
_ ___ ___

1 General [intro]
_ ___ ___

[intro.scope] 1.1 Scope

1 This International Standard specifies requirements for processors of the C + + programming language. The
first such requirement is that they implement the language, and so this International Standard also defines
C + +. Other requirements and relaxations of the first requirement appear at various places within the Stan-
dard.

2 C + + is a general purpose programming language based on the C programming language as described in
ISO/IEC 9899:1990 Programming Languages C (1.2). In addition to the facilities provided by C, C + + pro-
vides additional data types, classes, templates, exceptions, inline functions, operator overloading, function
name overloading, references, free store management operators, function argument checking and type con-
version, and additional library facilities. These extensions to C are summarized in C.1. The differences
between C + + and ISO C1) are summarized in C.2. The extensions to C + + since 1985 are summarized in
C.1.2.

3 Clauses 17 through 27 (thelibrary clauses) describe the Standard C + + library, which provides definitions
for the following kinds of entities: macros (16.3), values (3), types (8.1, 8.3), templates (14), classes (9),
functions (8.3.5), and objects (7).

4 For classes and class templates, the library clauses specify partial definitions. Private members (11) are not
specified, but each implementation shall supply them to complete the definitions according to the descrip-
tion in the library clauses.

5 For functions, function templates, objects, and values, the library clauses specifiy declarations. Implemen-
tations shall supply definitions consistent with the descriptions in the library clauses.

6 The names defined in the library have namespace scope (7.3). A C + + translation unit (2.1) obtains access to
these names by including the appropriate standard library header (16.2).

7 The templates, classes, functions, and objects in the library have external linkage (3.5). An implementation
provides definitions for standard library entities, as necessary, while combining translation units to form a
complete C + + program (2.1).

[intro.refs] 1.2 Normative references

1 The following standards contain provisions which, through reference in this text, constitute provisions of
this International Standard. At the time of publication, the editions indicated were valid. All standards are
subject to revision, and parties to agreements based on this International Standard are encouraged to investi-
gate the possibility of applying the most recent editions of the standards indicated below. Members of IEC
and ISO maintain registers of currently valid International Standards.

— ISO/IEC 2382Dictionary for Information Processing Systems.

— ISO/IEC 9899:1990,C Standard

— ISO/IEC 9899:1990/DAM 1,Amendment 1 to C Standard

2 The library described in Clause 7 of the C Standard and Clause 7 of Amendment 1 to the C standard is
hereinafter called theStandard C Library.1)

1) With the qualifications noted in clauses 17 through 27, and in subclause C.4, the Standard C library is a subset of the Standard C + +
library.

1– 2 General DRAFT: 28 April 1995 1.3 Definitions

[intro.defs] 1.3 Definitions

1 For the purposes of this International Standard, the definitions given in ISO/IEC 2382 and the following
definitions apply.

— argument: An expression in the comma-separated list bounded by the parentheses in a function call
expression, a sequence of preprocessing tokens in the comma-separated list bounded by the parentheses
in a function-like macro invocation, the operand ofthrow , or an expression in the comma-separated
list bounded by the angle brackets in a template instantiation. Also known as an“actual argument” or
“actual parameter.”

— diagnostic message: A message belonging to an implementation-defined subset of the
implementation’s message output.

— dynamic type: The dynamic typeof an expression is determined by its current value and can change
during the execution of a program. If a pointer (8.3.1) whose static type is“pointer to classB” is point-
ing to an object of classD, derived fromB (10), the dynamic type of the pointer is“pointer toD.” Refer-
ences (8.3.2) are treated similarly.

— ill-formed program: input to a C + + processor that is not a well-formed program (q. v.).

— implementation-defined behavior: Behavior, for a correct program construct and correct data, that
depends on the implementation and that each implementation shall document. The range of possible
behaviors is delineated by the standard.

— implementation limits: Restrictions imposed upon programs by the implementation.

— locale-specific behavior:Behavior that depends on local conventions of nationality, culture, and lan-
guage that each implementation shall document.

— multibyte character: A sequence of one or more bytes representing a member of the extended charac-
ter set of either the source or the execution environment. The extended character set is a superset of the
basic character set.

— parameter: an object or reference declared as part of a function declaration or definition in the catch
clause of an exception handler that acquires a value on entry to the function or handler, an identifier
from the comma-separated list bounded by the parentheses immediately following the macro name in a
function-like macro definition, or atemplate-parameter. A function can be said to“take arguments” or
to “have parameters.” Parameters are also known as a“formal arguments” or “formal parameters.”

— signature: The signature of a function is the information about that function that participates in over-
load resolution (13.3): the types of its parameters and, if the function is a non-static member of a class,
the CV-qualifiers (if any) on the function itself and whether the function is a direct member of its class
or inherited from a base class. The signature of a template function specialization includes the types of
its template arguments (14.10.4).

— static type: The static typeof an expression is the type (3.9) resulting from analysis of the program
without consideration of execution semantics. It depends only on the form of the program and does not
change.

— undefined behavior: Behavior, such as might arise upon use of an erroneous program construct or of
erroneous data, for which the standard imposes no requirements. Permissible undefined behavior
ranges from ignoring the situation completely with unpredictable results, to behaving during translation
or program execution in a documented manner characteristic of the environment (with or without the
issuance of a diagnostic message), to terminating a translation or execution (with the issuance of a diag-
nostic message). Note that many erroneous program constructs do not engender undefined behavior;
they are required to be diagnosed.

— unspecified behavior:Behavior, for a correct program construct and correct data, that depends on the

2) Function signatures do not include return type, because that does not participate in overload resolution.

1.3 Definitions DRAFT: 28 April 1995 General 1– 3

implementation. The implementation is not required to document which behavior occurs. [Note: usu-
ally, the range of possible behaviors is delineated by the standard.—end note]

— well-formed program: a C + + program constructed according to the syntax rules, diagnosable semantic
rules, and the One Definition Rule (3.1).

2 Clause 17.1 defines additional terms that are used only in the library clauses (17– 27).

[syntax] 1.4 Syntax notation

1 In the syntax notation used in this International Standard, syntactic categories are indicated byitalic type,
and literal words and characters inconstant width type. Alternatives are listed on separate lines
except in a few cases where a long set of alternatives is presented on one line, marked by the phrase“one
of.” An optional terminal or nonterminal symbol is indicated by the subscript“opt,” so

{ expressionopt }

indicates an optional expression enclosed in braces.

2 Names for syntactic categories have generally been chosen according to the following rules:

— X-nameis a use of an identifier in a context that determines its meaning (e.g.class-name, typedef-
name).

— X-id is an identifier with no context-dependent meaning (e.g.qualified-id).

— X-seqis one or moreX’s without intervening delimiters (e.g.declaration-seqis a sequence of declara-
tions).

— X-list is one or moreX’s separated by intervening commas (e.g.expression-listis a sequence of expres-
sions separated by commas).

[intro.memory] 1.5 The C + + memory model

1 The fundamental storage unit in the C + + memory model is thebyte. A byte is at least large enough to con-
tain any member of the basic execution character set and is composed of a contiguous sequence of bits, the
number of which is implementation-defined. The least significant bit is called thelow-order bit; the most
significant bit is called the high-order bit. The memory accessible to a C + + program is one or more contigu-
ous sequences of bytes. Every byte has a unique address.3)

2 [Note:the representation of types is described in 3.9.]

[intro.object] 1.6 The C + + object model

1 The constructs in a C + + program create, refer to, access, and manipulate objects. Anobject is a region of
storage and, except for bit-fields (9.7), occupies one or more contiguous bytes of storage. An object is cre-
ated by adefinition (3.1), by anew-expression(5.3.4) or by the implementation (12.2) when needed. The
properties of an object are determined when the object is created. An object can have aname(3). An object
has astorage duration(3.7) which influences itslifetime (3.8). An object has a type (3.9). The termobject
typerefers to the type with which the object is created. The object’s type determines the number of bytes
that the object occupies and the interpretation of its content. Some objects arepolymorphic(10.3); the
implementation generates information carried in each such object that makes it possible to determine that
object’s type during program execution. For other objects, the meaning of the values found therein is deter-
mined by the type of theexpressions (5) used to access them.

3) An implementation is free to disregard this requirement as long as doing so has no perceptible effect on the execution of the pro-
gram. Thus, for example, an implementations is free to place any variable in an internal register that does not have an address as long
as the program does not do anything that depends on the address of the variable.

1– 4 General DRAFT: 28 April 1995 1.6 The C + + object model

2 Objects can contain other objects, calledsub-objects. A sub-object can be amember sub-object(9.2) or a
base class sub-object(10). An object that is not a sub-object of any other object is called acomplete object.
For every objectx , there is some object calledthe complete object ofx , determined as follows:

— If x is a complete object, thenx is the complete object ofx .

— Otherwise, the complete object ofx is the complete object of the (unique) object that containsx .

3 C + + provides a variety of built-in types and several ways of composing new types from existing types.

4 Certain types have implementation-definedalignmentrestrictions. An object of one of those types shall
appear only at an address that is compatible with its alignment restriction.

[intro.compliance] 1.7 Processor compliance

1 Every conforming C + + processor shall, within its resource limits, accept and correctly execute well-formed
C + + programs, and shall issue at least one diagnostic message when presented with any ill-formed program
that contains a violation of any diagnosable semantic rule or of any syntax rule, except as noted herein.

2 If an ill-formed program contains no diagnosable errors. diagnosable errors, this International Standard
places no requirement on processors with respect to that program.

3 The set of“diagnosable semantic rules” consists of all semantic rules in this International Standard except
for those rules containing an explicit notation that“no diagnostic is required.”

4 Two kinds of implementations are defined:hostedand freestanding. For a hosted implementation, this
standard defines the set of available libraries. A freestanding implementation is one in which execution
may take place without the benefit of an operating system, and has an implementation-defined set of
libraries that includes certain language-support libraries (17.3.1.3).

5 In this International Standard, the examples, the notes, the footnotes, and the non-normative annexes are not
part of the normative Standard. Each example is introduced by“[Example:” and terminated by“]”. Each
note is introduced by“[Note:” and terminated by“]”.

[intro.execution] 1.8 Program execution

1 The semantic descriptions in this International Standard define a parameterized nondeterministic abstract
machine. This International Standard places no requirement on the structure of conforming processors. In
particular, they need not copy or emulate the structure of the abstract machine. Rather, conforming proces-
sors are required to emulate (only) the observable behavior of the abstract machine as explained below.

2 Certain aspects and operations of the abstract machine are described in this International Standard as
implementation-defined (for example,sizeof(int)). These constitute the parameters of the abstract
machine. Each implementation shall include documentation describing its characteristics and behavior in
these respects, which documentation defines the instance of the abstract machine that corresponds to that
implementation (referred to as the ‘‘corresponding instance’’ below).

3 Certain other aspects and operations of the abstract machine are described in this International Standard as
unspecified (for example, order of evaluation of arguments to a function). In each case the Standard defines
a set of allowable behaviors. These define the nondeterministic aspects of the abstract machine. An
instance of the abstract machine can thus have more than one possible execution sequence for a given pro-
gram and a given input.

4 Certain other operations are described in this International Standard as undefined (for example, the effect of
dereferencing the null pointer).

5 A conforming processor executing a well-formed program shall produce the same observable behavior as
one of the possible execution sequences of the corresponding instance of the abstract machine with the
same program and the same input. However, if any such execution sequence contains an undefined opera-
tion, this International Standard places no requirement on the processor executing that program with that
input (not even with regard to operations previous to the first undefined operation).

1.8 Program execution DRAFT: 28 April 1995 General 1– 5

6 The observable behavior of the abstract machine is its sequence of reads and writes to volatile data and calls
to library I/O functions.4)

7 Accessing an object designated by a volatile lvalue, modifying an object, modifying a file, or calling a
function that does any of those operations are allside effects, which are changes in the state of the execution
environment. Evaluation of an expression might produce side effects. At certain specified points in the
execution sequence called sequence points, all side effects of previous evaluations shall be complete and no
side effects of subsequent evaluations shall have taken place.5)

8 Once the execution of a function begins, no expressions from the calling function are evaluated until execu-
tion of the called function is completed.6)

9 In the abstract machine, all expressions are evaluated as specified by the semantics. An actual implementa-
tion need not evaluate part of an expression if it can deduce that its value is not used and that no needed
side effects are produced (including any caused by calling a function or accessing a volatile object).

10 When the processing of the abstract machine is interrupted by receipt of a signal, only the values of objects
as of the previous sequence point may be relied on. Objects that may be modified between the previous
sequence point and the next sequence point need not have received their correct values yet.

11 An instance of each object with automatic storage duration is associated with each entry into its block.
Such an object exists and retains its last-stored value during the execution of the block and while the block
is suspended (by a call of a function or receipt of a signal).

12 The least requirements on a conforming implementation are:

— At sequence points, volatile objects are stable in the sense that previous evaluations are complete and
subsequent evaluations have not yet occurred.

— At program termination, all data written into files shall be identical to one of the possible results that
execution of the program according to the abstract semantics would have produced.

— The input and output dynamics of interactive devices shall take place in such a fashion that prompting
messages actually appear prior to a program waiting for input. What constitutes an interactive device is
implementation-defined.

— More stringent correspondences between abstract and actual semantics may be defined by each imple-
mentation.

13 Define afull-expressionas an expression that is not a subexpression of another expression.

14 [Note: certain contexts in C + + cause the evaluation of a full-expression that results from a syntactic con-
struct other thanexpression(5.18). [Example:in 8.5 one syntax forinitializer is

(expression-list)

but the resulting construct is a function call upon a constructor function withexpression-listas an argument
list; such a function call is a full-expression. For another example in 8.5, another syntax forinitializer is

= initializer-clause

but again the resulting construct might be a function call upon a constructor function with oneassignment-
expressionas an argument; again, the function call is a full-expression.]]

15 [Note:that the evaluation of a full-expression can include the evaluation of subexpressions that are not lexi-
cally part of the full-expression. [Example:subexpressions involved in evaluating default argument expres-
sions (8.3.6) are considered to be created in the expression that calls the function, not the expression that

4) An implementation can offer additional library I/O functions as an extension. Implementations that do so should treat calls to those
functions as ‘‘observable behavior’’ as well.
5) Note that some aspects of sequencing in the abstract machine are unspecified; the preceding restriction upon side effects applies to
that particular execution sequence in which the actual code is generated.
6) In other words, function executions do not interleave with each other.

1– 6 General DRAFT: 28 April 1995 1.8 Program execution

defines the default argument.]]

16 There is a sequence point at the completion of evaluation of each full-expression7).

17 When calling a function (whether or not the function is inline), there is a sequence point after the evaluation
of all function arguments (if any) which takes place before execution of any expressions or statements in
the function body. There is also a sequence point after the copying of a returned value and before the exe-
cution of any expressions outside the function8). Several contexts in C + + cause evaluation of a function
call, even though no corresponding function call syntax appears in the translation unit. [Example:evalua-
tion of anew expression invokes one or more allocation and constructor functions; see 5.3.4. For another
example, invocation of a conversion function (12.3.2) can arise in contexts in which no function call syntax
appears.] The sequence points at function-entry and function-exit (as described above) are features of the
function calls as evaluated, whatever the syntax of the expression that calls the function might be.

18 In the evaluation of each of the expressions

a && b
a || b
a ? b : c
a , b

using the builtin meaning of the operators in these expressions (5.14, 5.15, 5.16, 5.18) there is a sequence
point after the evaluation of the first expression9).

7) As specified in 12.2, after the "end-of-full-expression" sequence point, a sequence of zero or more invocations of destructor func-
tions takes place, in reverse order of the construction of each temporary object.
8) The sequence point at the function return is not explicitly specified in ISO C, and can be considered redundant with sequence points
at full-expressions, but the extra clarity is important in C + +. In C + +, there are more ways in which a called function can terminate its
execution, such as the throw of an exception, as discussed below.
9) The operators indicated in this paragraph are the builtin operators, as described in Clause 5. When one of these operators is over-
loaded (13) in a valid context, thus designating a user-defined operator function, the expression designates a function invocation, and
the operands form an argument list, without an implied sequence point between them.

_ ___ ___

2 Lexical conventions [lex]
_ ___ ___

1 A C + + program need not all be translated at the same time. The text of the program is kept in units called
source filesin this standard. A source file together with all the headers (17.3.1.2) and source files included
(16.2) via the preprocessing directive#include , less any source lines skipped by any of the conditional
inclusion (16.1) preprocessing directives, is called atranslation unit. Previously translated translation units
can be preserved individually or in libraries. The separate translation units of a program communicate (3.5)
by (for example) calls to functions whose identifiers have external linkage, manipulation of objects whose
identifiers have external linkage, or manipulation of data files. Translation units can be separately trans-
lated and then later linked to produce an executable program. (3.5).

[lex.phases] 2.1 Phases of translation

1 The precedence among the syntax rules of translation is specified by the following phases.10)

1 Physical source file characters are mapped to the source character set (introducing new-line charac-
ters for end-of-line indicators) if necessary. Trigraph sequences (2.2) are replaced by corresponding
single-character internal representations.

2 Each instance of a new-line character and an immediately preceding backslash character is deleted,
splicing physical source lines to form logical source lines. A source file that is not empty shall end
in a new-line character, which shall not be immediately preceded by a backslash character.

3 The source file is decomposed into preprocessing tokens (2.3) and sequences of white-space charac-
ters (including comments). A source file shall not end in a partial preprocessing token or partial
comment11). Each comment is replaced by one space character. New-line characters are retained.
Whether each nonempty sequence of white-space characters other than new-line is retained or
replaced by one space character is implementation-defined. The process of dividing a source file’s
characters into preprocessing tokens is context-dependent. [Example:see the handling of< within a
#include preprocessing directive.]

4 Preprocessing directives are executed and macro invocations are expanded. A#include prepro-
cessing directive causes the named header or source file to be processed from phase 1 through phase
4, recursively.

5 Each source character set member and escape sequence in character literals and string literals is con-
verted to a member of the execution character set.

6 Adjacent character string literal tokens are concatenated and adjacent wide string literal tokens are
concatenated.

7 White-space characters separating tokens are no longer significant. Each preprocessing token is
converted into a token. (See 2.5). The resulting tokens are syntactically and semantically analyzed
and translated. The result of this process starting from a single source file is called atranslation
unit.

10) Implementations must behave as if these separate phases occur, although in practice different phases might be folded together.
11) A partial preprocessing token would arise from a source file ending in one or more characters of a multi-character token followed
by a“line-splicing” backslash. A partial comment would arise from a source file ending with an unclosed/* comment, or a// com-
ment line that ends with a“line-splicing” backslash.

2– 2 Lexical conventions DRAFT: 28 April 1995 2.1 Phases of translation

8 The translation units that will form a program are combined. All external object and function refer-
ences are resolved. Library components are linked to satisfy external references to functions and
objects not defined in the current translation. All such translator output is collected into a program
image which contains information needed for execution in its execution environment.

[lex.trigraph] 2.2 Trigraph sequences

1 Before any other processing takes place, each occurrence of one of the following sequences of three charac-
ters (“trigraph sequences”) is replaced by the single character indicated in Table 1.

Table 1—trigraph sequences
_ __
trigraph replacement trigraph replacement trigraph replacement_ ___ __

??= # ??([??< {_ __
??/ \ ??)] ??> }_ __
??’ ^ ??! | ??- ~_ __

2 [Example:

??=define arraycheck(a,b) a??(b??) ??!??! b??(a??)

becomes

#define arraycheck(a,b) a[b] || b[a]

—end example]

[lex.pptoken] 2.3 Preprocessing tokens

preprocessing-token:
header-name
identifier
pp-number
character-literal
string-literal
preprocessing-op-or-punc
each non-white-space character that cannot be one of the above

1 Each preprocessing token that is converted to a token (2.5) shall have the lexical form of a keyword, an
identifier, a literal, an operator, or a punctuator.

2 A preprocessing tokenis the minimal lexical element of the language in translation phases 3 through 6.
The categories of preprocessing token are:header names, identifiers, preprocessing numbers, character
literals, string literals, preprocessing-op-or-punc, and single non-white-space characters that do not lexi-
cally match the other preprocessing token categories. If a’ or a" character matches the last category, the
behavior is undefined. Preprocessing tokens can be separated bywhite space; this consists of comments
(2.6), orwhite-space characters(space, horizontal tab, new-line, vertical tab, and form-feed), or both. As
described in Clause 16, in certain circumstances during translation phase 4, white space (or the absence
thereof) serves as more than preprocessing token separation. White space can appear within a preprocess-
ing token only as part of a header name or between the quotation characters in a character literal or string
literal.

3 If the input stream has been lexically analyzed into preprocessing tokens up to a given character, the next
preprocessing token is the longest sequence of characters that could constitute a preprocessing token, even
if that would cause further lexical analysis to fail.

2.3 Preprocessing tokens DRAFT: 28 April 1995 Lexical conventions 2– 3

4 [Example:The program fragment1Ex is parsed as a preprocessing number token (one that is not a valid
floating or integer literal token), even though a parse as the pair of preprocessing tokens1 andEx might
produce a valid expression (for example, ifEx were a macro defined as+1). Similarly, the program frag-
ment1E1 is parsed as a preprocessing number (one that is a valid floating literal token), whether or notE is
a macro name.]

5 [Example:The program fragmentx+++++y is parsed asx ++ ++ + y , which, if x andy are of built-in
types, violates a constraint on increment operators, even though the parsex ++ + ++ y might yield a
correct expression.]

[lex.digraph] 2.4 Alternative tokens

1 Alternative token representations are provided for some operators and punctuators12).

2 In all respects of the language, each alternative token behaves the same, respectively, as its primary token,
except for its spelling13). The set of alternative tokens is defined in Table 2.

Table 2—alternative tokens
_ __
alternative primary alternative primary alternative primary_ ___ __

<% { and && and_eq &=_ __
%> } bitor | or_eq |=_ __
<: [or || xor_eq ^=_ __
:>] xor ^ not !_ __
%: # compl ~ not_eq !=_ __

%:%: ## bitand &_ __

[lex.token] 2.5 Tokens

token:
identifier
keyword
literal
operator
punctuator

1 There are five kinds of tokens: identifiers, keywords, literals,14) operators, and other separators. Blanks,
horizontal and vertical tabs, newlines, formfeeds, and comments (collectively,“white space”), as described
below, are ignored except as they serve to separate tokens. Some white space is required to separate other-
wise adjacent identifiers, keywords, and literals.

[lex.comment] 2.6 Comments

1 The characters/* start a comment, which terminates with the characters*/ . These comments do not nest.
The characters// start a comment, which terminates with the next new-line character. If there is a form-
feed or a vertical-tab character in such a comment, only white-space characters shall appear between it and
the new-line that terminates the comment; no diagnostic is required. The comment characters// , /* , and
*/ have no special meaning within a// comment and are treated just like other characters. Similarly, the
comment characters// and/* have no special meaning within a/* comment.

12) These include“digraphs” and additional reserved words. The term“digraph” (token consisting of two characters) is not perfectly
descriptive, since one of the alternative preprocessing-tokens is%:%: and of course several primary tokens contain two characters.
Nonetheless, those alternative tokens that aren’t lexical keywords are colloquially known as“digraphs”.
13)Thus[and<: behave differently when“stringized” (16.3.2), but can otherwise be freely interchanged.
14)Literals include strings and character and numeric literals.

2– 4 Lexical conventions DRAFT: 28 April 1995 2.7 Identifiers

[lex.name] 2.7 Identifiers

identifier:
nondigit
identifier nondigit
identifier digit

nondigit: one of
_ a b c d e f g h i j k l m

n o p q r s t u v w x y z
A B C D E F G H I J K L M
N O P Q R S T U V W X Y Z

digit: one of
0 1 2 3 4 5 6 7 8 9

1 An identifier is an arbitrarily long sequence of letters and digits. The first character is a letter; the under-
score_ counts as a letter. Upper- and lower-case letters are different. All characters are significant.

[lex.key] 2.8 Keywords

1 The identifiers shown in Table 3 are reserved for use as keywords, and shall not be used otherwise in
phases 7 and 8:

Table 3—keywords
_ ___
asm do inline short typeid
auto double int signed typename
bool dynamic_cast long sizeof union
break else mutable static unsigned
case enum namespace static_cast using
catch explicit new struct virtual
char extern operator switch void
class false private template volatile
const float protected this wchar_t
const_cast for public throw while
continue friend register true
default goto reinterpret_cast try
delete if return typedef_ ___

2 Furthermore, the alternative representations shown in Table 4 for certain operators and punctuators (2.4) are
reserved and shall not be used otherwise:

Table 4—alternative representations
_ __
bitand and bitor or xor compl
and_eq or_eq xor_eq not not_eq_ __

3 In addition, identifiers containing a double underscore (_ _) or beginning with an underscore and an
upper-case letter are reserved for use by C + + implementations and standard libraries and shall be avoided by
users; no diagnostic is required.

4 The lexical representation of C + + programs includes a number of preprocessing tokens which are used in
the syntax of the preprocessor or are converted into tokens for operators and punctuators:

2.8 Keywords DRAFT: 28 April 1995 Lexical conventions 2– 5

preprocessing-op-or-punc: one of
{ } [] # ## = ()
<: :> <% %> %: %:%: ; : ...
new delete new[] delete[] ? ::
+ - * / % ^ & | ~
! = < > += -= *= /= %=
^= &= |= << >> >>= <<= == !=
<= >= && || ++ -- , ->* ->
and bitand bitor compl new<%%> delete<%%>
not or xor and_eq not_eq or_eq xor_eq

After preprocessing, eachpreprocessing-op-or-puncis converted to a single token in translation phase 7
(2.1).

5 [Note: Certain implementation-defined properties, such as the type of asizeof (5.3.3) expression, the
ranges of fundamental types (3.9.1), and the types of the most basic library functions are defined in the
standard headers<limits> , <cstddef> , and<new> (_lib.support_). —end note]

[lex.literal] 2.9 Literals

1 There are several kinds of literals.15)

literal:
integer-literal
character-literal
floating-literal
string-literal
boolean-literal

[lex.icon] 2.9.1 Integer literals

integer-literal:
decimal-literal integer-suffixopt

octal-literal integer-suffixopt

hexadecimal-literal integer-suffixopt

decimal-literal:
nonzero-digit
decimal-literal digit

octal-literal:
0
octal-literal octal-digit

hexadecimal-literal:
0x hexadecimal-digit
0X hexadecimal-digit
hexadecimal-literal hexadecimal-digit

nonzero-digit: one of
1 2 3 4 5 6 7 8 9

octal-digit: one of
0 1 2 3 4 5 6 7

15)The term“literal” generally designates, in this International Standard, those tokens that are called“constants” in ISO C.

2– 6 Lexical conventions DRAFT: 28 April 1995 2.9.1 Integer literals

hexadecimal-digit:one of
0 1 2 3 4 5 6 7 8 9
a b c d e f
A B C D E F

integer-suffix:
unsigned-suffix long-suffixopt

long-suffix unsigned-suffixopt

unsigned-suffix:one of
u U

long-suffix: one of
l L

1 An integer literal consisting of a sequence of digits is taken to be decimal (base ten) unless it begins with0
(digit zero). A sequence of octal digits16) starting with0 is taken to be an octal integer (base eight). A
sequence of digits preceded by0x or 0X is taken to be a hexadecimal integer (base sixteen). The hexa-
decimal digits includea or A throughf or F with decimal values ten through fifteen. [Example:the num-
ber twelve can be written12 , 014 , or0XC.]

2 The type of an integer literal depends on its form, value, and suffix. If it is decimal and has no suffix, it has
the first of these types in which its value can be represented:int , long int , unsigned long int . If
it is octal or hexadecimal and has no suffix, it has the first of these types in which its value can be repre-
sented:int , unsigned int , long int , unsigned long int . If it is suffixed byu or U, its type is
the first of these types in which its value can be represented:unsigned int , unsigned long int . If
it is suffixed byl or L, its type is the first of these types in which its value can be represented:long int ,
unsigned long int . If it is suffixed byul , lu , uL , Lu , Ul , lU , UL, or LU, its type isunsigned
long int .

3 A program is ill-formed if it contains an integer literal that cannot be represented by any of the allowed
types.

[lex.ccon] 2.9.2 Character literals

character-literal:
’ c-char-sequence’
L’ c-char-sequence’

c-char-sequence:
c-char
c-char-sequence c-char

c-char:
any member of the source character set except

the single-quote’ , backslash\ , or new-line character
escape-sequence

escape-sequence:
simple-escape-sequence
octal-escape-sequence
hexadecimal-escape-sequence

16)The digits8 and9 are not octal digits.

2.9.2 Character literals DRAFT: 28 April 1995 Lexical conventions 2– 7

simple-escape-sequence:one of
\’ \" \? \\
\a \b \f \n \r \t \v

octal-escape-sequence:
\ octal-digit
octal-escape-sequence octal-digit

hexadecimal-escape-sequence:
\x hexadecimal-digit
hexadecimal-escape-sequence hexadecimal-digit

1 A character literal is one or more characters enclosed in single quotes, as in’x’ , optionally preceded by
the letterL, as inL’x’ . Single character literals that do not begin withL have typechar , with value
equal to the numerical value of the character in the machine’s character set. Multicharacter literals that do
not begin withL have typeint and implementation-defined value.

2 A character literal that begins with the letterL, such asL’ab’ , is a wide-character literal. Wide-character
literals have typewchar_t .17) Wide-character literals have implementation-defined values, regardless of
the number of characters in the literal.

3 Certain nongraphic characters, the single quote’ , the double quote" , ?, and the backslash\ , can be repre-
sented according to Table 5.

Table 5—escape sequences
_ ______________________________
new-line NL (LF) \n
horizontal tab HT \t
vertical tab VT \v
backspace BS \b
carriage return CR \r
form feed FF \f
alert BEL \a
backslash \ \\
question mark ? \?
single quote ’ \’
double quote " \"
octal number ooo \ooo
hex number hhh \xhhh_ ______________________________

If the character following a backslash is not one of those specified, the behavior is undefined. An escape
sequence specifies a single character.

4 The escape\ oooconsists of the backslash followed by one or more octal digits that are taken to specify the
value of the desired character. The escape\x hhhconsists of the backslash followed byx followed by one
or more hexadecimal digits that are taken to specify the value of the desired character. There is no limit to
the number of digits in either sequence. A sequence of octal or hexadecimal digits is terminated by the first
character that is not an octal digit or a hexadecimal digit, respectively. The value of a character literal is
implementation-defined if it exceeds that of the largestchar (for ordinary literals) orwchar_t (for wide
literals).

17)They are intended for character sets where a character does not fit into a single byte.

2– 8 Lexical conventions DRAFT: 28 April 1995 2.9.3 Floating literals

[lex.fcon] 2.9.3 Floating literals

floating-literal:
fractional-constant exponent-partopt floating-suffixopt

digit-sequence exponent-part floating-suffixopt

fractional-constant:
digit-sequenceopt . digit-sequence
digit-sequence.

exponent-part:
e signopt digit-sequence
E signopt digit-sequence

sign: one of
+ -

digit-sequence:
digit
digit-sequence digit

floating-suffix: one of
f l F L

1 A floating literal consists of an integer part, a decimal point, a fraction part, ane or E, an optionally signed
integer exponent, and an optional type suffix. The integer and fraction parts both consist of a sequence of
decimal (base ten) digits. Either the integer part or the fraction part (not both) can be missing; either the
decimal point or the lettere (or E) and the exponent (not both) can be missing. The type of a floating lit-
eral isdouble unless explicitly specified by a suffix. The suffixesf andF specifyfloat , the suffixesl
andL specifylong double .

[lex.string] 2.9.4 String literals

string-literal:
" s-char-sequenceopt"
L" s-char-sequenceopt"

s-char-sequence:
s-char
s-char-sequence s-char

s-char:
any member of the source character set except

the double-quote" , backslash\ , or new-line character
escape-sequence

1 A string literal is a sequence of characters (as defined in 2.9.2) surrounded by double quotes, optionally
beginning with the letterL, as in"..." or L"..." . A string literal that does not begin withL has type
“array ofn char ” andstaticstorage duration (3.7), wheren is the size of the string as defined below, and is
initialized with the given characters. Whether all string literals are distinct (that is, are stored in nonover-
lapping objects) is implementation-defined. The effect of attempting to modify a string literal is undefined.

2 A string literal that begins withL, such asL"asdf" , is a wide string literal. A wide string literal has type
“array ofn wchar_t ,” wheren is the size of the string as defined below.

3 Adjacent string literals are concatenated. Adjacent wide string literals are concatenated. If a string literal
token is adjacent to a wide string literal token, the behavior is undefined. Characters in concatenated
strings are kept distinct. [Example:

2.9.4 String literals DRAFT: 28 April 1995 Lexical conventions 2– 9

"\xA" "B"

contains the two characters’\xA’ and ’B’ after concatenation (and not the single hexadecimal character
’\xAB’).]

4 After any necessary concatenation’\0’ is appended so that programs that scan a string can find its end.
The size of a string is the number of its characters including this terminator. Within a string, the double
quote character" shall be preceded by a\ .

5 Escape sequences in string literals have the same meaning as in character literals (2.9.2).

[lex.bool] 2.9.5 Boolean literals

boolean-literal:
false
true

1 The Boolean literals are the keywordsfalse andtrue . Such literals have typebool and the given val-
ues. They are not lvalues.

_ ___ ___

3 Basic concepts [basic]
_ ___ ___

1 [Note: this clause presents the basic concepts of the C + + language. It explains the difference between an
objectand anameand how they relate to the notion of anlvalue. It introduces the concepts of adeclaration
and adefinition and presents C + +’s notion oftype, scope, linkage, andstorage duration. The mechanisms
for starting and terminating a program are discussed. Finally, this clause presents the fundamental types of
the language and lists the ways of constructingcompoundtypes from these.

2 This clause does not cover concepts that affect only a single part of the language. Such concepts are dis-
cussed in the relevant clauses.—end note]

3 An entity is a value, object, subobject, base class subobject, array element, variable, function, set of func-
tions, instance of a function, enumerator, type, class member, template, or namespace.

4 A nameis a use of an identifier (2.7) that denotes an entity orlabel (6.6.4, 6.1).

5 Every name that denotes an entity is introduced by adeclaration. Every name that denotes a label is intro-
duced either by agoto statement (6.6.4) or alabeled-statement(6.1). Every name is introduced in some
contiguous portion of program text called adeclarative region(3.3), which is the largest part of the pro-
gram in which that name can possibly be valid. In general, each particular name is valid only within some
possibly discontiguous portion of program text called itsscope(3.3). To determine the scope of a declara-
tion, it is sometimes convenient to refer to thepotential scopeof a declaration. The scope of a declaration
is the same as its potential scope unless the potential scope contains another declaration of the same name.
In that case, the potential scope of the declaration in the inner (contained) declarative region is excluded
from the scope of the declaration in the outer (containing) declarative region.

6 [Example:in

int j = 24;

int main()
{

int i = j, j;

j = 42;
}

the identifierj is declared twice as a name (and used twice). The declarative region of the firstj includes
the entire example. The potential scope of the firstj begins immediately after thatj and extends to the end
of the program, but its (actual) scope excludes the text between the, and the} . The declarative region of
the second declaration ofj (the j immediately before the semicolon) includes all the text between{ and} ,
but its potential scope excludes the declaration ofi . The scope of the second declaration ofj is the same
as its potential scope.]

7 Some names denote types, classes, enumerations, or templates. In general, it is necessary to determine
whether or not a name denotes one of these entities before parsing the program that contains it. The process
that determines this is calledname lookup(3.4).

8 Two names denote the same entity if

— they are identifiers composed of the same character sequence; or

— they are the names of overloaded operator functions formed with the same operator; or

3– 2 Basic concepts DRAFT: 28 April 1995 3 Basic concepts

— they are the names of user-defined conversion functions formed with the same type.

9 An identifier used in more than one translation unit can potentially refer to the same entity in these transla-
tion units depending on the linkage (3.5) specified in the translation units.

[basic.def] 3.1 Declarations and definitions

1 A declaration (7) introduces one or more names into a program and gives each name a meaning.

2 A declaration is adefinition unless it declares a function without specifying the function’s body (8.4), it
contains theextern specifier (7.1.1) and neither aninitializer nor afunction-body, it declares a static data
member in a class declaration (9.5), it is a class name declaration (9.1), or it is atypedef declaration
(7.1.3), ausing declaration(7.3.3), or ausing directive(7.3.4).

3 [Example:all but one of the following are definitions:

int a; // definesa
extern const int c = 1; // definesc
int f(int x) { return x+a; } // definesf
struct S { int a; int b; }; // definesS
struct X { // definesX

int x; // defines nonstatic data memberx
static int y; // declares static data membery
X(): x(0) { } // defines a constructor ofX

};
int X::y = 1; // definesX::y
enum { up, down }; // definesup and down
namespace N { int d; } // definesN and N::d
namespace N1 = N; // definesN1
X anX; // definesanX

whereas these are just declarations:

extern int a; // declaresa
extern const int c; // declaresc
int f(int); // declaresf
struct S; // declaresS
typedef int Int; // declaresInt
extern X anotherX; // declaresanotherX
using N::d; // declaresN::d

—end example]

4 [Note: in some circumstances, C + + implementations implicitly define the default constructor (12.1), copy
constructor (12.8), assignment operator (12.8), or destructor (12.4) member functions. [Example:given

struct C {
string s; // string is the standard library class (21.1.2)

};

int main()
{

C a;
C b = a;
b = a;

}

the implementation will implicitly define functions to make the definition ofCequivalent to

3.1 Declarations and definitions DRAFT: 28 April 1995 Basic concepts 3– 3

struct C {
string s;
C(): s() { }
C(const C& x): s(x.s) { }
C& operator=(const C& x) { s = x.s; return *this; }
~C() { }

};

—end example] —end note]

5 [Note:a class name can also be implicitly declared by anelaborated-type-specifier(7.1.5.3).]

[basic.def.odr] 3.2 One definition rule

1 No translation unit shall contain more than one definition of any variable, function, class type, enumeration
type or template.

2 A function is usedif it is called, its address is taken, or it is a virtual member function that is not pure
(10.4). Every program shall contain at least one definition of every function that is used in that program.
That definition can appear explicitly in the program, it can be found in the standard or a user-defined
library, or (when appropriate) it is implicitly defined (see 12.1, 12.4 and 12.8). If a non-virtual function is
not defined, a diagnostic is required only if an attempt is actually made to call that function. If a virtual
function is neither called nor defined, no diagnostic is required.

3 A non-local variable with static storage duration shall have exactly one definition in a program unless the
variable has a builtin type or is an aggregate and also is unused or used only as the operand of thesizeof
operator.

4 At least one definition of a class is required in a translation unit if the class is used other than in the forma-
tion of a pointer or reference type.

5 [Example:the following complete translation unit is well-formed, even though it never definesX:

struct X; // declareX is a struct type
struct X* x1; // useX in pointer formation
X* x2; // useX in pointer formation

—end example]

6 There can be more than one definition of a named enumeration type in a program provided that each defini-
tion appears in a different translation unit and the names and values of the enumerators are the same.

7 There can be more than one definition of a class type in a program provided that each definition appears in
a different translation unit and the definitions describe the same type.

8 No diagnostic is required for a violation of the ODR rule.

[basic.scope] 3.3 Declarative regions and scopes

1 The name look up rules are summarized in 3.4.

[basic.scope.local] 3.3.1 Local scope

1 A name declared in a block (6.3) is local to that block. Its scope begins at its point of declaration (3.3.9)
and ends at the end of its declarative region.

2 A function parameter name in a function definition (8.4) is a local name in the scope of the outermost block
of the function and shall not be redeclared in that scope.

3 The name in acatch exception-declaration is local to the handler and shall not be redeclared in the outer-
most block of the handler.

3– 4 Basic concepts DRAFT: 28 April 1995 3.3.1 Local scope

4 Names declared in thefor-init-statement, condition, and controlling expression parts ofif , while , for ,
andswitch statments are local to theif , while , for , or switch statement (including the controlled
statement), and shall not be redeclared in a subsequent condition or controlling expression of that statement
nor in the outermost block of the controlled statement.

5 Names declared in the outermost block of the controlled statement of ado statement shall not be redeclared
in the controlling expression.

[basic.scope.proto] 3.3.2 Function prototype scope

1 In a function declaration, or in any of function declarator except the declarator of a function definition (8.4),
names of parameters (if supplied) have function prototype scope, which terminates at the end of the func-
tion declarator.

3.3.3 Function scope

1 Labels (6.1) can be used anywhere in the function in which they are declared. Only labels have function
scope.

[basic.scope.namespace] 3.3.4 Namespace scope

1 A name declared in a named or unnamed namespace (7.3) has namespace scope. Its potential scope
includes its namespace from the name’s point of declaration (3.3.9) onwards, as well as the potential scope
of anyusing directive(7.3.4) that nominates its namespace. A namespace member can also be used after
the:: scope resolution operator (5.1) applied to the name of its namespace.

2 A name declared outside all named or unnamed namespaces (7.3), blocks (6.3) and classes (9) hasglobal
namespace scope(also calledglobal scope). The potential scope of such a name begins at its point of dec-
laration (3.3.9) and ends at the end of the translation unit that is its declarative region. Names declared in
the global namespace scope are said to beglobal.

[basic.scope.class] 3.3.5 Class scope

1 The name of a class member is local to its class and can be used only in:

— the scope of that class (9.3) or a class derived (10) from that class,

— after the. operator applied to an expression of the type of its class (5.2.4) or a class derived from its
class,

— after the-> operator applied to a pointer to an object of its class (5.2.4) or a class derived from its class,

— after the:: scope resolution operator (5.1) applied to the name of its class or a class derived from its
class,

— or after ausing declaration(7.3.3).

2 [Note: The scope of names introduced by friend declarations is described in 7.3.1. The scope rules for
classes are summarized in 9.3.]

[basic.scope.hiding] 3.3.6 Name hiding

1 A name can be hidden by an explicit declaration of that same name in a nested declarative region or derived
class.

2 A class name (9.1) or enumeration name (7.2) can be hidden by the name of an object, function, or enumer-
ator declared in the same scope. If a class or enumeration name and an object, function, or enumerator are
declared in the same scope (in any order) with the same name, the class or enumeration name is hidden
wherever the object, function, or enumerator name is visible.

3.3.6 Name hiding DRAFT: 28 April 1995 Basic concepts 3– 5

3 In a member function definition, the declaration of a local name hides the declaration of a member of the
class with the same name; see 9.3. The declaration of a member in a derived class (10) hides the declara-
tion of a member of a base class of the same name; see 10.2.

4 If a name is in scope and is not hidden it is said to bevisible.

[basic.scope.exqual] 3.3.7 Explicit qualification

1 [Note:a name hidden by a nested declarative region or derived class can still be used when it is qualified by
its class or namespace name using the:: operator (5.1, 9.5, 10). A hidden global scope name can still be
used when it is qualified by the unary:: operator (5.1). —end note]

[basic.scope.elab] 3.3.8 Elaborated type specifier

1 A class name or enumeration name can be hidden by the name of an object, function, or enumerator in
local, class or namespace scope. A hidden class name can still be used when appropriately prefixed with
class , struct , or union (7.1.5), or when followed by the:: operator. A hidden enumeration name
can still be used when appropriately prefixed withenum (7.1.5). [Example:

class A {
public:

static int n;
};

int main()
{

int A;

A::n = 42; // OK
class A a; // OK
A b; // ill-formed: A does not name a type

}

—end example]

2 [Note:the scope of class names first introduced inelaborated-type-specifiersis described in (7.1.5.3).]

[basic.scope.pdecl] 3.3.9 Point of declaration

1 Thepoint of declarationfor a name is immediately after its complete declarator (8) and before itsinitializer
(if any), except as noted below. [Example:

int x = 12;
{ int x = x; }

Here the secondx is initialized with its own (unspecified) value.]

2 A nonlocal name remains visible up to the point of declaration of the local name that hides it. [Example:

const int i = 2;
{ int i[i]; }

declares a local array of two integers.]

3 [Note:for the point of declaration for an enumerator, see 7.2. For the point of declaration of a function first
declared in afriend declaration, see 11.4. For the point of declaration of a class first declared in an
elaborated-type-specifieror in afriend declaration, see 7.1.5.3. For point of instantiation of a template,
see 14.3.]

4

3– 6 Basic concepts DRAFT: 28 April 1995 3.4 Name look up

[class.scope] 3.4 Name look up

1 The name look up rules apply uniformly to all names (includingtypedef-names (7.1.3),namespace-names
(7.3) andclass-names (9.1)) wherever the grammar allows such names in the context discussed by a partic-
ular rule. This section discusses name look up in lexical scope only; 3.5 discusses linkage issues. The
notions of name hiding and point of declaration are discussed in 3.3.

2 Name look up associates the use of a name with a visible declaration (3.1) of that name. Name look up
shall find an unambiguous declaration for the name (see 10.2). Name look up may associate more than one
declaration with a name if it finds the name to be a function name; in this case, all the declarations shall be
found in the same scope (10.2); the declarations are said to form a set of overloaded functions (13.1). Over-
load resolution (13.3) takes place after name look up has succeeded. The access rules (11) are considered
only once name look up and function overload resolution (if applicable) have succeeded. Only after name
look up, function overload resolution (if applicable) and access checking have succeeded are the attributes
introduced by the name’s declaration used further in expression processing (5).

3 A name used in the global scope outside of any function, class or user-declared namespace, shall be
declared before it is used in global scope or be a name introduced by ausing directive (7.3.4) that appears
in global scope before the name is used.

4 A name specified after anested-name-specifieris looked up in the scope of the class or namespace denoted
by thenested-name-specifier; see 5.1 and 7.3.1.1. A name prefixed by the unary scope operator:: (5.1) is
looked up in global scope. A name specified after the. operator or-> operator of a class member access
is looked up as specified in 5.2.4.

5 A name that is not qualified in any of the ways described above and that is used in a namespace outside of
the definition of any function or class shall be declared before its use in that namespace or in one of its
enclosing namespaces or, be introduced by ausing directive (7.3.4) visible at the point the name is used.

6 A name that is not qualified in any of the ways described above and that is used in a function that is not a
class member shall be declared before its use in the block in which it is used or in one of its enclosing
blocks (6.3) or, shall be declared before its use in the namespace enclosing the function definition or in one
of its enclosing namespaces or, shall be introduced by ausing directive (7.3.4) visible at the point the
name is used.

7 A name that is not qualified in any of the ways described above and that is used in the definition of a class
X outside of any inline member function or nested class definition shall be declared before its use in classX
(9.3) or be a member of a base class of classX (10) or, if X is a nested class of classY (9.8), shall be
declared before the definition of classX in the enclosing classY or in Y’s enclosing classes or, ifX is a local
class (9.9), shall be declared before the definition of classX in a block enclosing the definition of classX or,
shall be declared before the definition of classX in a namespace enclosing the definition of classX or, be
introduced by ausing directive (7.3.4) visible at the point the name is used. [Note:Subclause 9.3 further
describes the restrictions on the use of names in a class definition. Subclause 9.8 further describes the
restrictions on the use of names in nested class definitions. Subclause 9.9 further describes the restrictions
on the use of names in local class definitions.]

8 A name that is not qualified in any of the ways described above and that is used in a function that is a mem-
ber function (9.4) of classX shall be declared before its use in the block in which it is used or in an enclos-
ing block (6.3) or, shall be a member of classX (9.2) or a member of a base class of classX (10) or, ifX is a
nested class of classY (9.8), shall be a member of the enclosing classY or a member ofY’s enclosing
classes or, ifX is a local class (9.9), shall be declared before the definition of classX in a block enclosing
the definition of classX or, shall be declared before the member function definition in a namespace enclos-
ing the member function definition or, be introduced by ausing directive (7.3.4) visible at the point the
name is used. [Note:Subclause 9.4 and 9.5 further describe the restrictions on the use of names in member
function definitions. Subclause 9.8 further describes the restrictions on the use of names in the scope of
nested classes. Subclause 9.9 further describes the restrictions on the use of names in local class defini-
tions.]

3.4 Name look up DRAFT: 28 April 1995 Basic concepts 3– 7

9 For afriend function (11.4) defined inline in the definition of the class granting friendship, name look up
in the friend function definition for a name that is not qualified in any of the ways described above pro-
ceeds as described in member function definitions. If thefriend function is not defined in the class
granting friendship, name look up in thefriend function definition for a name that is not qualified in any
of the ways described above proceeds as described in nonmember function definitions.

10 A name that is not qualified in any of the ways described above and that is used in a functionparameter-
declaration-clauseas a default argument (8.3.6) or that is used in a functionctor-initializer (12.6.2) is
looked up as if the name was used in the outermost block of the function definition. In particular, the func-
tion parameter names are visible for name look up in default arguments and inctor-initializers. [Note:Sub-
clause 8.3.6 further describes the restrictions on the use of names in default arguments. Subclause 12.6.2
further describes the restrictions on the use of names in actor-initializer.]

11 A name that is not qualified in any of the ways described above and that is used in theinitializer expression
of a static member of classX (9.5.2) shall be a member of classX (9.2) or a member of a base class of
classX (10) or, if X is a nested class of classY (9.8), shall be a member of the enclosing classY or a mem-
ber ofY’s enclosing classes or, be declared before the static member definition in the namespace enclosing
the static member definition or in one of its enclosing namespaces or, be introduced by ausing directive
(7.3.4) visible at the point the name is used. [Note:Subclause 9.5.2 further describes the restrictions on the
use of names in theinitializer expression for astatic data member. Subclause 9.8 further describes the
restrictions on the use of names in nested class definitions.]

12 In all cases, the scopes are searched for a declaration in the order listed in each of the respective category
above and name look up ends as soon as a declaration is found for the name.

[basic.link] 3.5 Program and linkage

1 A programconsists of one or moretranslation units(2) linked together. A translation unit consists of a
sequence of declarations.

translation unit:
declaration-seqopt

2 A name is said to havelinkagewhen it might denote the same object, function, type, template, or value as a
name introduced by a declaration in another scope:

— When a name hasexternal linkage, the entity it denotes can be referred to by names from scopes of
other translation units or from other scopes of the same translation unit.

— When a name hasinternal linkage, the entity it denotes can be referred to by names from other scopes
of the same translation unit.

— When a name hasno linkage, the entity it denotes cannot be referred to by names from other scopes.

3 A name of namespace scope (3.3.4) has internal linkage if it is the name of

— a variable that is explicitly declaredstatic or, is explicitly declaredconst and neither explicitly
declaredextern nor previously declared to have external linkage; or

— a function that is explicitly declaredstatic or, is explicitly declaredinline and neither explicitly
declaredextern nor previously declared to have external linkage; or

— the name of a data member of an anonymous union.

4 A name of namespace scope has external linkage if it is the name of

— a variable, unless it has internal linkage; or

— a function, unless it has internal linkage; or

— a class (9) or enumeration (7.2) or an enumerator; or

— a template (14).

3– 8 Basic concepts DRAFT: 28 April 1995 3.5 Program and linkage

5 In addition, a name of class scope has external linkage if the name of the class has external linkage.

6 The name of a function declared in a block scope or a variable declaredextern in a block scope has link-
age, either internal or external to match the linkage of prior visible declarations of the name in the same
translation unit, but if there is no prior visible declaration it has external linkage.

7 Names not covered by these rules have no linkage. Moreover, except as noted, a name declared in a local
scope (3.3.1) has no linkage. A name with no linkage (notably, the name of a class or enumeration declared
in a local scope (3.3.1)) shall not be used to declare an entity with linkage. [Example:

void f()
{

struct A { int x; }; // no linkage
extern A a; // ill-formed

}

—end example] This implies that names with no linkage cannot be used as template arguments (14.8).

8 Two names that are the same and that are declared in different scopes shall denote the same object, func-
tion, type, enumerator, or template if

— both names have external linkage or else both names have internal linkage and are declared in the same
translation unit; and

— both names refer to members of the same namespace or to members, not by inheritance, of the same
class; and

— when both names denote functions or function templates, the function types are identical for purposes of
overloading.

9 After all adjustments of types (during which typedefs (7.1.3) are replaced by their definitions), the types
specified by all declarations of a particular external name shall be identical, except that declarations for an
array object can specify array types that differ by the presence or absence of a major array bound (8.3.4),
and declarations for functions with the same name can specify different numbers and types of parameters
(8.3.5). A violation of this rule on type identity does not require a diagnostic.

10 [Note: linkage to non-C + + declarations can be achieved using alinkage-specification(7.5).]

[basic.start] 3.6 Start and termination

[basic.start.main] 3.6.1 Main function

1 A program shall contain a global function calledmain , which is the designated start of the program.

2 This function is not predefined by the implementation, it cannot be overloaded, and its type is
implementation-defined. All implementations shall allow both of the following definitions ofmain :

int main() { /* ... */ }

and

int main(int argc, char* argv[]) { /* ... */ }

In the latter formargc shall be the number of arguments passed to the program from the environment in
which the program is run. Ifargc is nonzero these arguments shall be supplied inargv[0] through
argv[argc-1] as pointers to the initial characters of null-terminated multibyte strings (NTMBSs) and
argv[0] shall be the pointer to the initial character of a NTMBS that represents the name used to invoke
the program or"" . The value ofargc shall be nonnegative. The value ofargv[argc] shall be 0.
[Note:It is recommended that any further (optional) parameters be added afterargv .]

3 The functionmain() shall not be called from within a program. The linkage (3.5) ofmain() is
implementation-defined. The address ofmain() shall not be taken andmain() shall not be declared
inline or static . The namemain is not otherwise reserved. [Example:member functions, classes,
and enumerations can be calledmain , as can entities in other namespaces.]

3.6.1 Main function DRAFT: 28 April 1995 Basic concepts 3– 9

4 Calling the function

void exit(int);

declared in<cstdlib> (18.3) terminates the program without leaving the current block and hence with-
out destroying any objects with automatic storage duration (12.4). The argument value is returned to the
program’s environment as the value of the program.

5 A return statement inmain() has the effect of leaving the main function (destroying any objects with
automatic storage duration) and callingexit() with the return value as the argument. If control reaches
the end ofmain without encountering areturn statement, the effect is that of executing

return 0;

[basic.start.init] 3.6.2 Initialization of non-local objects

1 The initialization of nonlocal objects with static storage duration (3.7) defined in a translation unit is done
before the first use of any function or object defined in that translation unit. Such initializations (8.5, 9.5,
12.1, 12.6.1) can be done before the first statement ofmain() or deferred to any point in time before the
first use of a function or object defined in that translation unit. The storage for objects with static storage
duration is zero-initialized (8.5) before any other initialization takes place. Objects with static storage dura-
tion initialized with constant expressions (5.19) are initialized before any dynamic (that is, run-time) initial-
ization takes place. The order of initialization of nonlocal objects with static storage duration defined in the
same translation unit is the order in which their definition appears in this translation unit. No further order
is imposed on the initialization of objects from different translation units. The initialization of local static
objects is described in 6.7.

2 If construction or destruction of a non-local static object ends in throwing an uncaught exception, the result
is to callterminate() (18.6.2.3).

[basic.start.term] 3.6.3 Termination

1 Destructors (12.4) for initialized static objects are called when returning frommain() and when calling
exit() (18.3). Destruction is done in reverse order of initialization. The functionatexit() from
<cstdlib> can be used to specify a function to be called at exit. Ifatexit() is to be called, the imple-
mentation shall not destroy objects initialized before anatexit() call until after the function specified in
theatexit() call has been called.

2 Where a C + + implementation coexists with a C implementation, any actions specified by the C implementa-
tion to take place after theatexit() functions have been called take place after all destructors have been
called.

3 Calling the function

void abort();

declared in<cstdlib> terminates the program without executing destructors for static objects and with-
out calling the functions passed toatexit() .

[basic.stc] 3.7 Storage duration

1 Storage duration is a property of an object that indicates the potential time extent the storage in which the
object resides might last. The storage duration is determined by the construct used to create the object and
is one of the following:

— static storage duration

— automatic storage duration

— dynamic storage duration

3– 10 Basic concepts DRAFT: 28 April 1995 3.7 Storage duration

2 Static and automatic storage durations are associated with objects introduced by declarations (3.1). The
dynamic storage duration is associated with objects created withoperator new (5.3.4).

3 The storage class specifiersstatic , auto , andmutable are related to storage duration as described
below.

4 References (8.3.2) might or might not require storage; however, the storage duration categories apply to ref-
erences as well.

[basic.stc.static] 3.7.1 Static storage duration

1 All non-local objects havestatic storage duration. The storage for these objects can last for the entire dura-
tion of the program. These objects are initialized and destroyed as described in 3.6.2 and 3.6.3.

2 Note that if an object of static storage duration has initialization or a destructor with side effects, it shall not
be eliminated even if it appears to be unused.

3 The keywordstatic can be used to declare a local variable with static storage duration; for a description
of initialization and destruction of localstatic variables, see 6.7.

4 The keywordstatic applied to a class data member in a class definition gives the data member static
storage duration.

[basic.stc.auto] 3.7.2 Automatic storage duration

1 Local objects explicitly declaredauto or register or not explicitly declaredstatic haveautomatic
storage duration. The storage for these objects lasts until the block in which they are created exits.

2 [Note:These objects are initialized and destroyed as described 6.7.]

3 If a named automatic object has initialization or a destructor with side effects, it shall not be destroyed
before the end of its block, nor shall it be eliminated as an optimization even if it appears to be unused.

[basic.stc.dynamic] 3.7.3 Dynamic storage duration

1 Objects can be created dynamically during program execution (1.8), usingnew-expressions (5.3.4), and
destroyed usingdelete-expressions (5.3.5). A C + + implementation provides access to, and management of,
dynamic storage via the globalallocation functionsoperator new and operator new[] and the
globaldeallocation functionsoperator delete andoperator delete[] .

2 These functions are always implicitly declared. The library provides default definitions for them (18.4.1).
A C + + program shall provide at most one definition of any of the functions::operator
new(size_t) , ::operator new[](size_t) , ::operator delete(void*) , and/or
::operator delete[](void*) . Any such function definitions replace the default versions. This
replacement is global and takes effect upon program startup (3.6). Allocation and/or deallocation functions
can also be declared and defined for any class (12.5).

3 Any allocation and/or deallocation functions defined in a C + + program shall conform to the semantics spec-
ified in this subclause.

[basic.stc.dynamic.allocation] 3.7.3.1 Allocation functions

1 Allocation functions can be static class member functions or global functions. They can be overloaded, but
the return type shall always bevoid* and the first parameter type shall always besize_t (5.3.3), an
implementation-defined integral type defined in the standard header<cstddef> (18). For these func-
tions, parameters other than the first can have associated default arguments (8.3.6).

2 The function shall return the address of a block of available storage at least as large as the requested size.
The order, contiguity, and initial value of storage allocated by successive calls to an allocation function is
unspecified. The pointer returned is suitably aligned so that it can be assigned to a pointer of any type and
then used to access such an object or an array of such objects in the storage allocated (until the storage is

3.7.3.1 Allocation functions DRAFT: 28 April 1995 Basic concepts 3– 11

explicitly deallocated by a call to a corresponding deallocation function). Each such allocation shall yield a
pointer to storage (1.5) disjoint from any other currently allocated storage. The pointer returned points to
the start (lowest byte address) of the allocated storage. If the size of the space requested is zero, the value
returned shall be nonzero and shall not pointer to or within any other currently allocated storage. The
results of dereferencing a pointer returned as a request for zero size are undefined.18)

3 If an allocation function is unable to obtain an appropriate block of storage, it can invoke the currently
installed new_handler 19) and/or throw an exception (15) of classbad_alloc (18.4.2.1) or a class
derived frombad_alloc .

4 If the allocation function returns the null pointer the result is implementation-defined.

[basic.stc.dynamic.deallocation] 3.7.3.2 Deallocation functions

1 Like allocation functions, deallocation functions can be static class member functions or global functions.

2 Each deallocation function shall returnvoid and its first parameter shall bevoid* . For class member
deallocation functions, a second parameter of typesize_t may be added. If both versions are declared in
the same class, the one-parameter form is the usual deallocation function and the two-parameter form is
used for placement delete (5.3.4). If the second version is declared but not the first, it is the usual dealloca-
tion function, not placement delete.

3 The value of the first parameter supplied to a deallocation function shall be zero, or refer to storage allo-
cated by the corresponding allocation function (even if that allocation function was called with a zero argu-
ment). If the value of the first argument is zero, the call to the deallocation function has no effect. If the
value of the first argument refers to a pointer already deallocated, the effect is undefined.

4 A deallocation function can free the storage referenced by the pointer given as its argument and renders the
pointer invalid. The storage can be made available for further allocation. An invalid pointer contains an
unusable value: it cannot even be used in an expression.

5 If the argument is non-zero, the value of a pointer that refers to deallocated space isindeterminate. The
effect of dereferencing an indeterminate pointer value is undefined.20)

[basic.stc.inherit] 3.7.4 Duration of sub-objects

1 The storage duration of member subobjects, base class subobjects and array elements is that of their com-
plete object (1.6).

[basic.life] 3.8 Object Lifetime

1 The lifetime of an object is a runtime property of the object. The lifetime of an object of typeT begins
when:

— storage with the proper alignment and size for typeT is obtained, and

— if T is a class type with a non-trivial constructor (12.1), the constructor call has completed.

The lifetime of an object of typeT ends when:

— if T is a class type with a non-trivial destructor (12.4), the destructor call starts, or

— the storage which the object occupies is reused or released.

18) The intent is to haveoperator new() implementable by callingmalloc() or calloc() , so the rules are substantially the
same. C + + differs from C in requiring a zero request to return a non-null pointer.
19) A program-supplied allocation function can obtain the address of the currently installednew_handler (18.4.2.2) using the
set_new_handler() function (18.4.2.3).
20)On some architectures, it causes a system-generated runtime fault.

3– 12 Basic concepts DRAFT: 28 April 1995 3.8 Object Lifetime

2 [Note: The lifetime of an object of POD type starts as soon as storage with proper size and alignment is
obtained, and its lifetime ends when the storage which the object occupies is reused or released. Subclause
12.6.2 describes the lifetime of base and member subobjects.]

3 The properties ascribed to objects throughout this International Standard apply for a given object only dur-
ing its lifetime. In particular, except as noted during object construction (12.6.2) and destruction (12.7),
before the lifetime of the object starts and after its lifetime ends the value of the storage which the object
occupies is indeterminate and, for an object of non-POD class type, referring to a non-static data member,
calling a non-static member function or converting the object to a base class subobject results in undefined
behavior.

4 [Note:The behavior of an object under construction and destruction might not be the same as the behavior
of an object whose lifetime has started and not ended. Subclauses 12.6.2 and 12.7 describe the behavior of
an object during the construction and destruction phases.]

5 A program may end the lifetime of any object by reusing the storage which the object occupies or by
explicitly calling the destructor for an object of a class type with a non-trivial destructor. For an object of a
class type with a non-trivial destructor, the program is not required to call the destructor explicitly before
the storage which the object occupies is reused or released; however, if there is no explicit call to the
destructor or if adelete-expression(5.3.5) is not used to release the storage, the destructor is not implicitly
called and any program that depends on the side effects produced by the destructor has unspecified behav-
ior.

6 After the lifetime of an object has ended and while the storage which the object occupied still exists, any
pointer to the original object can be used but only in limited ways. Such a pointer still points to valid stor-
age and using the pointer as a pointer to the storage where the object was located, as if the pointer were of
type void* , is well-defined. However, using the pointer to refer to the original object is no longer valid.
In particular, such a pointer cannot be dereferenced; for a non-POD class typeT, a pointer of typeT* that
points to the original object cannot be the operand of astatic_cast (5.2.8) (except when the conver-
sion is tovoid* or char*) and cannot be the operand of adynamic_cast (5.2.6); ifT is a class with a
non-trivial destructor, such a pointer cannot be used as the operand of adelete-expression. [Example:

struct B {
virtual void f();
void mutate();
virtual ~B();

};

struct D1 : B { void f(); };
struct D2 : B { void f(); };

void B::mutate() {
new (this) D2; // reuses storage - ends the lifetime of ’*this’
f(); // undefined behavior
... = this; // ok, ’this’ points to valid memory

}

void g() {
void* p = malloc(sizeof(D1) + sizeof(D2));
B* pb = new (p) D1;
pb->mutate();
&pb; // ok: pb points to valid memory
void* q = pb; // ok: pb points to valid memory
pb->f(); // undefined behavior, lifetime of *pb has ended

}

—end example]

7 If, after the lifetime of an object has ended and while the storage which the object occupied still exists, a
new object is created at the storage location which the original object occupied, a pointer that pointed to the
original object will automatically refer to the new object and, once the lifetime of the new object has

3.8 Object Lifetime DRAFT: 28 April 1995 Basic concepts 3– 13

started, can be used to manipulate the new object, if:

— the storage for the new object exactly overlays the storage location which the original object occupied,
and

— the new object is of the same type as the original object (ignoring the top-level cv-qualifiers), and

— the original object was a complete object of typeT and the new object is a complete object of typeT
(that is, they are not base class subobjects). [Example:

struct C {
int i;
void f();
const C& operator=(const C&);

};

const C& C::operator=(const C& other)
{

if (this != &other)
{

this->~C(); // lifetime of ’*this’ ends
new (this) C(other); // new object of type C created
f(); // well-defined

}
return *this;

}

C c1;
C c2;
c1 = c2; // well-defined
c1.f(); // well-defined; c1 refers to a new object of type C

—end example]

8 If a program ends the lifetime of an object of typeT with static (3.7.1) or automatic (3.7.2) storage duration
and ifT has a non-trivial destructor,21) the program must ensure that an object of the original type occupies
that same storage location when the implicit destructor call takes place; otherwise the behavior of the pro-
gram is undefined. This is true even if the block is exited with an exception. [Example:

struct B {
~B();

};
void h() {

B b;
new (&b) T;

} // undefined behavior at block exit

—end example]

[basic.types] 3.9 Types

1 This clauses imposes requirements on processors regarding the representation of types. There are two kinds
of types: fundamental types and compound types. Types describe objects (1.6), references (8.3.2), or func-
tions (8.3.5).

2 For any object typeT, the underlying bytes (1.5) of the object can be copied (using thememcpy library
function (17.3.1.2) into an array ofchar or unsigned char . The copy operation is well-defined, even
if the object does not hold a valid value of typeT. Whether or not the value of the object is later changed, if
the content of the array ofchar or unsigned char is copied back into the object using thememcpy

21) that is, an object for which a destructor will be called implicitly -- either upon exit from the block for an object with automatic stor-
age duration or upon exit from the program for an object with static storage duration.

3– 14 Basic concepts DRAFT: 28 April 1995 3.9 Types

library function, the object shall subsequently hold its original value. [Example:

#define N sizeof(T)
char buf[N];
T obj; // obj initialized to its original value
memcpy(buf, &obj, N);

// between these two calls to memcpy,
// obj might be modified

memcpy(&obj, buf, N);
// at this point, each subobject of obj of scalar type
// holds its original value

—end example]

3 For any scalar typeT, if two pointers toT point to distinctT objectsobj1 andobj2 , if the value ofobj1
is copied intoobj2 , using thememcpy library function,obj2 shall subsequently hold the same value as
obj1 . [Example:

T* t1p;
T* t2p;

// provided that t2p points to an initialized object ...
memcpy(t1p, t2p, sizeof(T));

// at this point, every subobject of scalar type in *t1p
// contains the same value as the corresponding subobject in
// *t2p

—end example]

4 Theobject representationof an object of typeT is the sequence ofN unsigned char objects taken up by
the object of typeT, whereN equalssizeof(T) . Thevalue representationof an object is the sequence
of bits in the object representation that hold the value of typeT. The bits of the value representation deter-
mine avalue, which is one discrete element of an implementation-defined set of values.22)

5 Object types havealignment requirements(3.9.1, 3.9.2). The alignment of an object type is an
implementation-defined integer value representing a number of bytes; an object is allocated at an address
that is divisible by the alignment of its object type.

6 Arrays of unknown size and classes that have been declared but not defined are calledincompletetypes.23)

Also, thevoid type is an incomplete type; it represents an empty set of values. No objects shall be defined
to have incomplete type. The termincompletely-defined object typeis a synonym forincomplete type; the
termcompletely-defined object typeis a synonym forcomplete type;

7 A class type (such as“class X ”) might be incomplete at one point in a translation unit and complete later
on; the type“class X ” is the same type at both points. The declared type of an array might be incom-
plete at one point in a translation unit and complete later on; the array types at those two points (“array of
unknown bound ofT” and“array of NT”) are different types. However, the type of a pointer to array of
unknown size, or of a type defined by atypedef declaration to be an array of unknown size, cannot be
completed. [Example:

class X; // X is an incomplete type
extern X* xp; // xp is a pointer to an incomplete type
extern int arr[]; // the type of arr is incomplete
typedef int UNKA[]; // UNKA is an incomplete type
UNKA* arrp; // arrp is a pointer to an incomplete type
UNKA** arrpp;

22)The intent is that the memory model of C + + is compatible with that of ISO/IEC 9899 Programming Language C.
23)The size and layout of an instance of an incomplete type is unknown.

3.9 Types DRAFT: 28 April 1995 Basic concepts 3– 15

void foo()
{

xp++; // ill-formed: X is incomplete
arrp++; // ill-formed: incomplete type
arrpp++; // okay: sizeof UNKA* is known

}

struct X { int i; }; // now X is a complete type
int arr[10]; // now the type of arr is complete

X x;
void bar()
{

xp = &x; // okay; type is ‘‘pointer to X’’
arrp = &arr; // ill-formed: different types
xp++; // okay: X is complete
arrp++; // ill-formed: UNKA can’t be completed

}

—end example]

8 [Note:Clause 5, 6 and 7 describe in which contexts incomplete types are prohibited.]

9 Arithmetic and enumeration types (3.9.1) and pointer types (3.9.2) arescalar types. Scalar types, POD
class types, POD union types (9) and arrays of such types arePOD types.

10 If two typesT1 andT2 are the same type, thenT1 andT2 are layout-compatibletypes. [Note: Layout-
compatible enumerations are described in 7.2. Layout-compatible POD-structs and POD-unions are
described in 9.2.]

[basic.fundamental] 3.9.1 Fundamental types

1 There are several fundamental types. Specializations of the standard templatenumeric_limits (18.2)
shall specify the largest and smallest values of each for an implementation.

2 Objects declared as characters (char) shall be large enough to store any member of the implementation’s
basic character set. If a character from this set is stored in a character object, its value shall be equivalent to
the integer code of that character. It is implementation-defined whether achar object can take on negative
values. Characters can be explicitly declaredunsigned or signed . Plainchar , signed char , and
unsigned char are three distinct types. Achar , a signed char , and anunsigned char
occupy the same amount of storage and have the same alignment requirements (3.9); that is, they have the
same object representation. For character types, all bits of the object representation participate in the value
representation. For unsigned character types, all possible bit patterns of the value representation represent
numbers. These requirements do not hold for other types. In any particular implementation, a plainchar
object can take on either the same values as asigned char or anunsigned char ; which one is
implementation-defined.

3 An enumerationcomprises a set of named integer constant values, which form the basis for an integral sub-
range that includes those values. Each distinct enumeration constitutes a differentenumerated type. Each
constant has the type of its enumeration.

4 There are foursigned integer types: “signed char ”, “short int ”, “int ”, and“long int .” In this
list, each type provides at least as much storage as those preceding it in the list, but the implementation can
otherwise make any of them equal in storage size. Plainint s have the natural size suggested by the
machine architecture; the other signed integer types are provided to meet special needs.

5 For each of the signed integer types, there exists a corresponding (but different)unsigned integer type:
“unsigned char ”, “unsigned short int ”, “unsigned int ”, and “unsigned long
int, ” each of which occupies the same amount of storage and has the same alignment requirements (3.9)
as the corresponding signed integer type24) ; that is, each signed integer type has the same object

24)See 7.1.5.2 regarding the correspondence between types and the sequences oftype-specifiers that designate them.

3– 16 Basic concepts DRAFT: 28 April 1995 3.9.1 Fundamental types

representation as its corresponding unsigned integer type. The range of nonnegative values of asigned
integer type is a subrange of the correspondingunsigned integertype, and the value representation of the
same value in each type shall be the same.

6 Unsigned integers, declaredunsigned , shall obey the laws of arithmetic modulo 2n wheren is the num-
ber of bits in the representation of that particular size of integer.25)

7 Typewchar_t is a distinct type whose values can represent distinct codes for all members of the largest
extended character set specified among the supported locales (22.1.1). Typewchar_t shall have the same
size, signedness, and alignment requirements (1.5) as one of the other integral types, called itsunderlying
type.

8 Values of typebool are eithertrue or false .26) There are nosigned , unsigned , short , or
long bool types or values. As described below,bool values behave as integral types. Values of type
bool participate in integral promotions (4.5, 5.2.3). Although values of typebool generally behave as
signed integers, for example by promoting (4.5) toint instead ofunsigned int , a bool value can
successfully be stored in a bit-field of any (nonzero) size.

9 Typesbool , char , wchar_t , and the signed and unsigned integer types are collectively calledintegral
types.27) A synonym for integral type isinteger type. The representations of integral types shall define val-
ues by use of a pure binary numeration system.

10 There are threefloating pointtypes:float , double , andlong double . The typedouble provides
at least as much precision asfloat , and the typelong double provides at least as much precision as
double . The value representation of floating-point is implementation-defined.Integralandfloating types
are collectively calledarithmetictypes.

11 Thevoid type has an empty set of values. It is used as the return type for functions that do not return a
value. Objects of typevoid shall not be declared. Any expression can be explicitly converted to type
void (5.4); the resulting expression shall be used only as an expression statement (6.2), as the left operand
of a comma expression (5.18), or as a second or third operand of?: (5.16).

12 [Note: Even if the implementation defines two or more basic types to have the same value representation,
they are nevertheless different types.]

[basic.compound] 3.9.2 Compound types

1 There is a conceptually infinite number of compound types constructed from the fundamental types in the
following ways:

— arraysof objects of a given type, 8.3.4;

— functions, which have parameters of given types and returnvoid or references or objects of a given
type, 8.3.5;

— pointersto void or objects or functions (including static members of classes) of a given type, 8.3.1;

— referencesto objects or functions of a given type, 8.3.2;

— constants, which are values of a given type, 7.1.5;

— classescontaining a sequence of objects of various types (9), a set of functions for manipulating these
objects (9.4), and a set of restrictions on the access to these objects and functions, 11;

— unions, which are classes capable of containing objects of different types at different times, 9.6;

25)This implies that unsigned arithmetic does not overflow.
26) Using abool value in ways described by this International Standard as ‘‘undefined,’’ such as by examining the value of an unini-
tialized automatic variable, might cause it to behave as if is neithertrue nor false .
27) Therefore, enumerations (7.2) are not integral; however, enumerations can be promoted toint , unsigned int , long , or
unsigned long , as specified in 4.5.

3.9.2 Compound types DRAFT: 28 April 1995 Basic concepts 3– 17

— pointers to non-static28) class members, which identify members of a given type within objects of a
given class, 8.3.3.

2 These methods of constructing types can be applied recursively; restrictions are mentioned in 8.3.1, 8.3.4,
8.3.5, and 8.3.2.

3 A pointer to objects of typeT is referred to as a“pointer toT.” [Example:a pointer to an object of typeint
is referred to as“pointer toint ” and a pointer to an object of classX is called a“pointer toX.”] Except for
pointers to static members, text referring to“pointers” does not apply to pointers to members. Pointers to
incomplete types are allowed although there are restrictions on what can be done with them (3.9). The
value representation of pointer types is implementation-defined. Pointers to cv-qualified and cv-
unqualified versions (3.9.3) of layout-compatible types shall have the same value representation and align-
ment requirements (3.9).

4 Objects of cv-qualified (3.9.3) or cv-unqualified typevoid* (pointer to void), can be used to point to
objects of unknown type. Avoid* shall be able to hold any object pointer. A cv-qualified or cv-
unqualified (3.9.3)void* shall have the same representation and alignment requirements as a cv-qualified
or cv-unqualifiedchar* .

5 Except for pointers to static members, text referring to“pointers” does not apply to pointers to members.

[basic.type.qualifier] 3.9.3 CV-qualifiers

1 A type mentioned in 3.9.1 and 3.9.2 is acv-unqualified type. Each cv-unqualified fundamental type (3.9.1)
has three corresponding cv-qualified versions of its type: aconst-qualifiedversion, avolatile-qualifiedver-
sion, and aconst-volatile-qualifiedversion. The termobject type(1.6) includes the cv-qualifiers specified
when the object is created. The presence of aconst specifier in adecl-specifier-seqdeclares an object of
const-qualified object type; such object is called aconst object. The presence of avolatile specifier in a
decl-specifier-seqdeclares an object ofvolatile-qualified object type; such object is called avolatile object.
The presence of bothcv-qualifiers in a decl-specifier-seqdeclares an object ofconst-volatile-qualified
object type; such object is called aconst volatile object. The cv-qualified or cv-unqualified versions of a
type are distinct types; however, they shall have the same representation and alignment requirements
(3.9).29)

2 A compound type (3.9.2) is not cv-qualified by the cv-qualifiers (if any) of the type from which it is com-
pounded. However, any cv-qualifiers that appears in an array declaration apply to the array element type,
not the array type (8.3.4).

3 Each non-function, non-static, non-mutable member of a const-qualified class object is const-qualified,
each non-function, non-static member of a volatile-qualified class object is volatile-qualified and similarly
for members of a const-volatile class. See 8.3.5 and 9.4.2 regarding cv-qualified function types.

4 There is a (partial) ordering on cv-qualifiers, so that a type can be said to bemore cv-qualifiedthan another.
Table 6 shows the relations that constitute this ordering.

Table 6—relations onconst and volatile
_ ___

no cv-qualifier < const
no cv-qualifier < volatile

no cv-qualifier < const volatile
const < const volatile

volatile < const volatile_ ___

28)Static class members are objects or functions, and pointers to them are ordinary pointers to objects or functions.
29) The same representation and alignment requirements are meant to imply interchangeability as arguments to functions, return values
from functions, and members of unions.

3– 18 Basic concepts DRAFT: 28 April 1995 3.9.3 CV-qualifiers

5 In this document, the notationcv (or cv1, cv2, etc.), used in the description of types, represents an arbitrary
set of cv-qualifiers, i.e., one of {const }, { volatile }, { const, volatile }, or the empty set. Cv-
qualifiers applied to an array type attach to the underlying element type, so the notation“cvT,” whereT is
an array type, refers to an array whose elements are so-qualified. Such array types can be said to be more
(or less) cv-qualified than other types based on the cv-qualification of the underlying element types.

[basic.type.name] 3.9.4 Type names

1 [Note: Fundamental and compound types can be given names by thetypedef mechanism (7.1.3), and
families of types and functions can be specified and named by thetemplate mechanism (14).]

[basic.lval] 3.10 Lvalues and rvalues

1 Every expression is either anlvalueor anrvalue.

2 An lvalue refers to an object or function. Some rvalue expressions—those of class or cv-qualified class
type—also refer to objects.30)

3 [Note: some builtin operators and function calls yield lvalues. [Example:if E is an expression of pointer
type, then*E is an lvalue expression referring to the object or function to whichE points. As another
example, the function

int& f();

yields an lvalue, so the callf() is an lvalue expression.]]

4 [Note: some builtin operators expect lvalue operands. [Example:builtin assignment operators all expect
their left hand operands to be lvalues.] Other builtin operators yield rvalues, and some expect them.
[Example:the unary and binary+ operators expect rvalue arguments and yield rvalue results.] The discus-
sion of each builtin operator in clause 5 indicates whether it expects lvalue operands and whether it yields
an lvalue.]

5 Constructor invocations and calls to functions that do not return references are always rvalues. User
defined operators are functions, and whether such operators expect or yield lvalues is determined by their
type.

6 Whenever an lvalue appears in a context where an lvalue is not expected, the lvalue is converted to an
rvalue; see 4.1, 4.2, and 4.3.

7 The discussion of reference initialization in 8.5.3 and of temporaries in 12.2 indicates the behavior of lval-
ues and rvalues in other significant contexts.

8 Class rvalues can have cv-qualified types; non-class rvalues always have cv-unqualified types. Rvalues
always have complete types or thevoid type; lvalues may have incomplete types.

9 An lvalue for an object is necessary in order to modify the object except that an rvalue of class type can
also be used to modify its referent under certain circumstances. [Example:a member function called for an
object (9.4) can modify the object.]

10 Functions cannot be modified, but pointers to functions can be modifiable.

11 A pointer to an incomplete type can be modifiable. At some point in the program when this pointer type is
complete, the object at which the pointer points can also be modified.

12 Array objects cannot be modified, but their elements can be modifiable.

13 The referent of aconst -qualified expression shall not be modified (through that expression), except that if
it is of class type and has amutable component, that component can be modified (7.1.5.1).

30)Expressions such as invocations of constructors and of functions that return a class type do in some sense refer to an object, and the
implementation can invoke a member function upon such objects, but the expressions are not lvalues.

3.10 Lvalues and rvalues DRAFT: 28 April 1995 Basic concepts 3– 19

14 If an expression can be used to modify its object, it is calledmodifiable. A program that attempts to modify
an object through a nonmodifiable lvalue or rvalue expression is ill-formed.

_ ___ ___

4 Standard conversions [conv]
_ ___ ___

1 [Note:Expressions with a given type will be implicitly converted to other types in several contexts:

— When used as operands of operators. The operator’s requirements for its operands dictate the destina-
tion type. See 5.

— When used in the condition of anif statement or iteration statement (6.4, 6.5). The destination type is
bool .

— When used in the expression of aswitch statement. The destination type is integral (6.4).

— When used as the source expression for an initialization (which includes use as an argument in a func-
tion call and use as the expression in areturn statement). The type of the entity being initialized is
(generally) the destination type. See 8.5, 8.5.3.

2 Standard conversions are implicit conversions defined for built-in types. For user-defined types, user-
defined conversions are considered as well; see 12.3. In general, an implicit conversion sequence (13.3.3.1)
consists of zero or more standard conversions and zero or one user-defined conversion.

3 There are some contexts where certain conversions are suppressed. For example, the lvalue-to-rvalue con-
version is not done on the operand of the unary& operator. Specific exceptions are given in the descrip-
tions of those operators and contexts.

—end note]

4 One or more of the following standard conversions will be applied to an expression if necessary to convert
it to a required destination type.

[conv.lval] 4.1 Lvalue-to-rvalue conversion

1 An lvalue (3.10) of a non-function, non-array typeT can be converted to an rvalue. IfT is an incomplete
type, a program that necessitates this conversion is ill-formed. IfT is a non-class type, the type of the
rvalue is the cv-unqualified version ofT. Otherwise (i.e.,T is a class type), the type of the rvalue isT. 31)

2 The value contained in the object indicated by the lvalue is the rvalue result. When an lvalue-to-rvalue con-
version is done within the operand ofsizeof (5.3.3) the value contained in the referenced object is not
accessed, since that operator does not evaluate its operand.

3 [Note:See also 3.10.]

[conv.array] 4.2 Array-to-pointer conversion

1 An lvalue or rvalue of type“array ofN T” or “array of unknown bound ofT” can be converted to an rvalue
of type“pointer toT.” The result is a pointer to the first element of the array.

31) In C + + class rvalues can have cv-qualified types (because they are objects). This differs from ISO C, in which non-lvalues never
have cv-qualified types.

4– 2 Standard conversions DRAFT: 28 April 1995 4.3 Function-to-pointer conversion

[conv.func] 4.3 Function-to-pointer conversion

1 An lvalue of function typeT can be converted to an rvalue of type“pointer toT.” The result is a pointer to
the function.32)

2 [Note:See 13.4 for additional rules for the case where the function is overloaded.]

