios& showbase(ios& str);

1 Callsstr .setf(ios::showbase) and then returnsstr .

17– 46 Library DRAFT: 27 May 1994 17.4.1.16showpoint(ios&)

[lib.showpoint] 17.4.1.16showpoint(ios&)

ios& showpoint(ios& str);

1 Callsstr .setf(ios::showpoint) and then returnsstr .

[lib.showpos] 17.4.1.17showpos(ios&)

ios& showpos(ios& str);

1 Callsstr .setf(ios::showpos) and then returnsstr .

[lib.skipws] 17.4.1.18skipws(ios&)

ios& skipws(ios& str);

1 Callsstr .setf(ios::skipws) and then returnsstr .

[lib.uppercase] 17.4.1.19uppercase(ios&)

ios& uppercase(ios& str);

1 Callsstr .setf(ios::uppercase) and then returnsstr .

[lib.header.streambuf] 17.4.2 Header<streambuf>

1 The header<streambuf> defines a macro and three types that control input from and output to character
sequences.

2 The macro is:

— EOF, which expands to a negative integral constant expression, representable as typeint , that is
returned by several functions to indicate end-of-file (no more input from an input sequence or no more
output permitted to an output sequence), or to indicate an invalid return value.93) 

[lib.streamoff] 17.4.2.1 Typestreamoff

typedef T1 streamoff; ∗

1 The typestreamoff is a synonym for one of the signed basic integral typesT1 whose representation has
at least as many bits as typelong . It is used to represent:

— a signed displacement, measured in bytes, from a specified position within a sequence;

— an absolute position within a sequence, not necessarily measured in uniform units.

2 In the second case, the value(streamoff)(-1) indicates an invalid position, or a position that cannot
be represented as a value of typestreamoff .

[lib.streampos] 17.4.2.2 Classstreampos

93)This macro is also defined, with the same value and meaning, in<cstdio> . 

17.4.2.2 Classstreampos DRAFT: 27 May 1994 Library 17– 47

Box 99

Library WG issue: Jerry Schwarz, January 3, 1994

Bill has a lot more experience withfpos_t than I do, but the reference to "streamoff that represents 
the position infp " doesn’t make sense to me. I thought thatfpos_t ’s could be magic cookies. What is
important is the identity

long(streampos(n)) == n ∗

Is it really possible in general to add an offset to anfpos_t without having a file to which it is attached? 

Even if it is possible to do this arithmetic forfpos_t , it isn’t necessarily the case for arbitrary
streambuf ’s. In particular it isn’t possible for thembstreambuf class proposed in x3j16/93- 0125.

The immediate problem is solved, but there is still a lot of discussion of adding offsets tofpos_t ’s. This 
isn’t an operation that the C standard allows, and I think it is a mistake to go beyond the C standard here.
I’m not sure of the operational consequence of what Bill is doing._ __






















_ __






















Box 100

Library WG issue: Jerry Schwarz, January 3, 1994

streampos: This is a substantial change from rev 7. 

I think what Rev 7 is trying to say is more like 
class streampos {

union { fpos_t fp; long n; }; ∗
friend class filebuf ; // so it can get at fp

public:
streampos(long i) { n = i; }
operator long() { return n; }

};

The draft usesstreamoff where I have long . I don’t think there is a guarantee that
sizeof(streamoff) is at leastsizeof(long) so there is a problem. (E.g.stringbuf stores
size_t ’s in streampos ’s)_ __






















_ __






















1 In this subclause, the type namefpos_t is a synonym for the typefpos_t defined in<cstdio> (17.2). 

class streampos {
public:

streampos(streamoff off = 0);
streamoff offset() const;
streamoff operator-(streampos& rhs) const; 
streampos& operator+=(streamoff off);
streampos& operator-=(streamoff off);
streampos operator+(streamoff off) const; 
streampos operator-(streamoff off) const; 
bool operator==(const streampos& rhs) const; 
bool operator!=(const streampos& rhs) const; 

private:
// streamoff pos ; exposition only
// fpos_t fp ; exposition only
};

17– 48 Library DRAFT: 27 May 1994 17.4.2.2 Classstreampos

2 The classstreampos describes an object that can store all the information necessary to restore an arbi-
trary sequence, controlled by the Standard C + + library, to a previousstream positionand conversion
state.94) For the sake of exposition, the data it stores is presented here as:

— streamoff pos , specifies the absolute position within the sequence;

— fpos_t fp , specifies the stream position and conversion state in the implementation-dependent form
required by functions declared in<cstdio> .

3 It is unspecified how these two member objects combine to represent a stream position.

[lib.cons.streampos] 17.4.2.2.1streampos::streampos(streamoff)

Box 101

Library WG issue: Jerry Schwarz, September 28, 1993

streampos::streampos talks about conversion states for multibyte.  _ __





_ __






streampos(streamoff off = 0);

1 Constructs an object of classstreampos , initializing pos to zero andfp to the stream position at the
beginning of the sequence, with the conversion state at the beginning of a new multibyte sequence in the
initial shift state.95) The constructor then evaluates the expression*this += off . 

[lib.streampos::offset] 17.4.2.2.2streampos::offset()

streamoff offset() const;

1 Determines the value of typestreamoff that represents the stream position stored inpos andfp , if pos-
sible, and returns that value. Otherwise, the function returns(streamoff)(-1) . For a sequence requir-
ing a conversion state, even a representable value of typestreamoff need not supply sufficient informa-
tion to restore the stored stream position.

[lib.streampos::op-.sp] 17.4.2.2.3streampos::operator-(streampos&)

streamoff operator-(streampos& rhs) const; 

1 Determines the value of typestreamoff that represents the difference in stream positions between
*this andrhs , if possible, and returns that value. (If*this is a stream position nearer the beginning of
the sequence thanrhs , the difference is negative.) Otherwise, the function returns(streamoff)(-1) .
For a sequence that does not represent stream positions in uniform units, even a representable value need
not be meaningful.

[lib.streampos::op+=] 17.4.2.2.4streampos::operator+=(streamoff)

94) The conversion state is used for sequences that translate between wide-character and generalized multibyte encoding, as described
in Amendment 1 to the C Standard.
95)The next character to read or write is the first character in the sequence.

17.4.2.2.4 DRAFT: 27 May 1994 Library 17– 49
streampos::operator+=(streamoff)

Box 102

Library WG issue: Jerry Schwarz, January 3, 1994

At any rate, the wording needs to be clarified. E.g.
streampos& streampos::operator+=(streampos& rhs)

Adds off to the stream offset stored inpos andfp , if possible,
and replaces the stored value. Otherwise ...

The problem is that this wording seems to say that if you can’t add the offset to fp you take the otherwise._ __











_ __












streampos& operator+=(streamoff off);

1 Addsoff to the stream position stored inpos andfp , if possible, and replaces the stored values. Other-
wise, the function stores an invalid stream position inpos andfp . For a sequence that does not represent
stream positions in uniform units, the resulting stream position need not be meaningful. The function
returns*this .

[lib.streamos::op-=] 17.4.2.2.5streampos::operator-=(streamoff)

streampos& operator-=(streamoff off);

1 Subtractsoff from the stream position stored inpos and fp , if possible, and replaces the stored value.
Otherwise, the function stores an invalid stream position inpos andfp . For a sequence that does not rep-
resent stream positions in uniform units, the resulting stream position need not be meaningful. The func-
tion returns*this .

[lib.streampos::op+] 17.4.2.2.6streampos::operator+(streamoff)

streampos operator+(streamoff off) const; 

1 Returnsstreampos(*this) += off .

[lib.streampos::op-.off] 17.4.2.2.7streampos::operator-(streamoff)

streampos operator-(streamoff off) const; 

1 Returnsstreampos(*this) -= off . 

[lib.streampos::op==]17.4.2.2.8streampos::operator==(const streampos&) 

bool operator==(const streampos& rhs) const; 

1 Compares the stream position stored in*this to the stream position stored inrhs , and returns a nonzero
value if the two correspond to the same position within a file or if both store an invalid stream position.

[lib.op!=.streampos]17.4.2.2.9streampos::operator!=(const streampos&) 

bool operator!=(const streampos& rhs) const; 

1 Returns a nonzero value if!(*this == rhs) .

[lib.streambuf] 17.4.2.3 Classstreambuf

17– 50 Library DRAFT: 27 May 1994 17.4.2.3 Classstreambuf

class streambuf { ∗
public:

virtual ~streambuf();
streampos pubseekoff(streamoff off , ios::seekdir way,

ios::openmode which = ios::in | ios::out);
streampos pubseekpos(streampos sp , ∗

ios::openmode which = ios::in | ios::out);
streambuf* pubsetbuf(char* s, int n); ∗
int in_avail(); 
int pubsync();
int sbumpc();
int sgetc();
int sgetn(char* s, int n);
int snextc(); 
int sputbackc(char c);
int sungetc();
int sputc(int c);
int sputn(const char* s, int n);

protected:
streambuf();
char* eback() const;
char* gptr() const;
char* egptr() const;
void gbump(int n);
void setg(char* gbeg_arg , char* gnext_arg , char* gend_arg);
char* pbase() const;
char* pptr() const;
char* epptr() const;
void pbump(int n);
void setp(char* pbeg_arg , char* pend_arg);
virtual int overflow(int c = EOF);
virtual int pbackfail(int c = EOF);
virtual int showmany(); 
virtual int underflow();
virtual int uflow();
virtual int xsgetn(char* s, int n);
virtual int xsputn(const char* s, int n);
virtual streampos seekoff(streamoff off , ios::seekdir way,

ios::openmode which = ios::in | ios::out);
virtual streampos seekpos(streampos sp ,

ios::openmode which = ios::in | ios::out);
virtual streambuf* setbuf(char* s, int n);
virtual int sync();

private:
// char* gbeg ; exposition only
// char* gnext ; exposition only
// char* gend ; exposition only
// char* pbeg ; exposition only
// char* pnext ; exposition only
// char* pend ; exposition only
};

1 The classstreambuf serves as an abstract base class for deriving variousstream bufferswhose objects
each control two character sequences:

— a (single-byte) character input sequence;

— a (single-byte) character output sequence.

17.4.2.3 Classstreambuf DRAFT: 27 May 1994 Library 17– 51

2 Stream buffers can impose various constraints on the sequences they control. Some constraints are:

— The controlled input sequence can be not readable.

— The controlled output sequence can be not writable.

— The controlled sequences can be associated with the contents of other representations for character
sequences, such as external files.

— The controlled sequences can support operationsdirectly to or from associated sequences.

— The controlled sequences can impose limitations on how the program can read characters from a
sequence, write characters to a sequence, put characters back into an input sequence, or alter the stream
position.

3 Each sequence is characterized by three pointers which, if non-null, all point into the same array object.
The array object represents, at any moment, a (sub)sequence of characters from the sequence. Operations
performed on a sequence alter the values stored in these pointers, perform reads and writes directly to or
from associated sequences, and alter the stream position and conversion state as needed to maintain this
subsequence relationship. The three pointers are:

— thebeginning pointer,or lowest element address in the array (calledxbeg here);

— the next pointer,or next element address that is a current candidate for reading or writing (called
xnext here);

— theend pointer,or first element address beyond the end of the array (calledxend here).

4 The following semantic constraints shall always apply for any set of three pointers for a sequence, using the
pointer names given immediately above:

— If xnext is not a null pointer, thenxbeg andxend shall also be non-null pointers into the same array,
as described above.

— If xnext is not a null pointer andxnext < xend for an output sequence, then awrite positionis
available. In this case,* xnext shall be assignable as the next element to write (to put, or to store a
character value, into the sequence).

— If xnext is not a null pointer andxbeg < xnext for an input sequence, then aputback positionis
available. In this case,xnext [-1] shall have a defined value and is the next (preceding) element to
store a character that is put back into the input sequence.

— If xnext is not a null pointer andxnext < xend for an input sequence, then aread positionis
available. In this case,* xnext shall have a defined value and is the next element to read (to get, or to
obtain a character value, from the sequence).

5 For the sake of exposition, the maintained data is presented here as:

— char* gbeg , the beginning pointer for the input sequence;

— char* gnext , the next pointer for the input sequence;

— char* gend , the end pointer for the input sequence;

— char* pbeg , the beginning pointer for the output sequence;

— char* pnext , the next pointer for the output sequence;

— char* pend , the end pointer for the output sequence. 

17– 52 Library DRAFT: 27 May 1994 17.4.2.3.1streambuf::~streambuf()

[lib.des.streambuf] 17.4.2.3.1streambuf::~streambuf()

virtual ~streambuf();

1 Destroys an object of classstreambuf .

[lib.streambuf::pubseekoff] 17.4.2.3.2streambuf::pubseekoff(streamoff,
ios::seekdir, ios::openmode)

streampos pubseekoff(streamoff off , ios::seekdir way,
ios::openmode which = ios::in | ios::out);

1 Returnsseekoff(off , way, which) . ∗

[lib.streambuf::pubseekpos] 17.4.2.3.3streambuf::pubseekpos(streampos,
ios::openmode)

streampos pubseekpos(streampos sp ,
ios::openmode which = ios::in | ios::out);

1 Returnsseekpos(sp , which) . ∗

[lib.streambuf::pubsetbuf] 17.4.2.3.4streambuf::pubsetbuf(char*, int)

streambuf* pubsetbuf(char* s, int n);

1 Returnssetbuf(s, n) . 

[lib.streambuf::in.avail]17.4.2.3.5streambuf::in_avail() 

int in_avail(); 

1 If the input sequence does not have a read position available, returnsshowmany() . Otherwise, the func- 
tion returnsgend - gnext .

[lib.streambuf::pubsync] 17.4.2.3.6streambuf::pubsync()

int pubsync();

1 Returnssync() .

[lib.streambuf::sbumpc] 17.4.2.3.7streambuf::sbumpc()

int sbumpc();

1 If the input sequence does not have a read position available, returnsuflow() . Otherwise, the function
returns(unsigned char)* gnext ++.

[lib.streambuf::sgetc] 17.4.2.3.8streambuf::sgetc()

int sgetc();

1 If the input sequence does not have a read position available, returnsunderflow() . Otherwise, the func-
tion returns(unsigned char)* gnext .

17.4.2.3.9 DRAFT: 27 May 1994 Library 17– 53
streambuf::sgetn(char*, int)

[lib.streambuf::sgetn] 17.4.2.3.9streambuf::sgetn(char*, int)

int sgetn(char* s, int n);

1 Returnsxsgetn(s, n) .

[lib.streambuf::snextc] 17.4.2.3.10streambuf::snextc()

int snextc(); 

1 Calls sbumpc() and, if that function returnsEOF, returns EOF. Otherwise, the function returns
sgetc() .

[lib.streambuf::sputbackc] 17.4.2.3.11streambuf::sputbackc(char)

int sputbackc(char c);

1 If the input sequence does not have a putback position available, or ifc != gnext [-1] , returns
pbackfail(c) . Otherwise, the function returns(unsigned char)*-- gnext .

[lib.streambuf::sungetc] 17.4.2.3.12streambuf::sungetc()

int sungetc();

1 If the input sequence does not have a putback position available, returnspbackfail() . Otherwise, the
function returns(unsigned char)*-- gnext .

[lib.streambuf::sputc] 17.4.2.3.13streambuf::sputc(int)

int sputc(int c);

1 If the output sequence does not have a write position available, returnsoverflow(c) . Otherwise, the
function returns(unsigned char)(* pnext ++ = c) .

[lib.streambuf::sputn] 17.4.2.3.14streambuf::sputn(const char*, int)

int sputn(const char* s, int n);

1 Returnsxsputn(s, n) .

[lib.cons.streambuf] 17.4.2.3.15streambuf::streambuf()

Box 103

Library WG issue: Jerry Schwarz, September 28, 1993

streambuf copy constructor explicitly undefined. 

Also operator=() .___















streambuf();

1 Constructs an object of classstreambuf() and initializes all its pointer member objects to null point-
ers.96)

96) The default constructor is protected for classstreambuf to assure that only objects for classes derived from this class may be
constructed.

17– 54 Library DRAFT: 27 May 1994 17.4.2.3.16streambuf::eback()

[lib.streambuf::eback] 17.4.2.3.16streambuf::eback()

char* eback() const;

1 Returnsgbeg .

[lib.streambuf::gptr] 17.4.2.3.17streambuf::gptr()

char* gptr() const;

1 Returnsgnext .

[lib.streambuf::egptr] 17.4.2.3.18streambuf::egptr()

char* egptr() const;

1 Returnsgend .

[lib.streambuf::gbump] 17.4.2.3.19streambuf::gbump(int)

void gbump(int n); 

1 Assignsgnext + n to gnext .

[lib.streambuf::setg] 17.4.2.3.20streambuf::setg(char*, char*, char*)

void setg(char* gbeg_arg , char* gnext_arg , char* gend_arg);

1 Assignsgbeg_arg to gbeg , gnext_arg to gnext , andgend_arg to gend .

[lib.streambuf::pbase] 17.4.2.3.21streambuf::pbase()

char* pbase() const;

1 Returnspbeg .

[lib.streambuf::pptr] 17.4.2.3.22streambuf::pptr()

char* pptr() const;

1 Returnspnext .

[lib.streambuf::epptr] 17.4.2.3.23streambuf::epptr()

char* epptr() const;

1 Returnspend .

[lib.streambuf::pbump] 17.4.2.3.24streambuf::pbump(int)

void pbump(int n);

1 Assignspnext + n to pnext .

[lib.streambuf::setp] 17.4.2.3.25streambuf::setp(char*, char*)

void setp(char* pbeg_arg , char* pend_arg);

1 Assignspbeg_arg to pbeg , pbeg_arg to pnext , andpend_arg to pend .

17.4.2.3.26 DRAFT: 27 May 1994 Library 17– 55
streambuf::overflow(int)

[lib.streambuf::overflow] 17.4.2.3.26streambuf::overflow(int)

Box 104

Library WG issue: Jerry Schwarz, January 3, 1994

In any event the protocol in the draft has some defects: 

A) In casec==EOF, the draft doesn’t allow the function to fail. My protocol does. 

B) In the draft’s first case, the protocol doesn’t say anything about what happens when an output position is∗
made available. ∗

C) The draft’s second case doesn’t say anything about howpbeg and pnext are modified. Since it 
doesn’t say they presumably must be left unchanged, but that is obviously a mistake.

D) Most importantly, I have indicated exactly what information must be supplied in order to specialize the
protocol. 

I want to emphasize (D). Even if Bill doesn’t like my version of the protocol, I think it is essentially that
there be some indication of what has to be specified to specialize it._ __























_ __























Box 105 
Library WG issue: Jerry Schwarz, January 3, 1994 

overflow: Rev 7 simply requires the return is notEOFif c==EOF. Requiring it to be 0 is a change. 

More generally I think the San Diego rewrite over specifies the protocol in many places. Since this is the
contract with user defined virtuals I think over specification here is wrong. 

The only obligation ofoverflow(c) is to eventually append the characters betweenpbeg and pptr 
andc to the output sequence followed byc . 

It is not (for example) required to return immediately ifc==EOF. 

Nor is it required to putc into the array even if it makes an output position available. 

I think the San Diego rewrite over specified all the virtuals. I consider this a serious issue.  _ __



















_ __


















 

17– 56 Library DRAFT: 27 May 1994 17.4.2.3.26
streambuf::overflow(int)

Box 106 
Library WG issue: Jerry Schwarz, January 2, 1994

The San Diego rewrite has modified the description ofoverflow , but I think it still overspecifies in some
ways, and under specifies in others. Also it doesn’t make it clear that what is being described is a ‘‘proto-
col’’, that derived classes are required to implement. It hasn’t been solicited, but here is my version of the
underflow protocol (using the vocabulary of the draft).

The pending sequence of characters is defined as the concatenation of 

a) If pbeg is NULL then the empty sequence otherwise
pnext-pbeg characters beginning atpbeg .

b) if c==EOF then the empty sequence otherwise the
sequence consisting ofc .

overflow may consume some initial subsequence of the pending sequence. Consuming a character
means either appending it to the associated output stream or discarding it.

In case some characters of the pending sequence have not been appended to the associated output stream,
let r be the number of characters in the pending sequence not appended to the output stream. Thenpbeg 
andpnext must be set so thatpnext-pbeg==r and ther characters starting atpbeg are the same as
the subsequence that has not been appended to the associated output stream.

In case all characters of the pending sequence have been appended to the associated output stream, then
either pbeg is set toNULL, orpbeg andpnext are both set to (the same) non-NULLvalue.

The function may fail if either appending some character to the associated output stream fails or for some
reason [I have in mind out of memory] it is unable to establishpbeg andpnext according to the above
rules.

If the function fails it may signal that by returningEOFor throwing an exception. 

Otherwise the function returns some value (other thanEOF) to indicate success 

To specialize this proposal you must specify.

a) What possible subsequences will be disposed of.
b) When are characters discarded and when are they

appended to the associated output stream.
c) The associated output stream. (This need not

be specified if
d) How failure is signaled.
e) The effect, if any ongbeg, gnext, gend

I believe this protocol is easier to work with than the one in the draft._ __























































_ __
























































virtual int overflow(int c = EOF); ∗

1 Appends the character designated byc to the output sequence, if possible, in one of three ways:

— If c != EOF and if either the output sequence has a write position available or the function makes a
write position available, the function assignsc to * pnext ++. The function signals success by return-
ing (unsigned char) c .

17.4.2.3.26 DRAFT: 27 May 1994 Library 17– 57
streambuf::overflow(int)

— If c != EOF and if the function can append a character directly to the associated output sequence, the
function appendsc directly to the associated output sequence. Ifpbeg < pnext , the pnext -
pbeg characters beginning atpbeg shall be first appended directly to the associated output sequence,
beginning with the character atpbeg . The function signals success by returning(unsigned
char) c .

— If c == EOF , there is no character to append. The function signals success by returning a value other
thanEOF.

2 If the function can succeed in more than one of these ways, it is unspecified which way is chosen. The
function can alter the number of write positions available as a result of any call. How (or whether) the
function makes a write position available or appends a character directly to the output sequence is defined
separately for each class derived fromstreambuf in this clause.

3 The function returnsEOFto indicate failure.

4 The default behavior is to returnEOF.

[lib.streambuf::pbackfail] 17.4.2.3.27streambuf::pbackfail(int)

virtual int pbackfail(int c = EOF);

1 Puts back the character designated byc to the input sequence, if possible, in one of five ways:

— If c != EOF , if either the input sequence has a putback position available or the function makes a put-
back position available, and if(unsigned char) c == (unsigned char) gnext [-1] , the
function assignsgnext - 1 to gnext . The function signals success by returning(unsigned
char) c .

— If c != EOF , if either the input sequence has a putback position available or the function makes a put-
back position available, and if the function is permitted to assign to the putback position, the function
assignsc to *-- gnext . The function signals success by returning(unsigned char) c .

— If c != EOF , if no putback position is available, and if the function can put back a character directly
to the associated input sequence, the function puts backc directly to the associate input sequence. The
function signals success by returning(unsigned char) c .

— If c == EOF and if either the input sequence has a putback position available or the function makes a
putback position available, the function assignsgnext - 1 to gnext . The function signals success
by returning a value other thanEOF.

— If c == EOF , if no putback position is available, if the function can put back a character directly to the
associated input sequence, and if the function can determine the characterx immediately before the cur-
rent position in the associated input sequence, the function puts backx directly to the associated input
sequence. The function signals success by returning a value other thanEOF.

2 If the function can succeed in more than one of these ways, it is unspecified which way is chosen. The
function can alter the number of putback positions available as a result of any call. How (or whether) the
function makes a putback position available, puts back a character directly to the input sequence, or deter-
mines the character immediately before the current position in the associated input sequence is defined sep-
arately for each class derived fromstreambuf in this clause.

3 The function returnsEOFto indicate failure.

4 The default behavior is to returnEOF. 

17– 58 Library DRAFT: 27 May 1994 17.4.2.3.28streambuf::showmany()

[lib.streambuf::showmany]17.4.2.3.28streambuf::showmany() 

virtual int showmany(); 

1 Eeturns a count of the minimum number of characters that can be read from the input sequence before a call
to uflow() or underflow() returnsEOF. A return value of<196>1 indicates that the next such call
will return EOF. 

2 The default behavior is to return zero.

[lib.streambuf::underflow] 17.4.2.3.29streambuf::underflow()

Box 107

Library WG issue: Jerry Schwarz, January 3, 1994

Footnote 43: ‘‘The public streambuf member functions callunderflow only if the incrementgnext ∗
before returning’’

Must be raised to the body of the text. 

And it has to be reworded becauseunderflow can now return withgnext not being set._ __











_ __












17.4.2.3.29streambuf::underflow() DRAFT: 27 May 1994 Library 17– 59

Box 108 
Library WG issue: Jerry Schwarz, January 3, 1994 

underflow : The over specification here is really bad. I’ve written streambuf classes where underflow
always guarantees some minimum amount of characters will be put in the buffer. Thus it may do lots of
stuff even if there is a read position available. 

My version ofunderflow : 

The pending sequence of characters is defined as the concatenation of 

a) If gnext is non-NULL then thegend-gnext characters starting atgnext , otherwise the empty
sequence 

b) Some sequence (possibly empty) of characters read from the input stream. 

If the pending sequence is null then the function fails. 

Otherwise the first character of the pending sequence is called the result character. 

The backup sequence is defined as the concatenation of 

a) If gbeg is non-NULL then empty, otherwise thegnext-gbeg characters beginning atgbeg . 

b) the result character. 

The function sets up thegnext andgend satisfying 

a) In case the pending sequence has more than one character thegend-gnext characters starting at
gnext are the characters in the pending sequence after the result character. 

b) If the pending sequence has exactly one character, thengnext andgend may beNULLor may both be 
set to the same non-NULLpointer. 

If gbeg andgnext are non-NULL then the function is not constrained as to their contents, but the ‘‘usual
backup condition’’ is that either 

a) If the backup sequence contains at leastgnext-gbeg characters then thegnext-gbeg characters 
starting atgbeg agree with the lastgnext-gbeg characters of the backup sequence. 

b) or then characters starting agnext-n agree with the backup sequence (wheren is the length of the 
backup sequence)  _ __




















































_ __


















































 

17– 60 Library DRAFT: 27 May 1994 17.4.2.3.29streambuf::underflow()

Box 109 
Library WG issue: Jerry Schwarz, January 2, 1994

To specialize this protocol you must specify

a) How a character is read from the input stream. 

b) How many characters are read from the input stream under various conditions 

d) Which alternative for case (b) of the rules for setting upgnext andgend are 

c) Whether the normal backup condition is satisfied. 

d) The effect onpbeg,pnext,pend if any  _ __

















_ __


















virtual int underflow();

1 Reads a character from the input sequence, if possible, without moving the stream position past it, as fol-
lows:

— If the input sequence has a read position available the function signals success by returning
(unsigned char)* gnext .

— Otherwise, if the function can determine the characterx at the current position in the associated input
sequence, it signals success by returning(unsigned char) x . If the function makes a read position
available, it also assignsx to * gnext .

2 The function can alter the number of read positions available as a result of any call. How (or whether) the
function makes a read position available or determines the characterx at the current position in the associ-
ated input sequence is defined separately for each class derived fromstreambuf in this clause.

3 The function returnsEOFto indicate failure.

4 The default behavior is to returnEOF.

[lib.streambuf::uflow] 17.4.2.3.30streambuf::uflow()

Box 110

Library WG issue: Jerry Schwarz, January 3, 1994

streambuf::uflow is supposed to be defined as

Call underflow(EOF) . If underflow returnsEOF, returnEOF. If there is a read position available
then dogbump(-1) and return(unsigned char)*gnext++  _ __










_ __










virtual int uflow();

1 Reads a character from the input sequence, if possible, and moves the stream position past it, as follows:

— If the input sequence has a read position available the function signals success by returning
(unsigned char)* gnext ++.

— Otherwise, if the function can read the characterx directly from the associated input sequence, it signals
success by returning(unsigned char) x . If the function makes a read position available, it also
assignsx to * gnext .

17.4.2.3.30streambuf::uflow() DRAFT: 27 May 1994 Library 17– 61

2 The function can alter the number of read positions available as a result of any call. How (or whether) the
function makes a read position available or reads a character directly from the input sequence is defined
separately for each class derived fromstreambuf in this clause.

3 The function returnsEOFto indicate failure.

4 The default behavior is to callunderflow() and, if that function returnsEOFor fails to make a read
position available, returnEOF. Otherwise, the function signals success by returning(unsigned
char)* gnext ++. 97)

[lib.streambuf::xsgetn] 17.4.2.3.31streambuf::xsgetn(char*, int)

virtual int xsgetn(char* s, int n);

1 Assigns up ton characters to successive elements of the array whose first element is designated bys . The
characters assigned are read from the input sequence as if by repeated calls tosbumpc() . Assigning stops
when eithern characters have been assigned or a call tosbumpc() would returnEOF. The function
returns the number of characters assigned.98)

[lib.streambuf::xsputn] 17.4.2.3.32streambuf::xsputn(const char*, int)

virtual int xsputn(const char* s, int n);

1 Writes up ton characters to the output sequence as if by repeated calls tosputc(c) . The characters writ-
ten are obtained from successive elements of the array whose first element is designated bys . Writing
stops when eithern characters have been written or a call tosputc(c) would returnEOF. The function 
returns the number of characters written.

[lib.streambuf::seekoff] 17.4.2.3.33streambuf::seekoff(streamoff, ios::seekdir,
ios::openmode)

virtual streampos seekoff(streamoff off , ios::seekdir way,
ios::openmode which = ios::in | ios::out);

1 Alters the stream positions within one or more of the controlled sequences in a way that is defined sepa-
rately for each class derived fromstreambuf in this clause. The default behavior is to return an object of
classstreampos that stores an invalid stream position.

[lib.streambuf::seekpos] 17.4.2.3.34streambuf::seekpos(streampos,
ios::openmode)

virtual streampos seekpos(streampos sp ,
ios::openmode which = ios::in | ios::out);

1 Alters the stream positions within one or more of the controlled sequences in a way that is defined sepa-
rately for each class derived fromstreambuf in this clause. The default behavior is to return an object of
classstreampos that stores an invalid stream position.

97) A class derived fromstreambuf can override the virtual member functionunderflow() with a function that returns a value
other thanEOFwithout making a read position available. In that event,streambuf::uflow() must also be overridden since the
default behavior is inadequate.
98) Classes derived fromstreambuf can provide more efficient ways to implementxsgetn andxsputn by overriding these defi- 
nitions in the base class.

17– 62 Library DRAFT: 27 May 1994 17.4.2.3.35
streambuf::setbuf(char*, int)

[lib.streambuf::setbuf] 17.4.2.3.35streambuf::setbuf(char*, int)

virtual streambuf* setbuf(char* s, int n);

1 Performs an operation that is defined separately for each class derived fromstreambuf in this clause.

2 The default behavior is to returnthis .

[lib.streambuf::sync] 17.4.2.3.36streambuf::sync()

virtual int sync();

1 Synchronizes the controlled sequences with any associated external sources and sinks of characters in a way
that is defined separately for each class derived fromstreambuf in this clause. The function returnsEOF
if it fails. The default behavior is to return zero.

[lib.header.istream] 17.4.3 Header<istream>

1 The header<istream> defines a type and a function signature that control input from a stream buffer.

[lib.istream] 17.4.3.1 Classistream

Box 111 
Library WG issue: Per Bothner, March 8, 1994 

The members of classistream should not be allowed to callsputback() .  _ __





_ __




 

Box 112 
Library WG issue: Jerry Schwarz, January 3, 1994 

Rev 7 defined a bunch of terms like ‘‘extracting a character.’’ I can’t find the equivalent here. In specify-
ing members of istream, the San Diego rewrite uses phrases like ‘‘characters are read .. until end-of-file’’
without ever defining them (at least as far as I can find.) In particular Rev 7’s definitions specified what
happens when a virtual throws an exception, and I can’t find that in the San Diego rewrite. 

This is still not fixed. As far as I can determine, the draft doesn’t say what happens when a virtual throws
an exception.  _ __













_ __











 

Box 113 
Library WG issue: Jerry Schwarz, January 2, 1994 

Rev 7 also contained an explicit statement that except where explicitly noted none of the istream members
call pbackfail, seekoff, or seekpos . This is an important constraint. 

The draft now says ‘‘All input characters are obtained or extracted by calls to the function signatures
sb.sbumpc(), sb.sgetc(), sputbackc() ’’. 

Perhaps that sentence is intended to address this issue, but it doesn’t. Note that what is important is the vir-
tuals that might be called, not the non-virtuals. And note that Rev 7 explicitly prohibit pbackfail from
being called. That was deliberate.  _ __
















_ __














 

17.4.3.1 Classistream DRAFT: 27 May 1994 Library 17– 63

class istream : virtual public ios {
public:

istream(streambuf* sb);
virtual ~istream();
bool ipfx(bool noskipws = 0); 
void isfx();
istream& operator>>(istream& (* pf)(istream&))
istream& operator>>(ios& (* pf)(ios&))
istream& operator>>(char* s);
istream& operator>>(unsigned char* s)
istream& operator>>(signed char* s);
istream& operator>>(char& c);
istream& operator>>(unsigned char& c)
istream& operator>>(signed char& c)
istream& operator>>(bool& n); 
istream& operator>>(short& n);
istream& operator>>(unsigned short& n);
istream& operator>>(int& n);
istream& operator>>(unsigned int& n);
istream& operator>>(long& n);
istream& operator>>(unsigned long& n);
istream& operator>>(float& f);
istream& operator>>(double& f);
istream& operator>>(long double& f);
istream& operator>>(void*& p);
istream& operator>>(streambuf& sb);
int get();
istream& get(char* s, int n, char delim = ’\n’);
istream& get(unsigned char* s, int n, char delim = ’\n’)
istream& get(signed char* s, int n, char delim = ’\n’)
istream& get(char& c);
istream& get(unsigned char& c);
istream& get(signed char& c);
istream& get(streambuf& sb , char delim = ’\n’);
istream& getline(char* s, int n, char delim = ’\n’);
istream& getline(unsigned char* s, int n, char delim = ’\n’)
istream& getline(signed char* s, int n, char delim = ’\n’)
istream& ignore(int n = 1, int delim = EOF);
istream& read(char* s, int n);
istream& read(unsigned char* s, int n)
istream& read(signed char* s, int n)
int readsome(char* s, int n); 
int peek();
istream& putback(char c);
istream& unget();
int gcount() const;
int sync();

private:
// int chcount ; exposition only
};

1 The classistream defines a number of member function signatures that assist in reading and interpreting
input from sequences controlled by a stream buffer.

2 Two groups of member function signatures share common properties: theformatted input functions(or
extractors) and theunformatted input functions.Both groups of input functions obtain (orextract) input
characters by calling the function signaturessb .sbumpc() , sb .sgetc() , and
sb .sputbackc(char) . If one of these called functions throws an exception, the input function calls
setstate(badbit) and rethrows the exception.

— The formatted input functions are:

17– 64 Library DRAFT: 27 May 1994 17.4.3.1 Classistream

istream& operator>>(char* s);
istream& operator>>(unsigned char* s)
istream& operator>>(signed char* s);
istream& operator>>(char& c);
istream& operator>>(unsigned char& c)
istream& operator>>(signed char& c)
istream& operator>>(bool& n); 
istream& operator>>(short& n);
istream& operator>>(unsigned short& n);
istream& operator>>(int& n);
istream& operator>>(unsigned int& n);
istream& operator>>(long& n);
istream& operator>>(unsigned long& n);
istream& operator>>(float& f);
istream& operator>>(double& f);
istream& operator>>(long double& f);
istream& operator>>(void*& p);
istream& operator>>(streambuf& sb);

— The unformatted input functions are:

int get();
istream& get(char* s, int n, char delim = ’\n’);
istream& get(unsigned char* s, int n, char delim = ’\n’)
istream& get(signed char* s, int n, char delim = ’\n’)
istream& get(char& c);
istream& get(unsigned char& c);
istream& get(signed char& c);
istream& get(streambuf& sb , char delim = ’\n’);
istream& getline(char* s, int n, char delim = ’\n’);
istream& getline(unsigned char* s, int n, char delim = ’\n’)
istream& getline(signed char* s, int n, char delim = ’\n’)
istream& ignore(int n = 1, int delim = EOF);
istream& read(char* s, int n);
istream& read(unsigned char* s, int n)
istream& read(signed char* s, int n)
int readsome(char* s, int n); 
int peek();
istream& putback(char c);
istream& unget();

3 Each formatted input function begins execution by callingipfx() . If that function returns nonzero, the
function endeavors to obtain the requested input. In any case, the formatted input function ends by calling
isfx() , then returning the value specified for the formatted input function.

4 Some formatted input functions endeavor to obtain the requested input by parsing characters extracted from
the input sequence, converting the result to a value of some scalar data type, and storing the converted value
in an object of that scalar data type. The behavior of such functions is described in terms of the conversion
specification for an equivalent call to the function signaturefscanf(FILE*, const char*, ...) ,
declared in<cstdio> (17.2), operating with the global locale set toloc , with the following alterations: 

— The formatted input function extracts characters from a stream buffer, rather than reading them from an
input file.99)

— If flags() & skipws is zero, the function does not skip any leading white space. In that case, if
the next input character is white space, the scan fails.

99)The stream buffer can, of course, be associated with an input file, but it need not be.

17.4.3.1 Classistream DRAFT: 27 May 1994 Library 17– 65

— If the converted data value cannot be represented as a value of the specified scalar data type, a scan fail-
ure occurs.

5 If the scan fails for any reason, the formatted input function callssetstate(failbit) .

6 For conversion to an integral type other than a character type, the function determines the integral conver-
sion specifier as follows:

— If (flags() & basefield) == oct , the conversion specifier iso.

— If (flags() & basefield) == hex , the conversion specifier isx .

— If (flags() & basefield) == 0 , the conversion specifier isi .

7 Otherwise, the integral conversion specifier isd for conversion to a signed integral type, oru for conver-
sion to an unsigned integral type.

8 Each unformatted input function begins execution by callingipfx(1) . If that function returns nonzero,
the function endeavors to extract the requested input. It also counts the number of characters extracted. In
any case, the unformatted input function ends by storing the count in a member object and callingisfx() ,
then returning the value specified for the unformatted input function.

9 For the sake of exposition, the data maintained by an object of classistream is presented here as:

— int chcount , stores the number of characters extracted by the last unformatted input member func-
tion called for the object.

[lib.cons.istream] 17.4.3.1.1istream::istream()

istream(streambuf* sb);

1 Constructs an object of classistream , assigning initial values to the base class by calling
ios::init(sb) , then assigning zero tochcount .

[lib.des.istream] 17.4.3.1.2istream::~istream()

virtual ~istream();

1 Destroys an object of classistream . 

[lib.istream::ipfx]17.4.3.1.3istream::ipfx(bool) 

bool ipfx(bool noskipws = 0); 

1 If good() is nonzero, prepares for formatted or unformatted input. First, iftie() is not a null pointer,
the function callstie()->flush() to synchronize the output sequence with any associated external C
stream. (The calltie()->flush() does not necessarily occur if the function can determine that no syn-
chronization is necessary.) Ifnoskipws is zero andflags() & skipws is nonzero, the function
extracts and discards each character as long asisspace(c) is nonzero for the next available input char-
acterc . The function signatureisspace(int) is declared in<cctype> (17.2). 

2 If, after any preparation is completed,good() is nonzero, the function returns a nonzero value. Other-
wise, it callssetstate(failbit) and returns zero.100) 

100)The function signaturesipfx(int) andisfx() can also perform additional implementation-dependent operations.

17– 66 Library DRAFT: 27 May 1994 17.4.3.1.4istream::isfx()

[lib.istream::isfx] 17.4.3.1.4istream::isfx()

void isfx();

1 Returns.

[lib.istream::ext.imanip] 17.4.3.1.5istream::operator>>(istream& (*)(istream&))

istream& operator>>(istream& (* pf)(istream&))

1 Returns(* pf)(*this) .101)

[lib.istream::ext.iomanip] 17.4.3.1.6istream::operator>>(ios& (*)(ios&))

istream& operator>>(ios& (* pf)(ios&))

1 Calls(*(ios*) pf)(*this) , then returns*this .102) 

[lib.istream::ext.str] 17.4.3.1.7istream::operator>>(char*)

istream& operator>>(char* s); ∗

1 A formatted input function, extracts characters and stores them into successive locations of an array whose
first element is designated bys . If width() is greater than zero, the maximum number of characters
storedn is width() ; otherwise it isINT_MAX, defined in<climits> (17.2). 

2 Characters are extracted and stored until any of the following occurs: 

— n - 1 characters are stored;

— end-of-file occurs on the input sequence;

— isspace(c) is nonzero for the next available input characterc .

3 The function signatureisspace(int) is declared in<cctype> (17.2). 

4 If the function stores no characters, it callssetstate(failbit) . In any case, it then stores a null char-
acter into the next successive location of the array and callswidth(0) . The function returns*this .

[lib.istream::ext.ustr] 17.4.3.1.8istream::operator>>(unsigned char*)

istream& operator>>(unsigned char* s)

1 Returnsoperator>>((char*) s) . 

[lib.istream::ext.sstr] 17.4.3.1.9istream::operator>>(signed char*)

istream& operator>>(signed char* s);

1 Returnsoperator>>((char*) s) . 

[lib.istream::ext.c] 17.4.3.1.10istream::operator>>(char&)

istream& operator>>(char& c);

101)See, for example, the function signaturews(istream&) .
102)See, for example, the function signaturedec(ios&) . 

17.4.3.1.10 DRAFT: 27 May 1994 Library 17– 67
istream::operator>>(char&)

1 A formatted input function, extracts a character, if one is available, and stores it inc . Otherwise, the func-
tion callssetstate(failbit) . The function returns*this .

[lib.istream::ext.uc] 17.4.3.1.11istream::operator>>(unsigned char&)

istream& operator>>(unsigned char& c)

1 Returnsoperator>>((char&) c) . 

[lib.istream::ext.sc] 17.4.3.1.12istream::operator>>(signed char&)

istream& operator>>(signed char& c)

1 Returnsoperator>>((char&) c) . 

[lib.istream::ext.bool]17.4.3.1.13istream::operator>>(bool&) 

istream& operator>>(bool& n); 

1 A formatted input function, converts a signed short integer, if one is available, and stores it inx . If x has a 
value other than 0 or 1, a scan failure occurs. Otherwise, the function storesx in n. The function returns 
*this .

[lib.istream::ext.si] 17.4.3.1.14istream::operator>>(short&)

istream& operator>>(short& n);

1 A formatted input function, converts a signed short integer, if one is available, and stores it inn. The func- 
tion returns*this .

[lib.istream::ext.usi] 17.4.3.1.15istream::operator>>(unsigned short&)

istream& operator>>(unsigned short& n);

1 A formatted input function, converts an unsigned short integer, if one is available, and stores it inn. The 
function returns*this .

[lib.istream::ext.i] 17.4.3.1.16istream::operator>>(int&)

istream& operator>>(int& n);

1 A formatted input function, converts a signed integer, if one is available, and stores it inn. The function 
returns*this .

[lib.istream::ext.ui] 17.4.3.1.17istream::operator>>(unsigned int&)

istream& operator>>(unsigned int& n);

1 A formatted input function, converts an unsigned integer, if one is available, and stores it inn. The func- 
tion returns*this .

[lib.istream::ext.li] 17.4.3.1.18istream::operator>>(long&)

istream& operator>>(long& n);

1 A formatted input function, converts a signed long integer, if one is available, and stores it inn. The func- 
tion returns*this .

17– 68 Library DRAFT: 27 May 1994 17.4.3.1.19
istream::operator>>(unsigned long&)

[lib.istream::ext.uli] 17.4.3.1.19istream::operator>>(unsigned long&)

istream& operator>>(unsigned long& n);

1 A formatted input function, converts an unsigned long integer, if one is available, and stores it inn. The 
function returns*this .

[lib.istream::ext.f] 17.4.3.1.20istream::operator>>(float&)

istream& operator>>(float& f);

1 A formatted input function, converts afloat , if one is available, and stores it inf . The function returns 
*this .

[lib.istream::ext.d] 17.4.3.1.21istream::operator>>(double&)

istream& operator>>(double& f);

1 A formatted input function, converts adouble , if one is available, and stores it inf . The function returns 
*this .

[lib.istream::ext.ld] 17.4.3.1.22istream::operator>>(long double&)

istream& operator>>(long double& f);

1 A formatted input function, converts along double , if one is available, and stores it inf . The function 
returns*this .

[lib.istream::ext.ptr] 17.4.3.1.23istream::operator>>(void*&)

istream& operator>>(void*& p);

1 A formatted input function, converts a pointer tovoid , if one is available, and stores it inp. The function 
returns*this .

[lib.istream::ext.sb] 17.4.3.1.24istream::operator>>(streambuf&)

istream& operator>>(streambuf& sb);

1 A formatted input function, extracts characters from*this and inserts them in the output sequence con-
trolled bysb . Characters are extracted and inserted until any of the following occurs:

— end-of-file occurs on the input sequence;

— inserting in the output sequence fails (in which case the character to be inserted is not extracted);

— an exception occurs (in which case the exception is caught but not rethrown).

2 If the function inserts no characters, it callssetstate(failbit) . The function returns*this .

[lib.istream::get] 17.4.3.1.25istream::get()

17.4.3.1.25istream::get() DRAFT: 27 May 1994 Library 17– 69

Box 114

Library WG issue: Greg Bentz, October 22, 1993

I have been consulting the C + + library draft (X3J16/93-108,WG21/NO315) and I think I have found a state-
ment which is inconsistent with most existing implementations. While that doesn’t say much, it also seems
to go against what I feel is the desired behaviour.

The functions:
istream::get(char *, int, char) (was 17.4.1.8.27) 
istream::getline(char *, int, char) (was 17.4.1.8.34) 

both declare the following:

‘‘If the function stores no characters, it calls ’setstate(failbit)’.’’

I believe the line should read:

‘‘If the function stores no characters and ’c != delim’, it calls
’setstate(failbit)’.’’

This change, particularly for ’istream::getline(char *, int, char)’, allows line oriented reading of input files
that have ’delim’ terminated lines, some of which may be empty.

If the call ’getline(buf, sizeof(buf), ’0);’ is made when the next character in the input stream is ’0 the cur-
rent wording causes ’failbit’ to be set. The proposed wording allows ’getline’ to return with no characters
in ’buf’, but having consumed the ’0 character.

In support of this proposal I also refer to the "C + + IOStreams Handbook" by Steve Teale (ISBN 0-201-
59641-5) pages 288-290. (example source t6.cpp) Mr. Teale indicates that the proposed wording is, in his
opinion, the correct behaviour._ __





































_ __





































int get();

1 An unformatted input function, extracts a characterc , if one is available. The function then returns
(unsigned char) c . Otherwise, the function callssetstate(failbit) and then returnsEOF.

[lib.istream::get.str] 17.4.3.1.26istream::get(char*, int, char)

istream& get(char* s, int n, char delim = ’\n’);

1 An unformatted input function, extracts characters and stores them into successive locations of an array
whose first element is designated bys . Characters are extracted and stored until any of the following
occurs:

— n - 1 characters are stored;

— end-of-file occurs on the input sequence (in which case the function callssetstate(eofbit));

— c == delim for the next available input characterc (in which casec is not extracted).

2 If the function stores no characters, it callssetstate(failbit) . In any case, it then stores a null char-
acter into the next successive location of the array. The function returns*this .

17– 70 Library DRAFT: 27 May 1994 17.4.3.1.27
istream::get(unsigned char*, int, char)

[lib.istream::get.ustr] 17.4.3.1.27istream::get(unsigned char*, int, char)

istream& get(unsigned char* s, int n, char delim = ’\n’)

1 Returnsget((char*) s, n, delim) .

[lib.istream::get.sstr] 17.4.3.1.28istream::get(signed char*, int, char)

istream& get(signed char* s, int n, char delim = ’\n’)

1 Returnsget((char*) s, n, delim) .

[lib.istream::get.c] 17.4.3.1.29istream::get(char&)

istream& get(char& c);

1 An unformatted input function, extracts a character, if one is available, and assigns it toc . Otherwise, the
function callssetstate(failbit) . The function returns*this .

[lib.istream::get.uc] 17.4.3.1.30istream::get(unsigned char&)

istream& get(unsigned char& c);

1 Returnsget((char&) c) .

[lib.istream::get.sc] 17.4.3.1.31istream::get(signed char&)

istream& get(signed char& c);

1 Returnsistream::get((char&) c) . 

[lib.istream::get.sb] 17.4.3.1.32istream::get(streambuf&, char)

istream& get(streambuf& sb , char delim = ’\n’);

1 An unformatted input function, extracts characters and inserts them in the output sequence controlled by
sb . Characters are extracted and inserted until any of the following occurs:

— end-of-file occurs on the input sequence;

— inserting in the output sequence fails (in which case the character to be inserted is not extracted);

— c == delim for the next available input characterc (in which casec is not extracted);

— an exception occurs (in which case, the exception is caught but not rethrown).

2 If the function inserts no characters, it callssetstate(failbit) . The function returns*this .

[lib.istream::getline.str] 17.4.3.1.33istream::getline(char*, int, char)

istream& getline(char* s, int n, char delim = ’\n’);

1 An unformatted input function, extracts characters and stores them into successive locations of an array
whose first element is designated bys . Characters are extracted and stored until any of the following
occurs:

— n - 1 characters are stored (in which case the function callssetstate(failbit));

— end-of-file occurs on the input sequence (in which case the function callssetstate(eofbit));

— c == delim for the next available input characterc (in which case the input character is extracted
but not stored).

17.4.3.1.33 DRAFT: 27 May 1994 Library 17– 71
istream::getline(char*, int, char)

2 If the function stores no characters, it callssetstate(failbit) . In any case, it then stores a null char-
acter into the next successive location of the array. The function returns*this .

[lib.istream::getline.ustr] 17.4.3.1.34istream::getline(unsigned char*, int, char)

istream& getline(unsigned char* s, int n, char delim = ’\n’)

1 Returnsgetline((char*) s, n, delim) .

[lib.istream::getline.sstr] 17.4.3.1.35istream::getline(signed char*, int, char)

istream& getline(signed char* s, int n, char delim = ’\n’)

1 Returnsgetline((char*) s, n, delim) .

[lib.istream::ignore] 17.4.3.1.36istream::ignore(int, int)

istream& ignore(int n = 1, int delim = EOF);

1 An unformatted input function, extracts characters and discards them. Characters are extracted until any of
the following occurs:

— if n != INT_MAX , n characters are extracted

— end-of-file occurs on the input sequence (in which case the function callssetstate(eofbit));

— c == delim for the next available input characterc (in which casec is extracted).

2 The last condition will never occur ifdelim == EOF . 

3 The macroINT_MAX is defined in<climits> . 

4 The function returns*this .

[lib.istream::read.str] 17.4.3.1.37istream::read(char*, int)

istream& read(char* s, int n);

1 An unformatted input function, extracts characters and stores them into successive locations of an array
whose first element is designated bys . Characters are extracted and stored until either of the following
occurs:

— n characters are stored;

— end-of-file occurs on the input sequence (in which case the function callssetstate(failbit)).

2 The function returns*this .

[lib.istream::read.ustr] 17.4.3.1.38istream::read(unsigned char*, int)

istream& read(unsigned char* s, int n)

1 Returnsread((char*) s, n) .

[lib.istream::read.sstr] 17.4.3.1.39istream::read(signed char*, int)

istream& read(signed char* s, int n)

1 Returnsread((char*) s, n) . 

17– 72 Library DRAFT: 27 May 1994 17.4.3.1.40
istream::readsome(char*, int)

[lib.istream::readsome]17.4.3.1.40istream::readsome(char*, int) 

int readsome(char* s, int n); 

1 An unformatted input function, extracts characters and stores them into successive locations of an array
whose first element is designated bys . The function first determinesnavail , the value returned by call-
ing in_avail() . If navail is <196>1, the function callssetstate(eofbit) and returns zero. 

2 Otherwise, the function determines the number of characters to extractmas the smaller ofn andnavail , 
and returnsread(s, m) .

[lib.istream::peek] 17.4.3.1.41istream::peek()

int peek();

1 An unformatted input function, returns the next available input character, if possible.

2 If good() is zero, the function returnsEOF. Otherwise, it returnsrdbuf()->sgetc() .

[lib.istream::putback] 17.4.3.1.42istream::putback(char)

istream& putback(char c);

1 An unformatted input function, callsrdbuf->sputbackc(c) . If that function returnsEOF, the func-
tion callssetstate(badbit) . The function returns*this .

[lib.istream::unget] 17.4.3.1.43istream::unget()

istream& unget();

1 An unformatted input function, callsrdbuf->sungetc() . If that function returnsEOF, the function
callssetstate(badbit) . The function returns*this .

[lib.istream::gcount] 17.4.3.1.44istream::gcount()

int gcount() const;

1 Returnschcount .

[lib.istream::sync] 17.4.3.1.45istream::sync()

int sync();

1 If rdbuf() is a null pointer, returnsEOF. Otherwise, the function callsrdbuf()->pubsync() and, if
that function returnsEOF, callssetstate(badbit) and returnsEOF. Otherwise, the function returns
zero.

[lib.ws] 17.4.3.2ws(istream&)

istream& ws(istream& is);

1 Saves a copy ofis.fmtflags , then clearsis .skipws in is.fmtflags . The function then calls
is .ipfx() and is .isfx() , and restoresis.fmtflags to its saved value. The function returns
is .103)

103)The effect ofcin >> ws is to skip any white space in the input sequence controlled bycin .

17.4.4 Header<ostream> DRAFT: 27 May 1994 Library 17– 73

[lib.header.ostream] 17.4.4 Header<ostream>

1 The header<ostream> defines a type and several function signatures that control output to a stream
buffer.

[lib.ostream] 17.4.4.1 Classostream

Box 115

Library WG issue: Jerry Schwarz, January 3, 1994

Again the San Diego rewrite omits definitions. In particular it is silent on what happens when exceptions
are thrown by virtuals.

Not fixed. ∗ _ __









_ __










class ostream : virtual public ios {
public: 

ostream(streambuf* sb);
virtual ~ostream();
bool opfx(); 
void osfx();
ostream& operator<<(ostream& (* pf)(ostream&));
ostream& operator<<(ios& (* pf)(ios&));
ostream& operator<<(const char* s);
ostream& operator<<(char c);
ostream& operator<<(unsigned char c);
ostream& operator<<(signed char c);
ostream& operator<<(bool n); 
ostream& operator<<(short n);
ostream& operator<<(unsigned short n);
ostream& operator<<(int n);
ostream& operator<<(unsigned int n);
ostream& operator<<(long n);
ostream& operator<<(unsigned long n);
ostream& operator<<(float f);
ostream& operator<<(double f);
ostream& operator<<(long double f);
ostream& operator<<(void* p);
ostream& operator<<(streambuf& sb);
int put(char c); 
ostream& write(const char* s, int n);
ostream& write(const unsigned char* s, int n);
ostream& write(const signed char* s, int n);
ostream& flush();

};

1 The classostream defines a number of member function signatures that assist in formatting and writing
output to output sequences controlled by a stream buffer.

2 Two groups of member function signatures share common properties: theformatted output functions(or
inserters) and theunformatted output functions.Both groups of output functions generate (orinsert) output
characters by calling the function signaturesb .sputc(int) . If the called function throws an exception,
the output function callssetstate(badbit) and rethrows the exception.

— The formatted output functions are:

17– 74 Library DRAFT: 27 May 1994 17.4.4.1 Classostream

ostream& operator<<(const char* s);
ostream& operator<<(char c);
ostream& operator<<(unsigned char c);
ostream& operator<<(signed char c);
ostream& operator<<(bool n); 
ostream& operator<<(short n);
ostream& operator<<(unsigned short n);
ostream& operator<<(int n);
ostream& operator<<(unsigned int n);
ostream& operator<<(long n);
ostream& operator<<(unsigned long n);
ostream& operator<<(float f);
ostream& operator<<(double f);
ostream& operator<<(long double f);
ostream& operator<<(void* p);
ostream& operator<<(streambuf* sb);

— The unformatted output functions are:

ostream& put(char c);
ostream& write(const char* s, int n);
ostream& write(const unsigned char* s, int n);
ostream& write(const signed char* s, int n);

3 Each formatted output function begins execution by callingopfx() . If that function returns nonzero, the
function endeavors to generate the requested output. In any case, the formatted output function ends by
callingosfx() , then returning the value specified for the formatted output function.

4 Some formatted output functions endeavor to generate the requested output by converting a value from
some scalar orNTBS type to text form and inserting the converted text in the output sequence. The behavior
of such functions is described in terms of the conversion specification for an equivalent call to the function
signaturefprintf(FILE*, const char*, ...) , declared in<cstdio> (17.2), operating with 
the global locale set toloc , with the following alterations:

— The formatted output function inserts characters in a stream buffer, rather than writing them to an output
file.104)

— The formatted output function uses the fill character returned byfill() as the padding character
(rather than the space character for left or right padding, or0 for internal padding).

5 If the operation fails for any reason, the formatted output function callssetstate(badbit) .

6 For conversion from an integral type other than a character type, the function determines the integral con-
version specifier as follows:

— If (flags() & basefield) == oct , the integral conversion specifier iso.

— If (flags() & basefield) == hex , the integral conversion specifier isx . If flags() &
uppercase is nonzero,x is replaced withX.

7 Otherwise, the integral conversion specifier isd for conversion from a signed integral type, oru for conver-
sion from an unsigned integral type.

8 For conversion from a floating-point type, the function determines the floating-point conversion specifier as
follows:

104)The stream buffer can, of course, be associated with an output file, but it need not be.

17.4.4.1 Classostream DRAFT: 27 May 1994 Library 17– 75

— If (flags() & floatfield) == fixed , the floating-point conversion specifier isf .

— If (flags() & floatfield) == scientific , the floating-point conversion specifier ise. If
flags() & uppercase is nonzero,e is replaced withE.

9 Otherwise, the floating-point conversion specifier isg. If flags() & uppercase is nonzero,g is
replaced withG.

10 The conversion specifier has the following additional qualifiers prepended to make a conversion specifica-
tion:

— For conversion from an integral type other than a character type, ifflags() & showpos is nonzero,
the flag+ is prepended to the conversion specification; and ifflags() & showbase is nonzero, the
flag # is prepended to the conversion specification.

— For conversion from a floating-point type, ifflags() & showpos is nonzero, the flag+ is
prepended to the conversion specification; and ifflags() & showpoint is nonzero, the flag# is
prepended to the conversion specification.

— For any conversion, ifwidth() is nonzero, then a field width is specified in the conversion specifica-
tion. The value iswidth() .

— For conversion from a floating-point type, ifflags() & fixed is nonzero or ifprecision() is
greater than zero, then a precision is specified in the conversion specification. The value ispreci-
sion() .

11 Moreover, for any conversion, padding with the fill character returned byfill() behaves as follows:

— If (flags() & adjustfield) == right , no flag is prepended to the conversion specification,
indicating right justification (any padding occurs before the converted text). A fill character occurs
whereverfprintf generates a space character as padding.

— If (flags() & adjustfield) == internal , the flag0 is prepended to the conversion speci-
fication, indicating internal justification (any padding occurs within the converted text). A fill character
occurs whereverfprintf generates a0 as padding.105)

12 Otherwise, the flag- is prepended to the conversion specification, indicating left justification (any padding
occurs after the converted text). A fill character occurs whereverfprintf generates a space character as
padding.

13 Unless explicitly stated otherwise for a particular inserter, each formatted output function callswidth(0) 
after determining the field width. 

14 Each unformatted output function begins execution by callingopfx() . If that function returns nonzero,
the function endeavors to generate the requested output. In any case, the unformatted output function ends
by callingosfx() , then returning the value specified for the unformatted output function.

[lib.cons.ostream.sb] 17.4.4.1.1ostream::ostream(streambuf*)

ostream(streambuf* sb);

1 Constructs an object of classostream , assigning initial values to the base class by calling
ios::init(sb) . ∗

105)The conversion specification#o generates a leading0 which isnota padding character.

17– 76 Library DRAFT: 27 May 1994 17.4.4.1.2ostream::~ostream()

[lib.des.ostream] 17.4.4.1.2ostream::~ostream()

virtual ~ostream();

1 Destroys an object of classostream .

[lib.ostream::opfx] 17.4.4.1.3ostream::opfx()

bool opfx(); 

1 If good() is nonzero, prepares for formatted or unformatted output. Iftie() is not a null pointer, the
function callstie()->flush() . It returnsgood() .106) 

[lib.ostream::osfx] 17.4.4.1.4ostream::osfx()

void osfx();

1 If flags() & unitbuf is nonzero, callsflush() .

[lib.ostream::ins.omanip] 17.4.4.1.5ostream::operator<<(ostream& (*)(ostream&))

ostream& operator<<(ostream& (* pf)(ostream&))

1 Returns(* pf)(*this) .107)

[lib.ostream::ins.iomanip] 17.4.4.1.6ostream::operator<<(ios& (*)(ios&))

ostream& operator<<(ios& (* pf)(ios&))

1 Calls(*(ios*) pf)(*this) , then returns*this .108) 

[lib.ostream::ins.str] 17.4.4.1.7ostream::operator<<(const char*)

ostream& operator<<(const char* s);

1 A formatted output function, converts theNTBS s with the conversion specifiers . The function returns
*this .

[lib.ostream::ins.c] 17.4.4.1.8ostream::operator<<(char)

ostream& operator<<(char c);

1 A formatted output function, converts thechar c with the conversion specifierc and a field width of zero.
The stored field width (ios:: wide) is not set to zero. The function returns*this .

[lib.ostream::ins.uc] 17.4.4.1.9ostream::operator<<(unsigned char)

ostream& operator<<(unsigned char c)

1 Returnsoperator<<((char) c) .

106)The function signaturesopfx() andosfx() can also perform additional implementation-dependent operations. 
107)See, for example, the function signatureendl(ostream&) .
108)See, for example, the function signature::dec(ios&) . 

17.4.4.1.10 DRAFT: 27 May 1994 Library 17– 77
ostream::operator<<(signed char)

[lib.ostream::ins.sc] 17.4.4.1.10ostream::operator<<(signed char)

ostream& operator<<(signed char c)

1 Returnsoperator<<((char) c) . 

[lib.ostream::ins.bool]17.4.4.1.11ostream::operator<<(bool) 

ostream& operator<<(bool n); 

1 A formatted output function, converts the expressionn != 0 with the integral conversion specifier. The
function returns*this .

[lib.ostream::ins.si] 17.4.4.1.12ostream::operator<<(short)

ostream& operator<<(short n);

1 A formatted output function, converts the signed short integern with the integral conversion specifier pre-
ceded byh. The function returns*this .

[lib.ostream::ins.usi] 17.4.4.1.13ostream::operator<<(unsigned short)

ostream& operator<<(unsigned short n);

1 A formatted output function, converts the unsigned short integern with the integral conversion specifier
preceded byh. The function returns*this .

[lib.ostream::ins.i] 17.4.4.1.14ostream::operator<<(int)

ostream& operator<<(int n);

1 A formatted output function, converts the signed integern with the integral conversion specifier. The func-
tion returns*this .

[lib.ostream::ins.ui] 17.4.4.1.15ostream::operator<<(unsigned int)

ostream& operator<<(unsigned int n);

1 A formatted output function, converts the unsigned integern with the integral conversion specifier. The
function returns*this .

[lib.ostream::ins.li] 17.4.4.1.16ostream::operator<<(long)

ostream& operator<<(long n);

1 A formatted output function, converts the signed long integern with the integral conversion specifier pre-
ceded byl . The function returns*this .

[lib.ostream::ins.uli] 17.4.4.1.17ostream::operator<<(unsigned long)

ostream& operator<<(unsigned long n);

1 A formatted output function, converts the unsigned long integern with the integral conversion specifier
preceded byl . The function returns*this .

17– 78 Library DRAFT: 27 May 1994 17.4.4.1.18
ostream::operator<<(float)

[lib.ostream::ins.f] 17.4.4.1.18ostream::operator<<(float)

ostream& operator<<(float f);

1 A formatted output function, converts thefloat f with the floating-point conversion specifier. The func-
tion returns*this .

[lib.ostream::ins.d] 17.4.4.1.19ostream::operator<<(double)

ostream& operator<<(double f);

1 A formatted output function, converts thedouble f with the floating-point conversion specifier. The
function returns*this .

[lib.ostream::ins.ld] 17.4.4.1.20ostream::operator<<(long double)

ostream& operator<<(long double f);

1 A formatted output function, converts thelong double f with the floating-point conversion specifier
preceded byL. The function returns*this .

[lib.ostream::ins.ptr] 17.4.4.1.21ostream::operator<<(void*)

ostream& operator<<(void* p);

1 A formatted output function, converts the pointer tovoid p with the conversion specifierp. The function
returns*this .

[lib.ostream::ins.sb] 17.4.4.1.22ostream::operator<<(streambuf&)

ostream& operator<<(streambuf& sb);

1 A formatted output function, extracts characters from the input sequence controlled bysb and inserts them
in *this . Characters are extracted and inserted until any of the following occurs:

— end-of-file occurs on the input sequence;

— inserting in the output sequence fails (in which case the character to be inserted is not extracted);

— an exception occurs (in which case, the exception is rethrown).109)

2 If the function inserts no characters, it callssetstate(failbit) . The function returns*this .

[lib.ostream::put] 17.4.4.1.23ostream::put(char)

int put(char c);

1 An unformatted output function, inserts the characterc , if possible. The function then returns
(unsigned char) c . Otherwise, the function callssetstate(badbit) . It then returnsEOF.

[lib.ostream::write.str] 17.4.4.1.24ostream::write(const char*, int)

ostream& write(const char* s, int n);

109) This behavior differs from that foristream::istream& operator>>(streambuf&) , which doesnot rethrow the
exception.

17.4.4.1.24 DRAFT: 27 May 1994 Library 17– 79
ostream::write(const char*, int)

1 An unformatted output function, obtains characters to insert from successive locations of an array whose
first element is designated bys . Characters are inserted until either of the following occurs:

— n characters are inserted;

— inserting in the output sequence fails (in which case the function callssetstate(badbit)).

2 The function returns*this .

[lib.ostream::write.ustr] 17.4.4.1.25ostream::write(const unsigned char*, int)

ostream& write(const unsigned char* s, int n)

1 Returnswrite((const char*) s, n) .

[lib.ostream::write.sstr] 17.4.4.1.26ostream::write(const signed char*, int)

ostream& write(const signed char* s, int n)

1 Returnswrite((const char*) s, n) .

[lib.ostream::flush] 17.4.4.1.27ostream::flush()

ostream& flush();

1 If rdbuf() is not a null pointer, callsrdbuf()->pubsync() . If that function returnsEOF, the func-
tion callssetstate(badbit) .

2 The function returns*this .

[lib.endl] 17.4.4.2endl(ostream&)

ostream& endl(ostream& os);

1 Callsos .put(’\n’) , thenos .flush() . The function returnsos .110) 

[lib.ends] 17.4.4.3ends(ostream&)

ostream& ends(ostream& os);

1 Callsos .put(’\0’) . The function returnsos .111) 

[lib.flush] 17.4.4.4 flush(ostream&)

ostream& flush(ostream& os);

1 Callsos .flush() . The function returnsos . 

[lib.header.iomanip] 17.4.5 Header<iomanip>

1 The header<iomanip> defines three template classes and several related functions that use these template
classes to provide extractors and inserters that alter information maintained by classios and its derived
classes. It also defines several instantiations of these template classes and functions.

110)The effect of executingcout << endl is to insert a newline character in the output sequence controlled bycout , then syn-
chronize it with any external file with which it might be associated.
111)The effect of executingostr << ends is to insert a null character in the output sequence controlled byostr . If ostr is an
object of classstrstreambuf , the null character can terminate anNTBS constructed in an array object.

17– 80 Library DRAFT: 27 May 1994 17.4.5.1 Template classsmanip< T>

[lib.template.smanip] 17.4.5.1 Template classsmanip< T>

template<class T> class smanip {
public:

smanip(ios& (* pf_arg)(ios&, T), T);
// ios& (* pf)(ios&, T); exposition only
// T manarg ; exposition only
};

1 The template classsmanip< T> describes an object that can store a function pointer and an object of type
T. The designated function accepts an argument of this typeT. For the sake of exposition, the maintained
data is presented here as:

— ios& (* pf)(ios&, T) , the function pointer; 

— T manarg , the object of typeT.

[lib.cons.smanip.ios]17.4.5.1.1smanip< T>::smanip(ios& (*)(ios&, T), T) 

smanip(ios& (* pf_arg)(ios&, T), T manarg_arg);

1 Constructs an object of classsmanip< T>, initializing pf to pf_arg andmanarg to manarg_arg .

[lib.ext.smanip] 17.4.5.1.2operator>>(istream&, const smanip< T>&)

template <class T> istream& operator>>(istream& is , const smanip< T>& a); 

1 Calls (* a.pf)(is , a.manarg) and catches any exception the function call throws. If the function
catches an exception, it callsis .setstate(ios::failbit) (the exception is not rethrown). The
function returnsis .

[lib.ins.smanip] 17.4.5.1.3operator<<(ostream&, const smanip< T>&)

template <class T> ostream& operator<<(ostream& os , const smanip< T>& a); 

1 Calls (* a.pf)(os , a.manarg) and catches any exception the function call throws. If the function
catches an exception, it callsos .setstate(ios::failbit) (the exception is not rethrown). The
function returnsos .

[lib.template.imanip] 17.4.5.2 Template classimanip< T>

template<class T> class imanip {
public:

imanip(ios& (* pf_arg)(ios&, T), T);
// ios& (* pf)(ios&, T); exposition only
// T manarg ; exposition only
};

1 The template classimanip< T> describes an object that can store a function pointer and an object of type
T. The designated function accepts an argument of this typeT. For the sake of exposition, the maintained
data is presented here as:

— ios& (* pf)(ios&, T) , the function pointer; 

— T manarg , the object of typeT.

17.4.5.2.1 DRAFT: 27 May 1994 Library 17– 81
imanip< T>::imanip(ios& (*)(ios&, T), T)

[lib.cons.imanip.ios]17.4.5.2.1imanip< T>::imanip(ios& (*)(ios&, T), T) 

imanip< T>::imanip(ios& (* pf_arg)(ios&, T), T manarg_arg);

1 Constructs an object of classimanip< T>, initializing pf to pf_arg andmanarg to manarg_arg .

[lib.ext.imanip] 17.4.5.2.2operator>>(istream&, const imanip< T>&)

template <class T> istream& operator>>(istream& is , const imanip< T>& a); 

1 Calls (* a.pf)(is , a.manarg) and catches any exception the function call throws. If the function
catches an exception, it callsis .setstate(ios::failbit) (the exception is not rethrown). The
function returnsis .

[lib.template.omanip] 17.4.5.3 Template classomanip< T>

template<class T> class omanip {
public:

omanip(ios& (* pf_arg)(ios&, T), T);
// ios& (* pf)(ios&, T); exposition only
// T manarg ; exposition only
};

1 The template classomanip< T> describes an object that can store a function pointer and an object of type
T. The designated function accepts an argument of this typeT. For the sake of exposition, the maintained
data is presented here as:

— ios& (* pf)(ios&, T) , the function pointer; 

— T manarg , the object of typeT.

[lib.cons.omanip.ios]17.4.5.3.1omanip< T>::omanip(ios& (*)(ios&, T), T) 

omanip< T>::omanip(ios& (* pf_arg)(ios&, T), T manarg_arg);

1 Constructs an object of classomanip< T>, initializing pf to pf_arg andmanarg to manarg_arg .

[lib.ins.omanip] 17.4.5.3.2operator<<(istream&, const omanip< T>&)

template <class T> ostream& operator<<(ostream& os , const omanip< T>& a); 

1 Calls (* a.pf)(os , a.manarg) and catches any exception the function call throws. If the function
catches an exception, it callsos .setstate(ios::failbit) (the exception is not rethrown). The
function returnsos .

[lib.instantiations.of.manipulators] 17.4.5.4 Instantiations of manipulators

[lib.resetiosflags] 17.4.5.4.1resetiosflags(ios::fmtflags)

smanip<ios::fmtflags> resetiosflags(ios::fmtflags mask);

1 Returnssmanip<ios::fmtflags>(& f , mask) , wheref can be defined as:112)

112) The expressioncin >> resetiosflags(ios::skipws) clears ios::skipws in the format flags stored in the
istream objectcin (the same ascin >> noskipws), and the expressioncout << resetiosflags(ios::showbase)
clearsios::showbase in the format flags stored in theostream objectcout (the same ascout << noshowbase).

17– 82 Library DRAFT: 27 May 1994 17.4.5.4.1
resetiosflags(ios::fmtflags)

ios& f (ios& str , ios::fmtflags mask)
{ // reset specified flags

str .setf((ios::fmtflags)0, mask);
return (str);

}

[lib.setiosflags] 17.4.5.4.2setiosflags(ios::fmtflags)

smanip<ios::fmtflags> setiosflags(ios::fmtflags mask);

1 Returnssmanip<ios::fmtflags>(& f , mask) , wheref can be defined as:

ios& f (ios& str , ios::fmtflags mask)
{ // set specified flags

str .setf(mask);
return (str);

}

[lib.setbase] 17.4.5.4.3setbase(int)

smanip<int> setbase(int base);

1 Returnssmanip<int>(& f , base) , wheref can be defined as:

ios& f (ios& str , int base)
{ // set basefield

str .setf(n == 8 ? ios::oct : n == 10 ? ios::dec
: n == 16 ? ios::hex : (ios::fmtflags)0, ios::basefield);

return (str);
}

[lib.setfill] 17.4.5.4.4setfill(int)

smanip<int> setfill(int c);

1 Returnssmanip<int>(& f , c) , wheref can be defined as:

ios& f (ios& str , int c)
{ // set fill character

str .fill(c);
return (str);

}

[lib.setprecision] 17.4.5.4.5setprecision(int)

smanip<int> setprecision(int n); ∗∗

1 Returnssmanip<int>(& f , n) , wheref can be defined as:

ios& f (ios& str , int n)
{ // set precision

str .precision(n);
return (str);

}

17.4.5.4.6setw(int) DRAFT: 27 May 1994 Library 17– 83

[lib.setw] 17.4.5.4.6setw(int)

smanip<int> setw(int n);

1 Returnssmanip<int>(& f , n) , wheref can be defined as:

ios& f (ios& str , int n)
{ // set width

str .width(n);
return (str);

}

[lib.header.strstream] 17.4.6 Header<strstream>

1 The header<strstream> defines three types that associate stream buffers with (single-byte) character
array objects and assist reading and writing such objects.

[lib.strstreambuf] 17.4.6.1 Classstrstreambuf

class strstreambuf : public streambuf {
public:

strstreambuf(int alsize_arg = 0);
strstreambuf(void* (* palloc_arg)(size_t),

void (* pfree_arg)(void*));
strstreambuf(char* gnext_arg , int n, char* pbeg_arg = 0);
strstreambuf(unsigned char* gnext_arg , int n,

unsigned char* pbeg_arg = 0);
strstreambuf(signed char* gnext_arg , int n,

signed char* pbeg_arg = 0);
strstreambuf(const char* gnext_arg , int n);
strstreambuf(const unsigned char* gnext_arg , int n);
strstreambuf(const signed char* gnext_arg , int n);
virtual ~strstreambuf();
void freeze(bool = 1); 
char* str();
int pcount();

protected:
// virtual int overflow(int c = EOF); inherited
// virtual int pbackfail(int c = EOF); inherited
// virtual int showmany(); inherited 
// virtual int underflow(); inherited
// virtual int uflow(); inherited
// virtual int xsgetn(char* s, int n); inherited
// virtual int xsputn(const char* s, int n); inherited
// virtual streampos seekoff(streamoff off , ios::seekdir way,
// ios::openmode which = ios::in | ios::out); inherited
// virtual streampos seekpos(streampos sp ,
// ios::openmode which = ios::in | ios::out); inherited
// virtual streambuf* setbuf(char* s, int n); inherited
// virtual int sync(); inherited
private:
// typedef T1 strstate ; exposition only
// static const strstate allocated ; exposition only
// static const strstate constant ; exposition only
// static const strstate dynamic ; exposition only
// static const strstate frozen ; exposition only
// strstate strmode ; exposition only
// int alsize ; exposition only
// void* (* palloc)(size_t); exposition only
// void (* pfree)(void*); exposition only
};

17– 84 Library DRAFT: 27 May 1994 17.4.6.1 Classstrstreambuf

1 The classstrstreambuf is derived fromstreambuf to associate the input sequence and possibly the
output sequence with an object of some character array type, whose elements store arbitrary values. The
array object has several attributes. For the sake of exposition, these are represented as elements of a bit-
mask type (indicated here asT1) calledstrstate . The elements are:

— allocated , set when a dynamic array object has been allocated, and hence should be freed by the
destructor for thestrstreambuf object;

— constant , set when the array object hasconst elements, so the output sequence cannot be written;

— dynamic , set when the array object is allocated (or reallocated) as necessary to hold a character
sequence that can change in length;

— frozen , set when the program has requested that the array object not be altered, reallocated, or freed.

2 For the sake of exposition, the maintained data is presented here as:

— strstate strmode , the attributes of the array object associated with thestrstreambuf object;

— int alsize , the suggested minimum size for a dynamic array object;

— void* (* palloc)(size_t) , points to the function to call to allocate a dynamic array object;

— void (* pfree)(void*) , points to the function to call to free a dynamic array object.

3 Each object of classstrstreambuf has aseekable area,delimited by the pointersseeklow and
seekhigh . If gnext is a null pointer, the seekable area is undefined. Otherwise,seeklow equals
gbeg andseekhigh is eitherpend , if pend is not a null pointer, orgend .

[lib.cons.strstreambuf.i] 17.4.6.1.1strstreambuf::strstreambuf(int)

strstreambuf(int alsize_arg = 0);

1 Constructs an object of classstrstreambuf , initializing the base class withstreambuf() , and initial-
izing:

— strmode with dynamic ;

— alsize with alsize_arg ;

— palloc with a null pointer;

— pfree with a null pointer.

[lib.cons.strstreambuf.ff] 17.4.6.1.2strstreambuf::strstreambuf(void*
(*)(size_t), void (*)(void*))

strstreambuf(void* (* palloc_arg)(size_t), void (* pfree_arg)(void*));

1 Constructs an object of classstrstreambuf , initializing the base class withstreambuf() , and initial-
izing:

— strmode with dynamic ;

— alsize with an unspecified value;

— palloc with palloc_arg ;

— pfree with pfree_arg .

17.4.6.1.3 DRAFT: 27 May 1994 Library 17– 85
strstreambuf::strstreambuf(char*, int, char*)

[lib.cons.strstreambuf.str] 17.4.6.1.3strstreambuf::strstreambuf(char*, int,
char*)

strstreambuf(char* gnext_arg , int n, char * pbeg_arg = 0);

1 Constructs an object of classstrstreambuf , initializing the base class withstreambuf() , and initial-
izing:

— strmode with zero;

— alsize with an unspecified value;

— palloc with a null pointer;

— pfree with a null pointer.

2 gnext_arg shall point to the first element of an array object whose number of elementsN is determined
as follows:

— If n > 0 , N is n.

— If n == 0 , N is strlen(gnext_arg) .

— If n < 0 , N is INT_MAX.

3 The function signaturestrlen(const char*) is declared in<cstring> (17.2). The macro 
INT_MAX is defined in<climits> .

4 If pbeg_arg is a null pointer, the function executes:

setg(gnext_arg , gnext_arg , gnext_arg + N);

5 Otherwise, the function executes:

setg(gnext_arg , gnext_arg , pbeg_arg);
setp(pbeg_arg , pbeg_arg + N);

[lib.cons.strstreambuf.ustr] 17.4.6.1.4strstreambuf::strstreambuf(unsigned char*,
int, unsigned char*)

strstreambuf(unsigned char* gnext_arg , int n,
unsigned char* pbeg_arg = 0);

1 Behaves the same asstrstreambuf((char*) gnext_arg , n, (char*) pbeg_arg) .

[lib.cons.strstreambuf.sstr] 17.4.6.1.5strstreambuf::strstreambuf(signed char*,
int, signed char*)

strstreambuf(signed char* gnext_arg , int n,
signed char* pbeg_arg = 0);

1 Behaves the same asstrstreambuf((char*) gnext_arg , n, (char*) pbeg_arg) .

[lib.cons.strstreambuf.cstr] 17.4.6.1.6strstreambuf::strstreambuf(const char*,
int)

strstreambuf(const char* gnext_arg , int n); ∗

1 Behaves the same asstrstreambuf((char*) gnext_arg , n) , except that the constructor also sets
constant in strmode .

17– 86 Library DRAFT: 27 May 1994 17.4.6.1.7
strstreambuf::strstreambuf(const unsigned char*, int)

[lib.cons.strstreambuf.custr] 17.4.6.1.7strstreambuf::strstreambuf(const unsigned
char*, int)

strstreambuf(const unsigned char* gnext_arg , int n);

1 Behaves the same asstrstreambuf((const char*) gnext_arg , n) .

[lib.cons.strstreambuf.csstr] 17.4.6.1.8strstreambuf::strstreambuf(const signed
char*, int)

strstreambuf(const signed char* gnext_arg , int n);

1 Behaves the same asstrstreambuf((const char*) gnext_arg , n) .

[lib.des.strstreambuf] 17.4.6.1.9strstreambuf::~strstreambuf()

virtual ~strstreambuf();

1 Destroys an object of classstrstreambuf . The function frees the dynamically allocated array object
only if strmode & allocated is nonzero andstrmode & frozen is zero. (Subclause
strstreambuf::overflow describes how a dynamically allocated array object is freed.)

[lib.strstreambuf::freeze] 17.4.6.1.10strstreambuf::freeze(int)

void freeze(bool freezefl = 1); 

1 If strmode & dynamic is nonzero, alters the freeze status of the dynamic array object as follows: If
freezefl is nonzero, the function setsfrozen in strmode . Otherwise, it clearsfrozen in str-
mode.

[lib.strstreambuf::str] 17.4.6.1.11strstreambuf::str()

char* str();

1 Calls freeze() , then returns the beginning pointer for the input sequence,gbeg .113)

[lib.strstreambuf::pcount] 17.4.6.1.12strstreambuf::pcount()

int pcount() const;

1 If the next pointer for the output sequence,pnext , is a null pointer, returns zero. Otherwise, the function
returns the current effective length of the array object as the next pointer minus the beginning pointer for
the output sequence,pnext - pbeg .

[lib.strstreambuf::overflow] 17.4.6.1.13strstreambuf::overflow(int)

113)The return value can be a null pointer.

17.4.6.1.13 DRAFT: 27 May 1994 Library 17– 87
strstreambuf::overflow(int)

Box 116

Library WG issue: Jerry Schwarz, January 3, 1994

overflow : ∗
This is essentially editorial. I think the words Library uses
here (and in general describing specializations ofstreambuf) are
wrong.Library says ‘‘Behaves the same asstreambuf::underflow(int)
with the following specific behavior.’’ Butstreambuf::underflow(int)
returnsEOFunconditionally.

WhatLibrary is trying to say is something like ‘‘it implements
the protocol defined forstreambuf::underflow with the fol-
lowing specific behavior.’’

I think the right thing to do is make these descriptions self
contained.

I was wrong here. Sorry. ComparingLibrary with the current draft convinces me that when the function
can be described as a specialization of a protocol it is better to do that. All the repetitions of the protocol in
the current draft mean you have to compare lots of identical verbiage to see how various functions differ
>from each other.

But I think it is essential that the protocol itself indicate what needs to be specified in a specialization._ __





























_ __






























// virtual int overflow(int c = EOF); inherited

1 Appends the character designated byc to the output sequence, if possible, in one of two ways:

— If c != EOF and if either the output sequence has a write position available or the function makes a
write position available (as described below), the function assignsc to * pnext ++. The function sig-
nals success by returning(unsigned char) c .

— If c == EOF , there is no character to append. The function signals success by returning a value other
thanEOF.

2 The function can alter the number of write positions available as a result of any call.

3 The function returnsEOFto indicate failure.

4 To make a write position available, the function reallocates (or initially allocates) an array object with a suf-
ficient number of elementsn to hold the current array object (if any), plus at least one additional write posi-
tion. How many additional write positions are made available is otherwise unspecified.114) If palloc is
not a null pointer, the function calls(* palloc)(n) to allocate the new dynamic array object. Other-
wise, it evaluates the expressionnew char[n] . In either case, if the allocation fails, the function returns
EOF. Otherwise, it setsallocated in strmode .

5 To free a previously existing dynamic array object whose first element address isp: If pfree is not a null
pointer, the function calls(* pfree)(p) . Otherwise, it evaluates the expressiondelete[] p.

6 If strmode & dynamic is zero, or ifstrmode & frozen is nonzero, the function cannot extend the
array (reallocate it with greater length) to make a write position available.

114)An implementation should consideralsize in making this decision.

17– 88 Library DRAFT: 27 May 1994 17.4.6.1.14
strstreambuf::pbackfail(int)

[lib.strstreambuf::pbackfail] 17.4.6.1.14strstreambuf::pbackfail(int)

// virtual int pbackfail(int c = EOF); inherited

1 Puts back the character designated byc to the input sequence, if possible, in one of three ways:

— If c != EOF , if the input sequence has a putback position available, and if(unsigned char) c
== unsigned char) gnext [-1] , the function assignsgnext - 1 to gnext . The function sig-
nals success by returning(unsigned char) c .

— If c != EOF , if the input sequence has a putback position available, and ifstrmode & constant
is zero, the function assignsc to *-- gnext . The function signals success by returning(unsigned
char) c .

— If c == EOF and if the input sequence has a putback position available, the function assignsgnext
- 1 to gnext . The function signals success by returning(unsigned char) c .

2 If the function can succeed in more than one of these ways, it is unspecified which way is chosen. The
function can alter the number of putback positions available as a result of any call.

3 The function returnsEOFto indicate failure. 

[lib.strstreambuf::showmany]17.4.6.1.15strstreambuf::showmany() 

// virtual int showmany(); inherited 

1 Behaves the same asstreambuf::showmany(int) .

[lib.strstreambuf::underflow] 17.4.6.1.16strstreambuf::underflow()

// virtual int underflow(); inherited

1 Reads a character from the input sequence, if possible, without moving the stream position past it, as fol-
lows:

— If the input sequence has a read position available the function signals success by returning
(unsigned char)* gnext .

— Otherwise, if the current write next pointerpnext is not a null pointer and is greater than the current
read end pointergend , the function makes a read position available by assigning togend a value
greater thangnext and no greater thanpnext . The function signals success by returning
(unsigned char)* gnext .

2 The function can alter the number of read positions available as a result of any call.

3 The function returnsEOFto indicate failure.

[lib.strstreambuf::uflow] 17.4.6.1.17strstreambuf::uflow()

// virtual int uflow(); inherited

1 Behaves the same asstreambuf::uflow(int) .

[lib.strstreambuf::xsgetn] 17.4.6.1.18strstreambuf::xsgetn(char*, int)

// virtual int xsgetn(char* s, int n); inherited

1 Behaves the same asstreambuf::xsgetn(char*, int) .

17.4.6.1.19 DRAFT: 27 May 1994 Library 17– 89
strstreambuf::xsputn(const char*, int)

[lib.strstreambuf::xsputn] 17.4.6.1.19strstreambuf::xsputn(const char*, int)

// virtual int xsputn(const char* s, int n); inherited

1 Behaves the same asstreambuf::xsputn(char*, int) .

[lib.strstreambuf::seekoff] 17.4.6.1.20strstreambuf::seekoff(streamoff,
ios::seekdir, ios::openmode)

// virtual streampos seekoff(streamoff off , ios::seekdir way, ∗
// ios::openmode which = ios::in | ios::out); inherited

1 Alters the stream position within one of the controlled sequences, if possible, as described below. The
function returnsstreampos(newoff) , constructed from the resultant offsetnewoff (of typestream-
off), that stores the resultant stream position, if possible. If the positioning operation fails, or if the con-
structed object cannot represent the resultant stream position, the object stores an invalid stream position.

2 If which & ios::in is nonzero, the function positions the input sequence. Otherwise, ifwhich &
ios::out is nonzero, the function positions the output sequence. Otherwise, ifwhich & (ios::in
| ios::out) equalsios::in | ios::out and if way equals eitherios::beg or ios::end ,
the function positions both the input and the output sequences. Otherwise, the positioning operation fails.

3 For a sequence to be positioned, if its next pointer is a null pointer, the positioning operation fails. Other-
wise, the function determinesnewoff in one of three ways:

— If way == ios::beg , newoff is zero.

— If way == ios::cur , newoff is the next pointer minus the beginning pointer (xnext - xbeg).

— If way == ios::end , newoff is seekhigh minus the beginning pointer (seekhigh - xbeg). 

4 If newoff + off is less thanseeklow - xbeg , or if seekhigh - xbeg is less thannewoff +
off , the positioning operation fails. Otherwise, the function assignsxbeg + newoff + off to the
next pointerxnext .

[lib.strstreambuf::seekpos] 17.4.6.1.21strstreambuf::seekpos(streampos,
ios::openmode)

// virtual streampos seekpos(streampos sp ,
// ios::openmode which = ios::in | ios::out); inherited

1 Alters the stream position within one of the controlled sequences, if possible, to correspond to the stream
position stored insp (as described below). The function returnsstreampos(newoff) , constructed
from the resultant offsetnewoff (of typestreamoff), that stores the resultant stream position, if possi-
ble. If the positioning operation fails, or if the constructed object cannot represent the resultant stream posi-
tion, the object stores an invalid stream position.

2 If which & ios::in is nonzero, the function positions the input sequence. Ifwhich & ios::out
is nonzero, the function positions the output sequence. If the function positions neither sequence, the posi-
tioning operation fails.

3 For a sequence to be positioned, if its next pointer is a null pointer, the positioning operation fails. Other-
wise, the function determinesnewoff from sp .offset() . If newoff is an invalid stream position,
has a negative value, or has a value greater thanseekhigh - seeklow , the positioning operation fails.
Otherwise, the function addsnewoff to the beginning pointerxbeg and stores the result in the next
pointerxnext .

17– 90 Library DRAFT: 27 May 1994 17.4.6.1.22
strstreambuf::setbuf(char*, int)

[lib.strstreambuf::setbuf] 17.4.6.1.22strstreambuf::setbuf(char*, int)

// virtual streambuf* setbuf(char* s, int n); inherited

1 Performs an operation that is defined separately for each class derived fromstrstreambuf .

2 The default behavior is the same as forstreambuf::setbuf(char*, int) .

[lib.strstreambuf::sync] 17.4.6.1.23strstreambuf::sync()

// virtual int sync(); inherited

1 Behaves the same asstreambuf::sync() .

[lib.istrstream] 17.4.6.2 Classistrstream

class istrstream : public istream {
public:

istrstream(const char* s); ∗
istrstream(const char* s, int n);
istrstream(char* s);
istrstream(char* s, int n);
virtual ~istrstream();
strstreambuf* rdbuf() const;
char *str(); 

private:
// strstreambuf sb ; exposition only
};

1 The classistrstream is a derivative ofistream that assists in the reading of objects of class
strstreambuf . It supplies astrstreambuf object to control the associated array object. For the
sake of exposition, the maintained data is presented here as:

— sb , thestrstreambuf object.

[lib.cons.istrstream.cstr] 17.4.6.2.1istrstream::istrstream(const char*)

istrstream(const char* s);

1 Constructs an object of classistrstream , initializing the base class withistream(& sb) , and initial-
izing sb with sb (s, 0) . s shall designate the first element of anNTBS.

[lib.cons.istrstream.cstrn] 17.4.6.2.2istrstream::istrstream(const char*, int)

istrstream(const char* s, int n);

1 Constructs an object of classistrstream , initializing the base class withistream(& sb) , and initial-
izing sb with sb (s, n) . s shall designate the first element of an array whose length isn elements, and
n shall be greater than zero.

[lib.cons.istrstream.str] 17.4.6.2.3istrstream::istrstream(char*)

istrstream(char* s);

1 Constructs an object of classistrstream , initializing the base class withistream(& sb) , and initial-
izing sb with sb ((const char*) s, 0) . s shall designate the first element of anNTBS.

17.4.6.2.4 DRAFT: 27 May 1994 Library 17– 91
istrstream::istrstream(char*, int)

[lib.cons.istrstream.strn] 17.4.6.2.4istrstream::istrstream(char*, int)

istrstream(char* s, int n);

1 Constructs an object of classistrstream , initializing the base class withistream(& sb) , and initial-
izing sb with sb ((const char*) s, n) . s shall designate the first element of an array whose length
is n elements, andn shall be greater than zero.

[lib.des.istrstream] 17.4.6.2.5istrstream::~istrstream()

virtual ~istrstream();

1 Destroys an object of classistrstream .

[lib.istrstream::rdbuf] 17.4.6.2.6istrstream::rdbuf()

strstreambuf* rdbuf() const;

1 Returns(strstreambuf*)& sb . 

[lib.istrstream::str]17.4.6.2.7istrstream::str() 

char* str(); 

1 Returnssb .str() .

[lib.ostrstream] 17.4.6.3 Classostrstream

class ostrstream : public ostream {
public:

ostrstream();
ostrstream(char* s, int n, openmode mode = out);
virtual ~ostrstream();
strstreambuf* rdbuf() const;
void freeze(int freezefl = 1); 
char* str();
int pcount() const;

private:
// strstreambuf sb ; exposition only
};

1 The classostrstream is a derivative ofostream that assists in the writing of objects of class
strstreambuf . It supplies astrstreambuf object to control the associated array object. For the
sake of exposition, the maintained data is presented here as:

— sb , thestrstreambuf object.

[lib.cons.ostrstream] 17.4.6.3.1ostrstream::ostrstream()

ostrstream();

1 Constructs an object of classostrstream , initializing the base class withostream(& sb) , and initial-
izing sb with sb () .

17– 92 Library DRAFT: 27 May 1994 17.4.6.3.2
ostrstream::ostrstream(char*, int, openmode)

[lib.cons.ostrstream.str] 17.4.6.3.2ostrstream::ostrstream(char*, int, openmode)

ostrstream(char* s, int n, openmode mode = out);

1 Constructs an object of classostrstream , initializing the base class withostream(& sb) , and initial-
izing sb with one of two constructors:

— If mode & app is zero, thens shall designate the first element of an array ofn elements. The con-
structor issb (s, n, s) .

— If mode & app is nonzero, thens shall designate the first element of an array ofn elements that con-
tains an NTBS whose first element is designated bys . The constructor issb (s, n, s +
::strlen(s)) .

2 The function signaturestrlen(const char*) is declared in<cstring> (17.2). 

[lib.des.ostrstream] 17.4.6.3.3ostrstream::~ostrstream()

virtual ~ostrstream();

1 Destroys an object of classostrstream .

[lib.ostrstream::rdbuf] 17.4.6.3.4ostrstream::rdbuf()

strstreambuf* rdbuf() const;

1 Returns(strstreambuf*)& sb . 

[lib.ostrstream::freeze] 17.4.6.3.5ostrstream::freeze(int)

void freeze(int freezefl = 1);

1 Callssb .freeze(freezefl) .

[lib.ostrstream::str] 17.4.6.3.6ostrstream::str()

char* str();

1 Returnssb .str() .

[lib.ostrstream::pcount] 17.4.6.3.7ostrstream::pcount()

int pcount() const;

1 Returnssb .pcount() .

[lib.header.sstream] 17.4.7 Header<sstream>

1 The header<sstream> defines three types that associate stream buffers with objects of classstring , as
described in subclause_string_.

[lib.stringbuf] 17.4.7.1 Classstringbuf

17.4.7.1 Classstringbuf DRAFT: 27 May 1994 Library 17– 93

Box 117

Library WG issue: Jerry Schwarz, January 3, 1994

Formulating the ‘‘as if’’ rule is an interesting exercise. If the sequence is represented bya (i.e. the
sequence is (a[0], a[max]) and the put pointer is atpx and the get pointer is atgx then the rule requires
the pointers to be such that.

a)pbeg==NULL or for all i such that
px-(pnext-pbeg) <= i < px, a[i]==pbeg[i-px]

b) gbeg==NULL or for all i s such that
gx-(gnext-gbeg) <= i < gx+(gend-gbeg), a[i]==gnext[i-px]

c) for anyi such that both ∗
px-(pnext-pbeg) <= i < px ∗

and ∗
gx-(gnext-gbeg) <= i < gx+(gend-gbeg) 
pnext+(i-px) == gnext + (i-gx)

If my alternative protocols are accepted, essentially the same conditions are achieved by specializing so that∗
the input and output streams are represented by ∗

Stream s ;
size_t px;
size_t gx;

I’ll be happy to elaborate on any of the above._ __































_ __
































class stringbuf : public streambuf { ∗
public:

stringbuf(ios::openmode which = ios::in | ios::out);
stringbuf(const string& str ,

ios::openmode which = ios::in | ios::out);
virtual ~stringbuf(); 
string str() const;
void str(const string& str_arg);

protected:
// virtual int overflow(int c = EOF); inherited
// virtual int pbackfail(int c = EOF); inherited
// virtual int showmany(); inherited 
// virtual int underflow(); inherited
// virtual int uflow(); inherited
// virtual int xsgetn(char* s, int n); inherited
// virtual int xsputn(const char* s, int n); inherited
// virtual streampos seekoff(streamoff off , ios::seekdir way,
// ios::openmode which = ios::in | ios::out); inherited
// virtual streampos seekpos(streampos sp ,
// ios::openmode which = ios::in | ios::out); inherited
// virtual streambuf* setbuf(char* s, int n); inherited
// virtual int sync(); inherited
private:
// ios::openmode mode; exposition only
};

1 The classstringbuf is derived fromstreambuf to associate possibly the input sequence and possibly
the output sequence with a sequence of arbitrary (single-byte) characters. The sequence can be initialized
from, or made available as, an object of classstring .

17– 94 Library DRAFT: 27 May 1994 17.4.7.1 Classstringbuf

2 For the sake of exposition, the maintained data is presented here as:

— ios::openmode mode, hasios::in set if the input sequence can be read, andios::out set if
the output sequence can be written.