[conv.qual] 4.4 Qualification conversions

1 An rvalue of type“pointer tocv1T” can be converted to an rvalue of type“pointer tocv2T” if “cv2T” is
more cv-qualified than“cv1T.”

2 An rvalue of type“pointer to member ofX of typecv1T” can be converted to an rvalue of type“pointer to
member ofX of typecv2T” if “cv2T” is more cv-qualified than“cv1T.”

3 A conversion can add type qualifiers at levels other than the first in multi-level pointers, subject to the fol-
lowing rules:33)

Two pointer types T1 and T2 aresimilar if there exists a typeT and integerN > 0 such that:

T1 is Tcv1 ,n * . . . cv1 , 1 * cv1 , 0

and

T2 is Tcv2 ,n * . . . cv2 , 1 * cv2 , 0

where eachcvi , j is const , volatile , const volatile , or nothing. An expression of typeT1
can be converted to typeT2 if and only if the following conditions are satisfied:

— the pointer types are similar.

— for everyj > 0, if const is in cv1 ,j thenconst is in cv2 ,j , and similarly forvolatile .

— thecv1 ,j andcv2 ,j are different, thenconst is in everycv2 ,k for 0< k < j.

4 When a multi-level pointer is composed of data member pointers, or a mix of object and data member
pointers, the rules for adding type qualifiers are the same as those for object pointers. That is, the“mem-
ber” aspect of the pointers is irrelevant in determining where type qualifiers can be added.

[conv.prom] 4.5 Integral promotions

1 An rvalue of typechar , signed char , unsigned char , short int , or unsigned short
int can be converted to an rvalue of typeint if int can represent all the values of the source type; other-
wise, the source rvalue can be converted to an rvalue of typeunsigned int .

2 An rvalue of typewchar_t (3.9.1) or an enumeration type (7.2) can be converted to an rvalue of the first
of the following types that can represent all the values of the source type:int , unsigned int , long ,
or unsigned long .

3 An rvalue for an integral bit-field (9.7) can be converted to an rvalue of typeint if int can represent all
the values of the bit-field; otherwise, it can be converted tounsigned int if unsigned int can rep-
resent all the values of the bit-field34).

4 An rvalue of typebool can be converted to an rvalue of typeint , with false becoming zero andtrue
becoming one.

5 These conversions are called integral promotions.

32) This conversion never applies to nonstatic member functions because there is no way to obtain an lvalue for a nonstatic member
function.
33)These rules ensure that const-safety is preserved by the conversion.
34) If the bit-field is larger yet, it is not eligible for integral promotion. If the bit-field has an enumerated type, it is treated as any other
value of that type for promotion purposes.

4.6 Floating point promotion DRAFT: 28 April 1995 Standard conversions 4– 3

[conv.fpprom] 4.6 Floating point promotion

1 An rvalue of typefloat can be converted to an rvalue of typedouble . The value is unchanged.

2 This conversion is called floating point promotion.

[conv.integral] 4.7 Integral conversions

1 An rvalue of an integer type can be converted to an rvalue of another integer type.

2 If the destination type is unsigned, the resulting value is the least unsigned integer congruent to the source
integer (modulo 2n wheren is the number of bits used to represent the unsigned type). [Note: In a two’s
complement representation, this conversion is conceptual and there is no change in the bit pattern (if there
is no truncation).]

3 If the destination type is signed, the value is unchanged if it can be represented in the destination type (and
bitfield width); otherwise, the value is implementation-defined.

4 If the destination type isbool , see 4.13. If the source type isbool , the valuefalse is converted to zero
and the valuetrue is converted to one.

5 The conversions allowed as integral promotions are excluded from the set of integral conversions.

[conv.double] 4.8 Floating point conversions

1 An rvalue of floating point type can be converted to an rvalue of another floating point type. If the source
value can be exactly represented in the destination type, the result of the conversion is that exact representa-
tion. If the source value is between two adjacent destination values, the result of the conversion is an
unspecified choice of either of those values. Otherwise, the behavior is undefined.

2 The conversions allowed as floating point promotions are excluded from the set of floating point conver-
sions.

[conv.fpint] 4.9 Floating-integral conversions

1 An rvalue of a floating point type can be converted to an rvalue of an integer type. The conversion trun-
cates; that is, the fractional part is discarded. The behavior is undefined if the truncated value cannot be
represented in the destination type. [Note:If the destination type isbool , see 4.13.]

2 An rvalue of an integer type can be converted to an rvalue of a floating point type. The result is exact if
possible. Otherwise, it is an unspecified choice of either the next lower or higher representable value. Loss
of precision occurs if the integral value cannot be represented exactly as a value of the floating type. If the
source type isbool , the valuefalse is converted to zero and the valuetrue is converted to one.

[conv.ptr] 4.10 Pointer conversions

1 An integral constant expression (5.19) rvalue that evaluates to zero (called anull pointer constant) can be
converted to a pointer type. The result is a value (called thenull pointer valueof that type) distinguishable
from every pointer to an object or function. Two null pointer values of a given type compare equal.

2 An rvalue of type“pointer tocvT,” whereT is an object type, can be converted to an rvalue of type
“pointer tocvvoid .” The result of converting a“pointer tocvT” to a“pointer tocvvoid ” points to the
start of the storage location where the object of typeT resides, as if the object is a complete object of typeT
(that is, not a base class subobject).

3 An rvalue of type“pointer tocvD,” whereD is a class type, can be converted to an rvalue of type“pointer
to cvB,” whereB is a base class (10) ofD. If B is an inaccessible (11) or ambiguous (10.2) base class ofD,
a program that necessitates this conversion is ill-formed. The result of the conversion is a pointer to the
base class sub-object of the derived class object. The null pointer value is converted to the null pointer
value of the destination type.

4– 4 Standard conversions DRAFT: 28 April 1995 4.11 Pointer to member conversions

[conv.mem] 4.11 Pointer to member conversions

1 A null pointer constant (4.10) can be converted to a pointer to member type. The result is a value (called
thenull member pointer valueof that type) distinguishable from a pointer to any member. Two null mem-
ber pointer values of a given type compare equal.

2 An rvalue of type“pointer to member ofB of typecvT,” whereB is a class type, can be converted to an
rvalue of type“pointer to member ofD of typecvT,” whereD is a derived class (10) ofB. If B is an inac-
cessible (11) or ambiguous (10.2) base class ofD, a program that necessitates this conversion is ill-formed.
The result of the conversion refers to the same member as the pointer to member before the conversion took
place, but it refers to the base class member as if it were a member of the derived class. The result refers to
the member inD’s instance ofB. Since the result has type“pointer to member ofD of typecvT,” it can be
dereferenced with aD object. The result is the same as if the pointer to member ofB were dereferenced
with theB sub-object ofD. The null member pointer value is converted to the null member pointer value of
the destination type.35)

[conv.class] 4.12 Base class conversion

1 An rvalue of type“cvD,” whereD is a class type, can be converted to an rvalue of type“cvB,” whereB is a
base class (10) ofD. If B is an inaccessible (11) or ambiguous (10.2) base class ofD, or if the conversion is
implemented by calling a constructor (12.3.1) and the constructor is not callable, a program that necessi-
tates this conversion is ill-formed. The result of the conversion is the value of the base class sub-object of
the derived class object.

[conv.bool] 4.13 Boolean conversions

1 An rvalue of arithmetic, enumeration, pointer, or pointer to member type can be converted to an rvalue of
type bool . A zero value, null pointer value, or null member pointer value is converted tofalse ; any
other value is converted totrue .

35) The rule for conversion of pointers to members (from pointer to member of base to pointer to member of derived) appears inverted
compared to the rule for pointers to objects (from pointer to derived to pointer to base) (4.10, 10). This inversion is necessary to ensure
type safety. Note that a pointer to member is not a pointer to object or a pointer to function and the rules for conversions of such point-
ers do not apply to pointers to members. In particular, a pointer to member cannot be converted to avoid* .

_ ___ ___

5 Expressions [expr]
_ ___ ___

1 [Note: this clause defines the syntax, order of evaluation, and meaning of expressions. An expression is a
sequence of operators and operands that specifies a computation. An expression can result in a value and
can cause side effects.

2 Operators can be overloaded, that is, given meaning when applied to expressions of class type (9). Uses of
overloaded operators are transformed into function calls as described in 13.5. Overloaded operators obey
the rules for syntax specified in this clause, but the requirements of operand type, lvalue, and evaluation
order are replaced by the rules for function call. Relations between operators, such as++a meaninga+=1 ,
are not guaranteed for overloaded operators (13.5).36)]

3 This clause defines the operators when applied to types for which they have not been overloaded. Operator
overloading shall not modify the rules for thebuilt-in operators, that is, for operators applied to types for
which they are defined by the language itself. However, these built-in operators participate in overload res-
olution; see 13.3.1.2.

4 Operators can be regrouped according to the usual mathematical rules only where the operators really are
associative or commutative. Overloaded operators are never assumed to be associative or commutative.
Except where noted, the order of evaluation of operands of individual operators and subexpressions of indi-
vidual expressions, and the order in which side effects take place, is unspecified. Between the previous and
next sequence point a scalar object shall have its stored value modified at most once by the evaluation of an
expression. Furthermore, the prior value shall be accessed only to determine the value to be stored. The
requirements of this paragraph shall be met for each allowable ordering of the subexpressions of a full
expression; otherwise the behavior is undefined. [Example:

i = v[i++]; // the behavior is undefined
i = 7,i++,i++; // ‘i’ becomes 9

i = ++i + 1; // the behavior is undefined
i = i + 1; // the value of ’i’ is incremented

—end example]

5 If during the evaluation of an expression, the result is not mathematically defined or not in the range of rep-
resentable values for its type, the behavior is undefined. [Note: most existing implementations of C + +
ignore integer overflows. Treatment of division by zero and all floating point exceptions vary among
machines, and is usually adjustable by a library function.]

6 Except where noted, operands of typesconst T , volatile T , T&, const T& , andvolatile T&
can be used as if they were of the plain typeT. Similarly, except where noted, operands of type
T* const andT* volatile can be used as if they were of the plain typeT* . Similarly, a plainT can
be used where avolatile T or a const T is required. These rules apply in combination so that,
except where noted, aT* const volatile can be used where aT* is required. Such uses do not
count as standard conversions when considering overloading resolution (13.3).

36)Nor is it guaranteed for typebool ; the left operand of+= shall not have typebool .

5– 2 Expressions DRAFT: 28 April 1995 5 Expressions

7 If an expression initially has the type“reference toT” (8.3.2, 8.5.3), the type is adjusted to“T” prior to any
further analysis, the expression designates the object or function denoted by the reference, and the expres-
sion is an lvalue. A reference can be thought of as a name of an object.

8 An expression designating an object is called anobject-expression.

9 User-defined conversions of class types to and from fundamental types, pointers, and so on, can be defined
(12.3). If unambiguous (13.3), such conversions are applied wherever a class object appears as an operand
of an operator or as a function argument (5.2.2).

10 Whenever an lvalue expression appears as an operand of an operator that expects an rvalue for that operand,
the lvalue-to-rvalue (4.1), array-to-pointer (4.2), or function-to-pointer (4.3) standard conversion are
applied to convert the expression to an rvalue.

11 Many binary operators that expect operands of arithmetic type cause conversions and yield result types in a
similar way. The purpose is to yield a common type, which is also the type of the result. This pattern is
called the“usual arithmetic conversions.”

12 The processor shall perform the following conversions on operands of arithmetic type:

— If either operand is of typelong double , the other shall be converted tolong double .

— Otherwise, if either operand isdouble , the other shall be converted todouble .

— Otherwise, if either operand isfloat , the other shall be converted tofloat .

— Otherwise, the integral promotions (4.5) shall be performed on both operands.37)

— Then, if either operand isunsigned long the other shall be converted tounsigned long .

— Otherwise, if one operand is along int and the otherunsigned int , then if along int can rep-
resent all the values of anunsigned int , theunsigned int shall be converted to along int ;
otherwise both operands shall be converted tounsigned long int .

— Otherwise, if either operand islong , the other shall be converted tolong .

— Otherwise, if either operand isunsigned , the other shall be converted tounsigned .

[Note:otherwise, the only remaining case is that both operands areint]

13 If the program attempts to access the stored value of an object through an lvalue of other than one of the
following types the behavior is undefined:

— the dynamic type of the object,

— a cv-qualified version of the declared type of the object,

— a type that is the signed or unsigned type corresponding to the declared type of the object,

— a type that is the signed or unsigned type corresponding to a cv-qualified version of the declared type of
the object,

— an aggregate or union type that includes one of the aforementioned types among its members (includ-
ing, recursively, a member of a subaggregate or contained union),

— a type that is a (possibly cv-qualified) base class type of the declared type of the object,

— achar or unsigned char type.38)

37)As a consequence, operands of typebool , wchar_t , or an enumerated type are converted to some integral type.
38)The intent of this list is to specify those circumstances in which an object may or may not be aliased.

5.1 Primary expressions DRAFT: 28 April 1995 Expressions 5– 3

[expr.prim] 5.1 Primary expressions

1 Primary expressions are literals, names, and names qualified by the scope resolution operator:: .

primary-expression:
literal
this
:: identifier
:: operator-function-id
:: qualified-id
(expression)
id-expression

2 A literal is a primary expression. Its type depends on its form (2.9).

3 The keywordthis names a pointer to the object for which a nonstatic member function (9.4.2) is invoked.
The keywordthis shall be used only inside a nonstatic class member function body (9.4) or in a construc-
tor mem-initializer(12.6.2).

4 The operator:: followed by an identifier, a qualified-id, or an operator-function-id is a primary-
expression. Its type is specified by the declaration of the identifier, name, oroperator-function-id. The
result is the identifier, name, oroperator-function-id. The result is an lvalue if the identifier, name, or
operator-function-idis. The identifier, name, oroperator-function-idshall be of global namespace scope.
[Note:the use of:: allows a type, an object, a function, or an enumerator declared in the global namespace
to be referred to even if its identifier has been hidden (3.3).]

5 A parenthesized expression is a primary expression whose type and value are identical to those of the
enclosed expression. The presence of parentheses does not affect whether the expression is an lvalue.

6 A id-expressionis a restricted form of aprimary-expressionthat can appear after. and-> (5.2.4):

id-expression:
unqualified-id
qualified-id

unqualified-id:
identifier
operator-function-id
conversion-function-id
˜ class-name
template-id

7 An identifier is an id-expressionprovided it has been suitably declared (7). [Note: for operator-function-
ids, see 13.5; forconversion-function-ids, see 12.3.2. Aclass-nameprefixed by~ denotes a destructor; see
12.4.]

8 qualified-id:
nested-name-specifiertemplate opt unqualified-id

A nested-name-specifierthat names a class (7.1.5) followed by:: , optionally followed by the keyword
template (14.10.1), and then followed by the name of a member of either that class (9.2) or one of its
base classes (10), is aqualified-id. If the qualified-id refers to a non-static member, its type is the data
member type or function member type (9.2); if it refers to a static member, its type is an object or function
type (9.5). The result is the member. The result is an lvalue if the member is. If theclass-nameis hidden
by a name that is not a type name ornamespace-name, the class-nameis still found and used. Where
class-name:: class-nameis used, and the twoclass-names refer to the same class, this notation names the
constructor (12.1). Whereclass-name:: ~ class-nameis used, the twoclass-names shall refer to the
same class; this notation names the destructor (12.4).

9 A nested-name-specifierthat names a namespace (7.3) followed by:: , followed by the name of a member
of that namespace is aqualified-id; names introduced byusing-directives(7.3.4) in the namespace denoted

5– 4 Expressions DRAFT: 28 April 1995 5.1 Primary expressions

by thenested-name-specifierare ignored for the purpose of this member lookup. The type of thequalified-
id is the type of the member. The result is the member. The result is an lvalue if the member is. If the
namespace-nameis hidden by a name that is not a type name, thenamespace-nameis still found and used.

10 Multiply qualified names, such asN1::N2::N3::n , can be used to refer to nested types (9.8).

11 In a qualified-id, if the id-expressionis a conversion-function-id, its conversion-type-idshall denote the
same type in both the context in which the entirequalified-idoccurs and in the context of the class denoted
by thenested-name-specifier.

12 An id-expressionthat denotes a nonstatic member of a class can only be used:

— as part of a class member access (5.2.4) in which the object-expression refers to the member’s class or a
class derived from that class, or

— to form a pointer to member (5.3.1), or

— in the body of a nonstatic member function of that class or of a class derived from that class (9.4.1), or

— in amem-initializerfor a constructor for that class or for a class derived from that class (12.6.2).

13 A template-idshall be used as anunqualified-idonly as specified in clauses 14.4, 14.5, and 14.6.

[expr.post] 5.2 Postfix expressions

1 Postfix expressions group left-to-right.

postfix-expression:
primary-expression
postfix-expression[expression]
postfix-expression(expression-listopt)
simple-type-specifier(expression-listopt)
postfix-expression. template opt id-expression
postfix-expression-> template opt id-expression
postfix-expression++
postfix-expression--
dynamic_cast < type-id > (expression)
static_cast < type-id > (expression)
reinterpret_cast < type-id > (expression)
const_cast < type-id > (expression)
typeid (expression)
typeid (type-id)

expression-list:
assignment-expression
expression-list, assignment-expression

[expr.sub] 5.2.1 Subscripting

1 A postfix expression followed by an expression in square brackets is a postfix expression. [Note: the intu-
itive meaning is that of a subscript.] One of the expressions shall have the type“pointer toT” and the
other shall be of enumeration or integral type. The result is an lvalue of type“T.” The type“T” shall be
complete. The expressionE1[E2] is identical (by definition) to*((E1)+(E2)) . [Note:see 5.3 and 5.7
for details of* and+ and 8.3.4 for details of arrays.]

[expr.call] 5.2.2 Function call

1 There are two kinds of function call: ordinary function call and member function39) (9.4) call. A function
call is a postfix expression followed by parentheses containing a possibly empty, comma-separated list of

39)A static member function (9.5) is an ordinary function.

5.2.2 Function call DRAFT: 28 April 1995 Expressions 5– 5

expressions which constitute the arguments to the function. For ordinary function call, the postfix expres-
sion shall be a function name, or a pointer or reference to a function. For member function call, the postfix
expression shall be an implicit (9.4.1, 9.5) or explicit class member access (5.2.4) whoseid-expressionis a
function member name, or a pointer-to-member expression (5.5) selecting a function member. The first
expression in the postfix expression is then called theobject expression, and the call is as a member of the
object pointed to or referred to. In the case of an implicit class member access, the implied object is the one
pointed to bythis . [Note:a member function call of the formf() is interpreted as(*this).f() (see
9.4.1).] If a function or member function name is used, the name can be overloaded (13), in which case the
appropriate function shall be selected according to the rules in 13.3. The function called in a member func-
tion call is normally selected according to the static type of the object expression (see 10), but if that func-
tion is virtual the function actually called will be the final overrider (10.3) of the selected function in
the dynamic type of the object expression [Note: the type of the object pointed or referred to by the current
value of the object expression. Clause 12.7 describes the behavior of virtual function calls when the
object-expression refers to an object under construction or destruction.]

2 The type of the function call expression is the return type of the statically chosen function (i.e., ignoring the
virtual keyword), even if the type of the function actually called is different. This type shall be com-
plete or the typevoid .

3 When a function is called, each parameter (8.3.5) shall be initialized (8.5.3, 12.8, 12.1) with its correspond-
ing argument. Standard (4) and user-defined (12.3) conversions shall be performed. The value of a func-
tion call is the value returned by the called function except in a virtual function call if the return type of the
final overrider is different from the return type of the statically chosen function, the value returned from the
final overrider is converted to the return type of the statically chosen function.

4 [Note: a function can change the values of its nonconstant parameters, but these changes cannot affect the
values of the arguments except where a parameter is of a non-const reference type (8.3.2). Where a
parameter is of reference type a temporary object is introduced if needed (7.1.5, 2.9, 2.9.4, 8.3.4, 12.2). In
addition, it is possible to modify the values of nonconstant objects through pointer parameters.

5 A function can be declared to accept fewer arguments (by declaring default arguments (8.3.6)) or more
arguments (by using the ellipsis,... 8.3.5) than the number of parameters in the function definition (8.4).
]

6 If no declaration of the called function is accessible from the scope of the call the program is ill-formed.
[Note: this implies that, except where the ellipsis (...) is used, a parameter is available for each argument.
]

7 Any argument of typefloat for which there is no parameter is converted todouble before the call; any
of char , short , or a bit-field type for which there is no parameter are converted toint or unsigned
by integral promotion (4.5). Any argument of enumeration type is converted toint , unsigned , long ,
or unsigned long by integral promotion. An argument of a POD class typeT, for which no corre-
sponding parameter is declared, is passed in a manner such that the receiving function can obtain its value
by an invocation ofva_arg(T) . If an argument of a non-POD class type is passed, and there is no corre-
sponding parameter, the behavior is undefined.

8 [Note:an argument of class type for which a corresponding parameter is declared is passed according to the
rules above.]

9 The order of evaluation of arguments is unspecified. All side effects of argument expressions take effect
before the function is entered. The order of evaluation of the postfix expression and the argument expres-
sion list is unspecified.

10 The function-to-pointer standard conversion (4.3) is suppressed on the postfix expression of a function call.

11 Recursive calls are permitted.

12 A function call is an lvalue if and only if the result type is a reference.

5– 6 Expressions DRAFT: 28 April 1995 5.2.3
Explicit type conversion (functional notation)

[expr.type.conv] 5.2.3 Explicit type conversion (functional notation)

1 A simple-type-specifier(7.1.5) followed by a parenthesizedexpression-listconstructs a value of the speci-
fied type given the expression list. If the expression list specifies a single value, the expression is equiva-
lent (in definedness, and if defined in meaning) to the corresponding cast expression (5.4). If the expres-
sion list specifies more than a single value, the type shall be a class with a suitably declared constructor
(8.5, 12.1), and the expressionT(x1, x2, ...) is equivalent in effect to the declarationT t(x1,
x2, ...); for some invented temporary variablet , with the result being the value oft as an rvalue.

2 The expressionT() , whereT is a simple-type-specifier (7.1.5.2), creates an rvalue of the specified type,
whose value is determined by default-initialization (8.5).

[expr.ref] 5.2.4 Class member access

1 A postfix expression followed by a dot. or an arrow-> , optionally followed by the keywordtemplate
(14.10.1), and then followed by anid-expression, is a postfix expression. The postfix expression before the
dot or arrow is evaluated;40) the result of that evaluation, together with theid-expression, determine the
result of the entire postfix expression.

2 For the first option (dot) the type of the first expression (theobject expression) shall be“class object” (of a
complete type). For the second option (arrow) the type of the first expression (thepointer expression) shall
be “pointer to class object” (of a complete type). Theid-expressionshall name a member of that class,
except that an imputed destructor can be explicitly invoked for a scalar type (12.4). IfE1 has the type
“pointer to classX,” then the expressionE1->E2 is converted to the equivalent form(*(E1)).E2 ; the
remainder of this subclause will address only the first option (dot)41).

3 If the id-expressionis aqualified-id, thenested-name-specifierof thequalified-idcan specify a namespace
name or a class name. If thenested-name-specifierof the qualified-id specifies a namespace name, the
name is looked up in the context in which the entirepostfix-expressionoccurs. If thenested-name-specifier
of the qualified-id specifies a class name, the class name is looked up as a type both in the class of the
object expression (or the class pointed to by the pointer expression) and the context in which the entire
postfix-expressionoccurs. [Note:by the“injection” rules, the name, if any, of each class is also considered
a nested class member of that class.] These searches shall yield a single type. [Note: the type might be
found in either or both contexts.] If thenested-name-specifiercontains a classtemplate-id(14.1), its
template-arguments are evaluated in the context in which the entirepostfix-expressionoccurs.

4 Similarly, if the id-expressionis aconversion-function-id, its conversion-type-idshall denote the same type
in both the context in which the entirepostfix-expressionoccurs and in the context of the class of the object
expression (or the class pointed to by the pointer expression).

5 Abbreviatingobject-expression.id-expressionasE1.E2 , then the type and lvalue properties of this expres-
sion are determined as follows. In the remainder of this subclause,cq represents eitherconst or the
absence ofconst ; vq represents eithervolatile or the absence ofvolatile . cv represents an arbi-
trary set of cv-qualifiers, as defined in 3.9.3.

6 If E2 is declared to have type“reference toT”, thenE1.E2 is an lvalue; the type ofE1.E2 is T. Other-
wise, one of the following rules applies.

— If E2 is a static data member, and the type ofE2 is T, thenE1.E2 is an lvalue; the expression desig-
nates the named member of the class. The type ofE1.E2 is T.

— If E2 is a (possibly overloaded) static member function, and the type ofE2 is “function of (parameter
type list) returningT”, thenE1.E2 is an lvalue; the expression designates the static member function.
The type ofE1.E2 is the same type as that ofE2, namely“function of (parameter type list) returning
T”.

40) This evaluation happens even if the result is unnecessary to determine the value of the entire postfix expression, for example if the
id-expressiondenotes a static member.
41)Note that ifE1 has the type“pointer to classX”, then(*(E1)) is an lvalue.

5.2.4 Class member access DRAFT: 28 April 1995 Expressions 5– 7

— If E2 is a non-static data member, and the type ofE1 is “cq1 vq1X”, and the type ofE2 is “cq2 vq2T”,
the expression designates the named member of the object designated by the first expression. IfE1 is
an lvalue, thenE1.E2 is an lvalue. Let the notationvq12stand for the“union” of vq1andvq2 ; that is,
if vq1 or vq2 is volatile , thenvq12 is volatile . Similarly, let the notationcq12stand for the
“union” of cq1andcq2; that is, ifcq1or cq2 is const , thencq12is const . If E2 is declared to be a
mutable member, then the type ofE1.E2 is “vq12T”. If E2 is not declared to be amutable mem-
ber, then the type ofE1.E2 is “cq12 vq12T”.

— If E2 is a (possibly overloaded) non-static member function, and the type ofE2 is “cv function of
(parameter type list) returningT”, thenE1.E2 is not an lvalue. The expression designates a member
function (of some classX). The expression can be used only as the left-hand operand of a member func-
tion call (9.4). The member function shall be at least as cv-qualified asE1. The type ofE1.E2 is
“classX’s cvmember function of (parameter type list) returningT”.

— If E2 is a nested type, the expressionE1.E2 is ill-formed.

— If E2 is a member enumerator, and the type ofE2 is T, the expressionE1.E2 is not an lvalue. The
type ofE1.E2 is T.

7 [Note:“class objects” can be structures (9.2) and unions (9.6). Classes are discussed in clause 9.]

[expr.post.incr] 5.2.5 Increment and decrement

1 The value obtained by applying a postfix++ is the value that the operand had before applying the operator.
[Note: the value obtained is a copy of the original value] The operand shall be a modifiable lvalue. The
type of the operand shall be an arithmetic type or a pointer to object type. After the result is noted, the
value of the object is modified by adding1 to it, unless the object is of typebool , in which case it is set to
true . [Note:this use is deprecated.] The type of the result is the same as the type of the operand, but it is
not an lvalue. See also 5.7 and 5.17.

2 The operand of postfix-- is decremented analogously to the postfix++ operator, except that the operand
shall not be of typebool .

[expr.dynamic.cast] 5.2.6 Dynamic cast

1 The result of the expressiondynamic_cast<T>(v) is the result of converting the expressionv to type
T. T shall be a pointer or reference to a complete class type, or“pointer tocv void ”. Types shall not be
defined in adynamic_cast . Thedynamic_cast operator shall not cast away constness (5.2.10).

2 If T is a pointer type,v shall be an rvalue of a pointer to complete class type, and the result is an rvalue of
typeT. If T is a reference type,v shall be an lvalue of a complete class type, and the result is an lvalue of
the type referred to byT.

3 If the type ofv is the same as the required result type (which, for convenience, will be calledR in this
description), or it can be converted toR via a qualification conversion (4.4) in the pointer case, the result is
v (converted if necessary).

4 If the value ofv is a null pointer value in the pointer case, the result is the null pointer value of typeR.

5 If T is “pointer tocv1B” andv has type“pointer tocv2D” such thatB is a base class ofD, the result is a
pointer to the uniqueB sub-object of theD object pointed to byv . Similarly, if T is “reference tocv1 B”
andv has type“cv2D” such thatB is a base class ofD, the result is an lvalue for the unique42) B sub-object
of the D object referred to byv . In both the pointer and reference cases,cv1 shall be the same cv-
qualification as, or greater cv-qualification than,cv2, andB shall be an accessible nonambiguous base class
of D. [Example:

42)The complete object pointed or referred to byv can contain otherB objects as base classes, but these are ignored.

5– 8 Expressions DRAFT: 28 April 1995 5.2.6 Dynamic cast

struct B {};
struct D : B {};
void foo(D* dp)
{

B* bp = dynamic_cast<B*>(dp); // equivalent to B* bp = dp;
}

—end example]

6 Otherwise,v shall be a pointer to or an lvalue of a polymorphic type (10.3).

7 If T is “pointer tocv void ,” then the result is a pointer to the complete object (12.6.2) pointed to byv .
Otherwise, a run-time check is applied to see if the object pointed or referred to byv can be converted to
the type pointed or referred to byT.

8 The run-time check logically executes like this: If, in the complete object pointed (referred) to byv , v
points (refers) to apublic base class sub-object of aT object, and if only one object of typeT is derived
from the sub-object referred to byv , the result is a pointer (an lvalue referring) to thatT object. Otherwise,
if the type of the complete object has an unambiguous public base class of typeT, the result is a pointer
(reference) to theT sub-object of the complete object. Otherwise, the run-time checkfails.

9 The value of a failed cast to pointer type is the null pointer value of the required result type. A failed cast to
reference type throwsbad_cast (18.5.2). [Example:

class A { virtual void f(); };
class B { virtual void g(); };
class D : public virtual A, private B {};
void g()
{

D d;
B* bp = (B*)&d; // cast needed to break protection
A* ap = &d; // public derivation, no cast needed
D& dr = dynamic_cast<D&>(*bp); // succeeds
ap = dynamic_cast<A*>(bp); // succeeds
bp = dynamic_cast<B*>(ap); // fails
ap = dynamic_cast<A*>(&dr); // succeeds
bp = dynamic_cast<B*>(&dr); // fails

}

class E : public D , public B {};
class F : public E, public D {}
void h()
{

F f;
A* ap = &f; // okay: finds unique A
D* dp = dynamic_cast<D*>(ap); // fails: ambiguous
E* ep = (E*)ap; // error: cast from virtual base
E* ep = dynamic_cast<E*>(ap); // succeeds

}

—end example] [Note: Clause 12.7 describes the behavior of adynamic_cast applied to an object
under construction or destruction.]

[expr.typeid] 5.2.7 Type identification

1 The result of atypeid expression is of typeconst type_info& . The value is a reference to a
type_info object (18.5.1) that represents thetype-idor the type of theexpressionrespectively.

2 If the expressionis a reference to a polymorphic type (10.3), thetype_info for the complete object
(12.6.2) referred to is the result.

5.2.7 Type identification DRAFT: 28 April 1995 Expressions 5– 9

3 If the expressionis the result of applying unary* to a pointer to a polymorphic type,43) then the pointer
shall either be zero or point to a valid object. If the pointer is zero, thetypeid expression throws the
bad_typeid exception (18.5.3). Otherwise, the result of thetypeid expression is the value that repre-
sents the type of the complete object to which the pointer points.

4 If the expressionis the result of subscripting (5.2.1) a pointer, sayp, that points to a polymorphic type,44)

then the result of thetypeid expression is that oftypeid(*p) . The subscript is not evaluated.

5 If the expression is neither a pointer nor a reference to a polymorphic type, the result is thetype_info
representing the (static) type of theexpression. Theexpressionis not evaluated.

6 In all casestypeid ignores the top-level cv-qualifiers of its operand’s type. [Example:

class D { ... };
D d1;
const D d2;

typeid(d1) == typeid(d2); // yields true
typeid(D) == typeid(const D); // yields true
typeid(D) == typeid(d2); // yields true

—end example] [Note:Clause 12.7 describes the behavior oftypeid applied to an object under construc-
tion or destruction.]

[expr.static.cast] 5.2.8 Static cast

1 The result of the expressionstatic_cast<T>(v) is the result of converting the expressionv to typeT.
If T is a reference type, the result is an lvalue; otherwise, the result is an rvalue. Types shall not be defined
in astatic_cast . Thestatic_cast operator shall not cast away constness. See 5.2.10.

2 Any implicit conversion (including standard conversions and/or user-defined conversions; see 4 and
13.3.3.1) can be performed explicitly usingstatic_cast . More precisely, ifT t(v); is a well-
formed declaration, for some invented temporary variablet , then the result ofstatic_cast<T>(v) is
defined to be the temporaryt , and is an lvalue ifT is a reference type, and an rvalue otherwise. The
expressionv shall be an lvalue if the equivalent declaration requires an lvalue forv .

3 If the static_cast does not correspond to an implicit conversion by the above definition, it shall per-
form one of the conversions listed below. No other conversion can be performed explicitly using a
static_cast .

4 Any expression can be explicitly converted to type“cvvoid .” The expression value is discarded.

5 An lvalue expression of typeT1 can be cast to the type“reference toT2” if an expression of type“pointer
to T1” can be explicitly converted to the type“pointer toT2” using astatic_cast . That is, a reference
cast static_cast<T&>x has the same effect as the conversion*static_cast<T*>&x with the
built-in & and * operators. The result is an lvalue. This interpretation is used only if the original
static_cast is not well-formed as an implicit conversion under the rules given above. This form of
reference cast creates an lvalue that refers to the same object as the source lvalue, but with a different type.
[Note: it does not create a temporary or copy the object, and constructors (12.1) or conversion functions
(12.3) are not called. For example,

struct B {};
struct D : public B {};
D d;
// creating a temporary for the B sub-object not allowed
... (const B&) d ...

—end note]

43) If p is a pointer, then*p , (*p) , ((*p)) , and so on all meet this requirement.
44) If p is a pointer to a polymorphic type andi has integral or enumerated type, thenp[i] , (p[i]) , (p)[i] ,
((((p))[((i))])) , i[p] , (i[p]) , and so on all meet this requirement.

5– 10 Expressions DRAFT: 28 April 1995 5.2.8 Static cast

6 The inverse of any standard conversion (4), other than the lvalue-to-rvalue (4.1), array-to-pointer (4.2), and
function-to-pointer (4.3) conversions, can be performed explicitly usingstatic_cast subject to the
restriction that the explicit conversion does not cast away constness (5.2.10), and the following additional
rules for specific cases:

7 A value of integral type can be explicitly converted to an enumeration type. The value is unchanged if the
integral value is within the range of the enumeration values (7.2). Otherwise, the resulting enumeration
value is unspecified.

8 An rvalue of type“pointer tocv1B”, whereB is a class type, can be converted to an rvalue of type“pointer
to cv2D”, whereD is a class derived (10) fromB, if a valid standard conversion from“pointer tocv2D” to
“pointer tocv2 B” exists (4.10),cv2 is the same cv-qualification as, or greater cv-qualification than,cv1,
andB is not a virtual base class ofD. The null pointer value (4.10) is converted to the null pointer value of
the destination type. If the rvalue of type“pointer tocv1B” points to aB that is actually a sub-object of an
object of typeD, the resulting pointer points to the enclosing object of typeD. Otherwise, the result of the
cast is undefined.

9 An rvalue of type“pointer to member ofD of typecv1T” can be converted to an rvalue of type“pointer to
member ofB of typecv2T”, whereB is a base class (10) ofD, if a valid standard conversion from“pointer
to member ofB of typecv2T” to “pointer to member ofD of typecv2T” exists (4.11), andcv2 is the same
cv-qualification as, or greater cv-qualification than,cv1. The null member pointer value (4.11) is converted
to the null member pointer value of the destination type. If classB contains or inherits the original member,
the resulting pointer to member points to the member in classB. Otherwise, the result of the cast is unde-
fined.

[expr.reinterpret.cast] 5.2.9 Reinterpret cast

1 The result of the expressionreinterpret_cast<T>(v) is the result of converting the expressionv to
typeT. If T is a reference type, the result is an lvalue; otherwise, the result is an rvalue. Types shall not be
defined in a reinterpret_cast . Conversions that can be performed explicitly using
reinterpret_cast are listed below. No other conversion can be performed explicitly using
reinterpret_cast .

2 The reinterpret_cast operator shall not cast away constness; [Note: see 5.2.10 for the definition of
‘‘casting away constness’’.]

3 The mapping performed byreinterpret_cast is implementation-defined. [Note: it might, or might
not, produce a representation different from the original value.]

4 A pointer can be explicitly converted to any integral type large enough to hold it. The mapping function is
implementation-defined [Note: it is intended to be unsurprising to those who know the addressing structure
of the underlying machine.]

5 A value of integral type can be explicitly converted to a pointer. A pointer converted to an integer of suffi-
cient size (if any such exists on the implementation) and back to the same pointer type will have its original
value; mappings between pointers and integers are otherwise implementation-defined.

6 The operand of a pointer cast can be an rvalue of type“pointer to incomplete class type”. The destination
type of a pointer cast can be“pointer to incomplete class type”. In such cases, if there is any inheritance
relationship between the source and destination classes, the behavior is undefined.

7 A pointer to a function can be explicitly converted to a pointer to a function of a different type. The effect
of calling a function through a pointer to a function type that differs from the type used in the definition of
the function is undefined. Except that converting an rvalue of type“pointer toT1” to the type“pointer to
T2” (whereT1 andT2 are function types) and back to its original type yields the original pointer value, the
result of such a pointer conversion is unspecified; [Note: see also 4.10 for more details of pointer conver-
sions.]

5.2.9 Reinterpret cast DRAFT: 28 April 1995 Expressions 5– 11

8 A pointer to an object can be explicitly converted to a pointer to an object of different type. Except that
converting an rvalue of type“pointer toT1” to the type“pointer toT2” (whereT1 andT2 are object types
and where the alignment requirements ofT2 are no stricter than those ofT1) and back to its original type
yields the original pointer value, the result of such a pointer conversion is unspecified;

9 The null pointer value (4.10) is converted to the null pointer value of the destination type.

10 An rvalue of type“pointer to member ofX of type T1”, can be explicitly converted to an rvalue of type
“pointer to member ofY of typeT2”, if T1 andT2 are both function types or both data member types. The
null member pointer value (4.11) is converted to the null member pointer value of the destination type. The
result of this conversion is unspecified, except in the following cases:

— converting an rvalue of type“pointer to member function” to a different pointer to member function
type and back to its original type yields the original pointer to member value.

— converting an rvalue of type“pointer to data member ofX of typeT1” to the type“pointer to data mem-
ber ofY of typeT2” (where the alignment requirements ofT2 are no stricter than those ofT1) and back
to its original type yields the original pointer to member value.

11 Calling a member function through a pointer to member that represents a function type that differs from the
function type specified on the member function declaration results in undefined behavior.

12 An lvalue expression of typeT1 can be cast to the type“reference toT2” if an expression of type“pointer
to T1” can be explicitly converted to the type“pointer toT2” using areinterpret_cast . That is, a
reference cast reinterpret_cast<T&>x has the same effect as the conversion
reinterpret_cast<T>&x with the built-in& and* operators. The result is an lvalue that refers to
the same object as the source lvalue, but with a different type. No temporary is created, no copy is made,
and constructors (12.1) or conversion functions (12.3) are not called.

[expr.const.cast] 5.2.10 Const cast

1 The result of the expressionconst_cast<T>(v) is of type “T.” Types shall not be defined in a
const_cast . Conversions that can be performed explicitly usingconst_cast are listed below. No
other conversion shall be performed explicitly usingconst_cast .

2 An rvalue of type“pointer tocv1T” can be explicitly converted to the type“pointer tocv2T”, whereT is
any object type and wherecv1andcv2are cv-qualifications, using the castconst_cast< cv2 T*> . An
lvalue of typecv1T can be explicitly converted to an lvalue of typecv2T, whereT is any object type and
wherecv1andcv2are cv-qualifications, using the castconst_cast< cv2 T&>. The result of a pointer or
referenceconst_cast refers to the original object.

3 An rvalue of type“pointer to member ofX of typecv1T” can be explicitly converted to the type“pointer to
member ofX of typecv2T”, whereT is a data member type and wherecv1andcv2are cv-qualifiers, using
the castconst_cast< cv2 T X::*> . The result of a pointer to memberconst_cast will refer to the
same member as the original (uncast) pointer to data member.

4 The following rules define casting away constness. In these rulesTn and Xn represent types. For two
pointer types:

X 1 is T 1cv1 , 1 * . . . cv1 ,N * where T 1 is not a pointer type

X 2 is T 2cv2 , 1 * . . . cv2 ,N * where T 2 is not a pointer type

K is min(N,M)

casting fromX1 to X2 casts away constness if, for a non-pointer typeT (e.g.,int), there does not exist an
implicit conversion from:

Tcv1 , (N − K + 1) * cv1 , (N − K + 2) * . . . cv1 ,N *

to

5– 12 Expressions DRAFT: 28 April 1995 5.2.10 Const cast

Tcv2 , (N − K + 1) * cv2 , (M − K + 2) * . . . cv2 ,M *

5 Casting from an lvalue of typeT1 to an lvalue of typeT2 using a reference cast casts away constness if a
cast from an rvalue of type“pointer toT1” to the type“pointer toT2” casts away constness.

6 Casting from an rvalue of type "pointer to data member ofX of type“T1” to the type“pointer to data mem-
ber of Y of type T2” casts away constness if a cast from an rvalue of type“pointer toT1” to the type
“pointer toT2” casts away constness.

7 [Note: these rules are not intended to protect constness in all cases. For instance, conversions between
pointers to functions are not covered because such conversions lead to values whose use causes undefined
behavior. For the same reasons, conversions between pointers to member functions, and in particular, the
conversion from a pointer to a const member function to a pointer to a non-const member function, are not
covered. For multi-level pointers to data members, or multi-level mixed object and member pointers, the
same rules apply as for multi-level object pointers. That is, the“member of” attribute is ignored for pur-
poses of determining whetherconst has been cast away.

8 Depending on the type of the object, a write operation through the pointer, lvalue or pointer to data member
resulting from aconst_cast that casts away constness may produce undefined behavior (7.1.5.1).]

9 A null pointer value (4.10) is converted to the null pointer value of the destination type. The null member
pointer value (4.11) is converted to the null member pointer value of the destination type.

[expr.unary] 5.3 Unary expressions

1 Expressions with unary operators group right-to-left.

unary-expression:
postfix-expression
++ unary-expression
-- unary-expression
unary-operator cast-expression
sizeof unary-expression
sizeof (type-id)
new-expression
delete-expression

unary-operator: one of
* & + - ! ~

[expr.unary.op] 5.3.1 Unary operators

1 The unary* operator meansindirection: the expression shall be a pointer, and the result is an lvalue refer-
ring to the object or function to which the expression points. If the type of the expression is“pointer toT,”
the type of the result is“T.”

2 The result of the unary& operator is a pointer to its operand. The operand shall be an lvalue or aqualified-
id. In the first case, if the type of the expression is“T,” the type of the result is“pointer toT.” In particular,
the address of an object of type“cv T” is “pointer tocv T,” with the same cv-qualifiers. [Example:the
address of an object of type“const int ” has type“pointer toconst int .”] For aqualified-id, if the
member is a nonstatic member of classC of typeT, the type of the result is“pointer to member ofclass
Cof typeT.” [Example:

struct A { int i; };
struct B : A { };
... &B::i ... // has type "int A::*"

—end example] For a static member of type“T”, the type is plain“pointer toT.” [Note:a pointer to mem-
ber is only formed when an explicit& is used and its operand is aqualified-idnot enclosed in parentheses.
[Example:the expression&(qualified-id) , where thequalified-id is enclosed in parentheses, does not
form an expression of type“pointer to member.”] Neither doesqualified-id , because there is no

5.3.1 Unary operators DRAFT: 28 April 1995 Expressions 5– 13

implicit conversion from the type“nonstatic member function” to the type“pointer to member function”, as
there is from an lvalue of function type to the type“pointer to function” (4.3). Nor is&unqualified-
id a pointer to member, even within the scope ofunqualified-id’s class.]

3 The address of an object of incomplete type can be taken, but if the complete type of that object has the
address-of operator (operator&()) overloaded, then the behavior is undefined (and no diagnostic is
required).

4 The address of an overloaded function (13) can be taken only in a context that uniquely determines which
version of the overloaded function is referred to (see 13.4). [Note: since the context might determine
whether the operand is a static or nonstatic member function, the context can also affect whether the expres-
sion has type“pointer to function” or “pointer to member function.”]

5 The operand of the unary+ operator shall have arithmetic, enumeration, or pointer type and the result is the
value of the argument. Integral promotion is performed on integral or enumeration operands. The type of
the result is the type of the promoted operand.

6 The operand of the unary- operator shall have arithmetic or enumeration type and the result is the negation
of its operand. Integral promotion is performed on integral or enumeration operands. The negative of an
unsigned quantity is computed by subtracting its value from 2n, wheren is the number of bits in the pro-
moted operand. The type of the result is the type of the promoted operand.

7 The operand of the logical negation operator! is converted tobool (4.13); its value istrue if the con-
verted operand isfalse andfalse otherwise. The type of the result isbool .

8 The operand of~ shall have integral or enumeration type; the result is the one’s complement of its operand.
Integral promotions are performed. The type of the result is the type of the promoted operand.

[expr.pre.incr] 5.3.2 Increment and decrement

1 The operand of prefix++ is modified by adding1, or set totrue if it is bool (this use is deprecated).
The operand shall be a modifiable lvalue. The type of the operand shall be an arithmetic type or a pointer
to a completely-defined object type. The value is the new value of the operand; it is an lvalue. Ifx is not
of typebool , the expression++x is equivalent tox+=1 . [Note:see the discussions of addition (5.7) and
assignment operators (5.17) for information on conversions.]

2 The operand of prefix-- is decremented analogously to the prefix++ operator, except that the operand
shall not be of typebool .

[expr.sizeof] 5.3.3 Sizeof

1 Thesizeof operator yields the number of bytes in the object representation of its operand. The operand
is either an expression, which is not evaluated, or a parenthesizedtype-id. Thesizeof operator shall not
be applied to an expression that has function or incomplete type, or to an enumeration type before all its
enumerators have been declared, or to the parenthesized name of such types, or to an lvalue that designates
a bit-field. [Note: sizeof(char) is 1, but sizeof(bool) and sizeof(wchar_t) are
implementation-defined.45) See 1.5 for the definition ofbyte and 3.9 for the definition ofobject
representation.]

2 When applied to a reference, the result is the size of the referenced object. When applied to a class, the
result is the number of bytes in an object of that class including any padding required for placing such
objects in an array. The size of any class or class object is greater than zero. When applied to an array, the
result is the total number of bytes in the array. This implies that the size of an array ofn elements isn times
the size of an element.

45)sizeof(bool) is not required to be1.

5– 14 Expressions DRAFT: 28 April 1995 5.3.3 Sizeof

3 Thesizeof operator can be applied to a pointer to a function, but shall not be applied directly to a func-
tion.

4 The lvalue-to-rvalue (4.1), array-to-pointer (4.2), and function-to-pointer (4.3) standard conversions are
suppressed on the operand ofsizeof .

5 Types shall not be defined in asizeof expression.

6 The result is a constant of an implementation-defined type which is the same type as that which is named
size_t in the standard header<cstddef> (18.1).

[expr.new] 5.3.4 New

1 Thenew-expressionattempts to create an object of thetype-id(8.1) to which it is applied. This type shall
be a complete nonabstract object type or array type (1.6, 3.9, 10.4).

new-expression:
:: opt new new-placementopt new-type-id new-initializeropt

:: opt new new-placementopt (type-id) new-initializeropt

new-placement:
(expression-list)

new-type-id:
type-specifier-seq new-declaratoropt

new-declarator:
* cv-qualifier-seqopt new-declaratoropt

:: opt nested-name-specifier* cv-qualifier-seqopt new-declaratoropt

direct-new-declarator

direct-new-declarator:
[expression]
direct-new-declarator[constant-expression]

new-initializer:
(expression-listopt)

Entities created by anew-expressionhave dynamic storage duration (3.7.3). [Note: the lifetime of such an
entity is not necessarily restricted to the scope in which it is created.] If the entity is an object, thenew-
expressionreturns a pointer to the object created. If it is an array, thenew-expressionreturns a pointer to
the initial element of the array.

2 Thenew-typein anew-expressionis the longest possible sequence ofnew-declarators. This prevents ambi-
guities between declarator operators&, * , [] , and their expression counterparts. [Example:

new int*i; // syntax error: parsed as ‘(new int*) i’
// not as ‘(new int)*i’

The* is the pointer declarator and not the multiplication operator.]

3 Parentheses shall not appear in anew-type-idused as the operand fornew.

4 [Example:

new int(*[10])(); // error

is ill-formed because the binding is

(new int) (*[10])(); // error

Instead, the explicitly parenthesized version of thenew operator can be used to create objects of compound
types (3.9.2):

5.3.4 New DRAFT: 28 April 1995 Expressions 5– 15

new (int (*[10])());

allocates an array of10 pointers to functions (taking no argument and returningint).]

5 Thetype-specifier-seqshall not contain class declarations, or enumeration declarations.

6 When the allocated object is an array (that is, thedirect-new-declaratorsyntax is used or thenew-type-idor
type-id denotes an array type), thenew-expressionyields a pointer to the initial element (if any) of the
array. [Note:bothnew int andnew int[10] return anint* and the type ofnew int[i][10] is
int (*)[10] .]

7 Everyconstant-expressionin a direct-new-declaratorshall be an integral constant expression (5.19) with a
strictly positive value. Theexpressionin a direct-new-declaratorshall be of integral type (3.9.1) with a
non-negative value. [Example:if n is a variable of typeint , thennew float[n][5] is well-formed
(becausen is theexpressionof a direct-new-declarator), but new float[5][n] is ill-formed (because
n is not aconstant-expression). If n is negative, the effect ofnew float[n][5] is undefined.]

8 When the value of theexpressionin adirect-new-declaratoris zero, an array with no elements is allocated.
The pointer returned by thenew-expressionis non-null and distinct from the pointer to any other object.

9 Storage for the object created by anew-expressionis obtained from the appropriateallocation function
(3.7.3.1). When the allocation function is called, the first argument will be amount of space requested
(which shall be no larger than the size of the object being created unless that object is an array).

10 An implementation shall provide default definitions of the global allocation functionsoperator new()
for non-arrays (3.7.3, 18.4.1.1) andoperator new[]() for arrays (18.4.1.2). [Note: A C + + program
can provide alternative definitions of these functions (17.3.3.4), and/or class-specific versions (12.5).]

11 The new-placementsyntax can be used to supply additional arguments to an allocation function. If used,
overloading resolution is done by assembling an argument list from the amount of space requested (the first
argument) and the expressions in thenew-placementpart of thenew-expression(the second and succeeding
arguments).

12 [Example:

— new T results in a call ofoperator new(sizeof(T)) ,

— new(2,f) T results in a call ofoperator new(sizeof(T),2,f) ,

— new T[5] results in a call ofoperator new[](sizeof(T)*5+x) , and

— new(2,f) T[5] results in a call ofoperator new[](sizeof(T)*5+y,2,f) . Here,x andy
are non-negative, implementation-defined values representing array allocation overhead. They might
vary from one use ofnew to another.]

13 The allocation function shall either return null or a pointer to a block of storage in which the object shall be
created. [Note: the block of storage is assumed to be appropriately aligned and of the requested size. The
address of the created object will not necessarily be the same as that of the block if the object is an array.]

14 If the type of the object created by thenew-expressionis T:

— If the new-initializeris omitted andT is a non-POD class type (or array thereof), then if the default con-
structor forT is accessible it is called, otherwise the program is ill-formed;

— If the new-initializer is omitted andT is a POD type (or array thereof), then the object thus created has
indeterminate value;

— If the new-initializeris of the form() , default-initialization shall be performed (8.5);

— If the new-initializeris of the form (expression-list) andT is a class type, the appropriate constructor is
called, usingexpression-listas the arguments (8.5);

— If the new-initializer is of the form (expression-list) andT is an arithmetic, enumeration, pointer, or
pointer-to-member type andexpression-listcomprises exactly one expression, then the object is

5– 16 Expressions DRAFT: 28 April 1995 5.3.4 New

initialized to the (possibly converted) value of the expression (8.5);

— Otherwise thenew-expressionis ill-formed.

15 Access and ambiguity control are done for both the allocation function and the constructor (12.1, 12.5).

16 The allocation function can indicate failure by throwing abad_alloc exception (15, 18.4.2.1). In this
case no initialization is done.

17 If the constructor throws an exception and thenew-expressiondoes not contain anew-placement, then the
deallocation function (3.7.3.2, 12.5) is used to free the memory in which the object was being constructed,
after which the exception continues to propagate in the context of thenew-expression.

18 If the constructor throws an exception and thenew-expressioncontains anew-placement, a name lookup is
performed on the name of operator delete in the scope of thisnew-expression. If the lookup succeeds and
exactly one of the declarations found matches the declaration of that placement operator new, then the
matching placement operator delete shall be called (3.7.3.2).

19 A declaration of placement operator delete matches the declaration of a placement operator new when it has
the same number of parameters and all parameter types except the first are identical disregarding top-level
cv-qualifiers.

20 If placement operator delete is called, it is passed the same arguments as were passed to placement operator
new. If the implementation is allowed to make a copy of an argument as part of the placement new call, it
is allowed to make a copy (of the same original value) as part of the placement delete call, or to reuse the
copy made as part of the placement new call. If the copy is elided in one place, it need not be elided in the
other.

21 The way the object was allocated determines how it is freed: if it is allocated by::new , then it is freed by
::delete , and if it is an array, it is freed bydelete[] or ::delete[] as appropriate.

22 Whether the allocation function is called before evaluating the constructor arguments or after evaluating the
constructor arguments but before entering the constructor is unspecified. It is also unspecified whether the
arguments to a constructor are evaluated if the allocation function returns the null pointer or throws an
exception.

[expr.delete] 5.3.5 Delete

1 Thedelete-expressionoperator destroys a complete object (1.6) or array created by anew-expression.

delete-expression:
:: opt delete cast-expression
:: opt delete [] cast-expression

The first alternative is for non-array objects, and the second is for arrays. The operand shall have a pointer
type. The result has typevoid .

2 In either alternative, if the value of the operand ofdelete is the null pointer the operation has no effect.
Otherwise, in the first alternative (delete object), the value of the operand ofdelete shall be a pointer to a
non-array object created by anew-expressionwithout anew-placementspecification, or a pointer to a sub-
object (1.6) representing a base class of such an object (10), or an expression of class type with a conver-
sion function to pointer type (_class.conv,fct_) which yields a pointer to such an object. If not, the behavior
is undefined. In the second alternative (delete array), the value of the operand ofdelete shall be a
pointer to an array created by anew-expressionwithout anew-placementspecification. If not, the behavior
is undefined.

3 In the first alternative (delete object), if the static type of the operand is different from its dynamic type, the
static type shall have a virtual destructor or the behavior is undefined. In the second alternative (delete
array) if the dynamic type of the object to be deleted differs from its static type, the behavior is unde-
fined.46)

46)This implies that an object cannot be deleted using a point of typevoid* because there are no objects of typevoid .

5.3.5 Delete DRAFT: 28 April 1995 Expressions 5– 17

4 It is unspecified whether the deletion of an object changes its value. If the expression denoting the object in
a delete-expressionis a modifiable lvalue, any attempt to access its value after the deletion is undefined
(3.7.3.2).

5 If the object being deleted has incomplete class type at the point of deletion and the class has a non-trivial
destructor or an allocation function or a deallocation function, the behavior is undefined.

6 The delete-expressionwill invoke the destructor (if any) for the object or the elements of the array being
deleted. In the case of an array, the elements will be destroyed in order of decreasing address (that is, in
reverse order of construction; see 12.6.2).

7 To free the storage pointed to, thedelete-expressionwill call a deallocation function(3.7.3.2).

8 An implementation provides default definitions of the global deallocation functions
operator delete() for non-arrays (18.4.1.1) andoperator delete[]() for arrays (18.4.1.2).
A C + + program can provide alternative definitions of these functions (17.3.3.4), and/or class-specific ver-
sions (12.5).

9 Access and ambiguity control are done for both the deallocation function and the destructor (12.4, 12.5).

[expr.cast] 5.4 Explicit type conversion (cast notation)

1 The result of the expression(T) cast-expressionis of type T. An explicit type conversion can be
expressed using functional notation (5.2.3), a type conversion operator (dynamic_cast,
static_cast, reinterpret_cast, const_cast), or thecastnotation.

cast-expression:
unary-expression
(type-id) cast-expression

2 Types shall not be defined in casts.

3 Any type conversion not mentioned below and not explicitly defined by the user (12.3) is ill-formed.

4 The conversions performed bystatic_cast (5.2.8), reinterpret_cast (5.2.9), const_cast
(5.2.10), or any sequence thereof, can be performed using the cast notation of explicit type conversion. The
same semantic restrictions and behaviors apply. If a given conversion can be performed using either
static_cast or reinterpret_cast , thestatic_cast interpretation is used.

5 In addition to those conversions, a pointer to an object of a derived class (10) can be explicitly converted to
a pointer to any of its base classes regardless of accessibility restrictions (11.2), provided the conversion is
unambiguous (10.2). The resulting pointer will refer to the contained object of the base class.

[expr.mptr.oper] 5.5 Pointer-to-member operators

1 The pointer-to-member operators->* and.* group left-to-right.

pm-expression:
cast-expression
pm-expression.* cast-expression
pm-expression->* cast-expression

2 The binary operator.* binds its second operand, which shall be of type“pointer to member ofT” to its
first operand, which shall be of classT or of a class of whichT is an unambiguous and accessible base
class. The result is an object or a function of the type specified by the second operand.

3 The binary operator->* binds its second operand, which shall be of type“pointer to member ofT” to its
first operand, which shall be of type“pointer toT” or “pointer to a class of whichT is an unambiguous and
accessible base class.” The result is an object or a function of the type specified by the second operand.

5– 18 Expressions DRAFT: 28 April 1995 5.5 Pointer-to-member operators

4 The restrictions oncv-qualification, and the manner in which thecv-qualifiers of the operands are combined
to produce thecv-qualifiers of the result, are the same as the rules forE1.E2 given in [expr.ref].

5 If the result of.* or ->* is a function, then that result can be used only as the operand for the function
call operator() . [Example:

(ptr_to_obj->*ptr_to_mfct)(10);

calls the member function denoted byptr_to_mfct for the object pointed to byptr_to_obj .] The
result of a.* expression is an lvalue only if its first operand is an lvalue and its second operand is a
pointer to data member. The result of an->* expression is an lvalue only if its second operand is a pointer
to data member. If the second operand is the null pointer to member value (4.11), the behavior is unde-
fined.

[expr.mul] 5.6 Multiplicative operators

1 The multiplicative operators* , / , and%group left-to-right.

multiplicative-expression:
pm-expression
multiplicative-expression* pm-expression
multiplicative-expression/ pm-expression
multiplicative-expression% pm-expression

2 The operands of* and/ shall have arithmetic type; the operands of%shall have integral type. The usual
arithmetic conversions are performed on the operands and determine the type of the result.

3 The binary* operator indicates multiplication.

4 The binary/ operator yields the quotient, and the binary%operator yields the remainder from the division
of the first expression by the second. If the second operand of/ or %is zero the behavior is undefined; oth-
erwise(a/b)*b + a%b is equal toa. If both operands are nonnegative then the remainder is nonnega-
tive; if not, the sign of the remainder is implementation-defined.

[expr.add] 5.7 Additive operators

1 The additive operators+ and - group left-to-right. The usual arithmetic conversions are performed for
operands of arithmetic type.

additive-expression:
multiplicative-expression
additive-expression+ multiplicative-expression
additive-expression- multiplicative-expression

For addition, either both operands shall have arithmetic type, or one operand shall be a pointer to a com-
pletely defined object type and the other shall have integral type.

2 For subtraction, one of the following shall hold:

— both operands have arithmetic type;

— both operands are pointers to cv-qualified or cv-unqualified versions of the same completely defined
object type; or

— the left operand is a pointer to a completely defined object type and the right operand has integral type.

3 If both operands have arithmetic type, the usual arithmetic conversions are performed on them. The result
of the binary+ operator is the sum of the operands. The result of the binary- operator is the difference
resulting from the subtraction of the second operand from the first.

4 For the purposes of these operators, a pointer to a nonarray object behaves the same as a pointer to the first
element of an array of length one with the type of the object as its element type.

5.7 Additive operators DRAFT: 28 April 1995 Expressions 5– 19

5 When an expression that has integral type is added to or subtracted from a pointer, the result has the type of
the pointer operand. If the pointer operand points to an element of an array object, and the array is large
enough, the result points to an element offset from the original element such that the difference of the sub-
scripts of the resulting and original array elements equals the integral expression. In other words, if the
expressionP points to thei-th element of an array object, the expressions(P)+N (equivalently,N+(P))
and (P)-N (whereN has the valuen) point to, respectively, thei+n-th andi– n-th elements of the array
object, provided they exist. Moreover, if the expressionP points to the last element of an array object, the
expression(P)+1 points one past the last element of the array object, and if the expressionQ points one
past the last element of an array object, the expression(Q)-1 points to the last element of the array object.
If both the pointer operand and the result point to elements of the same array object, or one past the last ele-
ment of the array object, the evaluation shall not produce an overflow; otherwise, the behavior is undefined.
If the result is used as an operand of the unary* operator, the behavior is undefined unless both the pointer
operand and the result point to elements of the same array object, or the pointer operand points one past the
last element of an array object and the result points to an element of the same array object.

6 When two pointers to elements of the same array object are subtracted, the result is the difference of the
subscripts of the two array elements. The type of the result is an implementation-defined signed integral
type; this type shall be the same type that is defined asptrdiff_t in the<cstddef> header (18.1). As
with any other arithmetic overflow, if the result does not fit in the space provided, the behavior is unde-
fined. In other words, if the expressionsP and Q point to, respectively, thei-th andj-th elements of an
array object, the expression(P)-(Q) has the valuei– j provided the value fits in an object of type
ptrdiff_t . Moreover, if the expressionP points either to an element of an array object or one past the
last element of an array object, and the expressionQpoints to the last element of the same array object, the
expression((Q)+1)-(P) has the same value as((Q)-(P))+1 and as-((P)-((Q)+1)) , and has
the value zero if the expressionP points one past the last element of the array object, even though the
expression(Q)+1 does not point to an element of the array object. Unless both pointers point to elements
of the same array object, or one past the last element of the array object, the behavior is undefined.47)

[expr.shift] 5.8 Shift operators

1 The shift operators<< and>> group left-to-right.

shift-expression:
additive-expression
shift-expression<< additive-expression
shift-expression>> additive-expression

The operands shall be of integral type and integral promotions are performed. The type of the result is that
of the promoted left operand. The behavior is undefined if the right operand is negative, or greater than or
equal to the length in bits of the promoted left operand. The value ofE1 << E2 is E1 (interpreted as a bit
pattern) left-shiftedE2 bits; vacated bits are zero-filled. The value ofE1 >> E2 is E1 right-shiftedE2 bit
positions. IfE1 has an unsigned type or has a nonnegative value, the vacated bits shall be zero-filled. If
E1 has a negative value, the behavior of the right shift is implementation-defined.

[expr.rel] 5.9 Relational operators

1 [Note: the relational operators group left-to-right, but this fact is not very useful;a<b<c means(a<b)<c
andnot (a<b)&&(b<c) . —end note]

47) Another way to approach pointer arithmetic is first to convert the pointer(s) to character pointer(s): In this scheme the integral
expression added to or subtracted from the converted pointer is first multiplied by the size of the object originally pointed to, and the
resulting pointer is converted back to the original type. For pointer subtraction, the result of the difference between the character point-
ers is similarly divided by the size of the object originally pointed to.

7 When viewed in this way, an implementation need only provide one extra byte (which might overlap another object in the program)
just after the end of the object in order to satisfy the“one past the last element” requirements.

5– 20 Expressions DRAFT: 28 April 1995 5.9 Relational operators

relational-expression:
shift-expression
relational-expression< shift-expression
relational-expression> shift-expression
relational-expression<= shift-expression
relational-expression>= shift-expression

The operands shall have arithmetic or pointer type. The operators< (less than),> (greater than),<= (less
than or equal to), and>= (greater than or equal to) all yieldfalse or true . The type of the result is
bool .

2 The usual arithmetic conversions are performed on arithmetic operands. Pointer conversions are performed
on pointer operands to bring them to the same type, which shall be a cv-qualified or cv-unqualified version
of the type of one of the operands. [Note: this implies that any pointer can be compared to an integral con-
stant expression evaluating to zero and any pointer can be compared to a pointer of cv-qualified or cv-
unqualified typevoid* (in the latter case the pointer is first converted tovoid*).] Pointers to objects or
functions of the same type (after pointer conversions) can be compared; the result depends on the relative
positions of the pointed-to objects or functions in the address space as follows:

— If two pointers of the same type point to the same object or function, or both point one past the end of
the same array, or are both null, they compare equal.

— If two pointers of the same type point to different objects or functions, or only one of them is null, they
compare unequal.

— If two pointers point to nonstatic data members of the same object, the pointer to the later declared
member compares greater provided the two members are not separated by anaccess-specifierlabel
(11.1) and provided their class is not a union.

— If two pointers point to nonstatic members of the same object separated by anaccess-specifierlabel
(11.1) the result is unspecified.

— If two pointers point to data members of the same union object, they compare equal (after conversion to
void* , if necessary). If two pointers point to elements of the same array or one beyond the end of the
array, the pointer to the object with the higher subscript compares higher.

— Other pointer comparisons are implementation-defined.

3
[expr.eq] 5.10 Equality operators

1 equality-expression:
relational-expression
equality-expression== relational-expression
equality-expression!= relational-expression

The== (equal to) and the!= (not equal to) operators have the same semantic restrictions, conversions, and
result type as the relational operators except for their lower precedence and truth-value result. [Note:a<b
== c<d is true whenevera<b andc<d have the same truth-value.]

2 In addition, pointers to members of the same type can be compared. Pointer to member conversions (4.11)
are performed. A pointer to member can be compared to an integral constant expression that evaluates to
zero. If one operand is a pointer to a virtual member function and the other is not the null pointer to mem-
ber value, the result is unspecified.

5.11 BitwiseAND operator DRAFT: 28 April 1995 Expressions 5– 21

[expr.bit.and] 5.11 BitwiseAND operator

1 and-expression:
equality-expression
and-expression& equality-expression

The usual arithmetic conversions are performed; the result is the bitwiseAND function of the operands. The
operator applies only to integral operands.

[expr.xor] 5.12 Bitwise exclusiveOR operator

1 exclusive-or-expression:
and-expression
exclusive-or-expression̂ and-expression

The usual arithmetic conversions are performed; the result is the bitwise exclusiveOR function of the
operands. The operator applies only to integral operands.

[expr.or] 5.13 Bitwise inclusiveOR operator

1 inclusive-or-expression:
exclusive-or-expression
inclusive-or-expression| exclusive-or-expression

The usual arithmetic conversions are performed; the result is the bitwise inclusiveOR function of its
operands. The operator applies only to integral operands.

[expr.log.and] 5.14 LogicalAND operator

1 logical-and-expression:
inclusive-or-expression
logical-and-expression&& inclusive-or-expression

The&& operator groups left-to-right. The operands are both converted to typebool (4.13). The result is
true if both operands aretrue andfalse otherwise. Unlike&, && guarantees left-to-right evaluation:
the second operand is not evaluated if the first operand isfalse .

2 The result is abool . All side effects of the first expression except for destruction of temporaries (12.2)
happen before the second expression is evaluated.

[expr.log.or] 5.15 LogicalOR operator

1 logical-or-expression:
logical-and-expression
logical-or-expression|| logical-and-expression

The || operator groups left-to-right. The operands are both converted tobool (4.13). It returnstrue if
either of its operands istrue , and false otherwise. Unlike| , || guarantees left-to-right evaluation;
moreover, the second operand is not evaluated if the first operand evaluates totrue .

2 The result is abool . All side effects of the first expression except for destruction of temporaries (12.2)
happen before the second expression is evaluated.

[expr.cond] 5.16 Conditional operator

1 conditional-expression:
logical-or-expression
logical-or-expression? expression: assignment-expression

Conditional expressions group right-to-left. The first expression is converted tobool (4.13). It is evalu-
ated and if it istrue , the result of the conditional expression is the value of the second expression,

5– 22 Expressions DRAFT: 28 April 1995 5.16 Conditional operator

otherwise that of the third expression. All side effects of the first expression except for destruction of tem-
poraries (12.2) happen before the second or third expression is evaluated.

2 If either the second or third expression is athrow-expression(15.1), the result is of the type of the other.

3 If both the second and the third expressions are of arithmetic type, then if they are of the same type the
result is of that type; otherwise the usual arithmetic conversions are performed to bring them to a common
type. Otherwise, if both the second and the third expressions are either a pointer or an integral constant
expression that evaluates to zero, pointer conversions (4.10) are performed to bring them to a common type,
which shall be a cv-qualified or cv-unqualified version of the type of either the second or the third expres-
sion. Otherwise, if both the second and the third expressions are either a pointer to member or an integral
constant expression that evaluates to zero, pointer to member conversions (4.11) are performed to bring
them to a common type48) which shall be a cv-qualified or cv-unqualified version of the type of either the
second or the third expression. Otherwise, if both the second and the third expressions are lvalues of
related class types, they are converted to a common type (which shall be acv-qualified orcv-unqualified
version of the type of either the second third expression) as if by a cast to a reference to the common type
(5.2.8). Otherwise, if both the second and the third expressions are of the same classT, the common type is
T. Otherwise, if both the second and the third expressions have type“cv void ”, the common type is“cv
void .” Otherwise the expression is ill formed. The result has the common type; only one of the second
and third expressions is evaluated. The result is an lvalue if the second and the third operands are of the
same type and both are lvalues.

[expr.ass] 5.17 Assignment operators

1 There are several assignment operators, all of which group right-to-left. All require a modifiable lvalue as
their left operand, and the type of an assignment expression is that of its left operand. The result of the
assignment operation is the value stored in the left operand after the assignment has taken place; the result
is an lvalue.

assignment-expression:
conditional-expression
unary-expression assignment-operator assignment-expression
throw-expression

assignment-operator:one of
= *= /= %= += -= >>= <<= &= ^= |=

2 In simple assignment (=), the value of the expression replaces that of the object referred to by the left
operand.

3 If the left operand is not of class type, the expression is converted to the cv-unqualified type of the left
operand using standard conversions (4) and/or user-defined conversions (12.3), as necessary.

4 Assignment to objects of a class (9)X is defined by the functionX::operator=() (13.5.3). Unless the
user defines anX::operator=() , the default version is used for assignment (12.8). This implies that an
object of a class derived fromX (directly or indirectly) by unambiguous public derivation (10) can be
assigned to anX.

5 For class objects, assignment is not in general the same as initialization (8.5, 12.1, 12.6, 12.8).

6 When the left operand of an assignment operator denotes a reference toT, the operation assigns to the
object of typeT denoted by the reference.

7 The behavior of an expression of the formE1 op= E2 is equivalent toE1 = E1 op E2 except thatE1 is
evaluated only once.E1 shall not havebool type. In+= and-= , E1 shall either have arithmetic type or
be a pointer to a possibly-qualified completely defined object type. In all other cases,E1 shall have arith-
metic type.

48)This is one instance in which the“composite type”, as described in the C Standard, is still employed in C + +.

5.17 Assignment operators DRAFT: 28 April 1995 Expressions 5– 23

8 See 15.1 for throw expressions.

[expr.comma] 5.18 Comma operator

1 The comma operator groups left-to-right.

expression:
assignment-expression
expression, assignment-expression

A pair of expressions separated by a comma is evaluated left-to-right and the value of the left expression is
discarded. All side effects of the left expression are performed before the evaluation of the right expres-
sion. The type and value of the result are the type and value of the right operand; the result is an lvalue if
its right operand is.

2 In contexts where comma is given a special meaning, [Example:in lists of arguments to functions (5.2.2)
and lists of initializers (8.5)] the comma operator as described in this clause can appear only in parentheses.
[Example:

f(a, (t=3, t+2), c);

has three arguments, the second of which has the value5.]

[expr.const] 5.19 Constant expressions

1 In several places, C + + requires expressions that evaluate to an integral or enumeration constant: as array
bounds (8.3.4, 5.3.4), ascase expressions (6.4.2), as bit-field lengths (9.7), as enumerator initializers (7.2),
and as member constant initializers (9.5.2).

constant-expression:
conditional-expression

An integral constant-expressioncan involve only literals (2.9), enumerators,const values of integral or
enumeration types initialized with constant expressions (8.5), andsizeof expressions. Floating literals
(2.9.3) can appear only if they are cast to integral or enumeration types. Only type conversions to integral
or enumeration types can be used. In particular, except insizeof expressions, functions, class objects,
pointers, or references shall not be used, and assignment, increment, decrement, function-call, or comma
operators shall not be used.

2 Other expressions are consideredconstant-expressions only for the purpose of non-local static object
initialization (3.6.2). Such constant expressions shall evaluate to one of the following:

— a null pointer value (4.10),

— a null member pointer value (4.11),

— an arithmetic constant expression,

— an address constant expression,

— an address constant expression for an object type plus or minus an integral constant expression, or

— a pointer to member constant expression.

3 An arithmetic constant expressionshall have arithmetic or enumeration type and shall only have operands
that are integer literals (2.9.1), floating literals (2.9.3), enumerators, character literals (2.9.2) andsizeof
expressions (5.3.3). Cast operators in an arithmetic constant expression shall only convert arithmetic or
enumeration types to arithmetic or enumeration types, except as part of an operand to thesizeof opera-
tor.

4 An address constant expressionis a pointer to an lvalue designating an object of static storage duration or a
function. The pointer shall be created explicitly, using the unary& operator, or implicitly using an expres-
sion of array (4.2) or function (4.3) type. The subscripting operator[] and the class member access. and
-> operators, the& and* unary operators, and pointer casts (exceptdynamic_cast s, 5.2.6) can be used

5– 24 Expressions DRAFT: 28 April 1995 5.19 Constant expressions

in the creation of an address constant expression, but the value of an object shall not be accessed by the use
of these operators. An expression that designates the address of a member or base class of a non-POD class
object (9) is not an address constant expression (12.7). Function calls shall not be used in an address con-
stant expression, even if the function isinline and has a reference return type.

5 A pointer to member constant expressionshall be created using the unary& operator applied to aqualified-
id operand (5.3.1).

_ ___ ___

6 Statements [stmt.stmt]
_ ___ ___

1 Except as indicated, statements are executed in sequence.

statement:
labeled-statement
expression-statement
compound-statement
selection-statement
iteration-statement
jump-statement
declaration-statement
try-block

[stmt.label] 6.1 Labeled statement

1 A statement can be labeled.

labeled-statement:
identifier : statement
case constant-expression: statement
default : statement

An identifier label declares the identifier. The only use of an identifier label is as the target of agoto . The
scope of a label is the function in which it appears. Labels shall not be redeclared within a function. A
label can be used in agoto statement before its definition. Labels have their own name space and do not
interfere with other identifiers.

2 Case labels and default labels shall occur only in switch statements.

[stmt.expr] 6.2 Expression statement

1 Expression statements have the form

expression-statement:
expressionopt ;

All side effects from an expression statement are completed before the next statement is executed. An
expression statement with the expression missing is called a null statement. [Note: Most statements are
expression statements—usually assignments or function calls. A null statement is useful to carry a label just
before the} of a compound statement and to supply a null body to an iteration statement such aswhile
(6.5.1). —end note]

[stmt.block] 6.3 Compound statement or block

1 So that several statements can be used where one is expected, the compound statement (also, and equiva-
lently, called“block”) is provided.

compound-statement:
{ statement-seqopt }

6– 2 Statements DRAFT: 28 April 1995 6.3 Compound statement or block

statement-seq:
statement
statement-seq statement

A compound statement defines a local scope (3.3). [Note:a declaration is astatement(6.7). —end note]

[stmt.select] 6.4 Selection statements

1 Selection statements choose one of several flows of control.

selection-statement:
if (condition) statement
if (condition) statementelse statement
switch (condition) statement

condition:
expression
type-specifier-seq declarator= assignment-expression

In this clause, the termsubstatementrefers to the containedstatementor statements that appear in the syn-
tax notation. The substatement in aselection-statement(both substatements, in theelse form of theif
statement) implicitly defines a local scope (3.3). [Example:If the substatement in a selection-statement is a
single statement and not acompound-statement,it is as if it was rewritten to be a compound-statement con-
taining the original substatement.

if (x)
int i;

can be equivalently rewritten as

if (x) {
int i;

}

Thus after theif statement,i is no longer in scope.—end example]

2 The rules forconditions apply both toselection-statements and to thefor and while statements (6.5).
Thedeclaratorshall not specify a function or an array. Thetype-specifiershall not containtypedef and
shall not declare a new class or enumeration.

3 A name introduced by a declaration in acondition is in scope from its point of declaration until the end of
the substatements controlled by the condition. If the name is re-declared in the outermost block of a sub-
statement controlled by the condition, the declaration that re-declares the name is ill-formed.

4 The value of aconditionthat is an initialized declaration is the value of a temporary object of typebool ini-
tialized with the value of the declared variable. The value of aconditionthat is an expression is the value
of the expression. The value of the condition will be referred to as simply“the condition” where the usage
is unambiguous.

5 If a conditioncan be syntactically resolved as either an expression or the declaration of a local name, it is
interpreted as a declaration.

[stmt.if] 6.4.1 Theif statement

1 The condition is converted to typebool ; if that is not possible, the program is ill-formed. If it yields
true the first substatement is executed. If theelse part of the selection statement is present and the con-
dition yields false , the second substatement is executed. In the second form ofif statement (the one
including else), if the first substatement is also anif statement then that innerif statement shall con-
tain anelse part.49)

49) In other words, theelse is associated with the nearest un-elsedif .

6.4.2 Theswitch statement DRAFT: 28 April 1995 Statements 6– 3

[stmt.switch] 6.4.2 Theswitch statement

1 Theswitch statement causes control to be transferred to one of several statements depending on the value
of a condition.

2 The condition shall be of integral type or of a class or enumeration type for which an unambiguous conver-
sion to integral type exists (12.3). Integral promotion is performed. Any statement within theswitch
statement can be labeled with one or more case labels as follows:

case constant-expression:

where theconstant-expression(5.19) is converted to the promoted type of the switch condition. No two of
the case constants in the same switch shall have the same value after conversion to the promoted type of the
switch condition.

3 There shall be at most one label of the form

default :

within aswitch statement.

4 Switch statements can be nested; acase or default label is associated with the smallest switch enclos-
ing it.

5 When theswitch statement is executed, its condition is evaluated and compared with each case constant.
If one of the case constants is equal to the value of the condition, control is passed to the statement follow-
ing the matched case label. If no case constant matches the condition, and if there is adefault label,
control passes to the statement labeled by the default label. If no case matches and if there is nodefault
then none of the statements in the switch is executed.

6 case and default labels in themselves do not alter the flow of control, which continues unimpeded
across such labels. To exit from a switch, seebreak , 6.6.1. [Note: Usually, the substatement that is the
subject of a switch is compound andcase anddefault labels appear on the top-level statements con-
tained within the (compound) substatement, but this is not required. Declarations can appear in the sub-
statement of aswitch-statement.]

[stmt.iter] 6.5 Iteration statements

1 Iteration statements specify looping.

iteration-statement:
while (condition) statement
do statement while (expression) ;
for (for-init-statement conditionopt ; expressionopt) statement

for-init-statement:
expression-statement
simple-declaration

[Note:Note that afor-init-statementends with a semicolon.—end note]

2 The substatement in aniteration-statementimplicitly defines a local scope (3.3) which is entered and exited
each time through the loop.

3 If the substatement in an iteration-statement is a single statement and not acompound-statement,it is as if it
was rewritten to be a compound-statement containing the original statement. [Example:

while (--x >= 0)
int i;

can be equivalently rewritten as

6– 4 Statements DRAFT: 28 April 1995 6.5 Iteration statements

while (--x >= 0) {
int i;

}

Thus after thewhile statement,i is no longer in scope.—end example]

4 The requirements onconditions are the same as forif statements (6.4.1).

[stmt.while] 6.5.1 Thewhile statement

1 The condition is converted tobool (4.13).

2 In thewhile statement the substatement is executed repeatedly until the value of the condition becomes
false . The test takes place before each execution of the substatement.

[stmt.do] 6.5.2 Thedo statement

1 The condition is converted tobool (4.13).

2 In the do statement the substatement is executed repeatedly until the value of the condition becomes
false . The test takes place after each execution of the statement.

[stmt.for] 6.5.3 Thefor statement

1 The condition is converted tobool (4.13).

2 Thefor statement

for (for-init-statement conditionopt ; expressionopt) statement

is equivalent to

{
for-init-statement
while (condition) {

statement
expression;

}
}

except that acontinue in statement(not enclosed in another iteration statement) will executeexpression
before re-evaluatingcondition. [Note:Thus the first statement specifies initialization for the loop; the con-
dition specifies a test, made before each iteration, such that the loop is exited when the condition becomes
false ; the expression often specifies incrementing that is done after each iteration.—end note]

3 Either or both of the condition and the expression can be omitted. A missingconditionmakes the implied
while clause equivalent towhile(true) .

4 If the for-init-statementis a declaration, the scope of the name(s) declared extends to the end of thefor-
statement. [Example:

int i = 42;
int a[10];

for (int i = 0; i < 10; i++)
a[i] = i;

int j = i; // j = 42

—end example]

6.6 Jump statements DRAFT: 28 April 1995 Statements 6– 5

[stmt.jump] 6.6 Jump statements

1 Jump statements unconditionally transfer control.

jump-statement:
break ;
continue ;
return expressionopt ;
goto identifier ;

2 On exit from a scope (however accomplished), destructors (12.4) are called for all constructed objects with
automatic storage duration (3.7.2) (named objects or temporaries) that are declared in that scope, in the
reverse order of their declaration. Transfer out of a loop, out of a block, or back past an initialized variable
with automatic storage duration involves the destruction of variables with automatic storage duration that
are in scope at the point transferred from but not at the point transferred to. (See 6.7 for transfers into
blocks). [Note: However, the program can be terminated (by callingexit() or abort() (18.3), for
example) without destroying class objects with automatic storage duration.—end note]

[stmt.break] 6.6.1 Thebreak statement

1 Thebreak statement shall occur only in aniteration-statementor aswitch statement and causes termi-
nation of the smallest enclosingiteration-statementor switch statement; control passes to the statement
following the terminated statement, if any.

[stmt.cont] 6.6.2 Thecontinue statement

1 Thecontinue statement shall occur only in aniteration-statementand causes control to pass to the loop-
continuation portion of the smallest enclosingiteration-statement, that is, to the end of the loop. More pre-
cisely, in each of the statements

while (foo) { do { for (;;) {
{ { {

// ... // ... // ...
} } }

contin: ; contin: ; contin: ;
} } while (foo); }

acontinue not contained in an enclosed iteration statement is equivalent togoto contin .

[stmt.return] 6.6.3 Thereturn statement

1 A function returns to its caller by thereturn statement.

2 A return statement without an expression can be used only in functions that do not return a value, that is, a
function with the return value typevoid , a constructor (12.1), or a destructor (12.4). A return statement
with an expression can be used only in functions returning a value; the value of the expression is returned to
the caller of the function. If required, the expression is converted, as in an initialization (8.5), to the return
type of the function in which it appears. A return statement can involve the construction and copy of a tem-
porary object (12.2). Flowing off the end of a function is equivalent to areturn with no value; this
results in undefined behavior in a value-returning function.