3 For the sake of exposition, the stored character sequence is described here as an array object.

[lib.cons.stringbuf.m] 17.4.7.1.1stringbuf::stringbuf(ios::openmode)

stringbuf(ios::openmode which = ios::in | ios::out); ∗

1 Constructs an object of classstringbuf , initializing the base class withstreambuf() , and initializing
mode with which . The function allocates no array object.

[lib.cons.stringbuf.sm] 17.4.7.1.2stringbuf::stringbuf(const string&,
ios::openmode)

stringbuf(const string& str , ios::openmode which = ios::in | ios::out); ∗

1 Constructs an object of classstringbuf , initializing the base class withstreambuf() , and initializing
mode with which .

2 If str .length() is nonzero, the function allocates an array objectx whose length n is
str .length() and whose elementsx[I] are initialized tostr [I] . If which & ios::in is
nonzero, the function executes:

setg(x, x, x + n);

3 If which & ios::out is nonzero, the function executes:

setp(x, x + n);

[lib.des.stringbuf] 17.4.7.1.3stringbuf::~stringbuf()

virtual ~stringbuf();

1 Destroys an object of classstringbuf .

[lib.stringbuf::str] 17.4.7.1.4stringbuf::str()

string str() const;

1 If mode & ios::in is nonzero andgnext is not a null pointer, returnsstring(gbeg , gend -
gbeg) . Otherwise, ifmode & ios::out is nonzero andpnext is not a null pointer, the function
returnsstring(pbeg , pptr - pbeg) . Otherwise, the function returnsstring() .

[lib.stringbuf::str.s] 17.4.7.1.5stringbuf::str(const string&)

void str(const string& str_arg);

1 If str_arg .length() is zero, executes:

setg(0, 0, 0);
setp(0, 0);

2 and frees storage for any associated array object. Otherwise, the function allocates an array objectx whose
lengthn is str_arg .length() and whose elementsx[I] are initialized tostr_arg [I] . If which
& ios::in is nonzero, the function executes:

17.4.7.1.5 DRAFT: 27 May 1994 Library 17– 95
stringbuf::str(const string&)

setg(x, x, x + n);

3 If which & ios::out is nonzero, the function executes:

setp(x, x + n);

[lib.stringbuf::overflow] 17.4.7.1.6stringbuf::overflow(int)

// virtual int overflow(int c = EOF); inherited

1 Appends the character designated byc to the output sequence, if possible, in one of two ways:

— If c != EOF and if either the output sequence has a write position available or the function makes a
write position available (as described below), the function assignsc to * pnext ++. The function sig-
nals success by returning(unsigned char) c .

— If c == EOF , there is no character to append. The function signals success by returning a value other
thanEOF.

2 The function can alter the number of write positions available as a result of any call.

3 The function returnsEOFto indicate failure.

4 The function can make a write position available only ifmode & ios::out is nonzero. To make a
write position available, the function reallocates (or initially allocates) an array object with a sufficient
number of elements to hold the current array object (if any), plus one additional write position. Ifmode &
ios::in is nonzero, the function alters the read end pointergend to point just past the new write position
(as does the write end pointerpend).

[lib.stringbuf::pbackfail] 17.4.7.1.7stringbuf::pbackfail(int)

// virtual int pbackfail(int c = EOF); inherited

1 Puts back the character designated byc to the input sequence, if possible, in one of three ways:

— If c != EOF , if the input sequence has a putback position available, and if(unsigned char) c 
== (unsigned char) gnext [-1] , the function assignsgnext - 1 to gnext . The function
signals success by returning(unsigned char) c .

— If c != EOF , if the input sequence has a putback position available, and ifmode & ios::out is
nonzero, the function assignsc to *-- gnext . The function signals success by returning(unsigned
char) c .

— If c == EOF and if the input sequence has a putback position available, the function assignsgnext
- 1 to gnext . The function signals success by returning(unsigned char) c .

2 If the function can succeed in more than one of these ways, it is unspecified which way is chosen.

3 The function returnsEOFto indicate failure. 

[lib.stringbuf::showmany]17.4.7.1.8stringbuf::showmany() 

// virtual int showmany(); inherited 

1 Behaves the same asstreambuf::showmany(int) .

17– 96 Library DRAFT: 27 May 1994 17.4.7.1.9stringbuf::underflow()

[lib.stringbuf::underflow] 17.4.7.1.9stringbuf::underflow()

Box 118

Library WG issue: Jerry Schwarz, January 3, 1994

Underflow needs to consider that the sequence might have been extended withoverflow s from its ini-
tial state. ∗ _ __







_ __







// virtual int underflow(); inherited

1 If the input sequence has a read position available, signals success by returning(unsigned
char)* gnext . Otherwise, the function returnsEOFto indicate failure.

[lib.stringbuf::uflow] 17.4.7.1.10stringbuf::uflow()

// virtual int uflow(); inherited

1 Behaves the same asstreambuf::uflow(int) .

[lib.stringbuf::xsgetn] 17.4.7.1.11stringbuf::xsgetn(char*, int)

// virtual int xsgetn(char* s, int n); inherited

1 Behaves the same asstreambuf::xsgetn(char*, int) .

[lib.stringbuf::xsputn] 17.4.7.1.12stringbuf::xsputn(const char*, int)

// virtual int xsputn(const char* s, int n); inherited

1 Behaves the same asstreambuf::xsputn(char*, int) .

[lib.stringbuf::seekoff] 17.4.7.1.13stringbuf::seekoff(streamoff, ios::seekdir,
ios::openmode)

// virtual streampos seekoff(streamoff off , ios::seekdir way,
// ios::openmode which = ios::in | ios::out); inherited

1 Alters the stream position within one of the controlled sequences, if possible, as described below. The
function returnsstreampos(newoff) , constructed from the resultant offsetnewoff (of typestream-
off), that stores the resultant stream position, if possible. If the positioning operation fails, or if the con-
structed object cannot represent the resultant stream position, the object stores an invalid stream position.

2 If which & ios::in is nonzero, the function positions the input sequence. Otherwise, ifwhich &
ios::out is nonzero, the function positions the output sequence. Otherwise, ifwhich & (ios::in
| ios::out) equalsios::in | ios::out and if way equals eitherios::beg or ios::end ,
the function positions both the input and the output sequences. Otherwise, the positioning operation fails.

3 For a sequence to be positioned, if its next pointer is a null pointer, the positioning operation fails. Other-
wise, the function determinesnewoff in one of three ways:

— If way == ios::beg , newoff is zero.

— If way == ios::cur , newoff is the next pointer minus the beginning pointer (xnext - xbeg).

— If way == ios::end , newoff is the end pointer minus the beginning pointer (xend - xbeg).

17.4.7.1.13 DRAFT: 27 May 1994 Library 17– 97
stringbuf::seekoff(streamoff, ios::seekdir, ios::openmode)

4 If newoff + off is less than zero, or ifxend - xbeg is less thannewoff + off , the positioning
operation fails. Otherwise, the function assignsxbeg + newoff + off to the next pointerxnext .

[lib.stringbuf::seekpos] 17.4.7.1.14stringbuf::seekpos(streampos, ios::openmode)

Box 119 
Library WG issue: Jerry Schwarz, January 3, 1994 

Also it should be possible to seek the input stream anywhere in the sequence, even if it has been extended. _ __





_ __




 

Box 120 
Library WG issue: Jerry Schwarz, January 3, 1994 

Seeking to position 0 should be allowed even when the sequence is empty.  _ ___





_ ___




 

// virtual streampos seekpos(streampos sp ,
// ios::openmode which = ios::in | ios::out); inherited

1 Alters the stream position within one of the controlled sequences, if possible, to correspond to the stream
position stored insp (as described below). The function returnsstreampos(newoff) , constructed
from the resultant offsetnewoff (of typestreamoff), that stores the resultant stream position, if possi-
ble. If the positioning operation fails, or if the constructed object cannot represent the resultant stream posi-
tion, the object stores an invalid stream position.

2 If which & ios::in is nonzero, the function positions the input sequence. Ifwhich & ios::out
is nonzero, the function positions the output sequence. If the function positions neither sequence, the posi-
tioning operation fails.

3 For a sequence to be positioned, if its next pointer is a null pointer, the positioning operation fails. Other-
wise, the function determinesnewoff from sp .offset() . If newoff is an invalid stream position,
has a negative value, or has a value greater thanxend - xbeg , the positioning operation fails. Other-
wise, the function addsnewoff to the beginning pointerxbeg and stores the result in the next pointer
xnext .

[lib.stringbuf::setbuf] 17.4.7.1.15stringbuf::setbuf(char*, int)

// virtual streambuf* setbuf(char* s, int n); inherited

1 Performs an operation that is defined separately for each class derived fromstringbuf .

2 The default behavior is the same as forstreambuf::setbuf(char*, int) .

[lib.stringbuf::sync] 17.4.7.1.16stringbuf::sync()

// virtual int sync(); inherited

1 Behaves the same asstreambuf::sync() .

[lib.istringstream] 17.4.7.2 Classistringstream

17– 98 Library DRAFT: 27 May 1994 17.4.7.2 Classistringstream

class istringstream : public istream {
public:

istringstream(ios::openmode which = ios::in);
istringstream(const string& str , ios::openmode which = ios::in);
virtual ~istringstream();
stringbuf* rdbuf() const;
string str() const;
void str(const string& str);

private:
// stringbuf sb ; exposition only
};

1 The classistringstream is a derivative ofistream that assists in the reading of objects of class
stringbuf . It supplies astringbuf object to control the associated array object. For the sake of
exposition, the maintained data is presented here as:

— sb , thestringbuf object.

[lib.cons.istringstream.m] 17.4.7.2.1istringstream::istringstream(ios::openmode)

istringstream(ios::openmode which = ios::in);

1 Constructs an object of classistringstream , initializing the base class withistream(& sb) , and ini-
tializing sb with sb (which) .

[lib.cons.istringstream.sm] 17.4.7.2.2istringstream::istringstream(const string&,
ios::openmode

istringstream(const string& str , ios::openmode which = ios::in);

1 Constructs an object of classistringstream , initializing the base class withistream(& sb) , and ini-
tializing sb with sb (str , which) .

[lib.des.istringstream] 17.4.7.2.3istringstream::~istringstream()

virtual ~istringstream();

1 Destroys an object of classistringstream .

[lib.istringstream::rdbuf] 17.4.7.2.4istringstream::rdbuf()

stringbuf* rdbuf() const;

1 Returns(stringbuf*)& sb . 

[lib.istringstream::str] 17.4.7.2.5istringstream::str()

string str() const;

1 Returnssb .str() .

[lib.istringstream::str.s] 17.4.7.2.6istringstream::str(const string&)

void str(const string& str_arg);

1 Callssb .str(str_arg) .

17.4.7.3 Classostringstream DRAFT: 27 May 1994 Library 17– 99

[lib.ostringstream] 17.4.7.3 Classostringstream

class ostringstream : public ostream {
public:

ostringstream(ios::openmode which = ios::out);
ostringstream(const string& str , ios::openmode which = ios::out);
virtual ~ostringstream();
stringbuf* rdbuf() const;
string str() const;
void str(const string& str);

private:
// stringbuf sb ; exposition only
};

1 The classostringstream is a derivative ofostream that assists in the writing of objects of class
stringbuf . It supplies astringbuf object to control the associated array object. For the sake of
exposition, the maintained data is presented here as:

— sb , thestringbuf object.

[lib.cons.ostringstream.m] 17.4.7.3.1ostringstream::ostringstream(ios::openmode)

ostringstream(ios::openmode which = ios::out);

1 Constructs an object of classostringstream , initializing the base class withostream(& sb) , and ini-
tializing sb with sb (which) .

[lib.cons.ostringstream.sm] 17.4.7.3.2
ostringstream::ostringstream(const string&,
ios::openmode

ostringstream(const string& str , ios::openmode which = ios::out);

1 Constructs an object of classostringstream , initializing the base class withostream(& sb) , and ini-
tializing sb with sb (str , which) .

[lib.des.ostringstream] 17.4.7.3.3ostringstream::~ostringstream()

virtual ~ostringstream();

1 Destroys an object of classostringstream .

[lib.ostringstream::rdbuf] 17.4.7.3.4ostringstream::rdbuf()

stringbuf* rdbuf() const;

1 Returns(stringbuf*)& sb . 

[lib.ostringstream::str] 17.4.7.3.5ostringstream::str()

string str() const;

1 Returnssb .str() .

17– 100 Library DRAFT: 27 May 1994 17.4.7.3.6
ostringstream::str(const string&)

[lib.ostringstream::str.s] 17.4.7.3.6ostringstream::str(const string&)

void str(const string& str_arg);

1 Callssb .str(str_arg) .

[lib.header.fstream] 17.4.8 Header<fstream>

1 The header<fstream> defines six types that associate stream buffers with files and assist reading and
writing files.

2 In this subclause, the type nameFILE is a synonym for the typeFILE defined in<cstdio> (17.2). 

[lib.filebuf] 17.4.8.1 Classfilebuf

Box 121 
Library WG issue: Jerry Schwarz, January 3, 1994 

Something needs to be said about setting of pointers.pbeg, pend, pnext should all be set toNULL. 

The g pointers are more delicate. The intention was that you throw away the get area and (if necessary)
seek the file. Some implementor’s haven’t done the seek, or ignore failures. This gives you a way to
throw away (some or all of) input from a terminal. We ought to say something about this. As the draft now
reads it appears that theg pointers can’t be modified.  _ __












_ __










 

class filebuf : public streambuf {
public:

filebuf();
virtual ~filebuf();
bool is_open() const; 
filebuf* open(const char* s, ios::openmode mode);
filebuf* close(); ∗

protected:
// virtual int overflow(int c = EOF); inherited
// virtual int pbackfail(int c = EOF); inherited
// virtual int showmany(); inherited 
// virtual int underflow(); inherited
// virtual int uflow(); inherited
// virtual int xsgetn(char* s int n); inherited 
// virtual int xsputn(const char* s, int n); inherited
// virtual streampos seekoff(streamoff off , ios::seekdir way,
// ios::openmode which = ios::in | ios::out); inherited
// virtual streampos seekpos(streampos sp ,
// ios::openmode which = ios::in | ios::out); inherited
// virtual streambuf* setbuf(char* s, int n); inherited
// virtual int sync(); inherited
private:
// FILE * file ; exposition only
};

1 The classfilebuf is derived fromstreambuf to associate both the input sequence and the output
sequence with an object of typeFILE . For the sake of exposition, the maintained data is presented here as:

— FILE * file , points to theFILE associated with the object of classfilebuf .

2 The restrictions on reading and writing a sequence controlled by an object of classfilebuf are the same
as for reading and writing its associated file. In particular:

— If the file is not open for reading or for update, the input sequence cannot be read.

17.4.8.1 Classfilebuf DRAFT: 27 May 1994 Library 17– 101

— If the file is not open for writing or for update, the output sequence cannot be written.

— A joint file position is maintained for both the input sequence and the output sequence.

[lib.cons.filebuf] 17.4.8.1.1filebuf::filebuf()

filebuf();

1 Constructs an object of classfilebuf , initializing the base class withstreambuf() , and initializing
file to a null pointer.

[lib.des.filebuf] 17.4.8.1.2filebuf::~filebuf()

virtual ~filebuf();

1 Destroys an object of classfilebuf . The function callsclose() .

[lib.filebuf::is.open] 17.4.8.1.3filebuf::is_open()

bool is_open() const; 

1 Returns a nonzero value iffile is not a null pointer.

[lib.filebuf::open] 17.4.8.1.4filebuf::open(const char*, ios::openmode)

filebuf* open(const char* s, ios::openmode mode);

1 If file is not a null pointer, returns a null pointer. Otherwise, the function opens a file, if possible, whose
name is theNTBS s , by callingfopen(s, modstr) and assigning the return value tofile . TheNTBS 
modstr is determined frommode & ~ios::ate as follows: 

— ios::in becomes"r" ;

— ios::out | ios::trunc becomes"w" ;

— ios::out | ios::app becomes"a" ;

— ios::in | ios::binary becomes"rb" ; 

— ios::out | ios::trunc | ios::binary becomes"wb" ; 

— ios::out | ios::app | ios::binary becomes"ab" ; 

— ios::in | ios::out becomes"r+" ;

— ios::in | ios::out | ios::trunc becomes"w+" ;

— ios::in | ios::out | ios::app becomes"a+" ;

— ios::in | ios::out | ios::binary becomes"r+b" ; 

— ios::in | ios::out | ios::trunc | ios::binary becomes"w+b" ; 

— ios::in | ios::out | ios::app | ios::biaary becomes"a+b" . 

2 If the resulting file is not a null pointer andmode & ios::ate is nonzero, the function calls
fseek(file , 0, SEEK_END) . If that function returns a null pointer, the function callsclose() 
and returns a null pointer. Otherwise, the function returnsthis .

3 The macroSEEK_ENDis defined, and the function signaturesfopen(const char*, const
char*) andfseek(FILE*, long, int) are declared, in<cstdio> (17.2). 

17– 102 Library DRAFT: 27 May 1994 17.4.8.1.5filebuf::close()

[lib.filebuf::close] 17.4.8.1.5filebuf::close()

Box 122

Library WG issue: Jerry Schwarz, January 3, 1994

I think close should assign 0 tofile . ∗

Not fixed._ ___







_ ___








filebuf* close();

1 If file is a null pointer, returns a null pointer. Otherwise, if the callfclose(file) returns zero, the
function stores a null pointer infile and returnsthis . Otherwise, it returns a null pointer.

2 The function signaturefclose(FILE*) is declared, in<cstdio> (17.2). 

[lib.filebuf::overflow] 17.4.8.1.6filebuf::overflow(int)

// virtual int overflow(int c = EOF); inherited

1 Appends the character designated byc to the output sequence, if possible, in one of three ways:

— If c != EOF and if either the output sequence has a write position available or the function makes a
write position available (in an unspecified manner), the function assignsc to * pnext ++. The function
signals success by returning(unsigned char) c .

— If c != EOF , the function appendsc directly to the associated output sequence (as described below).
If pbeg < pnext , thepnext - pbeg characters beginning atpbeg are first appended directly to
the associated output sequence, beginning with the character atpbeg . The function signals success by
returning(unsigned char) c .

— If c == EOF , there is no character to append. The function signals success by returning a value other
thanEOF.

2 If the function can succeed in more than one of these ways, it is unspecified which way is chosen. The
function can alter the number of write positions available as a result of any call.

3 The function returnsEOFto indicate failure. Iffile is a null pointer, the function always fails.

4 To append a characterx directly to the associated output sequence, the function evaluates the expression:

fputc(x, file) == x

5 which must be nonzero. The function signaturefputc(int, FILE*) is declared in<cstdio> (17.2). 

[lib.filebuf::pbackfail] 17.4.8.1.7filebuf::pbackfail(int)

// virtual int pbackfail(int c = EOF); inherited

1 Puts back the character designated byc to the input sequence, if possible, in one of four ways:

— If c != EOF and if either the input sequence has a putback position available or the function makes a
putback position available (in an unspecified manner), the function assignsc to *-- gnext . The func-
tion signals success by returning(unsigned char) c .

— If c != EOF and if no putback position is available, the function puts backc directly to the associate
input sequence (as described below). The function signals success by returning(unsigned
char) c .

— If c == EOF and if either the input sequence has a putback position available or the function makes a

17.4.8.1.7 filebuf::pbackfail(int) DRAFT: 27 May 1994 Library 17– 103

putback position available, the function assignsgnext - 1 to gnext . The function signals success
by returning(unsigned char) c .

— If c == EOF , if no putback position is available, and if the function can determine the characterx
immediately before the current position in the associated input sequence (in an unspecified manner), the
function puts backx directly to the associated input sequence. The function signals success by return-
ing a value other thanEOF.

2 If the function can succeed in more than one of these ways, it is unspecified which way is chosen. The
function can alter the number of putback positions available as a result of any call.

3 The function returnsEOFto indicate failure. Iffile is a null pointer, the function always fails.

4 To put back a characterx directly to the associated input sequence, the function evaluates the expression:

ungetc(x, file) == x

5 which must be nonzero. The function signatureungetc(int, FILE*) is declared in<cstdio> 
(17.2). 

[lib.filebuf::showmany]17.4.8.1.8filebuf::showmany() 

// virtual int showmany(); inherited 

1 Behaves the same asstreambuf::showmany() .115)

[lib.filebuf::underflow] 17.4.8.1.9filebuf::underflow()

// virtual int underflow(); inherited ∗

1 Reads a character from the input sequence, if possible, without moving the stream position past it, as fol-
lows:

— If the input sequence has a read position available the function signals success by returning
(unsigned char)* gnext .

— Otherwise, if the function can determine the characterx at the current position in the associated input
sequence (as described below), it signals success by returning(unsigned char) x . If the function
makes a read position available, it also assignsx to * gnext .

2 The function can alter the number of read positions available as a result of any call.

3 The function returnsEOFto indicate failure. Iffile is a null pointer, the function always fails.

4 To determine the characterx (of type int) at the current position in the associated input sequence, the
function evaluates the expression:

(x = ungetc(fgetc(file), file)) != EOF

5 which must be nonzero. The function signaturesfgetc(FILE*) and ungetc(int, FILE*) are 
declared in<cstdio> (17.2).

115)An implementation might well provide an overriding definition for this function signature if it can determine that more characters
can be read from the input sequence.

17– 104 Library DRAFT: 27 May 1994 17.4.8.1.10filebuf::uflow()

[lib.filebuf::uflow] 17.4.8.1.10filebuf::uflow()

// virtual int uflow(); inherited

1 Reads a character from the input sequence, if possible, and moves the stream position past it, as follows:

— If the input sequence has a read position available the function signals success by returning
(unsigned char)* gnext ++.

— Otherwise, if the function can read the characterx directly from the associated input sequence (as
described below), it signals success by returning(unsigned char) x . If the function makes a read
position available (in an unspecified manner), it also assignsx to * gnext .

2 The function can alter the number of read positions available as a result of any call.

3 The function returnsEOFto indicate failure. Iffile is a null pointer, the function always fails.

4 To read a character into an objectx (of type int) directly from the associated input sequence, the function
evaluates the expression:

(x = fgetc(file)) != EOF

5 which must be nonzero. The function signaturefgetc(FILE*) is declared in<cstdio> (17.2). 

[lib.filebuf::xsgetn] 17.4.8.1.11filebuf::xsgetn(char*, int)

// virtual int xsgetn(char* s, int n); inherited

1 Behaves the same asstreambuf::xsgetn(char*, int) .

[lib.filebuf::xsputn] 17.4.8.1.12filebuf::xsputn(const char*, int)

// virtual int xsputn(const char* s, int n); inherited

1 Behaves the same asstreambuf::xsputn(char*, int) .

[lib.filebuf::seekoff] 17.4.8.1.13filebuf::seekoff(streamoff, ios::seekdir,
ios::openmode)

// virtual streampos seekoff(streamoff off , ios::seekdir way,
// ios::openmode which = ios::in | ios::out); inherited

1 Alters the stream position within the controlled sequences, if possible, as described below. The function
returns a newly constructedstreampos object that stores the resultant stream position, if possible. If the
positioning operation fails, or if the object cannot represent the resultant stream position, the object stores
an invalid stream position.

2 If file is a null pointer, the positioning operation fails. Otherwise, the function determines one of three
values for the argumentwhence , of typeint :

— If way == ios::beg , the argument isSEEK_SET;

— If way == ios::cur , the argument isSEEK_CUR;

— If way == ios::end , the argument isSEEK_END.

3 The function then callsfseek(file , off , whence) and, if that function returns nonzero, the posi-
tioning operation fails.

17.4.8.1.13 DRAFT: 27 May 1994 Library 17– 105
filebuf::seekoff(streamoff, ios::seekdir, ios::openmode)

4 The macros SEEK_SET, SEEK_CUR, and SEEK_END are defined, and the function signature
fseek(FILE*, long, int) is declared, in<cstdio> (17.2). 

[lib.filebuf::seekpos] 17.4.8.1.14filebuf::seekpos(streampos, ios::openmode)

// virtual streampos seekpos(streampos sp ,
// ios::openmode which = ios::in | ios::out); inherited

1 Alters the stream position within the controlled sequences, if possible, to correspond to the stream position
stored insp.pos and sp.fp .116) The function returns a newly constructedstreampos object that ∗
stores the resultant stream position, if possible. If the positioning operation fails, or if the object cannot
represent the resultant stream position, the object stores an invalid stream position.

2 If file is a null pointer, the positioning operation fails.

[lib.filebuf::setbuf] 17.4.8.1.15filebuf::setbuf(char*, int)

// virtual streambuf* setbuf(char* s, int n); inherited 

1 Makes the array ofn (single-byte) characters, whose first element is designated bys , available for use as a
buffer area for the controlled sequences, if possible. Iffile is a null pointer, the function returns a null
pointer. Otherwise, if the callsetvbuf(file , s, _IOFBF, n) is nonzero, the function returns a
null pointer. Otherwise, the function returns*this .

2 The macro _IOFBF is defined, and the function signaturesetvbuf(FILE*, char*, int,
size_t) is declared, in<cstdio> (17.2). 

[lib.filebuf::sync] 17.4.8.1.16filebuf::sync()

// virtual int sync(); inherited ∗

1 Returns zero iffile is a null pointer. Otherwise, the function returnsfflush(file) .

2 The function signaturefflush(FILE*) is declared in<cstdio> (17.2). 

[lib.ifstream] 17.4.8.2 Classifstream

class ifstream : public istream {
public:

ifstream();
ifstream(const char* s, openmode mode = in);
virtual ~ifstream();
filebuf* rdbuf() const;
bool is_open(); 
void open(const char* s, openmode mode = in);
void close(); ∗

private:
// filebuf fb ; exposition only
};

1 The classifstream is a derivative ofistream that assists in the reading of named files. It supplies a
filebuf object to control the associated sequence. For the sake of exposition, the maintained data is pre-
sented here as:

— filebuf fb , thefilebuf object.

116)The function may, for example, callfsetpos(file , & sp.fp) and/orfseek(file , sp.pos , SEEK_SET) , declared 
in <cstdio> . 

17– 106 Library DRAFT: 27 May 1994 17.4.8.2.1ifstream::ifstream()

[lib.cons.ifstream] 17.4.8.2.1ifstream::ifstream()

ifstream();

1 Constructs an object of classifstream , initializing the base class withistream(& fb) .

[lib.cons.ifstream.fn] 17.4.8.2.2ifstream::ifstream(const char*, openmode)

ifstream(const char* s, openmode mode = in);

1 Constructs an object of classifstream , initializing the base class withistream(& fb) , then calls
open(s, mode) .

[lib.des.ifstream] 17.4.8.2.3ifstream::~ifstream()

virtual ~ifstream();

1 Destroys an object of classifstream .

[lib.ifstream::rdbuf] 17.4.8.2.4ifstream::rdbuf()

filebuf* rdbuf() const;

1 Returns(filebuf*)& fb . 

[lib.ifstream::is.open] 17.4.8.2.5ifstream::is_open()

bool is_open(); 

1 Returnsfb.is_open() .

[lib.ifstream::open] 17.4.8.2.6ifstream::open(const char*, openmode)

void open(const char* s, openmode mode = in);

1 Calls fb .open(s, mode) . If the callis_open() returns zero, callssetstate(failbit) . ∗

[lib.ifstream::close] 17.4.8.2.7ifstream::close()

void close();

1 Calls fb .close() and, if that function returns zero, callssetstate(failbit) .

[lib.ofstream] 17.4.8.3 Classofstream

class ofstream : public ostream {
public:

ofstream();
ofstream(const char* s, openmode mode = out);
virtual ~ofstream();
filebuf* rdbuf() const;
bool is_open(); 
void open(const char* s, openmode mode = out | trunc); 
void close();

private:
// filebuf fb ; exposition only
};

1 The classofstream is a derivative ofostream that assists in the writing of named files. It supplies a
filebuf object to control the associated sequence. For the sake of exposition, the maintained data is pre-
sented here as:

17.4.8.3 Classofstream DRAFT: 27 May 1994 Library 17– 107

— filebuf fb , thefilebuf object.

[lib.cons.ofstream] 17.4.8.3.1ofstream::ofstream()

ofstream();

1 Constructs an object of classofstream , initializing the base class withostream(& fb) .

[lib.cons.ofstream.fn] 17.4.8.3.2ofstream::ofstream(const char*, openmode)

ofstream(const char* s, openmode mode = out);

1 Constructs an object of classofstream , initializing the base class withostream(& fb) , then calls
open(s, mode) .

[lib.des.ofstream] 17.4.8.3.3ofstream::~ofstream()

virtual ~ofstream();

1 Destroys an object of classofstream .

[lib.ofstream::rdbuf] 17.4.8.3.4ofstream::rdbuf()

filebuf* rdbuf() const;

1 Returns(filebuf*)& fb . 

[lib.ofstream::is.open] 17.4.8.3.5ofstream::is_open()

bool is_open(); 

1 Returnsfb .is_open() .

[lib.ofstream::open] 17.4.8.3.6ofstream::open(const char*, openmode)

void open(const char* s, openmode mode = out);

1 Calls fb .open(s, mode) . If is_open() is then false, callssetstate(failbit) . ∗

[lib.ofstream::close] 17.4.8.3.7ofstream::close()

void close();

1 Calls fb .close() and, if that function returns zero, callssetstate(failbit) .

[lib.stdiobuf] 17.4.8.4 Classstdiobuf

17– 108 Library DRAFT: 27 May 1994 17.4.8.4 Classstdiobuf

class stdiobuf : public streambuf {
public:

stdiobuf(FILE* file_arg = 0);
virtual ~stdiobuf();
bool buffered() const; 
void buffered(bool buf_fl); 

protected:
// virtual int overflow(int c = EOF); inherited
// virtual int pbackfail(int c = EOF); inherited
// virtual int showmany(); inherited 
// virtual int underflow(); inherited
// virtual int uflow(); inherited
// virtual int xsgetn(char* s, int n); inherited
// virtual int xsputn(const char* s, int n); inherited
// virtual streampos seekoff(streamoff off , ios::seekdir way,
// ios::openmode which = ios::in | ios::out); inherited
// virtual streampos seekpos(streampos sp ,
// ios::openmode which = ios::in | ios::out); inherited
// virtual streambuf* setbuf(char* s, int n); inherited
// virtual int sync(); inherited
private:
// FILE * file ; exposition only
// bool is_buffered; exposition only 
};

1 The classstdiobuf is derived fromstreambuf to associate both the input sequence and the output
sequence with an externally supplied object of typeFILE . TypeFILE is defined in<cstdio> (17.2).
For the sake of exposition, the maintained data is presented here as:

— FILE * file , points to theFILE associated with the stream buffer;

— bool is_buffered , nonzero if thestdiobuf object isbuffered,and hence need not be kept syn-
chronized with the associated file (as described below).

2 The restrictions on reading and writing a sequence controlled by an object of classstdiobuf are the same
as for an object of classfilebuf .

3 If an stdiobuf object is not buffered andfile is not a null pointer, it is kept synchronized with the
associated file, as follows:

— the callsputc(c) is equivalent to the callfputc(c, file);

— the callsputbackc(c) is equivalent to the callungetc(c, file);

— the callsbumpc() is equivalent to the callfgetc(file).

4 The functionsfgetc(FILE*) , fputc(int, FILE*) , andungetc(int, FILE*) are declared in 
<cstdio> (17.2).

[lib.cons.stdiobuf.fi] 17.4.8.4.1stdiobuf::stdiobuf(FILE *)

stdiobuf(FILE * file_arg = 0);

1 Constructs an object of classstdiobuf , initializing the base class withstreambuf() , and initializing
file to file_arg andis_buffered to zero.

17.4.8.4.2stdiobuf::~stdiobuf() DRAFT: 27 May 1994 Library 17– 109

[lib.des.stdiobuf] 17.4.8.4.2stdiobuf::~stdiobuf()

virtual ~stdiobuf();

1 Destroys an object of classstdiobuf .

[lib.stdiobuf::buffered] 17.4.8.4.3stdiobuf::buffered()

bool buffered() const; 

1 Returns a nonzero value ifis_buffered is nonzero. 

[lib.stdiobuf::buffered.b]17.4.8.4.4stdiobuf::buffered(bool) 

void buffered(bool buf_fl); 

1 Assignsbuf_fl to is_buffered .

[lib.stdiobuf::overflow] 17.4.8.4.5stdiobuf::overflow(int)

// virtual int overflow(int c = EOF); inherited

1 Behaves the same asfilebuf::overflow(int) , subject to the buffering requirements specified by
is_buffered .

[lib.stdiobuf::pbackfail] 17.4.8.4.6stdiobuf::pbackfail(int)

// virtual int pbackfail(int c = EOF); inherited

1 Behaves the same asfilebuf::pbackfail(int) , subject to the buffering requirements specified by
is_buffered . 

[lib.stdiobuf::showmany]17.4.8.4.7stdiobuf::showmany() 

// virtual int showmany(); inherited 

1 Behaves the same asstreambuf::showmany() .117)

[lib.stdiobuf::underflow] 17.4.8.4.8stdiobuf::underflow()

// virtual int underflow(); inherited

1 Behaves the same asfilebuf::underflow() , subject to the buffering requirements specified by
is_buffered .

[lib.stdiobuf::uflow] 17.4.8.4.9stdiobuf::uflow()

// virtual int uflow(); inherited

1 Behaves the same asfilebuf::uflow() , subject to the buffering requirements specified by
is_buffered .

117)An implementation might well provide an overriding definition for this function signature if it can determine that more characters
can be read from the input sequence.

17– 110 Library DRAFT: 27 May 1994 17.4.8.4.10
stdiobuf::xsgetn(char*, int)

[lib.stdiobuf::xsgetn] 17.4.8.4.10stdiobuf::xsgetn(char*, int)

// virtual int xsgetn(char* s, int n); inherited

1 Behaves the same asstreambuf::xsgetn(char*, int) .

[lib.stdiobuf::xsputn] 17.4.8.4.11stdiobuf::xsputn(const char*, int)

// virtual int xsputn(const char* s, int n); inherited

1 Behaves the same asstreambuf::xsputn(char*, int) .

[lib.stdiobuf::seekoff] 17.4.8.4.12stdiobuf::seekoff(streamoff, ios::seekdir,
ios::openmode)

// virtual streampos seekoff(streamoff off , ios::seekdir way,
// ios::openmode which = ios::in | ios::out); inherited

1 Behaves the same asfilebuf::seekoff(streamoff, ios::seekdir, ios::openmode)

[lib.stdiobuf::seekpos] 17.4.8.4.13stdiobuf::seekpos(streampos, ios::openmode)

// virtual streampos seekpos(streampos sp ,
// ios::openmode which = ios::in | ios::out); inherited

1 Behaves the same asfilebuf::seekpos(streampos, ios::openmode)

[lib.stdiobuf::setbuf] 17.4.8.4.14stdiobuf::setbuf(char*, int)

// virtual streambuf* setbuf(char* s, int n); inherited

1 Behaves the same asfilebuf::setbuf(char*, int) 

[lib.stdiobuf::sync] 17.4.8.4.15stdiobuf::sync()

// virtual int sync(); inherited

1 Behaves the same asfilebuf::sync()

[lib.istdiostream] 17.4.8.5 Classistdiostream

class istdiostream : public istream {
public:

istdiostream(FILE * file_arg = 0);
virtual ~istdiostream();
stdiobuf* rdbuf() const;
bool buffered() const; 
void buffered(bool buf_fl); 

private:
// stdiobuf fb ; exposition only
};

1 The classistdiostream is a derivative ofistream that assists in the reading of files controlled by
objects of typeFILE . It supplies astdiobuf object to control the associated sequence. For the sake of
exposition, the maintained data is presented here as:

— stdiobuf fb , thestdiobuf object.

17.4.8.5.1 DRAFT: 27 May 1994 Library 17– 111
istdiostream::istdiostream(FILE *)

[lib.cons.istdiostream.fi] 17.4.8.5.1istdiostream::istdiostream(FILE *)

istdiostream(FILE * file_arg = 0);

1 Constructs an object of classistdiostream , initializing the base class withistream(& fb) and ini-
tializing fb with stdiobuf(file_arg) .

[lib.des.istdiostream] 17.4.8.5.2istdiostream::~istdiostream()

virtual ~istdiostream();

1 Destroys an object of classistdiostream .

[lib.istdiostream::rdbuf] 17.4.8.5.3istdiostream::rdbuf()

stdiobuf* rdbuf() const;

1 Returns(stdiobuf*)& fb . 

[lib.istdiostream::buffered] 17.4.8.5.4istdiostream::buffered()

bool buffered() const; 

1 Returns a nonzero value ifis_buffered is nonzero. 

[lib.istdiostream::buffered.b]17.4.8.5.5istdiostream::buffered(bool) 

void buffered(bool buf_fl); 

1 Assignsbuf_fl to is_buffered .

[lib.ostdiostream] 17.4.8.6 Classostdiostream

class ostdiostream : public ostream {
public:

ostdiostream(FILE * file_arg = 0);
virtual ~ostdiostream();
stdiobuf* rdbuf() const;
bool buffered() const; 
void buffered(bool buf_fl); 

private:
// stdiobuf fb ; exposition only
};

1 The classostdiostream is a derivative ofostream that assists in the writing of files controlled by
objects of typeFILE . It supplies astdiobuf object to control the associated sequence. For the sake of
exposition, the maintained data is presented here as:

— stdiobuf fb , thestdiobuf object.

[lib.cons.ostdiostream.fi] 17.4.8.6.1ostdiostream::ostdiostream(FILE *)

ostdiostream(FILE * file_arg = 0);

1 Constructs an object of classostdiostream , initializing the base class withostream(& fb) and ini-
tializing fb with stdiobuf(file_arg) .

17– 112 Library DRAFT: 27 May 1994 17.4.8.6.2
ostdiostream::~ostdiostream()

[lib.des.ostdiostream] 17.4.8.6.2ostdiostream::~ostdiostream()

virtual ~ostdiostream();

1 Destroys an object of classostdiostream .

[lib.ostdiostream::rdbuf] 17.4.8.6.3ostdiostream::rdbuf()

stdiobuf* rdbuf() const;

1 Returns(stdiobuf*)& fb . 

[lib.ostdiostream::buffered] 17.4.8.6.4ostdiostream::buffered()

bool buffered() const; 

1 Returns a nonzero value ifis_buffered is nonzero. 

[lib.ostdiostream::buffered.b]17.4.8.6.5ostdiostream::buffered(bool) 

void buffered(bool buf_fl); 

1 Assignsbuf_fl to is_buffered .

[lib.header.iostream] 17.4.9 Header<iostream>

1 The header<iostream> declares four objects that associate objects of classstdiobuf with the stan-
dard C streams provided for by the functions declared in<cstdio> (17.2). The four objects are con-
structed, and the associations are established, the first time an object of classios::Init is constructed. 
The four objects arenot destroyed during program execution.118)

[lib.cin] 17.4.9.1 Objectcin

istream cin; ∗

1 The objectcin controls input from an unbuffered stream buffer associated with the objectstdin ,
declared in<cstdio> . 

2 After the objectcin is initialized,cin.tie() returnscout .

[lib.cout] 17.4.9.2 Objectcout

ostream cout;

1 The objectcout controls output to an unbuffered stream buffer associated with the objectstdout ,
declared in<cstdio> (17.2). 

[lib.cerr] 17.4.9.3 Objectcerr

ostream cerr;

1 The objectcerr controls output to an unbuffered stream buffer associated with the objectstderr ,
declared in<cstdio> (17.2). 

2 After the objectcerr is initialized,cerr.flags() & unitbuf is nonzero.

118)Constructors and destructors for static objects can access these objects to read input fromstdin or write output tostdout or 
stderr .

17.4.9.4 Objectclog DRAFT: 27 May 1994 Library 17– 113

[lib.clog] 17.4.9.4 Objectclog

extern ostream clog;

1 The objectclog controls output to a stream buffer associated with the objectstderr , declared in<cst- 
dio> (17.2).

[lib.support.classes] 17.5 Support classes

1 The Standard C + + library defines several types, and their supporting macros, constants, and function signa-
tures, that support a variety of useful data structures.

[lib.header.string] 17.5.1 Header<string>

Box 123 
Library WG issue: Bjarne Stroustrup, November 10, 1993 

The string components should be specified as templates.  _ ___





_ ___




 

1 The header<string> defines a type and several function signatures for manipulating varying-length
sequences of (single-byte) characters.

[lib.string] 17.5.1.1 Classstring

Box 124

Library WG issue: Uwe Steinm
. .
uller, January 21, 1994

For all find operations (searching from the end)rfind, fins_last_of and find_last_not_of ∗
the clause

Returns NPOS if pos > len. 

should be removed. The functions should (as a convenience) calculate there starting position themselves. If
you search forward it is for sure that you cannot find a string ifpos > len .

... the conditions obtain:xpos < pos should be shanged toxpos <= pos as this behaviour is 
consistent with forward searches

string s("1234"); ∗
s.rfind("1", 0) should deliver 0 

and
s.rfind("4", 3) should be 3 If the user wants to use the result for another search he

has to decrement himself._ __





















_ __






















Box 125

Library WG issue: Uwe Steinm
. .
uller, January 4, 1994

*>M string& operator=(const string& rsh); 
>M string& operator=(const char s); 
*>M string& operator=(char c);  _ __








_ __








17– 114 Library DRAFT: 27 May 1994 17.5.1.1 Classstring

Box 126

Library WG issue: Uwe Steinm
. .
uller, January 4, 1994

*>GENERAL 
*>seperate different sections in the header constructors, assign,.. 

class string { 
*>C char *ptr; // has this property, might be implemented different 
*>C size_t len; // has this property, might be implemented different 
*>C mutable size_t res; // does not change the string value !! 

I dislike the approach to have these private membersptr , len , res , because we specify only the public
interface. I understand, this only should help to get a better description. 

Let me try a different way (a more ADT like approach): 

A string can be thought of being a sequence of bytes (this does not imply it to be implemented this way)
and has three properties: 

len: number of bytes of this sequence 

res (res>= len) hint to implementation to keep more byte than len to do some growth in place. 

string content: sequence of bytes counted from 0 to len - 1 

Now every function can be described to what it does to these properties and nothing is said how these prop-
erties are implemented. 

Comment (Library WG meeting, San Diego, 3/8/94): 

The general concern is that the text describes specifics of what happens to the ‘‘exposition only’’ member
data, rather than behavior. 

Example: 

17.5.1.1.1 describes the action of the default constructor in terms of how the ‘‘exposition only’’ data should
be initialized. It doesn’t say whether the string is the null string, an unitialized string of unspecified length,
or what... 

Recommend: 

Generic behaviour should be specified, possibly with the aid of the exposition implementation._ __



















































_ __




















































Box 127

Library WG issue: Beman Dawes, December 19, 1993

String/wstring/dynarray/ptrdynarray/bitstring classes are all missing destructor andoperator= . Bits is
missing operator= .  _ __







_ __







17.5.1.1 Classstring DRAFT: 27 May 1994 Library 17– 115

Box 128

Library WG issue: Uwe Steinm
. .
uller, September 22, 1993

Thedynarray and my formerstring class proposal followed this rule, we should get a consensus on
this by the library WG. 

Comment (Library WG meeting, San Diego, 3/8/94): 

Uwe wants explicit destructor and (copy) assignment operator. Copy constructor is still there. This should
be done for all classes. 

Recommend: 

All classes should explicitly list the copy constructor, assignment operator, and destructor in their descrip-
tion. But: 17.1.5.6 should state that an implementation can rely on the compiler to actually generate such
functions._ __




















_ __




















17– 116 Library DRAFT: 27 May 1994 17.5.1.1 Classstring

class string {
public:

string();
string(size_t size , capacity cap);
string(const string& str , size_t pos = 0, size_t n = NPOS);
string(const char* s, size_t n = NPOS);
string(char c, size_t rep = 1);
string(unsigned char c, size_t rep = 1);
string(signed char c, size_t rep = 1);
string& operator=(const string& str); 
string& operator=(const char* s);
string& operator=(char c);
string& operator+=(const string& rhs);
string& operator+=(const char* s);
string& operator+=(char c);
string& append(const string& str , size_t pos = 0,

size_t n = NPOS);
string& append(const char* s, size_t n = NPOS);
string& append(char c, size_t rep = 1);
string& assign(const string& str , size_t pos = 0,

size_t n = NPOS);
string& assign(const char* s, size_t n = NPOS);
string& assign(char c, size_t rep = 1);
string& insert(size_t pos1 , const string& str , size_t pos2 = 0,

size_t n = NPOS);
string& insert(size_t pos , const char* s,

size_t n = NPOS);
string& insert(size_t pos , char c, size_t rep = 1);
string& remove(size_t pos = 0, size_t n = NPOS);
string& replace(size_t pos1 , size_t n1, const string& str ,

size_t pos2 = 0, size_t n2 = NPOS);
string& replace(size_t pos , size_t n1, const char* s,

size_t n2 = NPOS);
string& replace(size_t pos , size_t n, char c,

size_t rep = 1);
char get_at(size_t pos) const;
void put_at(size_t pos , char c);
char operator[](size_t pos) const;
char& operator[](size_t pos);
const char* data() const; 
size_t length() const:
void resize(size_t n, char c = 0);
size_t reserve() const;
void reserve(size_t res_arg);
size_t copy(char* s, size_t n, size_t pos = 0);
size_t find(const string& str , size_t pos = 0) const;
size_t find(const char* s, size_t pos = 0, size_t n = NPOS) const;
size_t find(char c, size_t pos = 0) const;
size_t rfind(const string& str , size_t pos = NPOS) const;
size_t rfind(const char* s, size_t pos = NPOS,

size_t n = NPOS) const;
size_t rfind(char c, size_t pos = NPOS) const;
size_t find_first_of(const string& str , size_t pos = 0) const;
size_t find_first_of(const char* s, size_t pos = 0,

size_t n = NPOS) const;
size_t find_first_of(char c, size_t pos = 0) const;
size_t find_last_of(const string& str , size_t pos = NPOS) const;
size_t find_last_of(const char* s, size_t pos = NPOS,

size_t n = NPOS) const;
size_t find_last_of(char c, size_t pos = NPOS) const;
size_t find_first_not_of(const string& str , size_t pos = 0) const;
size_t find_first_not_of(const char* s, size_t pos = 0,

17.5.1.1 Classstring DRAFT: 27 May 1994 Library 17– 117

size_t n = NPOS) const;
size_t find_first_not_of(char c, size_t pos = 0) const;
size_t find_last_not_of(const string& str , size_t pos = NPOS)

const;
size_t find_last_not_of(const char* s, size_t pos = NPOS,

size_t n = NPOS) const;
size_t find_last_not_of(char c, size_t pos = NPOS) const;
string substr(size_t pos = 0, size_t n = NPOS) const;
int compare(const string& str , size_t pos = 0,

size_t n = NPOS) const;
int compare(const char* s, size_t pos = 0, size_t n = NPOS) const; 
int compare(char c, size_t pos = 0, size_t rep = 1) const; 

private:
// char* ptr ; exposition only
// size_t len , res ; exposition only
};

1 The classstring describes objects that can store a sequence consisting of a varying number of arbitrary
(single-byte) characters. The first element of the sequence is at position zero. Such a sequence is also
called acharacter string(or simply astring if the type of the elements is clear from context). Storage for
the string is allocated and freed as necessary by the member functions of classstring . For the sake of
exposition, the maintained data is presented here as:

— char* ptr , points to the initial character of the string;

— size_t len , counts the number of characters currently iU the string; 

— size_t res , for an unallocated string, holds the recommended allocation size of the string, while for
an allocated string, becomes the currently allocated size.

2 In all cases,len <= res .

3 The functions described in this subclause can report two kinds of errors, each associated with a distinct
exception:

— a lengtherror is associated with exceptions of typelength_error ; 

— anout-of-rangeerror is associated with exceptions of typeout_of_range . 

4 To report one of these errors, the function evaluates the expressionex .raise() , whereex is an object of
the associated exception type.

[lib.cons.string] 17.5.1.1.1string::string()

string();

1 Constructs an object of classstring initializing:

— ptr to an unspecified value;

— len to zero;

— res to an unspecified value.

[lib.cons.string.cap] 17.5.1.1.2string::string(size_t, capacity)

string(size_t size , capacity cap);

17– 118 Library DRAFT: 27 May 1994 17.5.1.1.2
string::string(size_t, capacity)

1 Constructs an object of classstring . If cap is default_size , the function either reports a length
error if size equalsNPOSor initializes:

— ptr to point at the first element of an allocated array ofsize elements, each of which is initialized to
zero;

— len to size ;

— res to a value at least as large aslen . 

2 Otherwise,cap shall bereserve and the function initializes:

— ptr to an unspecified value;

— len to zero;

— res to size .

[lib.cons.string.sub] 17.5.1.1.3string::string(const string&, size_t, size_t)

string(const string& str , size_t pos = 0, size_t n = NPOS);

1 Reports an out-of-range error ifpos > str.len . Otherwise, the function constructs an object of class
string and determines the effective lengthrlen of the initial string value as the smaller ofn and
str.len - pos . Thus, the function initializes:

— ptr to point at the first element of an allocated copy ofrlen elements of the string controlled bystr
beginning at positionpos ;

— len to rlen ;

— res to a value at least as large aslen . 