[stmt.goto] 6.6.4 Thegoto statement

1 Thegoto statement unconditionally transfers control to the statement labeled by the identifier. The identi-
fier shall be a label (6.1) located in the current function.

6– 6 Statements DRAFT: 28 April 1995 6.7 Declaration statement

[stmt.dcl] 6.7 Declaration statement

1 A declaration statement introduces one or more new identifiers into a block; it has the form

declaration-statement:
block-declaration

If an identifier introduced by a declaration was previously declared in an outer block, the outer declaration
is hidden for the remainder of the block, after which it resumes its force.

2 Variables with automatic storage duration (3.7.2) are initialized each time theirdeclaration-statementis
executed. Variables with automatic storage duration declared in the block are destroyed on exit from the
block (6.6).

3 It is possible to transfer into a block, but not in a way that bypasses declarations with initialization. A pro-
gram that jumps from a point where a local variable with automatic storage duration is not in scope to a
point where it is in scope is ill-formed unless the variable has pointer or arithmetic type or is an aggregate
(8.5.1), and is declared without aninitializer (8.5). [Example:

void f()
{

// ...
goto lx; // ill-formed: jump into scope of ‘a’
// ...

ly:
X a = 1;
// ...

lx:
goto ly; // ok, jump implies destructor

// call for ‘a’ followed by construction
// again immediately following label ly

}

—end example]

4 The zero-initialization (8.5) of all local objects with static storage duration (3.7.1) is performed before any
other initialization takes place. A local object with static storage duration (3.7.1) initialized with a
constant-expressionis initialized before its block is first entered. A local object with static storage duration
not initialized with aconstant-expressionis initialized the first time control passes completely through its
declaration. If the initialization exits by throwing an exception, the initialization is not complete, so it will
be tried again the next time the function is called.

5 The destructor for a local object with static storage duration will be executed if and only if the variable was
constructed. The destructor is called either immediately before or as part of the calls of theatexit()
functions (18.3). Exactly when is unspecified.

[stmt.ambig] 6.8 Ambiguity resolution

1 There is an ambiguity in the grammar involvingexpression-statements anddeclarations: An expression-
statementwith a function-style explicit type conversion (5.2.3) as its leftmost subexpression can be indis-
tinguishable from adeclarationwhere the firstdeclaratorstarts with a(. In those cases thestatementis a
declaration. [Note: To disambiguate, the wholestatementmight have to be examined to determine if it is
anexpression-statementor adeclaration. This disambiguates many examples. [Example:assumingT is a
simple-type-specifier(7.1.5),

T(a)->m = 7; // expression-statement
T(a)++; // expression-statement
T(a,5)<<c; // expression-statement

6.8 Ambiguity resolution DRAFT: 28 April 1995 Statements 6– 7

T(*d)(int); // declaration
T(e)[]; // declaration
T(f) = { 1, 2 }; // declaration
T(*g)(double(3)); // declaration

—end example] In the last example above,g, which is a pointer toT, is initialized todouble(3) . This is
of course ill-formed for semantic reasons, but that does not affect the syntactic analysis.

2 The remaining cases aredeclarations. [Example:

T(a); // declaration
T(*b)(); // declaration
T(c)=7; // declaration
T(d),e,f=3; // declaration
T(g)(h,2); // declaration

—end example]

3 The disambiguation is purely syntactic; that is, the meaning of the names, beyond whether they aretype-ids
or not, is not used in the disambiguation.]

4 A slightly different ambiguity betweenexpression-statements anddeclarations is resolved by requiring a
type-idfor function declarations within a block (6.3). [Example:

void g()
{

int f(); // declaration
int a; // declaration
f(); // expression-statement
a; // expression-statement

}

—end example]

_ ___ ___

7 Declarations [dcl.dcl]
_ ___ ___

1 A declaration introduces one or more names into a program and specifies how those names are to be inter-
preted. Declarations have the form

declaration-seq:
declaration
declaration-seq declaration

declaration:
block-declaration
function-definition
template-declaration
linkage-specification
namespace-definition

block-declaration:
simple-declaration
asm-definition
namespace-alias-definition
using-declaration
using-directive

simple-declaration:
decl-specifier-seqopt init-declarator-listopt ;

[Note: asm-definitions are described in 7.4, andlinkage-specifications are described in 7.5.Function-
definitions are described in 8.4 andtemplate-declarations are described in 14.Namespace-definitions are
described in 7.3.1,using-declarations are described in 7.3.3 andusing-directives are described in 7.3.4.]
The description of the general form of declaration

decl-specifier-seqopt init-declarator-listopt ;

is divided into two parts:decl-specifiers, the components of adecl-specifier-seq, are described in 7.1 and
declarators, the components of aninit-declarator-list, are described in 8.

2 A declaration occurs in a scope (3.3); the scope rules are summarized in 3.4. A declaration that declares a
function or defines a class, namespace, template, or function also has one or more scopes nested within it.
These nested scopes, in turn, can have declarations nested within them. Unless otherwise stated, utterances
in this clause about components in, of, or contained by a declaration or subcomponent thereof refer only to
those components of the declaration that arenot nested within scopes nested within the declaration.

3 In the general form of declaration, the optionalinit-declarator-list can be omitted only when declaring a
class (9), enumeration (7.2) or namespace (7.3.1), that is, when thedecl-specifier-seqcontains either a
class-specifier, an elaborated-type-specifierwith a class-key(9.1), anenum-specifier, or a namespace-
definition. In these cases and whenever aclass-specifier, enum-specifier, or namespace-definitionis pre-
sent in thedecl-specifier-seq, the identifiers in these specifiers are among the names being declared by the
declaration (asclass-names, enum-names, enumerators, ornamespace-name, depending on the syntax).

4 Each init-declarator in the init-declarator-list contains exactly onedeclarator-id, which is the name
declared by thatinit-declaratorand hence one of the names declared by the declaration. Thetype-specifiers
(7.1.5) in thedecl-specifier-seqand the recursivedeclaratorstructure of theinit-declaratordescribe a type

7– 2 Declarations DRAFT: 28 April 1995 7 Declarations

(8.3), which is then associated with the name being declared by theinit-declarator.

5 If the decl-specifier-seqcontains thetypedef specifier, the declaration is called atypedef declarationand
the name of eachinit-declarator is declared to be atypedef-name, synonymous with its associated type
(7.1.3). If thedecl-specifier-seqcontains notypedef specifier, the declaration is called afunction
declarationif the type associated with the name is a function type (8.3.5) and anobject declarationother-
wise.

6 Syntactic components beyond those found in the general form of declaration are added to a function decla-
ration to make afunction-definition. An object declaration, however, is also a definition unless it contains
theextern specifier and has no initializer (3.1). A definition causes the appropriate amount of storage to
be reserved and any appropriate initialization (8.5) to be done.

7 Only in function-definitions(8.4) and in function declarations for constructors, destructors, and type con-
versions can thedecl-specifier-seqbe omitted.

8 The names declared by a declaration are introduced into the scope in which the declaration occurs, except
that the presence of afriend specifier (11.4), certain uses of theelaborated-type-specifier(7.1.5.3), and
using-directives (7.3.4) alter this general behavior.

9 In a declaration in which thedeclarator-idis aqualified-id, names before thequalified-idbeing defined are
sought in the defining scope. Names following thequalified-id are sought in the scope of the member’s
class or namespace.

[dcl.spec] 7.1 Specifiers

1 The specifiers that can be used in a declaration are

decl-specifier:
storage-class-specifier
type-specifier
function-specifier
friend
typedef

decl-specifier-seq:
decl-specifier-seqopt decl-specifier

2 The longest sequence ofdecl-specifiers that could possibly be a type name is taken as thedecl-specifier-seq
of adeclaration. The sequence shall be self-consistent as described below. [Example:

typedef char* Pc;
static Pc; // error: name missing

Here, the declarationstatic Pc is ill-formed because no name was specified for the static variable of
typePc. To get a variable of typeint calledPc, thetype-specifierint has to be present to indicate that
the typedef-namePc is the name being (re)declared, rather than being part of thedecl-specifiersequence.
For another example,

void f(const Pc); // void f(char* const) (not const char*)
void g(const int Pc); // void g(const int)

—end example]

3 [Note:sincesigned , unsigned , long , andshort by default implyint , a type-nameappearing after
one of those specifiers is treated as the name being (re)declared. [Example:

void h(unsigned Pc); // void h(unsigned int)
void k(unsigned int Pc); // void k(unsigned int)

—end example] —end note]

7.1.1 Storage class specifiers DRAFT: 28 April 1995 Declarations 7– 3

[dcl.stc] 7.1.1 Storage class specifiers

1 The storage class specifiers are

storage-class-specifier:
auto
register
static
extern
mutable

At most onestorage-class-specifiershall appear in a givendecl-specifier-seq. If a storage-class-specifier
appears in adecl-specifier-seq, there can be notypedef specifier in the samedecl-specifier-seqand the
init-declarator-listof the declaration shall not be empty (except for global anonymous unions, which shall
be declaredstatic (9.6). The storage-class-specifierapplies to the name declared by eachinit-
declaratorin the list and not to any names declared by other specifiers.

2 Theauto or register specifiers can be applied only to names of objects declared in a block (6.3) or to
function parameters (8.4). They specify that the named object has automatic storage duration (3.7.2). An
object declared without astorage-class-specifierat block scope or declared as a function parameter has
automatic storage duration by default. Hence, theauto specifier is almost always redundant and not often
used; one use ofauto is to distinguish adeclaration-statementfrom anexpression-statement(6.2) explic-
itly.

3 A register specifier has the same semantics as anauto specifier together with a hint to the implemen-
tation that the object so declared will be heavily used. The hint can be ignored and in most implementa-
tions it will be ignored if the address of the object is taken.

4 The static specifier can be applied only to names of objects and functions and to anonymous unions
(9.6). There can be nostatic function declarations within a block, nor anystatic function parame-
ters. A static specifier used in the declaration of an object declares the object to have static storage
duration (3.7.1). Astatic specifier can be used in declarations of class members; 9.5 describes its effect.
A name declared with astatic specifier in a scope other than class scope (3.3.5) has internal linkage.
For a nonmember function, aninline specifier is equivalent to astatic specifier for linkage purposes
(3.5) unless the inline declaration explicitly includesextern as part of itsdecl-specifieror matches a pre-
vious declaration of the function, in which case the function name retains the linkage of the previous decla-
ration.

5 The extern specifier can be applied only to the names of objects and functions. Theextern specifier
cannot be used in the declaration of class members or function parameters. An object or function intro-
duced by a declaration with anextern specifier has external linkage unless the declaration matches a visi-
ble prior declaration at namespace scope of the same object or function, in which case the object or function
has the linkage specified by the prior declaration.50)

6 A name declared in a namespace scope without astorage-class-specifierhas external linkage unless it has
internal linkage because of a previous declaration and provided it is not declaredconst . Objects declared
const and not explicitly declaredextern have internal linkage.

7 The linkages implied by successive declarations for a given entity shall agree. That is, within a given
scope, each declaration declaring the same object name or the same overloading of a function name shall
imply the same linkage. Each function in a given set of overloaded functions can have a different linkage,
however. [Example:

static char* f(); // f() has internal linkage
char* f() // f() still has internal linkage

{ /* ... */ }

50) ‘‘Prior’’ declarations can be introduced in enclosing scopes. This implies that a name specifiedstatic at namespace scope and
then specifiedextern in an inner scope still has internal linkage.

7– 4 Declarations DRAFT: 28 April 1995 7.1.1 Storage class specifiers

char* g(); // g() has external linkage
static char* g() // error: inconsistent linkage

{ /* ... */ }

void h();
inline void h(); // external linkage

inline void l();
void l(); // internal linkage

inline void m();
extern void m(); // internal linkage

static void n();
inline void n(); // internal linkage

static int a; // ‘a’ has internal linkage
int a; // error: two definitions

static int b; // ‘b’ has internal linkage
extern int b; // ‘b’ still has internal linkage

int c; // ‘c’ has external linkage
static int c; // error: inconsistent linkage

extern int d; // ‘d’ has external linkage
static int d; // error: inconsistent linkage

—end example]

8 The name of a declared but undefined class can be used in anextern declaration. Such a declaration,
however, cannot be used before the class has been defined. [Example:

struct S;
extern S a;
extern S f();
extern void g(S);

void h()
{

g(a); // error: S undefined
f(); // error: S undefined

}

—end example] Themutable specifier can be applied only to names of class data members (9.2) and can
not be applied to names declaredconst or static . [Example:

class X {
mutable const int* p; // ok
mutable int* const q; // ill-formed

};

—end example]

9 Themutable specifier on a class data member nullifies aconst specifier applied to the containing class
object and permits modification of the mutable class member even though the rest of the object isconst
(7.1.5.1).

7.1.2 Function specifiers DRAFT: 28 April 1995 Declarations 7– 5

[dcl.fct.spec] 7.1.2 Function specifiers

1 Function-specifierscan be used only in function declarations.

function-specifier:
inline
virtual
explicit

2 The inline specifier is a hint to the implementation that inline substitution of the function body is to be
preferred to the usual function call implementation. The hint can be ignored. Theinline specifier shall
not appear on a block scope function declaration. For the linkage of inline functions, see 3.5 and 7.1.1. A
function (8.3.5, 9.4, 11.4) defined within the class definition is inline.

3 An inline function shall be defined in every translation unit in which it is used (3.2), and shall have exactly
the same definition in every case (see one definition rule, 3.2). If a function with external linkage is
declared inline in one translation unit, it shall be declared inline in all translation units in which it appears.
A call to an inline function shall not precede its definition.51) [Example:

class X {
public:

int f();
inline int g();

};

void k(X* p)
{

int i = p->f();
int j = p->g(); // A call appears before X::g is defined

// ill-formed
// ...

}

inline int X::f() // Declares X::f as an inline function
// A call appears before X::f is defined
// ill-formed

{
// ...

}

inline int X::g()
{

// ...
}

—end example]

4 The virtual specifier shall be used only in declarations of nonstatic class member functions within a
class declaration; see 10.3.

5 Theexplicit specifier shall be used only in declarations of constructors within a class declaration; see
12.3.1.

51) Many function calls are implicit, particularly calls to constructors, destructors, conversions, andoperator new . Although such
calls are implicit, that does not affect the requirement that the function definitions precede their calls.

7– 6 Declarations DRAFT: 28 April 1995 7.1.3 Thetypedef specifier

[dcl.typedef] 7.1.3 Thetypedef specifier

1 Declarations containing thedecl-specifiertypedef declare identifiers that can be used later for naming
fundamental (3.9.1) or compound (3.9.2) types. Thetypedef specifier shall not be used in afunction-
definition (8.4), and it shall not be combined in adecl-specifier-seqwith any other kind of specifier except
a type-specifier.

typedef-name:
identifier

A name declared with thetypedef specifier becomes atypedef-name. Within the scope of its declaration,
a typedef-nameis syntactically equivalent to a keyword and names the type associated with the identifier in
the way described in 8. Atypedef-nameis thus a synonym for another type. Atypedef-namedoes not
introduce a new type the way a class declaration (9.1) or enum declaration does. [Example:after

typedef int MILES, *KLICKSP;

the constructions

MILES distance;
extern KLICKSP metricp;

are all correct declarations; the type ofdistance is int ; that ofmetricp is “pointer toint .”]

2 In a given scope, atypedef specifier can be used to redefine the name of any type declared in that scope
to refer to the type to which it already refers. [Example:

typedef struct s { /* ... */ } s;
typedef int I;
typedef int I;
typedef I I;

—end example]

3 In a given scope, atypedef specifier shall not be used to redefine the name of any type declared in that
scope to refer to a different type. [Example:

class complex { /* ... */ };
typedef int complex; // error: redefinition

—end example] Similarly, in a given scope, a class or enumeration shall not be declared with the same
name as atypedef-namethat is declared in that scope and refers to a type other than the class or enumera-
tion itself. [Example:

typedef int complex;
class complex { /* ... */ }; // error: redefinition

—end example]

4 A typedef-namethat names a class is aclass-name(9.1). The typedef-nameshall not be used after a
class , struct , or union prefix and not in the names for constructors and destructors within the class
declaration itself. [Example:

struct S {
S();
~S();

};

typedef struct S T;

S a = T(); // ok
struct T * p; // error

—end example]

7.1.3 Thetypedef specifier DRAFT: 28 April 1995 Declarations 7– 7

5 An unnamed class defined in a declaration with atypedef specifier gets a dummy name. For linkage
purposes only (3.5), the firsttypedef-namedeclared by the declaration is used to denote the class type in
place of the dummy name. [Example:

typedef struct { } S, R; // ’S’ is the class name for linkage purposes

—end example] The typedef-nameis still only a synonym for the dummy name and shall not be used
where a true class name is required. [Note: such a class cannot have user-declared constructors or
destructors because they cannot be named by the user. [Example:

typedef struct {
S(); // error: requires a return type since S is

// an ordinary member function, not a constructor
} S;

—end example] —end note] If an unnamed class is defined in atypedef declaration but the declaration
does not declare a class type, the name of the class for linkage purposes is a dummy name. [Example:

typedef struct { }* ps; // ’ps’ is not the class linkage name

—end example]

6 A typedef-namethat names an enumeration is anenum-name(7.2). Thetypedef-nameshall not be used
after anenum prefix.

[dcl.friend] 7.1.4 Thefriend specifier

1 Thefriend specifier is used to specify access to class members; see 11.4.

[dcl.type] 7.1.5 Type specifiers

1 The type-specifiers are

type-specifier:
simple-type-specifier
class-specifier
enum-specifier
elaborated-type-specifier
cv-qualifier

As a general rule, at most onetype-specifieris allowed in the completedecl-specifier-seqof a declaration.
The only exceptions to this rule are the following:

2
— const or volatile can be combined with any othertype-specifier. However, redundant cv-

qualifiers are prohibited except when introduced through the use of typedefs (7.1.3) or template type
arguments (14.8), in which case the redundant cv-qualifiers are ignored.

— signed or unsigned can be combined withchar , long , short , or int .

— short or long can be combined withint .

— long can be combined withdouble .

3 At least onetype-specifieris required in a typedef declaration. At least onetype-specifieris required in a
function declaration unless it declares a constructor, destructor or type conversion operator.52)

4 class-specifiers andenum-specifiers are discussed in 9 and 7.2, respectively. The remainingtype-specifiers
are discussed in the rest of this section.

52)There is no special provision for adecl-specifier-seqthat lacks atype-specifier. The“implicit int” rule of C is no longer supported.

7– 8 Declarations DRAFT: 28 April 1995 7.1.5.1 Thecv-qualifiers

[dcl.type.cv] 7.1.5.1 Thecv-qualifiers

1 There are twocv-qualifiers, const andvolatile . [Note: Subclause 3.9.3 describes how cv-qualifiers
affect object and function types.]

2 Unless explicitly declaredextern , aconst object does not have external linkage and shall be initialized
(8.5, 12.1); for aconst object of typeT, if T is a class with a user-declared default constructor, the con-
structor forT is called, otherwise, if theconst object is not initialized with an explicitinitializer, the pro-
gram is ill-formed. An integral or enumerationconst object initialized by an integral or enumeration con-
stant expression can be used in integral or enumeration constant expressions (5.19).

3 CV-qualifiers are supported by the type system so that they cannot be subverted without casting (5.2.10). A
pointer or reference to a cv-qualified type need not actually point or refer to a cv-qualified object, but it is
treated as if it does; a const-qualified access path cannot be used to modify an object even if the object ref-
erenced is a non-const object and can be modified through some other access path.

4 Except that any class member declaredmutable (7.1.1) can be modified, any attempt to modify aconst
object during its lifetime (3.8) results in undefined behavior.

5 [Example:

const int ci = 3; // cv-qualified (initialized as required)
ci = 4; // ill-formed: attempt to modify const

int i = 2; // not cv-qualified
const int* cip; // pointer to const int
cip = &i; // okay: cv-qualified access path to unqualified
*cip = 4; // ill-formed: attempt to modify through ptr to const

int* ip;
ip = const_cast<int*> cip; // cast needed to convert const int* to int*
*ip = 4; // defined: *ip points to i, a non-const object

const int* ciq = new const int (3); // initialized as required
int* iq = const_cast<int*> ciq; // cast required
iq = 4; // undefined: modifies a const object

6 For another example

class X {
public:

mutable int i;
int j;

};
class Y { public: X x; }

const Y y;
y.x.i++; // well-formed: mutable member can be modified
y.x.j++; // ill-formed: const-qualified member modified
Y* p = const_cast<Y*>(&y); // cast away const-ness of y
p->x.i = 99; // well-formed: mutable member can be modified
p->x.j = 99; // undefined: modifies a const member

—end example]

7 [Note:volatile is a hint to the processor to avoid aggressive optimization involving the object because
the value of the object might be changed by means undetectable by a processor. See 1.8 for detailed
semantics. In general, the semantics ofvolatile are intended to be the same in C + + as they are in C.]

7.1.5.2 Simple type specifiers DRAFT: 28 April 1995 Declarations 7– 9

[dcl.type.simple] 7.1.5.2 Simple type specifiers

1 The simple type specifiers are

simple-type-specifier:
:: opt nested-name-specifieropt type-name
char
wchar_t
bool
short
int
long
signed
unsigned
float
double
void

type-name:
class-name
enum-name
typedef-name

Thesimple-type-specifiers specify either a previously-declared user-defined type or one of the fundamental
types (3.9.1). Table 7 summarizes the valid combinations ofsimple-type-specifiers and the types they spec-
ify.

7– 10 Declarations DRAFT: 28 April 1995 7.1.5.2 Simple type specifiers

Table 7—simple-type-specifiers and the types they specify
__
Specifier(s) Type__
type-name the type named
char “char ”
unsigned char “unsigned char ”
signed char “signed char ”
bool “bool ”
unsigned “unsigned int ”
unsigned int “unsigned int ”
signed “int ”
signed int “int ”
int “int ”
unsigned short int “unsigned short int ”
unsigned short “unsigned short int ”
unsigned long int “unsigned long int ”
unsigned long “unsigned long int ”
signed long int “long int ”
signed long “long int ”
long int “long int ”
long “long int ”
signed short int “short int ”
signed short “short int ”
short int “short int ”
short “short int ”
wchar_t “wchar_t ”
float “float ”
double “double ”
long double “long double ”
void “void ”__

When multiplesimple-type-specifiersare allowed, they can be freely intermixed with otherdecl-specifiers
in any order. It is implementation-defined whether bit-fields and objects ofchar type are represented as
signed or unsigned quantities. Thesigned specifier forceschar objects and bit-fields to be signed; it is
redundant with other integral types.

[dcl.type.elab] 7.1.5.3 Elaborated type specifiers

1 Generally speaking, theelaborated-type-specifieris used to refer to a previously declaredclass-nameor
enum-nameeven though the name can be hidden by an intervening object, function, or enumerator declara-
tion (3.3), but in some cases it also can be used to declare aclass-name.

elaborated-type-specifier:
class-key :: opt nested-name-specifieropt identifier
enum :: opt nested-name-specifieropt identifier

class-key:
class
struct
union

2 If an elaborated-type-specifieris the sole constituent of a declaration, the declaration is ill-formed unless it
has one of the following forms:

— class-key identifier;

7.1.5.3 Elaborated type specifiers DRAFT: 28 April 1995 Declarations 7– 11

in which case theelaborated-type-specifierdeclares theidentifier to be a class-name in the scope that
contains the declaration (9.1);

3 — friend class-key identifier;

in which case, if theidentifier in the elaborated-type-specifierhas not been previously declared, the
elaborated-type-specifierdeclares theidentifier to be a class-name in the smallest enclosing non-class,
non-function prototype scope that contains the declaration; otherwise theidentifier is resolved as when
theelaborated-type-specifieris not the sole constituent of a declaration;

4 — friend class-key ::identifier;
friend class-key nested-name-specifier identifier;

in which case theidentifier is resolved as when theelaborated-type-specifieris not the sole constituent
of a declaration.

5 If the elaborated-type-specifieris not the sole constituent of the declaration, theidentifier following the
class-keyor enum keyword is resolved as described in 3.4 according to its qualifications, if any, but ignor-
ing any objects, functions, or enumerators that have been declared. If theidentifier resolves to aclass-name
or enum-name, theelaborated-type-specifierintroduces it into the declaration the same way asimple-type-
specifierintroduces itstype-name. If the identifier resolves to atypedef-name, theelaborated-type-specifier
is ill-formed. If the resolution is unsuccessful, theelaborated-type-specifieris ill-formed unless it is of the
simple formclass-key identifier. In this case, theidentifier is declared in the smallest non-class, non-
function prototype scope that contains the declaration.

6 Theclass-keyor enum keyword present in theelaborated-type-specifiershall agree in kind with the decla-
ration to which the name in theelaborated-type-specifierrefers. This rule also applies to the form of
elaborated-type-specifierthat declares aclass-nameor friend class since it can be construed as referring
to the definition of the class. Thus, in anyelaborated-type-specifier, theenum keyword shall be used to
refer to an enumeration (7.2), theunion class-keyshall be used to refer to a union (9), and either the
class or struct class-keyshall be used to refer to a structure (9) or to a class declared using theclass
class-key. [Example:

struct Node {
struct Node* Next; // ok: Refers to Node at global scope
struct Data* Data; // ok: Declares type Data

// at global scope and member Data
};

struct Data {
struct Node* Node; // ok: Refers to Node at global scope
friend struct ::Glob; // error: Glob is not declared

// cannot introduce a qualified type
friend struct Glob; // ok: Declares Glob in global scope
/* ... */

};

struct Base {
struct Data; // ok: Declares nested Data
struct ::Data* thatData; // ok: Refers to ::Data
struct Base::Data* thisData; // ok: Refers to nested Data

friend class ::Data; // ok: global Data is a friend
friend class Data; // ok: nested Data is a friend
struct Data { /* ... */ }; // Defines nested Data

struct Data; // ok: Redeclares nested Data
};

7– 12 Declarations DRAFT: 28 April 1995 7.1.5.3 Elaborated type specifiers

struct Data; // ok: Redeclares Data at global scope

struct ::Data; // error: cannot introduce a qualified type
struct Base::Data; // error: cannot introduce a qualified type
struct Base::Datum; // error: Datum undefined

struct Base::Data* pBase; // ok: refers to nested Data

—end example]

[dcl.enum] 7.2 Enumeration declarations

1 An enumeration is a distinct type (3.9.1) with named constants. Its name becomes anenum-name, within
its scope.

enum-name:
identifier

enum-specifier:
enum identifieropt { enumerator-listopt }

enumerator-list:
enumerator-definition
enumerator-list , enumerator-definition

enumerator-definition:
enumerator
enumerator = constant-expression

enumerator:
identifier

The identifiers in anenumerator-listare declared as constants, and can appear wherever constants are
required. If noenumerator-definitions with = appear, then the values of the corresponding constants begin
at zero and increase by one as theenumerator-listis read from left to right. Anenumerator-definitionwith
= gives the associatedenumeratorthe value indicated by theconstant-expression; subsequentenumerators
without initializers continue the progression from the assigned value. Theconstant-expressionshall be of
integral or enumeration type.

2 [Example:

enum { a, b, c=0 };
enum { d, e, f=e+2 };

definesa, c , andd to be zero,b ande to be1, andf to be3.]

3 The point of declaration for an enumerator is immediately after itsenumerator-definition. [Example:

const int x = 12;
{ enum { x = x }; }

Here, the enumeratorx is initialized with the value of the constantx , namely 12.]

4 Each enumeration defines a type that is different from all other types. The type of an enumerator is its enu-
meration.

5 Theunderlying typeof an enumeration is an integral type, not gratuitously larger thanint ,53) that can rep-
resent all enumerator values defined in the enumeration. If theenumerator-listis empty, the underlying
type is as if the enumeration had a single enumerator with value 0. The value ofsizeof() applied to an
enumeration type, an object of enumeration type, or an enumerator, is the value ofsizeof() applied to

53)The type should be larger thanint only if the value of an enumerator won’t all fit in anint or unsigned int .

7.2 Enumeration declarations DRAFT: 28 April 1995 Declarations 7– 13

the underlying type.

6 For an enumeration whereemin is the smallest enumerator andemax is the largest, the values of the enumer-
ation are the values of the underlying type in the rangebmin to bmax, wherebmin andbmax are, respectively,
the smallest and largest values of the smallest bit-field that can storeemin and emax. On a two’s-
complement machine,bmax is the smallest value greater than or equal to max (abs(emin) − 1 ,abs(emax)) of
the form 2M − 1; bmin is zero ifemin is non-negative and− (bmax + 1) otherwise. It is possible to define an
enumeration that has values not defined by any of its enumerators.

7 Two enumeration types are layout-compatible if they have the same sets of enumerator values.

8 The value of an enumerator or an object of an enumeration type is converted to an integer by integral pro-
motion (4.5). [Example:

enum color { red, yellow, green=20, blue };
color col = red;
color* cp = &col;
if (*cp == blue) // ...

makescolor a type describing various colors, and then declarescol as an object of that type, andcp as a
pointer to an object of that type. The possible values of an object of typecolor are red , yellow ,
green , blue ; these values can be converted to the integral values0, 1, 20 , and21 . Since enumerations
are distinct types, objects of typecolor can be assigned only values of typecolor .

color c = 1; // error: type mismatch,
// no conversion from int to color

int i = yellow; // ok: yellow converted to integral value 1
// integral promotion

See also C.3.]

9 An expression of arithmetic or enumeration type or of typewchar_t can be converted to an enumeration
type explicitly. The value is unchanged if it is in the range of enumeration values of the enumeration type;
otherwise the resulting enumeration value is unspecified.

10 The enum-name and each enumerator declared by an enum-specifier is declared in the scope that immedi-
ately contains the enum-specifier. These names obey the scope rules defined for all names in (3.3) and
(3.4). An enumerator declared in class scope can be referred to using the class member access operators (
:: , . (dot) and-> (arrow)), see 5.2.4. [Example:

class X {
public:

enum direction { left=’l’, right=’r’ };
int f(int i)

{ return i==left ? 0 : i==right ? 1 : 2; }
};

void g(X* p)
{

direction d; // error: ‘direction’ not in scope
int i;
i = p->f(left); // error: ‘left’ not in scope
i = p->f(X::right); // ok
i = p->f(p->left); // ok
// ...

}

—end example]

7– 14 Declarations DRAFT: 28 April 1995 7.3 Namespaces

[basic.namespace] 7.3 Namespaces

1 A namespace is an optionally-named declarative region. The name of a namespace can be used to access
entities declared in that namespace; that is, the members of the namespace. Unlike other declarative
regions, the definition of a namespace can be split over several parts of one or more translation units.

2 A name declared outside all named namespaces, blocks (6.3) and classes (9) has global namespace scope
(3.3.4).

[namespace.def] 7.3.1 Namespace definition

1 The grammar for anamespace-definitionis

original-namespace-name:
identifier

namespace-definition:
named-namespace-definition
unnamed-namespace-definition

named-namespace-definition:
original-namespace-definition
extension-namespace-definition

original-namespace-definition:
namespace identifier { namespace-body}

extension-namespace-definition:
namespace original-namespace-name{ namespace-body}

unnamed-namespace-definition:
namespace { namespace-body}

namespace-body:
declaration-seqopt

2 The identifier in anoriginal-namespace-definitionshall not have been previously defined in the declarative
region in which theoriginal-namespace-definitionappears. Theidentifier in an original-namespace-
definition is the name of the namespace. Subsequently in that declarative region, it is treated as an
original-namespace-name.

3 Theoriginal-namespace-namein anextension-namespace-definitionshall have previously been defined in
anoriginal-namespace-definitionin the same declarative region.

4 Everynamespace-definitionshall appear in the global scope or in a namespace scope (3.3.4).

[namespace.qual] 7.3.1.1 Explicit qualification

1 A name in a class or namespace can be accessed using qualification according to the grammar:

7.3.1.1 Explicit qualification DRAFT: 28 April 1995 Declarations 7– 15

id-expression:
unqualified-id
qualified-id

nested-name-specifier:
class-or-namespace-name:: nested-name-specifieropt

class-or-namespace-name:
class-name
namespace-name

namespace-name:
original-namespace-name
namespace-alias

2 The namespace-names in a nested-name-specifiershall have been previously defined by anamed-
namespace-definitionor anamespace-alias-definition.

3 The search for the initial qualifier preceding any:: operator locates only the names of types or name-
spaces. The search for a name after a:: locates only named members of a namespace or class. In particu-
lar, using-directives (7.3.4) are ignored, as is any enclosing declarative region.

[namespace.unnamed] 7.3.1.2 Unnamed namespaces

1 An unnamed-namespace-definitionbehaves as if it were replaced by

namespace unique { namespace-body}
using namespace unique;

where, for each translation unit, all occurrences ofunique in that translation unit are replaced by an identi-
fier that differs from all other identifiers in the entire program.54) [Example:

namespace { int i; } // unique::i
void f() { i++; } // unique::i++

namespace A {
namespace {

int i; // A:: unique::i
int j; // A:: unique::j

}
void g() { i++; } // A:: unique::i++

}

using namespace A;
void h() {

i++; // error: unique::i or A:: unique::i
A::i++; // error: A::i undefined
j++; // A:: unique::j

}

—end example]

[namespace.scope] 7.3.1.3 Namespace scope

1 The declarative region of anamespace-definitionis itsnamespace-body. The potential scope denoted by an
original-namespace-nameis the concatenation of the declarative regions established by each of the
namespace-definitions in the same declarative region with thatoriginal-namespace-name. Entities declared
in a namespace-bodyare said to bemembers of the namespace, and names introduced by these declarations

54) Although entities in an unnamed namespace might have external linkage, they are effectively qualified by a name unique to their
translation unit and therefore can never be seen from any other translation unit.

7– 16 Declarations DRAFT: 28 April 1995 7.3.1.3 Namespace scope

into the declarative region of the namespace are said to bemember namesof the namespace. [Example:

namespace N {
int i;
int g(int a) { return a; }
int k();
void q();

}

namespace { int l=1; }

namespace N {
int g(char a) // overloads N::g(int)
{

return l+a; // l is from unnamed namespace
}

int i; // error: duplicate definition

int k(); // ok: duplicate function declaration

int k() // ok: definition of N::k()
{

return g(i); // calls N::g(int)
}

int q(); // error: different return type
}

—end example]

2 Because anamespace-definitioncontainsdeclarations in itsnamespace-bodyand anamespace-definitionis
itself adeclaration, it follows thatnamespace-definitions can be nested. [Example:

namespace Outer {
int i;
namespace Inner {

void f() { i++; } // Outer::i
int i;
void g() { i++; } // Inner::i

}
}

—end example]

3 The use of thestatic keyword is deprecated when declaring objects in a namespace scope (see
future.directions); theunnamed-namespaceprovides a superior alternative.

[namespace.memdef] 7.3.1.4 Namespace member definitions

1 Members of a namespace can be defined within that namespace. [Example:

namespace X {
void f() { /* ... */ }

}

—end example]

2 Members of a named namespace can also be defined outside that namespace by explicit qualification
(7.3.1.1) of the name being defined, provided that the entity being defined was already declared in the
namespace and the definition appears after the point of declaration in a namespace that encloses the
declaration’s namespace. [Example:

7.3.1.4 Namespace member definitions DRAFT: 28 April 1995 Declarations 7– 17

namespace Q {
namespace V {

void f();
}
void V::f() { /* ... */ } // fine
void V::g() { /* ... */ } // error: g() is not yet a member of V
namespace V {

void g();
}

}

namespace R {
void Q::V::g() { /* ... */ } // error: R doesn’t enclose Q

}

—end example]

3 Every name first declared in a namespace is a member of that namespace. Afriend function first
declared within a class is a member of the innermost enclosing namespace. [Example:

// Assume f and g have not yet been defined.
namespace A {

class X {
friend void f(X); // declaration of f
class Y {

friend void g();
};

};

void f(X) { /* ... */} // definition of f declared above
X x;
void g() { f(x); } // f and g are members of A

}

using A::x;

void h()
{

A::f(x);
A::X::f(x); // error: f is not a member of A::X
A::X::Y::g(); // error: g is not a member of A::X::Y

}

—end example] The scope of class names first introduced inelaborated-type-specifiersis described in
(7.1.5.3).

4 When an entity declared with theextern specifier is not found to refer to some other declaration, then
that entity is a member of the innermost enclosing namespace. However such a declaration does not intro-
duce the member name in its namespace scope. [Example:

namespace X {
void p()
{

q(); // error: q not yet declared
extern void q(); // q is a member of namespace X

}

void middle()
{

q(); // error: q not yet declared
}

7– 18 Declarations DRAFT: 28 April 1995 7.3.1.4 Namespace member definitions

void q() { /* ... */ } // definition of X::q
}

void q() { /* ... */ } // some other, unrelated q

—end example]

[namespace.alias] 7.3.2 Namespace or class alias

1 A namespace-alias-definitiondeclares an alternate name for a namespace according to the following gram-
mar:

namespace-alias:
identifier

namespace-alias-definition:
namespace identifier = qualified-namespace-specifier ;

qualified-namespace-specifier:
:: opt nested-name-specifieropt class-or-namespace-name

2 The identifier in a namespace-alias-definitionis a synonym for the name of the namespace denoted by the
qualified-namespace-specifierand becomes anamespace-alias.

3 In a declarative region, anamespace-alias-definitioncan be used to redefine anamespace-aliasdeclared in
that declarative region to refer to the namespace to which it already refers. [Example:the following decla-
rations are well-formed:

namespace Company_with_very_long_name { /* ... */ }
namespace CWVLN = Company_with_very_long_name;
namespace CWVLN = Company_with_very_long_name; // ok: duplicate
namespace CWVLN = CWVLN;

—end example]

4 A namespace-nameor namespace-aliasshall not be declared as the name of any other entity in the same
declarative region. Anamespace-namedefined at global scope shall not be declared as the name of any
other entity in any global scope of the program. No diagnostic is required for a violation of this rule by
declarations in different translation units.

[namespace.udecl] 7.3.3 Theusing declaration

1 A using-declarationintroduces a name into the declarative region in which theusing-declarationappears.
That name is a synonym for the name of some entity declared elsewhere.

using-declaration:
using :: opt nested-name-specifier unqualified-id;
using :: unqualified-id;

2 The member names specified in ausing-declarationare declared in the declarative region in which the
using-declarationappears.

3 Everyusing-declarationis adeclarationand amember-declarationand so can be used in a class definition.
[Example:

struct B {
void f(char);
void g(char);

};

7.3.3 Theusing declaration DRAFT: 28 April 1995 Declarations 7– 19

struct D : B {
using B::f;
void f(int) { f(’c’); } // calls B::f(char)
void g(int) { g(’c’); } // recursively calls D::g(int)

};

—end example]

4 A using-declarationused as amember-declarationshall refer to a member of a base class of the class being
defined. [Example:

class C {
int g();

};

class D2 : public B {
using B::f; // ok: B is a base of D
using C::g; // error: C isn’t a base of D2

};

—end example]

5 A using-declarationfor a member shall be amember-declaration. [Example:

struct X {
int i;
static int s;

};

void f()
{

using X::i; // error: X::i is a class member
// and this is not a member declaration.

using X::s; // error: X::s is a class member
// and this is not a member declaration.

}

—end example]

6 Members declared by ausing-declarationcan be referred to by explicit qualification just like other member
names (7.3.1.1). In ausing-declaration, a prefix:: refers to the global namespace (as ever). [Example:

void f();

namespace A {
void g();

}

namespace X {
using ::f; // global f
using A::g; // A’s g

}

void h()
{

X::f(); // calls ::f
X::g(); // calls A::g

}

—end example]

7 A using-declarationis adeclarationand can therefore be used repeatedly where (and only where) multiple
declarations are allowed. [Example:

7– 20 Declarations DRAFT: 28 April 1995 7.3.3 Theusing declaration

namespace A {
int i;

}

namespace A1 {
using A::i;
using A::i; // ok: double declaration

}

void f()
{

using A::i;
using A::i; // error: double declaration

}

class B {
int i;

};

class X : public B {
using B::i;
using B::i; // error: double member declaration

};

—end example]

8 The entity declared by ausing-declarationshall be known in the context using it according to its definition
at the point of theusing-declaration. Definitions added to the namespace after theusing-declarationare
not considered when a use of the name is made. [Example:

namespace A {
void f(int);

}

using A::f; // f is a synonym for A::f;
// that is, for A::f(int).

namespace A {
void f(char);

}

void foo()
{

f(’a’); // calls f(int),
} // even though f(char) exists.

void bar()
{

using A::f; // f is a synonym for A::f;
// that is, for A::f(int) and A::f(char).

f(’a’); // calls f(char)
}

—end example]

9 A name defined by ausing-declarationis an alias for its original declarations so that theusing-declaration
does not affect the type, linkage or other attributes of the members referred to.

10 If the set of local declarations andusing-declarations for a single name are given in a declarative region,
they shall all refer to the same entity, or all refer to functions. [Example:

7.3.3 Theusing declaration DRAFT: 28 April 1995 Declarations 7– 21

namespace B {
int i;
void f(int);
void f(double);

}

void g()
{

int i;
using B::i; // error: i declared twice
void f(char);
using B::f; // fine: each f is a function

}

—end example]

11 If a local function declaration has the same name and type as a function introduced by ausing-declaration,
the program is ill-formed. [Example:

namespace C {
void f(int);
void f(double);
void f(char);

}

void h()
{

using B::f; // B::f(int) and B::f(double)
using C::f; // C::f(int), C::f(double), and C::f(char)
f(’h’); // calls C::f(char)
f(1); // error: ambiguous: B::f(int) or C::f(int) ?
void f(int); // error: f(int) conflicts with C::f(int)

}

—end example]

12 When ausing-declarationbrings names from a base class into a derived class scope, member functions in
the derived class override and/or hide virtual member functions with the same name and argument types in
a base class (rather than conflicting). [Example:

struct B {
virtual void f(int);
virtual void f(char);
void g(int);
void h(int);

};

struct D : B {
using B::f;
void f(int); // ok: D::f(int) overrides B::f(int);

using B::g;
void g(char); // ok

using B::h;
void h(int); // ok: D::h(int) hides B::h(int)

};

7– 22 Declarations DRAFT: 28 April 1995 7.3.3 Theusing declaration

void k(D* p)
{

p->f(1); // calls D::f(int)
p->f(’a’); // calls B::f(char)
p->g(1); // calls B::g(int)
p->g(’a’); // calls D::g(char)

}

—end example]

13 For the purpose of overload resolution, the functions which are introduced by ausing-declarationinto a
derived class will be treated as though they were members of the derived class. In particular, the implicit
this parameter shall be treated as if it were a pointer to the derived class rather than to the base class.
This has no effect on the type of the function, and in all other respects the function remains a member of the
base class.

14 All instances of the name mentioned in ausing-declarationshall be accessible. In particular, if a derived
class uses ausing-declarationto access a member of a base class, the member name shall be accessible. If
the name is that of an overloaded member function, then all functions named shall be accessible.

15 The alias created by theusing-declarationhas the usual accessibility for amember-declaration. [Example:

class A {
private:

void f(char);
public:

void f(int);
protected:

void g();
};

class B : public A {
using A::f; // error: A::f(char) is inaccessible

public:
using A::g; // B::g is a public synonym for A::g

};

—end example]

16 [Note:Use ofaccess-declarations (11.3) is deprecated; memberusing-declarations provide a better alterna-
tive.]

[namespace.udir] 7.3.4 Using directive

1 using-directive:
using namespace :: opt nested-name-specifieropt namespace-name ;

2 A using-directivespecifies that the names in the namespace with the givennamespace-name, including
those specified by anyusing-directives in that namespace, can be used in the scope in which theusing-
directiveappears after the using directive, exactly as if the names from the namespace had been declared
outside the namespace at the points where the namespace was defined. Furthermore, if theusing-directive
specifies anested-name-specifier:

— if the using-directiveappears in a namespaceA and the namespace nominated by theusing-directiveis a
nested namespace ofA, the names from the nested namespace appear as if they were declared in name-
spaceA at the point were the nested namespace was defined inA; otherwise,

— for a using-directivewith a nested-name-specifierof the formT1::...::Tn:: and anamespace-
name N, the names from the nested namespaceN appear as if they were declared outside of
T1::...::Tn::N at the point where the nested namespace was defined.

7.3.4 Using directive DRAFT: 28 April 1995 Declarations 7– 23

A using-directivedoes not add any members to the declarative region in which it appears. If a namespace
is extended by anextended-namespace-definitionafter ausing-directiveis given, the additional members of
the extended namespace can be used after theextended-namespace-definition.

3 The using-directiveis transitive: if a namespace contains ausing-directivethat nominates a second name-
space that itself containsusing-directives, the effect is as if theusing-directives from the second namespace
also appeared in the first. In particular, a name in a namespace does not hide names in a second namespace
which is the subject of ausing-directivein the first namespace. [Example:

namespace M {
int i;

}

namespace N {
int i;
using namespace M;

}

void f()
{

N::i = 7; // well-formed: M::i is not a member of N
using namespace N;
i = 7; // error: both M::i and N::i are accessible

}

—end example]

4 During overload resolution, all functions from the transitive search are considered for argument matching.
An ambiguity exists if the best match finds two functions with the same signature, even if one might seem
to ‘‘hide’’ the other in theusing-directivelattice. [Example:

namespace D {
int d1;
void f(char);

}
using namespace D;

int d1; // ok: no conflict with D::d1

namespace E {
int e;
void f(int);

}

namespace D { // namespace extension
int d2;
using namespace E;
void f(int);

}

void f()
{

d1++; // error: ambiguous ::d1 or D::d1?
::d1++; // ok
D::d1++; // ok
d2++; // ok: D::d2
e++; // ok: E::e
f(1); // error: ambiguous: D::f(int) or E::f(int)?
f(’a’); // ok: D::f(char)

}

—end example]

7– 24 Declarations DRAFT: 28 April 1995 7.4 Theasm declaration

[dcl.asm] 7.4 Theasm declaration

1 An asm declaration has the form

asm-definition:
asm (string-literal) ;

The meaning of anasm declaration is implementation-defined. [Note:Typically it is used to pass informa-
tion through the processor to an assembler.—end note]

[dcl.link] 7.5 Linkage specifications

1 Linkage (3.5) between C + + and non-C + + code fragments can be achieved using alinkage-specification:

linkage-specification:
extern string-literal { declaration-seqopt }
extern string-literal declaration

declaration-seq:
declaration
declaration-seq declaration

The string-literal indicates the required linkage. The meaning of thestring-literal is implementation-
defined. Every implementation shall provide for linkage to functions written in the C programming lan-
guage,"C" , and linkage to C + + functions,"C++" . Default linkage is"C++" . [Example:

complex sqrt(complex); // C++ linkage by default
extern "C" {

double sqrt(double); // C linkage
}

—end example]

2 Linkage specifications nest. A linkage specification does not establish a scope. Alinkage-specificationcan
occur only in namespace scope (3.3). Alinkage-specificationfor a class applies to nonmember functions
and objects declared within it. Alinkage-specificationfor a function also applies to functions and objects
declared within it. A linkage declaration with a string that is unknown to the implementation is ill-formed.

3 If a function or object has more than onelinkage-specification, they shall agree; that is, they shall specify
the samestring-literal. Except for functions with C + + linkage, a function declaration without a linkage
specification shall not precede the first linkage specification for that function. A function can be declared
without a linkage specification after an explicit linkage specification has been seen; the linkage explicitly
specified in the earlier declaration is not affected by such a function declaration.

4 At most one of a set of overloaded functions (13) with a particular name can have C linkage.

5 Linkage can be specified for objects. [Example:

extern "C" {
// ...
_iobuf _iob[_NFILE];
// ...
int _flsbuf(unsigned,_iobuf*);
// ...

}

—end example] Functions and objects can be declaredstatic or inline within the {} of a linkage
specification. The linkage directive is ignored for a function or object with internal linkage (3.5). A func-
tion first declared in a linkage specification behaves as a function with external linkage. [Example:

extern "C" double f();
static double f(); // error

is ill-formed (7.1.1).] An object defined within an

7.5 Linkage specifications DRAFT: 28 April 1995 Declarations 7– 25

extern "C" { /* ... */ }

construct is still defined (and not just declared).

6 The linkage of a pointer to function affects only the pointer. When the pointer is dereferenced, the function
to which it refers is considered to be a C + + function. There is no way to specify that the function to which a
function pointer refers is written in another language

7 Linkage from C + + to objects defined in other languages and to objects defined in C + + from other languages
is implementation-defined and language-dependent. Only where the object layout strategies of two lan-
guage implementations are similar enough can such linkage be achieved. Taking the address of a function
whose linkage is other than C + + or C produces undefined behavior.

8 When the name of a programming language is used to name a style of linkage in thestring-literal in a
linkage-specification, it is recommended that the spelling be taken from the document defining that lan-
guage, [Example:Ada (notADA) andFORTRAN(notFortran).]

_ ___ ___

8 Declarators [dcl.decl]
_ ___ ___

1 A declarator declares a single object, function, or type, within a declaration. Theinit-declarator-list
appearing in a declaration is a comma-separated sequence of declarators, each of which can have an initial-
izer.

init-declarator-list:
init-declarator
init-declarator-list , init-declarator

init-declarator:
declarator initializeropt

2 The two components of adeclarationare the specifiers (decl-specifier-seq; 7.1) and the declarators (init-
declarator-list). The specifiers indicate the fundamental type, storage class, or other properties of the
objects and functions being declared. The declarators specify the names of these objects and functions and
(optionally) modify the type with operators such as* (pointer to) and() (function returning). Initial val-
ues can also be specified in a declarator; initializers are discussed in 8.5 and 12.6.

3 Eachinit-declarator in a declaration is analyzed separately as if it was in a declaration by itself.55)

4 Declarators have the syntax

declarator:
direct-declarator
ptr-operator declarator

direct-declarator:
declarator-id
direct-declarator (parameter-declaration-clause) cv-qualifier-seqopt exception-specificationopt

direct-declarator [constant-expressionopt]
(declarator)

55) A declaration with several declarators is usually equivalent to the corresponding sequence of declarations each with a single
declarator. That is

T D1, D2, ... Dn;

is usually equvalent to

T D1; T D2; ... T Dn;

whereT is adecl-specifier-seqand eachDi is a init-declarator. The exception occurs when one declarator modifies the name environ-
ment used by a following declarator, as in

struct S { ... };
S S, T; // declare two instances of struct S

which is not equivalent to

struct S { ... };
S S;
S T; // error

8– 2 Declarators DRAFT: 28 April 1995 8 Declarators

ptr-operator:
* cv-qualifier-seqopt

&
:: opt nested-name-specifier* cv-qualifier-seqopt

cv-qualifier-seq:
cv-qualifier cv-qualifier-seqopt

cv-qualifier:
const
volatile

declarator-id:
id-expression
nested-name-specifieropt type-name

A class-namehas special meaning in a declaration of the class of that name and when qualified by that
name using the scope resolution operator:: (5.1, 12.1, 12.4).

[dcl.name] 8.1 Type names

1 To specify type conversions explicitly, and as an argument ofsizeof , new, or typeid , the name of a
type shall be specified. This can be done with atype-id, which is syntactically a declaration for an object or
function of that type that omits the name of the object or function.

type-id:
type-specifier-seq abstract-declaratoropt

type-specifier-seq:
type-specifier type-specifier-seqopt

abstract-declarator:
ptr-operator abstract-declaratoropt

direct-abstract-declarator

direct-abstract-declarator:
direct-abstract-declaratoropt (parameter-declaration-clause) cv-qualifier-seqopt exception-specificationopt

direct-abstract-declaratoropt [constant-expressionopt]
(abstract-declarator)

It is possible to identify uniquely the location in theabstract-declaratorwhere the identifier would appear
if the construction were a declarator in a declaration. The named type is then the same as the type of the
hypothetical identifier. [Example:

int // int i
int * // int *pi
int *[3] // int *p[3]
int (*)[3] // int (*p3i)[3]
int *() // int *f()
int (*)(double) // int (*pf)(double)

name respectively the types“integer,” “pointer to integer,” “array of 3 pointers to integers,” “pointer to
array of 3 integers,” “function having no parameters and returning pointer to integer,” and“pointer to func-
tion of double returning an integer.”]

2 A type can also be named (often more easily) by using atypedef(7.1.3).

8.2 Ambiguity resolution DRAFT: 28 April 1995 Declarators 8– 3

[dcl.ambig.res] 8.2 Ambiguity resolution

1 The ambiguity arising from the similarity between a function-style cast and a declaration mentioned in 6.8
can also occur in the context of a declaration. In that context, it surfaces as a choice between a function
declaration with a redundant set of parentheses around a parameter name and an object declaration with a
function-style cast as the initializer. Just as for statements, the resolution is to consider any construct that
could possibly be a declaration a declaration. A declaration can be explicitly disambiguated by a
nonfunction-style cast or a= to indicate initialization. [Example:

struct S {
S(int);

};

void foo(double a)
{

S x(int(a)); // function declaration
S x(int()); // function declaration
S y((int)a); // object declaration
S z = int(a); // object declaration

}

—end example]

2 The ambiguity arising from the similarity between a function-style cast and atype-idcan occur in many dif-
ferent contexts. The ambiguity surfaces as a choice between a function-style cast expression and a declara-
tion of a type. The resolution is that any construct that could possibly be atype-id in its syntactic context
shall be considered atype-id.

3 [Example:

#include <cstddef>
char *p;
void *operator new(size_t, int);
void foo(int x) {

new (int(*p)) int; // new-placement expression
new (int(*[x])); // new type-id

}

4 For another example,

template <class T>
struct S {
T *p;
};
S<int()> x; // type-id
S<int(1)> y; // expression (ill-formed)

5 For another example,

void foo()
{

sizeof(int(1)); // expression
sizeof(int()); // type-id (ill-formed)

}

6 For another example,

void foo()
{

(int(1)); // expression
(int())1; // type-id (ill-formed)

}

—end example]

8– 4 Declarators DRAFT: 28 April 1995 8.3 Meaning of declarators

[dcl.meaning] 8.3 Meaning of declarators

1 A list of declarators appears after an optional (7)decl-specifier-seq(7.1). Each declarator contains exactly
one declarator-id; it names the identifier that is declared. Adeclarator-id shall be a simpleidentifier,
except for the following cases: the declaration of some special functions (12.3, 12.4, 13.5), the definition of
a member function (9.4), the definition of a static data member (9.5), the declaration of a friend function
that is a member of another class (11.4). Anauto , static , extern , register , friend , inline ,
virtual , or typedef specifier applies directly to eachdeclarator-id in a init-declarator-list; the type
specified for eachdeclarator-iddepends on both thedecl-specifier-seqand itsdeclarator.

2 Thus, a declaration of a particular identifier has the form

T D

whereT is adecl-specifier-seqandD is a declarator. The following subsections give an inductive proce-
dure for determining the type specified for the containeddeclarator-idby such a declaration.

3 First, thedecl-specifier-seqdetermines a type. In a declaration

T D

thedecl-specifier-seqT determines the type“T.” [Example:in the declaration

int unsigned i;

the type specifiersint unsigned determine the type“unsigned int ” (7.1.5.2).]

4 In a declarationT DwhereD is an unadorned identifier the type of this identifier is“T.”

5 In a declarationT DwhereDhas the form

(D1)

the type of the containeddeclarator-idis the same as that of the containeddeclarator-idin the declaration

T D1

Parentheses do not alter the type of the embeddeddeclarator-id, but they can alter the binding of complex
declarators.

[dcl.ptr] 8.3.1 Pointers

1 In a declarationT DwhereDhas the form

* cv-qualifier-seqopt D1

and the type of the identifier in the declarationT D1 is “derived-declarator-type-listT,” then the type of the
identifier of D is “derived-declarator-type-list cv-qualifier-seqpointer toT.” Thecv-qualifiers apply to the
pointer and not to the object pointed to.

2 [Example:the declarations

const int ci = 10, *pc = &ci, *const cpc = pc, **ppc;
int i, *p, *const cp = &i;

declareci , a constant integer;pc , a pointer to a constant integer;cpc , a constant pointer to a constant
integer,ppc , a pointer to a pointer to a constant integer;i , an integer;p, a pointer to integer; andcp , a
constant pointer to integer. The value ofci , cpc , andcp cannot be changed after initialization. The value
of pc can be changed, and so can the object pointed to bycp . Examples of some correct operations are

i = ci;
*cp = ci;
pc++;
pc = cpc;
pc = p;
ppc = &pc;

Examples of ill-formed operations are

8.3.1 Pointers DRAFT: 28 April 1995 Declarators 8– 5

ci = 1; // error
ci++; // error
*pc = 2; // error
cp = &ci; // error
cpc++; // error
p = pc; // error
ppc = &p; // error

Each is unacceptable because it would either change the value of an object declaredconst or allow it to be
changed through a cv-unqualified pointer later, for example:

*ppc = &ci; // okay, but would make p point to ci ...
// ... because of previous error

*p = 5; // clobber ci

—end example]

3 volatile specifiers are handled similarly.

4 See also 5.17 and 8.5.

5 There can be no pointers to references (8.3.2) or pointers to bit-fields (9.7).

[dcl.ref] 8.3.2 References

1 In a declarationT DwhereDhas the form

& D1

and the type of the identifier in the declarationT D1 is “derived-declarator-type-listT,” then the type of the
identifier of D is “derived-declarator-type-listreference toT.” At all times during the determination of a
type, any type of the form“cv-qualifier-seqreference toT” is adjusted to be“reference toT”. [Example:in

typedef int& A;
const A aref = 3;

the type ofaref is “reference toint ”, not “const reference toint ”.] A declarator that specifies the
type“reference tocvvoid” is ill-formed.

2 [Example:

void f(double& a) { a += 3.14; }
// ...

double d = 0;
f(d);

declaresa to be a reference parameter off so the callf(d) will add 3.14 to d.

int v[20];
// ...
int& g(int i) { return v[i]; }
// ...
g(3) = 7;

declares the functiong() to return a reference to an integer sog(3)=7 will assign7 to the fourth element
of the arrayv . For another example,

struct link {
link* next;

};

link* first;

8– 6 Declarators DRAFT: 28 April 1995 8.3.2 References

void h(link*& p) // ‘p’ is a reference to pointer
{

p->next = first;
first = p;
p = 0;

}

void k()
{

link* q = new link;
h(q);

}

declaresp to be a reference to a pointer tolink soh(q) will leaveq with the value zero. See also 8.5.3.
]

3 It is unspecified whether or not a reference requires storage (3.7).

4 There shall be no references to references, no references to bit-fields (9.7), no arrays of references, and no
pointers to references. The declaration of a reference shall contain aninitializer (8.5.3) except when the
declaration contains an explicitextern specifier (7.1.1), is a class member (9.2) declaration within a class
declaration, or is the declaration of a parameter or a return type (8.3.5); see 3.1. A reference shall be initial-
ized to refer to a valid object or function. In particular, null references are prohibited; no diagnostic is
required.

[dcl.mptr] 8.3.3 Pointers to members

1 In a declarationT DwhereDhas the form

:: opt nested-name-specifier* cv-qualifier-seqopt D1

and thenested-name-specifiernames a class, and the type of the identifier in the declarationT D1 is
“derived-declarator-type-listT,” then the type of the identifier ofD is “derived-declarator-type-list cv-
qualifier-seqpointer to member ofclass nested-name-specifier of typeT.”

2 [Example:

class X {
public:

void f(int);
int a;

};
class Y;

int X::* pmi = &X::a;
void (X::* pmf)(int) = &X::f;
double X::* pmd;
char Y::* pmc;

declarespmi , pmf , pmdandpmc to be a pointer to a member ofX of typeint , a pointer to a member ofX
of typevoid(int) , a pointer to a member ofX of typedouble and a pointer to a member ofY of type
char respectively. The declaration ofpmd is well-formed even thoughX has no members of type
double . Similarly, the declaration ofpmc is well-formed even thoughY is an incomplete type.pmi and
pmf can be used like this:

X obj;
//...
obj.*pmi = 7; // assign 7 to an integer

// member of obj
(obj.*pmf)(7); // call a function member of obj

// with the argument 7

—end example]

8.3.3 Pointers to members DRAFT: 28 April 1995 Declarators 8– 7

3 A pointer to member shall not point to a static member of a class (9.5), a member with reference type, or
“cvvoid .” [Note:There is no“reference-to-member” type in C + +. See also 5.5 and 5.3.]

[dcl.array] 8.3.4 Arrays

1 In a declarationT DwhereDhas the form

D1 [constant-expressionopt]

and the type of the identifier in the declarationT D1 is “derived-declarator-type-listT,” then the type of the
identifier of D is an array type.T shall not be a reference type, an incomplete type, a function type or an
abstract class type. If theconstant-expression(5.19) is present, its value shall be greater than zero. The
constant expression specifies theboundof (number of elements in) the array. If the value of the constant
expression isN, the array hasN elements numbered0 to N-1 , and the type of the identifier ofD is
“derived-declarator-type-listarray ofN T.” If the constant expression is omitted, the type of the identifier
of D is “derived-declarator-type-listarray of unknown bound ofT,” an incomplete object type. The type
“derived-declarator-type-listarray ofN T ” is a different type from the type“derived-declarator-type-list
array of unknown bound ofT,” see 3.9. At all times during the determination of a type, any type of the
form “cv-qualifier-seqarray ofN T” is adjusted to“array ofN cv-qualifier-seq,T” and similarly for“array
of unknown bound of .T” [Example:

typedef int A[5], AA[2][3];
const A x; // type is ‘‘array of 5 const int’’
const AA y; // type is ‘‘array of 2 array of 3 const int’’

—end example]

2 An array can be constructed from one of the fundamental types56) (exceptvoid), from a pointer, from a
pointer to member, from a class, or from another array.

3 When several“array of” specifications are adjacent, a multidimensional array is created; the constant
expressions that specify the bounds of the arrays can be omitted only for the first member of the sequence.
[Note: this elision is useful for function parameters of array types, and when the array is external and the
definition, which allocates storage, is given elsewhere.] The firstconstant-expressioncan also be omitted
when the declarator is followed by aninitializer (8.5). In this case the bound is calculated from the number
of initial elements (say,N) supplied (8.5.1), and the type of the identifier ofD is “array ofN T.”

4 [Example:

float fa[17], *afp[17];

declares an array offloat numbers and an array of pointers tofloat numbers. For another example,

static int x3d[3][5][7];

declares a static three-dimensional array of integers, with rank 3×5×7. In complete detail,x3d is an array
of three items; each item is an array of five arrays; each of the latter arrays is an array of seven integers.
Any of the expressionsx3d , x3d[i] , x3d[i][j] , x3d[i][j][k] can reasonably appear in an
expression.]

5 [Note: conversions affecting lvalues of array type are described in 4.2. Objects of array types cannot be
modified, see 3.10.]

6 Except where it has been declared for a class (13.5.5), the subscript operator[] is interpreted in such a way
thatE1[E2] is identical to*((E1)+(E2)) . Because of the conversion rules that apply to+, if E1 is an
array andE2 an integer, thenE1[E2] refers to theE2-th member ofE1. Therefore, despite its asymmetric
appearance, subscripting is a commutative operation.

56)The enumeration types are included in the fundamental types.

8– 8 Declarators DRAFT: 28 April 1995 8.3.4 Arrays

7 A consistent rule is followed for multidimensional arrays. IfE is an n-dimensional array of rank
i × j × . . . ×k, thenE appearing in an expression is converted to a pointer to an (n − 1)-dimensional array
with rankj × . . . ×k. If the* operator, either explicitly or implicitly as a result of subscripting, is applied to
this pointer, the result is the pointed-to (n − 1)-dimensional array, which itself is immediately converted
into a pointer.

8 [Example:consider

int x[3][5];

Herex is a 3×5 array of integers. Whenx appears in an expression, it is converted to a pointer to (the first
of three) five-membered arrays of integers. In the expressionx[i] , which is equivalent to*(x+i) , x is
first converted to a pointer as described; thenx+i is converted to the type ofx , which involves multiplying
i by the length of the object to which the pointer points, namely five integer objects. The results are added
and indirection applied to yield an array (of five integers), which in turn is converted to a pointer to the first
of the integers. If there is another subscript the same argument applies again; this time the result is an inte-
ger.]

9 [Note: it follows from all this that arrays in C + + are stored row-wise (last subscript varies fastest) and that
the first subscript in the declaration helps determine the amount of storage consumed by an array but plays
no other part in subscript calculations.]

[dcl.fct] 8.3.5 Functions

1 In a declarationT DwhereDhas the form

D1 (parameter-declaration-clause) cv-qualifier-seqopt exception-specificationopt

and the type of the containeddeclarator-id in the declarationT D1 is “derived-declarator-type-listT,” the
type of thedeclarator-idin D is “derived-declarator-type-list cv-qualifier-seqopt function with parameters of
typeparameter-declaration-clauseand returningT”; a type of this form is afunction type57).

parameter-declaration-clause:
parameter-declaration-listopt ... opt

parameter-declaration-list, ...

parameter-declaration-list:
parameter-declaration
parameter-declaration-list, parameter-declaration

parameter-declaration:
decl-specifier-seq declarator
decl-specifier-seq declarator= assignment-expression
decl-specifier-seq abstract-declaratoropt

decl-specifier-seq abstract-declaratoropt = assignment-expression

2 The parameter-declaration-clausedetermines the arguments that can be specified, and their processing,
when the function is called. If theparameter-declaration-clauseterminates with an ellipsis, the number of
arguments shall be equal to or greater than the number of parameters specified; if it is empty, the function
takes no arguments. The parameter list(void) is equivalent to the empty parameter list. Except for this
special case,void shall not be a parameter type (though types derived fromvoid , such asvoid* , can).
Where syntactically correct,“, ... ” is synonymous with“... ”. [Note: the standard header
<cstdarg> contains a mechanism for accessing arguments passed using the ellipsis (see 5.2.2 and 18.7).
]

3 A single name can be used for several different functions in a single scope; this is function overloading
(13). All declarations for a function with a given parameter list shall agree exactly both in the type of the
value returned and in the number and type of parameters; the presence or absence of the ellipsis is

57)As indicated by the syntax, cv-qualifiers are a significant component in function return types.

8.3.5 Functions DRAFT: 28 April 1995 Declarators 8– 9

considered part of the function type. The type of each parameter is determined from its owndecl-
specifier-seqanddeclarator. After determining the type of each parameter, any parameter of type“array of
T” or “function returningT” is adjusted to be“pointer toT” or “pointer to function returningT,” respec-
tively. After producing the list of parameter types, several transformations take place upon the types. Any
cv-qualifier modifying a parameter type is deleted; e.g., the typevoid(const int) becomes
void(int) . Suchcv-qualifiers affect only the definition of the parameter within the body of the func-
tion. If the storage-class-specifierregister modifies a parameter type, the specifier is deleted; e.g.,
register char* becomeschar* . Such storage-class-qualifiers affect only the definition of the
parameter within the body of the function. The resulting list of transformed parameter types is the
function’s parameter type list. The return type and the parameter type list, but not the default arguments
(8.3.6) or exception specification (15.4), are part of the function type. If the type of a parameter includes a
type of the form“pointer to array of unknown bound ofT” or “reference to array of unknown bound ofT,”
the program is ill-formed.58) A cv-qualifier-seqcan only be part of a declaration or definition of a nonstatic
member function, and of a pointer to a member function; see 9.4.2. It is part of the function type.

4 Functions shall not return arrays or functions, although they can return pointers and references to such
things. There shall be no arrays of functions, although there can be arrays of pointers to functions.

5 Types shall not be defined in return or parameter types.

6 [Note: the parameter-declaration-clauseis used to check and convert arguments in calls and to check
pointer-to-function, reference-to-function, and pointer-to-member-function assignments and initializations.
]

7 An identifier can optionally be provided as a parameter name; if present in a function definition (8.4), it
names a parameter (sometimes called“formal argument”). [Note: in particular, parameter names are also
optional in function definitions and names used for a parameter in different declarations and the definition
of a function need not be the same. If an identifier is present in a function declaration, it cannot be used
since it goes out of scope at the end of the function declarator (3.3);]

8 [Note:Theexception-specificationis described in 15.4 .]

9 [Example:the declaration

int i,
*pi,
f(),
*fpi(int),
(*pif)(const char*, const char*);
(*fpif(int))(int);

declares an integeri , a pointerpi to an integer, a functionf taking no arguments and returning an integer,
a functionfpi taking an integer argument and returning a pointer to an integer, a pointerpif to a function
which takes two pointers to constant characters and returns an integer, a functionfpif taking an integer
argument and returning a pointer to a function that takes an integer argument and returns an integer. It is
especially useful to comparefpi andpif . The binding of*fpi(int) is *(fpi(int)) , so the decla-
ration suggests, and the same construction in an expression requires, the calling of a functionfpi , and then
using indirection through the (pointer) result to yield an integer. In the declarator(*pif)(const
char*, const char*) , the extra parentheses are necessary to indicate that indirection through a pointer
to a function yields a function, which is then called.

10 Typedefs are sometimes convenient when the return type of a function is complex. For another example,
the functionfpif above could have been declared

58) This excludes parameters of type“ptr-arr-seq T2” whereT2 is “pointer to array of unknown bound ofT” and whereptr-arr-seq
means any sequence of“pointer to” and“array of” derived declarator types. This exclusion applies to the parameters of the function,
and if a parameter is a pointer to function or pointer to member function then to its parameters also, etc.

8– 10 Declarators DRAFT: 28 April 1995 8.3.5 Functions

typedef int IFUNC(int);
IFUNC* fpif(int);

11 The declaration

int fseek(FILE*, long, int);

declares a function taking three arguments of the specified types, and returningint (7.1.5). The declara-
tion

int printf(const char*, ...);

declares a function that can be called with varying numbers and types of arguments.

printf("hello world");
printf("a=%d b=%d", a, b);

However, the first argument must be of a type that can be converted to aconst char* .

12 —end example]

[dcl.fct.default] 8.3.6 Default arguments

1 If an expression is specified in a parameter declaration this expression is used as a default argument.
Default arguments will be used in calls where trailing arguments are missing.

2 [Example:the declaration

void point(int = 3, int = 4);

declares a function that can be called with zero, one, or two arguments of typeint . It can be called in any
of these ways:

point(1,2); point(1); point();

The last two calls are equivalent topoint(1,4) andpoint(3,4) , respectively.]

3 A default argument expression shall be specified only in theparameter-declaration-clauseof a function
declaration or in atemplate-parameter(14.7). If it is specified in aparameter-declaration-clause, it shall
not occur within adeclaratoror abstract-declaratorof aparameter-declaration.59)

4 For non-template functions, default arguments can be added in later declarations of a function in the same
scope. Declarations in different scopes have completely distinct sets of default arguments. That is, declara-
tions in inner scopes do not acquire default arguments from declarations in outer scopes, and vice versa. In
a given function declaration, all parameters subsequent to a parameter with a default argument shall have
default arguments supplied in this or previous declarations. A default argument shall not be redefined by a
later declaration (not even to the same value). [Example:

void f(int, int);
void f(int, int = 7);
void h()
{

f(3); // ok, calls f(3, 7)
void f(int = 1, int); // error: does not use default

// from surrounding scope
}

59) This means that default arguments cannot appear, for example, in declarations of pointers to functions, references to functions, or
typedef declarations.

8.3.6 Default arguments DRAFT: 28 April 1995 Declarators 8– 11

void m()
{

void f(int, int); // has no defaults
f(4); // error: wrong number of arguments
void f(int, int = 5); // ok
f(4); // ok, calls f(4, 5);
void f(int, int = 5); // error: cannot redefine, even to

// same value
}
void n()
{

f(6); // ok, calls f(6, 7)
}

—end example] Declarations of a given nonmember function in different translation units need not specify
the same default arguments. Declarations of a given member function in different translation units, how-
ever, shall specify the same default arguments (the accumulated sets of default arguments at the end of the
translation units shall be the same).

5 Default argument expressions have their names bound and their types checked at the point of declaration.
[Example:in the following code,g will be called with the valuef(1) :

int a = 1;
int f(int);
int g(int x = f(a)); // default argument: f(::a)

void h() {
a = 2;
{

int a = 3;
g(); // g(f(::a))

}
}

—end example]

6 In member function declarations, names in default argument expressions are looked up in the scope of the
class like names in member function bodies (9.3). The default arguments in an out-of-line function defini-
tion are added to the set of default arguments provided by the member function declaration in the class defi-
nition. [Example:

class C {
void f(int i = 3);
void g(int i, int j = 99);

};

void C::f(int i = 3) // error: default argument already
{ } // specified in class scope
void C::g(int i = 88, int j) // in this translation unit,
{ } // C::g can be called with no argument

—end example]

7 Local variables shall not be used in default argument expressions. [Example:

void f()
{

int i;
extern void g(int x = i); // error
// ...

}

—end example]

8– 12 Declarators DRAFT: 28 April 1995 8.3.6 Default arguments

8 The keywordthis shall not be used in a default argument of a member function. [Example:

class A {
void f(A* p = this) { } // error

};

—end example]

9 Default arguments are evaluated at each point of call before entry into a function. The order of evaluation
of function arguments is implementation-defined. Consequently, parameters of a function shall not be used
in default argument expressions, even if they are not evaluated. Parameters of a function declared before a
default argument expression are in scope and can hide namespace and class member names. [Example:

int a;
int f(int a, int b = a); // error: parameter ‘a’

// used as default argument
typedef int I;
int g(float I, int b = I(2)); // error: parameter ‘I’ found
int h(int a, int b = sizeof(a)); // error, parameter ‘a’ used

// in default argument

—end example] Similarly, a nonstatic member shall not be used in a default argument expression, even if it
is not evaluated, unless it appears as the id-expression of a class member access expression (5.2.4) or unless
it is used to form a pointer to member (5.3.1). [Example:the declaration ofX::mem1() in the following
example is ill-formed because no object is supplied for the nonstatic memberX::a used as an initializer.

int b;
class X {

int a;
int mem1(int i = a); // error: nonstatic member ‘a’

// used as default argument
int mem2(int i = b); // ok; use X::b
static b;

};

The declaration ofX::mem2() is meaningful, however, since no object is needed to access the static
memberX::b . Classes, objects, and members are described in 9.] A default argument is not part of the
type of a function. [Example:

int f(int = 0);

void h()
{

int j = f(1);
int k = f(); // fine, means f(0)

}

int (*p1)(int) = &f;
int (*p2)() = &f; // error: type mismatch

—end example] When a declaration of a function is introduced by way of ausing declaration (7.3.3), any
default argument information associated with the declaration is imported as well.

10 A virtual function call (10.3) uses the default arguments in the declaration of the virtual function deter-
mined by the static type of the pointer or reference denoting the object. An overriding function in a derived
class does not acquire default arguments from the function it overrides. [Example:

8.3.6 Default arguments DRAFT: 28 April 1995 Declarators 8– 13

struct A {
virtual void f(int a = 7);

};
struct B : public A {

void f(int a);
};
void m()
{

B* pb = new B;
A* pa = pb;
pa->f(); // ok, calls pa->A::f(7)
pb->f(); // error: wrong number of arguments for B::f()

}

—end example]

[dcl.fct.def] 8.4 Function definitions

1 Function definitions have the form

function-definition:
decl-specifier-seqopt declarator ctor-initializeropt function-body
decl-specifier-seqopt declarator function-try-block

function-body:
compound-statement

Thedeclaratorin a function-definitionshall have the form

D1 (parameter-declaration-clause) cv-qualifier-seqopt exception-specificationopt

as described in 8.3.5. A function shall be defined only in namespace or class scope.

2 The parameters are in the scope of the outermost block of thefunction-body.

3 [Example:a simple example of a complete function definition is

int max(int a, int b, int c)
{

int m = (a > b) ? a : b;
return (m > c) ? m : c;

}

Hereint is thedecl-specifier-seq; max(int a, int b, int c) is thedeclarator; { /* ... */ } is
thefunction-body.]

4 A ctor-initializer is used only in a constructor; see 12.1 and 12.6.

5 A cv-qualifier-seqcan be part of a non-static member function declaration, non-static member function def-
inition, or pointer to member function only; see 9.4.2. It is part of the function type.

6 [Note:unused parameters need not be named. For example,

void print(int a, int)
{

printf("a = %d\n",a);
}

—end note]

8– 14 Declarators DRAFT: 28 April 1995 8.5 Initializers

[dcl.init] 8.5 Initializers

1 A declarator can specify an initial value for the identifier being declared. The identifier designates an
object or reference being initialized. The process of initialization described in the remainder of this sub-
clause (8.5) applies also to initializations specified by other syntactic contexts, such as the initialization of
function parameters with argument expressions (5.2.2) or the initialization of return values (6.6.3).

initializer:
= initializer-clause
(expression-list)

initializer-clause:
assignment-expression
{ initializer-list , opt }
{ }

initializer-list:
initializer-clause
initializer-list , initializer-clause

2 Automatic, register, static, and external variables of namespace scope can be initialized by arbitrary expres-
sions involving constants and previously declared variables and functions. [Example:

int f(int);
int a = 2;
int b = f(a);
int c(b);

—end example]

3 [Note:default argument expressions are more restricted; see 8.3.6.

4 The order of initialization of static objects is described in 3.6 and 6.7.]

5 To zero-initializestorage for an object of typeT means:

— if T is a scalar or pointer-to-member type, the storage is set to the value of0 (zero) converted toT;

— if T is a non-union class type, the storage for each nonstatic data member and each base-class subobject
is zero-initialized;

— if T is a union type, the storage for its first nonstatic data member is zero-initialized;

— if T is an array type, the storage for each element is zero-initialized;

— if T is a reference type, no initialization is performed.

To default-initializean object of typeT means:

— if T is a non-POD class type, the default constructor forT is called (and the initialization is ill-formed if
T has no accessible default constructor);

— if T is an array type, each element is default-initialized;

— otherwise, the storage for the object is zero-initialized.

Default-initialization uses the direct-initialization semantics described below.

6 The memory occupied by any object of static storage duration shall be zero-initialized. Furthermore, if no
initializer is explicitly specified in the declaration of the object and the object is of non-POD class type (or
array thereof), then default initialization shall be performed. If noinitializer is specified for an object with
automatic or dynamic storage duration, the object and its subobjects, if any, have an indeterminate initial
value.60)

60) This does not apply to aggregate objects with automatic storage duration initialized with an incomplete brace-enclosedinitializer-
list; see 8.5.1.

8.5 Initializers DRAFT: 28 April 1995 Declarators 8– 15

7 An initializer for a static member is in the scope of the member’s class. [Example:

int a;

struct X {
static int a;
static int b;

};

int X::a = 1;
int X::b = a; // X::b = X::a

—end example]

8 The form of initialization (using parentheses or=) is generally insignificant, but does matter when the
entity being initialized has a class type; see below. A parenthesized initializer can be a list of expressions
only when the entity being initialized has a class type.

9 [Note:since() is not permitted by the syntax forinitializer,

X a();

is not the declaration of an object of classX, but the declaration of a function taking no argument and
returning anX. The form() is permitted in certain other initialization contexts (5.3.4, 5.2.3, 12.6.2).]

10 The initialization that occurs in argument passing, function return, and brace-enclosed initializer lists
(8.5.1) is calledcopy-initializationand is equivalent to the form

T x = a;

The initialization that occurs innew expressions (5.3.4),static_cast expressions (5.2.8), functional
notation type conversions (5.2.3), and base and member initializers (12.6.2) is calleddirect-initialization
and is equivalent to the form

T x(a);

11 The semantics of initializers are as follows. Thedestination typeis the type of the object or reference being
initialized and thesource typeis the type of the initializer expression. The source type is not defined when
the initializer is brace-enclosed or when it is a parenthesized list of expressions.

— If the destination type is a reference type, see 8.5.3.

— If the destination type is an array of characters or an array ofwchar_t , and the initializer is a string lit-
eral, see 8.5.2.

— Otherwise, if the destination type is an array, see 8.5.1.

— If the destination type is a (possibly cv-qualified) class type:

— If the class is an aggregate (8.5.1), and the initializer is a brace-enclosed list, see 8.5.1.

— If the initialization is direct-initialization, or if it is copy-initialization where the cv-unqualified ver-
sion of the source type is the same class as, or a derived class of, the class of the destination, con-
structors are considered. The applicable constructors are enumerated (13.3.1.4), and the best one is
chosen through overload resolution (13.3). The constructor so selected is called to initialize the
object, with the initializer expression(s) as its argument(s). If no constructor applies, or the overload
resolution is ambiguous, the initialization is ill-formed.

— Otherwise (i.e., for the remaining copy-initialization cases), a temporary of the destination type is
created. User-defined conversions that can convert from the source type to the destination type are
enumerated (13.3.1.3), and the best one is chosen through overload resolution (13.3). The user-
defined conversion so selected is called to convert the initializer expression into the temporary. If
the conversion cannot be done or is ambiguous, the initialization is ill-formed. The object being ini-
tialized is then direct-initialized from the temporary according to the rules above.61) In certain cases,

61) Because the type of the temporary is the same as the type of the object being initialized, this direct-initialization, if well-formed,
will use a copy constructor (12.8) to copy the temporary.

8– 16 Declarators DRAFT: 28 April 1995 8.5 Initializers

an implementation is permitted to eliminate the temporary by initializing the object directly; see
12.2.

— Otherwise, if the source type is a (possibly cv-qualified) class type, conversion functions are considered.
The applicable conversion functions are enumerated (13.3.1.3), and the best one is chosen through over-
load resolution (13.3). The user-defined conversion so selected is called to convert the initializer
expression into the object being initialized. If the conversion cannot be done or is ambiguous, the
initialization is ill-formed.

— Otherwise, the initial value of the object being initialized is the (possibly converted) value of the initial-
izer expression. Standard conversions (clause 4) will be used, if necessary, to convert the initializer
expression to the cv-unqualified version of the destination type; no user-defined conversions are consid-
ered. If the conversion cannot be done, the initialization is ill-formed. [Note: an expression of type
“cv1 T” can initialize an object of type“cv2 T” independently of the cv-qualifierscv1andcv2.

int a;
const int b = a;
int c = b;

—end note]

12 If T is a scalar type, then a declaration of the form

T x = { a };

is equivalent to

T x = a;

[dcl.init.aggr] 8.5.1 Aggregates

1 An aggregateis an array or a class (9) with no user-declared constructors (12.1), no private or protected
non-static data members (11), no non-static members of reference type, no non-staticconst members, no
base classes (10), and no virtual functions (10.3).62)

2 When an aggregate is initialized theinitializer can be aninitializer-clauseconsisting of a brace-enclosed,
comma-separated list ofinitializers for the members of the aggregate, written in increasing subscript or
member order. If the aggregate contains subaggregates, this rule applies recursively to the members of the
subaggregate. [Example:

struct A {
int x;
struct B {

int i;
int j;

} b;
} a = { 1, { 2, 3 } };

initializesa.x with 1,a.b.i with 2,a.b.j with 3.]

3 An aggregate that is a class can also be initialized with a single expression not enclosed in braces, as
described in 8.5.

4 An array of unknown size initialized with a brace-enclosedinitializer-list containingn initializers, wheren
shall be greater than zero, is defined as havingn elements (8.3.4). [Example:

int x[] = { 1, 3, 5 };

declares and initializesx as a one-dimensional array that has three elements since no size was specified and
there are three initializers.] An empty initializer list{} shall not be used as the initializer for an array of
unknown bound.62)

62)The syntax provides for emptyinitializer-lists, but nonetheless C + + does not have zero length arrays.

8.5.1 Aggregates DRAFT: 28 April 1995 Declarators 8– 17

5 Static data members are not considered members of the class for purposes of aggregate initialization.
[Example:

struct A {
int i;
static int s;
int j;

} a = { 1, 2 };

Here, the second initializer 2 initializesa.j and not the static data memberA::s .]

6 An initializer-list is ill-formed if the number ofinitializers exceeds the number of members or elements to
initialize. [Example:

char cv[4] = { ’a’, ’s’, ’d’, ’f’, 0 }; // error

is ill-formed.]

7 If there are fewerinitializers in the list than there are members in the aggregate, then each member not
explicitly initialized shall be initialized with a value of the formT() (5.2.3), whereT represents the type of
the uninitialized member. [Example:

struct S { int a; char* b; int c; };
S ss = { 1, "asdf" };

initializes ss.a with 1, ss.b with "asdf" , and ss.c with the value of an expression of the form
int() , that is,0.]

8 An initializer for an aggregate member that is an empty class shall have the form of an emptyinitializer-list
{}. [Example:

struct S { };
struct A {

S s;
int i;

} a = { { } , 3 };

—end example] An empty initializer-list can be used to initialize any aggregate. If the aggregate is not an
empty class, then each member of the aggregate shall be initialized with a value of the formT() (5.2.3),
whereT represents the type of the uninitialized member.

9 When initializing a multi-dimensional array, theinitializers initialize the elements with the last (rightmost)
index of the array varying the fastest (8.3.4). [Example:

float y[4][3] = {
{ 1 }, { 2 }, { 3 }, { 4 }

};

initializes the first column ofy (regarded as a two-dimensional array) and leaves the rest zero.]

10 Braces can be elided in aninitializer-list as follows. If theinitializer-list begins with a left brace, then the
succeeding comma-separated list ofinitializers initializes the members of a subaggregate; it is erroneous
for there to be more initializers than members. If, however, theinitializer-list for a subaggregate does not
begin with a left brace, then only enoughinitializers from the list are taken to initialize the members of the
subaggregate; any remaininginitializers are left to initialize the next member of the aggregate of which the
current subaggregate is a member. [Example:

float y[4][3] = {
{ 1, 3, 5 },
{ 2, 4, 6 },
{ 3, 5, 7 },

};

is a completely-braced initialization: 1, 3, and 5 initialize the first row of the arrayy[0] , namely
y[0][0] , y[0][1] , andy[0][2] . Likewise the next two lines initializey[1] andy[2] . The initial-
izer ends early and thereforey[3] ’s elements are initialized as if explicitly initialized with an expression

8– 18 Declarators DRAFT: 28 April 1995 8.5.1 Aggregates

of the formfloat() , that is, are initialized with0.0 . In the following example, braces in theinitializer-
list are elided; however theinitializer-list has the same effect as the completely-bracedinitializer-list of the
above example,

float y[4][3] = {
1, 3, 5, 2, 4, 6, 3, 5, 7

};

The initializer fory begins with a left brace, but the one fory[0] does not, therefore three elements from
the list are used. Likewise the next three are taken successively fory[1] andy[2] . —end example]

11 All type conversions (13.3.1.3) are considered when initializing the aggregate member with an initializer
from an initializer-list. If the initializer can initialize a member, the member is initialized. Otherwise, if
the member is itself a non-empty subaggregate, brace elision is assumed and theinitializer is considered for
the initialization of the first member of the subaggregate. [Example:

struct A {
int i;
operator int();

};
struct B {

A a1, a2;
int z;

};
A a;
B b = { 4, a, a };

Braces are elided around theinitializer for b.a1.i . b.a1.i is initialized with 4,b.a2 is initialized with
a, b.z is initialized with whatevera.operator int() returns.]

12 [Note:An aggregate array or an aggregate class may contain members of a class type with a user-declared
constructor (12.1). Initialization of these aggregate objects is described in 12.6.1.]

13 When an aggregate is initialized with a brace-enclosedinitializer-list, if some members are initialized with
constant expressions and other members are initialized with non-constant expressions, it is unspecified
whether the initialization of members with constant expressions takes place during the static phase or dur-
ing the dynamic phase of initialization (3.6.2).

14 The initializer for a union with no user-declared constructor is either a single expression of the same type,
or a brace-enclosed initializer for the first member of the union. [Example:

union u { int a; char* b; };

u a = { 1 };
u b = a;
u c = 1; // error
u d = { 0, "asdf" }; // error
u e = { "asdf" }; // error

—end example]

[dcl.init.string] 8.5.2 Character arrays

1 A char array (whether plainchar , signed , or unsigned) can be initialized by a string; awchar_t
array can be initialized by a wide string literal; successive characters of the string initialize the members of
the array. [Example:

char msg[] = "Syntax error on line %s\n";

shows a character array whose members are initialized with a string. Note that because’\n’ is a single
character and because a trailing’\0’ is appended,sizeof(msg) is 25 .]

8.5.2 Character arrays DRAFT: 28 April 1995 Declarators 8– 19

2 There shall not be more initializers than there are array elements. [Example:

char cv[4] = "asdf"; // error

is ill-formed since there is no space for the implied trailing’\0’ .]

[dcl.init.ref] 8.5.3 References

1 A variable declared to be aT&, that is“reference to typeT” (8.3.2), shall be initialized by an object, or
function, of typeT or by an object that can be converted into aT. [Example:

int g(int);
void f()
{

int i;
int& r = i; // ‘r’ refers to ‘i’
r = 1; // the value of ‘i’ becomes 1
int* p = &r; // ‘p’ points to ‘i’
int& rr = r; // ‘rr’ refers to what ‘r’ refers to,

// that is, to ‘i’
int (&rg)(int) = g; // ‘rg’ refers to the function ‘g’
rg(i); // calls function ‘g’
int a[3];
int (&ra)[3] = a; // ‘ra’ refers to the array ‘a’
ra[1] = i; // modifies ‘a[1]’

}

—end example]

2 A reference cannot be changed to refer to another object after initialization. Note that initialization of a ref-
erence is treated very differently from assignment to it. Argument passing (5.2.2) and function value return
(6.6.3) are initializations.

3 The initializer can be omitted for a reference only in a parameter declaration (8.3.5), in the declaration of a
function return type, in the declaration of a class member within its class declaration (9.2), and where the
extern specifier is explicitly used. [Example:

int& r1; // error: initializer missing
extern int& r2; // ok

—end example]

4 Given types“cv1T1” and“cv2T2,” “cv1T1” is reference-relatedto “cv2T2” if T1 is the same type as
T2, or T1 is a base class ofT2. “cv1T1” is reference-compatiblewith “cv2T2” if T1 is reference-related
to T2 andcv1 is the same cv-qualification as, or greater cv-qualification than,cv2. For purposes of over-
load resolution, cases for whichcv1 is greater cv-qualification thancv2 are identified asreference-
compatible with added qualification(see 13.3.3.2). In all cases where the reference-related or reference-
compatible relationship of two types is used to establish the validity of a reference binding, andT1 is a base
class ofT2, a program that necessitates such a binding is ill-formed ifT1 is an inaccessible (11) or ambigu-
ous (10.2) base class ofT2.

5 A reference to type“cv1T1” is initialized by an expression of type“cv2T2” as follows:

— If the initializer expression is an lvalue (but not an lvalue for a bit-field), and

6
— “cv1T1” is reference-compatible with“cv2T2,” or

— the initializer expression can be implicitly converted to an lvalue of type“cv3T1,” wherecv3 is the
same cv-qualification as, or lesser cv-qualification than,cv1, 63) then

63)This requires a conversion function (12.3.2) returning a reference type, and therefore applies only whenT2 is a class type.

8– 20 Declarators DRAFT: 28 April 1995 8.5.3 References

7 the reference is bound directly to the initializer expression lvalue. [Note: the usual lvalue-to-rvalue
(4.1), array-to-pointer (4.2), and function-to-pointer (4.3) standard conversions are not needed, and
therefore are suppressed, when such direct bindings to lvalues are done.] [Example:

double d = 2.0;
double& rd = d; // rd refers to ‘d’
const double& rcd = d; // rcd refers to ‘d’

struct A { };
struct B : public A { } b;
A& ra = b; // ra refers to A sub-object in ‘b’
const A& rca = b; // rca refers to A sub-object in ‘b’

—end example]

8
— Otherwise, the reference shall be to a non-volatile const type (i.e.,cv1shall beconst). [Example:

double& rd2 = 2.0; // error: not an lvalue and reference
// not const

int i = 2;
double& rd3 = i; // error: type mismatch and reference

// not const

—end example]

— If the initializer expression is an rvalue, withT2 a class type, and“cv1T1” is reference-compatible
with “cv2T2,” the reference is bound in one of the following ways (the choice is implementation-
defined):

— The reference is bound directly to the object represented by the rvalue (see 3.10) or to a sub-
object within that object.

— A temporary of type“cv1T2” [sic] is created, and a copy constructor is called to copy the entire
rvalue object into the temporary. The reference is bound to the temporary or to a sub-object
within the temporary.64)

9 The appropriate copy constructor must be callable whether or not the copy is actually done. [Exam-
ple:

struct A { };
struct B : public A { } b;
extern B f();
const A& rca = f(); // Either bound directly or

// the entire B object is copied and
// the reference is bound to the
// A sub-object of the copy

—end example]

10
— Otherwise, a temporary of type“cv1T1” is created and initialized from the initializer expression

using the rules for a non-reference initialization (8.5). The reference is then bound to the temporary.
If T1 is reference-related toT2, cv1must be the same cv-qualification as, or greater cv-qualification
than,cv2; otherwise, the program is ill-formed. [Example:

const double& rcd2 = 2; // rcd2 refers to temporary
// with value ‘2.0’

const volatile int cvi = 1;
const int& r = cvi; // error: type qualifiers dropped

—end example]

64) Clearly, if the reference initialization being processed is one for the first argument of a copy constructor call, an implementation
must eventually choose the direct-binding alternative to avoid infinite recursion.

8.5.3 References DRAFT: 28 April 1995 Declarators 8– 21

11 [Note:12.2 describes the lifetime of temporaries bound to references.]

_ ___ ___

9 Classes [class]
_ ___ ___

1 A class is a type. Its name becomes aclass-name(9.1) within its scope.

class-name:
identifier
template-id

Class-specifiers andelaborated-type-specifiers (7.1.5.3) are used to makeclass-names. An object of a class
consists of a (possibly empty) sequence of members and base class objects.

class-specifier:
class-head{ member-specificationopt }

class-head:
class-key identifieropt base-clauseopt

class-key nested-name-specifier identifier base-clauseopt

class-key:
class
struct
union

2 A class-nameis inserted into the scope in which it is declared and into the scope of the class itself. The
name of a class can be used as aclass-nameeven within thebase-clauseandmember-specificationof the
class-specifieritself. For purposes of access checking, the inserted class name is treated as if it were a pub-
lic member name. Aclass-specifieris commonly referred to as a class definition. A class is considered
defined after the closing brace of itsclass-specifierhas been seen even though its member functions are in
general not yet defined.

3 A class with an empty sequence of members and base class objects is anemptyclass. Objects of an empty
class have a nonzero size. [Note: Class objects can be assigned, passed as arguments to functions, and
returned by functions (except objects of classes for which copying has been restricted; see 12.8). Other
plausible operators, such as equality comparison, can be defined by the user; see 13.5.]

4 A structureis a class declared with theclass-keystruct ; its members and base classes (10) are public by
default (11). Aunion is a class declared with theclass-keyunion ; its members are public by default and it
holds only one member at a time (9.6). [Note: Aggregates of class type are described in 8.5.1.] APOD-
struct65) is an aggregate class that has no members of type reference, pointer to member, non-POD-struct or
non-POD-union. Similarly, aPOD-union is an aggregate union that has no members of type reference,
pointer to member, non-POD-struct or non-POD-union.

[class.name] 9.1 Class names

1 A class definition introduces a new type. [Example:

65)The acronym POD stands for“plain ol’ data.”

9– 2 Classes DRAFT: 28 April 1995 9.1 Class names

struct X { int a; };
struct Y { int a; };
X a1;
Y a2;
int a3;

declares three variables of three different types. This implies that

a1 = a2; // error: Y assigned to X
a1 = a3; // error: int assigned to X

are type mismatches, and that

int f(X);
int f(Y);

declare an overloaded (13) functionf() and not simply a single functionf() twice. For the same reason,

struct S { int a; };
struct S { int a; }; // error, double definition

is ill-formed because it definesS twice.]

2 A class definition introduces the class name into the scope where it is defined and hides any class, object,
function, or other declaration of that name in an enclosing scope (3.3). If a class name is declared in a
scope where an object, function, or enumerator of the same name is also declared, then when both declara-
tions are in scope, the class can be referred to only using anelaborated-type-specifier(7.1.5.3). [Example:

struct stat {
// ...

};

stat gstat; // use plain ‘stat’ to
// define variable

int stat(struct stat*); // redefine ‘stat’ as function

void f()
{

struct stat* ps; // ‘struct’ prefix needed
// to name struct stat

// ...
stat(ps); // call stat()
// ...

}

—end example] A declarationconsisting solely ofclass-key identifier ;is either a redeclaration of the
name in the current scope or a forward declaration of the identifier as a class name. It introduces the class
name into the current scope. [Example:

struct s { int a; };

void g()
{

struct s; // hide global struct ‘s’
s* p; // refer to local struct ‘s’
struct s { char* p; }; // declare local struct ‘s’
struct s; // receclaration, has no effect

}

—end example] [Note:Such declarations allow definition of classes that refer to each other. [Example:

9.1 Class names DRAFT: 28 April 1995 Classes 9– 3

class Vector;

class Matrix {
// ...
friend Vector operator*(Matrix&, Vector&);

};

class Vector {
// ...
friend Vector operator*(Matrix&, Vector&);

};

Declaration offriend s is described in 11.4, operator functions in 13.5.]]

3 An elaborated-type-specifier(7.1.5.3) can also be used in the declarations of objects and functions. It dif-
fers from a class declaration in that if a class of the elaborated name is in scope the elaborated name will
refer to it. [Example:

struct s { int a; };

void g(int s)
{

struct s* p = new struct s; // global ‘s’
p->a = s; // local ‘s’

}

—end example]

4 [Note:A name declaration takes effect immediately after theidentifier is seen. For example,

class A * A;

first specifiesA to be the name of a class and then redefines it as the name of a pointer to an object of that
class. This means that the elaborated formclass A must be used to refer to the class. Such artistry with
names can be confusing and is best avoided.]

5 A typedef-name(7.1.3) that names a class is aclass-name, but shall not be used in anelaborated-type-
specifier; see also 7.1.3.

[class.mem] 9.2 Class members

member-specification:
member-declaration member-specificationopt

access-specifier: member-specificationopt

member-declaration:
decl-specifier-seqopt member-declarator-listopt ;
function-definition ; opt

qualified-id ;
using-declaration

member-declarator-list:
member-declarator
member-declarator-list, member-declarator

member-declarator:
declarator pure-specifieropt

declarator constant-initializeropt

identifieropt : constant-expression

pure-specifier:
= 0

9– 4 Classes DRAFT: 28 April 1995 9.2 Class members

constant-initializer:
= constant-expression

1 Themember-specificationin a class definition declares the full set of members of the class; no member can
be added elsewhere. Members of a class are data members, member functions (9.4), nested types, and
member constants. Data members and member functions are static or nonstatic; see 9.5. Nested types are
classes (9.1, 9.8) and enumerations (7.2) defined in the class, and arbitrary types declared as members by
use of a typedef declaration (7.1.3). The enumerators of an enumeration (7.2) defined in the class are mem-
ber constants of the class. Except when used to declare friends (11.4) or to adjust the access to a member of
a base class (11.3),member-declarations declare members of the class, and each suchmember-declaration
shall declare at least one member name of the class. A member shall not be declared twice in themember-
specification, except that a nested class can be declared and then later defined.

2 [Note: a single name can denote several function members provided their types are sufficiently different
(13).]

3 A member-declaratorcan contain aconstant-initializeronly if it declares astatic member (9.5) of inte-
gral or enumeration type, see 9.5.2.

4 A member can be initialized using a constructor; see 12.1.

5 A member shall not beauto , extern , or register .

6 Thedecl-specifier-seqcan be omitted in constructor, destructor, and conversion function declarations only.
The member-declarator-listcan be omitted only after aclass-specifier, an enum-specifier, or a decl-
specifier-seqof the form friend elaborated-type-specifier. A pure-specifiershall be used only in the
declaration of a virtual function (10.3).

7 Non-static (9.5) members that are class objects shall be objects of previously defined classes. In partic-
ular, a classcl shall not contain an object of classcl , but it can contain a pointer or reference to an object
of classcl . When an array is used as the type of a nonstatic member all dimensions shall be specified.

8 Except when used to form a pointer to member (5.3.1), when used in the body of a nonstatic member func-
tion of its class or of a class derived from its class (9.4.1), or when used in amem-initializerfor a construc-
tor for its class or for a class derived from its class (12.6.2), a nonstatic nontype member of a class shall
only be referred to with the class member access syntax (5.2.4).

9 [Example:A simple example of a class definition is

struct tnode {
char tword[20];
int count;
tnode *left;
tnode *right;

};

which contains an array of twenty characters, an integer, and two pointers to similar structures. Once this
definition has been given, the declaration

tnode s, *sp;

declaress to be atnode andsp to be a pointer to atnode . With these declarations,sp->count refers
to thecount member of the structure to whichsp points;s.left refers to theleft subtree pointer of
the structures ; ands.right->tword[0] refers to the initial character of thetword member of the
right subtree ofs .]

10 The type of a nonstatic data member is data member type, not object type; the type of a nonstatic member
function is member function type, not function type; see 5.3.1 and 9.4. [Example: the type of the
qualified-id expressiontnode::count is data member type and the type of&tnode::count is
pointer to data member (that is,int (tnode::*) ; see 5.3.1).] [Note: the type ofstatic members is
described in 9.5.]

9.2 Class members DRAFT: 28 April 1995 Classes 9– 5

11 Nonstatic data members of a (non-union) class declared without an interveningaccess-specifierare allo-
cated so that later members have higher addresses within a class object. The order of allocation of nonstatic
data members separated by anaccess-specifieris implementation-defined (11.1). Implementation align-
ment requirements might cause two adjacent members not to be allocated immediately after each other; so
might requirements for space for managing virtual functions (10.3) and virtual base classes (10.1); see also
5.4. [Note:a constructor (12.1) is a function member (9.4) that is declared using the same name as its class.
]

12 A static data member, enumerator, member of an anonymous union, or nested type shall not have the same
name as its class.

13 Two POD-struct (9) types are layout-compatible if they have the same number of members, and corre-
sponding members (in order) have layout-compatible types (3.9).

14 Two POD-union (9) types are layout-compatible if they have the same number of members, and corre-
sponding members (in any order) have layout-compatible types (3.9).

15 If a POD-union contains two or more POD-structs that share a common initial sequence, and if the POD-
union object currently contains one of these POD-structs, it is permitted to inspect the common initial part
of any of them. Two POD-structs share a common initial sequence if corresponding members have layout-
compatible types (and, for bit-fields, the same widths) for a sequence of one or more initial members.

16 A pointer to a POD-struct object, suitably converted, points to its initial member (or if that member is a
bit-field, then to the unit in which it resides) and vice versa. [Note:There might therefore be unnamed pad-
ding within a POD-struct object, but not at its beginning, as necessary to achieve appropriate alignment.]

[class.scope0] 9.3 Scope rules for classes

1 The following rules describe the scope of names declared in classes.

1) The scope of a name declared in a class consists not only of the declarative region (3.3.5) following
the name’s declarator, but also of all function bodies, default arguments, and constructor initializers
in that class (including such things in nested classes).

2) A nameNused in a classS shall refer to the same declaration when re-evaluated in its context and in
the completed scope of S.

3) If reordering member declarations in a class yields an alternate valid program under (1) and (2), the
program’s behavior is undefined.

4) A declaration in a nested declarative region hides a declaration whose declarative region contains
the nested declarative region.

5) A declaration within a member function hides a declaration whose scope extends to or past the end
of the member function’s class.

6) The scope of a declaration that extends to or past the end of a class definition also extends to the
regions defined by its member definitions, even if defined lexically outside the class (this includes
static data member initializations, nested class definitions and member function definitions (that is,
the parameter-declaration-clauseincluding default arguments (8.3.6), the member function body
and, for constructor functions (12.1), the ctor-initializer (12.6.2)). [Example:

typedef int c;
enum { i = 1 };

9– 6 Classes DRAFT: 28 April 1995 9.3 Scope rules for classes

class X {
char v[i]; // error: ’i’ refers to ::i

// but when reevaluated is X::i
int f() { return sizeof(c); } // okay: X::c
char c;
enum { i = 2 };

};

typedef char* T;
struct Y {

T a; // error: ’T’ refers to ::T
// but when reevaluated is Y::T

typedef long T;
T b;

};

struct Z {
int f(const R); // error: ’R’ is parameter name

// but swapping the two declarations
// changes it to a type

typedef int R;
};

—end example]

[class.mfct] 9.4 Member functions

1 Functions declared in the definition of a class, excluding those declared with afriend specifier (11.4),
are called member functions of that class. A member function may be declaredstatic in which case it is
a static member function of its class (9.5); otherwise it is anonstaticmember function of its class (9.4.1,
9.4.2).

2 A member function may be defined (8.4) in its class definition, in which case it is aninline member func-
tion, or it may be defined outside of its class definition if it has already been declared but not defined in its
class definition. Thisout-of-linedefinition shall appear in a namespace scope enclosing the definition of
the member function’s class. Except for the out-of-line definition of a member function, and except for the
out-of-line declaration of an explicit specialization of a template member function (14.5), a member func-
tion shall not be redeclared.

3 An inline member function (whether static or nonstatic) may also be defined outside of its class defini-
tion provided either its declaration in the class definition or its definition outside of the class definition
declares the function asinline (7.1.2). [Note: Member functions of a class in namespace scope have
external linkage. Member functions of a local class (9.9) have no linkage. See 3.5.]

4 There shall be at most one definition of a non-inline member function in a program; no diagnostic is
required. There may be more than oneinline member function definition in a program. See 3.2 and
7.1.2.

5 If the definition of a member function is lexically outside its class definition, the member function name
shall be qualified by its class name using the:: operator. A member function definition (that is, the
parameter-declaration-clauseincluding the default arguments (8.3.6), the member function body and, for a
constructor function (12.1), the ctor-initializer (12.6.2)) is in the scope of the member function’s class (9.3).
[Example:

9.4 Member functions DRAFT: 28 April 1995 Classes 9– 7

struct X {
typedef int T;
static T count;
void f(T);

};
void X::f(T t = count) { }

The member functionf of classX is defined in global scope; the notationX::f specifies that the function
f is a member of classX and in the scope of classX. In the function definition, the parameter typeT refers
to the typedef memberT declared in classX and the default argumentcount refers to the static data mem-
bercount declared in classX.]

6 A static local variable in a member function always refers to the same object, whether or not the mem-
ber function isinline .

7 Member functions may be mentioned infriend declarations after their class has been defined.

8 Member functions of a local class shall be defined inline in their class definition, if they are defined at all.

[class.mfct.nonstatic] 9.4.1 Nonstatic member functions

1 A nonstaticmember function may be called for an object of its class type, or for an object of a class derived
(10) from its class type, using the class member access syntax (5.2.4, 13.3.1.1). A nonstatic member func-
tion may also be called directly using the function call syntax (5.2.2, 13.3.1.1)

— from within the body of a member function of its class or of a class derived from its class, or

— from amem-initializer(12.6.2) for a constructor for its class or for a class derived from its class.

If a nonstatic member function of a classX is called for an object that is not of typeX, or of a type derived
from X, the behavior is undefined.

2 When anid-expression(5.1) that is not part of a class member access syntax (5.2.4) and not used to form a
pointer to member (5.3.1) is used in the body of a nonstatic member function of classX or used in the
mem-initializerfor a constructor of classX, if name lookup (3.4) resolves the name in theid-expressionto a
nonstatic nontype member of classX or of a base class ofX, the id-expressionis transformed into a class
member access expression (5.2.4) using(*this) (9.4.2) as thepostfix-expressionto the left of the.
operator. The member name then refers to the member of the object for which the function is called. Simi-
larly during name lookup, when anunqualified-id (5.1) used in the definition of a member function for
classX resolves to astatic member, an enumerator or a nested type of classX or of a base class ofX, the
unqualified-idis transformed into aqualified-id(5.1) in which thenested-name-specifiernames the class of
the member function. [Example:

struct tnode {
char tword[20];
int count;
tnode *left;
tnode *right;
void set(char*, tnode* l, tnode* r);

};

void tnode::set(char* w, tnode* l, tnode* r)
{

count = strlen(w)+1;
if (sizeof(tword)<=count)

error("tnode string too long");
strcpy(tword,w);
left = l;
right = r;

}

9– 8 Classes DRAFT: 28 April 1995 9.4.1 Nonstatic member functions

void f(tnode n1, tnode n2)
{

n1.set("abc",&n2,0);
n2.set("def",0,0);

}

In the body of the member functiontnode::set , the member namestword , count , left , and
right refer to members of the object for which the function is called. Thus, in the call
n1.set("abc",&n2,0) , tword refers ton1.tword , and in the call n2.set("def",0,0) , it
refers ton2.tword . The functionsstrlen , error , andstrcpy are not members of the classtnode
and should be declared elsewhere.66)

3 The type of a nonstatic member function involves its class name; thus the type of thequalified-id expres-
sion tnode::set is member function type and the type of&tnode::set is pointer to member function
(that is,void (tnode::*)(char*,tnote*,tnode*) , see 5.3.1).]

4 A nonstatic member function may be declaredconst , volatile , or const volatile . Thesecv-
qualifiers affect the type of thethis pointer (9.4.2). They also affect the type of the member function; a
member function declaredconst is aconstmember function, a member function declaredvolatile is a
volatile member function and a member function declaredconst volatile is aconst volatilemember
function. [Example:

struct X {
void g() const;
void h() const volatile;

};

X::g is aconst member function andX::h is aconst volatile member function.]

5 A nonstatic member function may be declaredvirtual (10.3) orpure virtual(10.4).

[class.this] 9.4.2 Thethis pointer

1 In the body of a nonstatic (9.4) member function, the keywordthis is a non-lvalue expression whose
value is the address of the object for which the function is called. The type ofthis in a member function
of a classX is X* . If the member function is declaredconst , the type ofthis is const X* , if the mem-
ber function is declaredvolatile , the type ofthis is volatile X* , and if the member function is
declaredconst volatile , the type ofthis is const volatile X* .

2 In a const member function, the object for which the function is called is accessed through aconst
access path; therefore, aconst member function shall not modify the object and its non-static data mem-
bers. [Example:

struct s {
int a;
int f() const;
int g() { return a++; }
int h() const { return a++; } // error

};

int s::f() const { return a; }

The a++ in the body ofs::h is ill-formed because it tries to modify (a part of) the object for which
s::h() is called. This is not allowed in aconst member function wherethis is a pointer toconst ,
that is,*this is aconst .]

3 Similarly, volatile semantics (7.1.5.1) apply involatile member functions when accessing the
object and its non-static data members.

66)See, for example,<cstring> (21.2).

9.4.2 Thethis pointer DRAFT: 28 April 1995 Classes 9– 9

4 A cv-qualifiedmember function can be called on an object-expression (5.2.4) only if the object-expression
is as cv-qualified or less-cv-qualified than the member function. [Example:

void k(s& x, const s& y)
{

x.f();
x.g();
y.f();
y.g(); // error

}

The cally.g() is ill-formed becausey is const ands::g() is a non-const member function, that is,
s::g() is less-qualified than the object-expression y.]

5 Constructors (12.1) and destructors (12.4) shall not be declaredconst , volatile or const
volatile . [Note: However, these functions can be invoked to create and destroy objects with cv-
qualified types, see (12.1) and (12.4).]

[class.static] 9.5 Static members

1 A data or function member of a class may be declaredstatic in a class definition, in which case it is a
static memberof the class.

2 A static members of classX may be referred to using thequalified-idexpressionX::s ; it is not neces-
sary to use the class member access syntax (5.2.4) to refer to astatic member. Astatic member may
be referred to using the class member access syntax, in which case theobject-expressionis always evalu-
ated. [Example:

class process {
public:

static void reschedule();
};
process& g();

void f()
{

process::reschedule(); // ok: no object necessary
g().reschedule(); // g() is called

}

—end example] A static member may be referred to directly in the scope of its class or in the scope of a
class derived (10) from its class; in this case, thestatic member is referred to as if aqualified-idexpres-
sion was used in which thenested-name-specifiernames the class scope from which the static member is
referred. [Example:

int g();
class X {
public:

static int i;
static int g();

};
int X::i = g(); // equivalent to X::g();

—end example]

3 The definition of astatic member function or theinitializer expression for astatic data member may
directly use the names of thestatic members, enumerators, and nested types of its class or of a base
class of its class; during name lookup (3.4), when anunqualified-id (5.1) used in one of these contexts
resolves to the declaration for one of these members, theunqualified-idis transformed into aqualified-id
expression in which thenested-name-specifiernames the class scope from which the the member is
referred. The definition of astatic member shall not use directly the names of the nonstatic members of
its class or of a base class of its class (including as operands of thesizeof operator). The definition of a

9– 10 Classes DRAFT: 28 April 1995 9.5 Static members

static member may only refer to these members to form pointer to members (5.3.1) or with the class
member access syntax (5.2.4).

4 Static members obey the usual class member access rules (11).

5 The type of astatic member does not involve its class name. [Example:Thus, in the example above, the
type of thequalified-id expressionX::g is a function type and the type of&X::g is pointer to function
type (that is,void(*)() , see 5.3.1).]

[class.static.mfct] 9.5.1 Static member functions

1 [Note:the rules described in 9.4 apply tostatic member functions.]

2 [Note:a static member function does not have athis pointer (9.4.2).] Astatic member function
shall not bevirtual . There shall not be astatic and a nonstatic member function with the same name
and the same parameter types (13.1). Astatic member function shall not be declaredconst ,
volatile , orconst volatile .

[class.static.data] 9.5.2 Static data members

1 A static data member is not part of the subobjects of a class. There is only one copy of astatic data
member shared by all the objects of the class.

2 The declaration of astatic data member in its class definition is not a definition and may be of an
incomplete type other than cv-qualifiedvoid . A definition shall be provided for thestatic data mem-
ber in a namespace scope enclosing the member’s class definition. In the definition at namespace scope,
the name of thestatic data member shall be qualified by its class name using the:: operator. The
initializer expression in the definition of astatic data member is in the scope of its class (9.3). [Exam-
ple:

class process {
static process* run_chain;
static process* running;

};

process* process::running = get_main();
process* process::run_chain = running;

The static data memberrun_chain of classprocess is defined in global scope; the notation
process::run_chain specifies that the memberrun_chain is a member of classprocess and in
the scope of classprocess . In thestatic data member definition, theinitializer expression refers to
thestatic data memberrunning of classprocess .]

3 [Note: once thestatic data member has been defined, it exists even if no objects of its class have been
created. [Example:in the example above,run_chain and running exist even if no objects of class
process are created by the program.]]

4 If a static data member is ofconst integral orconst enumeration type, its declaration in the class
definition can specify aconstant-initializerwhich shall be an integral constant expression (5.19). In that
case, the member can appear in integral constant expressions within its scope. The member shall still be
defined in a namespace scope and the definition of the member in namespace scope shall not contain an
initializer.

5 There shall be exactly one definition of astatic data member in a program; no diagnostic is required; see
3.2.

6 Static data members of a class in namespace scope have external linkage (3.5). A local class shall not
havestatic data members.

7 Static data members are initialized and destroyed exactly like non-local objects (3.6.2, 3.6.3).

9.5.2 Static data members DRAFT: 28 April 1995 Classes 9– 11

8 A static data member shall not bemutable (7.1.1).

[class.union] 9.6 Unions

1 A union can be thought of as a class whose member objects all begin at offset zero and whose size is suffi-
cient to contain any of its member objects. At most one of the member objects can be stored in a union at
any time. A union can have member functions (including constructors and destructors), but not virtual
(10.3) functions. A union shall not have base classes. A union shall not be used as a base class. An object
of a class with a non-trivial default constructor (12.1), a non-trivial copy constructor (12.8), a non-trivial
destructor (12.4), or a non-trivial copy assignment operator (13.5.3, 12.8) cannot be a member of a union,
nor can array of such objects. A union can have nostatic data members.

2 A union of the form

union { member-specification} ;

is called an anonymous union; it defines an unnamed object (and not a type). The names of the members of
an anonymous union shall be distinct from other names in the scope in which the union is declared; they are
used directly in that scope without the usual member access syntax (5.2.4). [Example:

void f()
{

union { int a; char* p; };
a = 1;
// ...
p = "Jennifer";
// ...

}

Herea andp are used like ordinary (nonmember) variables, but since they are union members they have
the same address.]

3 Anonymous unions declared at namespace scope shall be declaredstatic . All other anonymous unions
shall not be declaredstatic . An anonymous union shall not haveprivate or protected members
(11). An anonymous union shall not have function members.

4 A union for which objects or pointers are declared is not an anonymous union. [Example:

union { int aa; char* p; } obj, *ptr = &obj;
aa = 1; // error
ptr->aa = 1; // ok

The assignment to plainaa is ill formed since the member name is not visible outside the union, and even
if it were visible, it is not associated with any particular object.] [Note: Initialization of unions with no
user-declared constructors is described in (8.5.1).]

[class.bit] 9.7 Bit-fields

1 A member-declaratorof the form

identifieropt : constant-expression

specifies a bit-field; its length is set off from the bit-field name by a colon. Allocation of bit-fields within a
class object is implementation-defined. Fields are packed into some addressable allocation unit. Fields
straddle allocation units on some machines and not on others. Alignment of bit-fields is implementation-
defined. Fields are assigned right-to-left on some machines, left-to-right on others.

2 An unnamed bit-field is useful for padding to conform to externally-imposed layouts. Unnamed fields are
not members and cannot be initialized. As a special case, an unnamed bit-field with a width of zero speci-
fies alignment of the next bit-field at an allocation unit boundary.

3 A bit-field shall not be a static member. A bit-field shall have integral or enumeration type (3.9.1). It is
implementation-defined whether a plain (neither explicitly signed nor unsigned)int field is signed or
unsigned. The address-of operator& shall not be applied to a bit-field, so there are no pointers to bit-fields.

9– 12 Classes DRAFT: 28 April 1995 9.7 Bit-fields

Nor are there references to bit-fields.

[class.nest] 9.8 Nested class declarations

1 A class can be defined within another class. A class defined within another is called anestedclass. The
name of a nested class is local to its enclosing class. The nested class is in the scope of its enclosing class.
Except by using explicit pointers, references, and object names, declarations in a nested class can use only
type names, static members, and enumerators from the enclosing class. [Example:

int x;
int y;

class enclose {
public:

int x;
static int s;

class inner {

void f(int i)
{

x = i; // error: assign to enclose::x
s = i; // ok: assign to enclose::s
::x = i; // ok: assign to global x
y = i; // ok: assign to global y

}

void g(enclose* p, int i)
{

p->x = i; // ok: assign to enclose::x
}

};
};

inner* p = 0; // error ‘inner’ not in scope

—end example]

2 Member functions of a nested class have no special access to members of an enclosing class; they obey the
usual access rules (11). Member functions of an enclosing class have no special access to members of a
nested class; they obey the usual access rules. [Example:

class E {
int x;

class I {
int y;
void f(E* p, int i)
{

p->x = i; // error: E::x is private
}

};

int g(I* p)
{

return p->y; // error: I::y is private
}

};

—end example]

9.8 Nested class declarations DRAFT: 28 April 1995 Classes 9– 13

3 Member functions and static data members of a nested class can be defined in a namespace scope enclosing
the definition of their class. [Example:

class enclose {
public:

class inner {
static int x;
void f(int i);

};
};

int enclose::inner::x = 1;

void enclose::inner::f(int i) { /* ... */ }

—end example] If classX is defined in a namespace scope a nested classY may be declared in classX and
later defined in the definition of classX or be later defined in a namespace scope enclosing the definition of
classX. [Example:

class E {
class I1; // forward declaration of nested class
class I2;
class I1 {}; // definition of nested class

};
class E::I2 {}; // definition of nested class

—end example]

4 Like a member function, a friend function (11.4) defined within a nested class is in the lexical scope of that
class; it obeys the same rules for name binding as a static member function of that class (9.5) and has no
special access rights to members of an enclosing class.

[class.local] 9.9 Local class declarations

1 A class can be defined within a function definition; such a class is called alocal class. The name of a local
class is local to its enclosing scope. The local class is in the scope of the enclosing scope. Declarations in a
local class can use only type names, static variables,extern variables and functions, and enumerators
from the enclosing scope. [Example:

int x;
void f()
{

static int s ;
int x;
extern int g();

struct local {
int g() { return x; } // error: ‘x’ is auto
int h() { return s; } // ok
int k() { return ::x; } // ok
int l() { return g(); } // ok

};
// ...

}

local* p = 0; // error: ‘local’ not in scope

—end example]

2 An enclosing function has no special access to members of the local class; it obeys the usual access rules
(11). Member functions of a local class shall be defined within their class definition, if they are defined at
all.

9– 14 Classes DRAFT: 28 April 1995 9.9 Local class declarations

3 If classX is a local class a nested classY may be declared in classX and later defined in the definition of
classX or be later defined in the same scope as the definition of classX. A local class shall not have static
data members.

[class.nested.type] 9.10 Nested type names

1 Type names obey exactly the same scope rules as other names. In particular, type names defined within a
class definition cannot be used outside their class without qualification. [Example:

class X {
public:

typedef int I;
class Y { /* ... */ };
I a;

};

I b; // error
Y c; // error
X::Y d; // ok
X::I e; // ok

—end example]

_ ___ ___

10 Derived classes [class.derived]
_ ___ ___

1 A list of base classes can be specified in a class definition using the notation:

base-clause:
: base-specifier-list

base-specifier-list:
base-specifier
base-specifier-list, base-specifier

base-specifier:
:: opt nested-name-specifieropt class-name
virtual access-specifieropt :: opt nested-name-specifieropt class-name
access-specifier virtualopt :: opt nested-name-specifieropt class-name

access-specifier:
private
protected
public

Theclass-namein abase-specifiershall denote a previously defined class (9), which is called adirect base
classfor the class being declared. Thebase-specifieris evaluated as a type.67) A classB is a base class of a
classD if it is a direct base class ofD or a direct base class of one ofD’s base classes. A class is anindirect
base class of another if it is a base class but not a direct base class. A class is said to be (directly or indi-
rectly) derivedfrom its (direct or indirect) base classes. [Note: for the meaning ofaccess-specifiersee 11.
] Unless redefined in the derived class, members of a base class can be referred to in expressions as if they
were members of the derived class. The base class members are said to beinheritedby the derived class.
[Note: the scope resolution operator:: (5.1) can be used to refer to a base member explicitly. This allows
access to a name that has been redefined in the derived class. A derived class can itself serve as a base class
subject to access control; see 11.2. A pointer to a derived class can be implicitly converted to a pointer to
an accessible unambiguous base class (4.10). An lvalue of a derived class type can be bound to a reference
to an accessible unambiguous base class (8.5.3).]

2 Thebase-specifier-listspecifies the type of thebase class subobjectscontained in an object of the derived
class type. [Example:

class Base {
public:

int a, b, c;
};

class Derived : public Base {
public:

int b;
};

67) If the name of the base is also being used to name a data member in the class, the lookup of thebase-specifierfinds the class type,
not the data member.

10– 2 Derived classes DRAFT: 28 April 1995 10 Derived classes

class Derived2 : public Derived {
public:

int c;
};

Here, an object of classDerived2 will have a sub-object of classDerived which in turn will have a
sub-object of classBase .]

3 The order in which the base class subobjects are allocated in the complete object is unspecified. [Note: a
derived class and its base class sub-objects can be represented by a directed acyclic graph (DAG) where an
arrow means“directly derived from.” A DAG of sub-objects is often referred to as a“sub-object lattice.”

Base

Derived

Derived2

The arrows need not have a physical representation in memory.]

4 [Note: initialization of objects representing base classes can be specified in constructors; see 12.6.2.]

5 [Note:A base class subobject might have a layout (3.7) different from the layout of a complete object of the
same type. A base class subobject might have a polymorphic behavior (12.7) different from the polymor-
phic behavior of a complete object of the same type.]

[class.mi] 10.1 Multiple base classes

1 A class can be derived from any number of base classes. [Note:The use of more than one direct base class
is often called multiple inheritance.] [Example:

class A { /* ... */ };
class B { /* ... */ };
class C { /* ... */ };
class D : public A, public B, public C { /* ... */ };

—end example]

2 The order of derivation is not significant except as specified by the semantics of initialization by construc-
tor (12.6.2), cleanup (12.4), and storage layout (5.4, 9.2, 11.1).

3 A class shall not be specified as a direct base class of a derived class more than once but it can be an indi-
rect base class more than once. [Example:

class B { /* ... */ };
class D : public B, public B { /* ... */ }; // ill-formed

class L { public: int next; /* ... */ };
class A : public L { /* ... */ };
class B : public L { /* ... */ };
class C : public A, public B { void f(); /* ... */ }; // well-formed

—end example]

4 A base class specifier that does not contain the keywordvirtual , specifies anonvirtual base class. A
base class specifier that contains the keywordvirtual , specifies avirtual base class. For each distinct
occurrence of a nonvirtual base class in the class lattice of the most derived class, the complete object shall
contain a corresponding distinct base class subobject of that type. For each distinct base class that is speci-
fied virtual, the complete object shall contain a single base class subobject of that type. [Example:for an
object of class typeC, each distinct occurrence of a (non-virtual) base classL in the class lattice ofC corre-
sponds one-to-one with a distinctL subobject within the object of typeC. Given the classC defined above,
an object of classCwill have two sub-objects of classL as shown below.

10.1 Multiple base classes DRAFT: 28 April 1995 Derived classes 10– 3

L L

A B

C

In such lattices, explicit qualification can be used to specify which subobject is meant. The body of func-
tion C::f could refer to the membernext of eachL subobject:

void C::f() { A::next = B::next; } // well-formed

Without theA:: or B:: qualifiers, the definition ofC::f above would be ill-formed because of ambiguity
(10.2).

5 For another example,

class V { /* ... */ };
class A : virtual public V { /* ... */ };
class B : virtual public V { /* ... */ };
class C : public A, public B { /* ... */ };

for an objectc of class typeC, a single subobject of typeV is shared by every base subobject ofc that is
declared to have avirtual base class of typeV. Given the classC defined above, an object of classC
will have one subobject of classV, as shown below.

V

A B

C

6 A class can have both virtual and nonvirtual base classes of a given type.

class B { /* ... */ };
class X : virtual public B { /* ... */ };
class Y : virtual public B { /* ... */ };
class Z : public B { /* ... */ };
class AA : public X, public Y, public Z { /* ... */ };

For an object of classAA, all virtual occurrences of base classB in the class lattice ofAA correspond to
a singleB subobject within the object of typeAA, and every other occurrence of a (non-virtual) base classB
in the class lattice ofAA corresponds one-to-one with a distinctB subobject within the object of typeAA.
Given the classAA defined above, classAA has two sub-objects of classB: Z’s B and the virtualB shared
by X andY, as shown below.

B B

X Y Z

AA

—end example]

[class.member.lookup] 10.2 Member name lookup

1 Member name lookup determines the meaning of a name (id-expression) in a class scope (9.3). Name
lookup can result in anambiguity, in which case the program is ill-formed. For anid-expression, name
lookup begins in the class scope ofthis ; for a qualified-id, name lookup begins in the scope of the
nested-name-specifier. Name lookup takes place before access control (3.4, 11).

10– 4 Derived classes DRAFT: 28 April 1995 10.2 Member name lookup

2 The following steps define the result of name lookup in a class scope. First, we consider every declaration
for the name in the class and in each of its base class sub-objects. A member namef in one sub-objectB
hidesa member namef in a sub-objectA if A is a base class sub-object ofB. We eliminate from considera-
tion any declarations that are so hidden. If the resulting set of declarations are not all from sub-objects of
the same type, or the set has a nonstatic member and includes members from distinct sub-objects, there is
an ambiguity and the program is ill-formed. Otherwise that set is the result of the lookup.

3 [Example:

class A {
public:

int a;
int (*b)();
int f();
int f(int);
int g();

};

class B {
int a;
int b();

public:
int f();
int g;
int h();
int h(int);

};

class C : public A, public B {};

void g(C* pc)
{

pc->a = 1; // error: ambiguous: A::a or B::a
pc->b(); // error: ambiguous: A::b or B::b
pc->f(); // error: ambiguous: A::f or B::f
pc->f(1); // error: ambiguous: A::f or B::f
pc->g(); // error: ambiguous: A::g or B::g
pc->g = 1; // error: ambiguous: A::g or B::g
pc->h(); // ok
pc->h(1); // ok

}

—end example]

4 If the name of an overloaded function is unambiguously found, overloading resolution (13.3) also takes
place before access control. Ambiguities can often be resolved by qualifying a name with its class name.
[Example:

class A {
public:

int f();
};

class B {
public:

int f();
};

class C : public A, public B {
int f() { return A::f() + B::f(); }

};

10.2 Member name lookup DRAFT: 28 April 1995 Derived classes 10– 5

—end example]

5 A static member, a nested type or an enumerator defined in a base classT can unambiguously be found
even if an object has more than one base class subobject of typeT. Two base class subobjects share the
nonstatic member subobjects of their common virtual base classes. [Example:

class V { public: int v; };
class A {
public:

int a;
static int s;
enum { e };

};
class B : public A, public virtual V {};
class C : public A, public virtual V {};

class D : public B, public C { };

void f(D* pd)
{

pd->v++; // ok: only one ‘v’ (virtual)
pd->s++; // ok: only one ‘s’ (static)
int i = pd->e; // ok: only one ‘e’ (enumerator)
pd->a++; // error, ambiguous: two ‘a’s in ‘D’

}

—end example]

6 When virtual base classes are used, a hidden declaration can be reached along a path through the sub-object
lattice that does not pass through the hiding declaration. This is not an ambiguity. The identical use with
nonvirtual base classes is an ambiguity; in that case there is no unique instance of the name that hides all
the others. [Example:

class V { public: int f(); int x; };
class W { public: int g(); int y; };
class B : public virtual V, public W
{
public:

int f(); int x;
int g(); int y;

};
class C : public virtual V, public W { };

class D : public B, public C { void glorp(); };

V W W

B C

D

The names defined inV and the left hand instance ofWare hidden by those inB, but the names defined in
the right hand instance ofWare not hidden at all.

void D::glorp()
{

x++; // ok: B::x hides V::x
f(); // ok: B::f() hides V::f()
y++; // error: B::y and C’s W::y
g(); // error: B::g() and C’s W::g()

}

10– 6 Derived classes DRAFT: 28 April 1995 10.2 Member name lookup

—end example]

7 An explicit or implicit conversion from a pointer to or an lvalue of a derived class to a pointer or reference
to one of its base classes shall unambiguously refer to a unique object representing the base class. [Exam-
ple:

class V { };
class A { };
class B : public A, public virtual V { };
class C : public A, public virtual V { };
class D : public B, public C { };

void g()
{

D d;
B* pb = &d;
A* pa = &d; // error, ambiguous: C’s A or B’s A ?
V* pv = &d; // fine: only one V sub-object

}

—end example]

[class.virtual] 10.3 Virtual functions

1 Virtual functions support dynamic binding and object-oriented programming. A class that declares or
inherits a virtual function is called apolymorphic class.

2 If a virtual member functionvf is declared in a classBase and in a classDerived , derived directly or
indirectly fromBase , a member functionvf with the same name and same parameter list asBase::vf is
declared, thenDerived::vf is also virtual (whether or not it is so declared) and itoverrides68)

Base::vf . For convenience we say that any virtual function overrides itself. Then in any well-formed
class, for each virtual function declared in that class or any of its direct or indirect base classes there is a
uniquefinal overrider that overrides that function and every other overrider of that function. The rules for
member lookup (10.2) are used to determine the final overrider for a virtual function in the scope of a
derived class.

3 [Note:a virtual member function does not have to be visible to be overridden, for example,

struct B {
virtual void f();

};
struct D : B {

void f(int);
};
struct D2 : D {

void f();
};

the functionf(int) in classDhides the virtual functionf() in its base classB; D::f(int) is not a vir-
tual function. However,f() declared in classD2 has the same name and the same parameter list as
B::f() , and therefore is a virtual function that overrides the functionB::f() even thoughB::f() is
not visible in classD2.]

4 Even if destructors are not inherited, a destructor in a derived class overrides a base class destructor
declared virtual; see 12.4 and 12.5.

68) A function with the same name but a different parameter list (13) as a virtual function is not necessarily virtual and does not over-
ride. The use of thevirtual specifier in the declaration of an overriding function is legal but redundant (has empty semantics).
Access control (11) is not considered in determining overriding.

10.3 Virtual functions DRAFT: 28 April 1995 Derived classes 10– 7

5 A program is ill-formed if the return type of any overriding function differs from the return type of the
overridden function unless the return type of the latter is pointer or reference (possibly cv-qualified) to a
classB, and the return type of the former is pointer or reference (respectively) to a classD such thatB is an
unambiguous direct or indirect base class ofD, accessible in the class of the overriding function, and the
cv-qualification in the return type of the overriding function is less than or equal to the cv-qualification in
the return type of the overridden function. In that case when the overriding function is called as the final
overrider of the overridden function, its result is converted to the type returned by the (statically chosen)
overridden function (5.2.2). [Example:

class B {};
class D : private B { friend class Derived; };
struct Base {

virtual void vf1();
virtual void vf2();
virtual void vf3();
virtual B* vf4();
void f();

};

struct No_good : public Base {
D* vf4(); // error: B (base class of D) inaccessible

};

struct Derived : public Base {
void vf1(); // virtual and overrides Base::vf1()
void vf2(int); // not virtual, hides Base::vf2()
char vf3(); // error: invalid difference in return type only
D* vf4(); // okay: returns pointer to derived class
void f();

};

void g()
{

Derived d;
Base* bp = &d; // standard conversion:

// Derived* to Base*
bp->vf1(); // calls Derived::vf1()
bp->vf2(); // calls Base::vf2()
bp->f(); // calls Base::f() (not virtual)
B* p = bp->vf4(); // calls Derived::pf() and converts the

// result to B*
Derived* dp = &d;
D* q = dp->vf4(); // calls Derived::pf() and does not

// convert the result to B*
dp->vf2(); // ill-formed: argument mismatch

}

—end example]

6 [Note: the interpretation of the call of a virtual function depends on the type of the object for which it is
called (the dynamic type), whereas the interpretation of a call of a nonvirtual member function depends
only on the type of the pointer or reference denoting that object (the static type) (5.2.2).]

7 [Note: the virtual specifier implies membership, so a virtual function cannot be a nonmember (7.1.2)
function. Nor can a virtual function be a static member, since a virtual function call relies on a specific
object for determining which function to invoke. A virtual function declared in one class can be declared a
friend in another class.]

8 A virtual function declared in a class shall be defined, or declared pure (10.4) in that class, or both; but no
diagnostic is required (3.2).

10– 8 Derived classes DRAFT: 28 April 1995 10.3 Virtual functions

9 [Example:here are some uses of virtual functions with multiple base classes:

struct A {
virtual void f();

};

struct B1 : A { // note non-virtual derivation
void f();

};

struct B2 : A {
void f();

};

struct D : B1, B2 { // D has two separate A sub-objects
};

void foo()
{

D d;
// A* ap = &d; // would be ill-formed: ambiguous
B1* b1p = &d;
A* ap = b1p;
D* dp = &d;
ap->f(); // calls D::B1::f
dp->f(); // ill-formed: ambiguous

}

In classD above there are two occurrences of classA and hence two occurrences of the virtual member
function A::f . The final overrider ofB1::A::f is B1::f and the final overrider ofB2::A::f is
B2::f .

10 The following example shows a function that does not have a unique final overrider:

struct A {
virtual void f();

};

struct VB1 : virtual A { // note virtual derivation
void f();

};

struct VB2 : virtual A {
void f();

};

struct Error : VB1, VB2 { // ill-formed
};

struct Okay : VB1, VB2 {
void f();

};

Both VB1::f andVB2::f overrideA::f but there is no overrider of both of them in classError . This
example is therefore ill-formed. ClassOkay is well formed, however, becauseOkay::f is a final over-
rider.

11 The following example uses the well-formed classes from above.

struct VB1a : virtual A { // does not declare f
};

10.3 Virtual functions DRAFT: 28 April 1995 Derived classes 10– 9

struct Da : VB1a, VB2 {
};

void foe()
{

VB1a* vb1ap = new Da;
vb1ap->f(); // calls VB2:f

}

—end example]

12 Explicit qualification with the scope operator (5.1) suppresses the virtual call mechanism. [Example:

class B { public: virtual void f(); };
class D : public B { public: void f(); };

void D::f() { /* ... */ B::f(); }

Here, the function call inD::f really does callB::f and notD::f .]

[class.abstract] 10.4 Abstract classes

1 The abstract class mechanism supports the notion of a general concept, such as ashape , of which only
more concrete variants, such ascircle andsquare , can actually be used. An abstract class can also be
used to define an interface for which derived classes provide a variety of implementations.

2 An abstract classis a class that can be used only as a base class of some other class; no objects of an
abstract class can be created except as sub-objects of a class derived from it. A class is abstract if it has at
least onepure virtual function. [Note:such a function might be inherited: see below.] A virtual function is
specifiedpure by using apure-specifier(9.2) in the function declaration in the class declaration. A pure
virtual function need be defined only if explicitly called with thequalified-idsyntax (5.1). [Example:

class point { /* ... */ };
class shape { // abstract class

point center;
// ...

public:
point where() { return center; }
void move(point p) { center=p; draw(); }
virtual void rotate(int) = 0; // pure virtual
virtual void draw() = 0; // pure virtual
// ...

};

—end example] An abstract class shall not be used as a parameter type, as a function return type, or as the
type of an explicit conversion. Pointers and references to an abstract class can be declared. [Example:

shape x; // error: object of abstract class
shape* p; // ok
shape f(); // error
void g(shape); // error
shape& h(shape&); // ok

—end example]

3 A class is abstract if it contains or inherits at least one pure virtual function for which the final overrider is
pure virtual. [Example:

10– 10 Derived classes DRAFT: 28 April 1995 10.4 Abstract classes

class ab_circle : public shape {
int radius;

public:
void rotate(int) {}
// ab_circle::draw() is a pure virtual

};

Sinceshape::draw() is a pure virtual functionab_circle::draw() is a pure virtual by default.
The alternative declaration,

class circle : public shape {
int radius;

public:
void rotate(int) {}
void draw(); // a definition is required somewhere

};

would make classcircle nonabstract and a definition ofcircle::draw() must be provided.]

4 [Note: an abstract class can be derived from a class that is not abstract, and a pure virtual function may
override a virtual function which is not pure.]

5 Member functions can be called from a constructor (or destructor) of an abstract class; the effect of making
a virtual call (10.3) to a pure virtual function directly or indirectly for the object being created (or
destroyed) from such a constructor (or destrctor) is undefined.

_ ___ ___

11 Member access control [class.access]
_ ___ ___

1 A member of a class can be

— private ; that is, its name can be used only by member functions, static data members, and friends of
the class in which it is declared.

— protected ; that is, its name can be used only by member functions, static data members, and friends
of the class in which it is declared and by member functions, static data members, and friends of classes
derived from this class (see 11.5).

— public ; that is, its name can be used anywhere without access restriction.

2 Members of a class defined with the keywordclass are private by default. Members of a class
defined with the keywordsstruct or union arepublic by default. [Example:

class X {
int a; // X::a is private by default

};

struct S {
int a; // S::a is public by default

};

—end example]

3 Access control is applied uniformly to all names.

4 It should be noted that it isaccessto members and base classes that is controlled, not theirvisibility.
Names of members are still visible, and implicit conversions to base classes are still considered, when those
members and base classes are inaccessible. The interpretation of a given construct is established without
regard to access control. If the interpretation established makes use of inaccessible member names or base
classes, the construct is ill-formed.

5 All access controls in this clause affect the ability to access a class member from a particular scope. In par-
ticular, access controls apply as usual to members accessed as part of a function return type, even though it
is not possible to determine the access privileges of that use without first parsing the rest of the function.
[Example:

class A {
typedef int I; // private member
I f();
friend I g(I);
static I x;

};

A::I A::f() { return 0; }
A::I g(A::I);
A::I g(A::I p) { return 0; }
A::I A::x = 0;

Here, all the uses of A::I are well-formed becauseA::f andA::x are members of classA andg is a friend
of classA. This implies, for example, that access checking on the first use ofA::I must be deferred until

11– 2 Member access control DRAFT: 28 April 1995 11 Member access control

it is determined that this use ofA::I is as the return type of a member of classA. —end example]

6 It is necessary to name a class member to define it outside of the definition of its class. For this reason, no
access checking is performed on the components of thequalified-id used to name the member in the
declarator of such a definition. [Example:

class D {
class E {

static int m;
};

};
int D::E::m = 1; // Okay, no access error on private ‘E’

—end example]

[class.access.spec] 11.1 Access specifiers

1 Member declarations can be labeled by anaccess-specifier(10):

access-specifier: member-specificationopt

An access-specifierspecifies the access rules for members following it until the end of the class or until
anotheraccess-specifieris encountered. [Example:

class X {
int a; // X::a is private by default: ‘class’ used

public:
int b; // X::b is public
int c; // X::c is public

};

—end example] Any number of access specifiers is allowed and no particular order is required. [Example:

struct S {
int a; // S::a is public by default: ‘struct’ used

protected:
int b; // S::b is protected

private:
int c; // S::c is private

public:
int d; // S::d is public

};

—end example]

2 The order of allocation of data members with separateaccess-specifierlabels is implementation-defined
(9.2).

[class.access.base] 11.2 Access specifiers for base classes

1 If a class is declared to be a base class (10) for another class using thepublic access specifier, the
public members of the base class are accessible aspublic members of the derived class and
protected members of the base class are accessible asprotected members of the derived class. If a
class is declared to be a base class for another class using theprotected access specifier, thepublic
andprotected members of the base class are accessible asprotected members of the derived class.
If a class is declared to be a base class for another class using theprivate access specifier, thepublic
andprotected members of the base class are accessible asprivate members of the derived class69).

69) As specified previously in 11, private members of a base class remain inaccessible even to derived classes unlessfriend declara-
tions within the base class declaration are used to grant access explicitly.

11.2 Access specifiers for base classes DRAFT: 28 April 1995 Member access control 11– 3

2 In the absence of anaccess-specifierfor a base class,public is assumed when the derived class is
declaredstruct andprivate is assumed when the class is declaredclass . [Example:

class B { /* ... */ };
class D1 : private B { /* ... */ };
class D2 : public B { /* ... */ };
class D3 : B { /* ... */ }; // ‘B’ private by default
struct D4 : public B { /* ... */ };
struct D5 : private B { /* ... */ };
struct D6 : B { /* ... */ }; // ‘B’ public by default
class D7 : protected B { /* ... */ };
struct D8 : protected B { /* ... */ };

HereB is a public base ofD2, D4, andD6, a private base ofD1, D3, andD5, and a protected base ofD7
andD8. —end example]

3 [Note: Because of the rules on pointer conversion (4.10), a static member of a private base class might be
inaccessible as an inherited name, but accessible directly. For example,

class B {
public:

int mi; // nonstatic member
static int si; // static member

};
class D : private B {
};
class DD : public D {

void f();
};

void DD::f() {
mi = 3; // error: mi is private in D
si = 3; // error: si is private in D
B b;
b.mi = 3; // okay (b.mi is different from this->mi)
b.si = 3; // okay (b.si is different from this->si)
B::si = 3; // okay
B* bp1 = this; // error: B is a private base class
B* bp2 = (B*)this; // okay with cast
bp2->mi = 3; // okay: access through a pointer to B.

}

—end note]

4 A base class is said to be accessible if an invented public member of the base class is accessible. If a base
class is accessible, one can implicitly convert a pointer to a derived class to a pointer to that base class
(4.10, 4.11). [Note: It follows that members and friends of a classX can implicitly convert anX* to a
pointer to a private or protected immediate base class ofX.]

[class.access.dcl] 11.3 Access declarations

1 The access of a member of a base class can be changed in the derived class by mentioning itsqualified-id in
the derived class declaration. Such mention is called anaccess declaration. The base class member is
given, in the derived class, the access in effect in the derived class declaration at the point of the access dec-
laration. The effect of an access declarationqualified-id ; is defined to be equivalent to the declaration
using qualified-id ; .70)

70) Access declarations are deprecated; memberusing-declarations(7.3.3) provide a better means of doing the same things. In earlier
versions of the C + + language, access declarations were more limited; they were generalized and made equivalent to using-declarations
in the interest of simplicity. Programmers are encouraged to useusing , rather than the new capabilities of access declarations, in new
code.

11– 4 Member access control DRAFT: 28 April 1995 11.3 Access declarations

2 [Example:

class A {
public:

int z;
int z1;

};

class B : public A {
int a;

public:
int b, c;
int bf();

protected:
int x;
int y;

};

class D : private B {
int d;

public:
B::c; // adjust access to ‘B::c’
B::z; // adjust access to ‘A::z’
A::z1; // adjust access to ‘A::z1’
int e;
int df();

protected:
B::x; // adjust access to ‘B::x’
int g;

};

class X : public D {
int xf();

};

int ef(D&);
int ff(X&);

The external functionef can use only the namesc , z , z1 , e, anddf . Being a member ofD, the function
df can use the namesb, c , z , z1 , bf , x , y , d, e, df , andg, but nota. Being a member ofB, the function
bf can use the membersa, b, c , z , z1 , bf , x , andy . The functionxf can use the public and protected
names fromD, that is,c , z , z1 , e, anddf (public), andx , andg (protected). Thus the external function
ff has access only toc , z , z1 , e, anddf . If D were a protected or private base class ofX, xf would have
the same privileges as before, butff would have no access at all.]

[class.friend] 11.4 Friends

1 A friend of a class is a function that is not a member of the class but is permitted to use the private and pro-
tected member names from the class. The name of a friend is not in the scope of the class, and the friend is
not called with the member access operators (5.2.4) unless it is a member of another class. [Example:the
following example illustrates the differences between members and friends:

class X {
int a;
friend void friend_set(X*, int);

public:
void member_set(int);

};

void friend_set(X* p, int i) { p->a = i; }
void X::member_set(int i) { a = i; }

11.4 Friends DRAFT: 28 April 1995 Member access control 11– 5

void f()
{

X obj;
friend_set(&obj,10);
obj.member_set(10);

}

—end example]

2 When afriend declaration refers to an overloaded name or operator, only the function specified by the
parameter types becomes a friend. A member function of a classX can be a friend of a classY. [Example:

class Y {
friend char* X::foo(int);
// ...

};

—end example] Declaring a class to be a friend implies that private and protected names from the class
granting friendship can be used in the class receiving it. [Example:

class X {
enum { a=100 };
friend class Y;

};

class Y {
int v[X::a]; // ok, Y is a friend of X

};

class Z {
int v[X::a]; // error: X::a is private

};

—end example] Access to private and protected names is also granted to member functions of the friend
class (as if the functions were each friends) and to the static data member definitions of the friend class.

3 A function declared as afriend and not previously declared, is introduced in the smallest enclosing non-
class, non-function prototype scope that contains thefriend declaration. [Note:For a class mentioned as
a friend and not previously declared, see 7.1.5.3.]

4 A function first declared in a friend declaration has external linkage (3.5). Otherwise, it retains its previous
linkage (7.1.1). Nostorage-class-specifiershall appear in thedecl-specifier-seqof a friend declaration.

5 A function of namespace scope can be defined in afriend declaration of a non-local class (9.9). The
function is theninline . A friend function defined in a class is in the (lexical) scope of the class in
which it is defined. A friend function defined outside the class is not (3.4).

6 Friend declarations are not affected byaccess-specifiers(9.2).

7 Friendship is neither inherited nor transitive. [Example:

class A {
friend class B;
int a;

};

class B {
friend class C;

};

11– 6 Member access control DRAFT: 28 April 1995 11.4 Friends

class C {
void f(A* p)
{

p->a++; // error: C is not a friend of A
// despite being a friend of a friend

}
};

class D : public B {
void f(A* p)
{

p->a++; // error: D is not a friend of A
// despite being derived from a friend

}
};

—end example]

[class.protected] 11.5 Protected member access

1 A friend or a member function of a derived class can access a protected static member, type or enumerator
constant of a base class; if the access is through aqualified-id, thenested-name-specifiermust name the
derived class (or any class derived from that class).

2 A friend or a member function of a derived class can access a protected nonstatic member of a base class.
Except when forming a pointer to member (5.3.1), the access must be through a pointer to, reference to, or
object of the derived class itself (or any class derived from that class) (5.2.4). If the nonstatic protected
member thus accessed is also qualified, the qualification is ignored for the purpose of this access checking.
If the access is to form a pointer to member, thenested-name-specifiershall name the derived class (or any
class derived from that class). [Example:

class B {
protected:

int i;
static int j;

};

class D1 : public B {
};

class D2 : public B {
friend void fr(B*,D1*,D2*);
void mem(B*,D1*);

};

void fr(B* pb, D1* p1, D2* p2)
{

pb->i = 1; // illegal
p1->i = 2; // illegal
p2->i = 3; // ok (access through a D2)
p2->B::i = 4; // ok (access through a D2, qualification ignored)
int B::* pmi_B = &B::i; // illegal
int B::* pmi_B = &D2::i; // ok (type of &D2::i is "int B::*")
B::j = 5; // illegal
D2::j =6; // ok (access through a D2)

}

11.5 Protected member access DRAFT: 28 April 1995 Member access control 11– 7

void D2::mem(B* pb, D1* p1)
{

pb->i = 1; // illegal
p1->i = 2; // illegal
i = 3; // ok (access through ‘this’)
B::i = 4; // ok (access through ‘this’, qualification ignored)
j = 5; // ok (static member accessed by derived class function)
B::j = 6; // illegal

}

void g(B* pb, D1* p1, D2* p2)
{

pb->i = 1; // illegal
p1->i = 2; // illegal
p2->i = 3; // illegal

}

—end example]

[class.access.virt] 11.6 Access to virtual functions

1 The access rules (11) for a virtual function are determined by its declaration and are not affected by the
rules for a function that later overrides it. [Example:

class B {
public:

virtual int f();
};

class D : public B {
private:

int f();
};

void f()
{

D d;
B* pb = &d;
D* pd = &d;

pb->f(); // ok: B::f() is public,
// D::f() is invoked

pd->f(); // error: D::f() is private
}

—end example] Access is checked at the call point using the type of the expression used to denote the
object for which the member function is called (B* in the example above). The access of the member func-
tion in the class in which it was defined (D in the example above) is in general not known.

[class.paths] 11.7 Multiple access

1 If a name can be reached by several paths through a multiple inheritance graph, the access is that of the path
that gives most access. [Example:

class W { public: void f(); };
class A : private virtual W { };
class B : public virtual W { };
class C : public A, public B {

void f() { W::f(); } // ok
};

Since W::f() is available toC::f() along the public path throughB, access is allowed. —end

11– 8 Member access control DRAFT: 28 April 1995 11.7 Multiple access

example]

_ ___ ___

12 Special member functions [special]
_ ___ ___

1 [Note: the special member functions affect the way objects of class type are created, copied, and destroyed,
and how values can be converted to values of other types. Often such special member functions are called
implicitly. The processor will implicitly declare these member functions for a class type when the pro-
grammer does not explicitly declare them.]

2 These member functions obey the usual access rules (11). [Example:declaring a constructorprotected
ensures that only derived classes and friends can create objects using it.]

[class.ctor] 12.1 Constructors

1 Constructors do not have names. A special declarator syntax using the constructor’s class name followed
by a parameter list is used to declare the constructor in its class definition. [Example:

class C {
public:

C(); // declares the constructor
};

—end example] A constructor is used to initialize objects of its class type. Because constructors do not
have names, they are never found during name lookup; however an explicit type conversion using the func-
tional notation (5.2.3) will cause a constructor to be called to initialize an object. [Note: for initialization of
objects of class type see 12.6.]

2 A constructor can be invoked for aconst , volatile or const volatile object.71) A constructor
shall not be declaredconst , volatile , or const volatile (9.4.2). A constructor shall not be
virtual (10.3) orstatic (9.5).

3 Constructors are not inherited (10).

4 A defaultconstructor for a classX is a constructor of classX that can be called without an argument. If
there is nouser-declaredconstructor for classX, a default constructor is implicitly declared. Animplicitly-
declareddefault constructor is apublic member of its class. A constructor istrivial if it is an implicitly-
declared default constructor and if:

— its class has no virtual functions (10.3) and no virtual base classes (10.1), and

— all the direct base classes of its class have trivial constructors, and

— for all the nonstatic data members of its class that are of class type (or array thereof), each such class has
a trivial constructor.

5 Otherwise, the constructor isnon-trivial.

6 An implicitly-declared default constructor for a class isimplicitly definedwhen it is used to create an object
of its class type (3.7). A program is ill-formed if the class for which a default constructor is implicitly
defined has:

— a nonstatic data member ofconst type, or

71)Volatile semantics might or might not be used.

12– 2 Special member functions DRAFT: 28 April 1995 12.1 Constructors

— a nonstatic data member of reference type, or

— a nonstatic data member of class type (or array thereof) with an inaccessible default constructor, or

— a base class with an inaccessible default constructor.

Before the implicitly-declared default constructor for a class is implicitly defined, all the implicitly-
declared default constructors for its base classes and its nonstatic data members shall have been implicitly
defined.

7 [Note:subclause 12.6.2 describes the order in which constructors for base classes and non-static data mem-
bers are called and describes how arguments can be specified for the calls to these constructors.]

8 A copy constructorfor a classX is a constructor with a first parameter of typeX& or of typeconst X&.
[Note:see 12.8 for more information on copy constructors.]

9 A union member shall not be of a class type (or array thereof) that has a non-trivial constructor.

10 No return type (not evenvoid) shall be specified for a constructor. Areturn statement in the body of a
constructor shall not specify a return value. The address of a constructor shall not be taken.

11 A constructor can be used explicitly to create new objects of its type, using the syntax

class-name(expression-listopt)

[Example:

complex zz = complex(1,2.3);
cprint(complex(7.8,1.2));

—end example] An object created in this way is unnamed. [Note:subclause 12.2 describes the lifetime of
temporary objects.]

12 [Note: some language constructs have special semantics when used during construction; see 12.6.2 and
12.7.]

[class.temporary] 12.2 Temporary objects

1 In some circumstances it might be necessary or convenient for the processor to generate a temporary object.
Precisely when such temporaries are introduced is implementation-defined. Even when the creation of the
temporary object is avoided, all the semantic restrictions must be respected as if the temporary object was
created. [Example:even if the copy constructor is not called, all the semantic restrictions, such as accessi-
bility, shall be satisfied.]

2 [Example:

class X {
// ...

public:
// ...
X(int);
X(const X&);
~X();

};

X f(X);

void g()
{

X a(1);
X b = f(X(2));
a = f(a);

}

Here, an implementation might use a temporary in which to constructX(2) before passing it tof() using

12.2 Temporary objects DRAFT: 28 April 1995 Special member functions 12– 3

X’s copy-constructor; alternatively,X(2) might be constructed in the space used to hold the argument.
Also, a temporary might be used to hold the result off(X(2)) before copying it tob using X’s copy-
constructor; alternatively,f() ’s result might be constructed inb. On the other hand, the expression
a=f(a) requires a temporary for either the argumenta or the result off(a) to avoid undesired aliasing of
a.]

3 When a processor introduces a temporary object of a class that has a non-trivial constructor (12.1), it shall
ensure that a constructor is called for the temporary object. Similarly, the destructor shall be called for a
temporary with a non-trivial destructor (12.4). Temporary objects are destroyed as the last step in evaluat-
ing the full-expression (1.8) that (lexically) contains the point where they were created. This is true even if
that evaluation ends in throwing an exception.

4 There are two contexts in which temporaries are destroyed at a different point than the end of the full-
expression. The first context is when an expression appears as an initializer for a declarator defining an
object. In that context, the temporary that holds the result of the expression shall persist until the object’s
initialization is complete. The object is initialized from a copy of the temporary; during this copying, an
implementation can call the copy constructor many times; the temporary is destroyed as soon as it has been
copied.

5 The second context is when a temporary is bound to a reference. The temporary bound to the reference or
the temporary containing the sub-object that is bound to the reference persists for the lifetime of the refer-
ence initialized or until the end of the scope in which the temporary is created, which ever comes first. A
temporary holding the result of an initializer expression for a declarator that declares a reference persists
until the end of the scope in which the reference declaration occurs. A temporary bound to a reference in a
constructor’s ctor-initializer (12.6.2) persists until the constructor exits. A temporary bound to a reference
parameter in a function call (5.2.2) persists until the completion of the complete expression containing the
call. A temporary bound in a function return statement (6.6.3) persists until the function exits.

6 In all cases, temporaries are destroyed in reverse order of creation.

[class.conv] 12.3 Conversions

1 Type conversions of class objects can be specified by constructors and by conversion functions.

2 Such conversions, often calleduser-defined conversions, are used implicitly in addition to standard conver-
sions (4); see 13.3.1.3. [Example:a function expecting an argument of typeX can be called not only with
an argument of typeX but also with an argument of typeT where a conversion fromT to X exists.] [Note:
user-defined conversions are used similarly for conversion of initializers (8.5), function arguments (5.2.2,
8.3.5), function return values (6.6.3, 8.3.5), expression operands (5), expressions controlling iteration and
selection statements (6.4, 6.5), and explicit type conversions (5.2.3, 5.4).]

3 User-defined conversions are applied only where they are unambiguous (10.2, 12.3.2). Conversions obey
the access control rules (11). Access control is applied after ambiguity resolution (3.4).

4 [Note:See 13.3 for a discussion of the use of conversions in function calls as well as examples below.]

[class.conv.ctor] 12.3.1 Conversion by constructor

1 A constructor declared without thefunction-specifierexplicit that can be called with a single parameter
specifies a conversion from the type of its first parameter to the type of its class. Such a constructor is
called a converting constructor. [Example:

class X {
// ...

public:
X(int);
X(const char*, int =0);

};

12– 4 Special member functions DRAFT: 28 April 1995 12.3.1 Conversion by constructor

void f(X arg)
{

X a = 1; // a = X(1)
X b = "Jessie"; // b = X("Jessie",0)
a = 2; // a = X(2)
f(3); // f(X(3))

}

—end example]

2 A nonconverting constructor constructs objects just like converting constructors, but does so only where a
constructor call is explicitly indicated by the syntax. [Example:

class Z {
public:

explicit Z(int);
// ...

};

Z a1 = 1; // error: no implicit conversion
Z a3 = Z(1); // ok: explicit use of constructor
Z a2(1); // ok: explicit use of constructor
Z* p = new Z(1); // ok: explicit use of constructor

—end example]

[class.conv.fct] 12.3.2 Conversion functions

1 A member function of a classX with a name of the form

conversion-function-id:
operator conversion-type-id

conversion-type-id:
type-specifier-seq conversion-declaratoropt

conversion-declarator:
ptr-operator conversion-declaratoropt

specifies a conversion fromX to the type specified by theconversion-type-id. Such member functions are
called conversion functions. Classes, enumerations, andtypedef-names shall not be declared in thetype-
specifier-seq. Neither parameter types nor return type can be specified. A conversion operator is never
used to convert a (possibly qualified) object (or reference to an object) to the (possibly qualified) same
object type (or a reference to it), or to a (possibly qualified) base class of that type (or a reference to it).72) If
conversion-type-idis void or cv-qualifiedvoid , the program is ill-formed.

2 [Example:

class X {
// ...

public:
operator int();

};

72) Even though never directly called to perform a conversion, such conversion operators can be declared and can potentially be
reached through a call to a virtual conversion operator in a base class

12.3.2 Conversion functions DRAFT: 28 April 1995 Special member functions 12– 5

void f(X a)
{

int i = int(a);
i = (int)a;
i = a;

}

In all three cases the value assigned will be converted byX::operator int() . —end example]

3 User-defined conversions are not restricted to use in assignments and initializations. [Example:

void g(X a, X b)
{

int i = (a) ? 1+a : 0;
int j = (a&&b) ? a+b : i;
if (a) { // ...
}

}

—end example]

4 The conversion-type-idin a conversion-function-idis the longest possible sequence ofconversion-
declarators. [Note: this prevents ambiguities between the declarator operator * and its expression counter-
parts. [Example:

&ac.operator int*i; // syntax error:
// parsed as: ’&(ac.operator int *) i’
// not as: ’&(ac.operator int)*i’

The * is the pointer declarator and not the multiplication operator.]]

5 Conversion operators are inherited.

6 Conversion functions can be virtual.

7 At most one user-defined conversion (constructor or conversion function) is implicitly applied to a single
value. [Example:

class X {
// ...

public:
operator int();

};

class Y {
// ...

public:
operator X();

};

Y a;
int b = a; // illegal:

// a.operator X().operator int() not tried
int c = X(a); // ok: a.operator X().operator int()

—end example]

8 User-defined conversions are used implicitly only if they are unambiguous. A conversion function in a
derived class does not hide a conversion function in a base class unless the two functions convert to the
same type. [Example:

12– 6 Special member functions DRAFT: 28 April 1995 12.3.2 Conversion functions

class X {
public:

// ...
operator int();

};

class Y : public X {
public:

// ...
operator void*();

};

void f(Y& a)
{

if (a) { // error: ambiguous
// ...

}
}

—end example]

[class.dtor] 12.4 Destructors

1 A member function of classcl named~cl is called a destructor; it is used to destroy objects of typecl .
A destructor takes no parameters, and no return type can be specified for it (not evenvoid). It is not pos-
sible to take the address of a destructor. A destructor can be invoked for aconst , volatile or const
volatile object.73) A destructor shall not be declaredconst , volatile or const volatile
(9.4.2). A destructor shall not bestatic .

2 If a class has nouser-declareddestructor, a destructor is declared implicitly. Animplicitly-declared
destructor is apublic member of its class. A destructor istrivial if it is an implicitly-declared destructor
and if:

— all of the direct base classes of its class have trivial destructors and

— for all of the non-static data members of its class that are of class type (or array thereof), each such class
has a trivial destructor.

3 Otherwise, the destructor isnon-trivial.

4 An implicitly-declared destructor isimplicitly definedwhen it is used to destroy an object of its class type
(3.7). A program is ill-formed if the class for which a destructor is implicitly defined has:

— a non-static data member of class type (or array thereof) with an inaccessible destructor, or

— a base class with an inaccessible destructor.

Before the implicitly-declared destructor for a class is implicitly defined, all the implicitly-declared
destructors for its base classes and its nonstatic data members shall have been implicitly defined.

5 Bases and members are destroyed in reverse order of their construction (see 12.6.2). Destructors for ele-
ments of an array are called in reverse order of their construction (see 12.6).

6 Destructors are not inherited. A destructor can be declaredvirtual (10.3) or purevirtual (10.4); if
any objects of that class or any derived class are created in the program, the destructor shall be defined. If a
class has a base class with a virtual destructor, its destructor (whether user- or implicitly- declared) is vir-
tual.

73)Volatile semantics might or might not be used.

12.4 Destructors DRAFT: 28 April 1995 Special member functions 12– 7

7 [Note:some language constructs have special semantics when used during destruction; see 12.7.]

8 A union member shall not be of a class type (or array thereof) that has a non-trivial destructor.

9 Destructors are invoked implicitly (1) when an automatic variable (3.7) or temporary (12.2, 8.5.3) object
goes out of scope, (2) for constructed static (3.7) objects at program termination (3.6), and (3) through use
of a delete-expression(5.3.5) for objects allocated by anew-expression(5.3.4). Destructors can also be
invoked explicitly. A delete-expressioninvokes the destructor for the referenced object and passes the
address of its memory to a deallocation function (5.3.5, 12.5). [Example:

class X {
// ...

public:
X(int);
~X();

};

void g(X*);

void f() // common use:
{

X* p = new X(111); // allocate and initialize
g(p);
delete p; // cleanup and deallocate

}

—end example]

10 [Note:explicit calls of destructors are rarely needed. One use of such calls is for objects placed at specific
addresses using anew-expressionwith the placement option. Such use of explicit placement and
destruction of objects can be necessary to cope with dedicated hardware resources and for writing memory
management facilities. For example,

void* operator new(size_t, void* p) { return p; }

void f(X* p);

static char buf[sizeof(X)];

void g() // rare, specialized use:
{

X* p = new(buf) X(222); // use buf[]
// and initialize

f(p);
p->X::~X(); // cleanup

}

—end note]

11 Invocation of destructors is subject to the usual rules for member functions (9.4), e.g., an object of the
appropriate type is required (except invokingdelete on a null pointer has no effect). Once a destructor is
invoked for an object, the object no longer exists; the behavior is undefined if the destructor is invoked for
an object whose lifetime has ended (3.8). [Example:if the destructor for an automatic object is explicitly
invoked, and the block is subsequently left in a manner that would ordinarily invoke implicit destruction of
the object, the behavior is undefined.—end example]

12 The notation for explicit call of a destructor can be used for any scalar type name. Using the notation for a
type that does not have a destructor has no effect. [Note:allowing this makes it possible to write code with-
out having to know if a destructor exists for a given type. [Example:

12– 8 Special member functions DRAFT: 28 April 1995 12.4 Destructors

int* p;
// ...
p->int::~int();

—end example] —end note]

13
[class.free] 12.5 Free store

1 When an object is created with anew-expression(5.3.4), anallocation function(operator new() for
non-array objects oroperator new[]() for arrays) is (implicitly) called to get the required storage
(3.7.3.1).

2 When an object of class typeT or an array of classT is created by anew-expression, the allocation function
is looked up in the scope of classT using the usual rules.

3 When anew-expressionis executed, the selected allocation function will be called with the amount of space
requested (possibly zero) as its first argument.

4 Any allocation function for a classX is a static member (even if not explicitly declaredstatic).

5 [Example:

class Arena; class Array_arena;
struct B {

void* operator new(size_t, Arena*);
};
struct D1 : B {
};

Arena* ap; Array_arena* aap;
void foo(int i)
{

new (ap) D1; // calls B::operator new(size_t, Arena*)
new D1[i]; // calls ::operator new[](size_t)
new D1; // ill-formed: ::operator new(size_t) hidden

}

—end example]

6 When an object is deleted with adelete-expression (5.3.5), a deallocation function
(operator delete() for non-array objects oroperator delete[]() for arrays) is (implicitly)
called to reclaim the storage occupied by the object (3.7.3.2).

7 When an object is deleted by adelete-expression, the deallocation function is looked up in the scope of the
class of the executed destructor (see 5.3.5) using the usual rules.

8 When adelete-expressionis executed, the selected deallocation function will be called with the address of
the block of storage to be reclaimed as its first argument and (if the two-parameter style is used) the size of
the block as its second argument.74)

9 Any deallocation function for a classX is a static member (even if not explicitly declaredstatic).
[Example:

class X {
// ...
void operator delete(void*);
void operator delete[](void*, size_t);

};

74) If the static class in thedelete-expressionis different from the dynamic class and the destructor is not virtual the size might be
incorrect, but that case is already undefined; see 5.3.5.

12.5 Free store DRAFT: 28 April 1995 Special member functions 12– 9

class Y {
// ...
void operator delete(void*, size_t);
void operator delete[](void*);

};

—end example]

10 Since member allocation and deallocation functions arestatic they cannot be virtual. However, the
deallocation function actually called is determined by the destructor actually called, so if the destructor is
virtual the effect is the same. [Example:

struct B {
virtual ~B();
void operator delete(void*, size_t);

};

struct D : B {
void operator delete(void*);
void operator delete[](void*, size_t);

};

void f(int i)
{

B* bp = new D;
delete bp; // uses D::operator delete(void*)
D* dp = new D[i];
delete [] dp; // uses D::operator delete[](void*, size_t)

}

Here, storage for the non-array object of classD is deallocated byD::operator delete() , due to the
virtual destructor.]