[lib.cons.string.str] 17.5.1.1.4string::string(const char*, size_t)

string(const char* s, size_t n = NPOS);

1 If n equalsNPOS, storesstrlen(s) in n. The function signaturestrlen(const char*) is
declared in<cstring> (17.2). 

2 In any case, the function constructs an object of classstring and determines its initial string value from
the array ofchar of lengthn whose first element is designated bys . s shall not be a null pointer. Thus,
the function initializes:

— ptr to point at the first element of an allocated copy of the array whose first element is pointed at bys ;

— len to n;

— res to a value at least as large aslen . 

[lib.cons.string.c] 17.5.1.1.5string::string(char, size_t)

string(char c, size_t rep = 1);

1 Reports a length error ifrep equalsNPOS. Otherwise, the function constructs an object of classstring
and determines its initial string value by repeating the characterc for all rep elements. Thus, the function
initializes:

— ptr to point at the first element of an allocated array ofrep elements, each storing the initial valuec ;

17.5.1.1.5 DRAFT: 27 May 1994 Library 17– 119
string::string(char, size_t)

— len to rep ;

— res to a value at least as large aslen . 

[lib.cons.string.uc] 17.5.1.1.6string::string(unsigned char, size_t)

string(unsigned char c, size_t rep = 1); ∗

1 Behaves the same asstring((char) c, rep) . 

[lib.cons.string.sc]17.5.1.1.7string::string(signed char, size_t) 

string(signed char c, size_t rep = 1);

1 Behaves the same asstring((char) c, rep) . 

[lib.string::op=.sub]17.5.1.1.8string::operator=(const string&) 

string& operator=(const string& str); 

1 Returnsassign(str) .

[lib.string::op=.str] 17.5.1.1.9string::operator=(const char*)

string& operator=(const char* s); ∗

1 Returns*this = string(s) .

[lib.string::op=.c] 17.5.1.1.10string::operator=(char)

string& operator=(char c);

1 Returns*this = string(c) .

[lib.string::op+=.sub] 17.5.1.1.11string::operator+=(const string&)

string& operator+=(const string& rhs);

1 Returnsappend(rhs) .

[lib.string::op+=.str] 17.5.1.1.12string::operator+=(const char*)

string& operator+=(const char* s);

1 Returns*this += string(s) .

[lib.string::op+=.c] 17.5.1.1.13string::operator+=(char)

string& operator+=(char c);

1 Returns*this += string(c) .

[lib.string::append.sub] 17.5.1.1.14string::append(const string&, size_t,
size_t)

string& append(const string& str , size_t pos = 0, size_t n = NPOS); ∗

1 Reports an out-of-range error ifpos > >str.len . Otherwise, the function determines the effective
lengthrlen of the string to append as the smaller ofn andstr.len - pos . The function then reports
a length error iflen >= NPOS - rlen .

17– 120 Library DRAFT: 27 May 1994 17.5.1.1.14
string::append(const string&, size_t, size_t)

2 Otherwise, the function replaces the string controlled by*this with a string of lengthlen + rlen
whose firstlen elements are a copy of the original string controlled by*this and whose remaining ele-
ments are a copy of the initial elements of the string controlled bystr beginning at positionpos .

3 The function returns*this .

[lib.string::append.str] 17.5.1.1.15string::append(const char*, size_t)

string& append(const char* s, size_t n = NPOS); ∗

1 Returnsappend(string(s, n)) .

[lib.string::append.c] 17.5.1.1.16string::append(char, size_t)

string& append(char c, size_t rep = 1); ∗

1 Returnsappend(string(c, rep)) .

[lib.string::assign.sub] 17.5.1.1.17string::assign(const string&, size_t, size_t)

string& assign(const string& str , size_t pos = 0, size_t n = NPOS);

1 Reports an out-of-range error ifpos > str.len . Otherwise, the function determines the effective
lengthrlen of the string to assign as the smaller ofn andstr.len - pos .

2 The function then replaces the string controlled by*this with a string of lengthrlen whose elements are
a copy of the string controlled bystr beginning at positionpos .

3 The function returns*this .

[lib.string::assign.str] 17.5.1.1.18string::assign(const char*, size_t)

string& assign(const char* s, size_t n = NPOS); ∗

1 Returnsassign(string(s, n)) .

[lib.string::assign.c] 17.5.1.1.19string::assign(char, size_t)

string& assign(char c, size_t rep = 1);

1 Returnsassign(string(c, rep)) .

[lib.string::insert.sub] 17.5.1.1.20string::insert(size_t, const string&, size_t,
size_t)

string& insert(size_t pos1 , const string& str , size_t pos2 = 0,
size_t n = NPOS);

1 Reports an out-of-range error ifpos1 > len or pos2 > str.len . Otherwise, the function deter-
mines the effective lengthrlen of the string to insert as the smaller ofn andstr.len - pos2 . The
function then reports a length error iflen >= NPOS - rlen .

2 Otherwise, the function replaces the string controlled by*this with a string of lengthlen + rlen
whose firstpos1 elements are a copy of the initial elements of the original string controlled by*this ,
whose nextrlen elements are a copy of the elements of the string controlled bystr beginning at position
pos2 , and whose remaining elements are a copy of the remaining elements of the original string controlled
by *this .

3 The function returns*this .

17.5.1.1.21 DRAFT: 27 May 1994 Library 17– 121
string::insert(size_t, const char*, size_t)

[lib.string::insert.str] 17.5.1.1.21string::insert(size_t, const char*, size_t)

string& insert(size_t pos , const char* s, size_t n = NPOS); ∗

1 Returnsinsert(pos , string(s, n)) .

[lib.string::insert.c] 17.5.1.1.22string::insert(size_t, char, size_t)

string& insert(size_t pos , char c, size_t rep = 1);

1 Returnsinsert(pos , string(c, rep)) .

[lib.string::remove] 17.5.1.1.23string::remove(size_t, size_t)

string& remove(size_t pos = 0, size_t n = NPOS); ∗

1 Reports an out-of-range error ifpos > len . Otherwise, the function determines the effective length
xlen of the string to be removed as the smaller ofn andlen - pos .

2 The function then replaces the string controlled by*this with a string of lengthlen - xlen whose
first pos elements are a copy of the initial elements of the original string controlled by*this , and whose
remaining elements are a copy of the elements of the original string controlled by*this beginning at
positionpos + xlen .

3 The function returns*this .

[lib.string::replace.sub] 17.5.1.1.24string::replace(size_t, size_t,
const string&, size_t, size_t)

string& replace(size_t pos1 , size_t n1, const string& str ,
size_t pos2 = 0, size_t n2 = NPOS);

1 Reports an out-of-range error ifpos1 > len or pos2 > str.len . Otherwise, the function deter-
mines the effective lengthxlen of the string to be removed as the smaller ofn1 and len - pos1 . It
also determines the effective lengthrlen of the string to be inserted as the smaller ofn2 andstr.len -
pos2 . The function then reports a length error iflen - xlen >= NPOS - rlen .

2 Otherwise, the function replaces the string controlled by*this with a string of lengthlen - xlen +
rlen whose firstpos1 elements are a copy of the initial elements of the original string controlled by
*this , whose nextrlen elements are a copy of the initial elements of the string controlled bystr
beginning at positionpos2 , and whose remaining elements are a copy of the elements of the original string
controlled by*this beginning at positionpos1 + xlen .

3 The function returns*this .

[lib.string::replace.str] 17.5.1.1.25string::replace(size_t, size_t, const char*,
size_t)

string& replace(size_t pos , size_t n1, const char* s,
size_t n2 = NPOS);

1 Returnsreplace(pos , n1, string(s, n2)) .

[lib.string::replace.c] 17.5.1.1.26string::replace(size_t, size_t, char, size_t)

string& replace(size_t pos , size_t n, char c, size_t rep = 1);

1 Returnsreplace(pos , n, string(c, rep)) .

17– 122 Library DRAFT: 27 May 1994 17.5.1.1.27string::get_at(size_t)

[lib.string::get.at] 17.5.1.1.27string::get_at(size_t)

Box 129

Library WG issue: Uwe Steinm
. .
uller, January 4, 1994

*>C const char get_at(size_t pos) const; 

Comment (Library WG meeting, San Diego, 3/8/94): 

Should member functions that return a value return aconst value? This issue arises by the decision in
San Jose no to returnconst from return values. 

Recommend: 

All value return types should be returned as aconst value._ __
















_ __

















char get_at(size_t pos) const;

1 Reports an out-of-range error ifpos >= len . Otherwise, the function returnsptr [pos] .

[lib.string::put.at] 17.5.1.1.28string::put_at(size_t, char)

void put_at(size_t pos , char c);

1 Reports an out-of-range error ifpos >= len . Otherwise, the function assignsc to ptr [pos] . 

[lib.string::op.array] 17.5.1.1.29string::operator[](size_t)

Box 130

Library WG issue: Uwe Steinm
. .
uller, January 4, 1994

*>C const char operator[](size_t pos) const; 
char& operator[](size_t pos);  ___














Box 131

Library WG issue: Uwe Steinm
. .
uller, January 4, 1994

*>C const char operator[](size_t pos) const;__





__






char operator[](size_t pos) const;
char& operator[](size_t pos);

1 If pos < len , returnsptr [pos] . Otherwise, ifpos == len , theconst version returns zero. Oth-
erwise, the behavior is undefined.

2 The reference returned by the non-const version is invalid after a subsequent call to any member function
for the object. 

17.5.1.1.30string::data() DRAFT: 27 May 1994 Library 17– 123

[lib.string::data]17.5.1.1.30string::data() 

const char* data() const; 

1 Returns a pointer to the initial element of an array of lengthlen + 1 whose firstlen elements equal the
corresponding elements of the string controlled by*this and whose last element is a null character. The
program shall not alter any of the values stored in the array. Nor shall the program treat the returned value
as a valid pointer value after any subsequent call to a non-const member function of the classstring
that designates the same object as*this .

[lib.string::length] 17.5.1.1.31string::length()

size_t length() const:

1 Returnslen .

[lib.string::resize] 17.5.1.1.32string::resize(size_t, char)

void resize(size_t n, char c = 0);

1 Reports a length error ifn equalsNPOS. Otherwise, the function alters the length of the string designated
by *this as follows:

— If n <= len , the function replaces the string designated by*this with a string of lengthn whose
elements are a copy of the initial elements of the original string designated by*this .

— If n > len , the function replaces the string designated by*this with a string of lengthn whose first
len elements are a copy of the original string designated by*this , and whose remaining elements are
all initialized toc .

[lib.string::reserve] 17.5.1.1.33string::reserve()

Box 132

Library WG issue: Uwe Steinm
. .
uller, January 4, 1994

size_t reserve() const; 

*>C void reserve(size_t res_arg) const; //res is mutable 

Comment (Library WG meeting, San Diego, 3/8/94): 

Should this be aconst member function? 

Reccomend: 

It should not be aconst member function. (If it were aconst member function an implementation
would have to use amutable member data which would then not be ROMable). However, the
description should state that the string should be semantically const._ __




















_ __




















size_t reserve() const;

1 Returnsres .

17– 124 Library DRAFT: 27 May 1994 17.5.1.1.34
string::reserve(size_t)

[lib.string::reserve.cap] 17.5.1.1.34string::reserve(size_t)

void reserve(size_t res_arg);

1 If no string is allocated, the function assignsres_arg to res . Otherwise, whether or how the function
altersres is unspecified.

[lib.string::copy] 17.5.1.1.35string::copy(char*, size_t, size_t)

size_t copy(char* s, size_t n, size_t pos = 0); ∗

1 Reports an out-of-range error ifpos > len . Otherwise, the function determines the effective length
rlen of the string to copy as the smaller ofn and len - pos . s shall designate an array of at least
rlen elements.

2 The function then replaces the string designated bys with a string of lengthrlen whose elements are a
copy of the string controlled by*this , beginning at positionpos .119) 

3 The function returnsrlen .

[lib.string::find.sub] 17.5.1.1.36string::find(const string&, size_t)

size_t find(const string& str , size_t pos = 0) const;

1 Determines the lowest positionxpos , if possible, such that both of the following conditions obtain:

— pos <= xpos andxpos + str.len <= len ;

— ptr [xpos + I] == str.ptr [I] for all elementsI of the string controlled bystr .

2 If the function can determine such a value forxpos , it returnsxpos . Otherwise, it returnsNPOS.

[lib.string::find.str] 17.5.1.1.37string::find(const char*, size_t, size_t)

size_t find(const char* s, size_t pos = 0, size_t n = NPOS) const; ∗

1 Returnsfind(string(s, n), pos) .

[lib.string::find.c] 17.5.1.1.38string::find(char, size_t)

size_t find(char c, size_t pos = 0) const;

1 Returnsfind(string(c), pos) .

[lib.string::rfind.sub] 17.5.1.1.39string::rfind(const string&, size_t)

size_t rfind(const string& str , size_t pos = NPOS) const;

1 Determines the highest positionxpos , if possible, such that both of the following conditions obtain:

— xpos <= pos andxpos + str.len <= len ; 

— ptr [xpos + I] == str.ptr [I] for all elementsI of the string controlled bystr .

2 If the function can determine such a value forxpos , it returnsxpos . Otherwise, it returnsNPOS.

119)The function does not append a null character to the string. 

17.5.1.1.40 DRAFT: 27 May 1994 Library 17– 125
string::rfind(const char*, size_t, size_t)

[lib.string::rfind.str] 17.5.1.1.40string::rfind(const char*, size_t, size_t)

size_t rfind(const char* s, size_t pos = NPOS, ∗
size_t n = NPOS) const;

1 Returnsrfind(string(s, n), pos) .

[lib.string::rfind.c] 17.5.1.1.41string::rfind(char, size_t)

size_t rfind(char c, size_t pos = NPOS) const;

1 Returnsrfind(string(c, n), pos) .

[lib.string::find.first.of.sub] 17.5.1.1.42string::find_first_of(const string&,
size_t)

size_t find_first_of(const string& str , size_t pos = 0) const;

1 Determines the lowest positionxpos , if possible, such that both of the following conditions obtain:

— pos <= xpos andxpos < len ;

— ptr [xpos] == str.ptr [I] for some elementI of the string controlled bystr .

2 If the function can determine such a value forxpos , it returnsxpos . Otherwise, it returnsNPOS. 

[lib.string::find.first.of.str]17.5.1.1.43string::find_first_of(const char*, size_t, 
size_t) 

size_t find_first_of(const char* s, size_t pos = 0,
size_t n = NPOS) const;

1 Returnsfind_first_of(string(s, n), pos) .

[lib.string::find.first.of.c] 17.5.1.1.44string::find_first_of(char, size_t)

size_t find_first_of(char c, size_t pos = 0) const;

1 Returnsfind_first_of(string(c), pos) .

[lib.string::find.last.of.sub] 17.5.1.1.45string::find_last_of(const string&,
size_t)

size_t find_last_of(const string& str , size_t pos = NPOS) const;

1 Determines the highest positionxpos , if possible, such that both of the following conditions obtain:

— xpos <= pos and pos < len ;

— ptr [xpos] == str.ptr [I] for some elementI of the string controlled bystr .

2 If the function can determine such a value forxpos , it returnsxpos . Otherwise, it returnsNPOS. 

[lib.string::find.last.of.str]17.5.1.1.46string::find_last_of(const char*, size_t, 
size_t) 

size_t find_last_of(const char* s, size_t pos = NPOS,
size_t n = NPOS) const;

17– 126 Library DRAFT: 27 May 1994 17.5.1.1.46
string::find_last_of(const char*, size_t, size_t)

1 Returnsfind_last_of(string(s, n), pos) .

[lib.string::find.last.of.c] 17.5.1.1.47string::find_last_of(char, size_t)

size_t find_last_of(char c, size_t pos = NPOS) const;

1 Returnsfind_last_of(string(c, n), pos) . 

[lib.string::find.first.not.of.sub]17.5.1.1.48 
string::find_first_not_of(const string&, 
size_t) 

size_t find_first_not_of(const string& str ,
size_t pos = 0) const;

1 Determines the lowest positionxpos , if possible, such that both of the following conditions obtain:

— pos <= xpos andxpos < len ;

— ptr [xpos] == str.ptr [I] for no elementI of the string controlled bystr .

2 If the function can determine such a value forxpos , it returnsxpos . Otherwise, it returnsNPOS. 

[lib.string::find.first.not.of.str]17.5.1.1.49string::find_first_not_of(const char*, 
size_t, size_t) 

size_t find_first_not_of(const char* s, size_t pos = 0,
size_t n = NPOS) const;

1 Returnsfind_first_not_of(string(s, n), pos) .

[lib.string::find.first.not.of.c] 17.5.1.1.50string::find_first_not_of(char, size_t)

size_t find_first_not_of(char c, size_t pos = 0) const;

1 Returnsfind_first_not_of(string(c), pos) . 

[lib.string::find.last.not.of.sub] 17.5.1.1.51string::find_last_not_of(const string&,
size_t)

size_t find_last_not_of(const string& str , size_t pos = NPOS) const;

1 Determines the highest positionxpos , if possible, such that both of the following conditions obtain:

— xpos <= pos and pos < len ;

— ptr [xpos] == str.ptr [I] for no elementI of the string controlled bystr .

2 If the function can determine such a value forxpos , it returnsxpos . Otherwise, it returnsNPOS.

[lib.string::find.last.not.of.str] 17.5.1.1.52string::find_last_not_of(const char*,
size_t, size_t)

size_t find_last_not_of(const char* s, size_t pos = NPOS, ∗
size_t n = NPOS) const;

1 Returnsfind_last_not_of(string(s, n), pos) .

17.5.1.1.53 DRAFT: 27 May 1994 Library 17– 127
string::find_last_not_of(char, size_t)

[lib.string::find.last.not.of.c] 17.5.1.1.53string::find_last_not_of(char, size_t)

size_t find_last_not_of(char c, size_t pos = NPOS) const;

1 Returnsfind_last_not_of(string(c, n), pos) .

[lib.string::substr] 17.5.1.1.54string::substr(size_t, size_t)

string substr(size_t pos = 0, size_t n = NPOS) const; ∗

1 Returnsstring(*this, pos , n) . 

[lib.string::compare.sub] 17.5.1.1.55string::compare(const string&, size_t,
size_t)

int compare(const string& str , size_t pos = 0, size_t n = NPOS) const; 

1 Reports an out-of-range error ifpos > len . Otherwise, if str.len < n, the function stores 
str.len in n. The function then determines the effective lengthrlen of the strings to compare as the
smaller ofn and len - pos . The function then compares the two strings by callingmemcmp(ptr + 
pos , str.ptr , rlen) . The function signaturememcmp(const void*, const void*,
size_t) is declared in<cstring> (<$RS*,[lib.standard.c.library]xxx>).120) 

2 If the result of that comparison is nonzero, the function returns the nonzero result. Otherwise, the function
returns:

— if len - pos < n, a value less than zero; 

— if len - pos == n, the value zero; 

— if len - pos > n, a value greater than zero. 

[lib.string::compare.str]17.5.1.1.56string::compare(const char*, size_t, 
size_t) 

size_t compare(const char* s, size_t pos = 0, size_t n = NPOS) const; 

1 Returnscompare(string(s, n), pos) . 

[lib.string::compare.c]17.5.1.1.57string::compare(char, size_t, size_t) 

size_t compare(char c, size_t pos = 0, size_t rep = 1) const; 

1 Returnscompare(string(c, rep), pos) .

[lib.op+.sub.sub] 17.5.1.2operator+(const string&, const string&)

string operator+(const string& lhs , const string& rhs);

1 Returnsstring(lhs).append(rhs) .

[lib.op+.str.sub] 17.5.1.3operator+(const char*, const string&)

string operator+(const char* lhs , const string& rhs);

120)The elements are compared as if they had typeunsigned char . 

17– 128 Library DRAFT: 27 May 1994 17.5.1.3
operator+(const char*, const string&)

1 Returnsstring(lhs) + rhs .

[lib.op+.c.sub] 17.5.1.4operator+(char, const string&)

string operator+(char lhs , const string& rhs);

1 Returnsstring(lhs) + rhs .

[lib.op+.sub.str] 17.5.1.5operator+(const string&, const char*)

string operator+(const string& lhs , const char* rhs);

1 Returnslhs + string(rhs) .

[lib.op+.str.c] 17.5.1.6operator+(const string&, char)

string operator+(const string& lhs , char rhs);

1 Returnslhs + string(rhs) .

[lib.op==.sub.sub] 17.5.1.7operator==(const string&, const string&)

bool operator==(const string& lhs , const string& rhs); 

1 Returns a nonzero value if!(lhs == rhs) is nonzero.

[lib.op==.str.sub] 17.5.1.8operator==(const char*, const string&)

bool operator==(const char* lhs , const string& rhs); 

1 Returnsstring(lhs) == rhs .

[lib.op==.c.sub] 17.5.1.9operator==(char, const string&)

bool operator==(char lhs , const string& rhs); 

1 Returnsstring(lhs) == rhs .

[lib.op==.sub.str] 17.5.1.10operator==(const string&, const char*)

bool operator==(const string& lhs , const char* rhs); 

1 Returnslhs == string(rhs) .

[lib.op==.sub.c] 17.5.1.11operator==(const string&, char)

bool operator==(const string& lhs , char rhs); 

1 Returnslhs == string(rhs) .

[lib.op!=.sub.sub] 17.5.1.12operator!=(const string&, const string&)

bool operator!=(const string& lhs , const string& rhs); 

1 Returns a nonzero value iflhs .compare(rhs) is nonzero.

17.5.1.13 DRAFT: 27 May 1994 Library 17– 129
operator!=(const char*, const string&)

[lib.op!=.str.sub] 17.5.1.13operator!=(const char*, const string&)

bool operator!=(const char* lhs , const string& rhs); 

1 Returnsstring(lhs) != rhs .

[lib.op!=.c.sub] 17.5.1.14operator!=(char, const string&)

bool operator!=(char lhs , const string& rhs); 

1 Returnsstring(lhs) != rhs .

[lib.op!=.sub.str] 17.5.1.15operator!=(const string&, const char*)

bool operator!=(const string& lhs , const char* rhs); 

1 Returnslhs != string(rhs) .

[lib.op!=.sub.c] 17.5.1.16operator!=(const string&, char)

bool operator!=(const string& lhs , char rhs); 

1 Returnslhs != string(rhs) .

[lib.ext.sub] 17.5.1.17operator>>(istream&, string&)

istream& operator>>(istream& is , string& str);

1 A formatted input function, extracts characters and appends them to the string controlled bystr . The
string is initially made empty by callingstr .remove() . Each extracted characterc is appended as if by
calling str .append(c) . If width() is greater than zero, the maximum number of characters storedn
is width() ; otherwise it isINT_MAX, defined in<climits> (17.2). 

2 Characters are extracted and appended until any of the following occurs:

— n characters are appended;

— NPOS - 1 characters are appended;

— end-of-file occurs on the input sequence;

— isspace(c) is nonzero for the next available input characterc (in which case the input character is
not extracted).

3 The function signatureisspace(int) is declared in<cctype> . 

4 If the function appends no characters, it callssetstate(failbit) . In any case, it callswidth(0) . 
The function returnsis .

[lib.getline.sub] 17.5.1.18getline(istream&, string&, char)

istream& getline(istream& is , string& str , char delim = ’\n’);

1 An unformatted input function, extracts characters and appends them to the string controlled bystr . The
string is initially made empty by callingstr .remove() . Each extracted characterc is appended as if by
callingstr .append(c) . Characters are extracted and appended until any of the following occurs:

— NPOS - 1 characters are appended (in which case the function callssetstate(failbit));

— end-of-file occurs on the input sequence (in which case the function callssetstate(eofbit));

— c == delim for the next available input characterc (in which case the input character is extracted

17– 130 Library DRAFT: 27 May 1994 17.5.1.18
getline(istream&, string&, char)

but not appended).

2 If the function appends no characters, it callssetstate(failbit) . The function returnsis .

[lib.ins.sub] 17.5.1.19operator<<(ostream&, const string&)

ostream& operator<<(ostream& os , const string& str);

1 A formatted output function, behaves the same asos .write(str .data(), str .length()) . 

2 The function returnsos .

[lib.header.wstring] 17.5.2 Header<wstring>

1 The header<wstring> defines a type and several function signatures for manipulating varying-length
sequences of wide characters.

[lib.wstring] 17.5.2.1 Classwstring

Box 133

Library WG issue: Ichiro Koshida, January 10, 1994

Wstring class lacks I/O functions: 
istream& operator>>(istream&, wstring&) 
istream& getline(istream&, wstring&, wchar_t) 

ostream& operator<<(ostream&, wstring&) ∗ __









__










17.5.2.1 Classwstring DRAFT: 27 May 1994 Library 17– 131

class wstring {
public:

wstring();
wstring(size_t size , capacity cap);
wstring(const wstring& str , size_t pos = 0, size_t n = NPOS);
wstring(const wchar_t* s, size_t n = NPOS);
wstring(wchar_t c, size_t rep = 1);
wstring& operator=(const wstring& str); 
wstring& operator=(const wchar_t* s);
wstring& operator=(wchar_t c);
wstring& operator+=(const wstring& rhs);
wstring& operator+=(const wchar_t* s);
wstring& operator+=(wchar_t c);
wstring& append(const wstring& str , size_t pos = 0,

size_t n = NPOS);
wstring& append(const wchar_t* s, size_t n = NPOS);
wstring& append(wchar_t c, size_t rep = 1);
wstring& assign(const wstring& str , size_t pos = 0,

size_t n = NPOS);
wstring& assign(const wchar_t* s, size_t n = NPOS);
wstring& assign(wchar_t c, size_t rep = 1);
wstring& insert(size_t pos1 , const wstring& str , size_t pos2 = 0,

size_t n = NPOS);
wstring& insert(size_t pos , const wchar_t* s,

size_t n = NPOS);
wstring& insert(size_t pos , wchar_t c, size_t rep = 1);
wstring& remove(size_t pos = 0, size_t n = NPOS);
wstring& replace(size_t pos1 , size_t n1, const wstring& str ,

size_t pos2 = 0, size_t n2 = NPOS);
wstring& replace(size_t pos , size_t n1, const wchar_t* s,

size_t n2 = NPOS);
wstring& replace(size_t pos , size_t n, wchar_t c,

size_t rep = 1);
wchar_t get_at(size_t pos) const;
void put_at(size_t pos , wchar_t c);
wchar_t operator[](size_t pos) const;
wchar_t& operator[](size_t pos);
const wchar_t* data() const; 
size_t length() const:
void resize(size_t n, wchar_t c = 0);
size_t reserve() const;
void reserve(size_t res_arg);
size_t copy(wchar_t* s, size_t n, size_t pos = 0);
size_t find(const wstring& str , size_t pos = 0) const;
size_t find(const wchar_t* s, size_t pos = 0, size_t n = NPOS)

const;
size_t find(wchar_t c, size_t pos = 0) const;
size_t rfind(const wstring& str , size_t pos = NPOS) const;
size_t rfind(const wchar_t* s, size_t pos = NPOS,

size_t n = NPOS) const;
size_t rfind(wchar_t c, size_t pos = NPOS) const;
size_t find_first_of(const wstring& str , size_t pos = 0) const;
size_t find_first_of(const wchar_t* s, size_t pos = 0,

size_t n = NPOS) const;
size_t find_first_of(wchar_t c, size_t pos = 0) const;
size_t find_last_of(const wstring& str , size_t pos = NPOS) const;
size_t find_last_of(const wchar_t* s, size_t pos = NPOS,

size_t n = NPOS) const;
size_t find_last_of(wchar_t c, size_t pos = NPOS) const;
size_t find_first_not_of(const wstring& str , size_t pos = 0)

const;
size_t find_first_not_of(const wchar_t* s, size_t pos = 0,

17– 132 Library DRAFT: 27 May 1994 17.5.2.1 Classwstring

size_t n = NPOS) const;
size_t find_first_not_of(wchar_t c, size_t pos = 0) const;
size_t find_last_not_of(const wstring& str , size_t pos = NPOS)

const;
size_t find_last_not_of(const wchar_t* s, size_t pos = NPOS,

size_t n = NPOS) const;
size_t find_last_not_of(wchar_t c, size_t pos = NPOS) const;
wstring substr(size_t pos = 0, size_t n = NPOS) const;
int compare(const wstring& str , size_t pos = 0,

size_t n = NPOS) const;
int compare(const wchar_t* s, size_t pos = 0, size_t n = NPOS) const; 
int compare(wchar_t c, size_t pos = 0, size_t rep = 1) const; 

private:
// wchar_t* ptr ; exposition only
// size_t len , res ; exposition only
};

1 The classwstring describes objects that can store a sequence consisting of a varying number of arbitrary
wide characters. The first element of the sequence is at position zero. Such a sequence is also called a
wide-character string(or simply astring if the type of the elements is clear from context). Storage for the
string is allocated and freed as necessary by the member functions of classwstring . For the sake of
exposition, the maintained data is presented here as:

— wchar_t* ptr , points to the initial character of the string;

— size_t len , counts the number of characters currently in the string;

— size_t res , for an unallocated string, holds the recommended allocation size of the string, while for
an allocated string, becomes the currently allocated size.

2 In all cases,len <= res .

3 The functions described in this subclause can report two kinds of errors, each associated with a distinct
exception:

— a lengtherror is associated with exceptions of typelength_error ; 

— anout-of-rangeerror is associated with exceptions of typeout_of_range . 

4 To report one of these errors, the function evaluates the expressionex .raise() , whereex is an object of
the associated exception type.

[lib.cons.wstring] 17.5.2.1.1wstring::wstring()

wstring();

1 Constructs an object of classwstring initializing:

— ptr to an unspecified value;

— len to zero;

— res to an unspecified value.

[lib.cons.wstring.cap] 17.5.2.1.2wstring::wstring(size_t, capacity)

wstring(size_t size , capacity cap);

17.5.2.1.2 DRAFT: 27 May 1994 Library 17– 133
wstring::wstring(size_t, capacity)

1 Constructs an object of classwstring . If cap is default_size , the function either reports a length
error if size equalsNPOSor initializes:

— ptr to point at the first element of an allocated array ofsize elements, each of which is initialized to
zero;

— len to size ;

— res to a value at least as large aslen . 

2 Otherwise,cap shall bereserve and the function initializes:

— ptr to an unspecified value;

— len to zero;

— res to size .

[lib.cons.wstring.wsub] 17.5.2.1.3wstring::wstring(const wstring&, size_t,
size_t)

wstring(const wstring& str , size_t pos = 0, size_t n = NPOS);

1 Reports an out-of-range error ifpos > str.len . Otherwise, the function constructs an object of class
wstring and determines the effective lengthrlen of the initial wstring value as the smaller ofn and
str.len - pos . Thus, the function initializes:

— ptr to point at the first element of an allocated copy ofrlen elements of the wstring controlled by
str beginning at positionpos ;

— len to rlen ;

— res to a value at least as large aslen . 

[lib..cons.wstring.wstr] 17.5.2.1.4wstring::wstring(const wchar_t*, size_t)

wstring(const wchar_t* s, size_t n);

1 If n equalsNPOS, storeswcslen(s) in n. The function signaturewcslen(const wchar_T*) is
declared in<cwchar> (17.2). 

2 In any case, the function constructs an object of classwstring and determines its initial string value from
the array ofwchar_t of lengthn whose first element is designated bys . s shall not be a null pointer.
hhus, the function initializes:

— ptr to point at the first element of an allocated copy of the array whose first element is pointed at bys ;

— len to n;

— res to a value at least as large aslen . 

[lib..cons.wstring.wc] 17.5.2.1.5wstring::wstring(wchar_t, size_t)

wstring(wchar_t c, size_t rep = 1);

1 Reports a length error ifrep equalsNPOS. Otherwise, the function constructs an object of classwstring
and determines its initial string value by repeating the characterc for all rep elements. Thus, the function
initializes:

— ptr to point at the first element of an allocated array ofrep elements, each storing the initial valuec ;

17– 134 Library DRAFT: 27 May 1994 17.5.2.1.5
wstring::wstring(wchar_t, size_t)

— len to rep ;

— res to a value at least as large aslen . 

[lib.wstring::op=.sub]17.5.2.1.6wstring::operator=(const wchar_t*) 

wstring& operator=(const wstring& str); 

1 Returnsassign(str) .

[lib.wstring::op=.wstr] 17.5.2.1.7wstring::operator=(const wchar_t*)

wstring& operator=(const wchar_t* s);

1 Returns*this = string(s) .

[lib.wstring::op=.wc] 17.5.2.1.8wstring::operator=(wchar_t)

wstring& operator=(wchar_t c);

1 Returns*this = string(c) .

[lib.wstring::op+=.wsub] 17.5.2.1.9wstring::operator+=(const wstring&)

wstring& operator+=(const wstring& rhs);

1 Returnsappend(rhs) .

[lib.wstring::op+=.wstr] 17.5.2.1.10wstring::operator+=(const wchar_t*)

wstring& operator+=(const wchar_t* s);

1 Returns*this += string(s) .

[lib.wstring::op+=.wc] 17.5.2.1.11wstring::operator+=(wchar_t)

wstring& operator+=(wchar_t c);

1 Returns*this += string(c) .

[lib.wstring::append.wsub] 17.5.2.1.12wstring::append(const wstring&, size_t,
size_t)

wstring& append(const wstring& str , size_t pos = 0, size_t n = NPOS);

1 Reports an out-of-range error ifpos > str.len . Otherwise, the function determines the effective
lengthrlen of the string to append as the smaller ofn andstr.len - pos . The function then reports
a length error iflen >= NPOS - rlen .

2 Otherwise, the function replaces the string controlled by*this with a string of lengthlen + rlen
whose firstlen elements are a copy of the original string controlled by*this and whose remaining ele-
ments are a copy of the initial elements of the string controlled bystr beginning at positionpos .

3 The function returns*this .

17.5.2.1.13 DRAFT: 27 May 1994 Library 17– 135
wstring::append(const wchar_t*, size_t)

[lib.wstring::append.wstr] 17.5.2.1.13wstring::append(const wchar_t*, size_t)

wstring& append(const wchar_t* s, size_t n = NPOS);

1 Returnsappend(wstring(s, n)) .

[lib.wstring::append.wc] 17.5.2.1.14wstring::append(wchar_t, size_t)

wstring& append(wchar_t c, size_t rep = 1);

1 Returnsappend(wstring(c, rep)) .

[lib.wstring::assign.wsub] 17.5.2.1.15wstring::assign(const wstring&, size_t,
size_t)

wstring& assign(const wstring& str , size_t pos = 0, size_t n = NPOS);

1 Reports an out-of-range error ifpos > str.len . Otherwise, the function determines the effective
lengthrlen of the string to assign as the smaller ofn andstr.len - pos .

2 The function then replaces the string controlled by*this with a string of lengthrlen whose elements are
a copy of the string controlled bystr beginning at positionpos .

3 The function returns*this .

[lib.wstring::assign.wstr] 17.5.2.1.16wstring::assign(const wchar_t*, size_t)

wstring& assign(const wchar_t* s, size_t n = NPOS);

1 Returnsassign(wstring(s, n)) .

[lib.wstring::assign.wc] 17.5.2.1.17wstring::assign(wchar_t, size_t)

wstring& assign(wchar_t c, size_t rep = 1);

1 Returnsassign(wstring(c, rep)) .

[lib.wstring::insert.wsub] 17.5.2.1.18wstring::insert(size_t, const wstring&,
size_t, size_t)

wstring& insert(size_t pos1 , const wstring& str , size_t pos2 = 0,
size_t n = NPOS);

1 Reports an out-of-range error ifpos1 > len or pos2 > str.len . Otherwise, the function deter-
mines the effective lengthrlen of the string to insert as the smaller ofn andstr.len - pos2 . The
function then reports a length error iflen >= NPOS - rlen .

2 Otherwise, the function replaces the string controlled by*this with a string of lengthlen + rlen
whose firstpos1 elements are a copy of the initial elements of the original string controlled by*this ,
whose nextrlen elements are a copy of the elements of the string controlled bystr beginning at position
pos2 , and whose remaining elements are a copy of the remaining elements of the original string controlled
by *this .

3 The function returns*this .

17– 136 Library DRAFT: 27 May 1994 17.5.2.1.19
wstring::insert(size_t, const wchar_t*, size_t)

[lib.wstring::insert.wstr] 17.5.2.1.19wstring::insert(size_t, const wchar_t*,
size_t)

wstring& insert(size_t pos , const wchar_t* s, size_t n = NPOS);

1 Returnsinsert(pos , wstring(s, n)) . 

[lib.wstring::insert.wc] 17.5.2.1.20wstring::insert(size_t, wchar_t, size_t)

wstring& insert(size_t pos , wchar_t c, size_t rep = 1);

1 Returnsinsert(pos , wstring(c, rep)) .

[lib.wstring::remove] 17.5.2.1.21wstring::remove(size_t, size_t)

wstring& remove(size_t pos = 0, size_t n = NPOS);

1 Reports an out-of-range error ifpos > len . Otherwise, the function determines the effective length
xlen of the string to be removed as the smaller ofn andlen - pos .

2 The function then replaces the string controlled by*this with a string of lengthlen - xlen whose
first pos elements are a copy of the initial elements of the original string controlled by*this , and whose
remaining elements are a copy of the elements of the original string controlled by*this beginning at
positionpos + xlen .

3 The function returns*this .

[lib.wstring::replace.wsub] 17.5.2.1.22wstring::replace(size_t, size_t,
const wstring&, size_t, size_t)

wstring& replace(size_t pos1 , size_t n1, const wstring& str ,
size_t pos2 = 0, size_t n2 = NPOS);

1 Reports an out-of-range error ifpos1 > len or pos2 > str.len . Otherwise, the function deter-
mines the effective lengthxlen of the string to be removed as the smaller ofn1 and len - pos1 . It
also determines the effective lengthrlen of the string to be inserted as the smaller ofn2 andstr.len -
pos2 . The function then reports a length error iflen - xlen >= NPOS - rlen .

2 Otherwise, the function replaces the string controlled by*this with a string of lengthlen - xlen +
rlen whose firstpos1 elements are a copy of the initial elements of the original string controlled by
*this , whose nextrlen elements are a copy of the initial elements of the string controlled bystr
beginning at positionpos2 , and whose remaining elements are a copy of the elements of the original string
controlled by*this beginning at positionpos1 + xlen .

3 The function returns*this .

[lib.wstring::replace.wstr] 17.5.2.1.23wstring::replace(size_t, size_t,
const wchar_t*, size_t)

wstring& replace(size_t pos , size_t n1, const wchar_t* s,
size_t n2 = NPOS);

1 Returnsreplace(pos , n1, wstring(s, n2)) .

[lib.wstring::replace.wc] 17.5.2.1.24wstring::replace(size_t, size_t, wchar_t,
size_t)

wstring& replace(size_t pos , size_t n, wchar_t c, size_t rep = 1);

17.5.2.1.24 DRAFT: 27 May 1994 Library 17– 137
wstring::replace(size_t, size_t, wchar_t, size_t)

1 Returnsreplace(pos , n, wstring(c, rep)) .

[lib.wstring::get.at] 17.5.2.1.25wstring::get_at(size_t)

wchar_t get_at(size_t pos) const;

1 Reports an out-of-range error ifpos >= len . Otherwise, the function returnsptr [pos] .

[lib.wstring::put.at] 17.5.2.1.26wstring::put_at(size_t, wchar_t)

void put_at(size_t pos , wchar_t c);

1 Reports an out-of-range error ifpos >= len . Otherwise, the function assignsc to ptr [pos] . 

[lib.wstring::op.array] 17.5.2.1.27wstring::operator[](size_t)

wchar_t operator[](size_t pos) const;
wchar_t& operator[](size_t pos);

1 If pos < len , returnsptr [pos] . Otherwise, ifpos == len , theconst version returns zero. Oth-
erwise, the behavior is undefined.

2 The reference returned by the non-const version is invalid after a subsequent call to any member function
for the object. 

[lib.wstring::data]17.5.2.1.28wstring::data() 

const wchar_t* data() const; 

1 Returns a pointer to the initial element of an array of lengthlen + 1 whose firstlen elements equal the
corresponding elements of the string controlled by*this and whose last element is a null character. The
program shall not alter any of the values stored in the array. Nor shall the program treat the returned value
as a valid pointer value after any subsequent call to a non-const member function of the classwstring
that designates the same object as*this .

[lib.wstring::length] 17.5.2.1.29wstring::length()

size_t length() const:

1 Returnslen .

[lib.wstring::resize] 17.5.2.1.30wstring::resize(size_t, wchar_t)

void resize(size_t n, wchar_t c = 0);

1 Reports a length error ifn equalsNPOS. Otherwise, the function alters the length of the string designated
by *this as follows:

— If n <= len , the function replaces the string designated by*this with a string of lengthn whose
elements are a copy of the initial elements of the original string designated by*this .

— If n > len , the function replaces the string designated by*this with a string of lengthn whose first
len elements are a copy of the original string designated by*this , and whose remaining elements are
all initialized toc .

17– 138 Library DRAFT: 27 May 1994 17.5.2.1.31wstring::reserve()

[lib.wstring::reserve] 17.5.2.1.31wstring::reserve()

size_t reserve() const;

1 Returnsres .

[lib.wstring::reserve.cap] 17.5.2.1.32wstring::reserve(size_t)

void reserve(size_t res_arg);

1 If no string is allocated, the function assignsres_arg to res . Otherwise, whether or how the function
altersres is unspecified.

[lib.wstring::copy.wstr] 17.5.2.1.33wstring::copy(wchar_t*, size_t, size_t)

size_t copy(wchar_t* s, size_t n, size_t pos = 0);

1 Reports an out-of-range error ifpos > len . Otherwise, the function determines the effective length
rlen of the string to copy as the smaller ofn and len - pos . s shall designate an array of at least
rlen elements.

2 The function then replaces the string designated bys with a string of lengthrlen whose elements are a
copy of the string controlled by*this , beginning at positionpos .121) 

3 The function returnsrlen .

[lib.wstring::find.wsub] 17.5.2.1.34wstring::find(const wstring&, size_t)

size_t find(const wstring& str , size_t pos = 0) const;

1 Determines the lowest positionxpos , if possible, such that both of the following conditions obtain:

— pos <= xpos andxpos + str.len <= len ;

— ptr [xpos + I] == str.ptr [I] for all elementsI of the string controlled bystr .

2 If the function can determine such a value forxpos , it returnsxpos . Otherwise, it returnsNPOS.

[lib.wstring::find.wstr] 17.5.2.1.35wstring::find(const wchar_t*, size_t,
size_t)

size_t find(const wchar_t* s, size_t pos = 0, size_t n = NPOS) const;

1 Returnsfind(wstring(s, n), pos) .

[lib.wstring::find.wc] 17.5.2.1.36wstring::find(wchar_t, size_t)

size_t find(wchar_t c, size_t pos = 0) const;

1 Returnsfind(wstring(c), pos) .

[lib.wstring::rfind.wsub] 17.5.2.1.37wstring::rfind(const wstring&, size_t)

size_t rfind(const wstring& str , size_t pos = NPOS) const;

1 Determines the highest positionxpos , if possible, such that both of the following conditions obtain:

— xpos <= pos andxpos + str.len <= len ; 

121)The function does not append a null wide character to the string. 

17.5.2.1.37 DRAFT: 27 May 1994 Library 17– 139
wstring::rfind(const wstring&, size_t)

— ptr [xpos + I] == str.ptr [I] for all elementsI of the string controlled bystr .

2 If the function can determine such a value forxpos , it returnsxpos . Otherwise, it returnsNPOS.

[lib.wstring::rfind.wstr] 17.5.2.1.38wstring::rfind(const wchar_t*, size_t,
size_t)

size_t rfind(const wchar_t* s, size_t pos = NPOS, size_t n = NPOS)
const;

1 Returnsrfind(wstring(s, n), pos) .

[lib.wstring::rfind.wc] 17.5.2.1.39wstring::rfind(wchar_t, size_t)

size_t rfind(wchar_t c, size_t pos = NPOS) const;

1 Returnsrfind(wstring(c, n), pos) .

[lib.wstring::find.first.of.wsub] 17.5.2.1.40wstring::find_first_of(const wstring&,
size_t)

size_t find_first_of(const wstring& str , size_t pos = 0) const;

1 Determines the lowest positionxpos , if possible, such that both of the following conditions obtain:

— pos <= xpos andxpos < len ;

— ptr [xpos] == str.ptr [I] for some elementI of the string controlled bystr .

2 If the function can determine such a value forxpos , it returnsxpos . Otherwise, it returnsNPOS.

[lib.wstring::find.first.of.wstr] 17.5.2.1.41wstring::find_first_of(const wchar_t*,
size_t, size_t)

size_t find_first_of(const wchar_t* s, size_t pos = 0,
size_t n = NPOS) const;

1 Returnsfind_first_of(wstring(s, n), pos) .

[lib.wstring::find.first.of.wc] 17.5.2.1.42wstring::find_first_of(wchar_t, size_t)

size_t find_first_of(wchar_t c, size_t pos = 0) const;

1 Returnsfind_first_of(wstring(c), pos) .

[lib.wstring::find.last.of.wsub] 17.5.2.1.43wstring::find_last_of(const wstring&,
size_t)

size_t find_last_of(const wstring& str , size_t pos = NPOS) const;

1 Determines the highest positionxpos , if possible, such that both of the following conditions obtain:

— xpos <= pos and pos < len ;

— ptr [xpos] == str.ptr [I] for some elementI of the string controlled bystr .

2 If the function can determine such a value forxpos , it returnsxpos . Otherwise, it returnsNPOS.

17– 140 Library DRAFT: 27 May 1994 17.5.2.1.44
wstring::find_last_of(const wchar_t*, size_t, size_t)

[lib.wstring::find.last.of.wstr] 17.5.2.1.44wstring::find_last_of(const wchar_t*,
size_t, size_t)

size_t find_last_of(const wchar_t* s, size_t pos = NPOS,
size_t n = NPOS) const;

1 Returnsfind_last_of(wstring(s, n), pos) .

[lib.wstring::find.last.of.wc] 17.5.2.1.45wstring::find_last_of(wchar_t, size_t)

size_t find_last_of(wchar_t c, size_t pos = NPOS) const;

1 Returnsfind_last_of(wstring(c, n), pos) .

[lib.wstring::find.first.not.of.wsub] 17.5.2.1.46
wstring::find_first_not_of(const wstring&,
size_t)

size_t find_first_not_of(const wstring& str , size_t pos = 0) const;

1 Determines the lowest positionxpos , if possible, such that both of the following conditions obtain:

— pos <= xpos andxpos < len ;

— ptr [xpos] == str.ptr [I] for no elementI of the string controlled bystr .

2 If the function can determine such a value forxpos , it returnsxpos . Otherwise, it returnsNPOS.

[lib.wstring::find.first.not.of.wstr] 17.5.2.1.47
wstring::find_first_not_of(const wchar_t*,
size_t, size_t)

size_t find_first_not_of(const wchar_t* s, size_t pos = 0,
size_t n = NPOS) const;

1 Returnsfind_first_not_of(wstring(s, n), pos) .

[lib.wstring::find.first.not.of.wc] 17.5.2.1.48wstring::find_first_not_of(wchar_t,
size_t)

size_t find_first_not_of(wchar_t c, size_t pos = 0) const;

1 Returnsfind_first_not_of(wstring(c), pos) .

[lib.wstring::find.last.not.of.wsub] 17.5.2.1.49
wstring::find_last_not_of(const wstring&,
size_t)

size_t find_last_not_of(const wstring& str , size_t pos = NPOS) const;

1 Determines the highest positionxpos , if possible, such that both of the following conditions obtain:

— xpos <= pos and pos < len ;

— ptr [xpos] == str.ptr [I] for no elementI of the string controlled bystr .

2 If the function can determine such a value forxpos , it returnsxpos . Otherwise, it returnsNPOS.

17.5.2.1.50 DRAFT: 27 May 1994 Library 17– 141
wstring::find_last_not_of(const wchar_t*, size_t, size_t)

[lib.wstring::find.last.not.of.wstr] 17.5.2.1.50
wstring::find_last_not_of(const wchar_t*,
size_t, size_t)

size_t find_last_not_of(const wchar_t* s, size_t pos = NPOS,
size_t n = NPOS) const;

1 Returnsfind_last_not_of(wstring(s, n), pos) .

[lib.wstring::find.last.not.of.wc] 17.5.2.1.51wstring::find_last_not_of(wchar_t,
size_t)

size_t find_last_not_of(wchar_t c, size_t pos = NPOS) const;

1 Returnsfind_last_not_of(wstring(c, n), pos) .

[lib.wstring::substr] 17.5.2.1.52wstring::substr(size_t, size_t)

wstring substr(size_t pos = 0, size_t n = NPOS) const;

1 Returnswstring(*this, pos , n) . 

[lib.wstring::compare.wsub] 17.5.2.1.53wstring::compare(const wstring&, size_t,
size_t)

int compare(const wstring& str , size_t pos , size_t n = NPOS) const;

1 Reports an out-of-range error ifpos > len . Otherwise, if str.len < n, the function stores 
str.len in n. The function then determines the effective lengthrlen of the strings to compare as the
smaller ofn and len - pos . The function then compares the two strings by callingwcscmp(ptr + 
pos , str.ptr , rlen) . The function signaturewmemcmp(const wchar_t*, const
wchar_t*, size_t) is declared in<cwchar> . 

2 If the result of that comparison is nonzero, the function returns the nonzero result. Otherwise, the function
returns:

— if len < rlen , a value less than zero;

— if len == rlen , the value zero;

— if len > rlen , a value greater than zero.

[lib.wstring::compare.wstr] 17.5.2.1.54wstring::compare(const wchar_t*, size_t)

size_t compare(const wchar_t* s, size_t n = NPOS) const;

1 Returnscompare(wstring(s, n), pos) .

[lib.wstring::compare.wc] 17.5.2.1.55wstring::compare(wchar_t, size_t)

size_t compare(wchar_t c, size_t rep = 1) const;

1 Returnscompare(wstring(c, rep), pos) .

17– 142 Library DRAFT: 27 May 1994 17.5.2.2
operator+(const wstring&, const wstring&)

[lib.op+.wsub.wsub] 17.5.2.2operator+(const wstring&, const wstring&)

wstring operator+(const wstring& lhs , const wstring& rhs);

1 Returnswstring(lhs).append(rhs) .

[lib.op+.wstr.wsub] 17.5.2.3operator+(const wchar_t*, const wstring&)

wstring operator+(const wchar_t* lhs , const wstring& rhs);

1 Returnswstring(lhs) + rhs .

[lib.op+.wc.wsub] 17.5.2.4operator+(wchar_t, const wstring&)

wstring operator+(wchar_t lhs , const wstring& rhs);

1 Returnswstring(lhs) + rhs .

[lib.op+.wsub.wstr] 17.5.2.5operator+(const wstring&, const wchar_t*)

wstring operator+(const wstring& lhs , const wchar_t* rhs);

1 Returnslhs + wstring(rhs) .

[lib.op+.wsub.wc] 17.5.2.6operator+(const wstring&, wchar_t)

wstring operator+(const wstring& lhs , wchar_t rhs);

1 Returnslhs + wstring(rhs) .

[lib.op==.wsub.wsub] 17.5.2.7operator==(const wstring&, const wstring&)

bool operator==(const wstring& lhs , const wstring& rhs); 

1 Returns a nonzero value iflhs .compare(rhs) is zero.

[lib.op==.wstr.wsub] 17.5.2.8operator==(const wchar_t*, const wstring&)

bool operator==(const wchar_t* lhs , const wstring& rhs); 

1 Returnswstring(lhs) == rhs .

[lib.op==.wc.wsub] 17.5.2.9operator==(wchar_t, const wstring&)

bool operator==(wchar_t lhs , const wstring& rhs); 

1 Returnswstring(lhs) == rhs .

[lib.op==.wsub.wstr] 17.5.2.10operator==(const wstring&, const wchar_t*)

bool operator==(const wstring& lhs , const wchar_t* rhs); 

1 Returnslhs == wstring(rhs) .

[lib.op==.wsub.wc] 17.5.2.11operator==(const wstring&, wchar_t)

bool operator==(const wstring& lhs , wchar_t rhs); 

1 Returnslhs == wstring(rhs) .

17.5.2.12 DRAFT: 27 May 1994 Library 17– 143
operator!=(const wstring&, const wstring&)

[lib.op!=.wsub.wsub] 17.5.2.12operator!=(const wstring&, const wstring&)

bool operator!=(const wstring& lhs , const wstring& rhs); 

1 Returns a nonzero value if!(lhs == rhs) is nonzero.

[lib.op!=.wstr.wsub] 17.5.2.13operator!=(const wchar_t*, const wstring&)

bool operator!=(const wchar_t* lhs , const wstring& rhs); 

1 Returnswstring(lhs) != rhs .

[lib.op!=.wc.wsub] 17.5.2.14operator!=(wchar_t, const wstring&)

bool operator!=(wchar_t lhs , const wstring& rhs); 

1 Returnswstring(lhs) != rhs .

[lib.op!=.wsub.wstr] 17.5.2.15operator!=(const wstring&, const wchar_t*)

bool operator!=(const wstring& lhs , const wchar_t* rhs); 

1 Returnslhs != wstring(rhs) .

[lib.op!=.wsub.wc] 17.5.2.16operator!=(const wstring&, wchar_t)

bool operator!=(const wstring& lhs , wchar_t rhs); 

1 Returnslhs != wstring(rhs) .

[lib.header.bits] 17.5.3 Header<bits>

1 The header<bits> defines a template class and several related functions for representing and manipulat-
ing fixed-size sequences of bits.

[lib.template.bits] 17.5.3.1 Template classbits< N>

17– 144 Library DRAFT: 27 May 1994 17.5.3.1 Template classbits< N>

template<size_t N> class bits { ∗
public:

bits();
bits(unsigned long val);
bits(const string& str , size_t pos = 0, size_t n = NPOS);
bits< N>& operator&=(const bits< N>& rhs);
bits< N>& operator|=(const bits< N>& rhs);
bits< N>& operator^=(const bits< N>& rhs); 
bits< N>& operator<<=(size_t pos);
bits< N>& operator>>=(size_t pos);
bits< N>& set();
bits< N>& set(size_t pos , int val = 1);
bits< N>& reset();
bits< N>& reset(size_t pos);
bits< N> operator~() const; 
bits< N>& toggle();
bits< N>& toggle(size_t pos);
unsigned short to_ushort() const;
unsigned long to_ulong() const;
string to_string() const;
size_t count() const;
size_t length() const;
bool operator==(const bits< N>& rhs) const; 
bool operator!=(const bits< N>& rhs) const; 
bool test(size_t pos) const; 
bool any() const; 
bool none() const; 
bits< N> operator<<(size_t pos) const;
bits< N> operator>>(size_t pos) const;

private:
// char array [N]; exposition only
};

1 The template classbits< N> describes an object that can store a sequence consisting of a fixed number of
bits,N.

2 Each bit represents either the value zero (reset) or one (set). Totogglea bit is to change the value zero to
one, or the value one to zero. Each bit has a non-negative positionpos . When converting between an
object of classbits< N> and a value of some integral type, bit positionpos corresponds to thebit value1
<< pos . The integral value corresponding to two or more bits is the sum of their bit values.

3 For the sake of exposition, the maintained data is presented here as:

— char array [N] , the sequence of bits, stored one bit per element.122)

4 The functions described in this subclause can report three kinds of errors, each associated with a distinct
exception:

— an invalid-argumenterror is associated with exceptions of typeinvalid_argument ; 

— anout-of-rangeerror is associated with exceptions of typeout_of_range ; 

— anoverflowerror is associated with exceptions of typeoverflow .

5 To report one of these errors, the function evaluates the expressionex .raise() , whereex is an object of
the associated exception type.

122)An implementation is free to store the bit sequence more efficiently.

17.5.3.1.1bits< N>::bits() DRAFT: 27 May 1994 Library 17– 145

[lib.cons.bits] 17.5.3.1.1bits< N>::bits()

bits();

1 Constructs an object of classbits< N>, initializing all bits to zero.

[lib.cons.bits.ul] 17.5.3.1.2bits< N>::bits(unsigned long)

bits(unsigned long val); ∗

1 Constructs an object of classbits< N>, initializing the firstMbit positions to the corresponding bit values
in val . M is the smaller ofN and the valueCHAR_BIT * sizeof (unsigned long) . The macro
CHAR_BIT is defined in<climits> (17.2). 

2 If M < N, remaining bit positions are initialized to zero.

[lib.cons.bits.subt] 17.5.3.1.3bits< N>::bits(const string&, size_t, size_t)

bits(const string& str , size_t pos = 0, size_t n = NPOS);

1 Reports an out-of-range error ifpos > str.len . Otherwise, the function determines the effective
lengthrlen of the initializing string as the smaller ofn andstr.len - pos . The function then reports
an invalid-argument error if any of therlen characters instr beginning at positionpos is other than0
or 1.

2 Otherwise, the function constructs an object of classbits< N>, initializing the firstMbit positions to val-
ues determined from the corresponding characters in the stringstr . M is the smaller ofN andrlen . An
element of the constructed string has value zero if the corresponding character instr , beginning at posi-
tion pos , is 0. Otherwise, the element has the value one. Character positionpos + M - 1 corresponds
to bit position zero. Subsequent decreasing character positions correspond to increasing bit positions.

3 If M < N, remaining bit positions are initialized to zero.

[lib.bits::op&=.bt] 17.5.3.1.4bits< N>::operator&=(const bits< N>&)

bits< N>& operator&=(const bits< N>& rhs);

1 Clears each bit in*this for which the corresponding bit inrhs is clear, and leaves all other bits
unchanged. The function returns*this .

[lib.bits::op =.bt] 17.5.3.1.5bits< N>::operator|=(const bits< N>&)

bits< N>& operator|=(const bits< N>& rhs); 

1 Sets each bit in*this for which the corresponding bit inrhs is set, and leaves all other bits unchanged.
The function returns*this .

[lib.bits::opˆ=.bt] 17.5.3.1.6bits< N>::operator^=(const bits< N>&)

bits< N>& operator^=(const bits< N>& rhs);

1 Toggles each bit in*this for which the corresponding bit inrhs is set, and leaves all other bits
unchanged. The function returns*this .

[lib.bits::op.lsh=] 17.5.3.1.7bits< N>::operator<<=(size_t)

bits< N>& operator<<=(size_t pos);

17– 146 Library DRAFT: 27 May 1994 17.5.3.1.7
bits< N>::operator<<=(size_t)

1 Replaces each bit at positionI in *this with a value determined as follows:

— If I < pos , the new value is zero;

— If I >= pos , the new value is the previous value of the bit at positionI - pos .

2 The function returns*this .

[lib.bits::op.rsh=] 17.5.3.1.8bits< N>::operator>>=(size_t)

bits< N>& operator>>=(size_t pos);

1 Replaces each bit at positionI in *this with a value determined as follows:

— If pos >= N - I , the new value is zero;

— If pos < N - I , the new value is the previous value of the bit at positionI + pos .

2 The function returns*this .

[lib.bits::set] 17.5.3.1.9bits< N>::set()

bits< N>& set();

1 Sets all bits in*this . The function returns*this .

[lib.bits::set.n] 17.5.3.1.10bits< N>::set(size_t, int)

bits< N>& set(size_t pos , int val = 1);

1 Reports an out-of-range error ifpos does not correspond to a valid bit position. Otherwise, the function
stores a new value in the bit at positionpos in *this . If val is nonzero, the stored value is one, other-
wise it is zero. The function returns*this .

[lib.bits::reset] 17.5.3.1.11bits< N>::reset()

bits< N>& reset();

1 Resets all bits in*this . The function returns*this .

[lib.bits::reset.n] 17.5.3.1.12bits< N>::reset(size_t)

bits< N>& reset(size_t pos);

1 Reports an out-of-range error ifpos does not correspond to a valid bit position. Otherwise, the function
resets the bit at positionpos in *this . The function returns*this .

[lib.bits::op˜] 17.5.3.1.13bits< N>::operator~()

bits< N> operator~() const; 

1 Constructs an objectx of classbits< N> and initializes it with*this . The function then returns
x.toggle() .

17.5.3.1.14bits< N>::toggle() DRAFT: 27 May 1994 Library 17– 147

[lib.bits::toggle] 17.5.3.1.14bits< N>::toggle()

bits< N>& toggle();

1 Toggles all bits in*this . The function returns*this .

[lib.bits::toggle.n] 17.5.3.1.15bits< N>::toggle(size_t)

bits< N>& toggle(size_t pos);

1 Reports an out-of-range error ifpos does not correspond to a valid bit position. Otherwise, the function
toggles the bit at positionpos in *this . The function returns*this .

[lib.bits::to.ushort] 17.5.3.1.16bits< N>::to_ushort()

unsigned short to_ushort() const;

1 If the integral valuex corresponding to the bits in*this cannot be represented as typeunsigned
short , reports an overflow error. Otherwise, the function returnsx .

[lib.bits::to.ulong] 17.5.3.1.17bits< N>::to_ulong()

unsigned long to_ulong() const;

1 If the integral valuex corresponding to the bits in*this cannot be represented as typeunsigned
long , reports an overflow error. Otherwise, the function returnsx .

[lib.bits::to.string] 17.5.3.1.18bits< N>::to_string()

string to_string() const;

1 Constructs an object of typestring and initializes it to a string of lengthN characters. Each character is
determined by the value of its corresponding bit position in*this . Character positionN - 1 corre-
sponds to bit position zero. Subsequent decreasing character positions correspond to increasing bit posi-
tions. Bit value zero becomes the character0, bit value one becomes the character1.

2 The function returns the created object.

[lib.bits::count] 17.5.3.1.19bits< N>::count()

size_t count() const;

1 Returns a count of the number of bits set in*this .

[lib.bits::length] 17.5.3.1.20bits< N>::length()

size_t length() const;

1 ReturnsN.

[lib.bits::op==.bt] 17.5.3.1.21bits< N>::operator==(const bits< N>&)

bool operator==(const bits< N>& rhs) const; 

1 Returns a nonzero value if the value of each bit in*this equals the value of the corresponding bit inrhs .

17– 148 Library DRAFT: 27 May 1994 17.5.3.1.22
bits< N>::operator!=(const bits< N>&)

[lib.bits::op!=.bt] 17.5.3.1.22bits< N>::operator!=(const bits< N>&)

bool operator!=(const bits< N>& rhs) const; 

1 Returns a nonzero value if!(*this == rhs) .

[lib.bits::test] 17.5.3.1.23bits< N>::test(size_t)

bool test(size_t pos) const; 

1 Reports an out-of-range error ifpos does not correspond to a valid bit position. Otherwise, the function
returns a nonzero value if the bit at positionpos in *this has the value one.

[lib.bits::any] 17.5.3.1.24bits< N>::any()

bool any() const; 

1 Returns a nonzero value if any bit in*this is one.

[lib.bits::none] 17.5.3.1.25bits< N>::none()

bool none() const; 

1 Returns a nonzero value if no bit in*this is one.

[lib.bits::op.lsh] 17.5.3.1.26bits< N>::operator<<(size_t)

bits< N> operator<<(size_t pos) const;

1 Returnsbits< N>(*this) <<= pos .

[lib.bits::op.rsh] 17.5.3.1.27bits< N>::operator>>(size_t)

bits< N> operator>>(size_t pos) const;

1 Returnsbits< N>(*this) >>= pos .

[lib.op&.bt.bt] 17.5.3.2operator&(const bits< N>&, const bits< N>&)

bits< N> operator&(const bits< N>& lhs , const bits< N>& rhs);

1 Returnsbits< N>(lhs) &= pos .

[lib.op.bt.bt] 17.5.3.3operator|(const bits< N>&, const bits< N>&)

bits< N> operator|(const bits< N>& lhs , const bits< N>& rhs);

1 Returnsbits< N>(lhs) |= pos .

[lib.opˆ.bt.bt] 17.5.3.4operator^(const bits< N>&, const bits< N>&)

bits< N> operator^(const bits< N>& lhs , const bits< N>& rhs);

1 Returnsbits< N>(lhs) ^= pos .

17.5.3.5 DRAFT: 27 May 1994 Library 17– 149
operator>>(istream&, bits< N>&)

[lib.ext.bt] 17.5.3.5operator>>(istream&, bits< N>&)

istream& operator>>(istream& is , bits< N>& x);

1 A formatted input function, extracts up toN (single-byte) characters fromis . The function stores these
characters in a temporary objectstr of type string , then evaluates the expressionx =
bits< N>(str) . Characters are extracted and stored until any of the following occurs:

— Ncharacters have been extracted and stored;

— end-of-file occurs on the input sequence;

— the next input character is neither0 or 1 (in which case the input character is not extracted).

2 If no characters are stored instr , the function callsis .setstate(ios::failbit) .

3 The function returnsis .

[lib.ins.bt] 17.5.3.6operator<<(ostream&, const bits< N>&)

ostream& operator<<(ostream& os , const bits< N>& x);

1 Returnsos << x.to_string() .

[lib.header.bitstring] 17.5.4 Header<bitstring>

1 The header<bitstring> defines a class and several function signatures for representing and manipulat-
ing varying-length sequences of bits. 

[lib.bit.string]17.5.4.1 Classbit_string 

Box 134

Library WG issue: Charles Allison, August 26, 1993

I don’t appreciate the need for areserve() function. I need someone to convince me. 

Recommend (Library WG meeting, San Diego, 3/8/94): 

For symmetry with strings: 
Get rid ofbitstring::trim() . 
Add bitstring::reserve() ._ ___













_ ___













17– 150 Library DRAFT: 27 May 1994 17.5.4.1 Classbit_string

class bit_string { 
public:

bit_string(); 
bit_string(unsigned long val , size_t n); 
bit_string(const bit_string& str , size_t pos = 0, size_t n = NPOS); 
bit_string(const string& str , size_t pos = 0, size_t n = NPOS); 
bit_string& operator+=(const bit_string& rhs); 
bit_string& operator&=(const bit_string& rhs); 
bit_string& operator|=(const bit_string& rhs); 
bit_string& operator^=(const bit_string& rhs); 
bit_string& operator<<=(size_t pos); 
bit_string& operator>>=(size_t pos); 
bit_string& append(const bit_string& str , pos = 0, n = NPOS); 
bit_string& assign(const bit_string& str , pos = 0, n = NPOS); 
bit_string& insert(size_t pos1 , const bit_string& str , 

size_t pos2 = 0, size_t n = NPOS);
bit_string& remove(size_t pos = 0, size_t n = NPOS); 
bit_string& replace(size_t pos1 , size_t n1, const bit_string& str , 

size_t pos2 = 0, size_t n2 = NPOS);
bit_string& set(); 
bit_string& set(size_t pos , bool val = 1); 
bit_string& reset(); 
bit_string& reset(size_t pos); 
bit_string& toggle(); 
bit_string& toggle(size_t pos); 
string to_string() const;
size_t count() const;
size_t length() const;
size_t resize(size_t n, bool val = 0); 
size_t trim();
size_t find(bool val , size_t pos = 0, size_t n = NPOS) const; 
size_t rfind(bool val , size_t pos = 0, size_t n = NPOS) const; 
bit_string substr(size_t pos , size_t n = NPOS) const; 
bool operator==(const bit_string& rhs) const; 
bool operator!=(const bit_string& rhs) const; 
bool test(size_t pos) const; 
bool any() const; 
bool none() const; 
bit_string operator<<(size_t pos) const; 
bit_string operator>>(size_t pos) const; 
bit_string operator~() const; 

private:
// char* ptr ; exposition only
// size_t len ; exposition only
};

1 The classbit_string describes an object that can store a sequence consisting of a varying number of
bits. Such a sequence is also called abit string (or simply astring if the type of the elements is clear from
context). Storage for the string is allocated and freed as necessary by the member functions of class
bit_string .

2 Each bit represents either the value zero (reset) or one (set). Totogglea bit is to change the value zero to
one, or the value one to zero. Each bit has a non-negative positionpos . When converting between an
object of classbit_string of length len and a value of some integral type, bit positionpos corre- 
sponds to thebit value1 << (len - pos - 1) .123) The integral value corresponding to two or more
bits is the sum of their bit values.

123)Note that bit position zero is themost-significantbit for an object of classbit_string , while it is theleast-significantbit for an 
object of classbits< N>.

17.5.4.1 Classbit_string DRAFT: 27 May 1994 Library 17– 151

3 For the sake of exposition, the maintained data is presented here as:

— char* ptr , points to the sequence of bits, stored one bit per element;124)

— size_t len , the length of the bit sequence.

4 The functions described in this subclause can report three kinds of errors, each associated with a distinct
exception:

— an invalid-argumenterror is associated with exceptions of typeinvalid_argument ; 

— a lengtherror is associated with exceptions of typelength_error ; 

— anout-of-rangeerror is associated with exceptions of typeout_of_range . 

5 To report one of these errors, the function evaluates the expressionex .raise() , whereex is an object of
the associated exception type. 

[lib.cons.bit.string]17.5.4.1.1bit_string::bit_string() 

bit_string(); 

1 Constructs an object of classbit_string , initializing: 

— ptr to an unspecified value;

— len to zero.

[lib.cons.bit.string.ul]17.5.4.1.2bit_string::bit_string(unsigned long, size_t) 

bit_string(unsigned long val , size_t n); 

1 Reports a length error ifn equals NPOS. Otherwise, the function constructs an object of class
bit_string and determines its initial string value fromval . If val is zero, the corresponding string is
the empty string. Otherwise, the corresponding string is the shortest sequence of bits with the same bit
value asval . If the corresponding string is shorter thann, the string is extended with elements whose val-
ues are all zero. Thus, the function initializes:

— ptr to point at the first element of the string;

— len to the length of the string.

[lib.cons.bit.string.bs]17.5.4.1.3bit_string::bit_string(const bit_string&, 
size_t, size_t) 

bit_string(const bit_string& str , size_t pos = 0, size_t n = NPOS); 

1 Reports an out-of-range error ifpos > str.len . Otherwise, the function constructs an object of class
bit_string and determines the effective lengthrlen of the initial string value as the smaller ofn and 
str.len - pos . Thus, the uunction initializes:

— ptr to point at the first element of an allocated copy ofrlen elements of the string controlled bystr
beginning at positionpos ;

— len to rlen .

124)An implementation is, of course, free to store the bit sequence more efficiently.

17– 152 Library DRAFT: 27 May 1994 17.5.4.1.3
bit_string::bit_string(const bit_string&, size_t, size_t)

[lib.cons.bit.string.sub]17.5.4.1.4bit_string::bit_string(const string&, size_t, 
size_t) 

bit_string(const string& str , size_t pos = 0, size_t n = NPOS); 

1 Reports an out-of-range error ifpos > str.len . Otherwise, the function determines the effective
lengthrlen of the initializing string as the smaller ofn andstr.len - pos . The function then reports
an invalid-argument error if any of therlen characters instr beginning at positionpos is other than0
or 1.

2 Otherwise, the function constructs an object of classbit_string and determines its initial string value
from str . The length of the constructed string isrlen . An element of the constructed string has value
zero if the corresponding character instr , beginning at positionpos , is 0. Otherwise, the element has the
value one.

3 Thus, the function initializes:

— ptr to point at the first element of the string;

— len to rlen .

[lib.bit.string::op+=.bs]17.5.4.1.5bit_string::operator+=(const bit_string&) 

bit_string& operator+=(const bit_string& rhs); 

1 Reports a length error iflen >= NPOS - rhs.len .

2 Otherwise, the function replaces the string controlled by*this with a string of lengthlen + rhs.len
whose firstlen elements are a copy of the original string controlled by*this and whose remaining ele-
ments are a copy of the elements of the string controlled byrhs .

3 The function returns*this . 

[lib.bit.string::op&=.bs]17.5.4.1.6bit_string::operator&=(const bit_string&) 

bit_string& operator&=(const bit_string& rhs); 

1 Determines a lengthrlen which is the larger oflen andrhs.len , then behaves as if the shorter of the
two strings controlled by*this andrhs were temporarily extended to lengthrlen by adding elements
all with value zero. The function then replaces the string controlled by*this with a string of length
rlen whose elements have the value one only if both of the corresponding elements of*this andrhs
are one.

2 The function returns*this . 

[lib.bit.string::op =.bs]17.5.4.1.7bit_string::operator|=(const bit_string&) 

bit_string& operator|=(const bit_string& rhs); 

1 Determines a lengthrlen which is the larger oflen andrhs.len , then behaves as if the shorter of the
two strings controlled by*this andrhs were temporarily extended to lengthrlen by adding elements
all with value zero. The function then replaces the string controlled by*this with a string of length
rlen whose elements have the value one only if either of the corresponding elements of*this andrhs
are one.

2 The function returns*this . 

17.5.4.1.8 DRAFT: 27 May 1994 Library 17– 153
bit_string::operator^=(const bit_string&)

[lib.bit.string::opˆ=.bs]17.5.4.1.8bit_string::operator^=(const bit_string&) 

bit_string& operator^=(const bit_string& rhs); 

1 Determines a lengthrlen which is the larger oflen andrhs.len , then behaves as if the shorter of the
two strings controlled by*this andrhs were temporarily extended to lengthrlen by adding elements
all with value zero. The function then replaces the string controlled by*this with a string of length
rlen whose elements have the value one only if the corresponding elements of*this andrhs have dif-
ferent values.

2 The function returns*this . 

[lib.bit.string::op.lsh=]17.5.4.1.9bit_string::operator<<=(size_t) 

bit_string& operator<<=(size_t pos); 

1 Replaces each element at positionI in the string controlled by*this with a value determined as follows:

— If pos >= len - I , the new value is zero;

— If pos < len - I , the new value is the previous value of the element at positionI + pos .

2 The function returns*this . 

[lib.bit.string::op.rsh=]17.5.4.1.10bit_string::operator>>=(size_t) 

bit_string& operator>>=(size_t pos); 

1 Replaces each element at positionI in the string controlled by*this with a value determined as follows:

— If I < pos , the new value is zero;

— If I >= pos , the new value is the previous value of the element at positionI - pos .

[lib.bit.string::append]17.5.4.1.11bit_string::append(const bit_string&, 
size_t, size_t) 

bit_string& append(const bit_string& str , size_t pos = 0, 
size_t n = NPOS);

1 Reports an out-of-range error ifpos > str.len . Otherwise, the function determines the effective
lengthrlen of the string to append as the smaller ofn andstr.len - pos . The function then reports
a length error iflen >= NPOS - rlen .

2 Otherwise, the function replaces the string controlled by*this with a string of lengthlen + rlen
whose firstlen elements are a copy of the original string controlled by*this and whose remaining ele-
ments are a copy of the initial elements of the string controlled bystr beginning at positionpos .

3 The function returns*this . 

[lib.bit.string::assign]17.5.4.1.12bit_string::assign(const bit_string&, size_t, 
size_t) 

bit_string& assign(const bit_string& str , size_t pos = 0, 
size_t n = NPOS);

1 Reports an out-of-range error ifpos > str.len . Otherwise, the function determines the effective
lengthrlen of the string to assign as the smaller ofn andstr.len - pos .

17– 154 Library DRAFT: 27 May 1994 17.5.4.1.12
bit_string::assign(const bit_string&, size_t, size_t)

2 The function then replaces the string controlled by*this with a string of lengthrlen whose elements are
a copy of the string controlled bystr beginning at positionpos .

3 The function returns*this . 

[lib.bit.string::insert]17.5.4.1.13bit_string::insert(size_t, const bit_string&, 
size_t, size_t) 

bit_string& insert(size_t pos1 , const bit_string& str , size_t pos2 = 0, 
size_t n = NPOS);

1 Reports an out-of-range error ifpos1 > len or pos2 > str.len . Otherwise, the function deter-
mines the effective lengthrlen of the string to insert as the smaller ofn andstr.len - pos2 . The
function then reports a length error iflen >= NPOS - rlen .

2 Otherwise, the function replaces the string controlled by*this with a string of lengthlen + rlen
whose firstpos1 elements are a copy of the initial elements of the original string controlled by*this ,
whose nextrlen elements are a copy of the elements of the string controlled bystr beginning at position
pos2 , and whose remaining elements are a copy of the remaining elements of the original string controlled
by *this .

3 The function returns*this . 

[lib.bit.string::remove]17.5.4.1.14bit_string::remove(size_t, size_t) 

bit_string& remove(size_t pos = 0, size_t n = NPOS); 

1 Reports an out-of-range error ifpos > len . Otherwise, the function determines the effective length
xlen of the string to be removed as the smaller ofn andlen - pos .

2 The function then replaces the string controlled by*this with a string of lengthlen - xlen whose
first pos elements are a copy of the initial elements of the original string controlled by*this , and whose
remaining elements are a copy of the elements of the original string controlled by*this beginning at
positionpos + xlen .

3 The function returns*this . 

[lib.bit.string::replace]17.5.4.1.15bit_string::replace(size_t, size_t, 
const bit_string&, size_t, size_t) 

bit_string& replace(size_t pos1 , size_t n1, const bit_string& str , 
size_t pos2 = 0, size_t n2 = NPOS);

1 Reports an out-of-range error ifpos1 > len or pos2 > str.len . Otherwise, the function deter-
mines the effective lengthxlen of the string to be removed as the smaller ofn1 and len - pos1 . It
also determines the effective lengthrlen of the string to be inserted as the smaller ofn2 andstr.len -
pos2 . The function then reports a length error iflen - xlen >= NPOS - rlen .

2 Otherwise, the function replaces the string controlled by*this with a string of lengthlen - xlen +
rlen whose firstpos1 elements are a copy of the initial elements of the original string controlled by
*this , whose nextrlen elements are a copy of the initial elements of the string controlled bystr
beginning at positionpos2 , and whose remaining elements are a copy of the elements of the original string
controlled by*this beginning at positionpos1 + xlen .

3 The function returns*this . 

17.5.4.1.16bit_string::set() DRAFT: 27 May 1994 Library 17– 155

[lib.bit.string::set]17.5.4.1.16bit_string::set() 

bit_string& set(); 

1 Sets all elements of the string controlled by*this . The function returns*this . 

[lib.bit.string::set.n]17.5.4.1.17bit_string::set(size_t, bool) 

bit_string& set(size_t pos , bool val = 1); 

1 Reports an out-of-range error ifpos > len . Otherwise, ifpos == len , the function replaces the
string controlled by*this with a string of lengthlen + 1 whose firstlen elements are a copy of the
original string and whose remaining element is set according toval . Otherwise, the function sets the ele-
ment at positionpos in the string controlled by*this . If val is nonzero, the stored value is one, other-
wise it is zero. The function returns*this . 

[lib.bit.string::reset]17.5.4.1.18bit_string::reset() 

bit_string& reset(); 

1 Resets all elements of the string controlled by*this . The function returns*this . 

[lib.bit.string::reset.n]17.5.4.1.19bit_string::reset(size_t) 

bit_string& reset(size_t pos); 

1 Reports an out-of-range error ifpos > len . Otherwise, ifpos == len , the function replaces the
string controlled by*this with a string of lengthlen + 1 whose firstlen elements are a copy of the
original string and whose remaining element is zero. Otherwise, the function resets the element at position
pos in the string controlled by*this . 

[lib.bit.string::toggle]17.5.4.1.20bit_string::toggle() 

bit_string& toggle(); 

1 Toggles all elements of the string controlled by*this . The function returns*this . 

[lib.bit.string::toggle.n]17.5.4.1.21bit_string::toggle(size_t) 

bit_string& toggle(size_t pos); 

1 Reports an out-of-range error ifpos >= len . Otherwise, the function toggles the element at position
pos in *this . 

[lib.bit.string::to.string]17.5.4.1.22bit_string::to_string() 

string to_string() const;

1 Creates an object of typestring and initializes it to a string of lengthlen characters. Each character is
determined by the value of its corresponding element in the string controlled by*this . Bit value zero
becomes the character0, bit value one becomes the character1.

2 The function returns the created object. 

17– 156 Library DRAFT: 27 May 1994 17.5.4.1.23bit_string::count()

[lib.bit.string::count]17.5.4.1.23bit_string::count() 

size_t count() const;

1 Returns a count of the number of elements set in the string controlled by*this . 

[lib.bit.string::length]17.5.4.1.24bit_string::length() 

size_t length() const;

1 Returnslen . 

[lib.bit.string::resize]17.5.4.1.25bit_string::resize(size_t, bool) 

size_t resize(size_t n, bool val = 0); 

1 Reports a length error ifn equalsNPOS. Otherwise, the function alters the length of the string controlled
by *this as follows:

— If n <= len , the function replaces the string controlled by*this with a string of lengthn whose
elements are a copy of the initial elements of the original string controlled by*this .

— If n > len , the function replaces the string controlled by*this with a string of lengthn whose first
len elements are a copy of the original string controlled by*this , and whose remaining elements all
have the value one ifval is nonzero, or zero otherwise.

2 The function returns the previous value oflen . 

[lib.bit.string::trim]17.5.4.1.26bit_string::trim() 

size_t trim();

1 Determines the highest positionpos of an element with value one in the string controlled by*this , if
possible. If no such position exists, the function replaces the string with an empty string (len is zero).
Otherwise, the function replaces the string with a string of lengthpos + 1 whose elements are a copy of
the initial elements of the original string controlled by*this .

2 The function returns the new value oflen . 

[lib.bit.string::find]17.5.4.1.27bit_string::find(bool, size_t, size_t) 

size_t find(bool val , size_t pos = 0, size_t n = NPOS) const; 

1 ReturnsNPOSif pos >= len . Otherwise, the function determines the effective lengthrlen of the 
string to be scanned as the smaller ofn and len - pos . The function then determines the lowest posi-
tion xpos , if possible, such that both of the following conditions obtain:

— pos <= xpos ;

— The element at positionxpos in the string controlled by*this is one ifval is nonzero, or zero other-
wise.

2 If the function can determine such a value forxpos , it returnsxpos . Otherwise, it returnsNPOS. 

17.5.4.1.28 DRAFT: 27 May 1994 Library 17– 157
bit_string::rfind(bool, size_t, size_t)

[lib.bit.string::rfind]17.5.4.1.28bit_string::rfind(bool, size_t, size_t) 

size_t rfind(bool val , size_t pos = 0, size_t n = NPOS) const; 

1 ReturnsNPOSif pos >= len . Otherwise, the function determines the effective lengthrlen of the 
string to be scanned as the smaller ofn and len - pos . The function then determines the highest posi-
tion xpos , if possible, such that both of the following conditions obtain:

— pos <= xpos ;

— The element at positionxpos in the string controlled by*this is one ifval is nonzero, or zero other-
wise.

2 If the function can determine such a value forxpos , it returnsxpos . Otherwise, it returnsNPOS. 

[lib.bit.string::substr]17.5.4.1.29bit_string::substr(size_t, size_t) 

bit_string substr(size_t pos , size_t n = NPOS) const; 

1 Returnsbit_string(*this, pos , n) . 

[lib.bit.string::op==.bs]17.5.4.1.30bit_string::operator==(const bit_string&) 

bool operator==(const bit_string& rhs) const; 

1 Returns zero iflen != rhs.len or if the value of any element of the string controlled by*this dif-
fers from the value of the corresponding element of the string controlled byrhs . 

[lib.bit.string::op!=.bs]17.5.4.1.31bit_string::operator!=(const bit_string&) 

bool operator!=(const bit_string& rhs) const; 

1 Returns a nonzero value if!(*this == rhs) . 

[lib.bit.string::test]17.5.4.1.32bit_string::test(size_t) 

bool test(size_t pos) const; 

1 Reports an out-of-range error ifpos >= len . Otherwise, the function returns a nonzero value if the ele-
ment at positionpos in the string controlled by*this is one. 

[lib.bit.string::any]17.5.4.1.33bit_string::any() 

bool any() const; 

1 Returns a nonzero value if any bit is set in the string controlled by*this . 

[lib.bit.string::none]17.5.4.1.34bit_string::none() 

bool none() const; 

1 Returns a nonzero value if no bit is set in the string controlled by*this . 

[lib.bit.string::op.lsh]17.5.4.1.35bit_string::operator<<(size_t) 

bit_string operator<<(size_t pos) const; 

1 Constructs an objectx of classbit_string and initializes it with*this . The function then returnsx 
<<= pos . 

17– 158 Library DRAFT: 27 May 1994 17.5.4.1.36
bit_string::operator>>(size_t)

[lib.bit.string::op.rsh]17.5.4.1.36bit_string::operator>>(size_t) 

bit_string operator>>(size_t pos) const; 

1 Constructs an objectx of classbit_string and initializes it with*this . The function then returnsx 
>>= pos . 

[lib.bit.string::op˜]17.5.4.1.37bit_string::operator~() 

bit_string operator~() const; 

1 Constructs an objectx of classbit_string and initializes it with*this . The function then returns
x.toggle() . 

[lib.op+.bs.bs]17.5.4.2operator+(const bit_string&, const bit_string&) 

bit_string operator+(const bit_string& lhs , const bit_string& rhs); 

1 Constructs an objectx of classbit_string and initializes it withlhs . The function then returnsx += 
rhs . 

[lib.op&.bs.bs]17.5.4.3operator&(const bit_string&, const bit_string&) 

bit_string operator&(const bit_string& lhs , const bit_string& rhs); 

1 Constructs an objectx of classbit_string and initializes it withlhs . The function then returnsx &= 
rhs . 

[lib.op.bs.bs]17.5.4.4operator|(const bit_string&, const bit_string&) 

bit_string operator|(const bit_string& lhs , const bit_string& rhs); 

1 Constructs an objectx of classbit_string and initializes it withlhs . The function then returnsx |= 
rhs . 

[lib.opˆ.bs.bs]17.5.4.5operator^(const bit_string&, const bit_string&) 

bit_string operator^(const bit_string& lhs , const bit_string& rhs); 

1 Constructs an objectx of classbit_string and initializes it withlhs . The function then returnsx ^= 
rhs . 

[lib.ext.bs]17.5.4.6operator>>(istream&, bit_string&) 

istream& operator>>(istream& is , bit_string& x); 

1 A formatted input function, extracts up toNPOS - 1 (single-byte) characters fromis . The function
behaves as if it stores these characters in a temporary objectstr of type string , then evaluates the
expressionx = bit_string(str) . Characters are extracted and stored until any of the following
occurs:

— NPOS - 1 characters have been extracted and stored;

— end-of-file occurs on the input sequence;

— the next character to read is neither0 or 1 (in which case the input character is not extracted).

2 If no characters are stored instr , the function callsis .setstate(ios::failbit) .

17.5.4.6 DRAFT: 27 May 1994 Library 17– 159
operator>>(istream&, bit_string&)

3 The function returnsis . 

[lib.ins.bs]17.5.4.7operator<<(ostream&, const bit_string&) 

ostream& operator<<(ostream& os , const bit_string& x); 

1 Returnsos << x.to_string() .

[lib.header.dynarray] 17.5.5 Header<dynarray>

1 The header<dynarray> defines a template class and several related functions for representing and
manipulating varying-size sequences of some object typeT. 

[lib.template.dyn.array]17.5.5.1 Template classdyn_array< T> 

Box 135 ∗
Library WG issue: Uwe Steinm

. .
uller, January 21, 1994

missing 
~dynarray()
dynarray<T>& operator=(const dynarray<T>&);_ __








_ __








Box 136

Library WG issue: Dag Br
. .
uck, December 12, 1993

The introduction (17.5.5.1) should have a summary of all operations that resize the array and possibly move
its elements._ __







_ __







17– 160 Library DRAFT: 27 May 1994 17.5.5.1 Template classdyn_array< T>

template<class T> class dyn_array { 
public:

dyn_array(); 
dyn_array(size_t size , capacity cap); 
dyn_array(const dyn_array< T>& arr); 
dyn_array(const T& obj , size_t rep = 1); 
dyn_array(const T* parr , size_t n); 
dyn_array< T>& operator+=(const dyn_array< T>& rhs); 
dyn_array< T>& operator+=(const T& obj); 
dyn_array< T>& append(const T& obj , size_t rep = 1); 
dyn_array< T>& append(const T* parr , size_t n = 1); 
dyn_array< T>& assign(const T& obj , size_t rep = 1); 
dyn_array< T>& assign(const T* parr , size_t n = 1); 
dyn_array< T>& insert(size_t pos , const dyn_array< T>& arr); 
dyn_array< T>& insert(size_t pos , const T& obj , size_t rep = 1); 
dyn_array< T>& insert(size_t pos , const T* parr , size_t n = 1); 
dyn_array< T>& remove(size_t pos = 0, size_t n = NPOS); 
dyn_array< T>& sub_array(dyn_array< T>& arr , size_t pos , 

size_t n = NPOS);
void swap(dyn_array< T>& arr); 
const T& get_at(size_t pos) const;
void put_at(size_t pos , const T& obj);
T& operator[](size_t pos);
const T& operator[](size_t pos) const;
T* data(); 
const T* data() const; 
size_t length() const;
void resize(size_t n);
void resize(size_t n, const T& obj);
size_t reserve() const;
void reserve(size_t res_arg);

private:
// T* ptr ; exposition only
// size_t len , res ; exposition only
};

1 The template classdyn_array< T> describes an object that can store a sequence consisting of a varying
number of objects of typeT. The first element of the sequence is at position zero. Such a sequence is also
called adynamic array.An object of typeT shall have:

— a default constructorT() ;

— a copy constructorT(const T&) ;

— an assignment operatorT& operator=(const T&) ;

— a destructor~T() .

2 For the function signatures described in this subclause:

— it is unspecified whether an operation described in this subclause as initializing an object of typeT with
a copy calls its copy constructor, calls its default constructor followed by its assignment operator, or
does nothing to an object that is already properly initialized;

— it is unspecified how many times objects of typeT are copied, or constructed and destroyed.125) 

125)Objects that cannot tolerate this uncertainty, or that fail to meet the stated requirements, can sometimes be organized into dynamic
arrays through the intermediary of an object of classptrdyn_array< T>. 

17.5.5.1 Template classdyn_array< T> DRAFT: 27 May 1994 Library 17– 161

3 For the sake of exposition, the maintained data is presented here as:

— T * ptr , points to the sequence of objects;

— size_t len , counts the number of objects currently in the sequence;

— size_t res , for an unallocated sequence, holds the recommended allocation size of the sequence,
while for an allocated sequence, becomes the currently allocated size.

4 In all cases,len <= res .

5 The functions described in this subclause can report three kinds of errors, each associated with a distinct
exception:

— an invalid-argumenterror is associated with exceptions of typeinvalid_argument ; 

— a lengtherror is associated with exceptions of typelength_error . 

— anout-of-rangeerror is associated with exceptions of typeout_of_range ; 

6 To report one of these errors, the function evaluates the expressionex .raise() , whereex is an object of
the associated exception type. 

[lib.cons.dyn.array]17.5.5.1.1dyn_array< T>::dyn_array() 

dyn_array(); 

1 Constructs an object of classdyn_array< T>, initializing: 

— ptr to an unspecified value;

— len to zero;

— res to an unspecified value.

[lib.cons.dyn.array.cap]17.5.5.1.2dyn_array< T>::dyn_array(size_t, capacity) 

dyn_array(size_t size , capacity cap); 

1 Reports a length error ifsize equalsNPOSandcap is default_size . Otherwise, the function con-
structs an object of classdyn_array< T>. If cap is default_size , the function initializes: 

— ptr to point at the first element of an allocated array ofsize elements of typeT, each initialized with
the default constructor for typeT;

— len to size ;

— res to a value at least as large aslen . 

2 Otherwise,cap shall bereserve and the function initializes:

— ptr to an unspecified value;

— len to zero;

— res to size .

17– 162 Library DRAFT: 27 May 1994 17.5.5.1.3
dyn_array< T>::dyn_array(const dyn_array< T>&)

[lib.cons.dyn.array.da]17.5.5.1.3dyn_array< T>::dyn_array(const dyn_array< T>&) 

dyn_array(const dyn_array< T>& arr); 

1 Constructs an object of classdyn_array< T> and determines its initial dynamic array value by copying
the elements from the dynamic array designated byarr . Thus, the function initializes:

— ptr to point at the first element of an allocated array ofarr.len elements of typeT, each initialized
with a copy of the corresponding element from the dynamic array designated byarr ;

— len to arr.len ;

— res to a value at least as large aslen . 

[lib.cons.dyn.array.t]17.5.5.1.4dyn_array< T>::dyn_array(const T&, size_t) 

dyn_array(const T& obj , size_t rep = 1); 

1 Reports a length error ifrep equals NPOS. Otherwise, the function constructs an object of class
dyn_array< T> and determines its initial dynamic array value by copyingobj into all rep values.
Thus, the function initializes:

— ptr to point at the first element of an allocated array ofrep elements of typeT, each initialized by
copyingobj ;

— len to rep ;

— res to a value at least as large aslen . 

[lib.cons.dyn.array.pt]17.5.5.1.5dyn_array< T>::dyn_array(const T*, size_t) 

dyn_array(const T* parr , size_t n); 

1 Reports a length error ifn equalsNPOS. Otherwise, the function reports an invalid-argument error ifparr
is a null pointer. Otherwise,parr shall designate the first element of an array of at leastn elements of
typeT.

2 The function then constructs an object of classdyn_array< T> and determines its initial dynamic array
value by copying the elements from the array designated byparr . Thus, the function initializes:

— ptr to point at the first element of an allocated array ofn elements of typeT, each initialized with a
copy of the corresponding element from the array designated byparr ;

— len to n;

— res to a value at least as large aslen . 

[lib.dyn.array::op+=.da]17.5.5.1.6 
dyn_array< T>::operator+=(const dyn_array< T>&) 

17.5.5.1.6 DRAFT: 27 May 1994 Library 17– 163
dyn_array< T>::operator+=(const dyn_array< T>&)

Box 137

Library WG issue: Dag Br
. .
uck, December 12, 1993

I find it very questionable that dynarray is allowed to do initialization as a sequence of default constructor +
assignment. We know how to get around that problem (new with placement syntax). However, I under-
stand that the library WG has been through all this before, but I really don’t like it. 

Comment (Library WG meeting, San Diego, 3/8/94): 

What do we say about whether the default constructor is used, followed by assignment; versus using the
copy constructor?_ __














_ __














dyn_array< T>& operator+=(const dyn_array< T>& rhs); 

1 Reports a length error iflen >= NPOS - rhs.len . Otherwise, the function replaces the dynamic
array designated by*this with a dynamic array of lengthlen + rhs.len whose firstlen elements
are a copy of the original dynamic array designated by*this and whose remaining elements are a copy of
the elements of the dynamic array designated byrhs .

2 The function returns*this . 

[lib.dyn.array::op+=.t]17.5.5.1.7dyn_array< T>::operator+=(const T&) 

dyn_array< T>& operator+=(const T& obj); 

1 Returnsappend(obj) . 

[lib.dyn.array::append.t]17.5.5.1.8dyn_array< T>::append(const T&, size_t) 

dyn_array< T>& append(const T& obj , size_t rep = 1); 

1 Reports a length error iflen >= NPOS - rep . Otherwise, the function replaces the dynamic array des-
ignated by*this with a dynamic array of lengthlen + rep whose firstlen elements are a copy of the
original dynamic array designated by*this and whose remaining elements are each a copy ofobj .

2 The function returns*this . 

[lib.dyn.array::append.pt]17.5.5.1.9dyn_array< T>::append(const T*, size_t) 

dyn_array< T>& append(const T* parr , size_t n = 1); 

1 Reports a length error iflen >= NPOS - n. Otherwise, the function reports an invalid-argument error
if n > 0 andparr is a null pointer. Otherwise,parr shall designate the first element of an array of at
leastn elements of typeT.

2 The function then replaces the dynamic array designated by*this with a dynamic array of lengthlen +
n whose firstlen elements are a copy of the original dynamic array designated by*this and whose
remaining elements are a copy of the initial elements of the array designated byparr .

3 The function returns*this . 

[lib.dyn.array::assign.t]17.5.5.1.10dyn_array< T>::assign(const T&, size_t) 

dyn_array< T>& assign(const T& obj , size_t rep = 1); 

1 Reports a length error ifrep == NPOS. Otherwise, the function replaces the dynamic array designated
by *this with a dynamic array of lengthrep each of whose elements is a copy ofobj .

17– 164 Library DRAFT: 27 May 1994 17.5.5.1.10
dyn_array< T>::assign(const T&, size_t)

2 The function returns*this . 

[lib.dyn.array::assign.pt]17.5.5.1.11dyn_array< T>::assign(const T*, size_t) 

dyn_array< T>& assign(const T* parr , size_t n = 1); 

1 Reports a length erroriifn == NPOS. Otherwise, the function reports an invalid-argument error ifn > 0 
andparr is a null pointer. Otherwise,parr shall designate the first element of an array of at leastn ele- 
ments of typeT.

2 The function then replaces the dynamic array designated by*this with a dynamic array of lengthn
whose elements are a copy of the initial elements of the array designated byparr .

3 The function returns*this . 

[lib.dyn.array::insert.da]17.5.5.1.12dyn_array< T>::insert(size_t, 
const dyn_array< T>&) 

dyn_array< T>& insert(size_t pos , const dyn_array< T>& arr); 

1 Reports an out-of-range error ifpos > len . Otherwise, the function reports a length error iflen >=
NPOS - arr.len .

2 Otherwise, the function replaces the dynamic array designated by*this with a dynamic array of length
len + arr.len whose firstpos elements are a copy of the initial elements of the original dynamic
array designated by*this , whose nextarr.len elements are a copy of the initial elements of the
dynamic array designated byarr , and whose remaining elements are a copy of the remaining elements of
the original dynamic array designated by*this .

3 The function returns*this . 

[lib.dyn.array::insert.t]17.5.5.1.13dyn_array< T>::insert(size_t, const T&, 
size_t) 

dyn_array< T>& insert(size_t pos , const T& obj , size_t rep = 1); 

1 Reports an out-of-range error ifpos > len . Otherwise, the function reports a length error iflen >=
NPOS - rep .

2 Otherwise, the function replaces the dynamic array designated by*this with a dynamic array of length
len + rep whose firstpos elements are a copy of the initial elements of the original dynamic array des-
ignated by*this , whose nextrep elements are each a copy ofobj , and whose remaining elements are a
copy of the remaining elements of the original dynamic array designated by*this .