11 For a virtual destructor (whether user- or implicitly- declared), the deallocation function to be called is
determined by looking up the name ofoperator delete in the context of the outermost block of that
destructor’s definition (ignoring any names defined in that block). If the result of the lookup is ambiguous
or inaccessible, the program is ill-formed.75)

12 Access to the deallocation function is checked statically. Hence, even though a different one might actually
be executed, the statically visible deallocation function is required to be accessible. [Example: if
B::operator delete() had beenprivate , the delete expression would have been ill-formed.]

[class.init] 12.6 Initialization

1 If T is either a class type or an array of class type, an object of typeT is default-initialized (8.5) if:

— the object has static storage duration and noinitializer is specified in its declaration (see 8.5), or

— the object is created with anew-expressionof the formnew T() (see 5.3.4), or

— the object is a temporary object created using the functional notation for type conversionsT() (see
5.2.3), or

— the object is a subobject, either a base of typeT or a membermof typeT, of a class object being created
by a constructor that specifies amem-initializerof the formT() or m() , respectively (see 12.6.2).

75) This applies to destructor definitions, not mere declarations. A similar restriction is not needed for the array version of the
delete operator because 5.3.5 requires that in all other situations, the static type of thedelete-expression’s operand be the same as
its dynamic type.

12– 10 Special member functions DRAFT: 28 April 1995 12.6 Initialization

2 Furthermore, if an object of class typeT (or array thereof)

— has automatic storage duration and noinitializer is specified in its declaration, or

— is created with anew-expressionwith an omittednew-initializer(see 5.3.4), or

— is a subobject, either a base of typeT or a membermof typeT (or array thereof), of a class object cre-
ated by a constructor that does not specify amem-initializerfor T or m, respectively (see 12.6.2),

then that object (or, for an array, each element of the array) shall be initialized by the default constructor for
T (and the initialization is ill-formed ifT has no accessible default constructor).

3 An object of class type (or array thereof) can be explicitly initialized; see 12.6.1 and 12.6.2.

4 When an array of class objects is initialized (either explicitly or implicitly), the constructor shall be called
for each element of the array, following the subscript order; see 8.3.4. [Note:destructors for the array ele-
ments are called in reverse order of their construction.]

[class.expl.init] 12.6.1 Explicit initialization

1 An object of class type can be initialized with a parenthesizedexpression-list, where theexpression-listis
construed as an argument list for a constructor that is called to initialize the object. Alternatively, a single
assignment-expressioncan be specified as aninitializer using the= form of initialization. Either direct-
initialization semantics or copy-initialization semantics apply; see 8.5. [Example:

class complex {
// ...

public:
complex();
complex(double);
complex(double,double);
// ...

};

complex sqrt(complex,complex);

complex a(1); // initialize by a call of
// complex(double)

complex b = a; // initialize by a copy of ‘a’
complex c = complex(1,2); // construct complex(1,2)

// using complex(double,double)
// copy it into ‘c’

complex d = sqrt(b,c); // call sqrt(complex,complex)
// and copy the result into ‘d’

complex e; // initialize by a call of
// complex()

complex f = 3; // construct complex(3) using
// complex(double)
// copy it into ‘f’

complex g = { 1, 2 }; // error; constructor is required

—end example] [Note:overloading of the assignment operator (13.5.3)= has no effect on initialization.]

2 When an aggregate (whether class or array) contains members of class type and is initialized by a brace-
enclosedinitializer-list (8.5.1), each such member is copy-initialized (see 8.5) by the corresponding
assignment-expression. If there are fewerinitializers in theinitializer-list than members of the aggregate,
each member not explicitly initialized shall be copy-initialized (8.5) with aninitializer of the formT()
(5.2.3), whereT represents the type of the uninitialized member. [Note: subclause 8.5.1 describes how
assignment-expressions in aninitializer-list are paired with the aggregate members they initialize.] [Exam-
ple:

complex v[6] = { 1,complex(1,2),complex(),2 };

12.6.1 Explicit initialization DRAFT: 28 April 1995 Special member functions 12– 11

Here, complex::complex(double) is called for the initialization of v[0] and v[3] ,
complex::complex(double,double) is called for the initialization of v[1] ,
complex::complex() is called for the initializationv[2] , v[4] , andv[5] . For another example,

class X {
int i;
float f;
complex c;

} x = { 99, 88.8, 77.7 };

Here,x.i is initialized with 99,x.f is initialized with 88.8, andcomplex::complex(double) is
called for the initialization ofx.c .] [Note: braces can be elided in theinitializer-list for any aggregate,
even if the aggregate has members of a class type with user-defined type conversions; see 8.5.1.]

3 [Note: if T is a class type with no default constructor, any declaration of an object of typeT (or array
thereof) is ill-formed if noinitializer is explicitly specified (see 12.6 and 8.5).]

4 [Note:the order in which objects with static storage duration are initialized is described in 3.6.2 and 6.7.]

[class.base.init] 12.6.2 Initializing bases and members

1 In the definition of a constructor for a class, initializers for direct and virtual base subobjects and nonstatic
data members can be specified by actor-initializer, which has the form

ctor-initializer:
: mem-initializer-list

mem-initializer-list:
mem-initializer
mem-initializer , mem-initializer-list

mem-initializer:
mem-initializer-id (expression-listopt)

mem-initializer-id:
:: opt nested-name-specifieropt class-name
identifier

2 Unless themem-initializer-idnames a nonstatic data member of the constructor’s class or a direct or virtual
base of that class, themem-initializeris ill-formed. A mem-initializer-listcan initialize a base class using
any name that denotes that base class type. [Example:

struct A { A(); };
typedef A global_A;
struct B { };
struct C: public A, public B { C(); };
C::C(): global_A() { } // mem-initializer for base A

—end example] If a mem-initializer-idis ambiguous because it designates both a direct non-virtual base
class and an inherited virtual base class, themem-initializeris ill-formed. [Example:

struct A { A(); };
struct B: public virtual A { };
struct C: public A, public B { C(); };
C::C(): A() { } // ill-formed: which A?

—end example] If a ctor-initializer specifies more than onemem-initializerfor the same member or base,
thector-initializer is ill-formed.

3 Theexpression-listin a mem-initializeris used to initialize the base class or nonstatic data member subob-
ject denoted by themem-initializer-id. The semantics of amem-initializerare as follows:

— if the expression-listof the mem-initializeris omitted, the base class or member subobject is default-

12– 12 Special member functions DRAFT: 28 April 1995 12.6.2 Initializing bases and members

initialized (see 8.5);

— otherwise, the subobject indicated bymem-initializer-idis direct-initialized usingexpression-listas the
initializer (see 8.5).

[Note: if classX has a membermof class typeMandMhas no default constructor, then a definition of a con-
structor for classX is ill-formed if it does not specify amem-initializerfor m.] [Note:when a constructor
creates an object of class typeX, if X has a nonstatic data membermthat is ofconst or reference type and
if the member is neither specified in amem-initializernor eligible for default-initialization (8.5), thenmwill
have an indeterminate value. [Example:

struct B1 { B1(int); /* ... */ };
struct B2 { B2(int); /* ... */ };

struct D : B1, B2 {
D(int);
B1 b;
const c;

};

D::D(int a) : B2(a+1), B1(a+2), c(a+3), b(a+4)
{ /* ... */ }

D d(10);

—end example]]

4 Initialization shall proceed in the following order:

— First, and only for the constructor of the most derived class as described below, virtual base classes shall
be initialized in the order they appear on a depth-first left-to-right traversal of the directed acyclic graph
of base classes, where“left-to-right” is the order of appearance of the base class names in the derived
classbase-specifier-list.

— Then, direct base classes shall be initialized in declaration order as they appear in thebase-specifier-list
(regardless of the order of themem-initializers).

— Then, nonstatic data members shall be initialized in the order they were declared in the class definition
(again regardless of the order of themem-initializers).

— Finally, the body of the constructor is executed.

[Note: the declaration order is mandated to ensure that base and member subobjects are destroyed in the
reverse order of initialization.]

5 If a complete object (1.6), a nonstatic data member, or an array element is of class type, its type, for pur-
poses of construction, is considered themost derivedclass, to distinguish it from the class type of any base
class subobject of the most derived class. All sub-objects representing virtual base classes are initialized by
the constructor of the most derived class. If the constructor of the most derived class does not specify a
mem-initializerfor a virtual base classV, thenV’s default constructor is called to initialize the virtual base
class subobject. IfV does not have an accessible default constructor, the initialization is ill-formed. A
mem-initializernaming a virtual base class shall be ignored during execution of the constructor of any class
that is not the most derived class. [Example:

class V {
public:

V();
V(int);
// ...

};

12.6.2 Initializing bases and members DRAFT: 28 April 1995 Special member functions 12– 13

class A : public virtual V {
public:

A();
A(int);
// ...

};

class B : public virtual V {
public:

B();
B(int);
// ...

};

class C : public A, public B, private virtual V {
public:

C();
C(int);
// ...

};

A::A(int i) : V(i) { /* ... */ }
B::B(int i) { /* ... */ }
C::C(int i) { /* ... */ }

V v(1); // use V(int)
A a(2); // use V(int)
B b(3); // use V()
C c(4); // use V()

—end example]

6 Names in theexpression-listof amem-initializerare evaluated in the scope of the constructor for which the
mem-initializeris specified. [Example:

class X {
int a;
int b;

public:
const int& r;
X(int i): r(a), b(i) {}

};

initializes X::r to refer toX::a and initializesX::b with the value of the constructor parameteri ; this
takes place each time an object of classX is created.] [Note:this implies that thethis pointer can be used
in theexpression-listof amem-initializerto refer to the object being initialized.]

7 Member functions (including virtual member functions, 10.3) can be called for an object under construc-
tion. Similarly, an object under construction can be the operand of thetypeid operator (5.2.7) or of a
dynamic_cast (5.2.6). However, if these operations are performed in actor-initializer (or in a function
called directly or indirectly from actor-initializer) before all themem-initializers for base classes have
completed, the result of the operation is undefined. [Example:

class A {
public:

A(int);
};

12– 14 Special member functions DRAFT: 28 April 1995 12.6.2 Initializing bases and members

class B : public A {
int j;

public:
int f();

B() : A(f()), // undefined: calls member function
// but base A not yet initialized

j(f()) { } // well-defined: bases are all initialized
};

class C {
public:

C(int);
};

class D : public B, C {
int i;

public:
D() : C(f()), // undefined: calls member function

// but base C not yet initialized
i(f()) {} // well-defined: bases are all initialized

};

—end example]

8 [Note: Clause 12.7 describes the result of virtual function calls,typeid and dynamic_cast s during
construction for the well-defined cases; that is, describes thepolymorphic behaviorof an object under con-
struction.]

[class.cdtor] 12.7 Construction and destruction

1 For an object of non-POD class type (9), before the constructor begins execution and after the destructor
finishes execution, referring to any nonstatic member or base class of the object results in undefined behav-
ior. [Example:

struct X { int i; };
struct Y : X { };
struct A { int a; };
struct B : public A { int j; Y y; };

extern B bobj;
B* pb = &bobj; // ok
int* p1 = &bobj.a; // undefined, refers to base class member
int* p2 = &bobj.y.i; // undefined, refers to member’s member

A* pa = &bobj; // undefined, upcast to a base class type
B bobj; // definition of bobj

extern X xobj;
int* p3 = &xobj.i; // Ok, X is a POD class
X xobj;

For another example,

struct W { int j; };
struct X : public virtual W { };
struct Y {

int *p;
X x;
Y() : p(&x.j) // undefined, x is not yet constructed
{ }

};

12.7 Construction and destruction DRAFT: 28 April 1995 Special member functions 12– 15

—end example]

2 To explicitly or implicitly convert a pointer to an object of classX to a pointer to a direct or indirect base
classB, the construction ofX and the construction of all of its direct or indirect bases that directly or indi-
rectly derive fromB shall have started and the destruction of these classes shall not have completed, other-
wise the computation results in undefined behavior. To form a pointer to a direct nonstatic member of an
objectX given a pointer toX, the construction ofX shall have started and the destruction ofX shall not have
completed, otherwise the computation results in undefined behavior. [Example:

struct A { };
struct B : virtual A { };
struct C : B { };
struct D : virtual A { D(A*); };
struct X { X(A*); };

struct E : C, D, X {
E() : D(this), // undefined: upcast from E* to A*

// might use path E* -> D* -> A*
// but D is not constructed

// D((C*)this), // defined:
// E* -> C* defined because E() has started
// and C* -> A* defined because
// C fully constructed

X(this) // defined: upon construction of X,
// C/B/D/A sublattice is fully constructed

{ }
};

—end example]

3 Member functions, including virtual functions (10.3), can be called during construction or destruction
(12.6.2). When a virtual function is called directly or indirectly from a constructor (including from its
ctor-initializer) or from a destructor, the function called is the one defined in the constructor or destructor’s
own class or in one of its bases, but not a function overriding it in a class derived from the constructor or
destructor’s class or overriding it in one of the other base classes of the complete object (1.6). If the virtual
function call uses an explicit class member access (5.2.4) and the object-expression’s type is neither the
constructor or destructor’s own class or one of its bases, the result of the call is undefined. [Example:

class V {
public:

virtual void f();
virtual void g();

};

class A : public virtual V {
public:

virtual void f();
};

class B : public virtual V {
public:

virtual void g();
B(V*, A*);

};

class D : public A, B {
public:

virtual void f();
virtual void g();
D() : B((A*)this, this) { }

};

12– 16 Special member functions DRAFT: 28 April 1995 12.7 Construction and destruction

B::B(V* v, A* a) {
f(); // calls V::f, not A::f
g(); // calls B::g, not D::g
v->g(); // v is base of B, the call is well-defined, calls B::g
a->f(); // undefined behavior, a’s type not a base of B

}

—end example]

4 The typeid operator (5.2.7) can be used during construction or destruction (12.6.2). Whentypeid is
used in a constructor (including in itsctor-initializer) or in a destructor, or used in a function called
(directly or indirectly) from a constructor or destructor, if the operand oftypeid refers to the object under
construction or destruction,typeid yields thetype_info representing the constructor or destructor’s
class. If the operand oftypeid refers to the object under construction or destruction and the static type of
the operand is neither the constructor or destructor’s class nor one of its bases, the result oftypeid is
undefined.

5 Dynamic_cast s (5.2.6) can be used during construction or destruction (12.6.2). When a
dynamic_cast is used in a constructor (including in itsctor-initializer) or in a destructor, or used in a
function called (directly or indirectly) from a constructor or destructor, if the operand of the
dynamic_cast refers to the object under construction or destruction, this object is considered to be a
complete object that has the type of the constructor or destructor’s class. If the operand of the
dynamic_cast refers to the object under construction or destruction and the static type of the operand is
not a pointer to or object of the constructor or destructor’s own class or one of its bases, the
dynamic_cast results in undefined behavior.

6 [Example:

class V {
public:

virtual void f();
};

class A : public virtual V { };

class B : public virtual V {
public:

B(V*, A*);
};

class D : public A, B {
public:

D() : B((A*)this, this) { }
};

B::B(V* v, A* a) {
typeid(this); // type_info for B
typeid(*v); // well-defined: *v has type V, a base of B

// yields type_info for B
typeid(*a); // undefined behavior: type A not a base of B
dynamic_cast<B*>(v); // well-defined: v of type V*, V base of B

// results in B*
dynamic_cast<B*>(a); // undefined behavior,

// a has type A*, A not a base of B
}

—end example]

12.8 Copying class objects DRAFT: 28 April 1995 Special member functions 12– 17

[class.copy] 12.8 Copying class objects

1 A class object can be copied in two ways, by initialization (12.1, 8.5), including for function argument
passing (5.2.2) and for function value return (6.6.3), and by assignment (5.17). Conceptually, these two
operations are implemented by a copy constructor (12.1) and copy assignment operator (13.5.3).

2 A constructor for classX is acopyconstructor if its first parameter is of typeX& or const X& and either
there are no other parameters or else all other parameters have default arguments (8.3.6). [Example:
X::X(const X&) andX::X(X&, int=1) are copy constructors.

class X {
// ...

public:
X(int);
X(const X&, int = 1);

};
X a(1); // calls X(int);
X b(a, 0); // calls X(const X&, int);
X c = b; // calls X(const X&, int);

—end example] [Note:both forms of copy constructor may be declared for a class. [Example:

class X {
// ...

public:
X(const X&);
X(X&); // OK

};

—end example] —end note] [Note: if a classX only has a copy constructor with a parameter of typeX&,
an initializer of typeconst X cannot initialize an object of type (possibily cv-qualified)X. [Example:

struct X {
X(); // default constructor
X(X&); // copy constructor with a nonconst parameter

};
const X cx;
X x = cx; // error -- X::X(X&) cannot copy cx into x

—end example] —end note]

3 A declaration of a constructor for a classX is ill-formed if its first parameter is of type (optionally cv-
qualified)X and either there are no other parameters or else all other parameters have default arguments.

4 If the class definition does not explicitly declare a copy constructor, one is declaredimplicitly. Thus, for
the class definition

struct X {
X(const X&, int);

};

a copy constructor is implicitly-declared. If the user-declared constructor is later defined as

X::X(const X& x, int i =0) { ... }

then any use ofX’s copy constructor is ill-formed because of the ambiguity; no diagnostic is required.

5 The implicitly-declared copy constructor for a classX will have the form

X::X(const X&)

if

— each direct or virtual base classB of X has a copy constructor whose first parameter is of typeconst
B&and

— for all the nonstatic data members ofX that are of a class typeM(or array thereof), each such class type

12– 18 Special member functions DRAFT: 28 April 1995 12.8 Copying class objects

has a copy constructor whose first parameter is of typeconst M&.76)

Otherwise, the implicitly declared copy constructor will have the form

X::X(X&)

An implicitly-declared copy constructor is apublic member of its class. Copy constructors are not inher-
ited.

6 A copy constructor for classX is trivial if it is implicitly declared and if

— classX has no virtual functions (10.3) and no virtual base classes (10.1), and

— each direct base class ofX has a trivial copy constructor, and

— for all the nonstatic data members ofX that are of class type (or array thereof), each such class type has
a trivial copy constructor;

otherwise the copy constructor isnon-trivial.

7 An implicitly-declared copy constructor isimplicitly definedif it is used to copy an object of its class type,
even if the implementation elided its use (12.2). A program is ill-formed if the class for which a copy con-
structor is implicitly defined has:

— a nonstatic data member of class type (or array thereof) with an inaccessible or ambiguous copy con-
structor, or

— a base class with an inaccessible or ambiguous copy constructor.

Before the implicitly-declared copy constructor for a class is implicitly defined, all implicitly-declared copy
constructors for its direct and virtual base classes and its nonstatic data members shall have been implicitly
defined.

8 The implicitly-defined copy constructor for classX performs a memberwise copy of its subobjects. The
order of copying is the same as the order of initialization of bases and members in a user-defined construc-
tor (see 12.6.2). Each subobject is copied in the manner appropriate to its type:

— if the subobject is of class type, the copy constructor for the class is used;

— if the subobject is an array, each element is copied, in the manner appropriate to the element type;

— if the subobject is of scalar or pointer-to-member type, the built-in assignment operator is used.

Virtual base class subobjects shall be copied only once by the implicitly-defined copy constructor (see
12.6.2).

9 A user-declaredcopy assignment operatorX::operator= is a non-static member function of classX
with exactly one parameter of typeX, X& or const X&. [Note: more than one form of copy assignment
operator may be declared for a class.] [Note: if a classX only has a copy assignment operator with a
parameter of typeX&, an expression of type constX cannot be assigned to an object of typeX [Example:

struct X {
X()
X& operator=(X&);

};
const X cx;
X x;
x = cx; // error:

// X::operator=(X&) cannot assign cx into x

—end example] —end note]

76)This implies that the reference parameter of the implicitly-declared copy constructor cannot bind to avolatile lvalue; see C.2.8.

12.8 Copying class objects DRAFT: 28 April 1995 Special member functions 12– 19

10 If the class definition does not explicitly declare a copy assignment operator, one is declaredimplicitly.
The implicitly-declared copy assignment operator for a classX will have the form

X& X::operator=(const X&)

if

— each direct base classB of X has a copy assignment operator whose parameter is of typeconst B&and

— for all the nonstatic data members ofX that are of a class typeM(or array thereof), each such class type
has a copy assignment operator whose parameter is of typeconst M&.77)

Otherwise, the implicitly declared copy constructor will have the form

X& X::operator=(X&)

The implicitly-declared copy assignment operator for classX has the return typeX&; it returns the object for
which the assignment operator is invoked, that is, the object assigned to. An implicitly-declared copy
assignment operator is apublic member of its class. Because a copy assignment operator is implicitly
declared for a class if not declared by the user, a base class copy assignment operator is always hidden by
the copy assignment operator of a derived class (13.5.3).

11 A copy assignment operator for classX is trivial if it is implicitly declared and if

— each direct base class ofX has a trivial copy assignment operator, and

— for all the nonstatic data members ofX that are of class type (or array thereof), each such class type has
a trivial copy assignment operator;

otherwise the copy assignment operator isnon-trivial.

12 An implicitly-declared copy assignment operator isimplicitly definedwhen an object of its class type is
assigned. A program is ill-formed if the class for which a copy assignment operator is implicitly defined
has:

— a nonstatic data member ofconst type, or

— a nonstatic data member of reference type, or

— a nonstatic data member of class type (or array thereof) with an inaccessible copy assignment operator,
or

— a base class with an inaccessible copy assignment operator.

Before the implicitly-declared copy assignment operator for a class is implicitly defined, all implicitly-
declared copy assignment operators for its direct base classes and its nonstatic data members shall have
been implicitly defined.

13 The implicitly-defined copy assignment operator for classX performs memberwise assignment of its subob-
jects. The direct base classes ofX are assigned first, in the order of their declaration in thebase-specifier-
list, and then the immediate nonstatic data members ofX are assigned, in the order in which they were
declared in the class definition. Each subobject is assigned in the manner appropriate to its type:

— if the subobject is of class type, the copy assignment operator for the class is used;

— if the subobject is an array, each element is assigned, in the manner appropriate to the element type;

— if the subobject is of scalar or pointer-to-member type, the built-in assignment operator is used.

It is unspecified whether subobjects representing virtual base classes are assigned more than once by the

77) This implies that the reference parameter of the implicitly-declared copy assignment operator cannot bind to avolatile lvalue;
see C.2.8.

12– 20 Special member functions DRAFT: 28 April 1995 12.8 Copying class objects

implicitly-defined copy assignment operator. [Example:

struct V {
struct A : virtual V { };
struct B : virtual V { };
struct C : B, A { };

it is unspecified whether the virtual base class subobjectV is assigned twice by the implicitly-defined copy
assignment operator forC. —end example]

14 [Note:Copying one object into another using the copy constructor or the copy assignment operator does not
change the layout or size of either object.]

15 Whenever a class object is copied and the implementation can prove that either the original or the copy will
never again be used, an implementation is permitted to treat the original and the copy as two different ways
of referring to the same object and not perform a copy at all. In that case, the object is destroyed at the later
of times when the original and the copy would have been destroyed without the optimization.78) [Example:

class Thing {
public:

Thing();
~Thing();
Thing(const Thing&);
Thing operator=(const Thing&);
void fun();

};

void f(Thing t) { }
void g(Thing t) { t.fun(); }

int main()
{

Thing t1, t2, t3;
f(t1);
g(t2);
g(t3);

t3.fun();
}

Heret1 does not need to be copied when callingf becausef does not use its formal parameter again after
copying it. Althoughg uses its parameter, the call tog(t2) does not need to copyt2 becauset2 is not
used again after it is passed tog. On the other hand,t3 is used after passing it tog so callingg(t3) is
required to copyt3 .]

78)Because only one object is destroyed instead of two, and one copy constructor is not executed, there is still one object destroyed for
each one constructed.

_ ___ ___

13 Overloading [over]
_ ___ ___

1 When two or more different declarations are specified for a single name in the same scope, that name is
said to beoverloaded. By extension, two declarations in the same scope that declare the same name but
with different types are calledoverloaded declarations. Only function declarations can be overloaded;
object and type declarations cannot be overloaded.

2 When an overloaded function name is used in a call, which overloaded function declaration is being refer-
enced is determined by comparing the types of the arguments at the point of use with the types of the
parameters in the overloaded declarations that are visible at the point of use. This function selection pro-
cess is calledoverload resolutionand is defined in 13.3. [Example:

double abs(double);
int abs(int);

abs(1); // call abs(int);
abs(1.0); // call abs(double);

—end example]

[over.load] 13.1 Overloadable declarations

1 Not all function declarations can be overloaded. Those that cannot be overloaded are specified here. A
program is ill-formed if it contains two such non-overloadable declarations in the same scope.

2 Certain function declarations cannot be overloaded:

— Function declarations that differ only in the return type cannot be overloaded.

— Member function declarations with the same name and the same parameter types cannot be overloaded
if any of them is astatic member function declaration (9.5). The types of the implicit object param-
eters constructed for the member functions for the purpose of overload resolution (13.3.1) are not con-
sidered when comparing parameter types for enforcement of this rule. In contrast, if there is no
static member function declaration among a set of member function declarations with the same
name and the same parameter types, then these member function declarations can be overloaded if they
differ in the type of their implicit object parameter. [Example:the following illustrates this distinction:

class X {
static void f();
void f(); // ill-formed
void f() const; // ill-formed
void f() const volatile; // ill-formed
void g();
void g() const; // Ok: no static g
void g() const volatile; // Ok: no static g

};

—end example]

3 [Note: as specified in 8.3.5, function declarations that have equivalent parameter declarations declare the
same function and therefore cannot be overloaded:

— Parameter declarations that differ only in the use of equivalent typedef“types” are equivalent. A
typedef is not a separate type, but only a synonym for another type (7.1.3). [Example:

13– 2 Overloading DRAFT: 28 April 1995 13.1 Overloadable declarations

typedef int Int;

void f(int i);
void f(Int i); // OK: redeclaration of f(int)
void f(int i) { /* ... */ }
void f(Int i) { /* ... */ } // error: redefinition of f(int)

—end example]

Enumerations, on the other hand, are distinct types and can be used to distinguish overloaded function
declarations. [Example:

enum E { a };

void f(int i) { /* ... */ }
void f(E i) { /* ... */ }

—end example]

— Parameter declarations that differ only in a pointer* versus an array[] are equivalent. That is, the
array declaration is adjusted to become a pointer declaration (8.3.5). Only the second and subsequent
array dimensions are significant in parameter types (8.3.4). [Example:

f(char*);
f(char[]); // same as f(char*);
f(char[7]); // same as f(char*);
f(char[9]); // same as f(char*);

g(char(*)[10]);
g(char[5][10]); // same as g(char(*)[10]);
g(char[7][10]); // same as g(char(*)[10]);
g(char(*)[20]); // different from g(char(*)[10]);

—end example]

— Parameter declarations that differ only in the presence or absence ofconst and/orvolatile are
equivalent. That is, theconst and volatile type-specifiers for each parameter type are ignored
when determining which function is being declared, defined, or called. [Example:

typedef const int cInt;

int f (int);
int f (const int); // redeclaration of f (int);
int f (int) { ... } // definition of f (int)
int f (cInt) { ... } // error: redefinition of f (int)

—end example]

Only theconst andvolatile type-specifiers at the outermost level of the parameter type specifica-
tion are ignored in this fashion;const andvolatile type-specifiers buried within a parameter type
specification are significant and can be used to distinguish overloaded function declarations.79) In par-
ticular, for any typeT, “pointer toT,” “pointer toconst T,” and“pointer tovolatile T” are consid-
ered distinct parameter types, as are“reference toT,” “reference toconst T ,” and “reference to
volatile T.”

— Two parameter declarations that differ only in their default arguments are equivalent. [Example:con-
sider the following:

79)When a parameter type includes a function type, such as in the case of a paramater type that is a pointer to function, theconst and
volatile type-specifiers at the outermost level of the parameter type specifications for the inner function type are also ignored.

13.1 Overloadable declarations DRAFT: 28 April 1995 Overloading 13– 3

void f (int i, int j);
void f (int i, int j = 99); // Ok: redeclaration of f (int, int)
void f (int i = 88); // Ok: redeclaration of f (int, int)
void f (); // Ok: overloaded declaration of f

void prog ()
{

f (1, 2); // Ok: call f (int, int)
f (1); // Ok: call f (int, int)
f (); // Error: f (int, int) or f ()?

}

—end example] —end note]

[over.dcl] 13.2 Declaration matching

1 Two function declarations of the same name refer to the same function if they are in the same scope and
have equivalent parameter declarations (13.1). A function member of a derived class isnot in the same
scope as a function member of the same name in a base class. [Example:

class B {
public:

int f(int);
};

class D : public B {
public:

int f(char*);
};

HereD::f(char*) hidesB::f(int) rather than overloading it.

void h(D* pd)
{

pd->f(1); // error:
// D::f(char*) hides B::f(int)

pd->B::f(1); // ok
pd->f("Ben"); // ok, calls D::f

}

—end example]

2 A locally declared function is not in the same scope as a function in a containing scope. [Example:

int f(char*);
void g()
{

extern f(int);
f("asdf"); // error: f(int) hides f(char*)

// so there is no f(char*) in this scope
}

void caller ()
{

void callee (int, int);
{

void callee (int); // hides callee (int, int)
callee (88, 99); // error: only callee (int) in scope

}
)

—end example]

13– 4 Overloading DRAFT: 28 April 1995 13.2 Declaration matching

3 Different versions of an overloaded member function can be given different access rules. [Example:

class buffer {
private:

char* p;
int size;

protected:
buffer(int s, char* store) { size = s; p = store; }
// ...

public:
buffer(int s) { p = new char[size = s]; }
// ...

};

—end example]

[over.match] 13.3 Overload resolution

1 Overload resolution is a mechanism for selecting the best function to call given a list of expressions that are
to be the arguments of the call and a set ofcandidate functionsthat can be called based on the context of the
call. The selection criteria for the best function are the number of arguments, how well the arguments
match the types of the parameters of the candidate function, how well (for nonstatic member functions) the
object matches the implied object parameter, and certain other properties of the candidate function. [Note:
the function selected by overload resolution is not guaranteed to be appropriate for the context. Other
restrictions, such as the accessibility of the function, can make its use in the calling context ill-formed.]

2 Overload resolution selects the function to call in five distinct contexts within the language:

— invocation of a function named in the function call syntax (13.3.1.1.1);

— invocation of a function call operator, a pointer-to-function conversion function, or a reference-to-
function conversion function of a class object named in the function call syntax (13.3.1.1.2);

— invocation of the operator referenced in an expression (13.3.1.2);

— invocation of a constructor for direct-initialization (8.5) of a class object (13.3.1.4); and

— invocation of a user-defined conversion for copy-initialization (8.5) of a class object, or initialization of
an object of a built-in type from an expression of class type (13.3.1.3).

3 Each of these contexts defines the set of candidate functions and the list of arguments in its own unique
way. But, once the candidate functions and argument lists have been identified, the selection of the best
function is the same in all cases:

— First, a subset of the candidate functions—those that have the proper number of arguments and meet
certain other conditions—is selected to form a set ofviable functions.

— Then the best viable function is selected based on the implicit conversion sequences (13.3.3.1) needed
to match each argument to the corresponding parameter of each viable function.

4 If a best viable function exists and is unique, overload resolution succeeds and produces it as the result.
Otherwise overload resolution fails and the invocation is ill-formed.

[over.match.funcs] 13.3.1 Candidate functions and argument lists

1 The following subclauses describe the set of candidate functions and the argument list submitted to over-
load resolution in each of the five contexts in which overload resolution is used. The source transforma-
tions and constructions defined in these subclauses are only for the purpose of describing the overload reso-
lution process. An implementation is not required to use such transformations and constructions.

13.3.1 DRAFT: 28 April 1995 Overloading 13– 5
Candidate functions and argument lists

2 The set of candidate functions can contain both member and non-member functions to be resolved against
the same argument list. So that argument and parameter lists are comparable within this heterogeneous set,
a member function is considered to have an extra parameter, called theimplicit object parameter, which
represents the object for which the member function has been called. For the purposes of overload resolu-
tion, both static and non-static member functions have an implicit object parameter, but constructors do not.

3 Similarly, when appropriate, the context can construct an argument list that contains animplied object
argumentto denote the object to be operated on. Since arguments and parameters are associated by posi-
tion within their respective lists, the convention is that the implicit object parameter, if present, is always
the first parameter and the implied object argument, if present, is always the first argument.

4 For non-static member functions, the type of the implicit object parameter is“reference tocv X” whereX is
the class that defines the member function andcv is the cv-qualification on the member function declara-
tion. [Example:for aconst member function of classX, the extra parameter is assumed to have type“ref-
erence toconst X ”.] For static member functions, the implicit object parameter is considered to match
any object (since if the function is selected, the object is discarded).

5 During overload resolution, the implied object argument is indistinguishable from other arguments. The
implicit object parameter, however, retains its identity since conversions on the corresponding argument
shall obey these additional rules:

— no temporary object can be introduced to hold the argument for the implicit object parameter;

— no user-defined conversions can be applied to achieve a type match with it; and

— even if the implicit object parameter is notconst -qualified, an rvalue temporary can be bound to the
parameter as long as in all other respects the temporary can be converted to the type of the implicit
object parameter.

6 In each case where a candidate is a function template, candidate template functions are generated using
template argument deduction (14.10.3, 14.10.2). Those candidates are then handled as candidate functions
in the usual way.80) A given name can refer to one or more function templates and also to a set of over-
loaded non-template functions. In such a case, the candidate functions generated from each function tem-
plate are combined with the set of non-template candidate functions.

[over.match.call] 13.3.1.1 Function call syntax

1 Recall from 5.2.2, that afunction call is apostfix-expression, possibly nested arbitrarily deep in parenthe-
ses, followed by an optionalexpression-listenclosed in parentheses:

(...(opt postfix-expression) ...) opt (expression-listopt)

Overload resolution is required if thepostfix-expressionyields the name of a function, a function template
(14.10), an object of class type, or a set of pointers-to-function.

2 Subclauses 13.3.1.1.1 and 13.3.1.1.2, respectively, describe how overload resolution is used in the first two
cases to determine the function to call.

3 The third case arises from apostfix-expressionof the form&F, whereF names a set of overloaded func-
tions. In the context of a function call, the set of functions named byF shall contain only non-member
functions and static member functions81). And in this context using&F behaves the same as using the name
F by itself. Thus, (&F)(expression-listopt) is simply (F)(expression-listopt) , which is discussed in
13.3.1.1.1. (The resolution of&F in other contexts is described in 13.4.)

80) The process of argument deduction fully determines the parameter types of the template functions, i.e., the parameters of template
functions contain no template parameter types. Therefore the template functions can be treated as normal (non-template) functions for
the remainder of overload resolution.
81) If F names a non-static member function,&F is a pointer-to-member, which cannot be used with the function call syntax.

13– 6 Overloading DRAFT: 28 April 1995 13.3.1.1.1 Call to named function

[over.call.func] 13.3.1.1.1 Call to named function

1 Of interest in this subclause are only those function calls in which thepostfix-expressionultimately con-
tains a name that denotes one or more functions that might be called. Such apostfix-expression, perhaps
nested arbitrarily deep in parentheses, has one of the following forms:

postfix-expression:
postfix-expression. id-expression
postfix-expression-> id-expression
primary-expression

These represent two syntactic subcategories of function calls: qualified function calls and unqualified func-
tion calls.

2 In qualified function calls, the name to be resolved is anid-expressionand is preceded by an-> or . oper-
ator. Since the constructA->B is generally equivalent to(*A).B , the rest of this clause assumes, without
loss of generality, that all member function calls have been normalized to the form that uses an object and
the . operator. Furthermore, this clause assumes that thepostfix-expressionthat is the left operand of the
. operator has type“cv T” whereT denotes a class82). Under this assumption, theid-expressionin the call
is looked up as a member function ofT following the rules for looking up names in classes (10). If a mem-
ber function is found, that function and its overloaded declarations constitute the set of candidate func-
tions83). The argument list is theexpression-listin the call augmented by the addition of the left operand of
the. operator in the normalized member function call as the implied object argument.

3 In unqualified function calls, the name is not qualified by an-> or . operator and has the more general
form of aprimary-expression. The name is looked up in the context of the function call following the nor-
mal rules for name lookup. If the name resolves to a non-member function declaration, that function and its
overloaded declarations constitute the set of candidate functions84). The argument list is the same as the
expression-listin the call. If the name resolves to a nonstatic member function, then the function call is
actually a member function call. If the keywordthis is in scope and refers to the class of that member
function, or a derived class thereof, then the function call is transformed into a normalized qualified func-
tion call using(*this) as thepostfix-expressionto the left of the. operator. The candidate functions
and argument list are as described for qualified function calls above. If the keywordthis is not in scope
or refers to another class, then name resolution found a static member of some classT. In this case, all
overloaded declarations of the function name inT become candidate functions and a contrived object of
type T becomes the implied object argument85). The call is ill-formed, however, if overload resolution
selects one of the non-static member functions ofT in this case.

[over.call.object] 13.3.1.1.2 Call to object of class type

1 If the primary-expressionE in the function call syntax evaluates to a class object of type“cvT”, then the set
of candidate functions includes at least the function call operators ofT. The function call operators ofT are
obtained by ordinary lookup of the nameoperator() in the context of(E).operator() 86).

2 In addition, for each conversion function declared inT of the form

operator conversion-type-id() cv-qualifier;

where conversion-type-iddenotes the type“pointer to function with parameters of typeP1,...,Pn and
returningR” or type“reference to function with parameters of typeP1,...,Pn and returningR”, asurrogate

82)Note that cv-qualifiers on the type of objects are significant in overload resolution for both lvalue and rvalue objects.
83) Because of the usual name hiding rules, these will all be declared inT or they will all be declared in the same base class ofT; see
10.2.
84) Because of the usual name hiding rules, these will be introduced by declarations or by using directives all found found in the same
block or all found at namespace scope.
85)An implied object argument must be contrived to correspond to the implicit object parameter attributed to member functions during
overload resolution. It is not used in the call to the selected function. Since the member functions all have the same implicit object
parameter, the contrived object will not be the cause to select or reject a function.
86)Because of the usual name hiding rules, these will all be declared inT or they will all be declared in the same base class ofT.

13.3.1.1.2 Call to object of class type DRAFT: 28 April 1995 Overloading 13– 7

call functionwith the unique namecall-functionand having the form

R call-function (conversion-type-idF, P1 a1, ...,Pn an) { return F (a1, ...,an); }

is also considered as a candidate function. Similarly, surrogate call functions are added to the set of candi-
date functions for each conversion function declared in an accessible base class provided the function is not
hidden withinT by another intervening declaration87).

3 If such a surrogate call function is selected by overload resolution, its body, as defined above, will be exe-
cuted to convertE to the appropriate function and then to invoke that function with the arguments of the
call.

4 The argument list submitted to overload resolution consists of the argument expressions present in the func-
tion call syntax preceded by the implied object argument(E) . [Note:when comparing the call against the
function call operators, the implied object argument is compared against the implicit object parameter of
the function call operator. When comparing the call against a surrogate call function, the implied object
argument is compared against the first parameter of the surrogate call function. The conversion function
from which the surrogate call function was derived will be used in the conversion sequence for that parame-
ter since it converts the implied object argument to the appropriate function pointer or reference required by
that first parameter.] [Example:

int f1(int);
int f2(float);
typedef int (*fp1)(int);
typedef int (*fp2)(float);
struct A {

operator fp1() { return f1; }
operator fp2() { return f2; }

} a;
int i = a(1); // Calls f1 via pointer returned from

// conversion function

—end example]

[over.match.oper] 13.3.1.2 Operators in expressions

1 If no operand of an operator in an expression has a type that is a class or an enumeration, the operator is
assumed to be a built-in operator and interpreted according to clause 5. [Note:because. , .* , :: , and?:
cannot be overloaded, these operators are always built-in operators interpreted according to clause 5.]
[Example:

class String {
public:

String (const String&);
String (char*);

operator char* ();
};
String operator + (const String&, const String&);

void f(void)
{

char* p= "one" + "two"; // ill-formed because neither
// operand has user defined type

int I = 1 + 1; // Always evaluates to 2 even if
// user defined types exist which
// would perform the operation.

}

87)Note that this construction can yield candidate call functions that cannot be differentiated one from the other by overload resolution
because they have identical declarations or differ only in their return type. The call will be ambiguous if overload resolution cannot
select a match to the call that is uniquely better than such undifferentiable functions.

13– 8 Overloading DRAFT: 28 April 1995 13.3.1.2 Operators in expressions

—end example]

2 If either operand has a type that is a class or an enumeration, a user-defined operator function might be
declared that implements this operator or a user-defined conversion can be necessary to convert the operand
to a type that is appropriate for a built-in operator. In this case, overload resolution is used to determine
which operator function or builtin operator is to be invoked to implement the operator. Therefore, the oper-
ator notation is first transformed to the equivalent function-call notation as summarized in Table 8 (where
@ denotes one of the operators covered in the specified subclause).

Table 8—relationship between operator and function call notation
_ __
Subclause Expression As member function As non-member function_ ___ __
13.5.1 @a (a).operator@ () operator@ (a)
13.5.2 a@b (a).operator@ (b) operator@ (a, b)
13.5.3 a=b (a).operator= (b)
13.5.5 a[b] (a).operator[](b)
13.5.6 a-> (a).operator-> ()
13.5.7 a@ (a).operator@ (0) operator@ (a, 0)_ __

3 For a typeT whose fully-qualified name is::N1::...::Nn::C1::...::Cm::T where eachNi is a
namespace name and eachCi is a class name, the fully-qualified namespace name::N1::...::Nn is
called the“namespace of the typeT.” To look upX in the“context of the namespace of the typeT” means
to perform the qualified name lookup of::N1::...::Nn::X (13.3.1.1.1).

4 For a unary operator @ with an operand of typeT1 or reference tocv T1, and for a binary operator @ with
a left operand of typeT1 or reference tocv T1 and a right operand of typeT2 or reference tocv T2, three
sets of candidate functions, designatedmember candidates, non-member candidatesand built-in
candidates, are constructed as follows:

— If T1 is a class type, the set of member candidates is the result of the qualified lookup of
T1::operator@ (13.3.1.1.1); otherwise, the set of member candidates is empty.

— The set of non-member candidates is the union of the functions found in the following name lookups:

— The unqualifiedoperator@ is looked up in the context of the expression according to the usual
rules for name lookup except that all member functions are ignored.

— For each typeZ, whereZ is either aTi of class type or a direct or indirect base class of aTi of class
type, operator@ is looked up in the context of typeZ according to the usual rules for name
lookup.

— For eachTi of enumeration type,operator@ is looked up in the context of the namespace of that
type according to the usual rules for name lookup.

— For the operator, , the unary operator&, or the operator-> , the built-in candidates set is empty. For all
other operators, the built-in candidates include all of the candidate operator functions defined in 13.6
that, compared to the given operator,

— have the same operator name, and

— accept the same number of operands, and

— accept operand types to which the given operand or operands can be converted according to
13.3.3.1.

5 For the built-in assignment operators, conversions of the left operand are restricted as follows:

— no temporaries are introduced to hold the left operand, and

13.3.1.2 Operators in expressions DRAFT: 28 April 1995 Overloading 13– 9

— no user-defined conversions are applied to achieve a type match with it.

6 For all other operators, no such restrictions apply.

7 The set of candidate functions for overload resolution is the union of the member candidates, the non-
member candidates, and the built-in candidates. The argument list contains all of the operands of the opera-
tor. The best function from the set of candidate functions is selected according to 13.3.2 and 13.3.3.88)

[Example:

struct A {
operator int();

};
A operator+(const A&, const A&);
void m() {

A a, b;
a + b; // a.operator+(b) chosen over int(a) + int(b)

}

—end example]

8 If a built-in candidate is selected by overload resolution, any class operands are first converted to the appro-
priate type for the operator. Then the operator is treated as the corresponding built-in operator and inter-
preted according to clause 5.

9 The second operand of operator-> is ignored in selecting anoperator-> function, and is not an argu-
ment when theoperator-> function is called. Whenoperator-> returns, the built-in operator-> is
applied to the value returned, with the original second operand.

10 If the operator is the operator, , the unary operator&, or the operator-> , and overload resolution is unsuc-
cessful, then the operator is assumed to be the built-in operator and interpreted according to clause 5.

11 [Note:the look up rules for operators in expressions are different than the lookup rules for operator function
names in a function call, as shown in the following example:

struct A { };
void operator + (A, A);

struct B {
void operator + (B);
void f ();

};

A a;

void B::f() {
operator+ (a,a); // ERROR - global operator hidden by member
a + a; // OK - calls global operator+

}

—end note]

[over.match.user] 13.3.1.3 Initialization by user-defined conversions

1 Under the conditions specified in 8.5 and 8.5.3, as part of an initialization a user-defined conversion can be
invoked to convert the initializer expression to the type of an object or temporary being initialized. Over-
load resolution is used to select the user-defined conversion to be invoked. Assuming that“cv1 T” is the
type of the object or temporary being initialized, the candidate functions are selected as follows:

— WhenT is a class type, the constructors ofT are candidate functions.

— When the type of the initializer expression is a class type“cv S”, the conversion functions ofS and its

88) If the set of candidate functions is empty, overload resolution is unsuccessful.

13– 10 Overloading DRAFT: 28 April 1995 13.3.1.3
Initialization by user-defined conversions

base classes are considered. Those that are not hidden withinS and yield type“cv2 T” or a type that
can be converted to type“cv2 T,” for any cv2 that is the same cv-qualification as, or lesser cv-
qualification than,cv1, via a standard conversion sequence (13.3.3.1.1) are candidate functions.

2 In both cases, the argument list has one argument, which is the initializer expression. [Note: this argument
will be compared against the first parameter of the constructors and against the implicit object parameter of
the conversion functions.]

3 Because only one user-defined conversion is allowed in an implicit conversion sequence, special rules
apply when selecting the best user-defined conversion (13.3.3, 13.3.3.1).

[over.match.ctor] 13.3.1.4 Initialization by constructor

1 When objects of class type are direct-initialized (8.5), overload resolution selects the constructor. The can-
didate functions are all the constructors of the class of the object being initialized. The argument list is the
expression-listwithin the parentheses of the initializer.

2 [Note:when no constructor for classT accepts the given type, no attempt is made to find other constructors
to convert theassignment-expressioninto a type that can be converted toT. [Example:

class T {
public:

T();
// ...

};

class C : T {
public:

C(int);
// ...

};
T a = 1; // ill-formed: T(C(1)) not tried

—end example] —end note]

[over.match.viable] 13.3.2 Viable functions

1 From the set of candidate functions constructed for a given context (13.3.1), a set of viable functions is cho-
sen, from which the best function will be selected by comparing argument conversion sequences for the
best fit (13.3.3). The selection of viable functions considers relationships between arguments and function
parameters other than the ranking of conversion sequences.

2 First, to be a viable function, a candidate function shall have enough parameters to agree in number with the
arguments in the list.

— If there aremarguments in the list, all candidate functions having exactlymparameters are viable.

— A candidate function having fewer thanm parameters is viable only if it has an ellipsis in its parameter
list (8.3.5). For the purposes of overload resolution, any argument for which there is no corresponding
parameter is considered to ‘‘match the ellipsis’’ (13.3.3.1.3) .

— A candidate function having more thanm parameters is viable only if the(m+1)– st parameter has a
default argument (8.3.6).89) For the purposes of overload resolution, the parameter list is truncated on
the right, so that there are exactlymparameters.

3 Second, forF to be a viable function, there shall exist for each argument animplicit conversion sequence
(13.3.3.1) that converts that argument to the corresponding parameter ofF. If the parameter has reference
type, the implicit conversion sequence includes the operation of binding the reference, and the fact that a
reference to non-const cannot be bound to an rvalue can affect the viability of the function (see

89)According to subclause 8.3.6, parameters following the(m+1)– st parameter must also have default arguments.

13.3.2 Viable functions DRAFT: 28 April 1995 Overloading 13– 11

13.3.3.1.4).

[over.match.best] 13.3.3 Best Viable Function

1 Let ICSi(F) denote the implicit conversion sequence that converts thei-th argument in the list to the type of
the i-th parameter of viable functionF. Subclause 13.3.3.1 defines the implicit conversion sequences and
subclause 13.3.3.2 defines what it means for one implicit conversion sequence to be a better conversion
sequence or worse conversion sequence than another. Given these definitions, a viable functionF1 is
defined to be abetter function than another viable functionF2 if for all argumentsi, ICSi(F1) is not a
worse conversion sequence than ICSi(F2), and then

— for some argumentj, ICSj(F1) is a better conversion sequence than ICSj(F2), or, if not that,

— F1 is a non-template function andF2 is a template function, or, if not that,

— F1 andF2 are template functions with the same signature, and the function template forF1 is more
specialized than the template forF2 according to the partial ordering rules described in
temp.over.order, or, if not that,

— the context is an initialization by user-defined conversion (see 8.5 and 13.3.1.3) and the standard con-
version sequence from the return type ofF1 to the destination type (i.e., the type of the entity being ini-
tialized) is a better conversion sequence than the standard conversion sequence from the return type of
F2 to the destination type. [Example:

struct A {
A();
operator int();
operator double();

} a;
int i = a; // a.operator int() followed by no conversion is better

// than a.operator double() followed by a conversion
// to int

float x = a; // ambiguous: both possibilities require conversions,
// and neither is better than the other

—end example]

2 If there is exactly one viable function that is a better function than all other viable functions, then it is the
one selected by overload resolution; otherwise the call is ill-formed90).

3 [Example:

90) The algorithm for selecting the best viable function is linear in the number of viable functions. Run a simple tournament to find a
functionWthat is not worse than any opponent it faced. Although another functionF thatWdid not face might be better thanW, F can-
not be the best function because at some point in the tournamentF encountered another functionGsuch thatF was not better thanG.
Hence,Wis either the best function or there is no best function. So, make a second pass over the viable functions to verify thatWis bet-
ter than all other functions.

13– 12 Overloading DRAFT: 28 April 1995 13.3.3 Best Viable Function

void Fcn(const int*, short);
void Fcn(int*, int);

int i;
short s = 0;

Fcn(&i, s); // is ambiguous because
// &i -> int* is better than &i -> const int*
// but s -> short is also better than s -> int

Fcn(&i, 1L); // calls Fcn(int*, int), because
// &i -> int* is better than &i -> const int*
// and 1L -> short and 1L -> int are indistinguishable

Fcn(&i,’c’); // calls Fcn(int*, int), because
// &i -> int* is better than &i -> const int*
// and ’c’ -> int is better than ’c’ -> short

—end example]

[over.best.ics] 13.3.3.1 Implicit conversion sequences

1 An implicit conversion sequenceis a sequence of conversions used to convert an argument in a function
call to the type of the corresponding parameter of the function being called. The sequence of conversions is
governed by the rules for initialization of an object or reference by a single expression (8.5, 8.5.3).

2 Implicit conversion sequences are concerned only with the type, cv-qualification, and lvalue-ness of the
argument and how these are converted to match the corresponding properties of the parameter. Other prop-
erties, such as the lifetime, storage class, alignment, or accessibility of the argument and whether or not the
argument is a bit-field are ignored. So, although an implicit conversion sequence can be defined for a given
argument-parameter pair, the conversion from the argument to the parameter might still be ill-formed in the
final analysis.

3 Except in the context of an initialization by user-defined conversion (13.3.1.3), a well-formed implicit con-
version sequence is one of the following forms:

— astandard conversion sequence(13.3.3.1.1),

— auser-defined conversion sequence(13.3.3.1.2), or

— anellipsis conversion sequence(13.3.3.1.3).

4 In the context of an initialization by user-defined conversion (i.e., when considering the argument of a
user-defined conversion function; see 13.3.1.3), only standard conversion sequences and ellipsis conversion
sequences are allowed.

5 When initializing a reference, the operation of binding the reference to an object or temporary occurs after
any conversion. The binding operation is not a conversion, but it is considered to be part of a standard con-
version sequence, and it can affect the rank of the conversion sequence. See 13.3.3.1.4.

6 In all contexts, when converting to the implicit object parameter or when converting to the left operand of
an assignment operation only standard conversion sequences that create no temporary object for the result
are allowed.

7 If no conversions are required to match an argument to a parameter type, the implicit conversion sequence
is the standard conversion sequence consisting of the identity conversion (13.3.3.1.1).

8 If no sequence of conversions can be found to convert an argument to a parameter type or the conversion is
otherwise ill-formed, an implicit conversion sequence cannot be formed.

9 If several different sequences of conversions exist that each convert the argument to the parameter type, the
implicit conversion sequence is a sequence among these that is not worse than all the rest according to
13.3.3.291). If that conversion sequence in not better than all the rest and a function that uses such an

91) This rule prevents a function from becoming non-viable because of an ambiguous conversion sequence for one of its parameters.
Consider this example,

13.3.3.1 Implicit conversion sequences DRAFT: 28 April 1995 Overloading 13– 13

implicit conversion sequence is selected as the best viable function, then the call will be ill-formed because
the conversion of one of the arguments in the call is ambiguous.

10 The three forms of implicit conversion sequences mentioned above are defined in the following subclauses.

[over.ics.scs] 13.3.3.1.1 Standard conversion sequences

1 Table 9 summarizes the conversions defined in clause 4 and partitions them into four disjoint categories:
Lvalue Transformation, Qualification Adjustment, Promotion, and Conversion. Note that these categories
are orthogonal with respect to lvalue-ness, cv-qualification, and data representation: the Lvalue Transfor-
mations do not change the cv-qualification or data representation of the type; the Qualification Adjustments
do not change the lvalue-ness or data representation of the type; and the Promotions and Conversions do
not change the lvalue-ness or cv-qualification of the type.

2 A standard conversion sequence is either the Identity conversion by itself or consists of one to four conver-
sions from the other four categories. At most one conversion from each category is allowed in a single
standard conversion sequence. If there are two or more conversions in the sequence, the conversions are
applied in the canonical order:Lvalue Transformation, Promotion, Conversion, Qualification
Adjustment.

3 Each conversion in Table 9 also has an associated rank (Exact Match, Promotion, or Conversion). These
are used to rank standard conversion sequences (13.3.3.2). The rank of a conversion sequence is deter-
mined by considering the rank of each conversion in the sequence and the rank of any reference binding
(13.3.3.1.4). If any of those has Conversion rank, the sequence has Conversion rank; otherwise, if any of
those has Promotion rank, the sequence has Promotion rank; otherwise, the sequence has Exact Match rank.

class B;
class A { A (B&); };
class B { operator A (); };
class C { C (B&); };
f(A) { }
f(C) { }
B b;
f(b); // ambiguous since b -> C via constructor and

// b -> A via constructor or conversion function.

If it were not for this rule,f(A) would be eliminated as a viable function for the callf(b) causing overload resolution to selectf(C)
as the function to call even though it is not clearly the best choice. On the other hand, if anf(B) were to be declared thenf(b)
would resolved to thatf(B) because the exact match withf(B) is better than any of the sequences required to matchf(A) .

13– 14 Overloading DRAFT: 28 April 1995 13.3.3.1.1 Standard conversion sequences

Table 9—conversions
_ ___
Conversion Category Rank Subclause_ __ __ ___
No conversions required Identity_ __ _ ___________
Lvalue-to-rvalue conversion 4.1_ ___________________________ _ ___________
Array-to-pointer conversion 4.2_ ___________________________ _ ___________
Function-to-pointer conversion

Lvalue Transformation

4.3_ __ _ ___________
Qualification conversions Qualification Adjustment

Exact Match

4.4_ ___
Integral promotions 4.5_ ___________________________ _ ___________
Floating point promotion

Promotion Promotion
4.6_ ___

Integral conversions 4.7_ ___________________________ _ ___________
Floating point conversions 4.8_ ___________________________ _ ___________
Floating-integral conversions 4.9_ ___________________________ _ ___________
Pointer conversions 4.10_ ___________________________ _ ___________
Pointer to member conversions 4.11_ ___________________________ _ ___________
Base class conversion 4.12_ ___________________________ _ ___________
Boolean conversions

Conversion Conversion

4.13_ ___

[over.ics.user] 13.3.3.1.2 User-defined conversion sequences

1 A user-defined conversion sequence consists of an initial standard conversion sequence followed by a
user-defined conversion (12.3) followed by a second standard conversion sequence. If the user-defined
conversion is specified by a constructor (12.3.1), the initial standard conversion sequence converts the
source type to the type required by the argument of the constructor. If the user-defined conversion is speci-
fied by a conversion function (12.3.2), the initial standard conversion sequence converts the source type to
the implicit object parameter of the conversion function.

2 The second standard conversion sequence converts the result of the user-defined conversion to the target
type for the sequence. Since an implicit conversion sequence is an initialization, the special rules for
initialization by user-defined conversion apply when selecting the best user-defined conversion for a user-
defined conversion sequence (see 13.3.3 and 13.3.3.1).

3 If the user-defined conversion is specified by a template conversion function, the second standard conver-
sion sequence must have exact match rank.

4 A conversion of an expression of class type to the same class type or to a base class of that type is a stan-
dard conversion rather than a user-defined conversion in spite of the fact that a copy constructor (i.e., a
user-defined conversion function) is called.

[over.ics.ellipsis] 13.3.3.1.3 Ellipsis conversion sequences

1 An ellipsis conversion sequence occurs when an argument in a function call is matched with the ellipsis
parameter specification of the function called.

[over.ics.ref] 13.3.3.1.4 Reference binding

1 The operation of binding a reference is not a conversion, but for the purposes of overload resolution it is
considered to be part of a standard conversion sequence (specifically, it is the last step in such a sequence).

2 A standard conversion sequence cannot be formed if it requires binding a reference to non-const to an
rvalue (except when binding an implicit object parameter; see the special rules for that case in 13.3.1).
[Note: this means, for example, that a candidate function cannot be a viable function if it has a non-const
reference parameter (other than the implicit object parameter) and the corresponding argument is a

13.3.3.1.4 Reference binding DRAFT: 28 April 1995 Overloading 13– 15

temporary or would require one to be created to initialize the reference (see 8.5.3).]

3 Other restrictions on binding a reference to a particular argument do not affect the formation of a standard
conversion sequence, however. [Example:a function with a“reference toint ” parameter can be a viable
candidate even if the corresponding argument is anint bit-field. The formation of implicit conversion
sequences treats theint bit-field as anint lvalue and finds an exact match with the parameter. If the
function is selected by overload resolution, the call will nonetheless be ill-formed because of the prohibi-
tion on binding a non-const reference to a bit-field (8.5.3).]

4 A reference binding in general has no effect on the rank of a standard conversion sequence, but there are
two exceptions:

— the binding of a reference to a (possibly cv-qualified) class to an expression of a (possibly cv-
qualified) class derived from that class gives the overall standard conversion sequence Conversion
rank. [Example:

struct A {};
struct B : public A {} b;
int f(A&);
int f(B&);
int i = f(b); // Calls f(B&), an exact match, rather than

// f(A&), a conversion

—end example]

— the binding of a reference to an expression that isreference-compatible with added qualification
influences the rank of a standard conversion; see 13.3.3.2 and 8.5.3.

[over.ics.rank] 13.3.3.2 Ranking implicit conversion sequences

1 This clause defines a partial ordering of implicit conversion sequences based on the relationshipsbetter
conversion sequenceandbetter conversion. If an implicit conversion sequence S1 is defined by these rules
to be a better conversion sequence than S2, then it is also the case that S2 is aworse conversion sequence
than S1. If conversion sequence S1 is neither better than nor worse than conversion sequence S2, S1 and
S2 are said to beindistinguishable conversion sequences.

2 When comparing the basic forms of implicit conversion sequences (as defined in 13.3.3.1)

— a standard conversion sequence (13.3.3.1.1) is a better conversion sequence than a user-defined conver-
sion sequence or an ellipsis conversion sequence, and

— a user-defined conversion sequence (13.3.3.1.2) is a better conversion sequence than an ellipsis conver-
sion sequence (13.3.3.1.3).

3 Two implicit conversion sequences of the same form are indistinguishable conversion sequences unless one
of the following rules apply:

— Standard conversion sequenceS1 is a better conversion sequence than standard conversion sequence
S2 if

— S1 is a proper subsequence ofS2, or, if not that,

— the rank ofS1 is better than the rank ofS2 (by the rules defined below), or, if not that,

— S1 andS2 differ only in their qualification conversion and they yield types identical except for cv-
qualifiers andS2 adds all the qualifiers thatS1 adds (and in the same places) andS2 adds yet more
cv-qualifiers thanS1, or the similar case with reference binding92). [Example:

92)See the definition ofreference-compatible with added qualificationin 8.5.3.

13– 16 Overloading DRAFT: 28 April 1995 13.3.3.2
Ranking implicit conversion sequences

int f(const int *);
int f(int *);
int g(const int &);
int g(int &);
int i;
int j = f(&i); // Calls f(int *)
int k = g(i); // Calls g(int &)

class X {
public:

void f() const;
void f();

};
void g(const X& a, X b)
{

a.f(); // Calls X::f() const
b.f(); // Calls X::f()

}

—end example]

— User-defined conversion sequenceU1 is a better conversion sequence than another user-defined conver-
sion sequenceU2 if they contain the same user-defined conversion operator or constructor and if the
second standard conversion sequence ofU1 is better than the second standard conversion sequence of
U2. [Example:

struct A {
operator short();

} a;
int f(int);
int f(float);
int i = f(a); // Calls f(int), because short -> int is

// better than short -> float.

—end example]

4 Standard conversions are ordered by their ranks: an Exact Match is a better conversion than a Promotion,
which is a better conversion than a Conversion. Two conversions with the same rank are indistinguishable
unless one of the following rules applies:

— A conversion that is not a conversion of a pointer, or pointer to member, tobool is better than another
conversion that is such a conversion.

— If classB is derived directly or indirectly from classA, conversion ofB* to A* is better than conversion
of B* to void* , and conversion ofA* to void* is better than conversion ofB* to void* .

— If classB is derived directly or indirectly from classA and classC is derived directly or indirectly from
B,

— conversion ofC* to B* is better than conversion ofC* to A* ,

— binding of an expression of typeC to a reference of typeB& is better than binding an expression of
typeC to a reference of typeA&,

— conversion ofA::* to B::* is better than conversion ofA::* to C::* ,

— conversion ofC to B is better than conversion ofC to A,

— conversion ofB* to A* is better than conversion ofC* to A* ,

— binding an expression of typeB to a reference of typeA& is better than binding an expression of type
C to a reference of typeA&,

— conversion ofB::* to C::* is better than conversion ofA::* to C::* , and

13.3.3.2 DRAFT: 28 April 1995 Overloading 13– 17
Ranking implicit conversion sequences

— conversion ofB to A is better than conversion ofC to A. [Example:

struct A {};
struct B : public A {};
struct C : public B {};
C *pc;
int f(A *);
int f(B *);
int i = f(pc); // Calls f(B *)

—end example]

[over.over] 13.4 Address of overloaded function

1 A use of an overloaded function name without arguments is resolved in certain contexts to a pointer to
function or pointer to member function for a specific function from the overload set. The function selected
is the one whose type matches the target type required in the context. It is required that exactly one func-
tion matches the target type. The target can be

— an object being initialized (8.5),

— the left side of an assignment (5.17),

— a parameter of a function (5.2.2),

— a parameter of a user-defined operator (13.5),

— the return value of a function, operator function, or conversion (6.6.3), or

— an explicit type conversion (5.2.3, 5.4).

An overloaded function name shall not be used without arguments in contexts other than those listed. The
reference to the overloaded function name can be preceded by&.

2 If the name is a function template, template argument deduction is done (14.10.2), and if the argument
deduction succeeds, the deduced template arguments are used to generate a single template function, which
is added to the set of overloaded functions considered.

3 Non-member functions and static member functions match targets of type“pointer-to-function;” nonstatic
member functions match targets of type“pointer-to-member-function.” If a nonstatic member function is
selected, the reference to the overloaded function name is required to have the form of a pointer to member
as described in 5.3.1.

4 [Note: if f() andg() are both overloaded functions, the cross product of possibilities must be considered
to resolvef(&g) , or the equivalent expressionf(g) .

5 [Example:

int f(double);
int f(int);
(int (*)(int))&f; // cast expression as selector
int (*pfd)(double) = &f; // selects f(double)
int (*pfi)(int) = &f; // selects f (int)
int (*pfe)(...) = &f; // error: type mismatch

The last initialization is ill-formed because nof() with type int(...) has been defined, and not
because of any ambiguity.—end example]

6 Also note that there are no standard conversions (4) of one pointer-to-function type into another. In particu-
lar, even ifB is a public base ofDwe have

D* f();
B* (*p1)() = &f; // error

13– 18 Overloading DRAFT: 28 April 1995 13.4 Address of overloaded function

void g(D*);
void (*p2)(B*) = &g; // error

7 Note that if the target type is a pointer to member function, the function type of the pointer to member is
used to select the member function from a set of overloaded member functions. [Example:

struct X {
int f(int);
static int f(long);

};

int (X::*p1)(int) = &X::f; // OK
int (*p2)(int) = &X::f; // error: mismatch
int (*p3)(long) = &X::f; // OK
int (X::*p4)(long) = &X::f; // error: mismatch
int (X::*p5)(int) = &(X::f); // error: wrong syntax for

// pointer to member
int (*p6)(long) = &(X::f); // OK

—end example] —end note]

[over.oper] 13.5 Overloaded operators

1 A function declaration having one of the followingoperator-function-ids as its name declares anoperator
function. An operator function is said toimplementthe operator named in itsoperator-function-id.

operator-function-id:
operator operator

operator: one of
new delete new[] delete[]
+ - * / % ^ & | ~
! = < > += -= *= /= %=
^= &= |= << >> >>= <<= == !=
<= >= && || ++ -- , ->* ->
() []

[Note:the last two operators are function call (5.2.2) and subscripting (5.2.1).]

2 Both the unary and binary forms of

+ - * &

can be overloaded.

3 The following operators cannot be overloaded:

. .* :: ?:

nor can the preprocessing symbols# and## (16).

4 Operator functions are usually not called directly; instead they are invoked to evaluate the operators they
implement (13.5.1 - 13.5.7). They can be explicitly called, however, using theoperator-function-idas the
name of the function in the function call syntax (5.2.2). [Example:

complex z = a.operator+(b); // complex z = a+b;
void* p = operator new(sizeof(int)*n);

—end example]

5 The allocation and deallocation functions,operator new , operator new[] , operator delete
andoperator delete[] , are described completely in 12.5. The attributes and restrictions found in the
rest of this section do not apply to them unless explicitly stated in 12.5.

13.5 Overloaded operators DRAFT: 28 April 1995 Overloading 13– 19

6 An operator function shall either be a non-static member function or be a non-member function and have at
least one parameter whose type is a class, a reference to a class, an enumeration, or a reference to an enu-
meration. It is not possible to change the precedence, grouping, or number of operands of operators. The
meaning of the operators=, (unary)&, and, (comma), predefined for each type, can be changed for spe-
cific types by defining operator functions that implement these operators. Operator functions are inherited
the same as other functions, but because an instance ofoperator= is automatically constructed for each
class (12.8, 13.5.3),operator= is never inherited by a class from its bases.

7 The identities among certain predefined operators applied to basic types (for example,++a ≡ a+=1) need
not hold for operator functions. Some predefined operators, such as+=, require an operand to be an lvalue
when applied to basic types; this is not required by operator functions.

8 An operator function cannot have default arguments (8.3.6), except where explicitly stated below. Operator
functions cannot have more or fewer parameters than the number required for the corresponding operator,
as described in the rest of this section.

9 Operators not mentioned explicitly below in 13.5.3 to 13.5.7 act as ordinary unary and binary operators
obeying the rules of section 13.5.1 or 13.5.2.

[over.unary] 13.5.1 Unary operators

1 A prefix unary operator shall be implemented by a non-static member function (9.4) with no parameters or
a non-member function with one parameter. Thus, for any prefix unary operator@, @xcan be interpreted as
eitherx.operator@() or operator@(x) . If both forms of the operator function have been declared,
the rules in 13.3.1.2 determine which, if any, interpretation is used. See 13.5.7 for an explanation of the
postfix unary operators++ and-- .

2 The unary and binary forms of the same operator are considered to have the same name. [Note: conse-
quently, a unary operator can hide a binary operator from an enclosing scope, and vice versa.]

[over.binary] 13.5.2 Binary operators

1 A binary operator shall be implemented either by a non-static member function (9.4) with one parameter or
by a non-member function with two parameters. Thus, for any binary operator@, x@ycan be interpreted as
either x.operator@(y) or operator@(x,y) . If both forms of the operator function have been
declared, the rules in 13.3.1.2 determines which, if any, interpretation is used.

[over.ass] 13.5.3 Assignment

1 An assignment operator shall be implemented by a non-static member function with exactly one parameter.
Because a copy assignment operatoroperator= is implicitly declared for a class if not declared by the
user (12.8), a base class assignment operator is always hidden by the copy assignment operator of the
derived class.

2 Any assignment operator, even the copy assignment operator, can be virtual. [Note: for a derived classD
with a base classB for which a virtual copy assignment has been declared, the copy assignment operator in
Ddoes not overrideB’s virtual copy assignment operator. [Example:

struct B {
virtual int operator= (int);
virtual B& operator= (const B&);

};
struct D : B {

virtual int operator= (int);
virtual D& operator= (const B&);

};

13– 20 Overloading DRAFT: 28 April 1995 13.5.3 Assignment

D dobj1;
D dobj2;
B* bptr = &dobj1;
void f() {

bptr->operator=(99); // calls D::operator(int)
*bptr = 99; // ditto
bptr->operator=(dobj2); // calls D::operator(const B&)
*bptr = dobj2; // ditto
dobj1 = dobj2; // calls D::operator(const D&)

}

—end example] —end note]

[over.call] 13.5.4 Function call

1 operator() shall be a non-static member function with an arbitrary number of parameters. It can have
default arguments. It implements the function call syntax

postfix-expression(expression-listopt)

where thepostfix-expressionevaluates to a class object and the possibly emptyexpression-listmatches the
parameter list of anoperator() member function of the class. Thus, a callx(arg1,...) is inter-
preted asx.operator()(arg1,...) for a class objectx of typeT if T::operator()(T1, T2,
T3) exists and if the operator is selected as the best match function by the overload resolution mechanism
(13.3.3).

[over.sub] 13.5.5 Subscripting

1 operator[] shall be a non-static member function with exactly one parameter. It implements the sub-
scripting syntax

postfix-expression[expression]

Thus, a subscripting expressionx[y] is interpreted asx.operator[](y) for a class objectx of typeT
if T::operator[](T1) exists and if the operator is selected as the best match function by the overload
resolution mechanism (13.3.3).

[over.ref] 13.5.6 Class member access

1 operator-> shall be a non-static member function taking no parameters. It implements class member
access using->

postfix-expression-> primary-expression

An expressionx->m is interpreted as(x.operator->())->m for a class objectx of type T if
T::operator->() exists and if the operator is selected as the best match function by the overload reso-
lution mechanism (13.3).operator-> shall return either a pointer to a class or an object of or a refer-
ence to a class for whichoperator-> is defined, except in some cases when it is a member of a template
(see 14.3.3).T::operator-> shall not return an object of or reference to its own class typeT.

[over.inc] 13.5.7 Increment and decrement

1 The prefix and postfix increment operators shall be implemented by a function calledoperator++ . If
this function is a member function with no parameters, or a non-member function with one class or enumer-
ation parameter, it defines the prefix increment operator++ for objects of that type. If the function is a
member function with one parameter (which shall be of typeint) or a non-member function with two
parameters (the second shall be of typeint), it defines the postfix increment operator++ for objects of
that type. When the postfix increment is called, theint argument will have value zero. [Example:

13.5.7 Increment and decrement DRAFT: 28 April 1995 Overloading 13– 21

class X {
public:

const X& operator++(); // prefix ++a
const X& operator++(int); // postfix a++

};

class Y {
public:
};
const Y& operator++(Y&); // prefix ++b
const Y& operator++(Y&, int); // postfix b++

void f(X a, Y b)
{

++a; // a.operator++();
a++; // a.operator++(0);
++b; // operator++(b);
b++; // operator++(b, 0);

a.operator++(); // explicit call: like ++a;
a.operator++(0); // explicit call: like a++;
operator++(b); // explicit call: like ++b;
operator++(b, 0); // explicit call: like b++;

}

—end example]

2 The prefix and postfix decrement operators-- are handled similarly.

[over.built] 13.6 Built-in operators

1 The candidate operator functions that represent the built-in operators defined in 5 are specified in this sec-
tion. These candidate functions participate in the operator overload resolution process as described in
13.3.1.2 and are used for no other purpose.

2 [Note: since built-in operators take only operands with non-class type, and operator overload resolution
occurs only when an operand expression originally has class or enumeration type, operator overload resolu-
tion can resolve to a built-in operator only when an operand has a class type that has a user-defined conver-
sion to a non-class type appropriate for the operator, or when an operand has an enumeration type that can
be converted to a type appropriate for the operator.]

3 In this section, the termpromoted integral typeis used to refer to those integral types which are preserved
by integral promotion (including e.g.int and long but excluding e.g.char). Similarly, the term
promoted arithmetic typerefers to promoted integral types plus floating types.

4 For every pair (T, VQ), whereT is an arithmetic type, andVQ is eithervolatile or empty, there exist
candidate operator functions of the form

VQ T& operator++(VQ T&);
VQ T& operator--(VQ T&);
T operator++(VQ T&, int);
T operator--(VQ T&, int);

5 For every pair (T, VQ), whereT is a cv-qualified or cv-unqualified complete object type, andVQ is either
volatile or empty, there exist candidate operator functions of the form

T* VQ& operator++(T* VQ&);
T* VQ& operator--(T* VQ&);
T* operator++(T* VQ&, int);
T* operator--(T* VQ&, int);

13– 22 Overloading DRAFT: 28 April 1995 13.6 Built-in operators

6 For every cv-qualified or cv-unqualified complete object typeT, there exist candidate operator functions of
the form

T& operator*(T*);

7 For every function typeT, there exist candidate operator functions of the form

T& operator*(T*);

8 For every typeT, there exist candidate operator functions of the form

T* operator+(T*);

9 For every promoted arithmetic typeT, there exist candidate operator functions of the form

T operator+(T);
T operator-(T);

10 For every promoted integral typeT, there exist candidate operator functions of the form

T operator~(T);

11 For every quadruple (C, T, CV1, CV2), whereC is a class type,T is a complete object type or a function
type, andCV1andCV2arecv-qualifier-seqs, there exist candidate operator functions of the form

CV12 T& operator->*(CV1 C*, CV2 T C::*);

whereCV12is the union ofCV1andCV2.

12 For every pair of promoted arithmetic typesL andR, there exist candidate operator functions of the form

LR operator*(L, R);
LR operator/(L, R);
LR operator+(L, R);
LR operator-(L, R);
bool operator<(L, R);
bool operator>(L, R);
bool operator<=(L, R);
bool operator>=(L, R);
bool operator==(L, R);
bool operator!=(L, R);

whereLR is the result of the usual arithmetic conversions between typesL andR.

13 For every pair of typesT andI, whereT is a cv-qualified or cv-unqualified complete object type andI is a
promoted integral type, there exist candidate operator functions of the form

T* operator+(T*, I);
T& operator[](T*, I);
T* operator-(T*, I);
T* operator+(I, T*);
T& operator[](I, T*);

14 For every triple (T, CV1, CV2), whereT is a complete object type, andCV1andCV2arecv-qualifier-seqs,
there exist candidate operator functions of the form93)

ptrdiff_t operator-(CV1 T*, CV2 T*);

93)WhenT is itself a pointer type, the interiorcv-qualifiers of the two parameter types need not be identical. The two pointer types are
converted to a common type (which need not be the same as either parameter type) by implicit pointer conversions.

13.6 Built-in operators DRAFT: 28 April 1995 Overloading 13– 23

15 For every triple (T, CV1, CV2), whereT is any type, andCV1 andCV2 arecv-qualifier-seqs, there exist
candidate operator functions of the form94)

bool operator<(CV1 T*, CV2 T*);
bool operator>(CV1 T*, CV2 T*);
bool operator<=(CV1 T*, CV2 T*);
bool operator>=(CV1 T*, CV2 T*);
bool operator==(CV1 T*, CV2 T*);
bool operator!=(CV1 T*, CV2 T*);

16 For every quadruple (C, T, CV1, CV2), whereC is a class type,T is any type, andCV1 andCV2 arecv-
qualifier-seqs, there exist candidate operator functions of the form95)

bool operator==(CV1 T C::*, CV2 T C::*);
bool operator!=(CV1 T C::*, CV2 T C::*);

17 For every pair of promoted integral typesL andR, there exist candidate operator functions of the form

LR operator%(L, R);
LR operator&(L, R);
LR operator^(L, R);
LR operator|(L, R);
L operator<<(L, R);
L operator>>(L, R);

whereLR is the result of the usual arithmetic conversions between typesL andR.

18 For every triple (L, VQ, R), whereL is an arithmetic type,VQ is eithervolatile or empty, andR is a
promoted arithmetic type, there exist candidate operator functions of the form

VQ L& operator=(VQ L&, R);
VQ L& operator*=(VQ L&, R);
VQ L& operator/=(VQ L&, R);
VQ L& operator+=(VQ L&, R);
VQ L& operator-=(VQ L&, R);

19 For every pair (T, VQ), whereT is any type andVQ is eithervolatile or empty, there exist candidate
operator functions of the form

T* VQ& operator=(T* VQ&, T*);

20 For every triple (T, VQ, I), whereT is a cv-qualified or cv-unqualified complete object type,VQ is either
volatile or empty, andI is a promoted integral type, there exist candidate operator functions of the form

T* VQ& operator+=(T* VQ&, I);
T* VQ& operator-=(T* VQ&, I);

21 For every triple (L, VQ, R), whereL is an integral type,VQ is eithervolatile or empty, andR is a pro-
moted integral type, there exist candidate operator functions of the form

VQ L& operator%=(VQ L&, R);
VQ L& operator<<=(VQ L&, R);
VQ L& operator>>=(VQ L&, R);
VQ L& operator&=(VQ L&, R);
VQ L& operator^=(VQ L&, R);
VQ L& operator|=(VQ L&, R);

94)WhenT is itself a pointer type, the interiorcv-qualifiers of the two parameter types need not be identical. The two pointer types are
converted to a common type (which need not be the same as either parameter type) by implicit pointer conversions.
95) WhenT is itself a pointer type, the interiorcv-qualifiers of the two parameter types need not be identical. The two pointer types are
converted to a common type (which need not be the same as either parameter type) by implicit pointer conversions.

13– 24 Overloading DRAFT: 28 April 1995 13.6 Built-in operators

22 There also exist candidate operator functions of the form

bool operator!(bool);
bool operator&&(bool, bool);
bool operator||(bool, bool);

_ ___ ___

14 Templates [temp]
_ ___ ___

1 A classtemplatedefines the layout and operations for an unbounded set of related types. [Example:a sin-
gle class templateList might provide a common definition for list ofint , list of float , and list of
pointers toShapes.] A functiontemplatedefines an unbounded set of related functions. [Example:a sin-
gle function templatesort() might provide a common definition for sorting all the types defined by the
List class template.]

2 A templatedefines a family of types or functions.

template-declaration:
template < template-parameter-list> declaration

template-parameter-list:
template-parameter
template-parameter-list, template-parameter

Thedeclarationin a template-declarationshall declare or define a function or a class, define a static data
member of a template class, or define a template member of a class. Atemplate-declarationis a
declaration. A template-declarationis a definition (also) if itsdeclarationdefines a function, a class, or a
static data member of a template class. There shall be exactly one definition for each template in a pro-
gram. [Note: there can be many declarations.] However, if the multiple definitions are in different transla-
tion units, the behavior is undefined (and no diagnostic is required).

3 The name of a template obeys the usual scope and access control rules. Atemplate-declarationcan appear
only as a global declaration, as a member of a namespace, as a member of a class, or as a member of a class
template. A member template shall not bevirtual . A destructor shall not be a template. A local class
shall not have a member template.

4 A template shall not have C linkage. If the linkage of a template is something other than C or C + +, the
behavior is implementation-defined.

5 [Example:An array class template might be declared like this:

template<class T> class Array {
T* v;
int sz;

public:
explicit Array(int);
T& operator[](int);
T& elem(int i) { return v[i]; }
// ...

};

The prefixtemplate <class T> specifies that a template is being declared and that atype-nameT will
be used in the declaration. In other words,Array is a parameterized type withT as its parameter.]

6 [Note:a class template definition specifies how individual classes can be constructed much as a class defi-
nition specifies how individual objects can be constructed.]

7 A member template can be defined within its class or separately. [Example:

14– 2 Templates DRAFT: 28 April 1995 14 Templates

template<class T> class string {
public:

template<class T2> int compare(const T2&);
template<class T2> string(const string<T2>& s) { /* ... */ }
// ...

};

template<class T> template<class T2> int string<T>::compare(const T2& s)
{

// ...
}

—end example]

[temp.names] 14.1 Template names

1 A template can be referred to by atemplate-id:

template-id:
template-name< template-argument-list>

template-name:
identifier

template-argument-list:
template-argument
template-argument-list, template-argument

template-argument:
assignment-expression
type-id
template-name

2 A template-idthat names a template class is aclass-name(9).

3 A template-idthat names a defined template class can be used exactly like the names of other defined
classes. [Example:

Array<int> v(10);
Array<int>* p = &v;

—end example] [Note: template-ids that name functions are discussed in 14.10.]

4 A template-idthat names a template class that has been declared but not defined can be used exactly like
the names of other declared but undefined classes. [Example:

template<class T> class X; // X is a class template

X<int>* p; // ok: pointer to declared class X<int>
X<int> x; // error: object of undefined class X<int>

—end example]

5 The name of a template followed by a< is always taken as the beginning of atemplate-idand never as a
name followed by the less-than operator. Similarly, the first non-nested> is taken as the end of the
template-argument-listrather than a greater-than operator. [Example:

14.1 Template names DRAFT: 28 April 1995 Templates 14– 3

template<int i> class X { /* ... */ }

X< 1>2 >x1; // syntax error
X<(1>2)>x2; // ok

template<class T> class Y { /* ... */ }
Y< X<1> > x3; // ok

—end example]

6 The name of a class template shall not be declared to refer to any other template, class, function, object,
enumeration, enumerator, namespace, value, or type in the same scope. Unless explicitly specified to have
internal linkage, a template in namespace scope has external linkage (3.5). A global template name shall be
unique in a program.

7 In a template-argument, an ambiguity between atype-idand anexpressionis resolved to atype-id. [Exam-
ple:

template<class T> void f();
template<int I> void f();

void g()
{

f<int()>(); // ‘‘int()’’ is a type-id: call the first f()
}

—end example]

[temp.res] 14.2 Name resolution

1 A name used in a template is assumed not to name a type unless it has been explicitly declared to refer to a
type in the context enclosing the template declaration or is qualified by the keywordtypename . [Exam-
ple:

// no B declared here

class X;

template<class T> class Y {
class Z; // forward declaration of member class

void f() {
X* a1; // declare pointer to X
T* a2; // declare pointer to T
Y* a3; // declare pointer to Y
Z* a4; // declare pointer to Z
typedef typename T::A TA;
TA* a5; // declare pointer to T’s A
typename T::A* a6; // declare pointer to T’s A
T::A* a7; // T::A is not a type name:

// multiply T::A by a7
B* a8; // B is not a type name:

// multiply B by a8
}

};

—end example]

2 In a template, any use of aqualified-namewhere the qualifier depends on atemplate-parametercan be pre-
fixed by the keywordtypename to indicate that thequalified-namedenotes a type.