3 The function returns*this . 

[lib.dyn.array::insert.pt]17.5.5.1.14dyn_array< T>::insert(size_t, const T*, 
size_t) 

dyn_array< T>& insert(size_t pos , const T* parr , size_t n = 1); 

1 Reports an out-of-range error ifpos > len . Otherwise, the function reports a length error iflen >=
NPOS - n. Otherwise, the function reports an invalid-argument error ifn > 0 and parr is a null 
pointer. Otherwise,parr shall designate the first element of an array of at leastn elements of typeT.

2 The function then replaces the dynamic array designated by*this with a dynamic array of lengthlen +
n whose firstpos elements are a copy of the initial elements of the original dynamic array designated by
*this , whose nextn elements are a copy of the initial elements of the array designated byparr , and
whose remaining elements are a copy of the remaining elements of the original dynamic array designated
by *this .

17.5.5.1.14 DRAFT: 27 May 1994 Library 17– 165
dyn_array< T>::insert(size_t, const T*, size_t)

3 The function returns*this . 

[lib.dyn.array::remove]17.5.5.1.15dyn_array< T>::remove(size_t, size_t) 

Box 138

Library WG issue: Dag Br
. .
uck, December 12, 1993

I find it unintuitive thatda.remove(4); removes all the elements starting at postion 4. I.e., I think the
default value forn should be 1 instead ofNPOS. 

Recommend (Library WG meeting, San Diego, 3/8/94): 

Shoulddynarray<T>::remove(4) remove to end of string, or just element 4?_ __











_ __












dyn_array< T>& remove(size_t pos = 0, size_t n = NPOS); 

1 Reports an out-of-range error ifpos > len . Otherwise, the function determines the effective length
xlen of the sequence to be removed as the smaller ofn andlen - pos .

2 The function then replaces the dynamic array designated by*this with a dynamic array of lengthlen -
xlen whose firstpos elements are a copy of the initial elements of the original dynamic array designated
by *this , and whose remaining elements are a copy of the elements of the original dynamic array desig-
nated by*this beginning at positionpos + xlen . The originalxlen elements beginning at position
pos are destroyed.

3 The function returns*this . 

[lib.dyn.array::sub.array]17.5.5.1.16dyn_array< T>::sub_array(dyn_array< T>&, 
size_t, size_t) 

dyn_array< T>& sub_array(dyn_array< T>& arr , size_t pos , size_t n = NPOS); 

1 Reports an out-of-range error ifpos > len . Otherwise, the function determines the effective length∗
rlen of the dynamic array designated by*this as the smaller ofn andarr.len - pos .

2 The function then replaces the dynamic array designated byarr with a dynamic array of lengthrlen
whose elements are a copy of the elements of the dynamic array designated by*this beginning at posi-
tion pos .

3 The function returnsarr . 

[lib.dyn.array::swap]17.5.5.1.17dyn_array< T>::swap(dyn_array< T>&) 

void swap(dyn_array< T>& arr); 

1 Replaces the dynamic array designated by*this with the dynamic array designated byarr , and replaces 
the dynamic array designated byarr with the dynamic array originally designated by*this .126) 

[lib.dyn.array::get.at]17.5.5.1.18dyn_array< T>::get_at(size_t) 

const T& get_at(size_t pos) const;

1 Reports an out-of-range error ifpos >= len . Otherwise, the function returnsptr [pos] . 

126)Presumably, this operation occurs with no actual copying of array elements.

17– 166 Library DRAFT: 27 May 1994 17.5.5.1.18
dyn_array< T>::get_at(size_t)

2 The reference returned is invalid after a subsequent call to any member function for the object. 

[lib.dyn.array::put.at]17.5.5.1.19dyn_array< T>::put_at(size_t, const T&) 

void put_at(size_t pos , const T& obj);

1 Reports an out-of-range error ifpos >= len . Otherwise, the function assignsobj to the element at
positionpos in the dynamic array designated by*this . 

[lib.dyn.array::op.array]17.5.5.1.20dyn_array< T>::operator[](size_t) 

T& operator[](size_t pos);
const T& operator[](size_t pos) const;

1 If pos < len , returns the element at positionpos in the dynamic array designated by*this . Other-
wise, the behavior is undefined.

2 The reference returned is invalid after a subsequent call to any member function for the object. 

[lib.dyn.array::data]17.5.5.1.21dyn_array< T>::data() 

T* data(); 
const T* data() const; 

1 Returnsptr if len is nonzero, otherwise a null pointer. The program shall not alter any of the values
stored in the dynamic array. Nor shall the program treat the returned value as a valid pointer value after any
subsequent call to a non-const member function of the classdyn_array< T> that designates the same
object asthis . 

[lib.dyn.array::length]17.5.5.1.22dyn_array< T>::length() 

size_t length() const;

1 Returnslen . 

[lib.dyn.array::resize]17.5.5.1.23dyn_array< T>::resize(size_t) 

void resize(size_t n);

1 Reports a length error ifn equalsNPOS. Otherwise, ifn != len the function alters the length of the
dynamic array designated by*this as follows:

— If n < len , the function replaces the dynamic array designated by*this with a dynamic array of
lengthn whose elements are a copy of the initial elements of the original dynamic array designated by
*this . Any remaining elements are destroyed.

— If n > len , the function replaces the dynamic array designated by*this with a dynamic array of
lengthn whose firstlen elements are a copy of the original dynamic array designated by*this , and
whose remaining elements are all initialized with the default constructor for classT.

[lib.dyn.array::resize.t]17.5.5.1.24dyn_array< T>::resize(size_t, const T&) 

void resize(size_t n, const T& obj);

1 Reports a length error ifn equalsNPOS. Otherwise, ifn != len the function alters the length of the
dynamic array designated by*this as follows:

— If n < len , the function replaces the dynamic array designated by*this with a dynamic array of
lengthn whose elements are a copy of the initial elements of the original dynamic array designated by

17.5.5.1.24 DRAFT: 27 May 1994 Library 17– 167
dyn_array< T>::resize(size_t, const T&)

*this . Any remaining elements are destroyed.

— If n > len , the function replaces the dynamic array designated by*this with a dynamic array of
lengthn whose firstlen elements are a copy of the original dynamic array designated by*this , and
whose remaining elements are all initialized by copyingobj .

[lib.dyn.array::reserve]17.5.5.1.25dyn_array< T>::reserve() 

size_t reserve() const;

1 Returnsres . 

[lib.dyn.array::reserve.cap]17.5.5.1.26dyn_array< T>::reserve(size_t) 

void reserve(size_t res_arg);

1 If no dynamic array is allocated, assignsres_arg to res . Otherwise, whether or how the function alters
res is unspecified. 

[lib.op+.da.da]17.5.5.2operator+(const dyn_array< T>&, const dyn_array< T>&) 

dyn_array< T> operator+(const dyn_array< T>& lhs , 
const dyn_array< T>& rhs); 

1 Returnsdyn_array< T>(lhs) += rhs . 

[lib.op+.da.t]17.5.5.3operator+(const dyn_array< T>&, const T&) 

dyn_array< T> operator+(const dyn_array< T>& lhs , const T& obj); 

1 Returnsdyn_array< T>(lhs) += rhs . 

[lib.op+.t.da]17.5.5.4operator+(const T&, const dyn_array< T>&) 

dyn_array< T> operator+(const T& obj , const dyn_array< T>& rhs); 

1 Returnsdyn_array< T>(lhs) += rhs . 

[lib.header.ptrdynarray] 17.5.6 Header<ptrdynarray>

1 ∗The header<ptrdynarray> defines a template and several related functions for representing and manip-
ulating varying-size sequences of pointers to some object typeT. 

[lib.template.ptr.dyn.array]17.5.6.1 Template classptrdyn_array< T> 

17– 168 Library DRAFT: 27 May 1994 17.5.6.1
Template classptrdyn_array< T>

template<class T> class ptr_dyn_array : public dyn_array<void*> { 
public:

ptr_dyn_array(); 
ptr_dyn_array(size_t size , capacity cap); 
ptr_dyn_array(const ptrdyn_array< T>& arr); 
ptr_dyn_array(T* obj , size_t rep = 1); 
ptr_dyn_array(T** parr , size_t n = 1); 
ptrdyn_array< T>& operator+=(const ptrdyn_array< T>& rhs); 
ptrdyn_array< T>& operator+=(T* obj); 
ptrdyn_array< T>& append(T* obj , size_t rep = 1); 
ptrdyn_array< T>& append(T** parr , size_t n = 1); 
ptrdyn_array< T>& assign(T* obj , size_t rep = 1); 
ptrdyn_array< T>& assign(T** parr , size_t n = 1); 
ptrdyn_array< T>& insert(size_t pos , const ptrdyn_array< T>& arr); 
ptrdyn_array< T>& insert(size_t pos, T * obj , size_t rep = 1); 
ptrdyn_array< T>& insert(size_t pos, T ** parr , size_t n = 1); 
ptrdyn_array< T>& remove(size_t pos = 0, size_t n = NPOS); 
ptrdyn_array< T>& sub_array(ptrdyn_array< T>& arr , size_t pos , 

size_t n = NPOS);
void swap(ptrdyn_array< T>& arr); 
T* get_at(size_t pos) const; 
void put_at(size_t pos , T* obj);
T*& operator[](size_t pos); 
T* const& operator[](size_t pos) const;
T** data(); 
const T** data() const; 
size_t length() const;
void resize(size_t n);
void resize(size_t n, T* obj);
size_t reserve() const;
void reserve(size_t res_arg);

};

1 The template classptrdyn_array< T> describes an object that can store a sequence consisting of a vary-
ing number of objects of type pointer toT. Such a sequence is also called adynamic pointer array.Objects 
of typeT are never created, destroyed, copied, assigned, or otherwise accessed by the function signatures
described in this subclause. 

[lib.cons.ptr.dyn.array]17.5.6.1.1ptrdyn_array< T>::ptr_dyn_array() 

ptr_dyn_array(); 

1 Constructs an object of classptrdyn_array< T>, initializing the base class with
dyn_array<void*>() . 

[lib.cons.ptr.dyn.array.cap]17.5.6.1.2ptrdyn_array< T>::ptr_dyn_array(size_t, 
capacity) 

ptr_dyn_array(size_t size , capacity cap); 

1 Constructs an object of classptrdyn_array< T>, initializing the base class with
dyn_array<void*>(size , cap) . 

[lib.cons.ptr.dyn.array.pda]17.5.6.1.3 
ptrdyn_array< T>::ptr_dyn_array(const ptrdyn_array< T>&) 

ptr_dyn_array(const ptrdyn_array< T>& arr); 

17.5.6.1.3 DRAFT: 27 May 1994 Library 17– 169
ptrdyn_array< T>::ptr_dyn_array(const ptrdyn_array< T>&)

1 Constructs an object of classptrdyn_array< T>, initializing the base class with
dyn_array<void*>(arr) . 

[lib.cons.ptr.dyn.array.pt]17.5.6.1.4ptrdyn_array< T>::ptr_dyn_array(T*) 

ptr_dyn_array(T* obj , size_t rep = 1); 

1 Constructs an object of classptrdyn_array< T>, initializing the base class with
dyn_array<void*>((void*) obj , rep) . 

[lib.cons.ptr.dyn.array.ppt]17.5.6.1.5ptrdyn_array< T>::ptr_dyn_array(const T**, 
size_t) 

ptr_dyn_array(const T** parr , size_t n); 

1 Constructs an object of classptrdyn_array< T>, initializing the base class with
dyn_array<void*>((void**) parr , n) . 

[lib.ptr.dyn.array::op+=.pda]17.5.6.1.6 
ptrdyn_array< T>::operator+=(const ptrdyn_array< T>&) 

ptrdyn_array< T>& operator+=(const ptrdyn_array< T>& rhs); 

1 Returns (ptrdyn_array< T>&)dyn_array<void*>::operator+=((const 
dyn_array<void*>&) rhs) . 

[lib.ptr.dyn.array::op+=.pt]17.5.6.1.7ptrdyn_array< T>::operator+=(T*) 

ptrdyn_array< T>& operator+=(T* obj); 

1 Returns(ptrdyn_array< T>&)dyn_array<void*>:: operator+=((void*) obj) . 

[lib.ptr.dyn.array::append.pt]17.5.6.1.8ptrdyn_array< T>::append(T*, size_t) 

ptrdyn_array< T>& append(T* obj , size_t rep = 1); 

1 Returns(ptrdyn_array< T>&)dyn_array<void*>::append((void*) obj , rep) . 

[lib.ptr.dyn.array::append.ppt]17.5.6.1.9ptrdyn_array< T>::append(T**, size_t) 

ptrdyn_array< T>& append(T** parr , size_t n = 1); 

1 Returns(ptrdyn_array< T>&)dyn_array<void*>::append((void**) parr , n) . 

[lib.ptr.dyn.array::assign.pt]17.5.6.1.10ptrdyn_array< T>::assign(T*, size_t) 

ptrdyn_array< T>& assign(T* obj , size_t rep = 1); 

1 Returns(ptrdyn_array< T>&)dyn_array<void*>::assign((void*) obj , rep) . 

[lib.ptr.dyn.array::assign.ppt]17.5.6.1.11ptrdyn_array< T>::assign(T**, size_t) 

ptrdyn_array< T>& assign(T** parr , size_t n = 1); 

1 Returns(ptrdyn_array< T>&)dyn_array<void*>::assign((void**) parr , n) . 

17– 170 Library DRAFT: 27 May 1994 17.5.6.1.12
ptrdyn_array< T>::insert(size_t, const ptrdyn_array< T>&, size_t)

[lib.ptr.dyn.array::insert.pda]17.5.6.1.12ptrdyn_array< T>::insert(size_t, 
const ptrdyn_array< T>&, size_t) 

ptrdyn_array< T>& insert(size_t pos , const ptrdyn_array< T>& arr); 

1 Returns (ptrdyn_array< T>&)dyn_array<void*>::insert(pos , (const 
dyn_array<void*>&) arr) . 

[lib.ptr.dyn.array::insert.pt]17.5.6.1.13ptrdyn_array< T>::insert(size_t, T*, 
size_t) 

ptrdyn_array< T>& insert(size_t pos , T* obj , size_t rep = 1); 

1 Returns(ptrdyn_array< T>&)dyn_array<void*>::insert(pos , (void*) obj , rep) . 

[lib.ptr.dyn.array::insert.ppt]17.5.6.1.14ptrdyn_array< T>::insert(size_t, T**, 
size_t) 

ptrdyn_array< T>& insert(size_t pos , T** parr , size_t n = 1); 

1 Returns(ptrdyn_array< T>&)dyn_array<void*>::insert(pos , (void**) parr , n) . 

[lib.ptr.dyn.array::remove]17.5.6.1.15ptrdyn_array< T>::remove(size_t, size_t) 

ptrdyn_array< T>& remove(size_t pos = 0, size_t n = NPOS); 

1 Returns(ptrdyn_array< T>&)dyn_array<void*>::remove(pos , n) . 

[lib.ptr.dyn.array::sub.array]17.5.6.1.16 
ptrdyn_array< T>::sub_array(ptrdyn_array< T>&, 
size_t, size_t) 

ptrdyn_array< T>& sub_array(ptrdyn_array< T>& arr , size_t pos , 
size_t n = NPOS); 

1 Returns(ptrdyn_array< T>&)dyn_array<void*>::sub_array(arr , pos , n) . 

[lib.ptr.dyn.array::swap]17.5.6.1.17ptrdyn_array< T>::swap(ptrdyn_array< T>&) 

void swap(ptrdyn_array< T>& arr); 

1 Callsdyn_array<void*>::swap(arr) . 

[lib.ptr.dyn.array::get.at]17.5.6.1.18ptrdyn_array< T>::get_at(size_t) 

T* get_at(size_t pos) const;

1 Returns(T*)dyn_array<void*>::get_at(pos) . 

[lib.ptr.dyn.array::put.at]17.5.6.1.19ptrdyn_array< T>::put_at(size_t, const T&) 

void put_at(size_t pos , T* obj);

1 Callsdyn_array<void*>::put_at(pos , (void*) obj) . 

17.5.6.1.20 DRAFT: 27 May 1994 Library 17– 171
ptrdyn_array< T>::operator[](size_t)

[lib.ptr.dyn.array::op.array]17.5.6.1.20ptrdyn_array< T>::operator[](size_t) 

T*& operator[](size_t pos); 
T* const& operator[](size_t pos) const; 

1 Returns(T* &)dyn_array<void*>::operator[](pos) . 

[lib.ptr.dyn.array::data]17.5.6.1.21ptrdyn_array< T>::data() 

T** data(); 
const T** data() const; 

1 Returns(T*)dyn_array<void*>::data() . 

[lib.ptr.dyn.array::length]17.5.6.1.22ptrdyn_array< T>::length() 

size_t length() const;

1 Returnsdyn_array<void*>::length() . 

[lib.ptr.dyn.array::resize]17.5.6.1.23ptrdyn_array< T>::resize(size_t) 

void resize(size_t n);

1 Callsdyn_array<void*>::resize(n) . 

[lib.ptr.dyn.array::resize.pt]17.5.6.1.24ptrdyn_array< T>::resize(size_t, T*) 

void resize(size_t n, T* obj);

1 Callsdyn_array<void*>::resize(n, (void*) obj) . 

[lib.ptr.dyn.array::reserve]17.5.6.1.25ptrdyn_array< T>::reserve() 

size_t reserve() const;

1 Returnsdyn_array<void*>::reserve() . 

[lib.ptr.dyn.array::reserve.cap]17.5.6.1.26ptrdyn_array< T>::reserve(size_t) 

void reserve(size_t res_arg);

1 Returnsdyn_array<void*>::reserve(res_arg) . 

[lib.op+.pda.pda]17.5.6.2operator+(const ptrdyn_array< T>&, 
const ptrdyn_array< T>&) 

ptrdyn_array< T> operator+(const ptrdyn_array< T>& lhs , 
const ptrdyn_array< T>& rhs); 

1 Returnsptrdyn_array< T><T>(lhs) += rhs) . 

[lib.op+.pda.pt]17.5.6.3operator+(const ptrdyn_array< T>&, T*) 

ptrdyn_array< T> operator+(const ptrdyn_array< T>& lhs , T* obj); 

1 Returnsptrdyn_array< T><T>(lhs) += rhs) . 

17– 172 Library DRAFT: 27 May 1994 17.5.6.4
operator+(T*, const ptrdyn_array< T>&)

[lib.op+.pt.pda]17.5.6.4operator+(T*, const ptrdyn_array< T>&) 

ptrdyn_array< T> operator+(T* obj , const ptrdyn_array< T>& rhs); 

1 Returnsptrdyn_array< T><T>(lhs) += rhs) . 

[lib.header.complex] 17.5.7 Header<complex>

Box 139 
Library WG issue: Bjarne Stroustrup, November 10, 1993 

The complex components should be specified as templates.  _ ___





_ ___




 

Box 140 
Library WG issue: Al Vermeulen , September 28, 1993 

The complex classes need to be reviewed and verified.  _ ___





_ ___




 

1 The header<complex> defines a macro, three types, and numerous functions for representing and manip-
ulating complex numbers.

2 The macro is:

__STD_COMPLEX

3 whose definition is unspecified.

[lib.complex.with.float] 17.5.7.1 Complex numbers withfloat precision

[lib.float.complex] 17.5.7.1.1 Classfloat_complex

class float_complex {
public:

float_complex(float re_arg = 0, im_arg = 0);
float_complex& operator+=(float_complex rhs);
float_complex& operator-=(float_complex rhs);
float_complex& operator*=(float_complex rhs);
float_complex& operator/=(float_complex rhs);

private:
// float re , im ; exposition only
};

1 The classfloat_complex describes an object that can store the Cartesian components, of typefloat ,
of a complex number.

2 For the sake of exposition, the maintained data is presented here as:

— float re , the real component;

— float im , the imaginary component.

17.5.7.1.1.1 DRAFT: 27 May 1994 Library 17– 173
float_complex::float_complex(float, float)

[lib.cons.float.complex.f.f] 17.5.7.1.1.1float_complex::float_complex(float, float)

float_complex(float re_arg = 0, im_arg = 0);

1 Constructs an object of classfloat_complex , initializing re to re_arg andim to im_arg .

[lib.op+=.fc] 17.5.7.1.1.2operator+=(float_complex)

float_complex& operator+=(float_complex rhs);

1 Adds the complex valuerhs to the complex value*this and stores the sum in*this . The function
returns*this .

[lib.op-=.fc] 17.5.7.1.1.3operator-=(float_complex)

float_complex& operator-=(float_complex rhs);

1 Subtracts the complex valuerhs from the complex value*this and stores the difference in*this . The
function returns*this .

[lib.op*=.fc] 17.5.7.1.1.4operator*=(float_complex)

float_complex& operator*=(float_complex rhs);

1 Multiplies the complex valuerhs by the complex value*this and stores the product in*this . The
function returns*this .

[lib.op/=.fc] 17.5.7.1.1.5operator/=(float_complex)

float_complex& operator/=(float_complex rhs);

1 Divides the complex valuerhs into the complex value*this and stores the quotient in*this . The
function returns*this .

[lib..float.complex.dc] 17.5.7.1.2_float_complex(const double_complex&)

float_complex _float_complex(const double_complex& rhs);

1 Returnsfloat_complex((float)real(rhs), (float)imag(rhs)).

[lib..float.complex.ldc] 17.5.7.1.3_float_complex(const long_double_complex&)

float_complex _float_complex(const long_double_complex& rhs);

1 Returnsfloat_complex((float)real(rhs), (float)imag(rhs)).

[lib.op+.fc.fc] 17.5.7.1.4operator+(float_complex, float_complex)

float_complex operator+(float_complex lhs , float_complex rhs);

1 Returnsfloat_complex(lhs) += rhs .

[lib.op+.fc.f] 17.5.7.1.5operator+(float_complex, float)

float_complex operator+(float_complex lhs , float rhs);

1 Returnsfloat_complex(lhs) += float_complex(rhs) .

17– 174 Library DRAFT: 27 May 1994 17.5.7.1.6
operator+(float, float_complex)

[lib.op+.f.fc] 17.5.7.1.6operator+(float, float_complex)

float_complex operator+(float lhs , float_complex rhs);

1 Returnsfloat_complex(lhs) += rhs .

[lib.op-.fc.fc] 17.5.7.1.7operator-(float_complex, float_complex)

float_complex operator-(float_complex lhs , float_complex rhs);

1 Returnsfloat_complex(lhs) -= rhs .

[lib.op-.fc.f] 17.5.7.1.8operator-(float_complex, float)

float_complex operator-(float_complex lhs , float rhs);

1 Returnsfloat_complex(lhs) -= float_complex(rhs) .

[lib.op-.f.fc] 17.5.7.1.9operator-(float, float_complex)

float_complex operator-(float lhs , float_complex rhs);

1 Returnsfloat_complex(lhs) -= rhs .

[lib.op*.fc.fc] 17.5.7.1.10operator*(float_complex, float_complex)

float_complex operator*(float_complex lhs , float_complex rhs);

1 Returnsfloat_complex(lhs) *= rhs .

[lib.op*.fc.f] 17.5.7.1.11operator*(float_complex, float)

float_complex operator*(float_complex lhs , float rhs);

1 Returnsfloat_complex(lhs) *= float_complex(rhs) .

[lib.op*.f.fc] 17.5.7.1.12operator*(float, float_complex)

float_complex operator*(float lhs , float_complex rhs);

1 Returnsfloat_complex(lhs) *= rhs .

[lib.op/.fc.fc] 17.5.7.1.13operator/(float_complex, float_complex)

float_complex operator/(float_complex lhs , float_complex rhs);

1 Returnsfloat_complex(lhs) /= rhs .

[lib.op/.fc.f] 17.5.7.1.14operator/(float_complex, float)

float_complex operator/(float_complex lhs , float rhs);

1 Returnsfloat_complex(lhs) /= float_complex(rhs) .

[lib.op/.f.fc] 17.5.7.1.15operator/(float, float_complex)

float_complex operator/(float lhs , float_complex rhs);

1 Returnsfloat_complex(lhs) /= rhs .

17.5.7.1.16 DRAFT: 27 May 1994 Library 17– 175
operator+(float_complex)

[lib.op+.fc] 17.5.7.1.16operator+(float_complex)

float_complex operator+(float_complex lhs);

1 Returnsfloat_complex(lhs) .

[lib.op-.fc] 17.5.7.1.17operator-(float_complex)

float_complex operator-(float_complex lhs);

1 Returnsfloat_complex(-real(lhs), -imag(lhs)) .

[lib.op==.fc.fc] 17.5.7.1.18operator==(float_complex, float_complex)

bool operator==(float_complex lhs , float_complex >rhs); 

1 Returnsreal(lhs) == real(rhs) && imag(lhs) == imag(rhs) .

[lib.op==.fc.f] 17.5.7.1.19operator==(float_complex, float)

bool operator==(float_complex lhs , float rhs); 

1 Returnsreal(lhs) == rhs && imag(lhs) == 0 .

[lib.op==.f.fc] 17.5.7.1.20operator==(float, float_complex)

bool operator==(float lhs , float_complex rhs); 

1 Returnslhs == real(rhs) && imag(rhs) == 0 .

[lib.op!=.fc.fc] 17.5.7.1.21operator!=(float_complex, float_complex)

bool operator!=(float_complex lhs , float_complex rhs); 

1 Returnsreal(lhs) != real(rhs) || imag(lhs) != imag(rhs) .

[lib.op!=.fc.f] 17.5.7.1.22operator!=(float_complex, float)

bool operator!=(float_complex lhs , float rhs); 

1 Returnsreal(lhs) != rhs || imag(lhs) != 0 .

[lib.op!=.f.fc] 17.5.7.1.23operator!=(float, float_complex)

bool operator!=(float lhs , float_complex rhs); 

1 Returnslhs != real(rhs) || imag(rhs) != 0 .

[lib.ext.fc] 17.5.7.1.24operator>>(istream&, float_complex&)

istream& operator>>(istream& is , float_complex& x);

1 Evaluates the expression: 

is >> ch && ch == ’(’ 
&& is >> re >> ch && ch == ’,’ 
&& is >> im >> ch && ch == ’)’; 

2 wherech is an object of typechar andre andim are objects of typefloat . If the result is nonzero, the
function assignsfloat_complex(re , im) to x .

17– 176 Library DRAFT: 27 May 1994 17.5.7.1.24
operator>>(istream&, float_complex&)

3 The function returnsis .

[lib.ins.fc] 17.5.7.1.25operator<<(ostream&, float_complex)

ostream& operator<<(ostream& os , float_complex x);

1 Returnsos << ’(’ << real(x) << ’,’ << imag(x) << ’)’ .

[lib.abs.fc] 17.5.7.1.26abs(float_complex)

float abs(float_complex x);

1 Returns the magnitude ofx .

[lib.arg.fc] 17.5.7.1.27arg(float_complex)

float arg(float_complex x);

1 Returns the phase angle ofx .

[lib.conj.fc] 17.5.7.1.28conj(float_complex)

float_complex conj(float_complex x);

1 Returns the conjugate ofx .

[lib.cos.fc] 17.5.7.1.29cos(float_complex)

float_complex cos(float_complex x);

1 Returns the cosine ofx .

[lib.cosh.fc] 17.5.7.1.30cosh(float_complex)

float_complex cosh(float_complex x);

1 Returns the hyperbolic cosine ofx .

[lib.exp.fc] 17.5.7.1.31exp(float_complex)

float_complex exp(float_complex x);

1 Returns the exponential ofx .

[lib.imag.fc] 17.5.7.1.32imag(float_complex)

float imag(float_complex x);

1 Returns the imaginary part ofx .

[lib.log.fc] 17.5.7.1.33log(float_complex)

float_complex log(float_complex x);

1 Returns the logarithm ofx .

17.5.7.1.34norm(float_complex) DRAFT: 27 May 1994 Library 17– 177

[lib.norm.fc] 17.5.7.1.34norm(float_complex)

float norm(float_complex x);

1 Returns the squared magnitude ofx . 

[lib.polar.f.f] 17.5.7.1.35polar(float, float)

float_complex polar(float rho , float theta);

1 Returns thefloat_complex value corresponding to a complex number whose magnitude isrho and
whose phase angle istheta .

[lib.pow.fc.fc] 17.5.7.1.36pow(float_complex, float_complex)

float_complex pow(float_complex x, float_complex y);

1 Returnsx raised to the powery .

[lib.pow.fc.f] 17.5.7.1.37pow(float_complex, float)

float_complex pow(float_complex x, float y);

1 Returnsx raised to the powery .

[lib.pow.fc.i] 17.5.7.1.38pow(float_complex, int)

float_complex pow(float_complex x, int y);

1 Returnsx raised to the powery .

[lib.pow.f.fc] 17.5.7.1.39pow(float, float_complex)

float_complex pow(float x, float_complex y);

1 Returnsx raised to the powery .

[lib.real.fc] 17.5.7.1.40real(float_complex)

float real(float_complex x);

1 Returns the real part ofx .

[lib.sin.fc] 17.5.7.1.41sin(float_complex)

float_complex sin(float_complex x);

1 Returns the sine ofx .

[lib.sinh.fc] 17.5.7.1.42sinh(float_complex)

float_complex sinh(float_complex x);

1 Returns the hyperbolic sine ofx .

17– 178 Library DRAFT: 27 May 1994 17.5.7.1.43sqrt(float_complex)

[lib.sqrt.fc] 17.5.7.1.43sqrt(float_complex)

float_complex sqrt(float_complex x);

1 Returns the square root ofx .

[lib.complex.with.d] 17.5.7.2 Complex numbers withdouble precision

[lib.double.complex] 17.5.7.2.1 Classdouble_complex

class double_complex {
public:

double_complex(re_arg = 0, im_arg = 0);
double_complex(const float_complex& rhs);
double_complex& operator+=(double_complex rhs);
double_complex& operator-=(double_complex rhs);
double_complex& operator*=(double_complex rhs);
double_complex& operator/=(double_complex rhs);

private:
// double re , im ; exposition only
};

1 The classdouble_complex describes an object that can store the Cartesian components, of typedou-
ble , of a complex number.

2 For the sake of exposition, the maintained data is presented here as:

— double re , the real component;

— double im , the imaginary component.

[lib.cons.double.complex.d.d] 17.5.7.2.1.1double_complex::double_complex(double,
double)

double_complex(double re_arg = 0, im_arg = 0);

1 Constructs an object of classdouble_complex , initializing re to re_arg andim to im_arg .

[lib.cons.double.complex.fc] 17.5.7.2.1.2
double_complex::double_complex(float_complex&)

double_complex(float_complex& rhs);

1 Constructs an object of classdouble_complex , initializing re to (double)real(rhs) and im to
(double)imag(rhs) .

[lib.op+=.dc] 17.5.7.2.1.3operator+=(double_complex)

double_complex& operator+=(double_complex rhs);

1 Adds the complex valuerhs to the complex value*this and stores the sum in*this . The function
returns*this .

[lib.op-=.dc] 17.5.7.2.1.4operator-=(double_complex)

double_complex& operator-=(double_complex rhs);

1 Subtracts the complex valuerhs from the complex value*this and stores the difference in*this . The
function returns*this .

17.5.7.2.1.5 DRAFT: 27 May 1994 Library 17– 179
operator*=(double_complex)

[lib.op*=.dc] 17.5.7.2.1.5operator*=(double_complex)

double_complex& operator*=(double_complex rhs);

1 Multiplies the complex valuerhs by the complex value*this and stores the product in*this . The
function returns*this .

[lib.op/=.dc] 17.5.7.2.1.6operator/=(double_complex)

double_complex& operator/=(double_complex rhs);

1 Divides the complex valuerhs into the complex value*this and stores the quotient in*this . The
function returns*this .

[lib..double.complex.ldc] 17.5.7.2.2_double_complex(const long_double_complex&)

double_complex _double_complex(const long_double_complex& rhs);

1 Returnsdouble_complex((double)real(rhs), (double)imag(rhs)).

[lib.op+.dc.dc] 17.5.7.2.3operator+(double_complex, double_complex)

double_complex operator+(double_complex lhs , double_complex rhs);

1 Returnsdouble_complex(lhs) += rhs .

[lib.op+.dc.d] 17.5.7.2.4operator+(double_complex, double)

double_complex operator+(double_complex lhs , double rhs);

1 Returnsdouble_complex(lhs) += double_complex(rhs) .

[lib.op+.d.dc] 17.5.7.2.5operator+(double, double_complex)

double_complex operator+(double lhs , double_complex rhs);

1 Returnsdouble_complex(lhs) += rhs .

[lib.op-.dc.dc] 17.5.7.2.6operator-(double_complex, double_complex)

double_complex operator-(double_complex lhs , double_complex rhs);

1 Returnsdouble_complex(lhs) -= rhs .

[lib.op-.dc.d] 17.5.7.2.7operator-(double_complex, double)

double_complex operator-(double_complex lhs , double rhs);

1 Returnsdouble_complex(lhs) -= double_complex(rhs) .

[lib.op-.d.dc] 17.5.7.2.8operator-(double, double_complex)

double_complex operator-(double lhs , double_complex rhs);

1 Returnsdouble_complex(lhs) -= rhs .

17– 180 Library DRAFT: 27 May 1994 17.5.7.2.9
operator*(double_complex, double_complex)

[lib.op*.dc.dc] 17.5.7.2.9operator*(double_complex, double_complex)

double_complex operator*(double_complex lhs , double_complex rhs);

1 Returnsdouble_complex(lhs) *= rhs .

[lib.op*.dc.d] 17.5.7.2.10operator*(double_complex, double)

double_complex operator*(double_complex lhs , double rhs);

1 Returnsdouble_complex(lhs) *= double_complex(rhs) .

[lib.op*.d.dc] 17.5.7.2.11operator*(double, double_complex)

double_complex operator*(double lhs , double_complex rhs);

1 Returnsdouble_complex(lhs) *= rhs .

[lib.op/.dc.dc] 17.5.7.2.12operator/(double_complex, double_complex)

double_complex operator/(double_complex lhs , double_complex rhs);

1 Returnsdouble_complex(lhs) /= rhs .

[lib.op/.dc.d] 17.5.7.2.13operator/(double_complex, double)

double_complex operator/(double_complex lhs , double rhs);

1 Returnsdouble_complex(lhs) /= double_complex(rhs) .

[lib.op/.d.dc] 17.5.7.2.14operator/(double, double_complex)

double_complex operator/(double lhs , double_complex rhs);

1 Returnsdouble_complex(lhs) /= rhs .

[lib.op+.dc] 17.5.7.2.15operator+(double_complex)

double_complex operator+(double_complex lhs);

1 Returnsdouble_complex(lhs) .

[lib.op-.dc] 17.5.7.2.16operator-(double_complex)

double_complex operator-(double_complex lhs);

1 Returnsdouble_complex(-real(lhs), -imag(lhs)) .

[lib.op==.dc.dc] 17.5.7.2.17operator==(double_complex, double_complex)

bool operator==(double_complex lhs , double_complex rhs); 

1 Returnsreal(lhs) == real(rhs) && imag(lhs) == imag(rhs) .

[lib.op==.dc.d] 17.5.7.2.18operator==(double_complex, double)

bool operator==(double_complex lhs , double rhs); 

1 Returnsreal(lhs) == rhs && imag(lhs) == 0 .

17.5.7.2.19 DRAFT: 27 May 1994 Library 17– 181
operator==(double, double_complex)

[lib.op==.d.dc] 17.5.7.2.19operator==(double, double_complex)

bool operator==(double lhs , double_complex rhs); 

1 Returnslhs == real(rhs) && imag(rhs) == 0 .

[lib.op!=.dc.dc] 17.5.7.2.20operator!=(double_complex, double_complex)

bool operator!=(double_complex lhs , double_complex rhs); 

1 Returnsreal(lhs) != real(rhs) || imag(lhs) != imag(rhs) .

[lib.op!=.dc.d] 17.5.7.2.21operator!=(double_complex, double)

bool operator!=(double_complex lhs , double rhs); 

1 Returnsreal(lhs) != rhs || imag(lhs) != 0 .

[lib.op!=.d.dc] 17.5.7.2.22operator!=(double, double_complex)

bool operator!=(double lhs , double_complex rhs); 

1 Returnslhs != real(rhs) || imag(rhs) != 0 .

[lib.ext.dc] 17.5.7.2.23operator>>(istream&, double_complex&)

istream& operator>>(istream& is , double_complex& x);

1 Evaluates the expression: 

is >> ch && ch == ’(’ 
&& is >> re >> ch && ch == ’,’ 
&& is >> im >> ch && ch == ’)’; 

2 wherech is an object of typechar andre and im are objects of typedouble . If the result is nonzero,
the function assignsdouble_complex(re , im) to x .

3 The function returnsis .

[lib.ins.dc] 17.5.7.2.24operator<<(ostream&, double_complex)

ostream& operator<<(ostream& os , double_complex x);

1 Returnsos << ’(’ << real(x) << ’,’ << imag(x) << ’)’ .

[lib.abs.dc] 17.5.7.2.25abs(double_complex)

double abs(double_complex x);

1 Returns the magnitude ofx .

[lib.arg.dc] 17.5.7.2.26arg(double_complex)

double arg(double_complex x);

1 Returns the phase angle ofx .

17– 182 Library DRAFT: 27 May 1994 17.5.7.2.27conj(double_complex)

[lib.conj.dc] 17.5.7.2.27conj(double_complex)

double_complex conj(double_complex x);

1 Returns the conjugate ofx .

[lib.cos.dc] 17.5.7.2.28cos(double_complex)

double_complex cos(double_complex x);

1 Returns the cosine ofx .

[lib.cosh.dc] 17.5.7.2.29cosh(double_complex)

double_complex cosh(double_complex x);

1 Returns the hyperbolic cosine ofx .

[lib.exp.dc] 17.5.7.2.30exp(double_complex)

double_complex exp(double_complex x);

1 Returns the exponential ofx .

[lib.imag.dc] 17.5.7.2.31imag(double_complex)

double imag(double_complex x);

1 Returns the imaginary part ofx .

[lib.log.dc] 17.5.7.2.32log(double_complex)

double_complex log(double_complex x);

1 Returns the logarithm ofx .

[lib.norm.dc] 17.5.7.2.33norm(double_complex)

double norm(double_complex x);

1 Returns the squared magnitude ofx . 

[lib.polar.d.d] 17.5.7.2.34polar(double, double)

double_complex polar(double rho , double theta);

1 Returns thedouble_complex value corresponding to a complex number whose magnitude isrho and
whose phase angle istheta .

[lib.pow.dc.dc] 17.5.7.2.35pow(double_complex, double_complex)

double_complex pow(double_complex x, double_complex y);

1 Returnsx raised to the powery .

17.5.7.2.36 DRAFT: 27 May 1994 Library 17– 183
pow(double_complex, double)

[lib.pow.dc.d] 17.5.7.2.36pow(double_complex, double)

double_complex pow(double_complex x, double y);

1 Returnsx raised to the powery .

[lib.pow.dc.i] 17.5.7.2.37pow(double_complex, int)

double_complex pow(double_complex x, int y);

1 Returnsx raised to the powery .

[lib.pow.d.dc] 17.5.7.2.38pow(double, double_complex)

double_complex pow(double x, double_complex y);

1 Returnsx raised to the powery .

[lib.real.dc] 17.5.7.2.39real(double_complex)

double real(double_complex x);

1 Returns the real part ofx .

[lib.sin.dc] 17.5.7.2.40sin(double_complex)

double_complex sin(double_complex x);

1 Returns the sine ofx .

[lib.sinh.dc] 17.5.7.2.41sinh(double_complex)

double_complex sinh(double_complex x);

1 Returns the hyperbolic sine ofx .

[lib.sqrt.dc] 17.5.7.2.42sqrt(double_complex)

double_complex sqrt(double_complex x);

1 Returns the square root ofx .

[lib.complex.with.ld] 17.5.7.3 Complex numbers withlong double precision

[lib.long.double.complex] 17.5.7.3.1 Classlong_double_complex

class long_double_complex {
public:

long_double_complex(re_arg = 0, im_arg = 0);
long_double_complex(const float_complex& rhs);
long_double_complex(const double_complex& rhs);
long_double_complex& operator+=(long_double_complex rhs);
long_double_complex& operator-=(long_double_complex rhs);
long_double_complex& operator*=(long_double_complex rhs);
long_double_complex& operator/=(long_double_complex rhs);

private:
// long double re , im ; exposition only
};

17– 184 Library DRAFT: 27 May 1994 17.5.7.3.1 Classlong_double_complex

1 The classlong_double_complex describes an object that can store the Cartesian components, of type
long double , of a complex number.

2 For the sake of exposition, the maintained data is presented here as:

— long double re , the real component;

— long double im , the imaginary component.

[lib.cons.long.double.complex.ld.ld] 17.5.7.3.1.1
long_double_complex::long_double_complex(long
double, long double)

long_double_complex(long double re_arg = 0, im_arg = 0);

1 Constructs an object of classlong_double_complex , initializing re to re_arg andim to im_arg .

[lib.cons.long.double.complex.fc] 17.5.7.3.1.2
long_double_complex::long_double_complex(float_complex&)

long_double_complex(float_complex& rhs);

1 Constructs an object of classlong_double_complex , initializing re to (long
double)real(rhs) andim to (long double)imag(rhs) .

[lib.cons.long.double.complex.dc] 17.5.7.3.1.3
long_double_complex::long_double_complex(double_complex&)

long_double_complex(double_complex& rhs);

1 Constructs an object of classlong_double_complex , initializing re to (long
double)real(rhs) andim to (long double)imag(rhs) .

[lib.op+=.ldc] 17.5.7.3.1.4operator+=(long_double_complex)

long_double_complex& operator+=(long_double_complex rhs);

1 Adds the complex valuerhs to the complex value*this and stores the sum in*this . The function
returns*this .

[lib.op-=.ldc] 17.5.7.3.1.5operator-=(long_double_complex)

long_double_complex& operator-=(long_double_complex rhs);

1 Subtracts the complex valuerhs from the complex value*this and stores the difference in*this . The
function returns*this .

[lib.op*=.ldc] 17.5.7.3.1.6operator*=(long_double_complex)

long_double_complex& operator*=(long_double_complex rhs);

1 Multiplies the complex valuerhs by the complex value*this and stores the product in*this . The
function returns*this .

17.5.7.3.1.7 DRAFT: 27 May 1994 Library 17– 185
operator/=(long_double_complex)

[lib.op/=.ldc] 17.5.7.3.1.7operator/=(long_double_complex)

long_double_complex& operator/=(long_double_complex rhs);

1 Divides the complex valuerhs into the complex value*this and stores the quotient in*this . The
function returns*this .

[lib.op+.ldc.ldc] 17.5.7.3.2operator+(long_double_complex,
long_double_complex)

long_double_complex operator+(long_double_complex lhs ,
long_double_complex rhs);

1 Returnslong_double_complex(lhs) += rhs .

[lib.op+.ldc.ld] 17.5.7.3.3operator+(long_double_complex, long double)

long_double_complex operator+(long_double_complex lhs ,
long double rhs);

1 Returnslong_double_complex(lhs) += long_double_complex(rhs) .

[lib.op+.ld.ldc] 17.5.7.3.4operator+(long double, long_double_complex)

long_double_complex operator+(long double lhs ,
long_double_complex rhs);

1 Returnslong_double_complex(lhs) += rhs .

[lib.op-.ldc.ldc] 17.5.7.3.5operator-(long_double_complex, long_double_complex)

long_double_complex operator-(long_double_complex lhs ,
long_double_complex rhs);

1 Returnslong_double_complex(lhs) -= rhs .

[lib.op-.ldc.ld] 17.5.7.3.6operator-(long_double_complex, long double)

long_double_complex operator-(long_double_complex lhs ,
long double rhs);

1 Returnslong_double_complex(lhs) -= long_double_complex(rhs) .

[lib.op-.ld.ldc] 17.5.7.3.7operator-(long double, long_double_complex)

long_double_complex operator-(long double lhs ,
long_double_complex rhs);

1 Returnslong_double_complex(lhs) -= rhs .

[lib.op*.ldc.ldc] 17.5.7.3.8operator*(long_double_complex,
long_double_complex)

long_double_complex operator*(long_double_complex lhs ,
long_double_complex rhs);

1 Returnslong_double_complex(lhs) *= rhs .

17– 186 Library DRAFT: 27 May 1994 17.5.7.3.9
operator*(long_double_complex, long double)

[lib.op*.ldc.ld] 17.5.7.3.9operator*(long_double_complex, long double)

long_double_complex operator*(long_double_complex lhs ,
long double rhs);

1 Returnslong_double_complex(lhs) *= long_double_complex(rhs) .

[lib.op*.ld.ldc] 17.5.7.3.10operator*(long double, long_double_complex)

long_double_complex operator*(long double lhs ,
long_double_complex rhs);

1 Returnslong_double_complex(lhs) *= rhs .

[lib.op/.ldc.ldc] 17.5.7.3.11operator/(long_double_complex,
long_double_complex)

long_double_complex operator/(long_double_complex lhs ,
long_double_complex rhs);

1 Returnslong_double_complex(lhs) /= rhs .

[lib.op/.ldc.ld] 17.5.7.3.12operator/(long_double_complex, long double)

long_double_complex operator/(long_double_complex lhs ,
long double rhs);

1 Returnslong_double_complex(lhs) /= long_double_complex(rhs) .

[lib.op/.ld.ldc] 17.5.7.3.13operator/(long double, long_double_complex)

long_double_complex operator/(long double lhs ,
long_double_complex rhs);

1 Returnslong_double_complex(lhs) /= rhs .

[lib.op+.ldc] 17.5.7.3.14operator+(long_double_complex)

long_double_complex operator+(long_double_complex lhs);

1 Returnslong_double_complex(lhs) .

[lib.op-.ldc] 17.5.7.3.15operator-(long_double_complex)

long_double_complex operator-(long_double_complex lhs);

1 Returnslong_double_complex(-real(lhs), -imag(lhs)) .

[lib.op==.ldc.ldc] 17.5.7.3.16operator==(long_double_complex,
long_double_complex)

bool operator==(long_double_complex lhs , long_double_complex rhs); 

1 Returnsreal(lhs) == real(rhs) && imag(lhs) == imag(rhs) .

17.5.7.3.17 DRAFT: 27 May 1994 Library 17– 187
operator==(long_double_complex, long double)

[lib.op==.ldc.ld] 17.5.7.3.17operator==(long_double_complex, long double)

bool operator==(long_double_complex lhs , long double rhs); 

1 Returnsreal(lhs) == rhs && imag(lhs) == 0 .

[lib.op==.ld.ldc] 17.5.7.3.18operator==(long double, long_double_complex)

bool operator==(long double lhs , long_double_complex rhs); 

1 Returnslhs == real(rhs) && imag(rhs) == 0 .

[lib.op!=.ldc.ldc] 17.5.7.3.19operator!=(long_double_complex,
long_double_complex)

bool operator!=(long_double_complex lhs , long_double_complex rhs); 

1 Returnsreal(lhs) != real(rhs) || imag(lhs) != imag(rhs) .

[lib.op!=.ldc.ld] 17.5.7.3.20operator!=(long_double_complex, long double)

bool operator!=(long_double_complex lhs , long double rhs); 

1 Returnsreal(lhs) != rhs || imag(lhs) != 0 .

[lib.op!=.ld.ldc] 17.5.7.3.21operator!=(long double, long_double_complex)

bool operator!=(long double lhs , long_double_complex rhs); 

1 Returnslhs != real(rhs) || imag(rhs) != 0 .

[lib.ext.ldc] 17.5.7.3.22operator>>(istream&, long_double_complex&)

istream& operator>>(istream& is , long_double_complex& x);

1 Evaluates the expression: 

is >> ch && ch == ’(’ 
&& is >> re >> ch && ch == ’,’ 
&& is >> im >> ch && ch == ’)’; 

2 wherech is an object of typechar and re and im are objects of typelong double . If the result is 
nonzero, the function assignslong_double_complex(re , im) to x . 

3 The function returnsis .

[lib.ins.ldc] 17.5.7.3.23operator<<(ostream&, long_double_complex)

ostream& operator<<(ostream& os , long_double_complex x);

1 Returnsos << ’(’ << real(x) << ’,’ << imag(x) << ’)’ .

[lib.abs.ldc] 17.5.7.3.24abs(long_double_complex)

long double abs(long_double_complex x);

1 Returns the magnitude ofx .

17– 188 Library DRAFT: 27 May 1994 17.5.7.3.25
arg(long_double_complex)

[lib.arg.ldc] 17.5.7.3.25arg(long_double_complex)

long double arg(long_double_complex x);

1 Returns the phase angle ofx .

[lib.conj.ldc] 17.5.7.3.26conj(long_double_complex)

long_double_complex conj(long_double_complex x);

1 Returns the conjugate ofx .

[lib.cos.ldc] 17.5.7.3.27cos(long_double_complex)

long_double_complex cos(long_double_complex x);

1 Returns the cosine ofx .

[lib.cosh.ldc] 17.5.7.3.28cosh(long_double_complex)

long_double_complex cosh(long_double_complex x);

1 Returns the hyperbolic cosine ofx .

[lib.exp.ldc] 17.5.7.3.29exp(long_double_complex)

long_double_complex exp(long_double_complex x);

1 Returns the exponential ofx .

[lib.imag.ldc] 17.5.7.3.30imag(long_double_complex)

long double imag(long_double_complex x);

1 Returns the imaginary part ofx .

[lib.log.ldc] 17.5.7.3.31log(long_double_complex)

long_double_complex log(long_double_complex x);

1 Returns the logarithm ofx .

[lib.norm.ldc] 17.5.7.3.32norm(long_double_complex)

long double norm(long_double_complex x);

1 Returns the squared magnitude ofx . 

[lib.polar.ld.ld] 17.5.7.3.33polar(long double, long double)

long_double_complex polar(long double rho , long double theta);

1 Returns thelong_double_complex value corresponding to a complex number whose magnitude is
rho and whose phase angle istheta .

17.5.7.3.34 DRAFT: 27 May 1994 Library 17– 189
pow(long_double_complex, long_double_complex)

[lib.pow.ldc.ldc] 17.5.7.3.34pow(long_double_complex, long_double_complex)

long_double_complex pow(long_double_complex x, long_double_complex y);

1 Returnsx raised to the powery .

[lib.pow.ldc.ld] 17.5.7.3.35pow(long_double_complex, long double)

long_double_complex pow(long_double_complex x, long double y);

1 Returnsx raised to the powery .

[lib.pow.ldc.i] 17.5.7.3.36pow(long_double_complex, int)

long_double_complex pow(long_double_complex x, int y);

1 Returnsx raised to the powery .

[lib.pow.ld.ldc] 17.5.7.3.37pow(long double, long_double_complex)

long_double_complex pow(long double x, long_double_complex y);

1 Returnsx raised to the powery .

[lib.real.ldc] 17.5.7.3.38real(long_double_complex)

long double real(long_double_complex x);

1 Returns the real part ofx .

[lib.sin.ldc] 17.5.7.3.39sin(long_double_complex)

long_double_complex sin(long_double_complex x);

1 Returns the sine ofx .

[lib.sinh.ldc] 17.5.7.3.40sinh(long_double_complex)

long_double_complex sinh(long_double_complex x);

1 Returns the hyperbolic sine ofx .

[lib.sqrt.ldc] 17.5.7.3.41sqrt(long_double_complex)

long_double_complex sqrt(long_double_complex x);

1 Returns the square root ofx . 

[lib.header.objcpy]17.5.8 Header<objcpy> 

1 The header<objcpy> defines several template functions that copy, construct, and destroy arrays of
objects. 

[lib.template.objcpy.t]17.5.8.1 Template functionobjcpy< T>(T*, const T*, size_t) 

template<class T> T* objcpy(T* dest , const T* src , size_t n); 

1 Assignssrc [I] to dest [I] for all non-negative values ofI less thann. The pointersdest andsrc 
shall designate the initial elements of non-overlapping arrays ofn objects of typeT. The order in which 
assignments take place is unspecified. 

17– 190 Library DRAFT: 27 May 1994 17.5.8.1
Template function objcpy< T>(T*, const T*, size_t)

2 The function returnsdest . 

[lib.template.objmove.t]17.5.8.2 Template functionobjmove< T>(T*, T*, size_t) 

template<class T> T* objmove(T* dest , T* src , size_t n); 

1 Assignssrc [I] to dest [I] for all non-negative values ofI less thann. The pointersdest andsrc 
shall designate the initial elements of arrays ofn objects of typeT. If dest == src , no assignment 
occurs. 

2 Otherwise, each element ofdest is destroyed after it has been assigned to its corresponding element in
src . An element ofdest that is also an element ofsrc is first assigned to its corresponding element in
src , then destroyed, before it is assigned to. 

3 The order in which elements are assigned or destroyed is otherwise unspecified. 

4 The function returnsdest . 

[lib.template.objcpy.v]17.5.8.3 Template functionobjcpy< T>(void*, const T*, 
size_t) 

template<class T> T* objcpy(void* dest , const T* src , size_t n); 

1 Constructs((T*) dest)[I] by copyingsrc [I] for all non-negative values ofI less thann. The 
pointerdest shall designate a region of storage suitable for representing an array ofn objects of typeT. 
The pointersrc shall designate the initial element of an array ofn objects of typeT that does not overlap
the region designated bydest . The order in which elements are constructed is unspecified. 

2 The function returns(T*) dest . 

[lib.template.objmove.v]17.5.8.4 Template functionobjmove< T>(void*, T*, size_t) 

template<class T> T* objmove(void* dest , T* src , size_t n); 

1 Constructs((T*) dest)[I] by copyingsrc [I] for all non-negative values ofI less thann. The 
pointerdest shall designate a region of storage suitable for representing an array ofn objects of typeT. 
The pointersrc shall designate the initial element of an array ofn objects of typeT. If dest == 
(void*) src , no construction occurs. 

2 Otherwise, each element ofdest is destroyed after it has been copied to its corresponding element insrc . 
An element ofdest that is also an element ofsrc is first copied to its corresponding element insrc , 
then destroyed, before it is constructed. 

3 The order in which elements are constructed or destroyed is otherwise unspecified. 

4 The function returns(T*) dest . 

[lib.template.objcons]17.5.8.5 Template functionobjconstruct< T>(void*, size_t) 

template<class T> T* objconstruct(void* dest , size_t n); 

1 Constructs((T*) dest)[I] with the constructorT() for all non-negative values ofI less thann. The 
pointerdest shall designate a region of storage suitable for representing an array ofn objects of typeT. 
The order in which elements are constructed is unspecified. 

2 The function returns(T*) dest . 

17.5.8.6 DRAFT: 27 May 1994 Library 17– 191
Template function objdestroy< T>(T*, size_t)

[lib.template.objdes]17.5.8.6 Template functionobjdestroy< T>(T*, size_t) 

template<class T> void* objdestroy(T* dest , size_t n); 

1 Destroys((T*) dest)[I] for all non-negative values ofI less thann. The pointerdest shall desig- 
nate an array ofn objects of typeT. The order in which elements are destroyed is unspecified. 

2 The function returns(void*) dest . 

[lib.header.locale]17.5.9 Header<locale> 

1 The header<locale> defines two classes and several functions that encapsulate and manipulate the infor-
mation peculiar to a locale. 

2 In this subclause, the type namestruct tm is an incomplete type that is defined in<ctime> . 

[lib.locale]17.5.9.1 Classlocale 

class locale { 
public: 

typedef T1 category; 
static const category COLLATE; 
static const category CTYPE; 
static const category MESSAGES; 
static const category MONETARY; 
static const category NUMERIC; 
static const category TIME; 
static const category ALL; 
typedef T2 ctype; 
static const ctype ALPHA; 
static const ctype CNTRL; 
static const ctype DIGIT; 
static const ctype LOWER; 
static const ctype PRINT; 
static const ctype PUNCT; 
static const ctype SPACE; 
static const ctype UPPER; 
static const ctype XDIGIT; 
static const ctype ALNUM; 
static const ctype GRAPH; 
static const ctype NO_MATCH; 
typedef T3 dateorder; 
static const dateorder DMY; 
static const dateorder MDY; 
static const dateorder NO_ORDER; 
static const dateorder YDM; 
static const dateorder YMD; 
typedef T4 moneysymbol; 
static const moneysymbol LOCAL; 
static const moneysymbol INTL; 
static const moneysymbol NONE; 
typedef T5 totype; 
static const totype DOWN; 
static const totype NO_CHANGE; 
static const totype UP; 

17– 192 Library DRAFT: 27 May 1994 17.5.9.1 Classlocale

class virtuals { 
protected: 

virtuals(size_t refs_arg); 
virtual ~virtuals(); 
virtual virtuals* copybut(const char* name, category cat) 

const; 
virtual void name(ostream& os) const = 0; 
virtual bool equal(const virtuals* vir_arg , category cat) 

const; 
virtual void insert(ostream& os , bool n) const; 
virtual void insert(ostream& os , long n) const; 
virtual void insert(ostream& os , unsigned long n) const; 
virtual void insert(ostream& os , double n) const; 
virtual void insert(ostream& os , long double n) const; 
virtual void extract(istream& is , bool& n) const; 
virtual void extract(istream& is , long& n) const; 
virtual void extract(istream& is , unsigned long& n) const; 
virtual void extract(istream& is , double& n) const; 
virtual void extract(istream& is , long double& n) const; 
virtual int narrow(wchar_t wc, char& c) const; 
virtual int widen(char c, wchar_t& wc) const; 
virtual bool is(ctype mask, wchar_t wc) const; 
virtual size_t is(const wchar_t* src , size_t n, ctype* dest) 

const; 
virtual ctype namedctype(const char * name) const; 
virtual char to(totype way, char c) const; 
virtual char to(totype way, wchar_t c) const; 
virtual size_t to(totype way, char* s, size_t n) const; 
virtual size_t to(totype way, wchar_t* s, size_t n) const; 
virtual totype namedto(const char * name) const; 
virtual int collate(const char* s1 , size_t n1, 

const char* s2 , size_t n2) const; 
virtual int collate(const wchar_t* s1 , size_t n1, 

const wchar_t* s2 , size_t n2) const; 
virtual size_t transform(ostream& os , const char* s, 

size_t n) const; 
virtual size_t transform(ostream& os , const wchar_t* s, 

size_t n) const; 
virtual long hash(const char* s, size_t n) const; 
virtual long hash(const wchar_t* s, size_t n) const; 
virtual void insert(ostream& os , const struct tm* t , 

char code); const 
virtual void extracttime(istream& is , struct tm* t) const; 
virtual void extractdate(istream& is , struct tm* t) const; 
virtual void extractweekday(istream& is , struct tm* t) const; 
virtual void extractmonthname(istream& is , struct tm* t) 

const; 
virtual dateorder date_order() const; 
virtual void insert(ostream& os , double units , 

moneysymbol sym) const; 
virtual void insert(ostream& os , char* digits , 

moneysymbol sym) const; 
virtual void extractmoney(istream& is , double& units , 

moneysymbol sym) const; 
virtual void extractmoney(istream& is , ostream& digits , 

moneysymbol sym) const; 
virtual int moneyfracdigits(moneysymbol sym) const; 
const ctype* ctypetable ; 

private: 
virtuals(const virtuals&); // not defined 
const virtuals& operator=(const virtuals&); // not defined 
void add_reference(); 

17.5.9.1 Classlocale DRAFT: 27 May 1994 Library 17– 193

void remove_reference(); 
// size_t refs ; exposition only 

}; 

17– 194 Library DRAFT: 27 May 1994 17.5.9.1 Classlocale

locale(const char* name); 
locale(virtuals* vir_arg); 
locale(const locale& loc , const char* name, category cat); 
~locale(); 
bool ok() const; 
bool operator==(const locale& rhs) const; 
bool operator!=(const locale& rhs) const; 
bool equal(const locale& rhs , category cat = ALL) const; 
void insert(ostream& os , bool n) const; 
void insert(ostream& os , long n) const; 
void insert(ostream& os , unsigned long n) const; 
void insert(ostream& os , double n) const; 
void insert(ostream& os , long double n) const; 
void extract(istream& is , bool& n) const; 
void extract(istream& is , long& n) const; 
void extract(istream& is , unsigned long& n) const; 
void extract(istream& is , double& n) const; 
void extract(istream& is , long double& n) const; 
int narrow(wchar_t wc, char& c) const; 
int widen(char c, wchar_t& wc) const; 
bool is(ctype mask, char c) const; 
bool is(ctype mask, unsigned char c) const; 
bool is(ctype mask, signed char c) const; 
bool is(ctype mask, int c) const; 
bool is(ctype mask, wchar_t wc) const; 
size_t is(const char* src , size_t n, ctype* dest) const; 
size_t is(const wchar_t* src , size_t n, ctype* dest) const; 
ctype namedctype(const char * name) const; 
char to(totype way, char c) const; 
char to(totype way, unsigned char c) const; 
char to(totype way, signed char c) const; 
char to(totype way, wchar_t c) const; 
size_t to(totype way, char* s, size_t n) const; 
size_t to(totype way, wchar_t* s, size_t n) const; 
totype namedto(const char * name) const; 
int collate(const char* s1 , size_t n1, 

const char* s2 , size_t n2) const; 
int collate(const wchar_t* s1 , size_t n1, 

const wchar_t* s2 , size_t n2) const; 
size_t transform(ostream& os , const char* s, size_t n) const; 
size_t transform(ostream& os , const wchar_t* s, size_t n) const; 
long hash(const char* s, size_t n) const; 
long hash(const wchar_t* s, size_t n) const; 
void insert(ostream& os , const struct tm* t , const char* fmt) 

const; 
void insert(ostream& os , const struct tm* t , char code); const 
void extracttime(istream& is , struct tm* t) const; 
void extractdate(istream& is , struct tm* t) const; 
void extractweekday(istream& is , struct tm* t) const; 
void extractmonthname(istream& is , struct tm* t) const; 
dateorder date_order() const; 
void insert(ostream& os , double units , moneysymbol sym) const; 
void insert(ostream& os , char* digits , moneysymbol sym) const; 
void extractmoney(istream& is , double& units , moneysymbol sym) 

const; 
void extractmoney(istream& is , ostream& digits , moneysymbol sym) 

const; 
int moneyfracdigits(moneysymbol sym) const; 
static locale global(); 
static locale global(const locale& loc); 
static const locale& classic(); 
static const locale& transparent(); 

17.5.9.1 Classlocale DRAFT: 27 May 1994 Library 17– 195

private: 
void name(ostream& os) const; 

// virtuals* vir ; exposition only 
}; 

1 The classlocale encapsulates the information peculiar to a locale. It defines several member types:

— the bitmask typescategory andctype ; 

— the enumerated typesdateorder , moneysymbol , andtotype ; 

— the classvirtuals . 

2 The macroUCHAR_MAXis defined in<ciimits> . 

3 For the sake of exposition, the maintained data is presented here as: 

— virtuals* vir , points to the object of classvirtuals that describes a specific locale. 

[lib.locale::category]17.5.9.1.1 Typelocale::category 

typedef T1 category; 

1 The typecategory is a bitmask type (indicated here asT1) with the elements (corresponding to macros
defined in<clocale> : 

— COLLATE, set to select the categoryLC_COLLATE; 

— CTYPE, set to select the categoryLC_CTYPE; 

— MESSAGES, set to select the categoryLC_MESSAGES; 

— MONETARY, set to select the categoryLC_MONETARY; 

— NUMERIC, set to select the categoryLC_NUMERIC; 

— TIME, set to select the categoryLC_TIME. 

2 Typecategory also defines the constant: 

— ALL, the union of all elements of the typecategory (corresponds toLC_ALL). 

[lib.locale::ctype]17.5.9.1.2 Typelocale::ctype 

typedef T2 ctype; 

1 The typectype is a bitmask type (indicated here asT2) with the elements (corresponding to functions
declared in<cctype> : 

— ALPHA, set to match characters for whichisalpha(int) returns a nonzero value; 

— CNTRL, set to match characters for whichiscntrl(int) returns a nonzero value; 

— DIGIT , set to match characters for whichisdigit(int) returns a nonzero value; 

— LOWER, set to match characters for whichislower(int) returns a nonzero value; 

— PRINT, set to match characters for whichisprint(int) returns a nonzero value; 

— PUNCT, set to match characters for whichispunct(int) returns a nonzero value; 

— SPACE, set to match characters for whichisspace(int) returns a nonzero value; 

17– 196 Library DRAFT: 27 May 1994 17.5.9.1.2 Typelocale::ctype

— UPPER, set to match characters for whichisupper(int) returns a nonzero value; 

— XDIGIT , set to match characters for whichisxdigit(int) returns a nonzero value; 

2 Typectype also defines the constants: 

— ALNUM, the valueALPHA | DIGIT (corresponds toisalnum(int)). 

— GRAPH, the valueALPHA | DIGIT | PUNCT (corresponds toisgraph(int)). 

— NO_MATCH, the value zero. 

[lib.locale::dateorder]17.5.9.1.3 Typelocale::dateorder 

typedef T3 dateorder; 

1 The typedateorder is an enumerated type (indicated here asT3) with the elements: 

— DMY, to specify that date components appear in the order date, month, and year; 

— MDY, to specify that date components appear in the order month, date, and year; 

— NO_ORDER, to specify that the order of appearance of date components is not meaningful; 

— YDM, to specify that date components appear in the order year, date, and month; 

— YMD, to specify that date components appear in the order year, month, and date. 

[lib.locale::moneysymbol]17.5.9.1.4 Typelocale::moneysymbol 

typedef T4 moneysymbol; 

1 The typemoneysymbol is an enumerated type (indicated here asT4) with the elements (corresponding to
members ofstruct lconv defined in<clocale> : 

— LOCAL, to specify that the currency symbol should be specified by the membercurrency_symbol ; 

— INTL , to specify that the currency symbol should be specified by the memberint_curr_symbol ; 

— NONE, to specify no currency symbol. 

[lib.locale::totype]17.5.9.1.5 Typelocale::totype 

typedef T5 totype; 

1 The typetotype is an enumerated type (indicated here asT5) with the elements (corresponding to func-
tions declared in<cctype> : 

— DOWN, to specify translation of upper case characters to lower case (corresponds totolower(int)); 

— NO_CHANGE, to specify no translation; 

— UP, to specify translation of lower case characters to upper case (corresponds totoupper(int)); 

17.5.9.1.6 Classlocale::virtuals DRAFT: 27 May 1994 Library 17– 197

[lib.locale::virtuals]17.5.9.1.6 Classlocale::virtuals 

17– 198 Library DRAFT: 27 May 1994 17.5.9.1.6 Classlocale::virtuals

class virtuals { 
protected: 

virtuals(size_t refs_arg); 
virtual ~virtuals(); 
virtual virtuals* copybut(const char* name, category cat) const; 
virtual void name(ostream& os) const = 0; 
virtual bool equal(const virtuals* vir_arg , category cat) const; 
virtual void insert(ostream& os , bool n) const; 
virtual void insert(ostream& os , long n) const; 
virtual void insert(ostream& os , unsigned long n) const; 
virtual void insert(ostream& os , double n) const; 
virtual void insert(ostream& os , long double n) const; 
virtual void extract(istream& is , bool& n) const; 
virtual void extract(istream& is , long& n) const; 
virtual void extract(istream& is , unsigned long& n) const; 
virtual void extract(istream& is , double& n) const; 
virtual void extract(istream& is , long double& n) const; 
virtual int narrow(wchar_t wc, char& c) const; 
virtual int widen(char c, wchar_t& wc) const; 
virtual bool is(ctype mask, wchar_t wc) const; 
virtual size_t is(const wchar_t* src , size_t n, ctype* dest) 

const; 
virtual ctype namedctype(const char * name) const; 
virtual char to(totype way, char c) const; 
virtual char to(totype way, wchar_t c) const; 
virtual size_t to(totype way, char* s, size_t n) const; 
virtual size_t to(totype way, wchar_t* s, size_t n) const; 
virtual totype namedto(const char * name) const; 
virtual int collate(const char* s1 , size_t n1, 

const char* s2 , size_t n2) const; 
virtual int collate(const wchar_t* s1 , size_t n1, 

const wchar_t* s2 , size_t n2) const; 
virtual size_t transform(ostream& os , const char* s, size_t n) 

const; 
virtual size_t transform(ostream& os , const wchar_t* s, size_t n) 

const; 
virtual long hash(const char* s, size_t n) const; 
virtual long hash(const wchar_t* s, size_t n) const; 
virtual void insert(ostream& os , const struct tm* t , char code) 

const; 
virtual void extracttime(istream& is , struct tm* t) const; 
virtual void extractdate(istream& is , struct tm* t) const; 
virtual void extractweekday(istream& is , struct tm* t) const; 
virtual void extractmonthname(istream& is , struct tm* t) const; 
virtual dateorder date_order() const; 
virtual void insert(ostream& os , double units , moneysymbol sym) 

const; 
virtual void insert(ostream& os , char* digits , moneysymbol sym) 

const; 
virtual void extractmoney(istream& is , double& units , 

moneysymbol sym) const; 
virtual void extractmoney(istream& is , ostream& digits , 

moneysymbol sym) const; 
virtual int moneyfracdigits(moneysymbol sym) const; 
const ctype* ctypetable ; 

private: 
virtuals(const virtuals&); // not defined 
const virtuals& operator=(const virtuals&); // not defined 
void add_reference(); 
void remove_reference(); 

// size_t refs ; exposition only 
}; 

17.5.9.1.6 Classlocale::virtuals DRAFT: 27 May 1994 Library 17– 199

1 The classvirtuals describes a specific locale. The default behavior of all virtual member functions is to
perform any locale-specific behavior consistent with that required for the"C" locale. 

2 The maintained data is: 

— const ctype* ctypetable , points to the initial element of an array ofUCHAR_MAX + 1object 
of typeconst ctype that describes the properties of all values of typeunsigned char . 

3 For the sake of exposition, the additional maintained data is presented here as: 

— size_t refs , counts the number of references from other objects to the object of classvirtuals . 

4 Objects of classlocale alter refs to match the number oflocale:: vir pointers that designate an
object of classvirtuals . 

[lib.cons.locale::virtuals.refs]17.5.9.1.6.1locale::virtuals::virtuals(size_t) 

virtuals(size_t refs_arg); 

1 Construct an object of classvirtuals , initializing ctypetable to values suitable for the"C" locale 
andrefs to refs_arg . 

[lib.des.locale::virtuals]17.5.9.1.6.2locale::virtuals::~virtuals() 

virtual ~virtuals(); 

1 Destroys an object of classvirtuals . 

[lib.locale::copybut]17.5.9.1.6.3locale::virtuals::copybut(const char*, 
category) 

virtual virtuals* copybut(const char* name, category cat) const; 

1 Creates an object of classvirtuals by evaluating the expressionvir = new (virtuals) , where 
vir is an object of type pointer tovirtuals . The function copies from*this the locale-specific 
behavior for categories not selected bycat . Otherwise, the locale-specific behavior is the same as for the
global locale established by the callsetlocale(name, cat) . 

2 The function returnsvir . 

[lib.locale::virtuals::name]17.5.9.1.6.4locale::virtuals::name(ostream&) 

virtual void name(ostream& os) const = 0; 

1 A pure virtual function, inserts inos the name of the locale described by*this . 

[lib.locale::virtuals::equal]17.5.9.1.6.5locale::virtuals::equal(const virtuals*, 
category) 

virtual bool equal(const virtuals* vir_arg , category cat) const; 

1 Returns a nonzero value if the locale described by* vir_arg is the same as the locale described by
*this for the categories selected bycat . In particular, the call 

locale("C").equal(locale::classic()) 

2 is nonzero. 

17– 200 Library DRAFT: 27 May 1994 17.5.9.1.6.6
locale::virtuals::insert(ostream&, bool)

[lib.locale::virtuals::insert.bool]17.5.9.1.6.6locale::virtuals::insert(ostream&, 
bool) 

virtual void insert(ostream& os , bool n) const; 

1 Behaves the same asos << n, with the locale-specific behavior described by*this . 

[lib.locale::virtuals::insert.li]17.5.9.1.6.7locale::virtuals::insert(ostream&, long) 

virtual void insert(ostream& os , long n) const; 

1 Behaves the same asos << n, with the locale-specific behavior described by*this . 

[lib.locale::virtuals::insert.uli]17.5.9.1.6.8locale::virtuals::insert(ostream&, 
unsigned long) 

virtual void insert(ostream& os , unsigned long n) const; 

1 Behaves the same asos << n, with the locale-specific behavior described by*this . 

[lib.locale::virtuals::insert.d]17.5.9.1.6.9locale::virtuals::insert(ostream&, 
double) 

virtual void insert(ostream& os , double n) const; 

1 Behaves the same asos << n, with the locale-specific behavior described by*this . 

[lib.locale::virtuals::insert.ld]17.5.9.1.6.10locale::virtuals::insert(ostream&, 
long double) 

virtual void insert(ostream& os , long double n) const; 

1 Behaves the same asos << n, with the locale-specific behavior described by*this . 

[lib.locale::virtuals::extract.bool]17.5.9.1.6.11locale::virtuals::extract(instream&, 
bool&) 

virtual void extract(istream& is , bool& n) const; 

1 Behaves the same asos >> n, with the locale-specific behavior described by*this . 

[lib.locale::virtuals::extract.li]17.5.9.1.6.12locale::virtuals::extract(istream&, 
long&) 

virtual void extract(istream& is , long& n) const; 

1 Behaves the same asos >> n, with the locale-specific behavior described by*this . 

[lib.locale::virtuals::extract.uli]17.5.9.1.6.13locale::virtuals::extract(istream&, 
unsigned long&) 

virtual void extract(istream& is , unsigned long& n) const; 

1 Behaves the same asos >> n, with the locale-specific behavior described by*this . 

17.5.9.1.6.14 DRAFT: 27 May 1994 Library 17– 201
locale::virtuals::extract(istream&, double&)

[lib.locale::virtuals::extract.d]17.5.9.1.6.14locale::virtuals::extract(istream&, 
double&) 

virtual void extract(istream& is , double& n) const; 

1 Behaves the same asos >> n, with the locale-specific behavior described by*this . 

[lib.locale::virtuals::extract.ld]17.5.9.1.6.15locale::virtuals::extract(istream&, 
long double&) 

virtual void extract(istream& is , long double& n) const; 

1 Behaves the same asos >> n, with the locale-specific behavior described by*this . 

[lib.locale::virtuals::narrow]17.5.9.1.6.16locale::virtuals::narrow(wchar_t, 
char&) 

virtual int narrow(wchar_t wc, char& c) const; 

1 If wctob(wc) == EOF , returns zero. Otherwise, the function storeswctob(wc) in c and returns a 
nonzero value. The function signaturewctob(wchar_t) is declared in<cwchar> . 

[lib.locale::virtuals::widen]17.5.9.1.6.17locale::virtuals::widen(char, wchar_t&) 

virtual int widen(char c, wchar_t& wc) const; 

1 If btowc(c) == WEOF , returns zero. Otherwise, the function storesbtowc(c) in wc and returns a 
nonzero value. The function signaturebtowc(wchar_t) is declared, and the macroWEOFis defined, in 
<cwchar> . 

[lib.locale::virtuals::is.wc]17.5.9.1.6.18locale::virtuals::is(ctype, wchar_t) 

virtual bool is(ctype mask, wchar_t wc) const; 

1 Determines thectype valuex that characterizeswc and returns a nonzero value ifx & mask is nonzero. 

[lib.locale::virtuals::is.wcs]17.5.9.1.6.19locale::virtuals::is(const wchar_t*, 
size_t, ctype*) 

virtual size_t is(const wchar_t* src , size_t n, ctype* dest) const; 

1 Assigns todest [I] thectype valuex that characterizessrc [I] , for successive non-negative values of
I starting with zero. Assignment proceeds until either: 

— n values have been stored; 

— The valuex equalsNO_MATCH, in which case the value is not stored. 

2 The pointersrc shall designate the initial element of an array ofn objects of typewchar_t . The pointer 
dest shall designate the initial element of an array ofn objects of typectype . 

3 The function returns a count of the number of values stored. 

[lib.locale::virtuals::namedctype]17.5.9.1.6.20 
locale::virtuals::namedctype(const char*) 

virtual ctype namedctype(const char * name) const; 

17– 202 Library DRAFT: 27 May 1994 17.5.9.1.6.20
locale::virtuals::namedctype(const char*)

1 Returns thectype value corresponding to theNTBS name, or NO_MATCHif no corresponding value
exists. The function shall return the correspondingctype value for each of theNTBS arguments in the 
minimum set accepted by the function signaturewctype(const char*) , declared in<cwctype> . 

[lib.locale::virtuals::to.c]17.5.9.1.6.21locale::virtuals::to(totype, char) 

virtual char to(totype way, char c) const; 

1 Returns thechar value that corresponds to the mapping ofc specified byway. 

[lib.locale::virtuals::to.wc]17.5.9.1.6.22locale::virtuals::to(totype, wchar_t) 

virtual char to(totype way, wchar_t c) const; 

1 Returns thewchar_t value that corresponds to the mapping ofc specified byway. 

[lib.locale::virtuals::to.str]17.5.9.1.6.23locale::virtuals::to(totype, char*, 
size_t) 

virtual size_t to(totype way, char* s, size_t n) const; 

1 Assignsto(way, s[I]) to s[I] for all non-negative values ofI less thann. The pointers shall des- 
ignate the initial element of an array ofn objects of typechar . 

2 The function returnsn. 

[lib.locale::virtuals::to.wcs]17.5.9.1.6.24locale::virtuals::to(totype, wchar_t*, 
size_t) 

virtual size_t to(totype way, wchar_t* s, size_t n) const; 

1 Assignsto(way, s[I]) to s[I] for all non-negative values ofI less thann. The pointers shall des- 
ignate the initial element of an array ofn objects of typewchar_t . 

[lib.locale::virtuals::namedto]17.5.9.1.6.25locale::virtuals::namedto(const char*) 

virtual totype namedto(const char * name) const; 

1 Returns thetotype value corresponding to theNTBS name, or a unique if no corresponding value has
been previously determined for that name. The function shall return the correspondingtotype value for 
each of theNTBS arguments in the minimum set accepted by the function signaturewctrans(const 
char*) , declared in<cwctype> . 

[lib.locale::virtuals::collate.str]17.5.9.1.6.26 
locale::virtuals::collate(const char*, 
size_t, const char*, size_t) 

virtual int collate(const char* s1 , size_t n1, 
const char* s2 , size_t n2) const; 

1 Returns the same value asstrcoll(s1 , s2) with null characters (conceptually) stored ins1 [n1] and 
s2 [n2] . The function signaturestrcoll(const char*, const char*) is declared in 
<cstring> . The pointers1 shall designate the initial element of an array ofn1 objects of typechar . 
The pointers2 shall designate the initial element of an array ofn2 objects of typechar . 

17.5.9.1.6.27 DRAFT: 27 May 1994 Library 17– 203
locale::virtuals::collate(const wchar_t*, size_t, const wchar_t*, size_t)

[lib.locale::virtuals::collate.wcs]17.5.9.1.6.27 
locale::virtuals::collate(const wchar_t*, 
size_t, const wchar_t*, size_t) 

virtual int collate(const wchar_t* s1 , size_t n1, 
const wchar_t* s2 , size_t n2) const; 

1 Returns the same value aswcscoll(s1 , s2) with null wide characters (conceptually) stored in
s1 [n1] ands2 [n2] . The function signaturewcscoll(const wchar_t*, const wchar_t*) 
is declared in<cwchar> . The pointers1 shall designate the initial element of an array ofn1 objects of 
type wchar_t . The pointers2 shall designate the initial element of an array ofn2 objects of type 
wchar_t . 

[lib.locale::virtuals::transform.str]17.5.9.1.6.28 
locale::virtuals::transform(ostream&, 
const char*, size_t) 

virtual int transform(ostream& os , const char* s, size_t n) const; 

1 Behaves the same asos .write(x, m = strxfrm(x, s, M)) with a null character (conceptually)
stored ins[n] . Here,m is an object of typesize_t , x is an array ofMobjects of typechar , andM is 
larger thanm. The function signaturestrxfrm(char*, const char*, size_t) is declared in 
<cstring> . The pointers shall designate the initial element of an array ofn objects of typechar . 

2 The function returnsm. 

[lib.locale::virtuals::transform.wcs]17.5.9.1.6.29 
locale::virtuals::transform(ostream&, 
const wchar_t*, size_t) 

virtual size_t transform(ostream& os , const wchar_t* s, size_t n) 
const; 

1 Behaves the same asos .write((char*) x, m = wcsxfrm(x, s, M) * sizeof 
(wchar_t)) with a null wide character (conceptually) stored ins[n] . Here,m is an object of type 
size_t , x is an array ofM objects of typewchar_t , andM is larger thanm. The function signature
wcsxfrm(wchar_t*, const wchar_t*, size_t) is declared in<cwchar> . The pointers 
shall designate the initial element of an array ofn objects of typewchar_t . 

2 The function returnsm. 

[lib.locale::virtuals::hash.str]17.5.9.1.6.30locale::virtuals::hash(const char*, 
size_t) 

virtual long hash(const char* s, size_t n) const; 

1 Returns a value that is a function of the elementss[I] , for all non-negative values ofI less thann. The 
pointers shall designate the initial element of an array ofn objects of typechar . 

[lib.locale::virtuals::hash.wcs]17.5.9.1.6.31locale::virtuals::hash(const wchar_t*, 
size_t) 

virtual long hash(const wchar_t* s, size_t n) const; 

1 Returns a value that is a function of the elementss[I] , for all non-negative values ofI less thann. The 
pointers shall designate the initial element of an array ofn objects of typewchar_t . 

17– 204 Library DRAFT: 27 May 1994 17.5.9.1.6.32
locale::virtuals::insert(ostream&, const struct tm*, char)

[lib.locale::virtuals::insert.tm]17.5.9.1.6.32locale::virtuals::insert(ostream&, 
const struct tm*, char) 

virtual void insert(ostream& os , const struct tm* t , char code) const; 

1 Behaves the same asos .write(x, strftime(x, fmt , M, t)) . Here,fmt is an array ofchar 
with fmt [0] == ’%’ , fmt [1] == code , andfmt [2] == ’\0’ ; x is an array ofMobjects of type 
char ; andM is large enough that the value returned bystrftime is nonzero. The function signature
strftime(char*, size_t, const char*, struct tm*) is declared in<ctime> . 

[lib.locale::virtuals::extracttime]17.5.9.1.6.33 
locale::virtuals::extracttime(istream&, 
struct tm*) 

virtual void extracttime(istream& is , struct tm* t) const; 

1 Extracts characters fromis to determine the encoded time values to store int ->tm_hour , t ->tm_min , 
and t ->tm_sec . The character sequence inserted byinsert(os , t1 , ’X’) shall be extracted by
extracttime(is , t2) such thatt1 ->tm_hour == t2 ->tm_hour && t1 ->tm_min == 
t2 ->tm_min && t1 ->tm_hour == t2 ->tm_hour is nonzero. The character sequences recog-
nized are otherwise locale specific. 

[lib.locale::virtuals::extractdate]17.5.9.1.6.34 
locale::virtuals::extractdate(istream&, 
struct tm*) 

virtual void extractdate(istream& is , struct tm* t) const; 

1 Extracts characters fromis to determine the encoded time values to store int ->tm_year , t - 
>tm_mon,t ->tm_mday , t ->tm_yday , and t ->tm_wday . The character sequence inserted by
insert(os , t1 , ’x’) shall be extracted byextractdate(is , t2) such thatt1 ->tm_year 
== t2 ->tm_year && t1 ->tm_mon == t2 ->tm_mon && t1 ->tm_mday == t2 ->tm_mday 
is nonzero. The character sequences recognized are otherwise locale specific. 

[lib.locale::virtuals::extractweekday]17.5.9.1.6.35 
locale::virtuals::extractweekday(istream&, 
struct tm*) 

virtual void extractweekday(istream& is , struct tm* t) const; 

1 Extracts characters fromis to determine the encoded time value to store int ->tm_wday . The character 
sequence inserted byinsert(os , t1 , ’A’) shall be extracted byextractweekday(is , t2) 
such thatt1 ->tm_wday == t2 ->tm_wday is nonzero. The character sequences recognized are other-
wise locale specific. 

[lib.locale::virtuals::extractmonthname]17.5.9.1.6.36 
locale::virtuals::extractmonthname(istream&, 
struct tm*) 

virtual void extractmonthname(istream& is , struct tm* t) const; 

1 Extracts characters fromis to determine the encoded time value to store int ->tm_mon . The character 
sequence inserted byinsert(os , t1 , ’B’) shall be extracted byextractmonthname(is , t2) 
such thatt1 ->tm_mon == t2 ->tm_mon is nonzero. The character sequences recognized are other-
wise locale specific. 

17.5.9.1.6.37 DRAFT: 27 May 1994 Library 17– 205
locale::virtuals::date_order()

[lib.locale::virtuals::date.order]17.5.9.1.6.37locale::virtuals::date_order() 

virtual dateorder date_order() const; 

1 Returns the value of typedateorder that describes the locale-specific date order. 

[lib.locale::virtuals::insert.money.u]17.5.9.1.6.38locale::virtuals::insert(ostream&, 
double, moneysymbol) 

virtual void insert(ostream& os , double units , moneysymbol sym) const; 

1 Inserts inos a sequence of characters that represent the monetary valueunits . 

2 If sym is LOCAL, the function displays the currency symbollocaleconv()->currency_symbol 
(for a global locale that matches the locale designated by*this<F25D>), and divides units 
by 10 raised to the power localeconv()->frac_digits. Otherwise, if sym 
is INTL, the function displays the currency symbol localeconv()- 
>int_curr_symbol, and divides units by 10 raised to the power 
localeconv()->int_frac_digits. Otherwise, the function displays no cur- 
rency symbol. The function signature localeconv() is declared in <clo- 
cale>. 

[lib.locale::virtuals::insert.money.d]17.5.9.1.6.39locale::virtuals::insert(ostream&, 
char*, moneysymbol) 

virtual void insert(ostream& os , char* digits , moneysymbol sym) const; 

1 Inserts inos a sequence of characters that represent the monetary value of theNTBS digits , which shall 
consist only of decimal digits. 

2 If sym is LOCAL, the function displays the currency symbollocaleconv()->currency_symbol 
(for a global locale that matches the locale designated by*this<F25D>), and displays 
localeconv()->frac_digits to the right of the monetary decimal point. 
Otherwise, if sym is INTL, the function displays the currency symbol 
localeconv()->int_curr_symbol, and displays localeconv()- 
>int_frac_digits to the right of the monetary decimal point. Otherwise, 
the function displays no currency symbol. The function signature 
localeconv() is declared in <clocale>. 

[lib.locale::virtuals::extractmoney.u]17.5.9.1.6.40 
locale::virtuals::extractmoney(istream&, 
double&, moneysymbol) 

virtual void extractmoney(istream& is , double& units , 
moneysymbol sym) const; 

1 Extracts characters fromis to determine the encoded monetary value to store inunits . The character 
sequence inserted byinsert(os , x, sym) shall be extracted byextractmoney(is , y, sym) 
such thatx == y is nonzero. The character sequences recognized are otherwise locale specific. 

[lib.locale::virtuals::extractmoney.d]17.5.9.1.6.41 
locale::virtuals::extractmoney(istream&, 
ostream&, moneysymbol) 

virtual void extractmoney(istream& is , ostream& digits , moneysymbol sym) const; 

1 Extracts characters fromis to determine the sequence of digits to insert intodigits to represent the 
monetary value. The character sequence inserted byinsert(os , x, sym) shall be extracted by
extractmoney(is , y, sym) such that the digit sequence in theNTBS x is the same as the digit

17– 206 Library DRAFT: 27 May 1994 17.5.9.1.6.41
locale::virtuals::extractmoney(istream&, ostream&, moneysymbol)

sequence inserted in theostream objecty . The character sequences recognized are otherwise locale spe-
cific. 

[lib.locale::virtuals::moneyfracdigits]17.5.9.1.6.42 
locale::virtuals::moneyfracdigits(moneysymbol) 

virtual int moneyfracdigits(moneysymbol sym) const; 

1 If sym is LOCAL, returnslocaleconv()->frac_digits (for a global locale that matches the locale
designated by*this<F25D>). Otherwise, if sym<F25D> is INTL, the function 
returns localeconv()->int_frac_digits. Otherwise, the function returns 
zero. The function signature localeconv() is declared in <clocale>. 

[lib.cons.locale::virtuals]17.5.9.1.6.43 
locale::virtuals::virtuals(const virtuals&) 

virtuals(const virtuals&); // not defined 

1 Constructs an object of classvirtuals and initializes it by copying its argument. The Standard C + + 
library provides no definition for this function.127) 

[lib.locale::virtuals::op=]17.5.9.1.6.44 
locale::virtuals::operator=(const virtuals&) 

const virtuals& operator=(const virtuals&); // not defined 

1 Assigns a value of classvirtuals to *this . The Standard C + + library provides no definition for this
function. 

[lib.locale::virtuals::add.reference]17.5.9.1.6.45locale::virtuals::add_reference() 

void add_reference(); 

1 Adds one torefs . 

[lib.locale::virtuals::remove.reference]17.5.9.1.6.46 
locale::virtuals::remove_reference() 

void remove_reference(); 

1 Subtracts one fromrefs . If the resulting stored value is zero, the object designated by*this may be 
deleted. 

[lib.cons.locale.str]17.5.9.1.7locale::locale(const char*) 

locale(const char* name); 

1 Constructs an object of classlocale , initializing vir with localev_byname(name , 0) . 

[lib.cons.locale.vir]17.5.9.1.8locale::locale(virtuals*) 

locale(virtuals* vir_arg); 

1 Constructs an object of classlocale , initializing vir with vir_arg . 

127)An object of classlocale::virtuals cannot be copied or assigned to.

17.5.9.1.9 DRAFT: 27 May 1994 Library 17– 207
locale::locale(const locale&, const char*, category)

[lib.cons.locale.cat]17.5.9.1.9locale::locale(const locale&, const char*, 
category) 

locale(const locale& loc , const char* name, category cat); 

1 Constructs an object of classlocale , initializing vir with loc .copybut(name, cat) . 

[lib.des.locale]17.5.9.1.10locale::~locale() 

~locale(); 

1 Destroys an object of classlocale . 

[lib.locale::ok]17.5.9.1.11locale::ok() 

bool ok() const; 

1 Returns a nonzero value ifvir is not a null pointer. 

[lib.locale::op==]17.5.9.1.12locale::operator==(const locale&) 

bool operator==(const locale& rhs) const; 

1 Returns a nonzero value ifvir ->equal(rhs , ALL) is nonzero. 

[lib.locale::op!=]17.5.9.1.13locale::operator!=(const locale&) 

bool operator!=(const locale& rhs) const; 

1 Returns a nonzero value if!(*this == rhs) . 

[lib.locale::equal]17.5.9.1.14locale::equal(const locale&, category) 

bool equal(const locale& rhs , category cat = ALL) const; 

1 Returns a nonzero value ifvir ->equal(rhs , cat) is nonzero. 

[lib.locale::insert.bool]17.5.9.1.15locale::insert(ostream&, bool) 

void insert(ostream& os , bool n) const; 

1 Callsvir ->insert(os , n) . 

[lib.locale::insert.li]17.5.9.1.16locale::insert(ostream&, long) 

void insert(ostream& os , long n) const; 

1 Callsvir ->insert(os , n) . 

[lib.locale::insert.uli]17.5.9.1.17locale::insert(ostream&, unsigned long) 

void insert(ostream& os , unsigned long n) const; 

1 Callsvir ->insert(os , n) . 

17– 208 Library DRAFT: 27 May 1994 17.5.9.1.18
locale::insert(ostream&, double)

[lib.locale::insert.d]17.5.9.1.18locale::insert(ostream&, double) 

void insert(ostream& os , double n) const; 

1 Callsvir ->insert(os , n) . 

[lib.locale::insert.ld]17.5.9.1.19locale::insert(ostream&, long double) 

void insert(ostream& os , long double n) const; 

1 Callsvir ->insert(os , n) . 

[lib.locale::extract.bool]17.5.9.1.20locale::extract(istream&, bool&) 

void extract(istream& is , bool& n) const; 

1 Callsvir ->extract(is , n) . 

[lib.locale::extract.li]17.5.9.1.21locale::extract(istream&, long&) 

void extract(istream& is , long& n) const; 

1 Callsvir ->extract(is , n) . 

[lib.locale::extract.uli]17.5.9.1.22locale::extract(istream&, unsigned long&) 

void extract(istream& is , unsigned long& n) const; 

1 Callsvir ->extract(is , n) . 

[lib.locale::extract.d]17.5.9.1.23locale::extract(istream&, double&) 

void extract(istream& is , double& n) const; 

1 Callsvir ->extract(is , n) . 

[lib.locale::extract.ld]17.5.9.1.24locale::extract(istream&, long double&) 

void extract(istream& is , long double& n) const; 

1 Callsvir ->extract(is , n) . 

[lib.locale::narrow]17.5.9.1.25locale::narrow(wchar_t, char&) 

int narrow(wchar_t wc, char& c) const; 

1 Returnsvir ->narrow(wc, c) . 

[lib.locale::widen]17.5.9.1.26locale::widen(char, wchar_t&) 

int widen(char c, wchar_t& wc) const; 

1 Returnsvir ->widen(c, wc) . 

[lib.locale::is.c]17.5.9.1.27locale::is(ctype, char) 

bool is(ctype mask, char c) const; 

1 Returns a nonzero value ifvir ->ctypetable[(unsigned char) c] & mask is nonzero. 

17.5.9.1.28 DRAFT: 27 May 1994 Library 17– 209
locale::is(ctype, unsigned char)

[lib.locale::is.uc]17.5.9.1.28locale::is(ctype, unsigned char) 

bool is(ctype mask, unsigned char c) const; 

1 Returns a nonzero value ifvir ->ctypetable[c] & mask is nonzero. 

[lib.locale::is.sc]17.5.9.1.29locale::is(ctype, signed char) 

bool is(ctype mask, signed char c) const; 

1 Returns a nonzero value ifvir ->ctypetable[(unsigned char) c] & mask is nonzero. 

[lib.locale::is.i]17.5.9.1.30locale::is(ctype, int) 

bool is(ctype mask, int c) const; 

1 Returns a nonzero value if(unsigned char)c == c && vir->ctypetable[(unsigned 
char) c] & mask is nonzero. 

[lib.locale::is.wc]17.5.9.1.31locale::is(ctype, wchar_t) 

bool is(ctype mask, wchar_t wc) const; 

1 Returns a nonzero value ifvir ->is(wc) is nonzero. 

[lib.locale::is.str]17.5.9.1.32locale::is(const char*, size_t, ctype*) 

size_t is(const char* src , size_t n, ctype* dest) const; 

1 Returnsvir ->is(src , n, dest) . 

[lib.locale::is.wcs]17.5.9.1.33locale::is(const wchar_t*, size_t, ctype*) 

size_t is(const wchar_t* src , size_t n, ctype* dest) const; 

1 Returnsvir ->is(src , n, dest) . 

[lib.locale::namedctype]17.5.9.1.34locale::namedctype(const char*) 

ctype namedctype(const char * name) const; 

1 Returnsvir ->namedctype(name) . 

[lib.locale::to.c]17.5.9.1.35locale::to(totype, char) 

char to(totype way, char c) const; 

1 Returnsvir ->to(way, c) . 

[lib.locale::to.uc]17.5.9.1.36locale::to(totype, unsigned char) 

char to(totype way, unsigned char c) const; 

1 Returnsvir ->to(way, (char) c) . 

17– 210 Library DRAFT: 27 May 1994 17.5.9.1.37
locale::to(totype, signed char)

[lib.locale::to.sc]17.5.9.1.37locale::to(totype, signed char) 

char to(totype way, signed char c) const; 

1 Returnsvir ->to(way, (char) c) . 

[lib.locale::to.wc]17.5.9.1.38locale::to(totype, wchar_t) 

char to(totype way, wchar_t c) const; 

1 Returnsvir ->to(way, c) . 

[lib.locale::to.str]17.5.9.1.39locale::to(totype, char*, size_t) 

size_t to(totype way, char* s, size_t n) const; 

1 Returnsvir ->to(way, s, n) . 

[lib.locale::to.wcs]17.5.9.1.40locale::to(totype, wchar_t*, size_t) 

size_t to(totype way, wchar_t* s, size_t n) const; 

1 Returnsvir ->to(way, s, n) . 

[lib.locale::namedto]17.5.9.1.41locale::namedto(const char*) 

totype namedto(const char * name) const; 

1 Returnsvir ->namedto(name) . 

[lib.locale::collate.str]17.5.9.1.42locale::collate(const char*, size_t, 
const char*, size_t) 

int collate(const char* s1 , size_t n1, const char* s2 , size_t n2) 
const; 

1 Returnsvir ->collate(s1 , n1, s2 , n2) . 

[lib.locale::collate.wcs]17.5.9.1.43locale::collate(const wchar_t*, size_t, 
const wchar_t*, size_t) 

int collate(const wchar_t* s1 , size_t n1, const wchar_t* s2 , 
size_t n2) const; 

1 Returnsvir ->collate(s1 , n1, s2 , n2) . 

[lib.locale::transform.str]17.5.9.1.44locale::transform(ostream&, const char*, 
size_t) 

size_t transform(ostream& os , const char* s, size_t n) const; 

1 Returnsvir ->transform(os , s, n) . 

[lib.locale::transform.wcs]17.5.9.1.45locale::transform(ostream&, 
const wchar_t*, size_t) 

size_t transform(ostream& os , const wchar_t* s, size_t n) const; 

17.5.9.1.45 DRAFT: 27 May 1994 Library 17– 211
locale::transform(ostream&, const wchar_t*, size_t)

1 Returnsvir ->transform(os , s, n) . 

[lib.locale::hash.str]17.5.9.1.46locale::hash(const char*, size_t) 

long hash(const char* s, size_t n) const; 

1 Returnsvir ->hash(s, n) . 

[lib.locale::hash.wcs]17.5.9.1.47locale::hash(const wchar_t*, size_t) 

long hash(const wchar_t* s, size_t n) const; 

1 Returnsvir ->hash(s, n) . 

[lib.locale::insert.tm.str]17.5.9.1.48locale::insert(ostream&, const struct tm*, 
const char*) 

void insert(ostream& os , const struct tm* t , const char* fmt) const; 

1 Inserts characters intoos under control of a format string.fmt shall be anNTBS. The function processes
each elementx in succession, up to but not including the terminating null character. 