14– 4 Templates DRAFT: 28 April 1995 14.2 Name resolution

elaborated-type-specifier:
...
typename :: opt nested-name-specifier identifier full-template-argument-listopt

full-template-argument-list:
< template-argument-list>

3 If a specialization of that template is generated for atemplate-argumentsuch that thequalified-namedoes
not denote a type, the specialization is ill-formed. The keywordtypename states that the following
qualified-namenames a type. [Note: but gives no clue to what that type might be.] Thequalified-name
shall include a qualifier containing a template parameter or a template class name.

4 Knowing which names are type names allows the syntax of every template declaration to be checked. Syn-
tax errors in a template declaration can therefore be diagnosed at the point of the declaration exactly as
errors for non-template constructs. Other errors, such as type errors involving template parameters, cannot
be diagnosed until later; such errors shall be diagnosed at the point of instantiation or at the point where
member functions are generated (14.3). Errors that can be diagnosed at the point of a template declaration
shall be diagnosed there or later together with the dependent type errors. [Example:

template<class T> class X {
// ...
void f(T t, int i, char* p)
{

t = i; // typecheck at point of instantiation,
// or at function generation

p = i; // typecheck immediately at template declaration,
// at point of instantiation,
// or at function generation

}
};

—end example] No diagnostics shall be issued for a template definition for which a valid specialization
can be generated.

5 Three kinds of names can be used within a template definition:

— The name of the template itself, the names of thetemplate-parameters (14.7), and names declared
within the template itself.

— Names from the scope of the template definition.

— Names dependent on atemplate-argument(14.8) from the scope of a template instantiation.

6 [Example:

#include <iostream>
using namespace std;

template<class T> class Set {
T* p;
int cnt;

public:
Set();
Set<T>(const Set<T>&);
void printall()
{

for (int i = 0; i<cnt; i++)
cout << p[i] << ’\n’;

}
// ...

};

—end example] When looking for the declaration of a name used in a template definition the usual lookup

14.2 Name resolution DRAFT: 28 April 1995 Templates 14– 5

rules (9.3) are first applied. [Note: in the example,i is the local variablei declared inprintall , cnt is
the membercnt declared inSet , andcout is the standard output stream declared iniostream . How-
ever, not every declaration can be found this way; the resolution of some names must be postponed until the
actualtemplate-argumentis known. For example, even though the nameoperator<< is known within
the definition ofsum() an a declaration of it can be found in<iostream> , the actual declaration of
operator<< needed to printp[i] cannot be known until it is known what typeT is (14.2.3).]

7 If a name can be bound at the point of the template definition and it is not a function called in a way that
depends on atemplate-parameter(as defined in 14.2.3), it will be bound at the template definition point
and the binding is not affected by later declarations. [Example:

void f(char);

template<class T> void g(T t)
{

f(1); // f(char)
f(T(1)); // dependent
f(t); // dependent

}

void f(int);

void h()
{

g(2); // will cause one call of f(char) followed
// by two calls of f(int)

g(’a’); // will cause three calls of f(char)
}

—end example]

[temp.local] 14.2.1 Locally declared names

1 Within the scope of a class template or a specialization of a template the name of the template is equivalent
to the name of the template followed by thetemplate-parameters enclosed in<>. [Example:the construc-
tor for Set can be referred to asSet() or Set<T>() .] Other specializations (14.5) of the class can be
referred to by explicitly qualifying the template name with appropriatetemplate-arguments. [Example:

template<class T> class X {
X* p; // meaning X<T>
X<T>* p2;
X<int>* p3;

};

template<class T> class Y;

class Y<int> {
Y* p; // meaning Y<int>

};

—end example] [Note:see 14.7 for the scope oftemplate-parameters.]

2 A templatetype-parametercan be used in anelaborated-type-specifier. [Example:

template<class T> class A {
friend class T;
class T* p;
class T; // error: redeclaration of template parameter T

// (a name declaration, not an elaboration)
// ...

}

—end example]

14– 6 Templates DRAFT: 28 April 1995 14.2.1 Locally declared names

3 However, a specialization of a template for which atype-parameterused this way is not in agreement with
theelaborated-type-specifier(7.1.5) is ill-formed. [Example:

class C { /* ... */ };
struct S { /* ... */ };
union U { /* ... */ };
enum E { /* ... */ };

A<C> ac; // ok
A<S> as; // ok
A<U> au; // error: parameter T elaborated as a class,

// but the argument supplied for T is a union
A<int> ai; // error: parameter T elaborated as a class,

// but the argument supplied for T is an int
A<E> ae; // error: parameter T elaborated as a class,

// but the argument supplied for T is an enumeration

—end example]

[temp.encl] 14.2.2 Names from the template’s enclosing scope

1 If a name used in a template isn’t defined in the template definition itself, names declared in the scope
enclosing the template are considered. If the name used is found there, the name used refers to the name in
the enclosing context. [Example:

void g(double);
void h();

template<class T> class Z {
public:

void f() {
g(1); // calls g(double)
h++; // error: cannot increment function

}
};

void g(int); // not in scope at the point of the template
// definition, not considered for the call g(1)

—end example] [Note:a template definition behaves exactly like other definitions.] [Example:

void g(double);
void h();

class ZZ {
public:

void f() {
g(1); // calls g(double)
h++; // error: cannot increment function

}
};

void g(int); // not in scope at the point of class ZZ
// definition, not considered for the call g(1)

—end example]

[temp.dep] 14.2.3 Dependent names

1 Some names used in a template are neither known at the point of the template definition nor declared within
the template definition. Such names shall depend on atemplate-argumentand shall be in scope at the point
of the template instantiation (14.3). [Example:

14.2.3 Dependent names DRAFT: 28 April 1995 Templates 14– 7

class Horse { /* ... */ };

ostream& operator<<(ostream&,const Horse&);

void hh(Set<Horse>& h)
{

h.printall();
}

In the call ofSet<Horse>::printall() , the meaning of the<< operator used to printp[i] in the
definition ofSet<T>::printall() (14.2), is

operator<<(ostream&,const Horse&);

This function takes an argument of typeHorse and is called from a template with atemplate-parameterT
for which thetemplate-argumentis Horse . Because this function depends on atemplate-argumentthe call
is well-formed.]

2 A function calldepends ona template-argumentif the call would have a different resolution or no resolu-
tion if a type, template, or named constant mentioned in thetemplate-argumentwere missing from the pro-
gram. [Example:some calls that depend on an argument typeT are:

1) The function called has a parameter that depends onT according to the type deduction rules (14.10.2).
For example:f(T) , f(Array<T>) , andf(const T*) .

2) The type of the actual argument depends onT. For example:f(T(1)) , f(t) , f(g(t)) , andf(&t)
assuming thatt has the typeT.

3) A call is resolved by the use of a conversion toT without either an argument or a parameter of the called
function being of a type that depended onT as specified in (1) and (2). For example:

struct B { };
struct T : B { };
struct X { operator T(); };

void f(B);

void g(X x)
{

f(x); // meaning f(B(x.operator T()))
// so the call f(x) depends on T

}

3 This ill-formed template instantiation uses a function that does not depend on atemplate-argument:

template<class T> class Z {
public:

void f() {
g(1); // g() not found in Z’s context.

// Look again at point of instantiation
}

};

void g(int);

void h(const Z<Horse>& x)
{

x.f(); // error: g(int) called by g(1) does not depend
// on template-parameter ‘‘Horse’’

}

The callx.f() gives raise to the specialization:

14– 8 Templates DRAFT: 28 April 1995 14.2.3 Dependent names

Z<Horse>::f() { g(1); }

The call g(1) would call g(int) , but since that call in no way depends on thetemplate-argument
Horse and becauseg(int) wasn’t in scope at the point of the definition of the template, the callx.f()
is ill-formed.

4 On the other hand:

void h(const Z<int>& y)
{

y.f(); // fine: g(int) called by g(1) depends
// on template-parameter ‘‘int’’

}

Here, the cally.f() gives raise to the specialization:

Z<int>::f() { g(1); }

The callg(1) callsg(int) , and since that call depends on thetemplate-argumentint , the cally.f()
is acceptable even thoughg(int) wasn’t in scope at the point of the template definition.]

5 A name from a base class (of a non-dependent type) can hide the name of atemplate-parameter. [Example:

struct A {
struct B { /* ... */ };
int a;
int Y;

};

template<class B, class a> struct X : A {
B b; // A’s B
a b; // error: A’s a isn’t a type name

};

—end example]

6 However, a name from atemplate-argumentcannot hide a name declared within a template, atemplate-
parameter, or a name from the template’s enclosing scopes. [Example:

int a;

template<class T> struct Y : T {
struct B { /* ... */ };
B b; // The B defined in Y
void f(int i) { a = i; } // the global a;
Y* p; // Y<T>

};

Y<A> ya;

The membersA::B , A::a , andA::Y of the template argumentA do not affect the binding of names in
Y<A>.]

7 A name of a member can hide the name of atemplate-parameter. [Example:

template<class T> struct A {
struct B { /* ... */ };
void f();

};

template<class B> void A::f()
{

B b; // A’s B, not the template parameter
}

—end example]

14.2.4 DRAFT: 28 April 1995 Templates 14– 9
Non-local names declared within a template

[temp.inject] 14.2.4 Non-local names declared within a template

1 Names that are not template members can be declared within a template class or function. When a template
is specialized, the names declared in it are declared as if the specialization had been explicitly declared at its
point of instantiation. If a template is first specialized as the result of use within a block or class, names
declared within the template shall be used only after the template use that caused the specialization. [Exam-
ple:

// Assume that Y is not yet declared

template<class T> class X {
friend class Y;

};

Y* py1; // ill-formed: Y is not in scope

// Here is the point of instantiation for X<C>
void g()
{

X<C>* pc; // does not cause instantiation
Y* py2; // ill-formed: Y is not in scope
X<C> c; // causes instantiation of X<C>, so

// names from X<C> can be used
// here on

Y* py3; // ok
}
Y* py4; // ok

—end example]

[temp.inst] 14.3 Template instantiation

1 A class generated from a class template is called a generated class. A function generated from a function
template is called a generated function. A static data member generated from a static data member template
is called a generated static data member. A class defined with atemplate-idas its name is called an explic-
itly specialized class. A function defined with atemplate-idas its name is called an explicitly specialized
function. A static data member defined with atemplate-idas its name is called an explicitly specialized
static data member. A specialization is a class, function, or static data member that is either generated or
explicitly specialized.

2 [Note: the act of generating a class, function, or static data member from a template is commonly referred
to as template instantiation.]

[temp.linkage] 14.3.1 Template linkage

1 A function template has external linkage, as does a static member of a class template. Every function tem-
plate shall have the same definition in every translation unit in which it appears.

[temp.point] 14.3.2 Point of instantiation

1 The point of instantiation of a template is the point where names dependent on thetemplate-argumentare
bound. That point is immediately before the declaration in the nearest enclosing global or namespace scope
containing the first use of the template requiring its definition. [Note: this implies that names used in a
template definition cannot be bound to local names or class member names from the scope of the template
use. They can, however, be bound to names of namespace members. For example:

14– 10 Templates DRAFT: 28 April 1995 14.3.2 Point of instantiation

// void g(int); not declared here

template<class T> class Y {
public:

void f() { g(1); }
};

void k(const Y<int>& h)
{

void g(int);
h.f(); // error: g(int) called by g(1) not found

// local g() not considered
}

class C {
void g(int);

void m(const Y<int>& h)
{

h.f(); // error: g(int) called by g(1) not found
// C::g() not considered

}
};

namespace N {
void g(int);

void n(const Y<int>& h)
{

h.f(); // N::g(int) called by g(1)
}

}

—end note]

2 Names from both the namespace of the template itself and of the namespace containing the point of instan-
tiation of a specialization are used to resolve names for the specialization. Overload resolution is used to
chose between functions with the same name in these two namespaces. [Example:

namespace NN {
void g(int);
void h(int);
template<class T> void f(T t)
{

g(t);
h(t);
k(t);

}
}

14.3.2 Point of instantiation DRAFT: 28 April 1995 Templates 14– 11

namespace MM {
void g(double);
void k(double);

// instantiation point for NN::f(int) and NN::f(double)

void m()
{

NN::f(1); // indirectly calls NN::g(int),
// NN::h, and MM::k.

NN::f(1.0); // indirectly calls MM::g(double),
// NN::h, and MM::k.

}
}

—end example] If a name is found in both namespaces and overload resolution cannot resolve a use, the
program is ill-formed.

3 Each translation unit in which the definition of a template is used in a way that require definition of a spe-
cialization has a point of instantiation for the template. If this causes names used in the template definition
to bind to different names in different translation units, the one-definition rule has been violated and any
use of the template is ill-formed. Such violation does not require a diagnostic.

4 A template can be either explicitly instantiated for a given argument list or be implicitly instantiated. A
template that has been used in a way that require a specialization of its definition will have the specializa-
tion implicitly generated unless it has either been explicitly instantiated (14.4) or explicitly specialized
(14.5). A specialization will not be implicitly generated unless the definition of a template specialization is
required. [Example:

template<class T> class Z {
void f();
void g();

};

void h()
{

Z<int> a; // instantiation of class Z<int> required
Z<char>* p; // instantiation of class Z<char> not required
Z<double>* q; // instantiation of class Z<double> not required

a.f(); // instantiation of Z<int>::f() required
p->g(); // instantiation of class Z<char> required, and

// instantiation of Z<char>::g() required
}

Nothing in this example requiresclass Z<double> , Z<int>::g() , or Z<char>::f() to be instan-
tiated.] An implementation shall not instantiate a function or a class that does not require instantiation.
However, virtual functions can be instantiated for implementation purposes.

5 If a virtual function is instantiated, its point of instantiation is immediately following the point of instantia-
tion for its class.

6 The point of instantiation for a template used inside another template and not instantiated previous to an
instantiation of the enclosing template is immediately before the point of instantiation of the enclosing tem-
plate. [Example:

14– 12 Templates DRAFT: 28 April 1995 14.3.2 Point of instantiation

namespace N {
template<class T> class List {
public:

T* get();
// ...

};
}

template<class K, class V> class Map {
List<V> lt;
V get(K);
// ...

};

void g(Map<char*,int>& m)
{

int i = m.get("Nicholas");
// ...

}

—end example] This allows instantiation of a used template to be done before instantiation of its user.

7 Implicitly generated template classes, functions, and static data members are placed in the namespace
where the template was defined. [Example:a call of lt.get() from Map<char*,int>::get()
would placeList<int>::get() in the namespaceN rather than in the global namespace.]

8 If a template for which a definition is in scope is used in a way that involves overload resolution or conver-
sion to a base class, the definition of a template specialization is required. [Example:

template<class T> class B { /* ... */ };
template<class T> class D : public B<T> { /* ... */ };

void f(void*);
void f(B<int>*);

void g(D<int>* p, D<char>* pp)
{

f(p); // instantiation of D<int> required: call f(B<int>*)

B<char>* q = pp; // instantiation of D<char> required:
// convert D<char>* to B<char>*

}

—end example]

9 If an instantiation of a class template is required and the template is declared but not defined, the program is
ill-formed. [Example:

template<class T> class X;

X<char> ch; // error: definition of X required

—end example]

10 Recursive instantiation is possible. [Example:

14.3.2 Point of instantiation DRAFT: 28 April 1995 Templates 14– 13

template<int i> int fac() { return i>1 ? i*fac<i-1>() : 1; }

int fac<0>() { return 1; }

int f()
{

return fac<17>();
}

—end example]

11 There shall be an implementation quantity that specifies the limit on the depth of recursive instantiations.

12 The result of an infinite recursion in instantiation is undefined. In particular, an implementation is allowed
to report an infinite recursion as being ill-formed. [Example:

template<class T> class X {
X<T>* p; // ok
X<T*> a; // instantiation of X<T> requires

// the instantiation of X<T*> which requires
// the instantiation of X<T**> which ...

};

—end example]

13 No program shall explicitly instantiate any template more than once, both explicitly instantiate and explic-
itly specialize a template, or specialize a template more than once for a given set oftemplate-arguments.
An implementation is not required to diagnose a violation of this rule.

14 An explicit specialization or explicit instantiation of a template shall be in the namespace in which the tem-
plate was defined. [Example:

namespace N {
template<class T> class X { /* ... */ };
template<class T> class Y { /* ... */ };
template<class T> class Z {

void f(int i) { g(i); }
// ...

};

class X<int> { /* ... */ }; // ok: specialization
// in same namespace

}

template class Y<int>; // error: explicit instantiation
// in different namespace

template class N::Y<char*>; // ok: explicit instantiation
// in same namespace

class N::Y<double> { /* ... */ }; // ok: specialization
// in same namespace

—end example]

15 A member function of an explicitly specialized class shall not be implicitly generated from the general tem-
plate. Instead, the member function shall itself be explicitly specialized. [Example:

14– 14 Templates DRAFT: 28 April 1995 14.3.2 Point of instantiation

template<class T> struct A {
void f() { /* ... */ }

};

struct A<int> {
void f();

};

void h()
{

A<int> a;
a.f(); // A<int>::f must be defined somewhere

}

void A<int>::f() { /* ... */ };

—end example] Thus, an explicit specialization of a class implies the declaration of specializations of all of
its members. The definition of each such specialized member which is used shall be provided in some
translation unit.

[temp.opref] 14.3.3 Instantiation ofoperator->

1 If a template class has anoperator-> , thatoperator-> can have a return type that cannot be derefer-
enced by-> as long as thatoperator-> is neither invoked, nor has its address taken, isn’t virtual, nor is
explicitly instantiated. [Example:

template<class T> class Ptr {
// ...
T* operator->();

};

Ptr<int> pi; // ok
Ptr<Rec> pr; // ok

void f()
{

pi->m = 7; // error: Ptr<int>::operator->() returns a type
// that cannot be dereference by ->

pr->m = 7; // ok if Rec has an accessible member m
// of suitable type

}

—end example]

[temp.explicit] 14.4 Explicit instantiation

1 A class or function specialization can be explicitly instantiated from its template.

2 The syntax for explicit instantiation is:

explicit-instantiation:
template declaration

Where theunqualifier-id in thedeclarationshall be atemplate-id. [Example:

template class Array<char>;

template void sort<char>(Array<char>&);

—end example]

3 A declaration of the template shall be in scope at the point of explicit instantiation.

14.4 Explicit instantiation DRAFT: 28 April 1995 Templates 14– 15

4 A trailing template-argumentcan be left unspecified in an explicit instantiation or explicit specialization of
a template function provided it can be deduced from the function argument type. [Example:

// instantiate sort(Array<int>&):
// deduce template-argument:
template void sort<>(Array<int>&);

—end example]

5 The explicit instantiation of a class implies the instantiation of all of its members not previously explicitly
specialized in the translation unit containing the explicit instantiation.

[temp.spec] 14.5 Template specialization

1 Except for a type member or template class member of a non-specialized template class, the following can
be declared by a declaration where the declared name is atemplate-id: a specialized template function, a
template class, or a static member of a template; that is:

specialization:
declaration

[Note:a static member of a template can only be specialized in a definition due to syntactic restrictions.]
[Example:

template<class T> class stream;

class stream<char> { /* ... */ };

template<class T> void sort(Array<T>& v) { /* ... */ }

void sort<char*>(Array<char*>&) ;

Given these declarations,stream<char> will be used as the definition of streams ofchar s; other
streams will be handled by template classes generated from the class template. Similarly,sort<char*>
will be used as the sort function for arguments of typeArray<char*> ; otherArray types will be sorted
by functions generated from the template.]

2 A declaration of the template being specialized shall be in scope at the point of declaration of a specializa-
tion. [Example:

class X<int> { /* ... */ }; // error: X not a template

template<class T> class X { /* ... */ };

class X<char*> { /* ... */ }; // fine: X is a template

—end example]

3 If a template is explicitly specialized then that specialization shall be declared before the first use of that
specialization in every translation unit in which it is used. [Example:

template<class T> void sort(Array<T>& v) { /* ... */ }

void f(Array<String>& v)
{

sort(v); // use general template
// sort(Array<T>&), T is String

}

void sort<String>(Array<String>& v); // error: specialize after use
void sort<>(Array<char*>& v); // fine sort<char*> not yet used

—end example] If a function or class template has been explicitly specialized for atemplate-argumentlist
no specialization will be implicitly generated for thattemplate-argumentlist.

14– 16 Templates DRAFT: 28 April 1995 14.5 Template specialization

4 It is possible for a specialization with a given function signature to be generated by more than one function
template. In such cases, explicit specification of the template arguments must be used to uniquely identify
the template function instance that is being specialized. [Example:

template <class T> void f(T);
template <class T> void f(T*);
void f<>(int*); // Ambiguous
void f<int>(int*); // OK
void f<>(int); // OK

—end example]

5 Note that a function with the same name as a template and a type that exactly matches that of a template is
not a specialization (14.10.5).

[temp.class.spec] 14.6 Class template specializations

1 A primary class template declaration is one in which the class template name is an identifier. A template
declaration in which the class template name is atemplate-id, is a partial specialization of the class template
named in thetemplate-id. The primary template shall be declared before any specializations of that tem-
plate.

2 [Example:

3 template<class T1, class T2, int I> class A { }; // #1
template<class T, int I> class A<T, T*, I> { }; // #2
template<class T1, class T2, int I> class A<T1*, T2, I> { }; // #3
template<class T> class A<int, T*, 5> { }; // #4
template<class T1, class T2, int I> class A<T1, T2*, I> { }; // #5

4 The first declaration declares the primary (unspecialized) class template. The second and subsequent decla-
rations declare specializations of the primary template.]

5 The template parameters are specified in the angle bracket enclosed list that immediately follows the key-
word template . A template also has a template argument list. For specializations, this list is explicitly
written immediately following the class template name. For primary templates, this list is implicitly
described by the template parameter list. Specifically, the order of the template parameters is the sequence
in which they appear in the template parameter list. [Example:the template argument list for the primary
template in the example above is<T1, T2, I> .]

6 A nontype argument is nonspecialized if it is the name of a nontype parameter. All other nontype argu-
ments are specialized.

7 Within the argument list of a class template specialization, the following restrictions apply:

— A specialized nontype argument expression shall not involve a template parameter of the specialization.

— The type of a specialized nontype argument shall not depend on another type parameter of the special-
ization.

— The argument list of the specialization shall not be identical to the implicit argument list of the primary
template.

8
[temp.class.spec.match] 14.6.1 Matching of class template specializations

1 When a template class is used in a context that requires a complete instantiation of the class, it is necessary
to determine whether the instantiation is to be generated using the primary template or one of the partial
specializations. This is done by matching the template arguments of the template class being used with the
template argument lists of the partial specializations.

— If no matches are found, the instantiation is generated from the primary template.

14.6.1 DRAFT: 28 April 1995 Templates 14– 17
Matching of class template specializations

— If exactly one matching specialization is found, the instantiation is generated from that specialization.

— If more than one specialization is found, the partial order rules (14.6.2) are used to determine whether
one of the specializations is more specialized than the others. If none of the specializations is more spe-
cialized than all of the other matching specializations, then the use of the template class is ambiguous
and the program is ill-formed.

2 A specialization matches a given actual template argument list if the template arguments of the specializa-
tion can be deduced from the actual template argument list (14.10.2). A nontype template parameter can
also be deduced from the value of an actual template argument of a nontype parameter of the primary tem-
plate. [Example:

3 A<int, int, 1> a1; // uses #1
A<int, int*, 1> a2; // uses #2, T is int, I is 1
A<int, char*, 5> a3; // uses #4, T is int
A<int, char*, 1> a4; // uses #5, T1 is int, T2 is char, I is 1
A<int*, int*, 2> a5; // ambiguous: matches #3 and #5

—end example]

4 In a class template reference, (e.g.,A<int, int, 1>) the argument list must match the template param-
eter list of the primary template. The template arguments of a specialization are deduced from the argu-
ments of the primary template. The template parameter list of a specialization shall not contain default
template argument values.96)

[temp.class.order] 14.6.2 Partial ordering of class template specializations

1 For two class template partial specializations, the first is at least as specialized as the second if:

— the type arguments of the first template’s argument list are at least as specialized as those of the second
template’s argument list using the ordering rules for function templates (14.10.6), and

— each nontype argument of the first template’s argument list is at least as specialized as that of the second
template’s argument list.

2 A nontype argument is at least as specialized as another nontype argument if:

— both are formal arguments,

— the first is a value and the second is a formal argument, or

— both are the same value.

3 A template class partial specialization is more specialized than another if, and only if, it is at least as spe-
cialized as the other template class partial specialization and that template class partial specialization is not
at least as specialized as the first. Otherwise the two template class partial specializations are unordered.

[temp.param] 14.7 Template parameters

1 The syntax fortemplate-parameters is:

template-parameter:
type-parameter
parameter-declaration

96)There is no way in which they could be used.

14– 18 Templates DRAFT: 28 April 1995 14.7 Template parameters

type-parameter:
class identifieropt

class identifieropt = type-id
typename identifieropt

typename identifieropt = type-id
template < template-parameter-list> class identifieropt

template < template-parameter-list> class identifieropt = template-name

[Example:

template<class T> class myarray { /* ... */ };

template<class K, class V, template<class T> class C = myarray>
class Map {

C<K> key;
C<V> value;
// ...

};

—end example]

2 Default arguments shall not be specified in a declaration or a definition of a specialization.

3 A type-parameterdefines itsidentifier to be atype-namein the scope of the template declaration. Atype-
parametershall not be redeclared within its scope (including nested scopes). A non-typetemplate-
parametershall not be assigned to or in any other way have its value changed. [Example:

template<class T, int i> class Y {
int T; // error: template-parameter redefined
void f() {

char T; // error: template-parameter redefined
i++; // error: change of template-argument value

}
};

template<class X> class X; // error: template-parameter redefined

—end example]

4 A template-parameterthat could be interpreted as either anparameter-declarationor a type-parameter
(because itsidentifier is the name of an already existing class) is taken as atype-parameter. A template-
parameterhides a variable, type, constant, etc. of the same name in the enclosing scope. [Example:

class T { /* ... */ };
int i;

template<class T, T i> void f(T t)
{

T t1 = i; // template-arguments T and i
::T t2 = ::i; // globals T and i

}

Here, the templatef has atype-parametercalledT, rather than an unnamed non-type parameter of classT.
] There is no semantic difference betweenclass andtypename in a template-parameter.

5 There are no restrictions on what can be atemplate-argumenttype beyond the constraints imposed by the
set of argument types (14.8). In particular, reference types and types containingcv-qualifiersare allowed.
A non-referencetemplate-argumentcannot have its address taken. When a non-referencetemplate-
argumentis used as an initializer for a reference a temporary is always used. [Example:

14.7 Template parameters DRAFT: 28 April 1995 Templates 14– 19

template<const X& x, int i> void f()
{

&x; // ok
&i; // error: address of non-reference template-argument

int& ri = i; // error: non-const reference bound to temporary
const int& cri = i; // ok: reference bound to temporary

}

—end example]

6 A non-typetemplate-parametershall not be of floating type. [Example:

template<double d> class X; // error
template<double* pd> class X; // ok
template<double& rd> class X; // ok

—end example]

7 A default template-argumentis a type, value, or template specified after= in a template-parameter. A
default template-argumentcan be specified in a template declaration or a template definition. The set of
defaulttemplate-arguments available for use with a template in a translation unit shall be provided by the
first declaration of the template in that unit.

8 If a template-parameterhas a default argument, all subsequenttemplate-parameters shall have a default
argument supplied. [Example:

template<class T1 = int, class T2> class B; // error

—end example]

9 The scope of atemplate-argumentextends from its point of declaration until the end of its template. In par-
ticular, atemplate-parametercan be used in the declaration of subsequenttemplate-parameters and their
default arguments. [Example:

template<class T, T* p, class U = T> class X { /* ... */ };
template<class T> void f(T* p = new T);

—end example] A template-parametercannot be used in precedingtemplate-parametersor their default
arguments.

10 A template-parametercan be used in the specification of base classes. [Example:

template<class T> class X : public Array<T> { /* ... */ };
template<class T> class Y : public T { /* ... */ };

—end example] [Note: the use of atemplate-parameteras a base class implies that a class used as a
template-argumentmust be defined and not just declared.]

[temp.arg] 14.8 Template arguments

1 The types of thetemplate-arguments specified in atemplate-idshall match the types specified for the tem-
plate in itstemplate-parameter-list. [Example:Array s as defined in 14 can be used like this:

Array<int> v1(20);
typedef complex<double> dcomplex; // complex is a standard

// library template
Array<dcomplex> v2(30);
Array<dcomplex> v3(40);

v1[3] = 7;
v2[3] = v3.elem(4) = dcomplex(7,8);

—end example]

14– 20 Templates DRAFT: 28 April 1995 14.8 Template arguments

2 A non-type non-referencetemplate-argumentshall be aconstant-expressionof non-floating type, the
address of an object or a function with external linkage, or a non-overloaded pointer to member. The
address of an object or function shall be expressed as&f , plain f (for function only), or&X::f wheref is
the function or object name. In the case of&X::f , X shall be a (possibly qualified) name of a class andf
the name of a static member ofX. A pointer to member shall be expressed as&X::m whereX is a (possi-
bly qualified) name of a class andm is the name of a nonstatic member ofX. In particular, a string literal
(2.9.4) isnot an acceptabletemplate-argumentbecause a string literal is the address of an object with static
linkage. [Example:

template<class T, char* p> class X {
// ...
X(const char* q) { /* ... */ }

};

X<int,"Studebaker"> x1; // error: string literal as template-argument

char* p = "Vivisectionist";
X<int,p> x2; // ok

—end example]

3 Similarly, addresses of array elements and non-static class members are not acceptable astemplate-
argument s. [Example:

int a[10];
struct S { int m; static int s; } s;

X<&a[2],p> x3; // error: address of element
X<&s.m,p> x4; // error: address of member
X<&s.s,p> x5; // error: address of member (dot operator used)
X<&S::s,p> x6; // ok: address of static member

—end example]

4 Nor is a local type or a type with no linkage name an acceptabletemplate-argument. [Example:

void f()
{

struct S { /* ... */ };

X<S,p> x3; // error: local type used as template-argument
}

—end example]

5 Similarly, a referencetemplate-parametershall not be bound to a temporary, an unnamed lvalue, or a
named lvalue with no linkage. [Example:

template<const int& CRI> struct B { /* ... */ };

B<1> b2; // error: temporary required for template argument

int c = 1;
B<c> b1; // ok

—end example]

6 An argument to atemplate-parameterof pointer to function type shall have exactly the type specified by
thetemplateparameter. This allows selection from a set of overloaded functions. [Example:

14.8 Template arguments DRAFT: 28 April 1995 Templates 14– 21

void f(char);
void f(int);

template<void (*pf)(int)> struct A { /* ... */ };

A<&f> a; // selects f(int)

—end example]

7 If a template-argumentto a template class is a function type and that causes a declaration that does not use
the syntactic form of a function declarator to have function type, the program is ill-formed. [Example:

template<class T>
struct A {

static T t;
};
typedef int function();
A<function> a; // ill-formed: would declare A<function>::t

// as a static member function

—end example]

8 A template has no special access rights to itstemplate-argumenttypes. A template-argumentshall be
accessible at the point where it is used as atemplate-argument. [Example:

template<class T> class X { /* ... */ };

class Y {
private:

struct S { /* ... */ };
X<S> x; // ok: S is accessible

};

X<Y::S> y; // error: S not accessible

—end example]

9 When defaulttemplate-argumentsare used, atemplate-argumentlist can be empty. In that case the empty
<> brackets shall still be used. [Example:

template<class T = char> class String;
String<>* p; // ok: String<char>
String* q; // syntax error

—end example] The notion of“ array type decay” does not apply totemplate-parameters. [Example:

template<int a[5]> struct S { /* ... */ };
int v[5];
int* p = v;
S<v> x; // fine
S<p> y; // error

—end example]

[temp.type] 14.9 Type equivalence

1 Two template-ids refer to the same class or function if theirtemplatenames are identical and in the same
scope and theirtemplate-arguments have identical values. [Example:

template<class E, int size> class buffer;

buffer<char,2*512> x;
buffer<char,1024> y;

declaresx andy to be of the same type, and

14– 22 Templates DRAFT: 28 April 1995 14.9 Type equivalence

template<class T, void(*err_fct)()> class list { /* ... */ };

list<int,&error_handler1> x1;
list<int,&error_handler2> x2;
list<int,&error_handler2> x3;
list<char,&error_handler2> x4;

declaresx2 andx3 to be of the same type. Their type differs from the types ofx1 andx4 .]

[temp.fct] 14.10 Function templates

1 A function template specifies how individual functions can be constructed. [Example:a family of sort
functions, might be declared like this:

template<class T> void sort(Array<T>&);

—end example] A function template specifies an unbounded set of (overloaded) functions. A function
generated from a function template is called a template function, so is an explicit specialization of a func-
tion template. Template arguments can either be explicitly specified in a call or be deduced from the func-
tion arguments.

[temp.arg.explicit] 14.10.1 Explicit template argument specification

1 Template arguments can be specified in a call by qualifying the template function name by the list of
template-arguments exactly astemplate-arguments are specified in uses of a class template. [Example:

void f(Array<dcomplex>& cv, Array<int>& ci)
{

sort<dcomplex>(cv); // sort(Array<dcomplex>)
sort<int>(ci); // sort(Array<int>)

}

and

template<class U, class V> U convert(V v);

void g(double d)
{

int i = convert<int,double>(d); // int convert(double)
char c = convert<char,double>(d); // char convert(double)

}

—end example] Implicit conversions (4) are accepted for a function argument for which the parameter has
been fixed by explicit specification oftemplate-arguments. [Example:

template<class T> void f(T);

class Complex {
// ...
explicit Complex(double);

};

void g()
{

f<Complex>(1); // ok, means f<Complex>(Complex(1))
}

—end example]

2 For a template function name to be explicitly qualified by template arguments, the name must be known to
refer to a template. When the name appears after. or -> in a postfix-expression, or after :: in a
qualified-idwhere thenested-name-specifierdepends on a template parameter, the member template name
must be prefixed by the keywordtemplate . Otherwise the name is assumed to name a non-template.
[Example:

14.10.1 DRAFT: 28 April 1995 Templates 14– 23
Explicit template argument specification

3 class X {
public:

template<size_t> X* alloc();
};
void f(X* p)
{

X* p1 = p->alloc<200>();
// ill-formed: < means less than

X* p2 = p->template alloc<200>();
// fine: < starts explicit qualification

}

4 —end example] If a name prefixed by the keywordtemplate in this way is not the name of a member
template function, the program is ill-formed.

[temp.deduct] 14.10.2 Template argument deduction

1 Template arguments that can be deduced from the function arguments of a call need not be explicitly speci-
fied. [Example:

void f(Array<dcomplex>& cv, Array<int>& ci)
{

sort(cv); // call sort(Array<dcomplex>)
sort(ci); // call sort(Array<int>)

}

and

void g(double d)
{

int i = convert<int>(d); // call convert<int,double>(double)
int c = convert<char>(d); // call convert<char,double>(double)

}

—end example]

2 Type deduction is done for each parameter of a function template that contains a reference to a template
parameter that is not explicitly specified. The type of the parameter of the function template (call itP) is
compared to the type of the corresponding argument of the call (call itA), and an attempt is made to find
types for the template type arguments, and values for the template non-type arguments, that will makeP
after substitution of the deduced values and explicitly-specified values (call that the deducedP) compatible
with the call argument. Type deduction is done independently for each parameter/argument pair, and the
deduced template argument types and values are then combined. If type deduction cannot be done for any
parameter/argument pair, or if different parameter/argument pairs yield different deduced values for a given
template argument, or if any template argument remains neither deduced nor explicitly specified, template
argument deduction fails.

3 If P is not a reference type:

— if A is an array type, the pointer type produced by the array-to-pointer standard conversion (4.2) is used
in place ofA for type deduction; otherwise,

— if A is a function type, the pointer type produced by the function-to-pointer standard conversion (4.3) is
used in place ofA for type deduction; otherwise,

— the cv-unqualified version ofA is used in place ofA for type deduction.

If P is a reference type, the type referred to byP is used in place ofP for type deduction.

14– 24 Templates DRAFT: 28 April 1995 14.10.2 Template argument deduction

4 In general, the deduction process attempts to find template argument values that will make the deducedP
identical toA. However, there are three cases that allow a difference:

— If the originalP is a reference type, the deducedP (i.e., the type referred to by the reference) can be
more cv-qualified thanA.

— If P is a pointer or pointer to member type,A can be another pointer or pointer to member type that can
be converted to the deducedP via a qualification conversion (4.4).

— If P is a class,A can be a derived class of the deducedP having the formclass-template-
name<arguments>. Likewise, if P is a pointer to a class,A can be a pointer to a derived class of the
underlying type of the deducedP having the formclass-template-name<arguments>. These alternatives
are considered only if type deduction cannot be done otherwise. If they yield more than one possible
deducedP, the type deduction fails.

When deducing arguments in the context of taking the address of an overloaded function (13.4), these inex-
act deductions are not considered.

5 A template type argumentT or a template non-type argumenti can be deduced ifP andA have one of the
following forms:

6 T
cv-list T
T*
T&
T[integer-constant]
class-template-name<T>
type(*)(T)
type T::*
T(*)()
T(*)(T)
type[i]
class-template-name<i>

where(T) represents parameter lists where at least one parameter type contains aT, and() represents
parameter lists where no parameter contains aT. Similarly, <T> represents template argument lists where
at least one argument contains aT, and<i> represents template argument lists where at least one argument
contains ani . These forms can be used in the same way asT is for further composition of types. [Exam-
ple:

X<int>(*)(char[6])

is of the form

class-template-name<T> (*)(type[i])

which is a variant of

type (*)(T)

wheretypeis X<int> andT is char[6] .]

7 In addition, atemplate-parametercan be deduced from a function or pointer to member function argument
if at most one of a set of overloaded functions provides a unique match. [Example:

14.10.2 Template argument deduction DRAFT: 28 April 1995 Templates 14– 25

template<class T> void f(void(*)(T,int));

void g(int,int);
void g(char,int);

void h(int,int,int);
void h(char,int);

int m()
{

f(&g); // error: ambiguous
f(&h); // ok: void h(char,int) is a unique match

}

—end example] Template arguments cannot be deduced from function arguments involving constructs
other than the ones specified in here (14.10.2).

8 Template arguments of an explicit instantiation or explicit specialization are deduced (14.4, 14.5) according
to these rules specified for deducing function arguments.

9 [Note: a major array bound is not part of a function parameter type so it can’t be deduced from an argu-
ment:

template<int i> void f1(int a[10][i]);
template<int i> void f2(int a[i][20]);

void g(int v[10][20])
{

f1(v); // ok: i deduced to be 20
f1<10>(v); // ok
f2(v); // error: cannot deduce template-argument i
f2<10>(v); // ok

}

—end note]

10 Nontype parameters shall not be used in expressions in the function declaration. The type of the function
template-parametershall match the type of thetemplate-argumentexactly. [Example:

template<char c> class A { /* ... */ };
template<int i> void f(A<i>); // error: conversion not allowed
template<int i> void f(A<i+1>); // error: expression not allowed

—end example]

11 If function template-arguments are explicitly specified in a call they are specified in declaration order.
Trailing arguments can be left out of a list of explicittemplate-arguments. [Example:

template<class X, class Y, class Z> X f(Y,Z);

void g()
{

f<int,char*,double>("aa",3.0);
f<int,char*>("aa",3.0); // Z is deduced to be double
f<int>("aa",3.0); // Y is deduced to be char*, and

// Z is deduced to be double
f("aa",3.0); // error X cannot be deduced

}

—end example]

12 A template-parametercannot be deduced from a default function argument. [Example:

14– 26 Templates DRAFT: 28 April 1995 14.10.2 Template argument deduction

template <class T> void f(T = 5, T = 7);

void g()
{

f(1); // fine: call f<int>(1,7)
f(); // error: cannot deduce T
f<int>(); // fine: call f<int>(5,7)

}

13 Here is example in which different parameter/argument pairs produce inconsistent template argument
deductions:

template<class T> void f(T x, T y) { /* ... */ }

struct A { /* ... */ };
struct B : A { /* ... */ };

int g(A a, B b)
{

f(a,a); // ok: T is A
f(b,b); // ok: T is B
f(a,b); // error T could be A or B
f(b,a); // error: T could be A or B

}

14 Here is an example where a qualification conversion applies between the call argument type and the
deduced parameter type:

template<class T> void f(const T*) {}
int *p;
void s()
{

f(p); // f(const int *)
}

15 Here is an example where the deduced parameter type is a derived class of a class template reference:

template <class T> struct B { };
template <class T> struct D : public B<T> {};
struct D2 : public B<int> {};
template <class T> void f(B<T>&){}

void main()
{

D<int> d;
D2 d2;

f(d); // calls f(B<int>&)
f(d2); // calls f(B<int>&)

}

—end example]

[temp.over] 14.10.3 Overload resolution

1 A function template can be overloaded either by (other) functions of its name or by (other) function tem-
plates of that same name. When a call to that name is written (explicitly, or implicitly using the operator
notation), template argument deduction (14.10.2) is performed on each function template to find the tem-
plate argument values (if any) that can be used with that function template to generate a function that can be
invoked with the call arguments. For each function template, if the argument deduction succeeds, the
deduced template arguments are used to generate a single template function, which is added to the

14.10.3 Overload resolution DRAFT: 28 April 1995 Templates 14– 27

candidate functions set to be used in overload resolution. The complete set of candidate functions includes
all the template functions generated in this way and all of the non-template overloaded functions of the
same name. The template functions are treated like any other functions in the remainder of overload resolu-
tion, except as explicitly noted.97)

2 [Example:

template<class T> T max(T a, T b) { return a>b?a:b; };

void f(int a, int b, char c, char d)
{

int m1 = max(a,b); // max(int a, int b)
char m2 = max(c,d); // max(char a, char b)
int m3 = max(a,c); // error: cannot generate max(int,char)

}

3 Adding

int max(int,int);

to the example above would resolve the third call, by providing a function that could be called for
max(a,c) after using the standard conversion ofchar to int for c .

4 Here is an example involving conversions on a function argument involved intemplate-parameterdeduc-
tion:

template<class T> struct B { /* ... */ };
template<class T> struct D : public B<T> { /* ... */ };
template<class T> void f(B<T>&);

void g(B<int>& bi, D<int>& di)
{

f(bi); // f(bi)
f(di); // f((B<int>&)di)

}

5 Here is an example involving conversions on a function argument not involved intemplate-parameter
deduction:

template<class T> void f(T*,int); // #1
template<class T> void f(T,char); // #2

void h(int* pi, int i, char c)
{

f(pi,i); // #1: f<int>(pi,i)
f(pi,c); // #2: f<int*>(pi,c)

f(i,c); // #2: f<int>(i,c);
f(i,i); // #2: f<int>(i,char(i))

}

—end example]

6 The template definition is needed to generate specializations of a template. However, only a function tem-
plate declaration is needed to call a specialization. [Example:

97) The parameters of template functions contain no template parameter types. The set of conversions allowed on deduced arguments
is limited, because the argument deduction process produces template functions with parameters that either match the call arguments
exactly or differ only in ways that can be bridged by the allowed limited conversions. Non-deduced arguments allow the full range of
conversions.

14– 28 Templates DRAFT: 28 April 1995 14.10.3 Overload resolution

template<class T> void f(T); // declaration

void g()
{

f("Annemarie"); // call of f<char*>
}

The call off is well formed because of the declaration off , and the program will be ill-formed unless a
definition of f is present in some translations unit.

7 Here is a case involving explicit specification of some of the template arguments and deduction of the rest:

template<class X, class Y> void f(X,Y*); // #1
template<class X, class Y> void f(X*,Y); // #2

void g(char* pc, int* pi)
{

f(0,0); // error: ambiguous: f<int,int>(int,int*)
// or f<int,int>(int*,int) ?

f<char*>(pc,pi); // #1: f<char*,int>(char*,int*)
f<char>(pc,pi); // #2: f<char,int*>(char*,int*)

}

—end example]

[temp.over.link] 14.10.4 Overloading and linkage

1 It is possible to overload template functions so that specializations of two different template functions have
the same type. [Example:

// file1.c // file2.c
template<class T> template<class T>
void f(T*); void f(T);
void g(int* p) { void h(int* p) {

f(p); // call f_PT_pi f(p); // call f_T_pi
} }

—end example]

2 Such specializations are distinct functions and do not violate the ODR.

3 The signature of a specialization of a template function consists of the actual template arguments (whether
explicitly specified or deduced) and the signature of the function template.

4 The signature of a function template consists of its function signature and its return type and template
parameter list. The names of the template parameters are significant only for establishing the relationship
between the template parameters and the rest of the signature.

[temp.over.spec] 14.10.5 Overloading and specialization

1 A template function can be overloaded by a function with the same type as a potentially generated function.
[Example:

template<class T> T max(T a, T b) { return a>b?a:b; }
int max(int a, int b);

int min(int a, int b);
template<class T> T min(T a, T b) { return a<b?a:b; }

—end example] Such an overloaded function is a specialization but not an explicit specialization. The dec-
laration simply guides the overload resolution. [Note: this implies that a definition ofmax(int,int)
andmin(int,int) will be implicitly generated from the templates. If such implicit instantiation is not
wanted, the explicit specialization syntax should be used instead:

14.10.5 Overloading and specialization DRAFT: 28 April 1995 Templates 14– 29

template<class T> T max(T a, T b) { return a>b?a:b; }
int max<int>(int a, int b);

—end note]

2 Defining a function with the same type as a template specialization that is called is ill-formed. [Example:

template<class T> T max(T a, T b) { return a>b?a:b; }
int max(int a, int b) { return a>b?a:b; }

void f(int x, int y)
{

max(x,y); // error: duplicate definition of max()
}

If the two definitions ofmax() are not in the same translation unit the diagnostic is not required. If a sepa-
rate definition of a functionmax(int,int) is needed, the specialization syntax can be used. If the con-
versions enabled by an ordinary declaration are also needed, both can be used.

template<class T> T max(T a, T b) { return a>b?a:b; }
int max<>(int a, int b) { /* ... */ }

void g(char x, int y)
{

max(x,y); // error: no exact match, and no conversions allowed
}

int max(int,int);

void f(char x, int y)
{

max(x,y); // max<int>(int(x),y)
}

—end example]

3 An explicit specialization of a function template shall beinline or static only if it is explicitly
declared to be, and independently of whether its function template is. [Example:

template<class T> void f(T) { /* ... */ }
template<class T> inline T g(T) { /* ... */ }

inline void f<>(int) { /* ... */ } // ok: inline
int g<>(int) { /* ... */ } // ok: not inline

—end example]

[temp.func.order] 14.10.6 Partial ordering of function templates

1 Given two function templates, whether one is more specialized than another can be determined by trans-
forming each template in turn and using argument deduction to compare it to the other.

2 The transformation used is:

— For each type template parameter, synthesize a unique type and substitute that for each occurrence of
that parameter in the function parameter list.

— for each nontype template parameter, synthesize a unique value of the appropriate type and substitute
that for each occurrence of that parameter in the function parameter list.

3 Using the transformed function parameter list, perform argument deduction against the other function tem-
plate (14.10.2). The transformed template is at least as specialized as the other if, and only if, the deduction
succeeds.

14– 30 Templates DRAFT: 28 April 1995 14.10.6
Partial ordering of function templates

4 A template is more specialized than another if, and only if, it is at least as specialized as the other template
and that template is not at least as specialized as the first. [Example:

template<class T> class A {};

template<class T> void f(T);
template<class T> void f(T*);
template<class T> void f(const T*);

template<class T> void g(T);
template<class T> void g(T&);

template<class T> void h(const T&);
template<class T> void h(A<T>);

void m() {
const int *p;
f(p); // f(const T*) is more specialized than f(T) or f(T*)
float x;
g(x); // Ambiguous: g(T) or g(T&)
A<int> z;
h(z); // h(A<T>) is more specialized than f(const T&)
const A<int> z2;
h(z2); // h(const T&) is called because h(A<T>) is not callable

}

—end example]

[temp.mem.func] 14.11 Member function templates

1 A member function of a template class is implicitly a template function with thetemplate-parameters of its
class as itstemplate-parameters. [Example:

template<class T> class Array {
T* v;
int sz;

public:
explicit Array(int);
T& operator[](int);
T& elem(int i) { return v[i]; }
// ...

};

declares three function templates. The subscript function might be defined like this:

template<class T> T& Array<T>::operator[](int i)
{

if (i<0 || sz<=i) error("Array: range error");
return v[i];

}

2 Thetemplate-argumentfor Array<T>::operator[]() will be determined by theArray to which the
subscripting operation is applied.

Array<int> v1(20);
Array<dcomplex> v2(30);

v1[3] = 7; // Array<int>::operator[]()
v2[3] = dcomplex(7,8); // Array<dcomplex>::operator[]()

—end example]

14.12 Friends DRAFT: 28 April 1995 Templates 14– 31

[temp.friend] 14.12 Friends

1 A friend function of a template can be a template function or a non-template function. [Example:

template<class T> class task {
// ...
friend void next_time();
friend task<T>* preempt(task<T>*);
friend task* prmt(task*); // task is task<T>
friend class task<int>;
// ...

};

Here,next_time() andtask<int> become friends of alltask classes, and eachtask has appropri-
ately typed functionspreempt() andprmt() as friends. Thepreempt functions might be defined as a
template.

template<class T> task<T>* preempt(task<T>* t) { /* ... */ }

—end example]

2 A friend template shall not be defined within a class. [Example:

class A {
template<class T> friend B; // ok
template<class T> friend void f(T); // ok

template<class T> friend BB { /* ... /* }; // error
template<class T> friend void ff(T){ /* ... /* } // error

};

—end example] [Note:a friend declaration can add a name to an enclosing scope (14.2.4).]

[temp.static] 14.13 Static members and variables

1 Each template class or function generated from a template has its own copies of any static variables or
members. [Example:

template<class T> class X {
static T s;
// ...

};

X<int> aa;
X<char*> bb;

HereX<int> has a static members of typeint andX<char*> has a static members of typechar* .]

2 Static class member templates are defined similarly to member function templates. [Example:

template<class T> T X<T>::s = 0;

int X<int>::s = 3;

3 Similarly,

template<class T> f(T* p)
{

static T s;
// ...

};

14– 32 Templates DRAFT: 28 April 1995 14.13 Static members and variables

void g(int a, char* b)
{

f(&a); // call f<int>(int*)
f(&b); // call f<char*>(char**)

}

Heref<int>(int*) has a static members of typeint andf<char*>(char**) has a static member
s of typechar* .]

_ ___ ___

15 Exception handling [except]
_ ___ ___

1 Exception handling provides a way of transferring control and information from a point in the execution of
a program to anexception handlerassociated with a point previously passed by the execution. A handler
will be invoked only by athrow-expressioninvoked in code executed in the handler’stry-blockor in func-
tions called from the handler’stry-block.

try-block:
try compound-statement handler-seq

function-try-block:
try ctor-initializer-opt function-body handler-seq

handler-seq:
handler handler-seqopt

handler:
catch (exception-declaration) compound-statement

exception-declaration:
type-specifier-seq declarator
type-specifier-seq abstract-declarator
type-specifier-seq
...

throw-expression:
throw assignment-expressionopt

A try-block is a statement(6). A throw-expressionis of typevoid . A throw-expressionis sometimes
referred to as a“throw-point.” Code that executes athrow-expressionis said to“throw an exception;” code
that subsequently gets control is called a“handler.” [Note: within this clause“try block” is taken to mean
both try-blockandfunction-try-block.]

2 A goto , break , return , or continue statement can be used to transfer control out of a try block or
handler, but not into one. When this happens, each variable declared in the try block will be destroyed in
the context that directly contains its declaration. [Example:

lab: try {
T1 t1;
try {

T2 t2;
if (condition)

goto lab;
} catch(...) { /* handler 2 */ }

} catch(...) { /* handler 1 */ }

Here, executinggoto lab; will destroy first t2 , then t1 . Any exception raised while destroyingt2
will result in executinghandler 2; any exception raised while destroyingt1 will result in executing
handler 1.]

15– 2 Exception handling DRAFT: 28 April 1995 15 Exception handling

3 A function-try-blockassociates ahandler-seqwith thector-initializer, if present, and thefunction-body. An
exception thrown during the execution of the initializer expressions in thector-initializer or during the exe-
cution of thefunction-bodytransfers control to a handler in afunction-try-blockin the same way as an
exception thrown during the execution of atry-blocktransfers control to other handlers.

[except.throw] 15.1 Throwing an exception

1 Throwing an exception transfers control to a handler. An object is passed and the type of that object deter-
mines which handlers can catch it. [Example:

throw "Help!";

can be caught by ahandlerof somechar* type:

try {
// ...

}
catch(const char* p) {

// handle character string exceptions here
}

and

class Overflow {
// ...

public:
Overflow(char,double,double);

};

void f(double x)
{

// ...
throw Overflow(’+’,x,3.45e107);

}

can be caught by a handler

try {
// ...
f(1.2);
// ...

}
catch(Overflow& oo) {

// handle exceptions of type Overflow here
}

—end example]

2 When an exception is thrown, control is transferred to the nearest handler with an appropriate type;“near-
est” means the handler whose try block was most recently entered by the thread of control and not yet
exited;“appropriate type” is defined in 15.3.

3 A throw-expressioninitializes a temporary object of the static type of the operand ofthrow , ignoring the
top-levelcv-qualifiers of the operand’s type, and uses that temporary to initialize the appropriately-typed
variable named in the handler. Except for the restrictions on type matching mentioned in 15.3 and the use
of a temporary object, the operand ofthrow is treated exactly as a function argument in a call (5.2.2) or
the operand of areturn statement.

4 The memory for the temporary copy of the exception being thrown is allocated in an implementation-
defined way. The temporary persists as long as there is a handler being executed for that exception. In par-
ticular, if a handler exits by executing athrow; statement, that passes control to another handler for the
same exception, so the temporary remains. If the use of the temporary object can be eliminated without
changing the meaning of the program except for the execution of constructors and destructors associated
with the use of the temporary object (12.2), then the exception in the handler can be initialized directly with

15.1 Throwing an exception DRAFT: 28 April 1995 Exception handling 15– 3

the argument of the throw expression.

5 A throw-expressionwith no operand rethrows the exception being handled without copying it. [Example:
code that must be executed because of an exception yet cannot completely handle the exception can be writ-
ten like this:

try {
// ...

}
catch (...) { // catch all exceptions

// respond (partially) to exception

throw; // pass the exception to some
// other handler

}

—end example]

6 The exception thrown is the one most recently caught and not finished. An exception is considered caught
when initialization is complete for the formal parameter of the corresponding catch clause, or when
terminate() or unexpected() is entered due to a throw. An exception is considered finished when
the corresponding catch clause exits.

7 If no exception is presently being handled, executing athrow-expressionwith no operand calls
terminate() (15.5.1).

[except.ctor] 15.2 Constructors and destructors

1 As control passes from a throw-point to a handler, destructors are invoked for all automatic objects con-
structed since the try block was entered.

2 An object that is partially constructed will have destructors executed only for its fully constructed sub-
objects. Should a constructor for an element of an automatic array throw an exception, only the constructed
elements of that array will be destroyed. If the object or array was allocated in anew-expression, the stor-
age occupied by that object is sometimes deleted also (5.3.4).

3 [Note: the process of calling destructors for automatic objects constructed on the path from a try block to a
throw-expressionis called“stack unwinding.”]

[except.handle] 15.3 Handling an exception

1 Theexception-declarationin a handlerdescribes the type(s) of exceptions that can cause that handler to be
executed. Theexception-declarationshall not denote an incomplete type.

2 A handlerwith typeT, const T, T&, or const T& is a match for athrow-expressionwith an object of
typeE if

[1] T andE are the same type, or

[2] T is a public base class ofE, or

[3] T is a pointer type andE is a pointer type that can be converted toT by a standard pointer conver-
sion (4.10) not involving conversions to pointers to private or protected base classes.

[Example:

class Matherr { /* ... */ virtual vf(); };
class Overflow: public Matherr { /* ... */ };
class Underflow: public Matherr { /* ... */ };
class Zerodivide: public Matherr { /* ... */ };

15– 4 Exception handling DRAFT: 28 April 1995 15.3 Handling an exception

void f()
{

try {
g();

}

catch (Overflow oo) {
// ...

}
catch (Matherr mm) {

// ...
}

}

Here, theOverflow handler will catch exceptions of typeOverflow and theMatherr handler will
catch exceptions of typeMatherr and all types publicly derived fromMatherr includingUnderflow
andZerodivide .]

3 The handlers for a try block are tried in order of appearance. That makes it possible to write handlers that
can never be executed, for example by placing a handler for a derived class after a handler for a correspond-
ing base class.

4 A ... in a handler’sexception-declarationfunctions similarly to... in a function parameter declara-
tion; it specifies a match for any exception. If present, a... handler shall be the last handler for its try
block.

5 If no match is found among the handlers for a try block, the search for a matching handler continues in a
dynamically surrounding try block.

6 An exception is considered handled upon entry to a handler. [Note: the stack will have been unwound at
that point.]

7 If no matching handler is found in a program, the functionterminate() (15.5.1) is called. Whether or
not the stack is unwound before callingterminate() is implementation-defined.

8 Referring to any non-static member or base class of the object in the handler of afunction-try-blockof a
constructor or destructor of the object results in undefined behavior.

9 The fully constructed base classes and members of an object shall be destroyed before entering the handler
of a function-try-blockof a constructor or destructor for that object.

10 The scope and lifetime of the parameters of a function or constructor extend into the handlers of a
function-try-block.

11 If the handlers of afunction-try-blockcontain a jump into the body of a constructor or destructor, the pro-
gram is ill-formed.

12 If a return statement appears in a handler offunction-try-blockof a constructor, the program is ill-formed.

13 The exception being handled shall be rethrown if control reaches the end of a handler of thefunction-try-
blockof a constructor or destructor. Otherwise, the function shall return when control reaches the end of a
handler for thefunction-try-block(6.6.3).

14
[except.spec] 15.4 Exception specifications

1 A function declaration lists exceptions that its function might directly or indirectly throw by using an
exception-specificationas a suffix of its declarator.

exception-specification:
throw (type-id-listopt)

15.4 Exception specifications DRAFT: 28 April 1995 Exception handling 15– 5

type-id-list:
type-id
type-id-list , type-id

An exception-specificationshall appear only on a function declarator in a declaration or definition. An
exception-specificationshall not appear in a typedef declaration. [Example:

void f() throw(int); // OK
void (*fp) throw (int); // OK
void g(void pfa() throw(int)); // OK
typedef int (*pf)() throw(int); // ill-formed

—end example]

2 If any declaration of a function has anexception-specification, all declarations, including the definition, of
that function shall have anexception-specificationwith the same set oftype-ids. If a virtual function has an
exception-specification, all declarations, including the definition, of any function that overrides that virtual
function in any derived class shall have anexception-specificationat least as restrictive as that in the base
class. [Example:

struct B {
virtual void f() throw (int, double);
virtual void g();

};

struct D: B {
void f(); // ill-formed
void g() throw (int); // OK

};

—end example] The declaration ofD::f is ill-formed because it allows all exceptions, whereasB::f
allows onlyint anddouble . Similarly, any function or pointer to function assigned to, or initializing, a
pointer to function shall have anexception-specificationat least as restrictive as that of the pointer or func-
tion being assigned to or initialized. [Example:

void (*pf1)(); // no exception specification
void (*pf2) throw(A);

void f()
{

pf1 = pf2; // ok: pf1 is less restrictive
pf2 = pf1; // error: pf2 is more restrictive

}

—end example]

3 In such an assignment or initialization,exception-specifications on return types and parameter types shall
match exactly.

4 In other assignments or initializations,exception-specifications shall match exactly.

5 Calling a function through a declaration whoseexception-specificationis less restrictive that that of the
function’s definition is ill-formed. No diagnostic is required.

6 Types shall not be defined inexception-specifications.

7 An exception-specificationcan include the same class more than once and can include classes related by
inheritance, even though doing so is redundant. An exception specification can include identifiers that rep-
resent incomplete types. An exception can also include the name of the predefined class
bad_exception .

8 If a classX is in thetype-id-listof theexception-specificationof a function, that function is said toallow
exception objects of classX or any class publicly and unambiguously derived fromX. Similarly, if a
pointer typeY* is in the type-id-list of the exception-specificationof a function, the function allows

15– 6 Exception handling DRAFT: 28 April 1995 15.4 Exception specifications

exceptions of typeY* or that are pointers to any type publicly and unambiguously derived fromY* .

9 Whenever an exception is thrown and the search for a handler (15.3) encounters the outermost block of a
function with anexception-specification, the functionunexpected() is called (15.5.2) if theexception-
specificationdoes not allow the exception. [Example:

class X { };
class Y { };
class Z: public X { };
class W { };

void f() throw (X, Y)
{

int n = 0;
if (n) throw X(); // OK
if (n) throw Z(); // also OK
throw W(); // will call unexpected()

}

—end example]

10 The functionunexpected() may throw an exception that will satisfy theexception-specificationfor
which it was invoked, and in this case the search for another handler will continue at the call of the function
with thisexception-specification(see 15.5.2), or it may call terminate.

11 An implementation shall not reject an expression merely because when executed it throws or might throw
an exception that the containing function does not allow. [Example:

extern void f() throw(X, Y);

void g() throw(X)
{

f(); // OK
}

the call tof is well-formed even though when called,f might throw exceptionY thatg does not allow.]

12 A function with noexception-specificationallows all exceptions. A function with an emptyexception-
specification, throw() , does not allow any exceptions.

13 An exception-specificationis not considered part of a function’s type.

[except.special] 15.5 Special functions

1 The exception handling mechanism relies on two functions,terminate() and unexpected() , for
coping with errors related to the exception handling mechanism itself (18.6).

[except.terminate] 15.5.1 Theterminate() function

1 In the following situations exception handling must be abandoned for less subtle error handling techniques:

— when a exception handling mechanism, after completing evaluation of the object to be thrown but
before completing the initialization of theexception-declarationin the matching handler, calls a user
function that exits via an uncaught exception,98)

— when the exception handling mechanism cannot find a handler for a thrown exception (see 15.3),

— when the implementation’s exception handling mechanism encounters some internal error, or

— when an attempt by the implementation to destroy an object during stack unwinding exits using an
exception.

98)For example, if the object being thrown is of a class with a copy constructor,terminate() will be called if that copy constructor
exits with an exception during athrow .

15.5.1 Theterminate() function DRAFT: 28 April 1995 Exception handling 15– 7

2 In such cases,

void terminate();

is called (18.6.2).

[except.unexpected] 15.5.2 Theunexpected() function

1 If a function with anexception-specificationthrows an exception that is not listed in theexception-
specification, the function

void unexpected();

is called (18.6.1).

2 Theunexpected() function shall not return, but it can throw (or re-throw) an exception. If it throws a
new exception which is allowed by the exception specification which previously was violated, then the
search for another handler will continue at the call of the function whose exception specification was vio-
lated. If it throws or rethrows an exception an exception that theexception-specificationdoes not allow
then the following happens: if theexception-specificationdoes not include the name of the predefined
exceptionbad_exception then the functionterminate() is called, otherwise the thrown exception
is replaced by an implementation-defined object of the typebad_exception and the search for another
handler will continue at the call of the function whoseexception-specificationwas violated.

3 Thus, an exception-specificationguarantees that only the listed exceptions will be thrown. If the
exception-specificationincludes the namebad_exception then any exception not on the list may be
replaced bybad_exception within the functionunexpected() .

[except.access] 15.6 Exceptions and access

1 If the exception-declarationin a catch clause has class type, and the function in which the catch clause
occurs does not have access to the destructor of that class, the program is ill-formed.

2 An object can be thrown if it can be copied and destroyed in the context of the function in which the throw
occurs.

_ ___ ___

16 Preprocessing directives [cpp]
_ ___ ___

1 A preprocessing directive consists of a sequence of preprocessing tokens that begins with a# preprocessing
token that is either the first character in the source file (optionally after white space containing no new-line
characters) or that follows white space containing at least one new-line character, and is ended by the next
new-line character.99)

preprocessing-file:
groupopt

group:
group-part
group group-part

group-part:
pp-tokensopt new-line
if-section
control-line

if-section:
if-group elif-groupsopt else-groupopt endif-line

if-group:
if constant-expression new-line groupopt

ifdef identifier new-line groupopt

ifndef identifier new-line groupopt

elif-groups:
elif-group
elif-groups elif-group

elif-group:
elif constant-expression new-line groupopt

else-group:
else new-line groupopt

endif-line:
endif new-line

99)Thus, preprocessing directives are commonly called“lines.” These“lines” have no other syntactic significance, as all white space is
equivalent except in certain situations during preprocessing (see the# character string literal creation operator in 16.3.2, for example).

16– 2 Preprocessing directives DRAFT: 28 April 1995 16 Preprocessing directives

control-line:
include pp-tokens new-line
define identifier replacement-list new-line
define identifier lparen identifier-listopt) replacement-list new-line
undef identifier new-line
line pp-tokens new-line
error pp-tokensopt new-line
pragma pp-tokensopt new-line
new-line

lparen:
the left-parenthesis character without preceding white-space

replacement-list:
pp-tokensopt

pp-tokens:
preprocessing-token
pp-tokens preprocessing-token

new-line:
the new-line character

2 The only white-space characters that shall appear between preprocessing tokens within a preprocessing
directive (from just after the introducing# preprocessing token through just before the terminating new-line
character) are space and horizontal-tab (including spaces that have replaced comments or possibly other
white-space characters in translation phase 3).

3 The implementation can process and skip sections of source files conditionally, include other source files,
and replace macros. These capabilities are calledpreprocessing, because conceptually they occur before
translation of the resulting translation unit.

4 The preprocessing tokens within a preprocessing directive are not subject to macro expansion unless other-
wise stated.

[cpp.cond] 16.1 Conditional inclusion

1 The expression that controls conditional inclusion shall be an integral constant expression except that: it
shall not contain a cast; identifiers (including those lexically identical to keywords) are interpreted as
described below;100)and it may contain unary operator expressions of the form

defined identifier
or

defined (identifier)

which evaluate to1 if the identifier is currently defined as a macro name (that is, if it is predefined or if it
has been the subject of a#define preprocessing directive without an intervening#undef directive with
the same subject identifier), zero if it is not.

2 Each preprocessing token that remains after all macro replacements have occurred shall be in the lexical
form of a token (2.5).

3 Preprocessing directives of the forms

if constant-expression new-line groupopt

elif constant-expression new-line groupopt

check whether the controlling constant expression evaluates to nonzero.

100) Because the controlling constant expression is evaluated during translation phase 4, all identifiers either are or are not macro
names— there simply are no keywords, enumeration constants, and so on.

16.1 Conditional inclusion DRAFT: 28 April 1995 Preprocessing directives 16– 3

4 Prior to evaluation, macro invocations in the list of preprocessing tokens that will become the controlling
constant expression are replaced (except for those macro names modified by thedefined unary operator),
just as in normal text. If the tokendefined is generated as a result of this replacement process or use of
the defined unary operator does not match one of the two specified forms prior to macro replacement,
the behavior is undefined. After all replacements due to macro expansion and thedefined unary operator
have been performed, all remaining identifiers are replaced with the pp-number0, and then each prepro-
cessing token is converted into a token. The resulting tokens comprise the controlling constant expression
which is evaluated according to the rules of 5.19 using arithmetic that has at least the ranges specified in
18.2, except thatint and unsigned int act as if they have the same representation as, respectively,
long andunsigned long . This includes interpreting character literals, which may involve converting
escape sequences into execution character set members. Whether the numeric value for these character lit-
erals matches the value obtained when an identical character literal occurs in an expression (other than
within a #if or #elif directive) is implementation-defined.101) Also, whether a single-character charac-
ter literal may have a negative value is implementation-defined.

5 Preprocessing directives of the forms

ifdef identifier new-line groupopt

ifndef identifier new-line groupopt

check whether the identifier is or is not currently defined as a macro name. Their conditions are equivalent
to #if defined identifier and#if !defined identifier respectively.

6 Each directive’s condition is checked in order. If it evaluates to false (zero), the group that it controls is
skipped: directives are processed only through the name that determines the directive in order to keep track
of the level of nested conditionals; the rest of the directives’ preprocessing tokens are ignored, as are the
other preprocessing tokens in the group. Only the first group whose control condition evaluates to true
(nonzero) is processed. If none of the conditions evaluates to true, and there is a#else directive, the
group controlled by the#else is processed; lacking a#else directive, all the groups until the#endif
are skipped.102)

[cpp.include] 16.2 Source file inclusion

1 A #include directive shall identify a header or source file that can be processed by the implementation.

2 A preprocessing directive of the form

include < h-char-sequence> new-line

searches a sequence of implementation-defined places for a header identified uniquely by the specified
sequence between the< and> delimiters, and causes the replacement of that directive by the entire contents
of the header. How the places are specified or the header identified is implementation-defined.

3 A preprocessing directive of the form

include " q-char-sequence" new-line

causes the replacement of that directive by the entire contents of the source file identified by the specified
sequence between the" delimiters. The named source file is searched for in an implementation-defined
manner. If this search is not supported, or if the search fails, the directive is reprocessed as if it read

include < h-char-sequence> new-line

with the identical contained sequence (including> characters, if any) from the original directive.

101)Thus, the constant expression in the following#if directive andif statement is not guaranteed to evaluate to the same value in
these two contexts.

#if ’z’ - ’a’ = = 25

if (’z’ - ’a’ = = 25)

102)As indicated by the syntax, a preprocessing token shall not follow a#else or #endif directive before the terminating new-line
character. However, comments may appear anywhere in a source file, including within a preprocessing directive.

16– 4 Preprocessing directives DRAFT: 28 April 1995 16.2 Source file inclusion

4 A preprocessing directive of the form

include pp-tokens new-line

(that does not match one of the two previous forms) is permitted. The preprocessing tokens afterinclude
in the directive are processed just as in normal text. (Each identifier currently defined as a macro name is
replaced by its replacement list of preprocessing tokens.)The directive resulting after all replacements shall
match one of the two previous forms.103) The method by which a sequence of preprocessing tokens
between a< and a> preprocessing token pair or a pair of" characters is combined into a single header
name preprocessing token is implementation-defined.

5 There shall be an implementation-defined mapping between the delimited sequence and the external source
file name. The implementation shall provide unique mappings for sequences consisting of one or more
nondigits (2.7) followed by a period (.) and a singlenondigit. The implementation may ignore the distinc-
tions of alphabetical case and restrict the mapping to six significant characters before the period.

6 A #include preprocessing directive may appear in a source file that has been read because of a
#include directive in another file, up to an implementation-defined nesting limit.

7 [Example:The most common uses of#include preprocessing directives are as in the following:

#include <stdio.h>
#include "myprog.h"

—end example]

8 [Example:Here is a macro-replaced#include directive:

#if VERSION = = 1
#define INCFILE "vers1.h"

#elif VERSION = = 2
#define INCFILE "vers2.h" /* and so on*/

#else
#define INCFILE "versN.h"

#endif
#include INCFILE

—end example]

[cpp.replace] 16.3 Macro replacement

1 Two replacement lists are identical if and only if the preprocessing tokens in both have the same number,
ordering, spelling, and white-space separation, where all white-space separations are considered identical.

2 An identifier currently defined as a macro without use of lparen (anobject-likemacro) may be redefined by
another#define preprocessing directive provided that the second definition is an object-like macro defi-
nition and the two replacement lists are identical.

3 An identifier currently defined as a macro using lparen (afunction-likemacro) may be redefined by another
#define preprocessing directive provided that the second definition is a function-like macro definition
that has the same number and spelling of parameters, and the two replacement lists are identical.

4 The number of arguments in an invocation of a function-like macro shall agree with the number of parame-
ters in the macro definition, and there shall exist a) preprocessing token that terminates the invocation.

5 A parameter identifier in a function-like macro shall be uniquely declared within its scope.

6 The identifier immediately following thedefine is called themacro name. There is one name space for
macro names. Any white-space characters preceding or following the replacement list of preprocessing
tokens are not considered part of the replacement list for either form of macro.

103)Note that adjacent string literals are not concatenated into a single string literal (see the translation phases in 2.1); thus, an expan-
sion that results in two string literals is an invalid directive.

16.3 Macro replacement DRAFT: 28 April 1995 Preprocessing directives 16– 5

7 If a # preprocessing token, followed by an identifier, occurs lexically at the point at which a preprocessing
directive could begin, the identifier is not subject to macro replacement.

8 A preprocessing directive of the form

define identifier replacement-list new-line

defines an object-like macro that causes each subsequent instance of the macro name104) to be replaced by
the replacement list of preprocessing tokens that constitute the remainder of the directive. The replacement
list is then rescanned for more macro names as specified below.

9 A preprocessing directive of the form

define identifier lparen identifier-listopt) replacement-list new-line

defines a function-like macro with parameters, similar syntactically to a function call. The parameters are
specified by the optional list of identifiers, whose scope extends from their declaration in the identifier list
until the new-line character that terminates the#define preprocessing directive. Each subsequent
instance of the function-like macro name followed by a(as the next preprocessing token introduces the
sequence of preprocessing tokens that is replaced by the replacement list in the definition (an invocation of
the macro). The replaced sequence of preprocessing tokens is terminated by the matching) preprocessing
token, skipping intervening matched pairs of left and right parenthesis preprocessing tokens. Within the
sequence of preprocessing tokens making up an invocation of a function-like macro, new-line is considered
a normal white-space character.

10 The sequence of preprocessing tokens bounded by the outside-most matching parentheses forms the list of
arguments for the function-like macro. The individual arguments within the list are separated by comma
preprocessing tokens, but comma preprocessing tokens between matching inner parentheses do not separate
arguments. If (before argument substitution) any argument consists of no preprocessing tokens, the behav-
ior is undefined. If there are sequences of preprocessing tokens within the list of arguments that would oth-
erwise act as preprocessing directives, the behavior is undefined.

[cpp.subst] 16.3.1 Argument substitution

1 After the arguments for the invocation of a function-like macro have been identified, argument substitution
takes place. A parameter in the replacement list, unless preceded by a# or ## preprocessing token or fol-
lowed by a## preprocessing token (see below), is replaced by the corresponding argument after all macros
contained therein have been expanded. Before being substituted, each argument’s preprocessing tokens are
completely macro replaced as if they formed the rest of the translation unit; no other preprocessing tokens
are available.

[cpp.stringize] 16.3.2 The# operator

1 Each# preprocessing token in the replacement list for a function-like macro shall be followed by a parame-
ter as the next preprocessing token in the replacement list.

2 If, in the replacement list, a parameter is immediately preceded by a# preprocessing token, both are
replaced by a single character string literal preprocessing token that contains the spelling of the preprocess-
ing token sequence for the corresponding argument. Each occurrence of white space between the
argument’s preprocessing tokens becomes a single space character in the character string literal. White
space before the first preprocessing token and after the last preprocessing token comprising the argument is
deleted. Otherwise, the original spelling of each preprocessing token in the argument is retained in the
character string literal, except for special handling for producing the spelling of string literals and character
literals: a\ character is inserted before each" and\ character of a character literal or string literal (includ-
ing the delimiting " characters). If the replacement that results is not a valid character string literal, the
behavior is undefined. The order of evaluation of# and## operators is unspecified.

104)Since, by macro-replacement time, all character literals and string literals are preprocessing tokens, not sequences possibly con-
taining identifier-like subsequences (see 2.1.1.2, translation phases), they are never scanned for macro names or parameters.

16– 6 Preprocessing directives DRAFT: 28 April 1995 16.3.3 The## operator

[cpp.concat] 16.3.3 The## operator

1 A ## preprocessing token shall not occur at the beginning or at the end of a replacement list for either form
of macro definition.

2 If, in the replacement list, a parameter is immediately preceded or followed by a## preprocessing token,
the parameter is replaced by the corresponding argument’s preprocessing token sequence.

3 For both object-like and function-like macro invocations, before the replacement list is reexamined for
more macro names to replace, each instance of a## preprocessing token in the replacement list (not from
an argument) is deleted and the preceding preprocessing token is concatenated with the following prepro-
cessing token. If the result is not a valid preprocessing token, the behavior is undefined. The resulting
token is available for further macro replacement. The order of evaluation of## operators is unspecified.

[cpp.rescan] 16.3.4 Rescanning and further replacement

1 After all parameters in the replacement list have been substituted, the resulting preprocessing token
sequence is rescanned with all subsequent preprocessing tokens of the source file for more macro names to
replace.

2 If the name of the macro being replaced is found during this scan of the replacement list (not including the
rest of the source file’s preprocessing tokens), it is not replaced. Further, if any nested replacements
encounter the name of the macro being replaced, it is not replaced. These nonreplaced macro name prepro-
cessing tokens are no longer available for further replacement even if they are later (re)examined in con-
texts in which that macro name preprocessing token would otherwise have been replaced.

3 The resulting completely macro-replaced preprocessing token sequence is not processed as a preprocessing
directive even if it resembles one.

[cpp.scope] 16.3.5 Scope of macro definitions

1 A macro definition lasts (independent of block structure) until a corresponding#undef directive is
encountered or (if none is encountered) until the end of the translation unit.

2 A preprocessing directive of the form

undef identifier new-line

causes the specified identifier no longer to be defined as a macro name. It is ignored if the specified identi-
fier is not currently defined as a macro name.

3 [Note:The simplest use of this facility is to define a“manifest constant,” as in

#define TABSIZE 100

int table[TABSIZE];

4 The following defines a function-like macro whose value is the maximum of its arguments. It has the
advantages of working for any compatible types of the arguments and of generating in-line code without the
overhead of function calling. It has the disadvantages of evaluating one or the other of its arguments a sec-
ond time (including side effects) and generating more code than a function if invoked several times. It also
cannot have its address taken, as it has none.

#define max(a, b) ((a) > (b) ? (a) : (b))

The parentheses ensure that the arguments and the resulting expression are bound properly.

5 To illustrate the rules for redefinition and reexamination, the sequence

16.3.5 Scope of macro definitions DRAFT: 28 April 1995 Preprocessing directives 16– 7

#define x 3
#define f(a) f(x * (a))
#undef x
#define x 2
#define g f
#define z z[0]
#define h g(~
#define m(a) a(w)
#define w 0,1
#define t(a) a

f(y+1) + f(f(z)) % t(t(g)(0) + t)(1);
g(x+(3,4)-w) | h 5) & m

(f)^m(m);

results in

f(2 * (y+1)) + f(2 * (f(2 * (z[0])))) % f(2 * (0)) + t(1);
f(2 * (2+(3,4)-0,1)) | f(2 * (~ 5)) & f(2 * (0,1))^m(0,1);

6 To illustrate the rules for creating character string literals and concatenating tokens, the sequence

#define str(s) # s
#define xstr(s) str(s)
#define debug(s, t) printf("x" # s "= %d, x" # t "= %s", \

x ## s, x ## t)
#define INCFILE(n) vers ## n /* from previous#include example */
#define glue(a, b) a ## b
#define xglue(a, b) glue(a, b)
#define HIGHLOW "hello"
#define LOW LOW ", world"

debug(1, 2);
fputs(str(strncmp("abc\0d", "abc", ’\4’) /* this goes away */

= = 0) str(: @\n), s);
#include xstr(INCFILE(2).h)
glue(HIGH, LOW);
xglue(HIGH, LOW)

results in

printf("x" "1" "= %d, x" "2" "= %s", x1, x2);
fputs("strncmp(\"abc\\0d\", \"abc\", ’\\4’) = = 0" ": @\n", s);
#include "vers2.h" (after macro replacement, before file access)
"hello";
"hello" ", world"

or, after concatenation of the character string literals,

printf("x1= %d, x2= %s", x1, x2);
fputs("strncmp(\"abc\\0d\", \"abc\", ’\\4’) = = 0: @\n", s);
#include "vers2.h" (after macro replacement, before file access)
"hello";
"hello, world"

Space around the# and## tokens in the macro definition is optional.

7 And finally, to demonstrate the redefinition rules, the following sequence is valid.

#define OBJ_LIKE (1-1)
#define OBJ_LIKE /* white space */ (1-1) /* other */
#define FTN_LIKE(a) (a)
#define FTN_LIKE(a)(/* note the white space */ \

a /* other stuff on this line
*/)

16– 8 Preprocessing directives DRAFT: 28 April 1995 16.3.5 Scope of macro definitions

But the following redefinitions are invalid:

#define OBJ_LIKE (0) /* different token sequence*/
#define OBJ_LIKE (1 - 1) /* different white space*/
#define FTN_LIKE(b) (a) /* different parameter usage*/
#define FTN_LIKE(b) (b) /* different parameter spelling*/

—end note]

[cpp.line] 16.4 Line control

1 The string literal of a#line directive, if present, shall be a character string literal.

2 The line numberof the current source line is one greater than the number of new-line characters read or
introduced in translation phase 1 (2.1) while processing the source file to the current token.

3 A preprocessing directive of the form

line digit-sequence new-line

causes the implementation to behave as if the following sequence of source lines begins with a source line
that has a line number as specified by the digit sequence (interpreted as a decimal integer). The digit
sequence shall not specify zero, nor a number greater than 32767.

4 A preprocessing directive of the form

line digit-sequence" s-char-sequenceopt" new-line

sets the line number similarly and changes the presumed name of the source file to be the contents of the
character string literal.

5 A preprocessing directive of the form

line pp-tokens new-line

(that does not match one of the two previous forms) is permitted. The preprocessing tokens afterline on
the directive are processed just as in normal text (each identifier currently defined as a macro name is
replaced by its replacement list of preprocessing tokens). The directive resulting after all replacements
shall match one of the two previous forms and is then processed as appropriate.

[cpp.error] 16.5 Error directive

1 A preprocessing directive of the form

error pp-tokensopt new-line

causes the implementation to produce a diagnostic message that includes the specified sequence of prepro-
cessing tokens.

[cpp.pragma] 16.6 Pragma directive

1 A preprocessing directive of the form

pragma pp-tokensopt new-line

causes the implementation to behave in an implementation-defined manner. Any pragma that is not recog-
nized by the implementation is ignored.

[cpp.null] 16.7 Null directive

1 A preprocessing directive of the form

new-line

has no effect.

16.8 Predefined macro names DRAFT: 28 April 1995 Preprocessing directives 16– 9

[cpp.predefined] 16.8 Predefined macro names

1 The following macro names shall be defined by the implementation:

_ _LINE_ _The line number of the current source line (a decimal constant).

_ _FILE_ _The presumed name of the source file (a character string literal).

_ _DATE_ _The date of translation of the source file (a character string literal of the form
"Mmm dd yyyy" , where the names of the months are the same as those generated by theasctime
function, and the first character ofdd is a space character if the value is less than 10). If the date of
translation is not available, an implementation-defined valid date shall be supplied.

_ _TIME_ _The time of translation of the source file (a character string literal of the form"hh:mm:ss"
as in the time generated by theasctime function). If the time of translation is not available, an
implementation-defined valid time shall be supplied.

_ _STDC_ _Whether_ _STDC_ _ is defined and if so, what its value is, are implementation-defined.

_ _cplusplus The name_ _cplusplus is defined (to an unspecified value) when compiling a C + +
translation unit.

2 The values of the predefined macros (except for_ _LINE_ _ and_ _FILE_ _) remain constant throughout
the translation unit.

3 None of these macro names, nor the identifierdefined , shall be the subject of a#define or a#undef
preprocessing directive. All predefined macro names shall begin with a leading underscore followed by an
uppercase letter or a second underscore.

_ ___ ___

17 Library introduction [lib.library]
_ ___ ___

1 This clause describes the contents of theC + + Standard library, how a well-formed C + + program makes use
of the library, and how a conforming implementation may provide the entities in the library.