2 For each element, ifx is not ’%’ , or if the charactery following x is not a null character, the function
insertsx into os . Otherwise, the function callsinsert(os , t , y) . 

[lib.locale::insert.tm]17.5.9.1.49locale::insert(ostream&, const struct tm*, 
char) 

void insert(ostream& os , const struct tm* t , char code) const; 

1 Callsvir ->insert(os , t , code) . 

[lib.locale::extracttime]17.5.9.1.50locale::extracttime(istream&, struct tm*) 

void extracttime(istream& is , struct tm* t) const; 

1 Callsvir ->extracttime(is , t) . 

[lib.locale::extractdate]17.5.9.1.51locale::extractdate(istream&, struct tm*) 

void extractdate(istream& is , struct tm* t) const; 

1 Callsvir ->extractdate(is , t) . 

[lib.locale::extractweekday]17.5.9.1.52locale::extractweekday(istream&, struct 
tm*) 

void extractweekday(istream& is , struct tm* t) const; 

1 Callsvir ->extractweekday(is , t) . 

[lib.locale::extractmonthname]17.5.9.1.53locale::extractmonthname(istream&, 
struct tm*) 

void extractmonthname(istream& is , struct tm* t) const; 

1 Callsvir ->extractmonthname(is , t) . 

17– 212 Library DRAFT: 27 May 1994 17.5.9.1.54locale::date_order()

[lib.locale::date.order]17.5.9.1.54locale::date_order() 

dateorder date_order() const; 

1 Returnsvir ->date_order() . 

[lib.locale::insert.money.u]17.5.9.1.55locale::insert(ostream&, double, 
moneysymbol) 

void insert(ostream& os , double units , moneysymbol sym) const; 

1 Callsvir ->insert(os , units , sym) . 

[lib.locale::insert.money.d]17.5.9.1.56locale::insert(ostream&, char*, 
moneysymbol) 

void insert(ostream& os , char* digits , moneysymbol sym) const; 

1 Callsvir ->insert(os , digits , sym) . 

[lib.locale::extractmoney.u]17.5.9.1.57locale::extractmoney(istream&, double&, 
moneysymbol) 

void extractmoney(istream& is , double& units , moneysymbol sym) const; 

1 Callsvir ->extractmoney(is , units , syn) . 

[lib.locale::extractmoney.d]17.5.9.1.58locale::extractmoney(istream&, ostream&, 
moneysymbol) 

void extractmoney(istream& is , ostream& digits , moneysymbol sym) 
const; 

1 Callsvir ->extractmoney(is , digits , syn) . 

[lib.locale::moneyfracdigits]17.5.9.1.59locale::moneyfracdigits(moneysymbol) 

int moneyfracdigits(moneysymbol sym) const; 

1 Returnsvir ->moneyfracdigits(sym) . 

[lib.locale::global]17.5.9.1.60locale::global() 

static locale global(); 

1 Constructs an objectnew_loc of classlocale and initializes it to describe the same locale as the current
global locale. The function returnsnew_loc . 

[lib.locale::global.loc]17.5.9.1.61locale::global() 

static locale global(const locale& loc); 

1 Constructs an objectnew_loc of classlocale and initializes it to describe the same locale asloc . The 
function then alters the global locale to matchloc and returnsnew_loc . 

17.5.9.1.62locale::classic() DRAFT: 27 May 1994 Library 17– 213

[lib.locale::classic]17.5.9.1.62locale::classic() 

static const locale& classic(); 

1 The function returns an object of classlocale that describes the"C" locale. 

[lib.locale::transparent]17.5.9.1.63locale::transparent() 

static const locale& transparent(); 

1 The function returns an object of classlocale that, at all times, describes the global locale. 

[lib.locale::name]17.5.9.1.64locale::name() 

void name(ostream& os) const; 

1 Callsvir ->name(os) . 

[lib.localev.byname]17.5.9.2 Classlocalev_byname 

class localev_byname : public locale::virtuals { 
public: 

localev_byname(const char* name, size_t refs); 
}; 

1 The classlocalev_byname is derived from classlocale::virtuals to assist in constructing an
object that describes a named locale. 

[lib.cons.localev.byname]17.5.9.2.1localev_byname::localev_byname(const char*, 
size_t) 

localev_byname(const char* name, size_t refs); 

1 Constructs an object of classlocalev_byname , initializing the base class with
locale::virtuals(refs) , then altering the object to describe the locale whose name isname. 

[lib.locale.collate.string]17.5.9.3collate(const string&, const string&, 
const locale&) 

int collate(const string& s1 , const string& s2 , 
const locale& loc = locale::global()); 

1 Returnsloc .collate(s1 .data(), s1 .length(), s2 .data(), s2 .length()) . 

[lib.locale.collate.wstring]17.5.9.4collate(const wstring&, const wstring&, 
const locale&) 

int collate(const wstring& s1 , const wstring& s2 , 
const locale& loc = locale::global()); 

1 Returnsloc .collate(s1 .data(), s1 .length(), s2 .data(), s2 .length()) . 

[lib.locale.ins]17.5.9.5operator<<(ostream&, const locale&) 

ostream& operator<<(ostream& os , const locale& loc); 

1 A formatted output function, executesloc.name (os) and returnsos . 

17– 214 Library DRAFT: 27 May 1994 17.5.9.6
operator>>(istream&, locale&)

[lib.locale.ext]17.5.9.6operator>>(istream&, locale&) 

istream& operator>>(istream& is , locale& loc); 

1 A formatted input function, evaluates the expressionis >> name, wherename is an array ofchar large 
enough to hold an arbitrary locale name. Ifis.good() is nonzero, the function then stores
localev_byname(name , 0) in loc.vir .

_ ___ ___

Annex A (informative)
Grammar summary [gram]
_ ___ ___

1 This summary of C + + syntax is intended to be an aid to comprehension. It is not an exact statement of the
language. In particular, the grammar described here accepts a superset of valid C + + constructs. Disam-
biguation rules (6.8, 7.1,_class.ambig_) must be applied to distinguish expressions from declarations. Fur-
ther, access control, ambiguity, and type rules must be used to weed out syntactically valid but meaningless
constructs.

[gram.key] A.1 Keywords

1 New context-dependent keywords are introduced into a program bytypedef (7.1.3), namespace (7.3.1),
class (9), enumeration (7.2), andtemplate (14) declarations.

typedef-name:
identifier

namespace-name:
original-namespace-name
namespace-alias

original-namespace-name:
identifier

namespace-alias:
identifier

class-name:
identifier
template-class-id

enum-name:
identifier

template-name:
identifier

Note that atypedef-namenaming a class is also aclass-name(9.1).

[gram.lex] A.2 Lexical conventions

A– 2 Grammar summary DRAFT: 27 May 1994 A.2 Lexical conventions

preprocessing-token:
header-name
identifier
pp-number
character-constant
string-literal
operator
digraph
punctuator
each non-white-space character that cannot be one of the above

digraph:
<%
%>
<:
:>
%: 

token:
identifier
keyword
literal
operator
punctuator

identifier:
nondigit
identifier nondigit
identifier digit

nondigit: one of
_ a b c d e f g h i j k l m

n o p q r s t u v w x y z
A B C D E F G H I J K L M
N O P Q R S T U V W X Y Z

digit: one of
0 1 2 3 4 5 6 7 8 9

literal:
integer-literal
character-literal
floating-literal
string-literal
boolean-literal

integer-literal:
decimal-literal integer-suffixopt

octal-literal integer-suffixopt

hexadecimal-literal integer-suffixopt

decimal-literal:
nonzero-digit
decimal-literal digit

octal-literal:
0
octal-literal octal-digit

A.2 Lexical conventions DRAFT: 27 May 1994 Grammar summary A– 3

hexadecimal-literal:
0x hexadecimal-digit
0X hexadecimal-digit
hexadecimal-literal hexadecimal-digit

nonzero-digit: one of
1 2 3 4 5 6 7 8 9

octal-digit: one of
0 1 2 3 4 5 6 7

hexadecimal-digit:one of
0 1 2 3 4 5 6 7 8 9
a b c d e f
A B C D E F

integer-suffix:
unsigned-suffix long-suffixopt

long-suffix unsigned-suffixopt

unsigned-suffix:one of
u U

long-suffix: one of
l L

character-literal:
’ c-char-sequence’
L’ c-char-sequence’

c-char-sequence:
c-char
c-char-sequence c-char

c-char:
any member of the source character set except

the single-quote’ , backslash\ , or new-line character
escape-sequence

escape-sequence:
simple-escape-sequence
octal-escape-sequence
hexadecimal-escape-sequence

simple-escape-sequence:one of
\’ \" \? \\
\a \b \f \n \r \t \v

octal-escape-sequence:
\ octal-digit
\ octal-digit octal-digit
\ octal-digit octal-digit octal-digit

hexadecimal-escape-sequence:
\x hexadecimal-digit
hexadecimal-escape-sequence hexadecimal-digit

A– 4 Grammar summary DRAFT: 27 May 1994 A.2 Lexical conventions

floating-constant:
fractional-constant exponent-partopt floating-suffixopt

digit-sequence exponent-part floating-suffixopt

fractional-constant:
digit-sequenceopt . digit-sequence
digit-sequence.

exponent-part:
e signopt digit-sequence
E signopt digit-sequence

sign: one of
+ -

digit-sequence:
digit
digit-sequence digit

floating-suffix: one of
f l F L

string-literal:
" s-char-sequenceopt"
L" s-char-sequenceopt"

s-char-sequence:
s-char
s-char-sequence s-char

s-char:
any member of the source character set except

the double-quote" , backslash\ , or new-line character
escape-sequence

boolean-literal:
false
true

[gram.basic] A.3 Basic concepts

translation unit: ∗
declaration-seqopt

[gram.expr] A.4 Expressions

primary-expression:
literal
this
:: identifier
:: operator-function-id
:: qualified-id
(expression)
id-expression

A.4 Expressions DRAFT: 27 May 1994 Grammar summary A– 5

id-expression:
unqualified-id
qualified-id

unqualified-id:
identifier
operator-function-id
conversion-function-id
˜ class-name

qualified-id:
nested-name-specifier unqualified-id

postfix-expression:
primary-expression
postfix-expression[expression]
postfix-expression(expression-listopt)
simple-type-specifier(expression-listopt)
postfix-expression. id-expression
postfix-expression-> id-expression
postfix-expression++
postfix-expression--
dynamic_cast < type-id > (expression)
static_cast < type-id > (expression)
reinterpret_cast < type-id > (expression)
const_cast < type-id > (expression)
typeid (expression) 
typeid (type-id) 

expression-list:
assignment-expression
expression-list, assignment-expression

unary-expression:
postfix-expression
++ unary-expression
-- unary-expression
unary-operator cast-expression
sizeof unary-expression
sizeof (type-id)
new-expression
delete-expression

unary-operator: one of
* & + - ! ~

new-expression:
:: opt new new-placementopt new-type-id new-initializeropt

:: opt new new-placementopt (type-id) new-initializeropt

new-placement:
(expression-list)

new-type-id:
type-specifier-seq new-declaratoropt

A– 6 Grammar summary DRAFT: 27 May 1994 A.4 Expressions

new-declarator:
* cv-qualifier-seqopt new-declaratoropt

:: opt nested-name-specifier* cv-qualifier-seqopt new-declaratoropt

direct-new-declarator

direct-new-declarator:
[expression]
direct-new-declarator[constant-expression]

new-initializer:
(expression-listopt)

delete-expression:
:: opt delete cast-expression
:: opt delete [] cast-expression

cast-expression:
unary-expression
(type-id) cast-expression

pm-expression:
cast-expression
pm-expression.* cast-expression
pm-expression->* cast-expression

multiplicative-expression:
pm-expression
multiplicative-expression* pm-expression
multiplicative-expression/ pm-expression
multiplicative-expression% pm-expression

additive-expression:
multiplicative-expression
additive-expression+ multiplicative-expression
additive-expression- multiplicative-expression

shift-expression:
additive-expression
shift-expression<< additive-expression
shift-expression>> additive-expression

relational-expression:
shift-expression
relational-expression< shift-expression
relational-expression> shift-expression
relational-expression<= shift-expression
relational-expression>= shift-expression

equality-expression:
relational-expression
equality-expression== relational-expression
equality-expression!= relational-expression

and-expression:
equality-expression
and-expression& equality-expression

A.4 Expressions DRAFT: 27 May 1994 Grammar summary A– 7

exclusive-or-expression:
and-expression
exclusive-or-expression̂ and-expression

inclusive-or-expression:
exclusive-or-expression
inclusive-or-expression| exclusive-or-expression

logical-and-expression:
inclusive-or-expression
logical-and-expression&& inclusive-or-expression

logical-or-expression:
logical-and-expression
logical-or-expression|| logical-and-expression

conditional-expression:
logical-or-expression
logical-or-expression? expression: assignment-expression

assignment-expression:
conditional-expression
unary-expression assignment-operator assignment-expression
throw-expression

assignment-operator:one of
= *= /= %= += -= >>= <<= &= ^= |=

expression:
assignment-expression
expression, assignment-expression

constant-expression:
conditional-expression

[gram.stmt.stmt] A.5 Statements

statement:
labeled-statement
expression-statement
compound-statement
selection-statement
iteration-statement
jump-statement
declaration-statement
try-block

labeled-statement:
identifier : statement
case constant-expression: statement
default : statement

expression-statement:
expressionopt ;

compound-statement:
{ statement-seqopt }

A– 8 Grammar summary DRAFT: 27 May 1994 A.5 Statements

statement-seq:
statement
statement-seq statement

selection-statement:
if (condition) statement
if (condition) statementelse statement
switch (condition) statement

condition:
expression
type-specifier-seq declarator= assignment-expression

iteration-statement:
while (condition) statement
do statement while (expression) ;
for (for-init-statement conditionopt ; expressionopt) statement

for-init-statement:
expression-statement
declaration-statement

jump-statement:
break ;
continue ;
return expressionopt ;
goto identifier ;

declaration-statement:
declaration

[gram.dcl.dcl] A.6 Declarations

declaration:
decl-specifier-seqopt init-declarator-listopt ;
function-definition
template-declaration
asm-definition
linkage-specification
namespace-definition
namespace-alias-definition
using-declaration
using-directive

decl-specifier-seqopt init-declarator-listopt ;

decl-specifier:
storage-class-specifier
type-specifier
function-specifier
friend
typedef

decl-specifier-seq:
decl-specifier-seqopt decl-specifier

A.6 Declarations DRAFT: 27 May 1994 Grammar summary A– 9

storage-class-specifier:
auto
register
static
extern
mutable

function-specifier:
inline
virtual

typedef-name:
identifier

type-specifier:
simple-type-specifier
class-specifier
enum-specifier
elaborated-type-specifier
cv-qualifier

simple-type-specifier:
:: opt nested-name-specifieropt type-name
char
wchar_t
bool
short
int
long
signed
unsigned
float
double
void

type-name:
class-name
enum-name
typedef-name

elaborated-type-specifier:
class-key :: opt nested-name-specifieropt identifier
enum :: opt nested-name-specifieropt identifier

class-key:
class
struct
union

enum-name:
identifier

enum-specifier:
enum identifieropt { enumerator-listopt }

enumerator-list:
enumerator-definition
enumerator-list , enumerator-definition

A– 10 Grammar summary DRAFT: 27 May 1994 A.6 Declarations

enumerator-definition:
enumerator
enumerator = constant-expression

enumerator:
identifier

original-namespace-name:
identifier

namespace-definition:
original-namespace-definition
extension-namespace-definition
unnamed-namespace-definition

original-namespace-definition:
namespace identifier { namespace-body}

extension-namespace-definition:
namespace original-namespace-name{ namespace-body}

unnamed-namespace-definition:
namespace { namespace-body}

namespace-body:
declaration-seqopt

namespace-alias:
identifier

namespace-alias-definition:
namespace identifier = qualified-namespace-specifier ;

qualified-namespace-specifier:
:: opt nested-name-specifieropt class-or-namespace-name

using-declaration:
using :: opt nested-name-specifier unqualified-id;
using :: unqualified-id;

using-directive:
using namespace :: opt nested-name-specifieropt namespace-name ;

id-expression
unqualified-id
qualified-id

nested-name-specifier:
class-or-namespace-name:: nested-name-specifieropt

class-or-namespace-name:
class-name
namespace-name

namespace-name:
original-namespace-name
namespace-alias

asm-definition:
asm (string-literal) ;

A.6 Declarations DRAFT: 27 May 1994 Grammar summary A– 11

linkage-specification:
extern string-literal { declaration-seqopt }
extern string-literal declaration

declaration-seq:
declaration
declaration-seq declaration

[gram.dcl.decl] A.7 Declarators

init-declarator-list:
init-declarator
init-declarator-list , init-declarator

init-declarator:
declarator initializeropt

declarator:
direct-declarator
ptr-operator declarator

direct-declarator:
declarator-id
direct-declarator (parameter-declaration-clause) cv-qualifier-seqopt exception-specificationopt

direct-declarator [constant-expressionopt]
(declarator)

ptr-operator:
* cv-qualifier-seqopt

& 
:: opt nested-name-specifier* cv-qualifier-seqopt 

cv-qualifier-seq:
cv-qualifier cv-qualifier-seqopt

cv-qualifier:
const
volatile

declarator-id:
id-expression
nested-name-specifieropt type-name

type-id:
type-specifier-seq abstract-declaratoropt

type-specifier-seq:
type-specifier type-specifier-seqopt

abstract-declarator:
ptr-operator abstract-declaratoropt

direct-abstract-declarator

direct-abstract-declarator:
direct-abstract-declaratoropt (parameter-declaration-clause) cv-qualifier-seqopt exception-specificationopt

direct-abstract-declaratoropt [constant-expressionopt]
(abstract-declarator)

A– 12 Grammar summary DRAFT: 27 May 1994 A.7 Declarators

parameter-declaration-clause:
parameter-declaration-listopt ... opt

parameter-declaration-list, ...

parameter-declaration-list:
parameter-declaration
parameter-declaration-list, parameter-declaration

parameter-declaration:
decl-specifier-seq declarator
decl-specifier-seq declarator= assignment-expression
decl-specifier-seq abstract-declaratoropt

decl-specifier-seq abstract-declaratoropt = assignment-expression

function-definition:
decl-specifier-seqopt declarator ctor-initializeropt function-body

function-body:
compound-statement

initializer:
= initializer-clause
(expression-list)

initializer-clause:
assignment-expression
{ initializer-list , opt }
{ }

initializer-list:
initializer-clause
initializer-list , initializer-clause

[gram.class] A.8 Classes

class-name:
identifier
template-id

class-specifier:
class-head{ member-specificationopt }

class-head:
class-key identifieropt base-clauseopt

class-key nested-name-specifier identifier base-clauseopt

class-key:
class
struct
union

member-specification:
member-declaration member-specificationopt

access-specifier: member-specificationopt

A.8 Classes DRAFT: 27 May 1994 Grammar summary A– 13

member-declaration:
decl-specifier-seqopt member-declarator-listopt ;
function-definition ; opt

qualified-id ;
using-declaration 

member-declarator-list:
member-declarator
member-declarator-list, member-declarator

member-declarator:
declarator pure-specifieropt

declarator constant-initializeropt 
identifieropt : constant-expression

pure-specifier:
= 0

constant-initializer: 
= constant-expression 

[gram.class.derived] A.9 Derived classes

base-clause:
: base-specifier-list

base-specifier-list:
base-specifier
base-specifier-list, base-specifier

base-specifier:
:: opt nested-name-specifieropt class-name
virtual access-specifieropt :: opt nested-name-specifieropt class-name
access-specifier virtualopt :: opt nested-name-specifieropt class-name

access-specifier:
private
protected
public

[gram.special] A.10 Special member functions

class-name(expression-listopt)

conversion-function-id:
operator conversion-type-id

conversion-type-id:
type-specifier-seq conversion-declaratoropt

conversion-declarator:
ptr-operator conversion-declaratoropt

ctor-initializer:
: mem-initializer-list

A– 14 Grammar summary DRAFT: 27 May 1994 A.10 Special member functions

mem-initializer-list:
mem-initializer
mem-initializer , mem-initializer-list

mem-initializer:
:: opt nested-name-specifieropt class-name(expression-listopt)
identifier (expression-listopt)

[gram.over] A.11 Overloading

postfix-expression:
primary-expression
postfix-expression. id-expression
postfix-expression-> id-expression

operator-function-id:
operator operator

operator: one of
new delete new[] delete[]
+ - * / % ^ & | ~
! = < > += -= *= /= %=
^= &= |= << >> >>= <<= == !=
<= >= && || ++ -- , ->* ->
() []

[gram.temp] A.12 Templates

template-declaration:
template < template-parameter-list> declaration

template-parameter-list:
template-parameter
template-parameter-list, template-parameter

template-id:
template-name< template-argument-list>

template-name:
identifier

template-argument-list:
template-argument
template-argument-list, template-argument

template-argument:
assignment-expression
type-id
template-name 

type-name-declaration: 
typedef qualified-name ; 

instantiation:
template specialization

specialization: 
template-name< template-argument-list> declaration 

A.12 Templates DRAFT: 27 May 1994 Grammar summary A– 15

template-parameter:
type-parameter
parameter-declaration

type-parameter:
class identifieropt

class identifieropt = type-name
typedef identifieropt

typedef identifieropt = type-name
template < template-parameter-list> class identifieropt 
template < template-parameter-list> class identifieropt = template-name 

[gram.except] A.13 Exception handling

try-block:
try compound-statement handler-seq

handler-seq:
handler handler-seqopt

handler:
catch (exception-declaration) compound-statement

exception-declaration:
type-specifier-seq declarator
type-specifier-seq abstract-declarator
type-specifier-seq
...

throw-expression:
throw assignment-expressionopt

exception-specification:
throw (type-id-listopt)

type-id-list:
type-id
type-id-list , type-id

_ ___ ___

Annex B (informative)
Implementation quantities [limits]
_ ___ ___

1 Because computers are finite, C + + implementations are inevitably limited in the size of the programs they
can successfully process. Every implementation shall 

Box 141 
This clause is non-normative, which means that this sentence must be restated in elsewhere as a normative
requirement on implementations.  _ __





_ __



 

document those limitations where known. This documentation may cite fixed limits where they exist, say
how to compute variable limits as a function of available resources, or say that fixed limits do not exist or
are unknown.

2 The limits may constrain quantities that include those described below or others. The bracketed number
following each quantity is recommended as the minimum for that quantity. However, these quantities are
only guidelines and do not determine compliance.

— Nesting levels of compound statements, iteration control structures, and selection control structures
[256].

— Nesting levels of conditional inclusion [256].

— Pointer, array, and function declarators (in any combination) modifying an arithmetic, structure, union,
or incomplete type in a declaration [256].

— Nesting levels of parenthesized expressions within a full expression [256].

— Significant initial characters in an internal identifier or macro name [1 024].

Box 142

Is there any reason that a C + + implementation should ever be permitted quietly to treat two different identi-
fiers as identical, merely because they’re long? I don’t think so. 

Editorial proposal. Change ‘‘Significant initial characters in’’ to ‘‘Length of’’ in thie two quantities sur-
rounding this box._ __








_ __








— Significant initial characters in an external identifier [1 024].

— External identifiers in one translation unit [65 536].

— Identifiers with block scope declared in one block [1 024].

— Macro identifiers simultaneously defined in one transation unit [65 536].

— Parameters in one function definition [256].

— Arguments in one function call [256].

— Parameters in one macro definition [256].

B– 2 Implementation quantities DRAFT: 27 May 1994 B Implementation quantities

— Arguments in one macro invocation [256].

— Characters in one logical source line [65 536].

— Characters in a character string literal or wide string literal (after concatenation) [65 536].

— Size of an object [262 144]. 

Box 143

This is trivial for some implementations to meet and very hard for others._ __



_ __




— Nesting levels for#include files [256].

— Case labels for aswitch statement (excluding those for any nestedswitch statements) [16 384].

— Data members in a single class, structure, or union [16 384].

— Enumeration constants in a single enumeration [4 096].

— Levels of nested class, structure, or union definitions in a singlestruct-declaration-list[256].

— Functions registered byatexit() [32].

— Direct and indirect base classes [16 384].

— Direct base classes for a single class [1 024].

— Members declared in a single class [4 096].

— Final overriding virtual functions in a class, accessible or not [16 384].

Box 144

I’m not quite sure what this means, but it was passed in Munich in this form._ ___



_ ___




— Direct and indirect virtual bases of a class [1 024].

— Static members of a class [1 024].

— Friend declarations in a class [4 096].

— Access control declarations in a class [4 096].

— Member initializers in a constructor definition [6 144].

— Scope qualifications of one identifier [256].

— Nested external specifications [1 024].

— Template arguyments in a template declaration [1 024].

— Handlers pertry block [256].

— Throw specifications on a single function declaration [256].

_ ___ ___

Annex C (informative)
Compatibility [diff]
_ ___ ___

1 This Annex summarizes the evolution of C + + since the first edition ofThe C + + Programming Language
and explains in detail the differences between C + + and C. Because the C language as described by this
International Standard differs from the dialects of Classic C used up till now, we discuss the differences
between C + + and ISO C as well as the differences between C + + and Classic C.

2 C + + is based on C (K&R78) and adopts most of the changes specified by the ISO C standard. Converting
programs among C + +, K&R C, and ISO C may be subject to vicissitudes of expression evaluation. All dif-
ferences between C + + and ISO C can be diagnosed by a compiler. With the exceptions listed in this Annex,
programs that are both C + + and ISO C have the same meaning in both languages.

[diff.c] C.1 Extensions

1 This subclause summarizes the major extensions to C provided by C + +.

[diff.early] C.1.1 C + + features available in 1985

1 This subclause summarizes the extensions to C provided by C + + in the 1985 version of its manual:

2 The types of function parameters can be specified (8.3.5) and will be checked (5.2.2). Type conversions
will be performed (5.2.2). This is also in ISO C.

3 Single-precision floating point arithmetic may be used forfloat expressions; 3.7.1 and 4.3. This is also
in ISO C.

4 Function names can be overloaded; 13.

5 Operators can be overloaded; 13.4.

6 Functions can be inline substituted; 7.1.2.

7 Data objects can beconst ; 7.1.5. This is also in ISO C.

8 Objects of reference type can be declared; 8.3.2 and 8.5.3.

9 A free store is provided by thenew anddelete operators; 5.3.4, 5.3.5.

10 Classes can provide data hiding (11), guaranteed initialization (12.1), user-defined conversions (12.3), and
dynamic typing through use of virtual functions (10.3).

11 The name of a class or enumeration is a type name; 9.

12 A pointer to any non-const and non-volatile object type can be assigned to avoid* ; 4.6. This is
also in ISO C.

13 A pointer to function can be assigned to avoid* ; 4.6.

14 A declaration within a block is a statement; 6.7.

15 Anonymous unions can be declared; 9.6.

C– 2 Compatibility DRAFT: 27 May 1994 C.1.2 C + + features added since 1985

[diff.c++] C.1.2 C + + features added since 1985

1 This subclause summarizes the major extensions of C + + since the 1985 version of this manual:

2 A class can have more than one direct base class (multiple inheritance); 10.1.

3 Class members can beprotected ; 11 .

4 Pointers to class members can be declared and used; 8.3.3, 5.5.

5 Operatorsnew anddelete can be overloaded and declared for a class; 5.3.4, 5.3.5, 12.5. This allows the
“assignment tothis ” technique for class specific storage management to be removed to the anachronism
subclause; C.3.3.

6 Objects can be explicitly destroyed; 12.4.

7 Assignment and initialization are defined as memberwise assignment and initialization; 12.8.

8 Theoverload keyword was made redundant and moved to the anachronism subclause; C.3.

9 General expressions are allowed as initializers for static objects; 8.5.

10 Data objects can bevolatile ; 7.1.5. Also in ISO C.

11 Initializers are allowed forstatic class members; 9.5.

12 Member functions can bestatic ; 9.5.

13 Member functions can beconst andvolatile ; 9.4.1.

14 Linkage to non-C + + program fragments can be explicitly declared; 7.5.

15 Operators-> , ->* , and, can be overloaded; 13.4.

16 Classes can be abstract; 10.4.

17 Prefix and postfix application of++ and-- on a user-defined type can be distinguished.

18 Templates; 14.

19 Exception handling; 15.

20 Thebool type (3.7.1).

[diff.iso] C.2 C + + and ISO C

1 The subclauses of this subclause list the differences between C + + and ISO C, by the chapters of this docu-
ment.

[diff.lex] C.2.1 Clause 2: lexical conventions

Subclause 2.2

1 Change:C + + style comments (//) are added
A pair of slashes now introduce a one-line comment.
Rationale: This style of comments is a useful addition to the language.
Effect on original feature: Change to semantics of well-defined feature. A valid ISO C expression con-
taining a division operator followed immediately by a C-style comment will now be treated as a C + + style
comment. For example:

{
int a = 4;
int b = 8 //* divide by a*/ a;
+a;

}

C.2.1 Clause 2: lexical conventions DRAFT: 27 May 1994 Compatibility C– 3

Difficulty of converting: Syntactic transformation. Just add white space after the division operator.
How widely used:The token sequence//* probably occurs very seldom.

Subclause 2.8

2 Change:New Keywords
New keywords are added to C + +; see 2.8.
Rationale: These keywords were added in order to implement the new semantics of C + +.
Effect on original feature: Change to semantics of well-defined feature. Any ISO C programs that used
any of these keywords as identifiers are not valid C + + programs.
Difficulty of converting: Syntactic transformation. Converting one specific program is easy. Converting a
large collection of related programs takes more work.
How widely used:Common.

Subclause 2.9.2

3 Change:Type of character literal is changed fromint to char
Rationale: This is needed for improved overloaded function argument type matching. For example:

int function(int i);
int function(char c);

function(’x’);

It is preferable that this call match the second version of function rather than the first.
Effect on original feature: Change to semantics of well-defined feature. ISO C programs which depend
on

sizeof(’x’) == sizeof(int)

will not work the same as C + + programs.
Difficulty of converting: Simple.
How widely used:Programs which depend uponsizeof(’x’) are probably rare.

[diff.basic] C.2.2 Clause 3: basic concepts

Subclause 3.1

1 Change:C + + does not have“tentative definitions” as in C
E.g., at file scope,

int i;
int i;

is valid in C, invalid in C + +. This makes it impossible to define mutually referential file-local static objects,
if initializers are restricted to the syntactic forms of C. For example,

struct X { int i; struct X *next; };

static struct X a;
static struct X b = { 0, &a };
static struct X a = { 1, &b };

Rationale: This avoids having different initialization rules for built-in types and user-defined types.
Effect on original feature: Deletion of semantically well-defined feature.
Difficulty of converting: Semantic transformation. In C + +, the initializer for one of a set of mutually-
referential file-local static objects must invoke a function call to achieve the initialization.
How widely used:Seldom.

C– 4 Compatibility DRAFT: 27 May 1994 C.2.2 Clause 3: basic concepts

Subclause 3.3

2 Change:A struct is a scope in C + +, not in C
Rationale: Class scope is crucial to C + +, and a struct is a class.
Effect on original feature: Change to semantics of well-defined feature.
Difficulty of converting: Semantic transformation.
How widely used:C programs usestruct extremely frequently, but the change is only noticeable when
struct , enumeration, or enumerator names are referred to outside thestruct . The latter is probably
rare.

Subclause 3.4 [also 7.1.5]

3 Change:A name of file scope that is explicitly declaredconst , and not explicitly declaredextern , has
internal linkage, while in C it would have external linkage
Rationale: Becauseconst objects can be used as compile-time values in C + +, this feature urges program-
mers to provide explicit initializer values for eachconst . This feature allows the user to putconst
objects in header files that are included in many compilation units.
Effect on original feature: Change to semantics of well-defined feature.
Difficulty of converting: Semantic transformation
How widely used:Seldom

Subclause 3.5

4 Change:Main cannot be called recursively and cannot have its address taken
Rationale: The main function may require special actions.
Effect on original feature: Deletion of semantically well-defined feature
Difficulty of converting: Trivial: create an intermediary function such asmymain(argc, argv) .
How widely used:Seldom

Subclause 3.7

5 Change:C allows“compatible types” in several places, C + + does not
For example, otherwise-identicalstruct types with different tag names are“compatible” in C but are dis-
tinctly different types in C + +.
Rationale: Stricter type checking is essential for C + +.
Effect on original feature: Deletion of semantically well-defined feature.
Difficulty of converting: Semantic transformation The“typesafe linkage” mechanism will find many, but
not all, of such problems. Those problems not found by typesafe linkage will continue to function properly,
according to the“layout compatibility rules” of this International Standard.
How widely used:Common.

Subclause 4.6

6 Change:Convertingvoid* to a pointer-to-object type requires casting

char a[10];
void *b=a;
void foo() {
char *c=b;
}

ISO C will accept this usage of pointer to void being assigned to a pointer to object type. C + + will not.
Rationale: C + + tries harder than C to enforce compile-time type safety.
Effect on original feature: Deletion of semantically well-defined feature.

C.2.2 Clause 3: basic concepts DRAFT: 27 May 1994 Compatibility C– 5

Difficulty of converting: Could be automated. Violations will be diagnosed by the C + + translator. The fix
is to add a cast. For example:

char *c = (char *) b;

How widely used: This is fairly widely used but it is good programming practice to add the cast when
assigning pointer-to-void to pointer-to-object. Some ISO C translators will give a warning if the cast is not
used.

Subclause 4.6

7 Change:Only pointers to non-const and non-volatile objects may be implicitly converted tovoid*
Rationale: This improves type safety.
Effect on original feature: Deletion of semantically well-defined feature.
Difficulty of converting: Could be automated. A C program containing such an implicit conversion from
(e.g.) pointer-to-const-object to void* will receive a diagnostic message. The correction is to add an
explicit cast.
How widely used:Seldom.

[diff.expr] C.2.3 Clause 5: expressions

Subclause 5.2.2

1 Change:Implicit declaration of functions is not allowed
Rationale: The type-safe nature of C + +.
Effect on original feature: Deletion of semantically well-defined feature. Note: the original feature was
labeled as“obsolescent” in ISO C.
Difficulty of converting: Syntactic transformation. Facilities for producing explicit function declarations
are fairly widespread commercially.
How widely used:Common.

Subclause 5.3.3, 5.4

2 Change:Types must be declared in declarations, not in expressions
In C, a sizeof expression or cast expression may create a new type. For example,

p = (void*)(struct x {int i;} *)0;

declares a new type, struct x .
Rationale: This prohibition helps to clarify the location of declarations in the source code.
Effect on original feature: Deletion of a semantically well-defined feature.
Difficulty of converting: Syntactic transformation.
How widely used:Seldom.

[diff.stat] C.2.4 Clause 6: statements

Subclause 6.4.2, 6.6.4 (switch and goto statements)

1 Change: It is now invalid to jump past a declaration with explicit or implicit initializer (except across
entire block not entered)
Rationale: Constructors used in initializers may allocate resources which need to be de-allocated upon
leaving the block. Allowing jump past initializers would require complicated run-time determination of
allocation. Furthermore, any use of the uninitialized object could be a disaster. With this simple compile-
time rule, C + + assures that if an initialized variable is in scope, then it has assuredly been initialized.
Effect on original feature: Deletion of semantically well-defined feature.

C– 6 Compatibility DRAFT: 27 May 1994 C.2.4 Clause 6: statements

Difficulty of converting: Semantic transformation.
How widely used:Seldom.

Subclause 6.6.3

2 Change: It is now invalid to return (explicitly or implicitly) from a function which is declared to return a
value without actually returning a value
Rationale: The caller and callee may assume fairly elaborate return-value mechanisms for the return of
class objects. If some flow paths execute a return without specifying any value, the compiler must embody
many more complications. Besides, promising to return a value of a given type, and then not returning such
a value, has always been recognized to be a questionable practice, tolerated only because very-old C had no
distinction between void functions and int functions.
Effect on original feature: Deletion of semantically well-defined feature.
Difficulty of converting: Semantic transformation. Add an appropriate return value to the source code,
e.g. zero.
How widely used:Seldom. For several years, many existing C compilers have produced warnings in this
case.

[diff.dcl] C.2.5 Clause 7: declarations

Subclause 7.1.1

1 Change:In C + +, thestatic or extern specifiers can only be applied to names of objects or functions
Using these specifiers with type declarations is illegal in C + +. In C, these specifiers are ignored when used
on type declarations. Example:

static struct S { // valid C, invalid in C + +
int i;
// ...
};

Rationale: Storage class specifiers don’t have any meaning when associated with a type. In C + +, class
members can be defined with thestatic storage class specifier. Allowing storage class specifiers on
type declarations could render the code confusing for users.
Effect on original feature: Deletion of semantically well-defined feature.
Difficulty of converting: Syntactic transformation.
How widely used:Seldom.

Subclause 7.1.3

2 Change: A C + + typedef name must be different from any class type name declared in the same scope
(except if the typedef is a synonym of the class name with the same name). In C, a typedef name and a
struct tag name declared in the same scope can have the same name (because they have different name
spaces)
Example:

typedef struct name1 { /*...*/ } name1; // valid C and C + +
struct name { /*...*/ };
typedef int name; // valid C, invalid C + +

Rationale: For ease of use, C + + doesn’t require that a type name be prefixed with the keywordsclass ,
struct or union when used in object declarations or type casts. Example:

class name { /*...*/ };
name i; // i has type ’class name’

Effect on original feature: Deletion of semantically well-defined feature.

C.2.5 Clause 7: declarations DRAFT: 27 May 1994 Compatibility C– 7

Difficulty of converting: Semantic transformation. One of the 2 types has to be renamed.
How widely used:Seldom.

Subclause 7.1.5 [see also 3.4]

3 Change:const objects must be initialized in C + + but can be left uninitialized in C
Rationale: A const object cannot be assigned to so it must be initialized to hold a useful value.
Effect on original feature: Deletion of semantically well-defined feature.
Difficulty of converting: Semantic transformation.
How widely used:Seldom.

Subclause 7.2

4 Change:C + + objects of enumeration type can only be assigned values of the same enumeration type. In C,
objects of enumeration type can be assigned values of any integral type
Example:

enum color { red, blue, green };
color c = 1; // valid C, invalid C + +

Rationale: The type-safe nature of C + +.
Effect on original feature: Deletion of semantically well-defined feature.
Difficulty of converting: Syntactic transformation. (The type error produced by the assignment can be
automatically corrected by applying an explicit cast.)
How widely used:Common.

Subclause 7.2

5 Change:In C + +, the type of an enumerator is its enumeration. In C, the type of an enumerator isint .
Example:

enum e { A };
sizeof(A) == sizeof(int) // in C
sizeof(A) == sizeof(e) // in C + +
/* and sizeof(int) is not necessary equal to sizeof(e) */

Rationale: In C + +, an enumeration is a distinct type.
Effect on original feature: Change to semantics of well-defined feature.
Difficulty of converting: Semantic transformation.
How widely used:Seldom. The only time this affects existing C code is when the size of an enumerator is
taken. Taking the size of an enumerator is not a common C coding practice.

[diff.decl] C.2.6 Clause 8: declarators

Subclause 8.3.5

1 Change:In C + +, a function declared with an empty parameter list takes no arguments.
In C, an empty parameter list means that the number and type of the function arguments are unknown"
Example:

int f(); // means int f(void) in C + +
// int f(unknown) in C

Rationale: This is to avoid erroneous function calls (i.e. function calls with the wrong number or type of
arguments).
Effect on original feature: Change to semantics of well-defined feature. This feature was marked as

C– 8 Compatibility DRAFT: 27 May 1994 C.2.6 Clause 8: declarators

“obsolescent” in C.
Difficulty of converting: Syntactic transformation. The function declarations using C incomplete declara-
tion style must be completed to become full prototype declarations. A program may need to be updated
further if different calls to the same (non-prototype) function have different numbers of arguments or if the
type of corresponding arguments differed.
How widely used:Common.

Subclause 8.3.5 [see 5.3.3]

2 Change: In C + +, types may not be defined in return or parameter types. In C, these type definitions are
allowed
Example:

void f(struct S { int a; } arg) {} // valid C, invalid C + +
enum E { A, B, C } f() {} // valid C, invalid C + +

Rationale: When comparing types in different compilation units, C + + relies on name equivalence when C
relies on structural equivalence. Regarding parameter types: since the type defined in an parameter list
would be in the scope of the function, the only legal calls in C + + would be from within the function itself.
Effect on original feature: Deletion of semantically well-defined feature.
Difficulty of converting: Semantic transformation. The type definitions must be moved to file scope, or in
header files.
How widely used:Seldom. This style of type definitions is seen as poor coding style.

Subclause 8.4

3 Change: In C + +, the syntax for function definition excludes the“old-style” C function. In C,“old-style”
syntax is allowed, but deprecated as“obsolescent.”
Rationale: Prototypes are essential to type safety.
Effect on original feature: Deletion of semantically well-defined feature.
Difficulty of converting: Syntactic transformation.
How widely used:Common in old programs, but already known to be obsolescent.

Subclause 8.5.2

4 Change: In C + +, when initializing an array of character with a string, the number of characters in the string
(including the terminating’\0’) must not exceed the number of elements in the array. In C, an array can
be initialized with a string even if the array is not large enough to contain the string terminating’\0’
Example:

char array[4] = "abcd"; // valid C, invalid C + +

Rationale: When these non-terminated arrays are manipulated by standard string routines, there is potential
for major catastrophe.
Effect on original feature: Deletion of semantically well-defined feature.
Difficulty of converting: Semantic transformation. The arrays must be declared one element bigger to
contain the string terminating’\0’ .
How widely used:Seldom. This style of array initialization is seen as poor coding style.

[diff.class] C.2.7 Clause 9: classes

Subclause 9.1 [see also 7.1.3]

C.2.7 Clause 9: classes DRAFT: 27 May 1994 Compatibility C– 9

1 Change: In C + +, a class declaration introduces the class name into the scope where it is declared and hides
any object, function or other declaration of that name in an enclosing scope. In C, an inner scope declara-
tion of a struct tag name never hides the name of an object or function in an outer scope
Example:

int x[99];
void f()
{

struct x { int a; };
sizeof(x); /* size of the array in C */
/* size of the struct in C + + */

}

Rationale: This is one of the few incompatibilities between C and C + + that can be attributed to the new C + +
name space definition where a name can be declared as a type and as a nontype in a single scope causing
the nontype name to hide the type name and requiring that the keywordsclass , struct , union or
enum be used to refer to the type name. This new name space definition provides important notational
conveniences to C + + programmers and helps making the use of the user-defined types as similar as possible
to the use of built-in types. The advantages of the new name space definition were judged to outweigh by
far the incompatibility with C described above.
Effect on original feature: Change to semantics of well-defined feature.
Difficulty of converting: Semantic transformation. If the hidden name that needs to be accessed is at glo-
bal scope, the:: C + + operator can be used. If the hidden name is at block scope, either the type or the
struct tag has to be renamed.
How widely used:Seldom.

Subclause 9.8

2 Change: In C + +, the name of a nested class is local to its enclosing class. In C the name of the nested class
belongs to the same scope as the name of the outermost enclosing class
Example:

struct X {
struct Y { /* ... */ } y;

};
struct Y yy; // valid C, invalid C + +

Rationale: C + + classes have member functions which require that classes establish scopes. The C rule
would leave classes as an incomplete scope mechanism which would prevent C + + programmers from main-
taining locality within a class. A coherent set of scope rules for C + + based on the C rule would be very
complicated and C + + programmers would be unable to predict reliably the meanings of nontrivial examples
involving nested or local functions.
Effect on original feature: Change of semantics of well-defined feature.
Difficulty of converting: Semantic transformation. To make the struct type name visible in the scope of
the enclosing struct, the struct tag could be declared in the scope of the enclosing struct, before the enclos-
ing struct is defined. Example:

struct Y; // struct Y and struct X are at the same scope
struct X {

struct Y { /* ... */ } y;
};

All the definitions of C struct types enclosed in other struct definitions and accessed outside the scope of
the enclosing struct could be exported to the scope of the enclosing struct. Note: this is a consequence of
the difference in scope rules, which is documented at subclause 3.3 above.
How widely used:Seldom.

Subclause 9.10

C– 10 Compatibility DRAFT: 27 May 1994 C.2.7 Clause 9: classes

3 Change: In C + +, a typedef name may not be redefined in a class declaration after being used in the declara-
tion
Example:

typedef int I;
struct S {

I i;
int I; // valid C, invalid C + +

};

Rationale: When classes become complicated, allowing such a redefinition after the type has been used can
create confusion for C + + programmers as to what the meaning of ’I’ really is.
Effect on original feature: Deletion of semantically well-defined feature.
Difficulty of converting: Semantic transformation. Either the type or the struct member has to be
renamed.
How widely used:Seldom.

[diff.cpp] C.2.8 Clause 16: preprocessing directives

Subclause 16.8 (predefined names)

1 Change:Whether_ _STDC_ _ is defined and if so, what its value is, are implementation-defined
Rationale: C + + is not identical to ISO C. Mandating that_ _STDC_ _ be defined would require that transla-
tors make an incorrect claim. Each implementation must choose the behavior that will be most useful to its
marketplace.
Effect on original feature: Change to semantics of well-defined feature.
Difficulty of converting: Semantic transformation.
How widely used:Programs and headers that reference_ _STDC_ _ are quite common.

[diff.anac] C.3 Anachronisms

1 The extensions presented here may be provided by an implementation to ease the use of C programs as C + +
programs or to provide continuity from earlier C + + implementations. Note that each of these features has
undesirable aspects. An implementation providing them should also provide a way for the user to ensure
that they do not occur in a source file. A C + + implementation is not obliged to provide these features.

2 The wordoverload may be used as adecl-specifier(7) in a function declaration or a function definition.
When used as adecl-specifier, overload is a reserved word and cannot also be used as an identifier.

3 The definition of a static data member of a class for which initialization by default to all zeros applies (8.5,
9.5) may be omitted.

4 An old style (that is, pre-ISO C) C preprocessor may be used.

5 An int may be assigned to an object of enumeration type.

6 The number of elements in an array may be specified when deleting an array of a type for which there is no
destructor; 5.3.5.

7 A single functionoperator++() may be used to overload both prefix and postfix++ and a single func-
tion operator--() may be used to overload both prefix and postfix-- ; 13.4.6.

8
[diff.fct.def] C.3.1 Old style function definitions

1 The C function definition syntax

old-function-definition:
decl-specifiersopt old-function-declarator declaration-seqopt function-body

C.3.1 Old style function definitions DRAFT: 27 May 1994 Compatibility C– 11

old-function-declarator:
declarator (parameter-listopt)

parameter-list:
identifier
parameter-list , identifier

For example,

max(a,b) int b; { return (a<b) ? b : a; }

may be used. If a function defined like this has not been previously declared its parameter type will be
taken to be(...) , that is, unchecked. If it has been declared its type must agree with that of the declara-
tion.

2 Class member functions may not be defined with this syntax.

[diff.base.init] C.3.2 Old style base class initializer

1 In a mem-initializer(12.6.2), theclass-namenaming a base class may be left out provided there is exactly
one immediate base class. For example,

class B {
// ...

public:
B (int);

};

class D : public B {
// ...
D(int i) : (i) { /* ... */ }

};

causes theB constructor to be called with the argumenti .

[diff.this] C.3.3 Assignment tothis

1 Memory management for objects of a specific class can be controlled by the user by suitable assignments to
the this pointer. By assigning to thethis pointer before any use of a member, a constructor can imple-
ment its own storage allocation. By assigning the null pointer tothis , a destructor can avoid the standard
deallocation operation for objects of its class. Assigning the null pointer tothis in a destructor also sup-
pressed the implicit calls of destructors for bases and members. For example,

class Z {
int z[10];
Z() { this = my_allocator(sizeof(Z)); }
~Z() { my_deallocator(this); this = 0; }

};

2 On entry into a constructor,this is nonnull if allocation has already taken place (as it will have forauto ,
static , and member objects) and null otherwise.

3 Calls to constructors for a base class and for member objects will take place (only) after an assignment to
this . If a base class’s constructor assigns tothis , the new value will also be used by the derived class’s
constructor (if any).

4 Note that if this anachronism exists either the type of thethis pointer cannot be a*const or the enforce-
ment of the rules for assignment to a constant pointer must be subverted for thethis pointer.

C– 12 Compatibility DRAFT: 27 May 1994 C.3.4 Cast of bound pointer

[diff.bound] C.3.4 Cast of bound pointer

1 A pointer to member function for a particular object may be cast into a pointer to function, for example,
(int(*)())p->f . The result is a pointer to the function that would have been called using that member
function for that particular object. Any use of the resulting pointer is– as ever– undefined.

[diff.class.nonnested] C.3.5 Nonnested classes

1 Where a class is declared within another class and no other class of that name is declared in the program
that class can be used as if it was declared outside its enclosing class (exactly as a Cstruct). For exam-
ple,

struct S {
struct T {

int a;
};
int b;

};

struct T x; // meaning ‘S::T x;’