2 The C + + Standard library provides an extensible framework, and contains components for: language sup-
port, diagnostics, general utilities, strings, locales, containers, iterators, algorithms, numerics, and
input/output. The language support components are required by certain parts of the C + + language, such as
memory allocation (5.3.4, 5.3.5) and exception processing (15).

3 The general utilities include components used by other library elements, such as a predefined storage allo-
cator for dynamic storage management (3.7.3). The diagnostics components provide a consistent frame-
work for reporting errors in a C + + program, including predefined exception classes.

4 The strings components provide support for manipulating text represented as sequences of typechar ,
sequences of typewchar_t , or sequences of any other ‘‘character-like’’ type. The localization compo-
nents extend internationalization support for such text processing.

5 The containers, iterators, and algorithms provide a C + + program with access to a subset of the most widely
used algorithms and data structures.

6 Numeric algorithms and the complex number components extend support for numeric processing. The
valarray components provide support forn-at-a-time processing, potentially implemented as parallel
operations on platforms that support such processing.

7 The iostreams components are the primary mechanism for C + + program input/output. They can be used
with other elements of the library, particularly strings, locales, and iterators.

8 This library also makes available the facilities of the Standard C library, suitably adjusted to ensure static
type safety.

9 The following subclauses describe the definitions (17.1), and method of description (17.2) for the library.
Subclause 17.3 and Clauses 18 through 27 specify the contents of the library, and library requirements and
constraints on both well-formed C + + programs and conforming implementations.

[lib.definitions] 17.1 Definitions

— category:A logical collection of library entities. Clauses 18 through 27 each describe a single category
of entities within the library.

— comparison function: An operator function (13.5) for any of the equality (5.10) or relational (5.9)
operators.

— component: A group of library entities directly related as members, parameters, or return types. For
example, the class templatebasic_string and the non-member template functions that operate on
strings can be referred to as thestring component.

— default behavior: A description ofreplacement functionandhandler functionsemantics. Any specific
behavior provided by the implementation, within the scope of therequired behavior.

— handler function: A non-reserved functionwhose definition may be provided by a C + + program. A
C + + program may designate a handler function at various points in its execution, by supplying a pointer
to the function when calling any of the library functions that install handler functions (18).

17– 2 Library introduction DRAFT: 28 April 1995 17.1 Definitions

— modifier function: A class member function (9.4), other than constructors, assignment, or destructor,
that alters the state of an object of the class.

— object state:The current value of all nonstatic class members of an object (9.2). The state of an object
can be obtained by using one or moreobserver functions

— observer function: A class member function (9.4) that accesses the state of an object of the class, but
does not alter that state. Observer functions are specified asconst member functions (9.4.2).

— replacement function: A non-reserved functionwhose definition is provided by a C + + program. Only
one definition for such a function is in effect for the duration of the program’s execution, as the result of
creating the program (2.1) and resolving the definitions of all translation units (3.5).

— required behavior: A description ofreplacement functionandhandler functionsemantics, applicable
to both the behavior provided by the implementation and the behavior that shall be provided by any
function definition in the program. If a function defined in a C + + program fails to meet the required
behavior when it executes, the behavior is undefined.

— reserved function:A function, specified as part of the C + + Standard library, that must be defined by the
implementation. If a C + + program provides a definition for any reserved function, the results are unde-
fined.

Subclause 1.3 defines additional terms used elsewhere in this International Standard.

[lib.description] 17.2 Method of description (Informative)

1 This subclause describes the conventions used to describe the C + + Standard library. It describes the struc-
tures of the normative Clauses 18 through 27 (17.2.1), and other editorial conventions (17.2.2).

[lib.structure] 17.2.1 Structure of each subclause

1 Subclause 17.3.1 provides a summary of the C + + Standard library’s contents. Other Library clauses provide
detailed specifications for each of the components in the library, as shown in Table 10:

Table 10—Library Categories
_ _________________________
Clause Category_ __________________________ _________________________
18 Language support
19 Diagnostics
20 General utilities
21 Strings
22 Localization
23 Containers
24 Iterators
25 Algorithms
26 Numerics
27 Input/output_ _________________________

2 Each Library clause contains the following elements, as applicable:105)

— Summary

— Requirements

105)To save space, items that do not apply to a clause are omitted. For example, if a clause does not specify any requirements on tem-
plate arguments, there will be no ‘‘Requirements’’ subclause.

17.2.1 Structure of each subclause DRAFT: 28 April 1995 Library introduction 17– 3

— Detailed specifications

— References to the Standard C library

[lib.structure.summary] 17.2.1.1 Summary

1 The Summary provides a synopsis of the category, and introduces the first-level subclauses. Each sub-
clause also provides a summary, listing the headers specified in the subclause and the library entities pro-
vided in each header.

2 Paragraphs labelled ‘‘Note(s):’’ or ‘‘Example(s):’’ are informative, other paragraphs are normative.

3 The summary and the detailed specifications are presented in the order:

— Macros

— Values

— Types

— Classes

— Functions

— Objects

[lib.structure.requirements] 17.2.1.2 Requirements

1 The library can be extended by a C + + program. Each clause, as applicable, describes the requirements that
such extensions must meet. Such extensions are generally one of the following:

— Template arguments

— Derived classes

— Containers, iterators, and/or algorithms that meet an interface convention

2 The string and iostreams components use an explicit representation of operations required of template argu-
ments. They use a template class nameXXX_traits to define these constraints.

3 Interface convention requirements are stated as generally as possible. Instead of stating ‘‘class X has to
define a member functionoperator++() ,’’ the interface requires ‘‘for any objectx of classX, ++x is
defined.’’ That is, whether the operator is a member is unspecified.

4 Requirements are stated in terms of well-defined expressions, which define valid terms of the types that sat-
isfy the requirements. For every set of requirements there is a table that specifies an initial set of the valid
expressions and their semantics (20.1, 23.1, 24.1). Any generic algorithm (25) that uses the requirements is
described in terms of the valid expressions for its formal type parameters.

5 In some cases the semantic requirements are presented as C + + code. Such code is intended as a specifica-
tion of equivalence of a construct to another construct, not necessarily as the way the construct must be
implemented.106)

[lib.structure.specifications] 17.2.1.3 Specifications

1 The detailed specifications each contain the following elements:107)

— Name and brief description

— Synopsis (class definition or function prototype, as appropriate)

— Restrictions on template arguments, if any

106)Although in some cases the code given is unambiguously the optimum implementation.
107)The form of these specifications was designed to follow the conventions established by existing C + + library vendors.

17– 4 Library introduction DRAFT: 28 April 1995 17.2.1.3 Specifications

— Decription of class invariants

— Description of function semantics

2 Descriptions of class member functions follow the order (as appropriate):108)

— Constructor(s) and destructor

— Copying & assignment functions

— Comparison functions

— Modifier functions

— Observer functions

— Operators and other non-member functions

3 Descriptions of function semantics contain the following elements (as appropriate):109)

— Requires: the preconditions for calling the function

— Effects: the actions performed by the function

— Postconditions:the observable results established by the function

— Returns: a description of the value(s) returned by the function

— Throws: any exceptions thrown by the function, and the conditions that would cause the exception

— Complexity: the time and/or space complexity of the function

4 For non-reserved replacement and handler functions, Clause 18 specifies two behaviors for the functions in
question: their required and default behavior. Thedefault behaviordescribes a function definition provided
by the implementation. Therequired behaviordescribes the semantics of a function definition provided by
either the implementation or a C + + program. Where no distinction is explicitly made in the description, the
behavior described is the required behavior.

5 If an operation is required to be linear time, it means no worse than linear time, and a constant time opera-
tion satisfies the requirement.

[lib.structure.see.also] 17.2.1.4 C Library

1 Paragraphs labelled ‘‘SEE ALSO:’’ contain cross-references to the relevant portions of this Standard and the
ISO C standard, which is incorporated into this Standard by reference.

[lib.conventions] 17.2.2 Other conventions

1 This subclause describes several editorial conventions used to describe the contents of the C + + Standard
library. These conventions are for describing implementation-defined types (17.2.2.1), and member func-
tions (17.2.2.2).

[lib.type.descriptions] 17.2.2.1 Type descriptions

1 The Requirements subclauses describe names that are used to specify constraints on template argu-
ments.110) These names are used in Clauses 23, 25, and 26 to describe the types that may be supplied as
arguments by a C + + program when instantiating template components from the library.

108)To save space, items that do not apply to a class are omitted. For example, if a class does not specify any comparison functions,
there will be no ‘‘Comparison functions’’ subclause.
109)To save space, items that do not apply to a function are omitted. For example, if a function does not specify any preconditions,
there will be no ‘‘Requires’’ paragraph.
110)Examples include:InputIterator , ForwardIterator , Function , Predicate , etc. See subclause 24.1.

17.2.2.1 Type descriptions DRAFT: 28 April 1995 Library introduction 17– 5

2 Certain types defined in Clause 27 are used to describe implementation-defined types. They are based on
other types, but with added constraints.

[lib.enumerated.types] 17.2.2.1.1 Enumerated types

1 Several types defined in Clause 27 areenumerated types. Each enumerated type may be implemented as an
enumeration or as a synonym for an enumeration.111)

2 The enumerated typeenumerated can be written:

enum enumerated { V0, V1, V2, V3,};

static const enumerated C0 (V0);
static const enumerated C1 (V1);
static const enumerated C2 (V2);
static const enumerated C3 (V3);

.....

3 Here, the namesC0, C1, etc. representenumerated elementsfor this particular enumerated type. All such
elements have distinct values.

[lib.bitmask.types] 17.2.2.1.2 Bitmask types

1 Several types defined in Clause 27 arebitmask types. Each bitmask type can be implemented as an enu-
merated type that overloads certain operators, as an integer type, or as abitset (23.2.1).

2 The bitmask typebitmask can be written:

enum bitmask {
V0 = 1 << 0, V1 = 1 << 1, V2 = 1 << 2, V3 = 1 << 3,

};

static const bitmask C0 (V0);
static const bitmask C1 (V1);
static const bitmask C2 (V2);
static const bitmask C3 (V3);

.....

bitmask & operator&=(bitmask & X, bitmask Y) { X = bitmask (X & Y); return X; }
bitmask & operator|=(bitmask & X, bitmask Y) { X = bitmask (X | Y); return X; }
bitmask & operator^=(bitmask & X, bitmask Y) { X = bitmask (X ^ Y); return X; }
bitmask operator& (bitmask X , bitmask Y) { return bitmask (X & Y); }
bitmask operator| (bitmask X , bitmask Y) { return bitmask (X | Y); }
bitmask operator^ (bitmask X , bitmask Y) { return bitmask (X ^ Y); }
bitmask operator~ (bitmask X) { return (bitmask)~ X; }

3 Here, the namesC0, C1, etc. representbitmask elementsfor this particular bitmask type. All such ele-
ments have distinct values such that, for any pairCi andCj , Ci & Ci is nonzero andCi & Cj is zero.

4 The following terms apply to objects and values of bitmask types:

— To seta valueY in an objectX is to evaluate the expressionX = Y.

— To cleara valueY in an objectX is to evaluate the expressionX &= ˜Y.

— The valueY is setin the objectX if the expressionX & Y is nonzero.

111)Such as an integer type, with constant integer values (3.9.1).

17– 6 Library introduction DRAFT: 28 April 1995 17.2.2.1.3 Character sequences

[lib.character.seq] 17.2.2.1.3 Character sequences

1 The Standard C library makes widespread use of characters and character sequences that follow a few uni-
form conventions:

— A letter is any of the 26 lowercase or 26 uppercase letters in the basic execution character set.112)

— The decimal-point characteris the (single-byte) character used by functions that convert between a
(single-byte) character sequence and a value of one of the floating-point types. It is used in the charac-
ter sequence to denote the beginning of a fractional part. It is represented in Clauses 18 through 27 by a
period,’.’ , which is also its value in the"C" locale, but may change during program execution by a
call tosetlocale(int, const char*) ,113) or by a change to alocale object, as described in
Clauses 22.1 and 27.

— A character sequenceis an array object (8.3.4)A that can be declared asT A [N] , whereT is any of the
typeschar , unsigned char , or signed char (3.9.1), optionally qualified by any combination
of const or volatile . The initial elements of the array have defined contents up to and including
an element determined by some predicate. A character sequence can be designated by a pointer valueS
that points to its first element.

[lib.byte.strings] 17.2.2.1.3.1 Byte strings

1 A null-terminated byte string,or NTBS, is a character sequence whose highest-addressed element with
defined content has the value zero (theterminating nullcharacter).114)

2 The length of anNTBSis the number of elements that precede the terminating null character. AnemptyNTBS

has a length of zero.

3 The value of anNTBS is the sequence of values of the elements up to and including the terminating null
character.

4 A staticNTBSis anNTBS with static storage duration.115)

[lib.multibyte.strings] 17.2.2.1.3.2 Multibyte strings

1 A null-terminated multibyte string,or NTMBS, is anNTBS that constitutes a sequence of valid multibyte char-
acters, beginning and ending in the initial shift state.116)

2 A staticNTMBSis anNTMBS with static storage duration.

[lib.wide.characters] 17.2.2.1.3.3 Wide-character sequences

1 A wide-character sequenceis an array object (8.3.4)A that can be declared asT A [N] , whereT is type
wchar_t (_basic.fundmental_), optionally qualified by any combination ofconst or volatile . The
initial elements of the array have defined contents up to and including an element determined by some
predicate. A character sequence can be designated by a pointer valueS that designates its first element.

2 A null-terminated wide-character string,or NTWCS, is a wide-character sequence whose highest-addressed
element with defined content has the value zero.117)

3 The length of anNTWCSis the number of elements that precede the terminating null wide character. An
emptyNTWCShas a length of zero.

112)Note that this definition differs from the definition in ISO C subclause 7.1.1.
113)declared in<clocale> (22.3).
114) Many of the objects manipulated by function signatures declared in<cstring> (21.2) are character sequences orNTBSs. The
size of some of these character sequences is limited by a length value, maintained separately from the character sequence.
115)A string literal, such as"abc" , is a staticNTBS.
116)An NTBS that contains characters only from the basic execution character set is also anNTMBS. Each multibyte character then con-
sists of a single byte.
117)Many of the objects manipulated by function signatures declared in<cwchar> are wide-character sequences orNTWCSs.

17.2.2.1.3.3 Wide-character sequences DRAFT: 28 April 1995 Library introduction 17– 7

4 The value of anNTWCSis the sequence of values of the elements up to and including the terminating null
character.

5 A staticNTWCSis anNTWCS with static storage duration.118)

[lib.functions.within.classes] 17.2.2.2 Functions within classes

1 For the sake of exposition, Clauses 18 through 27 do not describe copy constructors, assignment operators,
or (non-virtual) destructors with the same apparent semantics as those that can be generated by default
(12.1, 12.4, 12.8).

2 It is unspecified whether the implementation provides explicit definitions for such member function signa-
tures, or for virtual destructors that can be generated by default.

[lib.objects.within.classes] 17.2.2.3 Private members

1 Clauses 18 through 27 do not specify the representation of classes, and intentionally omit specification of
class members (9.2). An implementation may define static or non-static class members, or both, as needed
to implement the semantics of the member functions specified in Clauses 18 through 27.

2 Objects of certain classes are sometimes required by the external specifications of their classes to store data,
apparently in member objects. For the sake of exposition, subclauses 22.1.1, 23.2.1, 24.4.3, 24.4.4, 27.4.3,
27.7.1, and 27.8.1.1 provide representative declarations, and semantic requirements, for private member
objects of classes that meet the external specifications of the classes. The declarations for such member
objects and the definitions of related member types are enclosed in a comment that ends withexposition
only, as in:

// streambuf* sb ; exposition only

3 Any alternate implementation that provides equivalent external behavior is equally acceptable.

[lib.requirements] 17.3 Library-wide requirements

1 This subclause specifies requirements that apply to the entire C + + Standard library. Clauses 18 through 27
specify the requirements of individual entities within the library.

2 The following subclauses describe the library’s contents and organization (17.3.1), how well-formed C + +
programs gain access to library entities (17.3.2), constraints on such programs (17.3.3), and constraints on
conforming implementations (17.3.4).

[lib.organization] 17.3.1 Library contents and organization

1 This subclause provides a summary of the entities defined in the C + + Standard library. Subclause 17.3.1.1
provides an alphabetical listing of entities by type, while subclause 17.3.1.2 provides an alphabetical listing
of library headers.

[lib.contents] 17.3.1.1 Library contents

1 The C + + Standard library provides definitions for the following types of entities:

— Macros

— Values

— Types

— Templates

— Classes

118)A wide string literal, such asL"abc" , is a staticNTWCS.

17– 8 Library introduction DRAFT: 28 April 1995 17.3.1.1 Library contents

— Functions

— Objects

2 All library entities shall be defined within the namespacestd .

3 The C + + Standard library provides 54 standard macros from the C library (C.4).

4 The C + + Standard library provides 45 standard values from the C library (C.4).

5 The C + + Standard library provides 19 standard types from the C library (C.4), and 28 additional types, as
shown in Table 11:

Table 11—Standard Types
_ __
filebuf ostringstream wfilebuf wstreambuf

ifstream streambuf wifstream wstreampos

ios streamoff wios wstring

istream streampos wistream wstringbuf

istringstream string wistringstream

new_handler stringbuf wofstream

ofstream terminate_handler wostream

ostream unexpected_handler wostringstream_ __

6 The C + + Standard library provides 66 standard template classes, as shown in Table 12:

Table 12—Standard Template classes
_ ___
allocator mask_array

auto_ptr messages

back_insert_iterator messages_byname

basic_filebuf moneypunct

basic_ifstream moneypunct_byname

basic_ios money_get

basic_istream money_put

basic_istringstream multimap

basic_ofstream multiset

basic_ostream numeric_limits

basic_ostringstream numpunct

basic_streambuf num_get

basic_string num_put

basic_stringbuf ostreambuf_iterator

binary_negate ostream_iterator_ ___

17.3.1.1 Library contents DRAFT: 28 April 1995 Library introduction 17– 9

_ __
binder1st pointer_to_binary_function

binder2nd pointer_to_unary_function

bitset priority_queue

codecvt queue

codecvt_byname raw_storage_iterator

collate reverse_bidirectional_iterator

collate_byname reverse_iterator

complex set

ctype slice_array

ctype_byname stack

deque time_get

front_insert_iterator time_get_byname

gslice_array time_put

indirect_array time_put_byname

insert_iterator unary_negate

istreambuf_iterator valarray

istream_iterator vector

list

map_ __

7 The C + + Standard library provides 24 standard template structures, as shown in Table 13:

Table 13—Standard Template structs
_ __
bidirectional_iterator less pair

binary_function less_equal plus

divides logical_and random_access_iterator

equal_to logical_not string_char_traits

forward_iterator logical_or times

greater minus unary_function

greater_equal modulus

input_iterator negate

ios_traits not_equal_to_ __

8 The C + + Standard library provides 86 standard template operator functions, as shown in Table 14.

9 Types shown (enclosed in(and)) indicate that the given function is overloaded by that type. Numbers
shown (enclosed in[and]) indicate how many overloaded functions are overloaded by that type.

17– 10 Library introduction DRAFT: 28 April 1995 17.3.1.1 Library contents

Table 14—Standard Template operators
_ __
operator!= (basic_string) [5] operator<< (basic_string)

operator!= (complex) [3] operator<< (bitset)

operator!= (istreambuf_iterator) operator<< (complex)

operator!= (ostreambuf_iterator) operator<< (valarray) [3]

operator!= (T) operator<<=(valarray) [2]

operator!= (valarray) [3] operator<= (T)

operator% (valarray) [3] operator<= (valarray) [3]

operator%= (valarray) [2] operator== (basic_string) [5]

operator& (bitset) operator== (complex) [3]

operator& (valarray) [3] operator== (deque)

operator&& (valarray) [3] operator== (istreambuf_iterator)

operator&= (valarray) [2] operator== (istream_iterator)

operator* (complex) [3] operator== (list)

operator* (valarray) [3] operator== (map)

operator*= (complex) operator== (multimap)

operator*= (valarray) [2] operator== (multiset)

operator+ (basic_string) [5] operator== (ostreambuf_iterator)

operator+ (complex) [4] operator== (pair)

operator+ (reverse_iterator) operator== (queue)

operator+ (valarray) [3] operator== (restrictor)

operator+= (complex) operator== (reverse_bidir_iter)

operator+= (valarray) [2] operator== (reverse_iterator)

operator- (complex) [4] operator== (set)

operator- (reverse_iterator) operator== (stack)

operator- (valarray) [3] operator== (valarray) [3]

operator-= (complex) operator== (vector)

operator-= (valarray) [2] operator> (T)

operator/ (complex) [3] operator> (valarray) [3]

operator/ (valarray) [3] operator>= (T)

operator/= (complex) operator>= (valarray) [3]

operator/= (valarray) [2] operator>> (basic_string)

operator< (deque) operator>> (bitset)

operator< (list) operator>> (complex)

operator< (map) operator>> (valarray) [3]

operator< (multimap) operator>>=(valarray) [2]

operator< (multiset) operator^ (bitset)

operator< (pair) operator^ (valarray) [3]

operator< (queue) operator^= (valarray) [2]

operator< (restrictor) operator| (bitset)

operator< (reverse_iterator) operator| (valarray) [3]

operator< (set) operator|= (valarray) [2]

operator< (stack) operator|| (valarray) [3]

operator< (valarray) [3]

operator< (vector)_ __

10 The C + + Standard library provides 144 standard template functions, as shown in Table 15:

17.3.1.1 Library contents DRAFT: 28 April 1995 Library introduction 17– 11

Table 15—Standard Template functions
_ ___
abs (complex) lower_bound [2]

abs (valarray) make_heap [2]

accumulate [2] make_pair

acos (complex) max [2]

acos (valarray) max_element [2]

adjacent_difference [2] merge [2]

adjacent_find [2] min [2]

advance min_element [2]

allocate mismatch [2]

arg (complex) next_permutation [2]

asin (complex) norm (complex)

asin (valarray) not1

atan (complex) not2

atan (valarray) nth_element [2]

atan2(complex) [3] partial_sort [2]

atan2(valarray) [3] partial_sort_copy [2]

back_inserter partial_sum [2]

binary_search [2] partition

bind1st polar(complex)

bind2nd pop_heap [2]

conj (complex) pow (complex)

construct pow (complex) [3]

copy pow (valarray) [3]

copy_backward prev_permutation [2]

cos (complex) ptr_fun [2]

cos (valarray) push_heap [2]

cosh (complex) random_shuffle [2]

cosh (valarray) real (complex)

count remove

count_if remove_copy

deallocate remove_copy_if

destroy [2] remove_if

distance replace

distance_type (istreambuf_iterator) replace_copy

distance_type [5] replace_copy_if

equal [2] replace_if

equal_range [2] reverse

exp (complex) reverse_copy

exp (valarray) rotate

fill rotate_copy

fill_n search [4]

find set_difference [2]

find_end [4] set_intersection [2]

find_first_of [2] set_symmetric_difference [2]

find_if set_union [2]_ ___

17– 12 Library introduction DRAFT: 28 April 1995 17.3.1.1 Library contents

_ ___
for_each sin (complex)

front_inserter sin (valarray)

generate sinh (complex)

generate_n sinh (valarray)

getline sort [2]

get_temporary_buffer sort_heap [2]

imag (complex) sqrt (complex)

includes [2] sqrt (valarray)

inner_product [2] stable_partition

inplace_merge [2] stable_sort [2]

inserter swap

isalnum swap_ranges

isalpha tan (complex)

iscntrl tan (valarray)

isdigit tanh (complex)

isgraph tanh (valarray)

islower tolower

isprint toupper

ispunct transform [2]

isspace uninitialized_copy

isupper uninitialized_fill_n

isxdigit unique [2]

iterator_category [7] unique_copy [2]

lexicographical_compare [2] unititialized_fill

log (complex) upper_bound [2]

log (valarray) value_type [7]

log10(complex)

log10(valarray)_ ___

11 The C + + Standard library provides 28 standard classes, as shown in Table 16.

12 Type names (enclosed in< and>) indicate that these are specific instances of templates.

Table 16—Standard Classes
_ ___
bad_alloc ctype_byname<char> logic_error

bad_cast domain_error out_of_range

bad_exception exception overflow_error

bad_typeid gslice range_error

basic_string<char> invalid_argument runtime_error

basic_string<wchar_t> ios_base slice

complex<double> length_error type_info

complex<float> locale vector<bool,allocator>

complex<long double> locale::facet

ctype<char> locale::id_ ___

13 The C + + Standard library provides 2 standard structures from the C library (C.4), and 16 additional struc-
tures, as shown in Table 17:

17.3.1.1 Library contents DRAFT: 28 April 1995 Library introduction 17– 13

Table 17—Standard Structs
_ __
bidirectional_iterator_tag nothrow

codecvt_base output_iterator

ctype_base output_iterator_tag

forward_iterator_tag random_access_iterator_tag

input_iterator_tag string_char_traits<char>

ios_traits<char> string_char_traits<wchar_t>

ios_traits<wchar_t> time_base

money_base

money_base::pattern_ __

14 The C + + Standard library provides 12 standard operator functions, as shown in Table 18:

Table 18—Standard Operator functions
_ __
operator delete operator new[] (void*)

operator delete[] operator< (vector<bool,allocator>)

operator new operator<< (locale)

operator new (nothrow) operator== (vector<bool,allocator>)

operator new (void*) operator>> (locale)

operator new[]

operator new[] (nothrow)_ __

15 The C + + Standard library provides 208 standard functions from the C library (C.4), and 78 additional func-
tions, as shown in Table 19:

17– 14 Library introduction DRAFT: 28 April 1995 17.3.1.1 Library contents

Table 19—Standard Functions
_ __
abs (float) mod (long double)

abs (long double) modf (float,float*)

abs (long) modf (long double,long double*)

acos (float) noshowbase

acos (long double) noshowpoint

asin (float) noshowpos

asin (long double) noskipws

atan (float) nouppercase

atan (long double) oct

atan2(float,float) pow (float) [2]

atan2(long double,long double) pow (long double) [2]

ceil (float) resetiosflags

ceil (long double) right

cos (float) scientific

cos (long double) setbase

cosh (float) setfill

cosh (long double) setiosflags

dec setprecision

div (long,long) setw

endl set_new_handler

ends set_terminate

exp (float) set_unexpected

exp (long double) showbase

fixed showpoint

floor(float) showpos

floor(long double) sin (float)

flush sin (long double)

frexp(float,int*) sinh (float)

frexp(long double,int*) sinh (long double)

hex skipws

internal tan (float)

iterator_category tan (long double)

ldexp(float,int) tanh (float)

ldexp(long double,int) tanh (long double)

left terminate

log (float) unexpected

log (long double) uppercase

log10(float) ws

log10(long double)

mod (float)_ __

16 The C + + Standard library provides 8 standard objects, as shown in Table 20:

Table 20—Standard Objects
_ ___________________________
cerr cin clog cout

werr win wlog wout_ ___________________________

17.3.1.2 Headers DRAFT: 28 April 1995 Library introduction 17– 15

[lib.headers] 17.3.1.2 Headers

1 The elements of the C + + Standard library are declared or defined (as appropriate) in aheader.119)

2 The C + + Standard library provides 32C + + headers, as shown in Table 21:

Table 21—C++ Library Headers
_ __
<algorithm> <iomanip> <list> <queue> <typeinfo>

<bitset> <ios> <locale> <set> <utility>

<complex> <iosfwd> <map> <sstream> <valarray>

<deque> <iostream> <memory> <stack> <vector>

<exception> <istream> <new> <stdexcept>

<fstream> <iterator> <numeric> <streambuf>

<functional> <limits> <ostream> <string>_ __

3 The facilities of the Standard C Library are provided in 18 additional headers, as shown in Table 22:

Table 22—C + + Headers for C Library Facilities
_ __
<cassert> <ciso646> <csetjmp> <cstdio> <cwchar>

<cctype> <climits> <csignal> <cstdlib> <cwctype>

<cerrno> <clocale> <cstdarg> <cstring>

<cfloat> <cmath> <cstddef> <ctime>_ __

4 Except as noted in Clauses 18 through 27, the contents of each headercnameshall be the same as that of
the corresponding headername.h , as specified in ISO C (Clause 7), or Amendment 1, (Clause 7), as appro-
priate. In this C + + Standard library, however, the declarations and definitions are within namespace scope
(3.3.4) of the namespacestd .

5 Subclause D.1, Standard C library headers, describes the effects of using thename.h (C header) form in a
C + + program.120)

[lib.compliance] 17.3.1.3 Freestanding implementations

1 Two kinds of implementations are defined:hostedand freestanding(1.7). For a hosted implementation,
this International Standard describes the set of available headers.

2 A freestanding implementation has has an implementation-defined set of headers. This set shall include at
least the following headers, as shown in Table 23:

119)A header is not necessarily a source file, nor are the sequences delimited by< and> in header names necessarily valid source file
names (16.2).
120) The ".h" headers dump all their names into the global namespace, whereas the newer forms keep their names in namespace
std . Therefore, the newer forms are the preferred forms for all uses except for C + + programs which are intended to be strictly compat-
ible with C.

17– 16 Library introduction DRAFT: 28 April 1995 17.3.1.3 Freestanding implementations

Table 23—C + + Headers for Freestanding Implementations
_ ___

Subclause Header(s)_ __ ___
18.1 Types <cstddef>_ ___
18.2 Implementation properties <limits>_ ___
18.3 Start and termination <cstdlib>_ ___
18.4 Dynamic memory management<new>_ ___
18.5 Type identification <typeinfo>_ ___
18.6 Exception handling <exception>_ ___
18.7 Other runtime support <cstdarg>_ ___

3 The supplied version of the header<cstdlib> shall declare at least the functionsabort() ,
atexit() , andexit() (18.3).

[lib.using] 17.3.2 Using the library

1 This subclause describes how a C + + program gains access to the facilities of the C + + Standard library. Sub-
clause 17.3.2.1 describes effects during translation phase 4, while subclause 17.3.2.2 describes effects dur-
ing phase 8 (2.1).

[lib.using.headers] 17.3.2.1 Headers

1 The entities in the C + + Standard library are defined in headers, whose contents are made available to a
translation unit when it contains the appropriate#include preprocessing directive (16.2).

2 A translation unit may include library headers in any order (2). Each may be included more than once, with
no effect different from being included exactly once, except that the effect of including either<cassert>
or <assert.h> depends each time on the lexically current definition ofNDEBUG.121)

3 A translation unit shall include a header only outside of any external declaration or definition, and shall
include the header lexically before the first reference to any of the entities it declares or first defines in that
translation unit.

[lib.using.linkage] 17.3.2.2 Linkage

1 Entities in the C + + Standard library have external linkage (3.5). Unless otherwise specified, objects and
functions have the defaultextern "C++" linkage (7.5).

2 It is unspecified whether a name from the Standard C library declared with external linkage has either
extern "C" or extern "C++" linkage.122)

3 Objects and functions defined in the library and required by a C + + program are included in the program
prior to program startup.

SEE ALSO: replacement functions (17.3.3.4), run-time changes (17.3.3.5).

121)This is the same as the Standard C library.
122) The only reliable way to declare an object or function signature from the Standard C library is by including the header that
declares it, notwithstanding the latitude granted in subclause 7.1.7 of the C Standard.

17.3.3 Constraints on programs DRAFT: 28 April 1995 Library introduction 17– 17

[lib.constraints] 17.3.3 Constraints on programs

1 This subclause describes restrictions on C + + programs that use the facilities of the C + + Standard library.
The following subclauses specify constraints on the program’s namespace (17.3.3.1), its use of headers
(17.3.3.2), classes derived from standard library classes (17.3.3.3), definitions of replacement functions
(17.3.3.4), and installation of handler functions during execution (17.3.3.5).

[lib.reserved.names] 17.3.3.1 Reserved names

1 A C + + program shall not extend the namespacestd .

2 The C + + Standard library reserves the following kinds of names:

— Macros

— Global names

— Names with external linkage

3 If the program declares or defines a name in a context where it is reserved, other than as explicitly allowed
by this clause, the behavior is undefined.

[lib.macro.names] 17.3.3.1.1 Macro names

1 Each name defined as a macro in a header is reserved to the implementation for any use if the translation
unit includes the header.123)

2 A translation unit that includes a header shall not contain any macros that define names declared or defined
in that header. Nor shall such a translation unit define macros for names lexically identical to keywords.

[lib.global.names] 17.3.3.1.2 Global names

1 Each header also optionally declares or defines names which are always reserved to the implementation for
any use and names reserved to the implementation for use at file scope.

2 Certain sets of names and function signatures are reserved whether or not a translation unit includes a
header:

3 Each name that begins with an underscore and either an uppercase letter or another underscore (2.8) is
reserved to the implementation for any use.

4 Each name that begins with an underscore is reserved to the implementation for use as a name with file
scope or within the namespacestd in the ordinary name space.

[lib.extern.names] 17.3.3.1.3 External linkage

1 Each name declared as an object with external linkage in a header is reserved to the implementation to des-
ignate that library object with external linkage.124)

2 Each global function signature declared with external linkage in a header is reserved to the implementation
to designate that function signature with external linkage.125)

3 Each name having two consecutive underscores (2.8) is reserved to the implementation for use as a name
with both extern "C" and extern "C++" linkage.

4 Each name from the Standard C library declared with external linkage is reserved to the implementation for
use as a name withextern "C" linkage.

123)It is not permissible to remove a library macro definition by using the#undef directive.
124)The list of such reserved names includeserrno , declared or defined in<cerrno> .
125) The list of such reserved function signatures with external linkage includessetjmp(jmp_buf) , declared or defined in
<csetjmp> , andva_end(va_list) , declared or defined in<cstdarg> .

17– 18 Library introduction DRAFT: 28 April 1995 17.3.3.1.3 External linkage

5 Each function signature from the Standard C library declared with external linkage is reserved to the imple-
mentation for use as a function signature with bothextern "C" and extern "C++" linkage.126)

[lib.alt.headers] 17.3.3.2 Headers

1 If a file has a name equivalent to the derived file name for one of the C + + Standard library headers, is not
provided as part of the implementation, and is placed in any of the standard places for a source file to be
included (16.2), the behavior is undefined.

[lib.derived.classes] 17.3.3.3 Derived classes

1 Virtual member function signatures defined for a base class in the C + + Standard library may be overridden
in a derived class defined in the program (10.3).

[lib.replacement.functions] 17.3.3.4 Replacement functions

1 Clauses 18 through 27 describe the behavior of numerous functions defined by the C + + Standard library.
Under some circumstances, however, certain of these function descriptions also apply to replacement func-
tions defined in the program (17.1).

2 A C + + program may provide the definition for any of six (6) dynamic memory allocation function signa-
tures declared in header<new> (3.7.3, 18):127)

— operator new(size_t)

— operator new(size_t,nothrow)

— operator new[](size_t)

— operator new[](size_t,nothrow)

— operator delete(void*)

— operator delete[](void*)

3 The program’s definitions are used instead of the default versions supplied by the implementation (8.4).
Such replacement occurs prior to program startup (3.2, 3.6).

[lib.handler.functions] 17.3.3.5 Handler functions

1 The C + + Standard library provides default versions of the three handler functions (18):

— new_handler

— unexpected_handler

— terminate_handler

2 A C + + program may install different handler functions during execution, by supplying a pointer to a func-
tion defined in the program or the library as an argument to (respectively):

— set_new_handler

— set_unexpected

— set_terminate

SEE ALSO: subclauses 18.4.2, Storage allocation errors, and 18.6, Exception handling.

126)The function signatures declared in<cwchar> and<cwctype> are always reserved, notwithstanding the restrictions imposed
in subclause 4.5.1 of Amendment 1 to the C Standard for these headers.

17.3.3.6 Other functions DRAFT: 28 April 1995 Library introduction 17– 19

[lib.res.on.functions] 17.3.3.6 Other functions

1 In certain cases (replacement functions, handler functions, operations on types used to instantiate standard
library template components), the C + + Standard library depends on components supplied by a C + + program.
If these components do not meet their requirements, the Standard places no requirements on the implemen-
tation.

2 In particular, the effects are undefined in the following cases:

— for replacement functions (18.4.1), if the installed handler function does not implement the semantics of
the applicableRequired behaviorparagraph.

— for handler functions (18.4.2.2, 18.6.2.1, 18.6.1.2), if the installed handler function does not implement
the semantics of the applicableRequired behaviorparagraph

— for types used as template arguments when instantiating a template component, if the operations on the
type do not implement the semantics of the applicableRequirementssubclause (20.1, 23.1, 24.1, 26.1).

— if any of these functions or operations throws an exception, unless specifically allowed in the applicable
Required behaviorparagraph.

[lib.res.on.arguments] 17.3.3.7 Function arguments

1 Each of the following statements applies to all arguments to functions defined in the C + + Standard library,
unless explicitly stated otherwise.

— If an argument to a function has an invalid value (such as a value outside the domain of the function, or
a pointer invalid for its intended use), the behavior is undefined.

— If a function argument is described as being an array, the pointer actually passed to the function shall
have a value such that all address computations and accesses to objects (that would be valid if the
pointer did point to the first element of such an array) are in fact valid.

[lib.conforming] 17.3.4 Conforming implementations

1 This subclause describes the constraints upon, and latitude of, implementations of the C + + Standard library.
The following subclauses describe an implementation’s use of headers (17.3.4.1), macros (17.3.4.2), global
functions (17.3.4.3), member functions (17.3.4.4), reentrancy (17.3.4.5), access specifiers (17.3.4.6), class
derivation (17.3.4.7), and exceptions (17.3.4.8).

[lib.res.on.headers] 17.3.4.1 Headers

1 Certain types and macros are defined in more than one header. For such an entity, a second or subsequent
header that also defines it may be included after the header that provides its initial definition (3.2).

2 Header inclusion is limited as follows:

— None of the C + + headers includes any of the C headers. However, any of the C + + headers can include
any of the other C + + headers, and must include a C + + header that contains any needed definition.127)

— The C headers (.h form, described in Annex D, D.1) shall include only their corresponding C + +
header, as described above (17.3.1.2).

— The C + + headers listed in Table 21, C + + Library Headers, shall include the header(s) listed in their
respectiveSynopsissubclause (18.4, 18.5, 18.6, 19.1, 20.2, 20.3, 20.4, 21.1, 22.1, 23.2, 24, 25, 26.2,
26.3, 27.3, 27.4, 27.5, 27.6, 27.7, 27.8.1).128)

127) Including any one of the C + + headers can introduce all of the C + + headers into a translation unit, or just the one that is named in
the#include preprocessing directive.
128)C + + headers must include a C + + header that contains any needed definition (3.2).

17– 20 Library introduction DRAFT: 28 April 1995 17.3.4.1 Headers

3 However, any of the C + + headers can include any of the other C + + headers, and must include a C + + header
that contains any needed definition.129)

[lib.res.on.macro.definitions] 17.3.4.2 Restrictions on macro definitions

1 The names or global function signatures described in subclause 17.3.1.1 are reserved to the implementa-
tion.130)

2 All object-like macros defined by the Standard C library and described in this clause as expanding to inte-
gral constant expressions are also suitable for use in#if preprocessing directives, unless explicitly stated
otherwise.

[lib.global.functions] 17.3.4.3 Global functions

1 It is unspecified whether any global functions in the C + + Standard library are defined asinline (7.1.2).

2 A call to a global function signature described in Clauses 18 through 27 behaves the same as if the imple-
mentation declares no additional global function signatures.131)

[lib.member.functions] 17.3.4.4 Member functions

1 It is unspecified whether any member functions in the C + + Standard library are defined asinline (7.1.2).

2 An implementation can declare additional non-virtual member function signatures within a class:

— by adding arguments with default values to a member function signature;132)The same latitude doesnot
extend to the implementation of virtual or global functions, however.

— by replacing a member function signature with default values by two or more member function signa-
tures with equivalent behavior;

— by adding a member function signature for a member function name.

3 A call to a member function signature described in the C + + Standard library behaves the same as if the
implementation declares no additional member function signatures.133)

[lib.reentrancy] 17.3.4.5 Reentrancy

1 Which of the functions in the C + + Standard Library are notreentrant subroutinesis implementation-
defined.

[lib.protection.within.classes] 17.3.4.6 Protection within classes

1 It is unspecified whether a function signature or class described in Clauses 18 through 27 is afriend of
another class in the C + + Standard Library.

2 It is unspecified whether a member described in this clause as private is private, protected, or public. It is
unspecified whether a member described as protected is protected or public. A member described as public
is always public.

129) Including any one of the C + + headers can introduce all of the C + + headers into a translation unit, or just the one that is named in
the#include preprocessing directive.
130) A global function cannot be declared by the implementation as taking additional default arguments. Also, the use of masking
macros for function signatures declared in C headers is disallowed, notwithstanding the latitude granted in subclause 7.1.7 of the C
Standard. The use of a masking macro can often be replaced by defining the function signature asinline.
131) A valid C + + program always calls the expected library global function. An implementation may also define additional global
functions that would otherwise not be called by a valid C + + program.
132)Hence, taking the address of a member function has an unspecified type.
133) A valid C + + program always calls the expected library member function, or one with equivalent behavior. An implementation
may also define additional member functions that would otherwise not be called by a valid C + + program.

17.3.4.7 Derived classes DRAFT: 28 April 1995 Library introduction 17– 21

[lib.derivation] 17.3.4.7 Derived classes

1 Certain classes defined in the C + + Standard Library are derived from other classes in the C + + Standard
library:

— It is unspecified whether a class in the C + + Standard Library as a base class is itself derived from other
base classes (with names reserved to the implementation).

— It is unspecified whether a class described in the C + + Standard Library as derived from another class is
derived from that class directly, or through other classes (with names reserved to the implementation)
that are derived from the specified base class.

2 In any case:

— A base class described asvirtual is always virtual;

— A base class described as non-virtual is never virtual;

— Unless explicitly stated otherwise, types with distinct names are distinct types.134)

[lib.res.on.exception.handling] 17.3.4.8 Restrictions on exception handling

1 Any of the functions defined in the C + + Standard library can report a failure by throwing an exception of the
type(s) described in theirThrows: paragraph and/or theirexception-specification(15.4).

2 Any of the functions defined in the C + + Standard library that do not have anexception-specificationpro-
hibiting it, can report a failure to allocate storage by throwing an exception of typebad_alloc , or a class
derived frombad_alloc (18.4.2.1).

134) An implicit exception to this rule are types described as synonyms for basic integral types, such assize_t (18.1) and
streamoff (27.4.1).

_ ___ ___

18 Language support library [lib.language.support]
_ ___ ___

1 This clause describes the function signatures that are called implicitly, and the types of objects generated
implicitly, during the execution of some C + + programs. It also describes the headers that declare these
function signatures and define any related types.

2 The following subclauses describe common type definitions used throughout the library, characteristics of
the predefined types, functions supporting start and termination of a C + + program, support for dynamic
memory management, support for dynamic type identification, support for exception processing, and other
runtime support, as summarized in Table 24:

Table 24—Language support library summary
_ ___

Subclause Header(s)_ __ ___
18.1 Types <cstddef>_ ___

<limits>
<climits>18.2 Implementation properties
<cfloat>_ ___

18.3 Start and termination <cstdlib>_ ___
18.4 Dynamic memory management<new>_ ___
18.5 Type identification <typeinfo>_ ___
18.6 Exception handling <exception>_ ___

<cstdarg>
<csetjmp>
<ctime>
<csignal>

18.7 Other runtime support

<cstdlib>_ ___

[lib.support.types] 18.1 Types

1 Common definitons.

2 Header<cstddef> (Table 25):

Table 25—Header<cstddef> synopsis
_ __

Type Name(s)_ __
Macros: NULL <cstddef> offsetof_ __
Types: ptrdiff_t<cstddef> size_t <cstddef>_ __

3 The contents are the same as the Standard C library, with the following changes:

4 The macroNULL is an implementation-defined C + + null-pointer constant in this International Standard
(4.10).135)

135)Possible definitions include0 and0L , but not(void*)0 .

18– 2 Language support library DRAFT: 28 April 1995 18.1 Types

5 The macrooffsetof accepts a restricted set oftype arguments in this International Standard.type
shall be a POD structure or a POD union (9).

SEE ALSO: subclause 5.3.3, Sizeof, subclause 5.7, Additive operators, subclause 12.5, Free store, and ISO
C subclause 7.1.6.

[lib.support.limits] 18.2 Implementation properties

1 Characteristics of implementation-dependent fundamental types (3.9.1).

[lib.limits] 18.2.1 Numeric limits

1 Thenumeric_limits component provides a C + + program with information about various properties of
the implementation’s representation of the fundamental types.

2 Specializations shall be provided for each fundamental type, both floating point and integer, including
bool . The member is_specialized shall be true for all such specializations of
numeric_limits .

3 Non-scalar types, such ascomplex<T> (26.2.1), shall not have specializations.

Header<limits> synopsis

namespace std {
template<class T> class numeric_limits;
enum float_rounds_style;

class numeric_limits<bool>;

class numeric_limits<char>;
class numeric_limits<signed char>;
class numeric_limits<unsigned char>;
class numeric_limits<wchar_t>;

class numeric_limits<short>;
class numeric_limits<int>;
class numeric_limits<long>;
class numeric_limits<unsigned short>;
class numeric_limits<unsigned int>;
class numeric_limits<unsigned long>;

class numeric_limits<float>;
class numeric_limits<double>;
class numeric_limits<long double>;

}

[lib.numeric.limits] 18.2.1.1 Template classnumeric_limits

namespace std {
template<class T> class numeric_limits {
public:

static const bool is_specialized;
static T min();
static T max();

18.2.1.1 DRAFT: 28 April 1995 Language support library 18– 3
Template classnumeric_limits

static const int digits;
static const int digits10;
static const bool is_signed;
static const bool is_integer;
static const bool is_exact;
static const int radix;
static T epsilon();
static T round_error();

static const int min_exponent;
static const int min_exponent10;
static const int max_exponent;
static const int max_exponent10;

static const bool has_infinity;
static const bool has_quiet_NaN;
static const bool has_signaling_NaN;
static const bool has_denorm;
static T infinity();
static T quiet_NaN();
static T signaling_NaN();
static T denorm_min();

static const bool is_iec559;
static const bool is_bounded;
static const bool is_modulo;

static const bool traps;
static const bool tinyness_before;
static const float_round_style round_style;

};
}

1 The memberis_specialized makes it possible to distinguish between scalar types, which have spe-
cializations, and non-scalar types, which do not.

2 The membersradix , epsilon() , andround_error() shall have meaningful values for all floating
point type specializations.

3 For types withhas_denorm == false , the memberdenorm_min() shall return the same value as
the membermin() .

4 The defaultnumeric_limits<T> template shall have all members, but with meaningless (0 orfalse)
values.

[lib.numeric.limits.members] 18.2.1.2numeric_limits members

static T min();

1 Minimum finite value.136)

2 For floating types with denormalization, returns the minimum positive normalized value,
denorm_min() .

136)Equivalent to CHAR_MIN, SHRT_MIN, FLT_MIN, DBL_MIN, etc.

18– 4 Language support library DRAFT: 28 April 1995 18.2.1.2numeric_limits members

3 Meaningful for all specializations in whichis_bounded == true , or is_bounded == false &&
is_signed == false .

static T max();

4 Maximum finite value.137)

5 Meaningful for all specializations in whichis_bounded == true .

static const int digits;

6 Number ofradix digits which can be represented without change.

7 For built-in integer types, the number of non-sign bits in the representation.

8 For floating point types, the number ofradix digits in the mantissa.138)

static const int digits10;

9 Number of base 10 digits which can be represented without change.139)

10 Meaningful for all specializations in whichis_bounded == true .

static const bool is_signed;

11 True if the type is signed.

12 Meaningful for all specializations.

static const bool is_integer;

13 True if the type is integer.

14 Meaningful for all specializations.

static const bool is_exact;

15 True if the type uses an exact representation. All integer types are exact, but not vice versa. For example,
rational and fixed-exponent representations are exact but not integer.

16 Meaningful for all specializations.

static const int radix;

17 For floating types, specifies the base or radix of the exponent representation (often 2).140)

18 For integer types, specifies the base of the representation.141)

137)Equivalent to CHAR_MAX, SHRT_MAX, FLT_MAX, DBL _MAX, etc.
138)Equivalent to FLT_MANT_DIG, DBL_MANT_DIG, LDBL_MANT_DIG.
139)Equivalent to FLT_DIG, DBL_DIG, LDBL_DIG.
140)Equivalent to FLT_RADIX.
141)Distinguishes types with bases other than 2 (e.g. BCD).

18.2.1.2 numeric_limits members DRAFT: 28 April 1995 Language support library 18– 5

19 Meaningful for all specializations.

static T epsilon();

20 Machine epsilon: the difference between 1 and the least value greater than 1 that is representable.142)

21 Meaningful only for floating point types.

static T round_error();

22 Measure of the maximum rounding error.143)

static const int min_exponent;

23 Minimum negative integer such thatradix raised to that power is in range.144)

24 Meaningful only for floating point types.

static const int min_exponent10;

25 Minimum negative integer such that 10 raised to that power is in range.145)

26 Meaningful only for floating point types.

static const int max_exponent;

27 Maximum positive integer such thatradix raised to that power is in range.146)

28 Meaningful only for floating point types.

static const int max_exponent10;

29 Maximum positive integer such that 10 raised to that power is in range.147)

30 Meaningful only for floating point types.

static const bool has_infinity;

31 True if the type has a representation for positive infinity.

32 Meaningful only for floating point types.

33 Shall betrue for all specializations in whichis_iec559 == true .

static const bool has_quiet_NaN;

142)Equivalent to FLT_EPSILON, DBL_EPSILON, LDBL_EPSILON.
143)This has a precise definition in the Language Independent Arithmetic (LIA-1) standard. Required by LIA-1.
144)Equivalent to FLT_MIN_EXP, DBL_MIN_EXP, LDBL_MIN_EXP.
145)Equivalent to FLT_MIN_10_EXP, DBL_MIN_10_EXP, LDBL_MIN_10_EXP.
146)Equivalent to FLT_MAX _EXP, DBL_MAX _EXP, LDBL_MAX _EXP.
147)Equivalent to FLT_MAX _10_EXP, DBL_MAX _10_EXP, LDBL_MAX _10_EXP.

18– 6 Language support library DRAFT: 28 April 1995 18.2.1.2numeric_limits members

34 True if the type has a representation for a quiet (non-signaling) ‘‘Not a Number.’’148)

35 Meaningful only for floating point types.

36 Shall betrue for all specializations in whichis_iec559 == true .

static const bool has_signaling_NaN;

37 True if the type has a representation for a signaling ‘‘Not a Number.’’149)

38 Meaningful only for floating point types.

39 Shall betrue for all specializations in whichis_iec559 == true .

static const bool has_denorm;

40 True if the type allows denormalized values (variable number of exponent bits).150)

41 Meaningful only for flotaing point types.

static T infinity();

42 Representation of positive infinity, if available.151)

43 Meaningful only in specializations for whichhas_infinity == true . Required in specializations for
which is_iec559 == true .

static T quiet_NaN();

44 Representation of a quiet ‘‘Not a Number,’’ if available.152)

45 Meaningful only in specializations for whichhas_quiet_NaN == true . Required in specializations
for which is_iec559 == true .

static T signaling_NaN();

46 Representation of a signaling ‘‘Not a Number,’’ if available.153)

47 Meaningful only in specializations for whichhas_signaling_NaN == true . Required in specializa-
tions for whichis_iec559 == true .

static T denorm_min();

48 Minimum positive denormalized value.154)

49 Meaningful for all floating point types.

148)Required by LIA-1.
149)Required by LIA-1.
150)Required by LIA-1.
151)Required by LIA-1.
152)Required by LIA-1.
153)Required by LIA-1.
154)Required by LIA-1.

18.2.1.2 numeric_limits members DRAFT: 28 April 1995 Language support library 18– 7

50 In specializations for whichhas_denorm == false , returns the minimum positive normalized value.

static const bool is_iec559;

51 True if and only if the type adheres to IEC 559 standard.155)

52 Meaningful only for floating point types.

static const bool is_bounded;

53 True if the set of values representable by the type is finite.156) All built-in types are bounded, this member
would be false for arbitrary precision types.

54 Meaningful for all specializations.

static const bool is_modulo;

55 True if the type is modulo.157) A type is modulo if it is possible to add two positive numbers and have a
result which wraps around to a third number which is less.

56 Generally, this isfalse for floating types,true for unsigned integers, andtrue for signed integers on
most machines.

57 Meaningful for all specializations.

static const bool traps;

58 true if trapping is implemented for the type.158)

59 Meaningful for all specializations.

static const bool tinyness_before;

60 true if tinyness is detected before rounding.159)

61 Meaningful only for floating point types.

static const float_round_style round_style;

62 The rounding style for the type.160)

63 Meaningful for all floating point types. Specializations for integer types shall return
round_toward_zero .

155)International Electrotechnical Commission standard 559 is the same as IEEE 754.
156)Required by LIA-1.
157)Required by LIA-1.
158)Required by LIA-1.
159)Refer to IEC 559. Required by LIA-1.
160)Equivalent to FLT_ROUNDS. Required by LIA-1.

18– 8 Language support library DRAFT: 28 April 1995 18.2.1.3 Typefloat_round_style

[lib.round.style] 18.2.1.3 Typefloat_round_style

namespace std {
enum float_round_style {

round_indeterminate = -1,
round_toward_zero = 0,
round_to_nearest = 1,
round_toward_infinity = 2,
round_toward_neg_infinity = 3

};
}

[lib.numeric.special] 18.2.1.4numeric_limits specializations

1 All members shall be provided for all specializations. However, many values are only required to be mean-
ingful under certain conditions (for example,epsilon() is only meaningful ifis_integer is false).
Any value which is not ‘‘meaningful’’ shall be set to 0 orfalse .

2 [Example:

namespace std {
class numeric_limits<float> {
public:

static const bool is_specialized = true;

inline static float min() { return 1.17549435E-38F; }
inline static float max() { return 3.40282347E+38F; }

static const int digits = 24;
static const int digits10 = 6;

static const bool is_signed = true;
static const bool is_integer = false;
static const bool is_exact = false;

static const int radix = 2;
inline static float epsilon() { return 1.19209290E-07F; }
inline static float round_error() { return 0.5F; }

static const int min_exponent = -125;
static const int min_exponent10 = - 37;
static const int max_exponent = +128;
static const int max_exponent10 = + 38;

static const bool has_infinity = true;
static const bool has_quiet_NaN = true;
static const bool has_signaling_NaN = true;
static const bool has_denorm = false;

inline static float infinity() { return ...; }
inline static float quiet_NaN() { return ...; }
inline static float signaling_NaN() { return ...; }
inline static float denorm_min() { return min(); }

18.2.1.4 DRAFT: 28 April 1995 Language support library 18– 9
numeric_limits specializations

static const bool is_iec559 = true;
static const bool is_bounded = true;
static const bool is_modulo = false;
static const bool traps = true;
static const bool tinyness_before = true;

static const float_round_style round_style = round_to_nearest;
};

}

—end example]

[lib.c.limits] 18.2.2 C Library

1 Header<climits> (Table 26):

Table 26—Header<climits> synopsis
_ __

Type Name(s)_ __
Values:
CHAR_BIT INT_MAX LONG_MIN SCHAR_MIN UCHAR_MAX USHRT_MAX

CHAR_MAX INT_MIN MB_LEN_MAX SHRT_MAX UINT_MAX

CHAR_MIN LONG_MAX SCHAR_MAX SHRT_MIN ULONG_MAX_ __

2 The contents are the same as the Standard C library.

3 Header<cfloat> (Table 27):

Table 27—Header<cfloat> synopsis
_ __

Type Name(s)_ __
Values:
DBL_DIG DBL_MIN_EXP FLT_MIN_10_EXP LDBL_MAX_10_EXP

DBL_EPSILON FLT_DIG FLT_MIN_EXP LDBL_MAX_EXP

DBL_MANT_DIG FLT_EPSILON FLT_RADIX LDBL_MIN

DBL_MAX FLT_MANT_DIG FLT_ROUNDS LDBL_MIN_10_EXP

DBL_MAX_10_EXP FLT_MAX LDBL_DIG LDBL_MIN_EXP

DBL_MAX_EXP FLT_MAX_10_EXP LDBL_EPSILON

DBL_MIN FLT_MAX_EXP LDBL_MANT_DIG

DBL_MIN_10_EXP FLT_MIN LDBL_MAX_ __

4 The contents are the same as the Standard C library.

SEE ALSO: ISO C subclause 7.1.5, 5.2.4.2.2, 5.2.4.2.1.

[lib.support.start.term] 18.3 Start and termination

1 Header<cstdlib> (partial), Table 28:

18– 10 Language support library DRAFT: 28 April 1995 18.3 Start and termination

Table 28—Header<cstdlib> synopsis

Type Name(s)___
Macros: EXIT_FAILURE EXIT_SUCCESS___
Functions: abort atexit exit___

2 The contents are the same as the Standard C library, with the following changes:

atexit(void (* f)(void))

3 The functionatexit() , has additional behavior in this International Standard:

— For the execution of a function registered withatexit , if control leaves the function because it pro-
vides no handler for a thrown exception,terminate() is called (18.6.2.3).

exit(int status)

4 The functionexit() has additional behavior in this International Standard:

— First, all functionsf registered by callingatexit(f) are called, in the reverse order of their registra-
tion.161)

— Next, all static objects are destroyed in the reverse order of their construction. (Automatic objects are
not destroyed as a result of callingexit() .)162)

— Next, all open C streams (as mediated by the function signatures declared in<cstdio>) with unwrit-
ten buffered data are flushed, all open C streams are closed, and all files created by callingtmpfile()
are removed.163)

— Finally, control is returned to the host environment. Ifstatus is zero orEXIT_SUCCESS, an
implementation-defined form of the statussuccessful terminationis returned. If status is
EXIT_FAILURE , an implementation-defined form of the statusunsuccessful terminationis returned.
Otherwise the status returned is implementation-defined.164)

5 The functionexit() never returns to its caller.

SEE ALSO: subclauses 3.6, 3.6.3, ISO C subclause 7.10.4.

[lib.support.dynamic] 18.4 Dynamic memory management

1 The header<new> defines several functions that manage the allocation of dynamic storage in a program.
It also defines components for reporting storage management errors.

Header<new> synopsis

161) A function is called for every time it is registered. The function signatureatexit(void (*)()) , is declared in
<cstdlib> .
162)Automatic objects are all destroyed in a program whose functionmain() contains no automatic objects and executes the call to
exit() . Control can be transferred directly to such amain() by throwing an exception that is caught inmain() .
163) Any C streams associated withcin , cout , etc (27.3) are flushed and closed when static objects are destroyed in the previous
phase. The functiontmpfile() is declared in<cstdio> .
164)The macrosEXIT_FAILURE andEXIT_SUCCESSare defined in<cstdlib> .

18.4 Dynamic memory management DRAFT: 28 April 1995 Language support library 18– 11

#include <cstdlib> // for size_t
#include <stdexcept> // for exception

namespace std {
void* operator new(size_t size) throw(bad_alloc);
struct nothrow {};
void* operator new(size_t size , const nothrow&) throw();
void operator delete(void* ptr) throw();
void* operator new[](size_t size) throw(bad_alloc);
void* operator new[](size_t size , const nothrow&) throw();
void operator delete[](void* ptr) throw();

void* operator new (size_t size , void* ptr) throw();
void* operator new[](size_t size , void* ptr) throw();
void operator delete (void* ptr , void*) throw();
void operator delete[](void* ptr , void*) throw();

class bad_alloc;
typedef void (*new_handler)();
new_handler set_new_handler(new_handler new_p);

}

SEE ALSO: subclauses 1.5, 3.7.3, 5.3.4, 5.3.5, 12.5, subclause 20.4, Memory.

[lib.new.delete] 18.4.1 Storage allocation and deallocation

[lib.new.delete.single] 18.4.1.1 Single-object forms

void* operator new(size_t size) throw(bad_alloc);

Effects: The allocation function(3.7.3.1) called by anew-expression(5.3.4) to allocatesize bytes of
storage suitably aligned to represent any object of that size.

Replaceable: a C + + program may define a function with this function signature that displaces the default
version defined by the C + + Standard library.

Required behavior: Return a pointer to dynamically allocated storage (3.7.3), or else throw a
bad_alloc exception.

Default behavior:

— Executes a loop: Within the loop, the function first attempts to allocate the requested storage. Whether
the attempt involves a call to the Standard C library functionmalloc is unspecified.

— Returns a pointer to the allocated storage if the attempt is successful. Otherwise, if the last argument to
set_new_handler() was a null pointer, throwbad_alloc .

— Otherwise, the function calls the currentnew_handler(18.4.2.2). If the called function returns, the loop
repeats.

— The loop terminates when an attempt to allocate the requested storage is successful or when a called
new_handlerfunction does not return.

void* operator new(size_t size , const nothrow&) throw();

Effects: Same as above, except that it is called by a placement version of anew-expressionwhen a C + +
program prefers a null pointer result as an error indication, instead of abad_alloc exception.

Replaceable: a C + + program may define a function with this function signature that displaces the default
version defined by the C + + Standard library.

18– 12 Language support library DRAFT: 28 April 1995 18.4.1.1 Single-object forms

Required behavior: Return a pointer to dynamically allocated storage (3.7.3), or else return a null pointer.
Default behavior:

— Executes a loop: Within the loop, the function first attempts to allocate the requested storage. Whether
the attempt involves a call to the Standard C library functionmalloc is unspecified.

— Returns a pointer to the allocated storage if the attempt is successful. Otherwise, if the last argument to
set_new_handler() was a null pointer, return a null pointer.

— Otherwise, the function calls the currentnew_handler(18.4.2.2). If the called function returns, the loop
repeats.

— The loop terminates when an attempt to allocate the requested storage is successful or when a called
new_handler function does not return. If the callednew_handler function terminates by throwing a
bad_alloc exception, the function returns a null pointer.

1 [Example:

T* p1 = new T; // throws bad_alloc if it fails
T* p2 = new(nothrow()) T; // returns 0 if it fails

—end example]

void operator delete(void* ptr) throw();

Effects: The deallocation function(3.7.3.2) called by adelete-expressionto render the value ofptr
invalid.

Replaceable: a C + + program may define a function with this function signature that displaces the default
version defined by the C + + Standard library.

Required behavior: accept a value ofptr that is null or that was returned by an earlier call to the default
operator new(size_t) or operator new(size_t,const nothrow&) .

Default behavior:

— For a null value ofptr , do nothing.

— Any other value ofptr shall be a value returned earlier by a call to the defaultoperator new .165)

For such a non-null value ofptr , reclaims storage allocated by the earlier call to the default
operator new .

Notes: It is unspecified under what conditions part or all of such reclaimed storage is allocated by a subse-
quent call tooperator new or any ofcalloc , malloc , or realloc , declared in<cstdlib> .

[lib.new.delete.array] 18.4.1.2 Array forms

void* operator new[](size_t size) throw(bad_alloc);

Effects: The allocation function(3.7.3.1) called by the array form of anew-expression(5.3.4) to allocate
size bytes of storage suitably aligned to represent any array object of that size or smaller.166)

Replaceable: a C + + program can define a function with this function signature that displaces the default
version defined by the C + + Standard library.

Required behavior: Same as foroperator new(size_t) .
Default behavior: Returnsoperator new(size) .

165)The value must not have been invalidated by an intervening call tooperator delete(void*) (17.3.3.7).
166) It is not the direct responsibility ofoperator new[](size_t) or operator delete[](void*) to note the repetition
count or element size of the array. Those operations are performed elsewhere in the arraynew anddelete expressions. The array
new expression, may, however, increase thesize argument tooperator new[](size_t) to obtain space to store supplemental
information.

18.4.1.2 Array forms DRAFT: 28 April 1995 Language support library 18– 13

void* operator new[](size_t size , const nothrow&) throw();

Effects: Same as above, except that it is called by a placement version of anew-expressionwhen a C + +
program prefers a null pointer result as an error indication, instead of abad_alloc exception.

Replaceable: a C + + program can define a function with this function signature that displaces the default
version defined by the C + + Standard library.

Required behavior: Same as foroperator new(size_t,const nothrow&) .
Default behavior: Returnsoperator new(size ,nothrow()) .

void operator delete[](void* ptr) throw();

Effects: The deallocation function(3.7.3.2) called by the array form of adelete-expressionto render the
value ofptr invalid.

Replaceable: a C + + program can define a function with this function signature that displaces the default
version defined by the C + + Standard library.

Required behavior: accept a value ofptr that is null or that was returned by an earlier call to
operator new[](size_t) .

Default behavior:

— For a null value ofptr , does nothing.

— Any other value ofptr shall be a value returned earlier by a call to the defaultoperator
new[](size_t) .167) For such a non-null value ofptr , reclaims storage allocated by the earlier call
to the defaultoperator new[](size_t) or operator new[](size_t,nothrow) .

1 It is unspecified under what conditions part or all of such reclaimed storage is allocated by a subsequent call
to operator new(size_t) or any ofcalloc , malloc , or realloc , declared in<cstdlib> .

[lib.new.delete.placement] 18.4.1.3 Placement forms

1 These functions are reserved, a C + + program may not define functions that displace the versions in the Stan-
dard C + + library (17.3.3).

void* operator new(size_t size , void* ptr) throw();

Returns: ptr .
Notes: Intentionally performs no other action.168)

2 [Example:This can be useful for constructing an object at a known address:

char place[sizeof(Something)];
Something* p = new (place) Something();

—end example]

void* operator new[](size_t size , void* ptr) throw();

Returns: ptr .
Notes: Intentionally performs no other action.

void operator delete(void* ptr , void*) throw();

Effects: Intentionally performs no action.

167)The value must not have been invalidated by an intervening call tooperator delete[](void*) (17.3.3.7).

18– 14 Language support library DRAFT: 28 April 1995 18.4.1.3 Placement forms

Notes: Default function called for a placement delete expression. Complements default placementnew.

void operator delete[](void* ptr , void*) throw();

Effects: Intentionally performs no action.
Notes: Default function called for a placement array delete expression. Complements default placement

new[] .

[lib.alloc.errors] 18.4.2 Storage allocation errors

[lib.bad.alloc] 18.4.2.1 Classbad_alloc

namespace std {
class bad_alloc : public exception {
public:

bad_alloc() throw();
bad_alloc(const bad_alloc&) throw();
bad_alloc& operator=(const bad_alloc&) throw();
virtual ~bad_alloc() throw();
virtual const char* what() const throw();

};
}

1 The classbad_alloc defines the type of objects thrown as exceptions by the implementation to report a
failure to allocate storage.

bad_alloc() throw();

Effects: Constructs an object of classbad_alloc .

bad_alloc(const bad_alloc&) throw();
bad_alloc& operator=(const bad_alloc&) throw();

Effects: Copies an object of classbad_alloc .
Notes: The result of callingwhat() on the newly constructed object is implementation-defined.

virtual const char* what() const throw();

Returns: An implementation-defined value.

[lib.new.handler] 18.4.2.2 Typenew_handler

typedef void (*new_handler)();

1 The type of ahandler functionto be called byoperator new() or operator new[]() (18.4.1)
when they cannot satisfy a request for addtional storage.
Required behavior: A new_handler shall perform one of the following:

— make more storage available for allocation and then return;

— throw an exception of typebad_alloc or a class derived frombad_alloc ;

— call eitherabort() or exit() ;
Default behavior: The implementation’s defaultnew_handler throws an exception of type

bad_alloc .

18.4.2.3 set_new_handler DRAFT: 28 April 1995 Language support library 18– 15

[lib.set.new.handler] 18.4.2.3set_new_handler

new_handler set_new_handler(new_handler new_p);

Effects: Establishes the function designated bynew_p as the currentnew_handler .
Returns: the previousnew_handler .

[lib.support.rtti] 18.5 Type identification

1 The header<typeinfo> defines two types associated with type information generated by the implemen-
tation. It also defines two types for reporting dynamic type identification errors.

Header<typeinfo> synopsis

#include <stdexcept> // for exception

namespace std {
class type_info;
class bad_cast;
class bad_typeid;

}

SEE ALSO: subclauses 5.2.6, 5.2.7.

[lib.type.info] 18.5.1 Classtype_info

namespace std {
class type_info {
public:

virtual ~type_info();
bool operator==(const type_info& rhs) const;
bool operator!=(const type_info& rhs) const;
bool before(const type_info& rhs) const;
const char* name() const;

private:
type_info(const type_info& rhs);
type_info& operator=(const type_info& rhs);

};
}

1 The classtype_info describes type information generated by the implementation. Objects of this class
effectively store a pointer to a name for the type, and an encoded value suitable for comparing two types for
equality or collating order. The names, encoding rule, and collating sequence for types are all unspecified
and may differ between programs.

bool operator==(const type_info& rhs) const;

Effects: Compares the current object withrhs .
Returns: true if the two values describe the same type.

bool operator!=(const type_info& rhs) const;

Returns: !(*this == rhs) .

bool before(const type_info& rhs) const;

Effects: Compares the current object withrhs .

18– 16 Language support library DRAFT: 28 April 1995 18.5.1 Classtype_info

Returns: true if *this precedesrhs in the implementation’s collation order.

const char* name() const;

Returns: an implementation-defined value.
Notes: The message may be a null-terminated multibyte string (17.2.2.1.3.2), suitable for conversion and

display as awstring (21.1.4, 22.2.1.4)

type_info(const type_info& rhs);
type_info& operator=(const type_info& rhs);

Effects: Copies atype_info object.
Notes: Since the copy constructor and assignment operator fortype_info are private to the class,

objects of this type cannot be copied.

[lib.bad.cast] 18.5.2 Classbad_cast

namespace std {
class bad_cast : public exception {
public:

bad_cast() throw();
bad_cast(const bad_cast&) throw();
bad_cast& operator=(const bad_cast&) throw();
virtual ~bad_cast() throw();
virtual const char* what() const throw();

};
}

1 The classbad_cast defines the type of objects thrown as exceptions by the implementation to report the
execution of an invaliddynamic-castexpression (5.2.6).

bad_cast() throw();

Effects: Constructs an object of classbad_cast .

bad_cast(const bad_cast&) throw();
bad_cast& operator=(const bad_cast&) throw();

Effects: Copies an object of classbad_cast .
Notes: The result of callingwhat() on the newly constructed object is implementation-defined.

virtual const char* what() const throw();

Returns: An implementation-defined value.
Notes: The message may be a null-terminated multibyte string (17.2.2.1.3.2), suitable for conversion and

display as awstring (21.1.4, 22.2.1.4)

[lib.bad.typeid] 18.5.3 Classbad_typeid

18.5.3 Classbad_typeid DRAFT: 28 April 1995 Language support library 18– 17

namespace std {
class bad_typeid : public exception {
public:

bad_typeid() throw();
bad_typeid(const bad_typeid&) throw();
bad_typeid& operator=(const bad_typeid&) throw();
virtual ~bad_typeid() throw();
virtual const char* what() const throw();

};
}

1 The classbad_typeid defines the type of objects thrown as exceptions by the implementation to report a
null pointer in atypeidexpression (5.2.7).

bad_typeid() throw();

Effects: Constructs an object of classbad_typeid .

bad_typeid(const bad_typeid&) throw();
bad_typeid& operator=(const bad_typeid&) throw();

Effects: Copies an object of classbad_typeid .
Notes: The result of callingwhat() on the newly constructed object is implementation-defined.

virtual const char* what() const throw();

Returns: An implementation-defined value.
Notes: The message may be a null-terminated multibyte string (17.2.2.1.3.2), suitable for conversion and

display as awstring (21.1.4, 22.2.1.4)

[lib.support.exception] 18.6 Exception handling

1 The header<exception> defines several types and functions related to the handling of exceptions in a
C + + program.

Header<exception> synopsis

#include <stdexcept> // for exception

namespace std {
class bad_exception;

typedef void (*unexpected_handler)();
unexpected_handler set_unexpected(unexpected_handler f);
void unexpected();

typedef void (*terminate_handler)();
terminate_handler set_terminate(terminate_handler f);
void terminate();

}

SEE ALSO: subclause 15.5.

18– 18 Language support library DRAFT: 28 April 1995 18.6.1
Violating exception-specifications

[lib.exception.unexpected] 18.6.1 Violatingexception-specifications

[lib.bad.exception] 18.6.1.1 Classbad_exception

namespace std {
class bad_exception : public exception {
public:

bad_exception() throw();
bad_exception(const bad_exception&) throw();
bad_exception& operator=(const bad_exception&) throw();
virtual ~bad_exception() throw();
virtual const char* what() const throw();

};
}

1 The classbad_exception defines the type of objects thrown as exceptions by the implementation to
report a violation of anexception-specification(15.5.2).

bad_exception() throw();

Effects: Constructs an object of classbad_exception .

bad_exception(const bad_exception&) throw();
bad_exception& operator=(const bad_exception&) throw();

Effects: Copies an object of classbad_exception .
Notes: The result of callingwhat() on the newly constructed object is implementation-defined.

virtual const char* what() const throw();

Returns: An implementation-defined value.
Notes: The message may be a null-terminated multibyte string (17.2.2.1.3.2), suitable for conversion and

display as awstring (21.1.4, 22.2.1.4)

[lib.unexpected.handler] 18.6.1.2 Typeunexpected_handler

typedef void (*unexpected_handler)();

1 The type of ahandler functionto be called byunexpected() when a function attempts to throw an
exception not listed in itsexception-specification.
Required behavior: anunexpected_handler shall either throw an exception or terminate execution

of the program without returning to the caller. Anunexpected_handler may perform any of the
following:

— throw an exception that satisfies the exception specification;

— throw abad_exception exception;

— call terminate() ;

— call eitherabort() or exit() ;
Default behavior: The implementation’s defaultunexpected_handler callsterminate() .

18.6.1.3 set_unexpected DRAFT: 28 April 1995 Language support library 18– 19

[lib.set.unexpected] 18.6.1.3set_unexpected

unexpected_handler set_unexpected(unexpected_handler f);

Effects: Establishes the function designated byf as the currentunexpected_handler .
Requires: f shall not be a null pointer.
Returns: The previousunexpected_handler .

[lib.unexpected] 18.6.1.4unexpected

void unexpected();

1 Called by the implementation when a function with anexception-specificationthrows an exception that is
not listed in theexception-specification(15.5.2).
Effects: Calls the currentunexpected_handler handler function (18.6.1.2).

[lib.exception.terminate] 18.6.2 Abnormal termination

[lib.terminate.handler] 18.6.2.1 Typeterminate_handler

typedef void (*terminate_handler)();

1 The type of ahandler functionto be called byterminate() when terminating exception processing.
Required behavior: A terminate_handler shall terminate execution of the program without return-

ing to the caller.
Default behavior: The implementation’s defaultterminate_handler callsabort() .

[lib.set.terminate] 18.6.2.2set_terminate

terminate_handler set_terminate(terminate_handler f);

Effects: Establishes the function designated byf as the current handler function for terminating exception
processing.

Requires: f shall not be a null pointer.
Returns: The previousterminate_handler .

[lib.terminate] 18.6.2.3 terminate

void terminate();

1 Called by the implementation when exception handling must be abandoned for any of several reasons
(15.5.1).
Effects: Calls the currentterminate_handler handler function (18.6.2.1).

[lib.support.runtime] 18.7 Other runtime support

1 Headers<cstdarg> (variable arguments),<csetjmp> (nonlocal jumps),<ctime> (system clock
clock(), time()), <csignal> (signal handling), and<cstdlib> (runtime environment
getenv(), system()).

18– 20 Language support library DRAFT: 28 April 1995 18.7 Other runtime support

Table 28—Header<cstdarg> synopsis
_ __

Type Name(s)_ __
Macros: va_arg va_end va_start_ __
Type: va_list_ __

Table 28—Header<csetjmp> synopsis
_ ____________________

Type Name(s)_ ____________________
Macro: setjmp_ ____________________
Type: jmp_buf_ ____________________
Function: longjmp_ ____________________

Table 28—Header<ctime> synopsis
_ _____________________________

Type Name(s)_ _____________________________
Macros: CLOCKS_PER_SEC_ _____________________________
Types: clock_t_ _____________________________
Functions: clock_ _____________________________

Table 28—Header<csignal> synopsis
_ ___

Type Name(s)_ ___
Macros: SIGABRT SIGILL SIGSEGV SIG_DFL

SIG_IGN SIGFPE SIGINT SIGTERM SIG_ERR_ ___
Type: sig_atomic_t_ ___
Functions: raise signal_ ___

Table 28—Header<cstdlib> synopsis
_ ______________________________

Type Name(s)_ ______________________________
Functions: getenv system_ ______________________________

2 The contents are the same as the Standard C library, with the following changes:

3 The function signaturelongjmp(jmp_buf jbuf , int val) has more restricted behavior in this
International Standard. If any automatic objects would be destroyed by a thrown exception transferring
control to another (destination) point in the program, then a call tolongjmp(jbuf , val) at the throw
point that transfers control to the same (destination) point has undefined behavior.

SEE ALSO: ISO C subclause 7.10.4, 7.8, 7.6, 7.12.

_ ___ ___

19 Diagnostics library [lib.diagnostics]
_ ___ ___

1 This clause describes components that C + + programs may use to detect and report error conditions.

2 The following subclauses describe components for reporting several kinds of exceptional conditions, docu-
menting program assertions, and a global variable for error number codes, as summarized in Table 29:

Table 29—Diagnostics library summary
_ ____________________________________

Subclause Header(s)_ _____________________________________ ____________________________________
19.1 Exception classes <stdexcept>_ ____________________________________
19.2 Assertions <cassert>_ ____________________________________
19.3 Error numbers <cerrno>_ ____________________________________

[lib.std.exceptions] 19.1 Exception classes

1 The Standard C + + library provides classes to be used to report errors in C + + programs. In the error model
reflected in these classes, errors are divided into two broad categories:logic errors andruntimeerrors.

2 The distinguishing characteristic of logic errors is that they are due to errors in the internal logic of the pro-
gram. In theory, they are preventable.

3 By contrast, runtime errors are due to events beyond the scope of the program. They cannot be easily pre-
dicted in advance. The header<stdexcept> defines several types of predefined exceptions for reporting
errors in a C + + program. These exceptions are related via inheritance.

Header<stdexcept> synopsis

#include <string>

namespace std {
class exception;

class logic_error;
class domain_error;
class invalid_argument;
class length_error;
class out_of_range;

class runtime_error;
class range_error;
class overflow_error;

}

[lib.exception] 19.1.1 Classexception

19– 2 Diagnostics library DRAFT: 28 April 1995 19.1.1 Classexception

namespace std {
class exception {
public:

exception() throw();
exception& exception(const exception&) throw();
exception& operator=(const exception&) throw();
virtual ~exception() throw();
virtual const char* what() const throw();

};
}

1 The classexception defines the base class for the types of objects thrown as exceptions by C + + Standard
library components, and certain expressions, to report errors detected during program execution.

exception() throw();

Effects: Constructs an object of classexception .
Notes: Does not throw any exceptions.

exception& exception(const exception&) throw();
exception& operator=(const exception&) throw();

Effects: Copies anexception object.
Notes: The effects of callingwhat() after assignment are implementation-defined.

virtual ~exception() throw();

Effects: Destroys an object of classexception .
Notes: Does not throw any exceptions.

virtual const char* what() const throw();

Returns: An implementation-defined NTBS.
Notes: The message may be a null-terminated multibyte string (17.2.2.1.3.2), suitable for conversion and

display as awstring (21.1.4, 22.2.1.4)

[lib.logic.error] 19.1.2 Classlogic_error

namespace std {
class logic_error : public exception {
public:

logic_error(const string& what_arg);
};

}

1 The classlogic_error defines the type of objects thrown as exceptions to report errors presumably
detectable before the program executes, such as violations of logical preconditions or class invariants.

logic_error(const string& what_arg);

Effects: Constructs an object of classlogic_error .
Postcondition: what() == what_arg .data() .

19.1.3 Classdomain_error DRAFT: 28 April 1995 Diagnostics library 19– 3

[lib.domain.error] 19.1.3 Classdomain_error

namespace std {
class domain_error : public logic_error {
public:

domain_error(const string& what_arg);
};

}

1 The classdomain_error defines the type of objects thrown as exceptions by the implementation to
report domain errors.

domain_error(const string& what_arg);

Effects: Constructs an object of classdomain_error .
Postcondition: what() == what_arg .data() .

[lib.invalid.argument] 19.1.4 Classinvalid_argument

namespace std {
class invalid_argument : public logic_error {
public:

invalid_argument(const string& what_arg);
};

}

1 The classinvalid_argument defines the type of objects thrown as exceptions to report an invalid
argument.

invalid_argument(const string& what_arg);

Effects: Constructs an object of classinvalid_argument .
Postcondition: what() == what_arg .data() .

[lib.length.error] 19.1.5 Classlength_error

namespace std {
class length_error : public logic_error {
public:

length_error(const string& what_arg);
};

}

1 The classlength_error defines the type of objects thrown as exceptions to report an attempt to produce
an object whose length equals or exceeds its maximum allowable size.

length_error(const string& what_arg);

Effects: Constructs an object of classlength_error .
Postcondition: what() == what_arg .data() .

[lib.out.of.range] 19.1.6 Classout_of_range

namespace std {
class out_of_range : public logic_error {
public:

out_of_range(const string& what_arg);
};

}

19– 4 Diagnostics library DRAFT: 28 April 1995 19.1.6 Classout_of_range

1 The classout_of_range defines the type of objects thrown as exceptions to report an argument value
not in its expected range.

out_of_range(const string& what_arg);

Effects: Constructs an object of classout_of_range .
Postcondition: what() == what_arg .data() .

[lib.runtime.error] 19.1.7 Classruntime_error

namespace std {
class runtime_error : public exception {
public:

runtime_error(const string& what_arg);
};

}

1 The classruntime_error defines the type of objects thrown as exceptions to report errors presumably
detectable only when the program executes.

runtime_error(const string& what_arg);

Effects: Constructs an object of classruntime_error .
Postcondition: what() == what_arg .data() .

[lib.range.error] 19.1.8 Classrange_error

namespae std {
class range_error : public runtime_error {
public:

range_error(const string& what_arg);
};

}

1 The classrange_error defines the type of objects thrown as exceptions to report range errors.

range_error(const string& what_arg);

Effects: Constructs an object of classrange_error .
Postcondition: what() == what_arg .data() .

[lib.overflow.error] 19.1.9 Classoverflow_error

namespace std {
class overflow_error : public runtime_error {
public:

overflow_error(const string& what_arg);
};

}

1 The classoverflow_error defines the type of objects thrown as exceptions to report an arithmetic
overflow error.

overflow_error(const string& what_arg);

Effects: Constructs an object of classoverflow_error .

19.1.9 Classoverflow_error DRAFT: 28 April 1995 Diagnostics library 19– 5

Postcondition: what() == what_arg .data() .

[lib.assertions] 19.2 Assertions

1 Provides macros for documenting C + + program assertions, and for disabling the assertion checks.

2 Header<cassert> (Table 30):

Table 30—Header<cassert> synopsis
_ ____________________

Type Name(s)_ ____________________
Macro: assert_ ____________________

3 The contents are the same as the Standard C library.

SEE ALSO: ISO C subclause 7.2.

[lib.errno] 19.3 Error numbers

1 Header<cerrno> (Table 31):

Table 31—Header<cerrno> synopsis
_ __________________________________

Type Name(s)_ __________________________________
Macros: EDOM ERANGE errno_ __________________________________

2 The contents are the same as the Standard C library.

SEE ALSO: ISO C subclause 7.1.4, 7.2, Amendment 1 subclause 4.3.

_ ___ ___

20 General utilities library [lib.utilities]
_ ___ ___

1 This clause describes components used by other elements of the Standard C + + library. These components
may also be used by C + + programs.

2 The following subclauses describe allocator requirements, utility components, function objects, dynamic
memory management utilities, and date/time utilities, as summarized in Table 32:

Table 32—General utilities library summary
_ __

Subclause Header(s)_ ___ __
20.1 Allocator requirements_ __
20.2 Utility components <utility>_ __
20.3 Function objects <functional>_ __
20.4 Memory <memory>_ __
20.5 Date and time <ctime>_ __

[lib.allocator.requirements] 20.1 Allocator requirements

1 The library describes a standard set of requirements forallocators, which are objects that encapsulate the
information about the memory model. This information includes the knowledge of pointer types, the type
of their difference, the type of the size of objects in this memory model, as well as the memory allocation
and deallocation primitives for it. All of the containers (23) are parameterized in terms of allocators.

2 In the following Table 33,X denotes an allocator class for objects of typeT, a denotes a value ofX, n
denotes an instance of typeX::size_type , p denotes an instance of typeX::pointer which was
obtained fromX.

3 All the operations on the allocators are expected to be amortized constant time.

20– 2 General utilities library DRAFT: 28 April 1995 20.1 Allocator requirements

Table 33—Allocator requirements
_ __

assertion/note
expression return type

pre/post-condition_ ___ __
X::value_type T_ __
X::pointer pointer toT the result ofoperator* of

values ofX::pointer is
of reference ._ __

X::const_pointer pointer toconst T type the result ofoperator* of
values of
X::const_pointer is of
const reference ; it is
the same type of pointer as
X::pointer , in particular,
sizeof(X::const_pointer)
==
sizeof(X::pointer) ._ __

X::size_type unsigned integral type the type that can represent
the size of the largest object
in the memory model._ __

X::difference_type signed integral type the type that can represent
the difference between any
two pointers in the memory
model._ __

X a; note: a destructor is assumed._ __
a.allocate(n) X::pointer memory is allocated forn

objects of typeT but objects
are not constructed.allo-
cate may raise an appropri-
ate exception._ __

a.deallocate(p) result is not used all the objects in the area
pointed byp should be
destroyed prior to the call of
the deallocate._ __

a.max_size() X::size_type the largest positive value of
X::difference_type ._ __

[lib.utility] 20.2 Utility components

1 This subclause contains some basic template functions and classes that are used throughout the rest of the
library.

Header<utility> synopsis

namespace std {
// subclause 20.2.1, operators:

template<class T> bool operator!=(const T&, const T&);
template<class T> bool operator> (const T&, const T&);
template<class T> bool operator<=(const T&, const T&);
template<class T> bool operator>=(const T&, const T&);

20.2 Utility components DRAFT: 28 April 1995 General utilities library 20– 3

// subclause 20.2.2, pairs:
template <class T1, class T2> struct pair;
template <class T1, class T2>

bool operator==(const pair<T1,T2>&, const pair<T1,T2>&);
template <class T1, class T2>

bool operator< (const pair<T1,T2>&, const pair<T1,T2>&);
template <class T1, class T2> pair<T1,T2> make_pair(const T1&, const T2&);

}

[lib.operators] 20.2.1 Operators

1 To avoid redundant definitions ofoperator!= out of operator== and operators>, <=, and>= out of
operator< , the library provides the following:

template <class T> bool operator!=(const T& x, const T& y);

Returns: !(x == y) .

template <class T> bool operator>(const T& x, const T& y);

Returns: y < x .

template <class T> bool operator<=(const T& x, const T& y);

Returns: !(y < x) .

template <class T> bool operator>=(const T& x, const T& y);

Returns: !(x < y) .

[lib.pairs] 20.2.2 Pairs

1 The library provides a template for heterogenous pairs of values. The library also provides a matching tem-
plate function to simplify their construction.

template <class T1, class T2>
struct pair {

T1 first;
T2 second;
pair(const T1& x, const T2& y);

};

2 The constructor initializesfirst with x andsecond with y .

template <class T1, class T2>
bool operator==(const pair<T1, T2>& x, const pair<T1, T2>& y);

Returns: x.first == y.first && x.second == y.second .

template <class T1, class T2>
bool operator<(const pair<T1, T2>& x, const pair<T1, T2>& y);

Returns: x.first < y.first || (!(y.first < x.first) && x.second <
y.second) .

20– 4 General utilities library DRAFT: 28 April 1995 20.2.2 Pairs

template <class T1, class T2>
pair<T1, T2> make_pair(const T1& x, const T2& y);

Returns: pair<T1, T2>(x, y) .

3 [Example:Instead of writing,

return pair<int, double>(5, 3.1415926); // explicit types

a C + + program may write:

return make_pair(5, 3.1415926); // types are deduced

—end example]

[lib.function.objects] 20.3 Function objects

1 Function objects are objects with anoperator() defined. They are important for the effective use of the
library. In the places where one would expect to pass a pointer to a function to an algorithmic template
(25), the interface is specified to accept an object with anoperator() defined. This not only makes
algorithmic templates work with pointers to functions, but also enables them to work with arbitrary func-
tion objects.

Header<functional> synopsis

namespace std {
// subclause 20.3.1, base:

template <class Arg, class Result> struct unary_function;
template <class Arg1, class Arg2, class Result> struct binary_function;

// subclause 20.3.2, arithmetic operations:
template <class T> struct plus;
template <class T> struct minus;
template <class T> struct times;
template <class T> struct divides;
template <class T> struct modulus;
template <class T> struct negate;

// subclause 20.3.3, comparisons:
template <class T> struct equal_to;
template <class T> struct not_equal_to;
template <class T> struct greater;
template <class T> struct less;
template <class T> struct greater_equal;
template <class T> struct less_equal;

// subclause 20.3.4, logical operations:
template <class T> struct logical_and;
template <class T> struct logical_or;
template <class T> struct logical_not;

// subclause 20.3.5, negators:
template <class Predicate> struct unary_negate;
template <class Predicate>

unary_negate<Predicate> not1(const Predicate&);
template <class Predicate> struct binary_negate;
template <class Predicate>

binary_negate<Predicate> not2(const Predicate&);

20.3 Function objects DRAFT: 28 April 1995 General utilities library 20– 5

// subclause 20.3.6, binders:
template <class Operation> struct binder1st;
template <class Operation, class T>

binder1st<Operation> bind1st(const Operation&, const T&);
template <class Operation> class binder2nd;
template <class Operation, class T>

binder2nd<Operation> bind2nd(const Operation&, const T&);

// subclause 20.3.7, adaptors:
template <class Arg, class Result> class pointer_to_unary_function;
template <class Arg, class Result>

pointer_to_unary_function<Arg,Result> ptr_fun(Result (*)(Arg));
template <class Arg1, class Arg2, class Result>

class pointer_to_binary_function;
template <class Arg1, class Arg2, class Result>

pointer_to_binary_function<Arg1,Arg2,Result> ptr_fun(Result (*)(Arg1,Arg2));
}

2 Using function objects together with function templates increases the expressive power of the library as
well as making the resulting code much more efficient.

3 [Example: If a C + + program wants to have a by-element addition of two vectorsa and b containing
double and put the result intoa, it can do:

transform(a.begin(), a.end(), b.begin(), a.begin(), plus<double>());

—end example]

4 [Example:To negate every element ofa:

transform(a.begin(), a.end(), a.begin(), negate<double>());

The corresponding functions will inline the addition and the negation.—end example]

5 To enable adaptors and other components to manipulate function objects that take one or two arguments it
is required that they correspondingly provide typedefsargument_type and result_type for func-
tion objects that take one argument andfirst_argument_type , second_argument_type , and
result_type for function objects that take two arguments.

[lib.base] 20.3.1 Base

1 The following classes are provided to simplify the typedefs of the argument and result types:

template <class Arg, class Result>
struct unary_function {

typedef Arg argument_type;
typedef Result result_type;

};

template <class Arg1, class Arg2, class Result>
struct binary_function {

typedef Arg1 first_argument_type;
typedef Arg2 second_argument_type;
typedef Result result_type;

};

[lib.arithmetic.operations] 20.3.2 Arithmetic operations

1 The library provides basic function object classes for all of the arithmetic operators in the language (5.6,
5.7).

20– 6 General utilities library DRAFT: 28 April 1995 20.3.2 Arithmetic operations

template <class T> struct plus : binary_function<T,T,T> {
T operator()(const T& x, const T& y) const;

};

2 operator() returnsx + y .

template <class T> struct minus : binary_function<T,T,T> {
T operator()(const T& x, const T& y) const;

};

3 operator() returnsx - y .

template <class T> struct times : binary_function<T,T,T> {
T operator()(const T& x, const T& y) const;

};

4 operator() returnsx * y .

template <class T> struct divides : binary_function<T,T,T> {
T operator()(const T& x, const T& y) const;

};

5 operator() returnsx / y .

template <class T> struct modulus : binary_function<T,T,T> {
T operator()(const T& x, const T& y) const;

};

6 operator() returnsx % y .

template <class T> struct negate : unary_function<T,T> {
T operator()(const T& x) const;

};

7 operator() returns- x .

[lib.comparisons] 20.3.3 Comparisons

1 The library provides basic function object classes for all of the comparison operators in the language (5.9,
5.10).

template <class T> struct equal_to : binary_function<T,T,bool> {
bool operator()(const T& x, const T& y) const;

};

2 operator() returnsx == y .

template <class T> struct not_equal_to : binary_function<T,T,bool> {
bool operator()(const T& x, const T& y) const;

};

20.3.3 Comparisons DRAFT: 28 April 1995 General utilities library 20– 7

3 operator() returnsx != y .

template <class T> struct greater : binary_function<T,T,bool> {
bool operator()(const T& x, const T& y) const;

};

4 operator() returnsx > y .

template <class T> struct less : binary_function<T,T,bool> {
bool operator()(const T& x, const T& y) const;

};

5 operator() returnsx < y .

template <class T> struct greater_equal : binary_function<T,T,bool> {
bool operator()(const T& x, const T& y) const;

};

6 operator() returnsx >= y .

template <class T> struct less_equal : binary_function<T,T,bool> {
bool operator()(const T& x, const T& y) const;

};

7 operator() returnsx <= y .

[lib.logical.operations] 20.3.4 Logical operations

1 The library provides basic function object classes for all of the logical operators in the language (5.14, 5.15,
5.3.1).

template <class T> struct logical_and : binary_function<T,T,bool> {
bool operator()(const T& x, const T& y) const;

};

2 operator() returnsx && y .

template <class T> struct logical_or : binary_function<T,T,bool> {
bool operator()(const T& x, const T& y) const;

};

3 operator() returnsx || y .

template <class T> struct logical_not : unary_function<T,bool> {
bool operator()(const T& x) const;

};

4 operator() returns! x .

20– 8 General utilities library DRAFT: 28 April 1995 20.3.5 Negators

[lib.negators] 20.3.5 Negators

1 Negatorsnot1 andnot2 take a unary and a binary predicate, respectively, and return their complements
(5.3.1).

template <class Predicate>
class unary_negate

: public unary_function<Predicate::argument_type,bool> {
public:

explicit unary_negate(const Predicate& pred);
bool operator()(const argument_type& x) const;

};

Returns: ! pred (x) .

template <class Predicate>
unary_negate<Predicate> not1(const Predicate& pred);

Returns: unary_negate<Predicate>(pred) .

template <class Predicate>
class binary_negate

: public binary_function<Predicate::first_argument_type,
Predicate::second_argument_type, bool> {

public:
explicit binary_negate(const Predicate& pred);
bool operator()(const first_argument_type& x,

const second_argument_type& y) const;
};

2 operator() returns! pred (x, y) .

template <class Predicate>
binary_negate<Predicate> not2(const Predicate& pred);

Returns: binary_negate<Predicate>(pred) .

[lib.binders] 20.3.6 Binders

1 Bindersbind1st andbind2nd take a function objectf of two arguments and a valuex and return a
function object of one argument constructed out off with the first or second argument correspondingly
bound tox .

[lib.binder.1st] 20.3.6.1 Template classbinder1st

template <class Operation>
class binder1st

: public unary_function<Operation::second_argument_type,
Operation::result_type> {

protected:
Operation op;
argument_type value;

20.3.6.1 Template classbinder1st DRAFT: 28 April 1995 General utilities library 20– 9

public:
binder1st(const Operation& x, const Operation::first_argument_type& y);
result_type operator()(const argument_type& x) const;

};

1 The constructor initializesop with x andvalue with y .

2 operator() returnsop(value, x) .

[lib.bind.1st] 20.3.6.2bind1st

template <class Operation, class T>
binder1st<Operation> bind1st(const Operation& op, const T& x);

Returns: binder1st<Operation>(op, Operation::first_argument_type(x)) .

[lib.binder.2nd] 20.3.6.3 Template classbinder2nd

template <class Operation>
class binder2nd

: public unary_function<Operation::first_argument_type,
Operation::result_type> {

protected:
Operation op;
argument_type value;

public:
binder2nd(const Operation& x, const Operation::second_argument_type& y);
result_type operator()(const argument_type& x) const;

};

1 The constructor initializesop with x andvalue with y .

2 operator() returnsop(x,value) .

[lib.bind.2nd] 20.3.6.4bind2nd

template <class Operation, class T>
binder2nd<Operation> bind2nd(const Operation& op, const T& x);

Returns: binder2nd<Operation>(op, Operation::second_argument_type(x)) .

1 [Example:

find(v.begin(), v.end(), bind2nd(greater<int>(), 5));

finds the first integer in vectorv greater than 5;

find(v.begin(), v.end(), bind1st(greater<int>(), 5));

finds the first integer inv not greater than 5.—end example]

[lib.function.pointer.adaptors] 20.3.7 Adaptors for pointers to functions

1 To allow pointers to (unary and binary) functions to work with function adaptors the library provides:

20– 10 General utilities library DRAFT: 28 April 1995 20.3.7 Adaptors for pointers to functions

template <class Arg, class Result>
class pointer_to_unary_function : public unary_function<Arg, Result> {
public:

explicit pointer_to_unary_function(Result (* f)(Arg));
Result operator()(const Arg& x) const;

};

2 operator() returnsf (x) .

template <class Arg, class Result>
pointer_to_unary_function<Arg, Result> ptr_fun(Result (* f)(Arg));

Returns: pointer_to_unary_function<Arg, Result>(f) .

template <class Arg1, class Arg2, class Result>
class pointer_to_binary_function : public binary_function<Arg1,Arg2,Result> {
public:

explicit pointer_to_binary_function(Result (* f)(Arg1, Arg2));
Result operator()(const Arg1& x, const Arg2& y) const;

};

3 operator() returnsf (x, y) .

template <class Arg1, class Arg2, class Result>
pointer_to_binary_function<Arg1,Arg2,Result>

ptr_fun(Result (* f)(Arg1, Arg2));

Returns: pointer_to_binary_function<Arg1,Arg2,Result>(f) .

4 [Example:

replace_if(v.begin(), v.end(), not1(bind2nd(ptr_fun(strcmp), "C")), "C + +");

replaces eachCwith C + + in sequencev .168) —end example]

[lib.memory] 20.4 Memory

Header<memory> synopsis

#include <cstddef> // for size_t, ptrdiff_t
#include <iterator> // for output_iterator
#include <utility> // for pair

namespace std {
// subclause 20.4.1, the default allocator:

class allocator;
class allocator::types<void>;
void* operator new(size_t N, allocator& a);

// subclause 20.4.2, raw storage iterator:
template <class OutputIterator, class T> class raw_storage_iterator;

168)Implementations that have multiple pointer to function types shall provide additionalptr_fun template functions.

20.4 Memory DRAFT: 28 April 1995 General utilities library 20– 11

// subclause 20.4.3, memory handling primitives:
template <class T> T* allocate(ptrdiff_t n, T*);
template <class T> void deallocate(T* buffer);
template <class T1, class T2> void construct(T1* p, const T2& value);
template <class T> void destroy(T* pointer);
template <class ForwardIterator>

void destroy(ForwardIterator first , ForwardIterator last);
template <class T>

pair<T*,ptrdiff_t> get_temporary_buffer(ptrdiff_t n, T*);
template <class T> void return_temporary_buffer(T* p, T*);

// subclause 20.4.4, specialized algorithms:
template <class InputIterator, class ForwardIterator>

ForwardIterator
uninitialized_copy(InputIterator first , InputIterator last ,

ForwardIterator result);
template <class ForwardIterator, class T>

void uninitialized_fill(ForwardIterator first , ForwardIterator last ,
const T& x);

template <class ForwardIterator, class Size, class T>
void uninitialized_fill_n(ForwardIterator first , Size n, const T& x);

// subclause 20.4.5, pointers:
template<class X> class auto_ptr;

}

[lib.default.allocator] 20.4.1 The default allocator

namespace std {
class allocator {
public:

typedef size_t size_type;
typedef ptrdiff_t difference_type;
template <class T> class types {

typedef T* pointer;
typedef const T* const_pointer;
typedef T& reference;
typedef const T& const_reference;
typedef T value_type;

};

allocator();
~allocator();

template<class T> typename types<T>::pointer
address(types<T>::reference x) const;

template<class T> typename types<T>::const_pointer
address(types<T>::const_reference x) const;

template<class T, class U> typename types<T>::pointer
allocate(size_type, types<U>::const_pointer hint);

template<class T> void deallocate(types<T>::pointer p);
size_type max_size() const;

};

class allocator::types<void> { // specialization
public:

typedef void* pointer;
typedef void value_type;

};

20– 12 General utilities library DRAFT: 28 April 1995 20.4.1 The default allocator

void* operator new(size_t N, allocator& a);
}

1 The membersallocate() anddeallocate() are parameterized to allow them to be specialized for
particular types in user allocators.169)

2 It is assumed that any pointer types have a (possibly lossy) conversion tovoid* , yielding a pointer suffi-
cient for use as the this value in a constructor or destructor, and conversions to
A::types<void>::pointer (for appropriateA) as well, for use byA::deallocate() .

[lib.allocator.members] 20.4.1.1allocator members

template<class T> typename types<T>::pointer
address(typename types<T>::reference x) const;

Returns: &x .

template<class T> typename types<T>::const_pointer
address(typename types<T>::const_reference x) const;

Returns: &x .

template<class T, class U>
typename types<T>::pointer

allocate(size_type n, typename types<U>::const_pointer hint);

Notes: Uses::operator new(size_t) (18.4.1).
Returns: new T , if n == 1 . Returnsnew T[n] , if n > 1 .

template<class T> void deallocate(typename types<T>::pointer p);

Requires: p shall be a pointer value obtained fromallocate() .
Effects: Deallocates the storage referenced byp.
Notes: Uses::operator delete(void*) (18.4.1).

size_type max_size() const;

Returns:

[lib.allocator.placement] 20.4.1.2allocator placementnew

void* operator new(size_t N, allocator& a);

Returns: a.allocate<char,void>(N,0).

[lib.allocator.example] 20.4.1.3 Exampleallocator

1 [Example:For example, here is an allocator that allows objects in main memory, shared memory, or private
heaps. Notably, with this allocator such objects stored under different disciplines have the same type; this
is not necessarily the case for other allocators.

169)In implementation is expected to provide allocators for all supported memory models.

20.4.1.3 Exampleallocator DRAFT: 28 April 1995 General utilities library 20– 13

#include <memory> // for allocator
class runtime_allocator : public std::allocator {

class impl {
impl();
virtual ~impl();

virtual void* allocate(size_t) =0;
virtual void deallocate(void*) =0;
friend class runtime_allocator
// ... etc. (including a reference count)

};

impl* impl_; // the actual storage manager

protected:
runtime_allocator(runtime_allocator::impl* i);

~runtime_allocator();

public:
void* allocate(size_t n) { return impl_->allocate(n); }
template<class T> void deallocate(T* p) { impl_->deallocate(p); }

};

inline void* operator new(size_t N, runtime_allocator& a)
{ return a.allocate(N); }

class shared_allocator : public runtime_allocator {

class shared_impl : runtime_allocator::impl {
shared_impl(void* region);
virtual ~shared_impl();
virtual void* allocate(size_t);
virtual void deallocate(void*);

};

shared_allocator(void* region) : runtime_allocator(new shared_impl(region)) {}
~shared_allocator() {}

};

class heap : public runtime_allocator {

class heap_impl : runtime_allocator::impl {
heap_impl();
virtual ~heap_impl();
virtual void* allocate(size_t);
virtual void deallocate(void*);

};

heap_allocator() : runtime_allocator(new heap_impl) {}
~heap_allocator() {}

};

—end example]

[lib.storage.iterator] 20.4.2 Raw storage iterator

1 raw_storage_iterator is provided to enable algorithms to store the results into uninitialized mem-
ory. The formal template parameterOutputIterator is required to have itsoperator* return an
object for whichoperator& is defined and returns a pointer toT.

20– 14 General utilities library DRAFT: 28 April 1995 20.4.2 Raw storage iterator

namespace std {
template <class OutputIterator, class T>
class raw_storage_iterator : public output_iterator {
public:

explicit raw_storage_iterator(OutputIterator x);

raw_storage_iterator<OutputIterator,T>& operator*();
raw_storage_iterator<OutputIterator,T>& operator=(const T& element);
raw_storage_iterator<OutputIterator,T>& operator++();
raw_storage_iterator<OutputIterator,T> operator++(int);

};
}

raw_storage_iterator(OutputIterator x);

Effects: Initializes the iterator to point to the same value to whichx points.

raw_storage_iterator<OutputIterator,T>& operator*();

Returns: A reference to the value to which the iterator points.

raw_storage_iterator<OutputIterator,T>& operator=(const T& element);

Effects: Constructs a value fromelement at the location to which the iterator points.
Returns: A reference to the iterator.

raw_storage_iterator<OutputIterator,T>& operator++();

Effects: Pre-increment: advances the iterator and returns a reference to the updated iterator.

raw_storage_iterator<OutputIterator,T> operator++(int);

Effects: Post-increment: advances the iterator and returns the old value of the iterator.

[lib.memory.primitives] 20.4.3 Memory handling primitives

[lib.allocate] 20.4.3.1allocate

1 To obtain a typed pointer to an uninitialized memory buffer of a given size the following function is
defined:

template <class T> T* allocate(ptrdiff_t n, T*);

Requires: n shall be>= 0.
Effects: The size (in bytes) of the allocated buffer is no less thann*sizeof(T) .170)

170)For every memory model there is a correspondingallocate template function defined with the first argument type being the
distance type of the pointers in the memory model. For example, if a compilation system supportshuge pointers with the distance
type beinglong long , the following template function is provided:

template <class T> T huge* allocate(long long n, T*);

For every memory model there are correspondingdeallocate , construct anddestroy template functions defined with the
first argument type being the pointer type of the memory model.

20.4.3.2 deallocate DRAFT: 28 April 1995 General utilities library 20– 15

[lib.deallocate] 20.4.3.2deallocate

1 Also, the following functions are provided:

template <class T> void deallocate(T* buffer);

[lib.construct] 20.4.3.3construct

template <class T1, class T2> void construct(T1* p, const T2& value);

Effects: Initializes the location to whichp points withvalue .

[lib.destroy] 20.4.3.4destroy

template <class T> void destroy(T* pointer);

Effects: Invokes the destructor for the value to whichpointer points.

template <class ForwardIterator>
void destroy(ForwardIterator first , ForwardIterator last);

Effects: Destroys all the values in the range[first,last) .

[lib.temporary.buffer] 20.4.3.5 Temporary buffers

template <class T>
pair<T*, ptrdiff_t> get_temporary_buffer(ptrdiff_t n, T*);

Effects: Finds the largest buffer not greater thann*sizeof(T)
Returns: A pair containing the buffer’s address and capacity (in the units ofsizeof(T)).171)

template <class T> void return_temporary_buffer(T* p, T*);

Effects: Returns the buffer to whichp points.
Requires: The buffer shall have been previously allocated byget_temporary_buffer .

[lib.specialized.algorithms] 20.4.4 Specialized algorithms

1 All the iterators that are used as formal template parameters in the following algorithms are required to
have theiroperator* return an object for whichoperator& is defined and returns a pointer toT.

[lib.uninitialized.copy] 20.4.4.1uninitialized_copy

171)For every memory model that an implementation supports, there is a correspondingget_temporary_buffer template func-
tion defined which is overloaded on the corresponding signed integral type. For example, if a system supportshuge pointers and
their difference is of typelong long , the following function has to be provided:

template <class T>
pair<T huge *, long long> get_temporary_buffer(long long n, T*);

20– 16 General utilities library DRAFT: 28 April 1995 20.4.4.1 uninitialized_copy

template <class InputIterator, class ForwardIterator>
ForwardIterator

uninitialized_copy(InputIterator first , InputIterator last ,
ForwardIterator result);

Effects: while (first != last) construct(&*result++, *first++);
Returns: result

[lib.uninitialized.fill] 20.4.4.2uninitialized_fill

template <class ForwardIterator, class T>
void uninitialized_fill(ForwardIterator first , ForwardIterator last ,

const T& x);

Effects: while (first != last) construct(&*first++, x);

[lib.uninitialized.fill.n] 20.4.4.3uninitialized_fill

template <class ForwardIterator, class Size, class T>
void uninitialized_fill_n(ForwardIterator first , Size n, const T& x);

Effects: while (n--) construct(&*first++, x);

[lib.auto.ptr] 20.4.5 Template classauto_ptr

1 Templateauto_ptr holds onto a pointer obtained vianew and deletes that object when it itself is
destroyed (such as when leaving block scope 6.7).

namespace std {
template<class X> class auto_ptr {
public:
// 20.4.5.1 construct/copy/destroy:

explicit auto_ptr(X* p =0);
auto_ptr(auto_ptr&);
void operator=(auto_ptr&);

~auto_ptr();

// 20.4.5.2 members:
X& operator*() const;
X* operator->() const;
X* get() const;
X* release();
X* reset(X* p =0);

};
}

2 Theauto_ptr provides a semantics of strict ownership. An object may be safely pointed to by only one
auto_ptr , so copying anauto_ptr copies the pointer and transfers ownership to the destination.

[lib.auto.ptr.cons] 20.4.5.1auto_ptr constructors

explicit auto_ptr(X* p =0);

Requires: p points to an object of classX or a class derived fromX for which delete p is defined and
accessible, or elsep is a null pointer.

20.4.5.1 auto_ptr constructors DRAFT: 28 April 1995 General utilities library 20– 17

Postcondition: get() == p

auto_ptr(auto_ptr& a);

Effects: copies the argumenta to *this .
Callsa.release() .

Postcondition: get() == the value returned froma.release() .172)

void operator=(auto_ptr& a);

Effects: copies the argumenta to *this .
Callsreset(a.release()) .

Postcondition: get() == the value returned froma.release() .

~auto_ptr();

Effects: delete get()

[lib.auto.ptr.members] 20.4.5.2auto_ptr members

X& operator*() const;

Requires: get() != 0
Returns: *get()

X* get() const;

Returns: The pointerp specified as the argument to the constructorauto_ptr(X* p) or as the argu-
ment to the most recent call toreset(X* p) .

X* operator->() const;

Returns: get()->m

X* release();

Postcondition: get() == 0

X* reset(X* p =0);

Requires: p points to an object of classX or a class derived fromX for which delete p is defined and
accessible, or elsep is a null pointer

Postcondition: get() == p

[lib.c.malloc] 20.4.6 C Library

1 Header<cstdlib> (Table 34):

172)That is, the value returned bya.get() before clearing it witha.release() .

20– 18 General utilities library DRAFT: 28 April 1995 20.4.6 C Library

Table 34—Header<cstdlib> synopsis
_ _______________________________

Type Name(s)_ _______________________________
Functions: calloc malloc

free realloc_ _______________________________

2 The contents are the same as the Standard C library, with the following changes:

3 The functionscalloc() , malloc() , and realloc() do not attempt to allocate storage by calling
::operator new() (18.4).

4 The functionfree() does not attempt to deallocate storage by calling::operator delete() .

SEE ALSO: ISO C subclause 7.11.2.

5 Header<cstring> (Table 35):

Table 35—Header<cstring> synopsis
_ _______________________________

Type Name(s)_ _______________________________
Macro: NULL_ _______________________________
Type: size_t_ _______________________________
Functions: memchr memcmp

memcpy memmove memset_ _______________________________

6 The contents are the same as the Standard C library, with the change tomemchr() specified in subclause
21.2.

SEE ALSO: ISO C subclause 7.11.2.

[lib.date.time] 20.5 Date and time

1 Header<ctime> (Table 36):

Table 36—Header<ctime> synopsis
_ __

Type Name(s)_ __
Macros: NULL <ctime>_ __
Types: size_t <ctime>_ __
Struct: tm <ctime>_ __
Functions:
asctime difftime localtime strftime

ctime gmtime mktime time_ __

2 The contents are the same as the Standard C library.

SEE ALSO: ISO C subclause 7.12, Amendment 1 subclause 4.6.4.

_ ___ ___

21 Strings library [lib.strings]
_ ___ ___

1 This clause describes components for manipulating sequences of“characters,” where characters may be of
typechar , wchar_t , or of a type defined in a C + + program.

2 The following subclauses describe string classes, and null-terminated sequence utilities, as summarized in
Table 37:

Table 37—Strings library summary
_ ___

Subclause Header(s)_ __ ___
21.1 String classes <string>_ ___

<cctype>

<cwctype>

<cstring>

<cwchar>

21.2 Null-terminated sequence utilities

<cstdlib>_ ___

[lib.string.classes] 21.1 String classes

Header<string> synopsis

#include <memory> // for allocator

namespace std {
// subclause 21.1.1, basic_string:

template<class charT> struct string_char_traits;
template<class charT, class traits = string_char_traits<charT>,

class Allocator = allocator> class basic_string;

template<class charT, class traits, class Allocator>
basic_string<charT,traits,Allocator>

operator+(const basic_string<charT,traits,Allocator>& lhs ,
const basic_string<charT,traits,Allocator>& rhs);

template<class charT, class traits, class Allocator>
basic_string<charT,traits,Allocator>

operator+(const charT* lhs ,
const basic_string<charT,traits,Allocator>& rhs);

template<class charT, class traits, class Allocator>
basic_string<charT,traits,Allocator>

operator+(charT lhs , const basic_string<charT,traits,Allocator>& rhs);
template<class charT, class traits, class Allocator>

basic_string<charT,traits,Allocator>
operator+(const basic_string<charT,traits,Allocator>& lhs ,

const_pointer rhs);
template<class charT, class traits, class Allocator>

basic_string<charT,traits,Allocator>
operator+(const basic_string<charT,traits,Allocator>& lhs , charT rhs);

21– 2 Strings library DRAFT: 28 April 1995 21.1 String classes

template<class charT, class traits, class Allocator>
bool operator==(const basic_string<charT,traits,Allocator>& lhs ,

const basic_string<charT,traits,Allocator>& rhs);
template<class charT, class traits, class Allocator>

bool operator==(const charT* lhs ,
const basic_string<charT,traits,Allocator>& rhs);

template<class charT, class traits, class Allocator>
bool operator==(const basic_string<charT,traits,Allocator>& lhs ,

const charT* rhs);
template<class charT, class traits, class Allocator>

bool operator!=(const basic_string<charT,traits,Allocator>& lhs ,
const basic_string<charT,traits,Allocator>& rhs);

template<class charT, class traits, class Allocator>
bool operator!=(const charT* lhs ,

const basic_string<charT,traits,Allocator>& rhs);
template<class charT, class traits, class Allocator>

bool operator!=(const basic_string<charT,traits,Allocator>& lhs ,
const charT* rhs);

template<class charT, class traits, class Allocator>
bool operator< (const basic_string<charT,traits,Allocator>& lhs ,

const basic_string<charT,traits,Allocator>& rhs);
template<class charT, class traits, class Allocator>

bool operator< (const basic_string<charT,traits,Allocator>& lhs ,
const charT* rhs);

template<class charT, class traits, class Allocator>
bool operator< (const charT* lhs ,

const basic_string<charT,traits,Allocator>& rhs);
template<class charT, class traits, class Allocator>

bool operator> (const basic_string<charT,traits,Allocator>& lhs ,
const basic_string<charT,traits,Allocator>& rhs);

template<class charT, class traits, class Allocator>
bool operator> (const basic_string<charT,traits,Allocator>& lhs ,

const charT* rhs);
template<class charT, class traits, class Allocator>

bool operator> (const charT* lhs ,
const basic_string<charT,traits,Allocator>& rhs);

template<class charT, class traits, class Allocator>
bool operator<=(const basic_string<charT,traits,Allocator>& lhs ,

const basic_string<charT,traits,Allocator>& rhs);
template<class charT, class traits, class Allocator>

bool operator<=(const basic_string<charT,traits,Allocator>& lhs ,
const charT* rhs);

template<class charT, class traits, class Allocator>
bool operator<=(const charT* lhs ,

const basic_string<charT,traits,Allocator>& rhs);
template<class charT, class traits, class Allocator>

bool operator>=(const basic_string<charT,traits,Allocator>& lhs ,
const basic_string<charT,traits,Allocator>& rhs);

template<class charT, class traits, class Allocator>
bool operator>=(const basic_string<charT,traits,Allocator>& lhs ,

const charT* rhs);
template<class charT, class traits, class Allocator>

bool operator>=(const charT* lhs ,
const basic_string<charT,traits,Allocator>& rhs);

21.1 String classes DRAFT: 28 April 1995 Strings library 21– 3

template<class charT, class traits, class Allocator>
basic_istream<charT>&

operator>>(basic_istream<charT>& is ,
basic_string<charT,traits,Allocator>& str);

template<class charT, class traits, class Allocator>
basic_ostream<charT>&

operator<<(basic_ostream<charT>& os ,
const basic_string<charT,traits,Allocator>& str);

template<class charT, class IS_traits, class STR_traits, class STR_Alloc>
basic_istream<charT,IS_traits>&

getline(basic_istream<charT,IS_traits>& is ,
basic_string<charT,STR_traits,STR_Alloc>& str ,
charT delim = IS_traits::newline());

// subclause 21.1.2, string:
struct string_char_traits<char>;
typedef basic_string<char> string;

// subclause 21.1.4, wstring:
struct string_char_traits<wchar_t>;
typedef basic_string<wchar_t> wstring;

}

1 In this subclause, we call the basic character types“char-like” types, and also call the objects of char-like
types“char-like” objects or simply“character”s.

2 The header<string> defines a basic string class template and its traits that can handle all“char-like”
template arguments with several function signatures for manipulating varying-length sequences of“char-
like” objects.

3 The header<string> also defines two specific template classesstring andwstring and their special
traits.

[lib.template.string] 21.1.1 Template classbasic_string

[lib.string.char.traits] 21.1.1.1 Template classstring_char_traits

namespace std {
template<class charT> struct string_char_traits {

typedef charT char_type; // for users to acquire the basic character type

static void assign(char_type& c1 , const char_type& c2)
static bool eq(const char_type& c1 , const char_type& c2)
static bool ne(const char_type& c1 , const char_type& c2)
static bool lt(const char_type& c1 , const char_type& c2)
static char_type eos(); // the null character

static basic_istream<charT>& char_in (basic_istream<charT>& is , char_type& a);
static basic_ostream<charT>& char_out(basic_ostream<charT>& os , char_type a);
static bool is_del(char_type a); // characteristic function for delimiters

// speed-up functions
static int compare(const char_type* s1 , const char_type* s2 , size_t n);
static size_t length(const char_type* s);
static char_type* copy(char_type* s1 , const char_type* s2 , size_t n);

};
}

21– 4 Strings library DRAFT: 28 April 1995 21.1.1.2
string_char_traits members

[lib.string.char.traits.members] 21.1.1.2string_char_traits members

1 Default definitions.

static void assign(char_type& c1 , const char_type& c2)

Effects: Assignsc2 to c1 .

static bool eq(const char_type& c1 , const char_type& c2)

Returns c1 == c2

static bool ne(const char_type& c1 , const char_type& c2)

Returns: !(c1 == c2)

static bool lt(const char_type& c1 , const char_type& c2)

Returns: c1 < c2

static char_type eos();

Returns The null character,char_type()

static basic_istream<charT>&
char_in(basic_istream<charT>& is , char_type& a);

Effects: Extracts acharT object.
Returns: is >> a

static basic_ostream<charT>&
char_out(basic_ostream<charT>& os , char_type a);

Effects: Inserts acharT object.
Returns: os << a

static bool is_del(char_type a);

Effects: Characteristic function for delimiters ofcharT .
Returns: isspace(a)

static int compare(const char_type* s1 , const char_type* s2 , size_t n);

Effects:

for (size_t i = 0; i < n; ++i, ++s1, ++s2)
if (ne(*s1, *s2))

return lt(*s1, *s2) ? -1 : 1;
return 0;

static size_t length(const char_type* s);

Effects:

21.1.1.2 DRAFT: 28 April 1995 Strings library 21– 5
string_char_traits members

size_t len = 0;
while (ne(*s++, eos())) ++len;
return len;

static char_type* copy(char_type* s1 , const char_type* s2 , size_t n);

Effects:

char_type* s = s1;
for (size_t i = 0; i < n; ++i) assign(*s1++, *s2++);
return s;

[lib.basic.string] 21.1.1.3 Template classbasic_string

namespace std {
template<class charT, class traits = string_char_traits<charT>,

class Allocator = allocator>
class basic_string {
public:
// types:

typedef traits traits_type;
typedef typename traits::char_type value_type;
typedef typename Allocator::size_type size_type;
typedef typename Allocator::difference_type difference_type;

typedef typename Allocator::types<charT>::reference reference;
typedef typename Allocator::types<charT>::const_reference const_reference;
typedef typename Allocator::types<charT>::pointer pointer;
typedef typename Allocator::types<charT>::const_pointer const_pointer;

typedef typename Allocator::types<charT>::pointer iterator;
typedef typename Allocator::types<charT>::const_pointer const_iterator;
typedef reverse_iterator<iterator, value_type,

reference, difference_type> reverse_iterator;
typedef reverse_iterator<const_iterator, value_type,

const_reference, difference_type> const_reverse_iterator;
static const size_type npos = -1;

// 21.1.1.4 construct/copy/destroy:
explicit basic_string(Allocator& = Allocator());
basic_string(const basic_string& str , size_type pos = 0,

size_type n = npos, Allocator& = Allocator());
basic_string(const charT* s, size_type n, Allocator& = Allocator());
basic_string(const charT* s, Allocator& = Allocator());
basic_string(size_type n, charT c, Allocator& = Allocator());
template<class InputIterator>

basic_string(InputIterator begin , InputIterator end ,
Allocator& = Allocator());

~basic_string();
basic_string& operator=(const basic_string& str);
basic_string& operator=(const charT* s);
basic_string& operator=(charT c);

21– 6 Strings library DRAFT: 28 April 1995 21.1.1.3 Template classbasic_string

// 21.1.1.5 iterators:
iterator begin();
const_iterator begin() const;
iterator end();
const_iterator end() const;

reverse_iterator rbegin();
const_reverse_iterator rbegin() const;
reverse_iterator rend();
const_reverse_iterator rend() const;

// 21.1.1.6 capacity:
size_type size() const;
size_type length() const;
size_type max_size() const;
void resize(size_type n, charT c);
void resize(size_type n);
size_type capacity() const;
void reserve(size_type res_arg);
bool empty() const;

// 21.1.1.7 element access:
charT operator[](size_type pos) const;
reference operator[](size_type pos);
const_reference at(size_type n) const;
reference at(size_type n);

// 21.1.1.8 modifiers:
basic_string& operator+=(const basic_string& rhs);
basic_string& operator+=(const charT* s);
basic_string& operator+=(charT c);
basic_string& append(const basic_string& str , size_type pos = 0,

size_type n = npos);
basic_string& append(const charT* s, size_type n);
basic_string& append(const charT* s);
basic_string& append(size_type n, charT c = charT());
template<class InputIterator>

basic_string& append(InputIterator first , InputIterator last);

basic_string& assign(const basic_string& str , size_type pos = 0,
size_type n = npos);

basic_string& assign(const charT* s, size_type n);
basic_string& assign(const charT* s);
basic_string& assign(size_type n, charT c = charT());
template<class InputIterator>

basic_string& assign(InputIterator first , InputIterator last);

basic_string& insert(size_type pos1 , const basic_string& str ,
size_type pos2 = 0, size_type n = npos);

basic_string& insert(size_type pos , const charT* s, size_type n);
basic_string& insert(size_type pos , const charT* s);
basic_string& insert(size_type pos , size_type n, charT c = charT());
iterator insert(iterator p, charT c = charT());
iterator insert(iterator p, size_type n, charT c = charT());
template<class InputIterator>

void insert(iterator p, InputIterator first , InputIterator last);

basic_string& remove(size_type pos = 0, size_type n = npos);
basic_string& remove(iterator position);
basic_string& remove(iterator first , iterator last);

21.1.1.3 Template classbasic_string DRAFT: 28 April 1995 Strings library 21– 7

basic_string& replace(size_type pos1 , size_type n1, const basic_string& str ,
size_type pos2 = 0, size_type n2 = npos);

basic_string& replace(size_type pos , size_type n1, const charT* s,
size_type n2);

basic_string& replace(size_type pos , size_type n1, const charT* s);
basic_string& replace(size_type pos , size_type n, charT c = charT());

basic_string& replace(iterator i1 , iterator i2 , const basic_string& str);
basic_string& replace(iterator i1 , iterator i2 , const charT* s, size_type n);
basic_string& replace(iterator i1 , iterator i2 , const charT* s);
basic_string& replace(iterator i1 , iterator i2 ,

size_type n, charT c = charT());
template<class InputIterator>

basic_string& replace(iterator i1 , iterator i2 ,
InputIterator j1 , InputIterator j2);

size_type copy(charT* s, size_type n, size_type pos = 0);
void swap(basic_string<charT,traits,Allocator>&);

// 21.1.1.9 string operations:
const charT* c_str() const; // explicit
const charT* data() const;

size_type find (const basic_string& str , size_type pos = 0) const;
size_type find (const charT* s, size_type pos , size_type n) const;
size_type find (const charT* s, size_type pos = 0) const;
size_type find (charT c, size_type pos = 0) const;
size_type rfind(const basic_string& str , size_type pos = npos) const;
size_type rfind(const charT* s, size_type pos , size_type n) const;
size_type rfind(const charT* s, size_type pos = npos) const;
size_type rfind(charT c, size_type pos = npos) const;

size_type find_first_of(const basic_string& str , size_type pos = 0) const;
size_type find_first_of(const charT* s, size_type pos , size_type n) const;
size_type find_first_of(const charT* s, size_type pos = 0) const;
size_type find_first_of(charT c, size_type pos = 0) const;
size_type find_last_of (const basic_string& str ,

size_type pos = npos) const;
size_type find_last_of (const charT* s, size_type pos , size_type n) const;
size_type find_last_of (const charT* s, size_type pos = npos) const;
size_type find_last_of (charT c, size_type pos = npos) const;

size_type find_first_not_of(const basic_string& str ,
size_type pos = 0) const;

size_type find_first_not_of(const charT* s, size_type pos ,
size_type n) const;

size_type find_first_not_of(const charT* s, size_type pos = 0) const;
size_type find_first_not_of(charT c, size_type pos = 0) const;
size_type find_last_not_of (const basic_string& str ,

size_type pos = npos) const;
size_type find_last_not_of (const charT* s, size_type pos ,

size_type n) const;
size_type find_last_not_of (const charT* s, size_type pos = npos) const;
size_type find_last_not_of (charT c, size_type pos = npos) const;

21– 8 Strings library DRAFT: 28 April 1995 21.1.1.3 Template classbasic_string

basic_string substr(size_type pos = 0, size_type n = npos) const;
int compare(const basic_string& str , size_type pos = 0,

size_type n = npos) const;
int compare(charT* s, size_type pos , size_type n) const;
int compare(charT* s, size_type pos = 0) const;

};
}

1 For a char-like typecharT , the template classbasic_string describes objects that can store a
sequence consisting of a varying number of arbitrary char-like objects. The first element of the sequence is
at position zero. Such a sequence is also called a“string” if the given char-like type is clear from context.
In the rest of this clause,charT denotes a such given char-like type. Storage for the string is allocated and
freed as necessary by the member functions of classbasic_string .

2 In all cases,size() <= capacity() .

3 The functions described in this clause can report two kinds of errors, each associated with a distinct excep-
tion:

— a lengtherror is associated with exceptions of typelength_error (19.1.5);

— anout-of-rangeerror is associated with exceptions of typeout_of_range (19.1.6).

[lib.string.cons] 21.1.1.4basic_string constructors

1 In all basic_string constructors, a copy of theAllocator argument is used for any memory alloca-
tion performed by the constructor or member functions during the lifetime of the object.

explicit basic_string(Allocator& = Allocator());

Effects: Constructs an object of classbasic_string . The postconditions of this function are indicated
in Table 38:

Table 38—basic_string() effects
_ _________________________________

Element Value_ __________________________________ _________________________________
data() an unspecified value
size() 0
capacity() an unspecified value_ _________________________________

basic_string(const basic_string<charT,traits,Allocator>& str ,
size_type pos = 0, size_type n = npos,
Allocator& = Allocator());

Requires: pos <= size()
Throws: out_of_range if pos > str .size() .
Effects: Constructs an object of classbasic_string and determines the effective lengthrlen of the

initial string value as the smaller ofn andstr .size() - pos , as indicated in Table 39:

21.1.1.4 basic_string constructors DRAFT: 28 April 1995 Strings library 21– 9

Table 39—basic_string(basic_string,size_type,size_type) effects
_ ___

Element Value_ __ ___
data() points at the first element of an

allocated copy ofrlen elements of
the string controlled bystr begin-
ning at positionpos

size() rlen
capacity() a value at least as large assize()_ ___

basic_string(const charT* s, size_type n,
Allocator& = Allocator());

Requires: s shall not be a null pointer.
Effects: Constructs an object of classbasic_string and determines its initial string value from the

array ofcharT of lengthn whose first element is designated bys , as indicated in Table 40:

Table 40—basic_string(const charT*,size_type) effects
_ ___

Element Value_ __ ___
data() points at the first element of an

allocated copy of the array whose
first element is pointed at bys

size() n
capacity() a value at least as large assize()_ ___

basic_string(const charT* s, Allocator& = Allocator());

Requires: s shall not be a null pointer.
Effects: Constructs an object of classbasic_string and determines its initial string value from the

array ofcharT of lengthtraits::length(s) whose first element is designated bys , as indicated
in Table 41:

Table 41—basic_string(const charT*) effects
_ ___

Element Value_ __ ___
data() points at the first element of an

allocated copy of the array whose
first element is pointed at bys

size() traits::length(s)
capacity() a value at least as large assize()_ ___

Notes: Usestraits::length() .

basic_string(size_type n, charT c, Allocator& = Allocator());

Requires: n < npos
Throws: length_error if n == npos .

21– 10 Strings library DRAFT: 28 April 1995 21.1.1.4 basic_string constructors

Effects: Constructs an object of classbasic_string and determines its initial string value by repeating
the char-like objectc for all n elements, as indicated in Table 42:

Table 42—basic_string(charT,size_type) effects
_ ___

Element Value_ __ ___
data() points at the first element of an

allocated array ofn elements, each
storing the initial valuec

size() n
capacity() a value at least as large assize()_ ___

template<class InputIterator>
basic_string(InputIterator begin , InputIterator end ,

Allocator& = Allocator());

Effects: Constructs a string from the values in the range[begin, end) , as indicated in Table 43:

Table 43—basic_string(begin,end) effects
_ ___

Element Value_ __ ___
data() points at the first element of an

allocated copy of the elements in
the range[first , last)

size() distance betweenfirst andlast
capacity() a value at least as large assize()_ ___

Notes: see Table___, subclause_lib.sequence.requirements_.

basic_string<charT,traits,Allocator>&
operator=(const basic_string<charT,traits,Allocator>& str);

Returns: *this = basic_string<charT,traits,Allocator>(str) .

basic_string<charT,traits,Allocator>&
operator=(const charT* s);

Returns: *this = basic_string<charT,traits,Allocator>(s) .
Notes: Usestraits::length() .

basic_string<charT,traits,Allocator>& operator=(charT c);

Returns: *this = basic_string<charT,traits,Allocator>(c) .

[lib.string.iterators] 21.1.1.5basic_string iterator support

iterator begin();
const_iterator begin() const;

Returns: an iterator referring to the first character in the string.

21.1.1.5 basic_string iterator support DRAFT: 28 April 1995 Strings library 21 – 11

iterator end();
const_iterator end() const;

Returns: an iterator which is the past-the-end value.

reverse_iterator rbegin();
const_reverse_iterator rbegin() const;

Returns: an iterator which is semantically equivalent toreverse_iterator(end()) .

reverse_iterator rend();
const_reverse_iterator rend() const;

Returns: an iterator which is semantically equivalent toreverse_iterator(begin()) .

[lib.string.capacity] 21.1.1.6basic_string capacity

size_type size() const;

Returns: a count of the number of char-like objects currently in the string.
Notes: Usestraits::length() .

size_type length() const;

Returns: size() .

size_type max_size() const;

Returns: The maximum size of the string.

void resize(size_type n, charT c);

Requires: n != npos
Throws: length_error if n == npos .
Effects: Alters the length of the string designated by*this as follows:

— If n <= size() , the function replaces the string designated by*this with a string of lengthn
whose elements are a copy of the initial elements of the original string designated by*this .

— If n > size() , the function replaces the string designated by*this with a string of lengthn whose
first size() elements are a copy of the original string designated by*this , and whose remaining
elements are all initialized toc .

void resize(size_type n);

Returns: resize(n,eos()) .
Notes: Usestraits::eos() .

size_type capacity() const;

Returns: the size of the allocated storage in the string.

void reserve(size_type res_arg);

21– 12 Strings library DRAFT: 28 April 1995 21.1.1.6 basic_string capacity

1 The member functionreserve() is a directive that informs abasic_string of a planned change in
size, so that it can manage the storage allocation accordingly.
Effects: After reserve() , capacity() is greater or equal to the argument ofreserve if realloca-

tion happens; and equal to the previous value ofcapacity() otherwise.
Reallocation happens at this point if and only if the current capacity is less than the argument of
reserve() .

Complexity: It does not change the size of the sequence and takes at most linear time in the size of the
sequence.

Notes: Reallocation invalidates all the references, pointers, and iterators referring to the elements in the
sequence. It is guaranteed that no reallocation takes place during the insertions that happen after
reserve() takes place till the time when the size of the string reaches the size specified by
reserve() .

bool empty() const;

Returns: size() == 0 .

[lib.string.access] 21.1.1.7basic_string element access

charT operator[](size_type pos) const;
reference operator[](size_type pos);

Returns: If pos < size() , returnsdata()[pos] . Otherwise, ifpos == size() , the const
version returnstraits::eos() . Otherwise, the behavior is undefined.

Notes: The reference returned by the non-const version is invalid after any subsequent call toc_str() ,
data() , or any non-const member function for the object.

const_reference at(size_type n) const;
reference at(size_type n);

Requires: pos < size()
Throws: out_of_range if pos >= size() .
Returns: operator[](pos) .

[lib.string.modifiers] 21.1.1.8basic_string modifiers

[lib.string::op+=] 21.1.1.8.1basic_string::operator+=

basic_string<charT,traits,Allocator>&
operator+=(const basic_string<charT,traits,Allocator>& rhs);

Returns: append(rhs) .

basic_string<charT,traits,Allocator>& operator+=(const charT* s);

Returns: *this += basic_string<charT,traits,Allocator>(s) .
Notes: Usestraits::length() .

basic_string<charT,traits,Allocator>& operator+=(charT c);

Returns: *this += basic_string<charT,traits,Allocator>(c) .

21.1.1.8.2basic_string::append DRAFT: 28 April 1995 Strings library 21– 13

[lib.string::append] 21.1.1.8.2basic_string::append

basic_string<charT,traits,Allocator>&
append(const basic_string<charT,traits>& str, size_type pos = 0,

size_type n = npos);

Requires: pos <= size()
Throws: out_of_range if pos > str .size() .
Effects: Determines the effective lengthrlen of the string to append as the smaller ofn and

str .size() - pos . The function then throwslength_error if size() >= npos -
rlen .
Otherwise, the function replaces the string controlled by*this with a string of lengthsize() +
rlen whose firstsize() elements are a copy of the original string controlled by*this and whose
remaining elements are a copy of the initial elements of the string controlled bystr beginning at posi-
tion pos .

Returns: *this .

basic_string<charT,traits,Allocator>&
append(const charT* s, size_type n);

Returns: append(basic_string<charT,traits,Allocator>(s, n)) .

basic_string<charT,traits,Allocator>& append(const charT* s);

Returns: append(basic_string<charT,traits,Allocator>(s)) .
Notes: Usestraits::length() .

basic_string<charT,traits,Allocator>&
append(size_type n, charT c = charT());

Returns: append(basic_string<charT,traits,Allocator>(c, n)) .

template<class InputIterator>
basic_string& append(InputIterator first , InputIterator last);

Returns: append(basic_string<charT,traits,Allocator>(first , last)) .

[lib.string::assign] 21.1.1.8.3basic_string::assign

basic_string<charT,traits,Allocator>&
assign(const basic_string<charT,traits>& str , size_type pos = 0,

size_type n = npos);

Requires: pos <= size()
Throws: out_of_range if pos > str .size() .
Effects: Determines the effective lengthrlen of the string to assign as the smaller ofn and

str .size() - pos .
The function then replaces the string controlled by*this with a string of lengthrlen whose elements
are a copy of the string controlled bystr beginning at positionpos .

Returns: *this .

basic_string<charT,traits,Allocator>&
assign(const charT* s, size_type n);

21– 14 Strings library DRAFT: 28 April 1995 21.1.1.8.3basic_string::assign

Returns: assign(basic_string<charT,traits,Allocator>(s, n)) .

basic_string<charT,traits,Allocator>& assign(const charT* s);

Returns: assign(basic_string(s)) .
Notes: Usestraits::length() .

basic_string<charT,traits,Allocator>&
assign(size_type n, charT c = charT());

Returns: assign(basic_string<charT,traits,Allocator>(c, n)) .

template<class InputIterator>
basic_string& assign(InputIterator first , InputIterator last);

Returns: assign(basic_string<charT,traits,Allocator>(first , last)) .

[lib.string::insert] 21.1.1.8.4basic_string::insert

basic_string<charT,traits,Allocator>&
insert(size_type pos1 ,

const basic_string<charT,traits,Allocator>& str ,
size_type pos2 = 0, size_type n = npos);

Requires pos1 <= size()
Throws: out_of_range if pos1 > size() or pos2 > str .size() .
Effects: Determines the effective lengthrlen of the string to insert as the smaller ofn andstr .size()

- pos2 . Then throwslength_error if size() >= npos - rlen .
Otherwise, the function replaces the string controlled by*this with a string of lengthsize() +
rlen whose firstpos1 elements are a copy of the initial elements of the original string controlled by
*this , whose nextrlen elements are a copy of the elements of the string controlled bystr begin-
ning at positionpos2 , and whose remaining elements are a copy of the remaining elements of the origi-
nal string controlled by*this .

Returns: *this .

basic_string<charT,traits,Allocator>&
insert(size_type pos , const charT* s, size_type n);

Returns: insert(pos ,basic_string<charT,traits,Allocator>(s, n)) .

basic_string<charT,traits,Allocator>&
insert(size_type pos , const charT* s);

Returns: insert(pos ,basic_string<charT,traits,Allocator>(s)) .
Notes: Usestraits::length().

basic_string<charT,traits,Allocator>&
insert(size_type pos , size_type n, charT c = charT());

Returns: insert(pos ,basic_string<charT,traits,Allocator>(c, n)) .

iterator insert(iterator p, charT c = charT());

21.1.1.8.4basic_string::insert DRAFT: 28 April 1995 Strings library 21– 15

Requires: p is a valid iterator on*this .
Effects: inserts a copy ofc before the character referred to byp.
Returns: p.

iterator insert(iterator p, size_type n, charT c = charT());

Requires: p is a valid iterator on*this .
Effects: insertsn copies ofc before the character referrred to byp.

template<class InputIterator>
void insert(iterator p, InputIterator first , InputIterator last);

Requires: p is a valid iterator on*this . [first , last) is a valid range.
Effects: inserts copies of the characters in the range[first , last) before the character referrred to by

p.

[lib.string::remove] 21.1.1.8.5basic_string::remove

basic_string<charT,traits,Allocator>&
remove(size_type pos = 0, size_type n = npos);

Requires: pos <= size()
Throws: out_of_range if pos > size() .
Effects: Determines the effective lengthxlen of the string to be removed as the smaller ofn and

size() - pos .
The function then replaces the string controlled by*this with a string of lengthsize() - xlen
whose firstpos elements are a copy of the initial elements of the original string controlled by*this ,
and whose remaining elements are a copy of the elements of the original string controlled by*this
beginning at positionpos + xlen .

Returns: *this .

basic_string& remove(iterator p);

Requires: p is a valid iterator on*this .
Effects: removes the character referred to byp and calls the character’s destructor.
Returns: *this .

basic_string& remove(iterator first , iterator last);

Requires: first andlast are valid iterators on*this , defining a range[first , last) .
Effects: removes the characters in the range[first , last) and calls the character’s destructor.
Complexity: the destructor is called a number of times exactly equal to the size of the range.
Returns: *this .

[lib.string::replace] 21.1.1.8.6basic_string::replace

basic_string<charT,traits,Allocator>&
replace(size_type pos1 , size_type n1,

const basic_string<charT,traits,Allocator>& str ,
size_type pos2 = 0, size_type n2 = npos);

Requires: pos1 <= size() && pos2 <= size() .
Throws: out_of_range if pos1 > size() or pos2 > str .size() .

21– 16 Strings library DRAFT: 28 April 1995 21.1.1.8.6basic_string::replace

Effects: Determines the effective lengthxlen of the string to be removed as the smaller ofn1 and
size() - & pos1 . It also determines the effective lengthrlen of the string to be inserted as the
smaller ofn2 andstr .size() - pos2 .
Throwslength_error if size() - xlen >= npos - rlen .
Otherwise, the function replaces the string controlled by*this with a string of lengthsize() -
xlen + rlen whose firstpos1 elements are a copy of the initial elements of the original string con-
trolled by*this , whose nextrlen elements are a copy of the initial elements of the string controlled
by str beginning at positionpos2 , and whose remaining elements are a copy of the elements of the
original string controlled by*this beginning at positionpos1 + xlen .

Returns: *this .

basic_string<charT,traits,Allocator>&
replace(size_type pos , size_type n1, const charT* s, size_type n2);

Returns: replace(pos , n1,basic_string<charT,traits,Allocator>(s, n2)) .

basic_string<charT,traits,Allocator>&
replace(size_type pos, size_type n1, const charT* s);

Returns: replace(pos , n1,basic_string<charT,traits,Allocator>(s)) .
Notes: Usestraits::length() .

basic_string<charT,traits,Allocator>&
replace(size_type pos , size_type n, charT c = charT());

Returns: replace(pos , n,basic_string<charT,traits,Allocator>(c, n)) .

basic_string& replace(iterator i1 , iterator i2 , const basic_string& str);

Requires: The iteratorsi1 andi2 are valid iterators on*this , defining a range[i1 , i2) .
Effects: Replaces the string controlled by*this with a string of lengthsize() - (i2 - i1) +

str .size() whose firstbegin() - i1 elements are a copy of the initial elements of the original
string controlled by*this , whose nextstr .size() elements are a copy of the string controlled by
str , and whose remaining elements are a copy of the elements of the original string controlled by
*this beginning at positioni2 .

Returns: *this .
Notes: After the call, the length of the string will be changed by:str .size() - (i2 - i1) .

basic_string&
replace(iterator i1 , iterator i2 , const charT* s, size_type n);

Returns: replace(i1 , i2 ,basic_string(s, n)) .
Notes: Length change:n - (i2 - i1) .

basic_string& replace(iterator i1 , iterator i2 , const charT* s);

Returns: replace(i1 , i2 ,basic_string(s)) .
Notes: Length change:traits::length(s) - (i2 - i1) .

Usestraits::length() .

basic_string& replace(iterator i1 , iterator i2 , size_type n,
charT c = charT());

21.1.1.8.6basic_string::replace DRAFT: 28 April 1995 Strings library 21– 17

Returns: replace(i1 , i2 ,basic_string(n, c)) .
Notes: Length change:n - (i2 - i1) .

template<class InputIterator>
basic_string& replace(iterator i1 , iterator i2 ,

InputIterator j1 , InputIterator j2);

Returns: replace(i1 , i2 ,basic_string(j1 , j2)) .
Notes: Length change:j2 - j1 - (i2 - i1) .

[lib.string::copy] 21.1.1.8.7basic_string::copy

size_type copy(charT* s, size_type n, size_type pos = 0);

Requires: pos <= size()
Throws: out_of_range if pos > size() .
Effects: Determines the effective lengthrlen of the string to copy as the smaller ofn andsize() -

pos . s shall designate an array of at leastrlen elements.
The function then replaces the string designated bys with a string of lengthrlen whose elements are a
copy of the string controlled by*this beginning at positionpos .

Notes: The function does not append a null object to the string.
Returns: rlen .

[lib.string::swap] 21.1.1.8.8basic_string::swap

void swap(basic_string<charT,traits,Allocator>& s);

Effects: Swaps the contents of the two strings.
Postcondition: *this contains the characters that were ins , s contains the characters that were in

*this .
Complexity: Constant time.

[lib.string.ops] 21.1.1.9basic_string string operations

const charT* c_str() const;

Returns: A pointer to the initial element of an array of lengthsize() + 1 whose firstsize() ele-
ments equal the corresponding elements of the string controlled by*this and whose last element is a
null character specified bytraits::eos() .

Requires: The program shall not alter any of the values stored in the array. Nor shall the program treat the
returned value as a valid pointer value after any subsequent call to a non-const member function of the
classbasic_string that designates the same object asthis .

Notes: Usestraits::eos() .

const charT* data() const;

Returns: c_str() if size() is nonzero, otherwise a null pointer.
Requires: The program shall not alter any of the values stored in the character array. Nor shall the pro-

gram treat the returned value as a valid pointer value after any subsequent call to a non-const member
function ofbasic_string that designates the same object asthis .

21– 18 Strings library DRAFT: 28 April 1995 21.1.1.9.1basic_string::find

[lib.string::find] 21.1.1.9.1basic_string::find

size_type find(const basic_string<charT,traits,Allocator>& str ,
size_type pos = 0) const;

Effects: Determines the lowest positionxpos , if possible, such that both of the following conditions
obtain:

— pos <= xpos andxpos + str .size() <= size() ;

— at(xpos +I) == str .at(I) for all elementsI of the string controlled bystr .
Returns: xpos if the function can determine such a value forxpos . Otherwise, returnsnpos .
Notes: Usestraits::eq() .

size_type find(const charT* s, size_type pos , size_type n) const;

Returns: find(basic_string<charT,traits,Allocator>(s, n) pos) .

size_type find(const charT* s, size_type pos = 0) const;

Returns: find(basic_string<charT,traits,Allocator>(s), pos) .
Notes: Usestraits::length() .

size_type find(charT c, size_type pos = 0) const;

Returns: find(basic_string<charT,traits,Allocator>(c), pos) .

[lib.string::rfind] 21.1.1.9.2basic_string::rfind

size_type rfind(const basic_string<charT,traits,Allocator>& str ,
size_type pos = npos) const;

Effects: Determines the highest positionxpos , if possible, such that both of the following conditions
obtain:

— xpos <= pos andxpos + str .size() <= size() ;

— at(xpos +I) == str .at(I) for all elementsI of the string controlled bystr .
Returns: xpos if the function can determine such a value forxpos . Otherwise, returnsnpos .
Notes: Usestraits::eq() .

size_type rfind(const charT* s, size_type pos , size_type n) const;

Returns: rfind(basic_string<charT,traits,Allocator>(s, n), pos) .

size_type rfind(const charT* s, size_type pos = npos) const;

Returns: rfind(basic_string<charT,traits,Allocator>(s), pos) .
Notes: Usestraits::length() .

size_type rfind(charT c, size_type pos = npos) const;

Returns: rfind(basic_string<charT,traits,Allocator>(c, n), pos) .

21.1.1.9.3 DRAFT: 28 April 1995 Strings library 21– 19
basic_string::find_first_of

[lib.string::find.first.of] 21.1.1.9.3basic_string::find_first_of

size_type
find_first_of(const basic_string<charT,traits,Allocator>& str ,

size_type pos = 0) const;

Effects: Determines the lowest positionxpos , if possible, such that both of the following conditions
obtain:

— pos <= xpos andxpos < size() ;

— at(xpos) == str .at(I) for some elementI of the string controlled bystr .
Returns: xpos if the function can determine such a value forxpos . Otherwise, returnsnpos .
Notes: Usestraits::eq() .

size_type
find_first_of(const charT* s, size_type pos , size_type n) const;

Returns: find_first_of(basic_string<charT,traits,Allocator>(s, n), pos) .

size_type find_first_of(const charT* s, size_type pos = 0) const;

Returns: find_first_of(basic_string<charT,traits,Allocator>(s), pos) .
Notes: Usestraits::length() .

size_type find_first_of(charT c, size_type pos = 0) const;

Returns: find_first_of(basic_string<charT,traits,Allocator>(c), pos) .

[lib.string::find.last.of] 21.1.1.9.4basic_string::find_last_of

size_type
find_last_of(const basic_string<charT,traits,Allocator>& str ,

size_type pos = npos) const;

Effects: Determines the highest positionxpos , if possible, such that both of the following conditions
obtain:

— xpos <= pos andpos < size() ;

— at(xpos) == str .at(I) for some elementI of the string controlled bystr .
Returns: xpos if the function can determine such a value forxpos . Otherwise, returnsnpos .
Notes: Usestraits::eq() .

size_type find_last_of(const charT* s, size_type pos , size_type n) const;

Returns: find_last_of(basic_string<charT,traits,Allocator>(s, n), pos) .

size_type find_last_of(const charT* s, size_type pos = npos) const;

Returns: find_last_of(basic_string<charT,traits,Allocator>(s), pos) .
Notes: Usestraits::length() .

size_type find_last_of(charT c, size_type pos = npos) const;

21– 20 Strings library DRAFT: 28 April 1995 21.1.1.9.4
basic_string::find_last_of

Returns: find_last_of(basic_string<charT,traits,Allocator>(c), pos) .

[lib.string::find.first.not.of] 21.1.1.9.5basic_string::find_first_not_of

size_type
find_first_not_of(const basic_string<charT,traits,Allocator>& str ,

size_type pos = 0) const;

Effects: Determines the lowest positionxpos , if possible, such that both of the following conditions
obtain:

— pos <= xpos andxpos < size() ;

— at(xpos) == str .at(I) for no elementI of the string controlled bystr .
Returns: xpos if the function can determine such a value forxpos . Otherwise, returnsnpos .
Notes: Usestraits::eq() .

size_type
find_first_not_of(const charT* s, size_type pos , size_type n) const;

Returns: find_first_not_of(basic_string<charT,traits,Allocator>(s, n), pos) .

size_type find_first_not_of(const charT* s, size_type pos = 0) const;

Returns: find_first_not_of(basic_string<charT,traits,Allocator>(s), pos) .
Notes: Usestraits::length() .

size_type find_first_not_of(charT c, size_type pos = 0) const;

Returns: find_first_not_of(basic_string<charT,traits,Allocator>(c), pos) .

[lib.string::find.last.not.of] 21.1.1.9.6basic_string::find_last_not_of

size_type
find_last_not_of(const basic_string<charT,traits,Allocator>& str ,

size_type pos = npos) const;

Effects: Determines the highest positionxpos , if possible, such that both of the following conditions
obtain:

— xpos <= pos andpos < size() ;

— at(xpos) == str .at(I)) for no elementI of the string controlled bystr .
Returns: xpos if the function can determine such a value forxpos . Otherwise, returnsnpos .
Notes: Usestraits::eq() .

size_type find_last_not_of(const charT* s, size_type pos ,
size_type n) const;

Returns: find_last_not_of(basic_string<charT,traits,Allocator>(s, n), pos) .

size_type find_last_not_of(const charT* s, size_type pos = npos) const;

Returns: find_last_not_of(basic_string<charT,traits,Allocator>(s), pos) .

21.1.1.9.6 DRAFT: 28 April 1995 Strings library 21– 21
basic_string::find_last_not_of

Notes: Usestraits::length() .

size_type find_last_not_of(charT c, size_type pos = npos) const;

Returns: find_last_not_of(basic_string<charT,traits,Allocator>(c), pos) .

[lib.string::substr] 21.1.1.9.7basic_string::substr

basic_string<charT,traits,Allocator>
substr(size_type pos = 0, size_type n = npos) const;

Requires: pos <= size()
Throws: out_of_range if pos > size() .
Effects: Determines the effective lengthrlen of the string to copy as the smaller ofn andsize() -

pos .
Returns: basic_string<charT,traits,Allocator>(data()+ pos , rlen) .

[lib.string::compare] 21.1.1.9.8basic_string::compare

int compare(const basic_string<charT,traits,Allocator>& str ,
size_type pos = 0, size_type n = npos)

Requires: pos <= size()
Throws: out_of_range if pos > size() .
Effects: Determines the effective lengthrlen of the strings to compare as the smallest ofn, size() -

pos , and str .size() . The function then compares the two strings by calling
traits::compare(data()+ pos , str .data(), rlen) .

Returns: the nonzero result if the result of the comparison is nonzero. Otherwise, returns a value as indi-
cated in Table 44:

Table 44—compare() results
_ ___

Condition Return Value_ __ ___
size()- pos < str .size() < 0
size()- pos == str .size() 0
size()- pos > str.size() > 0_ ___

Notes: Usestraits::compare() .

int compare(const charT* s, size_type pos , size_type n) const;

Returns: compare(basic_string<charT,traits,Allocator>(s, n), pos) .
Notes: Usestraits::compare() .

int compare(const charT* s, size_type pos = 0) const;

Returns: compare(basic_string<charT,traits,Allocator>(s), pos) .
Notes: Usestraits::length() andtraits::compare() .

21– 22 Strings library DRAFT: 28 April 1995 21.1.1.10
basic_string non-member functions

[lib.string.nonmembers] 21.1.1.10basic_string non-member functions

[lib.string::op+] 21.1.1.10.1operator+

template<class charT, class traits, class Allocator>
basic_string<charT,traits,Allocator>

operator+(const basic_string<charT,traits,Allocator>& lhs ,
const basic_string<charT,traits,Allocator>& rhs);

Returns: lhs .append(rhs) .

template<class charT, class traits, class Allocator>
basic_string<charT,traits,Allocator>

operator+(const charT* lhs ,
const basic_string<charT,traits,Allocator>& rhs);

Returns: basic_string<charT,traits,Allocator>(lhs) + rhs .
Notes: Usestraits::length() .

template<class charT, class traits, class Allocator>
basic_string<charT,traits,Allocator>

operator+(charT lhs ,
const basic_string<charT,traits,Allocator>& rhs);

Returns: basic_string<charT,traits,Allocator>(lhs) + rhs .

template<class charT, class traits, class Allocator>
basic_string<charT,traits,Allocator>

operator+(const basic_string<charT,traits,Allocator>& lhs ,
const charT* rhs);

Returns: lhs + basic_string<charT,traits,Allocator>(rhs) .
Notes: Usestraits::length() .

template<class charT, class traits, class Allocator>
basic_string<charT,traits,Allocator>

operator+(const basic_string<charT,traits,Allocator>& lhs ,
charT rhs);

Returns: lhs + basic_string<charT,traits,Allocator>(rhs) .

[lib.string::operator==] 21.1.1.10.2operator==

template<class charT, class traits, class Allocator>
bool operator==(const basic_string<charT,traits,Allocator>& lhs ,

const basic_string<charT,traits,Allocator>& rhs);

Returns: lhs .compare(rhs) == 0 .

template<class charT, class traits, class Allocator>
bool operator==(const charT* lhs ,

const basic_string<charT,traits,Allocator>& rhs);

21.1.1.10.2operator== DRAFT: 28 April 1995 Strings library 21– 23

Returns: basic_string<charT,traits,Allocator>(lhs) == rhs .

template<class charT, class traits, class Allocator>
bool operator==(const basic_string<charT,traits,Allocator>& lhs ,

const charT* rhs);

Returns: lhs == basic_string<charT,traits,Allocator>(rhs) .
Notes: Usestraits::length() .

[lib.string::op!=] 21.1.1.10.3operator!=

template<class charT, class traits, class Allocator>
bool operator!=(const basic_string<charT,traits,Allocator>& lhs ,

const basic_string<charT,traits,Allocator>& rhs);

Returns: !(lhs == rhs) .

template<class charT, class traits, class Allocator>
bool operator!=(const charT* lhs ,

const basic_string<charT,traits,Allocator>& rhs);

Returns: basic_string<charT,traits,Allocator>(lhs) != rhs .

template<class charT, class traits, class Allocator>
bool operator!=(const basic_string<charT,traits,Allocator>& lhs ,

const charT* rhs);

Returns: lhs != basic_string<charT,traits,Allocator>(rhs) .
Notes: Usestraits::length() .

[lib.string::op <] 21.1.1.10.4operator<

template<class charT, class traits, class Allocator>
bool operator< (const basic_string<charT,traits,Allocator>& lhs ,

const basic_string<charT,traits,Allocator>& rhs);

Returns: lhs .compare(rhs) < 0 .

template<class charT, class traits, class Allocator>
bool operator< (const charT* lhs ,

const basic_string<charT,traits,Allocator>& rhs);

Returns: basic_string<charT,traits,Allocator>(lhs) < rhs .

template<class charT, class traits, class Allocator>
bool operator< (const basic_string<charT,traits,Allocator>& lhs ,

const charT* rhs);

Returns: lhs < basic_string<charT,traits,Allocator>(rhs) .

21– 24 Strings library DRAFT: 28 April 1995 21.1.1.10.5operator>

[lib.string::op >] 21.1.1.10.5operator>

template<class charT, class traits, class Allocator>
bool operator> (const basic_string<charT,traits,Allocator>& lhs ,

const basic_string<charT,traits,Allocator>& rhs);

Returns: lhs .compare(rhs) > 0 .

template<class charT, class traits, class Allocator>
bool operator> (const charT* lhs ,

const basic_string<charT,traits,Allocator>& rhs);

Returns: basic_string<charT,traits,Allocator>(lhs) > rhs .

template<class charT, class traits, class Allocator>
bool operator> (const basic_string<charT,traits,Allocator>& lhs ,

const charT* rhs);

Returns: lhs > basic_string<charT,traits,Allocator>(rhs) .

[lib.string::op <=] 21.1.1.10.6operator<=

template<class charT, class traits, class Allocator>
bool operator<=(const basic_string<charT,traits,Allocator>& lhs ,

const basic_string<charT,traits,Allocator>& rhs);

Returns: lhs .compare(rhs) <= 0 .

template<class charT, class traits, class Allocator>
bool operator<=(const charT* lhs ,

const basic_string<charT,traits,Allocator>& rhs);

Returns: basic_string<charT,traits,Allocator>(lhs) <= rhs .

template<class charT, class traits, class Allocator>
bool operator<=(const basic_string<charT,traits,Allocator>& lhs ,

const charT* rhs);

Returns: lhs <= basic_string<charT,traits,Allocator>(rhs) .

[lib.string::op >=] 21.1.1.10.7operator>=

template<class charT, class traits, class Allocator>
bool operator>=(const basic_string<charT,traits,Allocator>& lhs ,

const basic_string<charT,traits,Allocator>& rhs);

Returns: lhs .compare(rhs) >= 0 .

template<class charT, class traits, class Allocator>
bool operator>=(const charT* lhs ,

const basic_string<charT,traits,Allocator>& rhs);

Returns: basic_string<charT,traits,Allocator>(lhs) >= rhs .

21.1.1.10.7operator>= DRAFT: 28 April 1995 Strings library 21– 25

template<class charT, class traits, class Allocator>
bool operator>=(const basic_string<charT,traits,Allocator>& lhs ,

const charT* rhs);

Returns: lhs <= basic_string<charT,traits,Allocator>(rhs) .

21.1.1.10.8 Inserters and extractors

template<class charT, class traits, class Allocator>
basic_istream<charT>&

operator>>(basic_istream<charT>& is ,
basic_string<charT,traits,Allocator>& str);

Notes: Usestraits::char_in andis_del() .

template<class charT, class traits, class Allocator>
basic_ostream<charT>&

operator<<(basic_ostream<charT>& os ,
const basic_string<charT,traits,Allocator>& str);

Notes: Usestraits::char_out() .

template<class charT, class IS_traits, class STR_traits,
class STR_Alloc>

basic_istream<charT,IS_traits>&
getline(basic_istream<charT,IS_traits>& is ,

basic_string<charT,STR_traits,STR_Alloc>& str ,
charT delim = IS_traits::newline());

Effects: An unformatted input function, extracts a line (as delimited bydelim) from is into str .
The string is initially made empty by callingstr .remove(0) . Each extracted characterc is
appended as if by callingstr .append(c) . Characters are extracted and appended until any of the
following occurs:

— npos - 1 characters are appended (in which case the function callsis .setstate(failbit) ,
which may throwios_base::failure (27.4.4.3)).

— end of file occurs on the input sequence (in which case the function callsis .setstate(eofbit) ,
which may throwios_base::failure (27.4.4.3)).

— c == delim for the next available input characterc (in which case the input character is extracted
from is , but not appended tostr).
If the function appends no characters, it callsis .setstate(failbit) , which may throw
ios_base::failure (27.4.4.3).

Returns: is .
Notes: UsesSTR_traits::char_in() .

[lib.string] 21.1.2 Classstring

namespace std {
struct string_char_traits<char> {

typedef char char_type;

21– 26 Strings library DRAFT: 28 April 1995 21.1.2 Classstring

static void assign(char& c1 , const char& c2);
static bool eq(const char& c1 , const char& c2);
static bool ne(const char& c1 , const char& c2);
static bool lt(const char& c1 , const char& c2);
static char eos();

static basic_istream<char>& char_in (basic_istream<char>& is , char& a);
static basic_ostream<char>& char_out(basic_ostream<char>& os , char a);
static bool is_del(char a); // characteristic function for delimiters

static int compare(const char* s1 , const char* s2 , size_t n);
static size_type length(const char* s);
static char* copy(char* s1 , const char* s2 , size_t n);

};

typedef basic_string<char> string;
}

[lib.string.traits.members] 21.1.3 string_char_traits<char> members

static void assign(char& c1 , const char& c2);

Effects: c1 = c2 .

static bool eq(const char& c1 , const char& c2);

Returns: c1 == c2 .

static bool ne(const char& c1 , const char& c2);

Returns: c1 != c2 .

static bool lt(const char& c1 , const char& c2);

Returns: c1 < c2 .

static char eos();

Returns: 0.

basic_istream<char>& char_in (basic_istream<char>& is , char& a);

Returns: is >> a .

basic_ostream<char>& char_out(basic_ostream<char>& os , char a);

Returns: os << a.

bool is_del(char a);

Returns: ::isspace(a) .

static int compare(const char* s1 , const char* s2 , size_t n);

21.1.3 DRAFT: 28 April 1995 Strings library 21– 27
string_char_traits<char> members

Returns: ::memcmp(s1 , s2 , n) .

static size_type length(const char* s);

Returns: ::strlen(s) .

static char* copy(char* s1 , const char* s2 , size_t n);

Returns: ::memcpy(s1 , s2 , n) .

[lib.wstring] 21.1.4 Classwstring

namespace std {
struct string_char_traits<wchar_t> {

typedef wchar_t char_type;
static void assign(wchar_t& c1 , const wchar_t& c2);
static bool eq(const wchar_t& c1 , const wchar_t& c2);
static bool ne(const wchar_t& c1 , const wchar_t& c2);
static bool lt(const wchar_t& c1 , const wchar_t& c2);
static wchar_t eos();

static basic_istream<wchar_t>& char_in (basic_istream<wchar_t>& is , wchar_t& a);
static basic_ostream<wchar_t>& char_out(basic_ostream<wchar_t>& os , wchar_t a);
static bool is_del(wchar_t a); // characteristic function for delimiters

static int compare(const wchar_t* s1 , const wchar_t* s2 , size_t n);
static size_type length(const wchar_t* s);
static wchar_t* copy(wchar_t* s1 , const wchar_t* s2 , size_t n);

};

typedef basic_string<wchar_t> wstring;
}

[lib.wstring.members] 21.1.5 string_char_traits<wchar_t> members

static void assign(wchar_t& c1 , const wchar_t& c2);

Effects: c1 = c2 .

static bool eq(const wchar_t& c1 , const wchar_t& c2);

Returns: c1 == c2 .

static bool ne(const wchar_t& c1 , const wchar_t& c2);

Returns: c1 != c2 .

static bool lt(const wchar_t& c1 , const wchar_t& c2);

Returns: c1 < c2 .

static wchar_t eos();

Returns: 0.

21– 28 Strings library DRAFT: 28 April 1995 21.1.5
string_char_traits<wchar_t> members

basic_istream<wchar_t>& char_in (basic_istream<wchar_t>& is , wchar_t& a);

Returns: is >> a .

basic_ostream<wchar_t>& char_out(basic_ostream<wchar_t>& os , wchar_t a);

Returns: os << a.

bool is_del(wchar_t a);

Returns: ::iswspace(a) .

static int compare(const wchar_t* s1 , const wchar_t* s2 , size_t n);

Returns: ::wmemcmp(s1 , s2 , n) .

static size_type length(const wchar_t* s);

Returns: ::wcslen(s) .

static wchar_t* copy(wchar_t* s1 , const wchar_t* s2 , size_t n);

Returns: ::wmemcpy(s1 , s2 , n) .

[lib.c.strings] 21.2 Null-terminated sequence utilities

1 Headers<cctype> , <cwctype> , <cstring> , <cwchar> , <cstdlib> (multibyte conversions), and
<ciso646> .

Table 44—Header<cctype> synopsis
_ __

Type Name(s)_ __
Functions:
isalnum isdigit isprint isupper tolower

isalpha isgraph ispunct isxdigit toupper

iscntrl islower isspace_ __

Table 44—Header<cwctype> synopsis

Type Name(s)___
Macro: WEOF <cwctype>___
Types: wctrans_t wctype_t wint_t <cwctype>___
Functions:
iswalnum iswctype iswlower iswspace towctrans wctrans

iswalpha iswdigit iswprint iswupper towlower wctype

iswcntrl iswgraph iswpunct iswxdigit towupper___

21.2 Null-terminated sequence utilities DRAFT: 28 April 1995 Strings library 21– 29

Table 44—Header<cstring> synopsis
_ __

Type Name(s)_ __
Macro: NULL <cstring>_ __
Type: size_type <cstring>_ __
Functions:
strcoll strlen strpbrk strtok

strcat strcpy strncat strrchr strxfrm

strchr strcspn strncmp strspn

strcmp strerror strncpy strstr_ __

Table 44—Header<cwchar> synopsis
_ ___

Type Name(s)_ ___
Macros: NULL <cwchar> WCHAR_MAX WCHAR_MIN WEOF <cwchar>_ ___
Types: mbstate_t wint_t <cwchar>_ ___
Functions:
btowc getwchar ungetwc wcscpy wcsrtombs wmemchr

fgetwc mbrlen vfwprintf wcscspn wcsspn wmemcmp

fgetws mbrtowc vswprintf wcsftime wcsstr wmemcpy

fputwc mbsinit vwprintf wcslen wcstod wmemmove

fputws mbsrtowcs wcrtomb wcsncat wcstok wmemset

fwide putwc wcscat wcsncmp wcstol wprintf

fwprintf putwchar wcschr wcsncpy wcstoul wscanf

fwscanf swprintf wcscmp wcspbrk wcsxfrm

getwc swscanf wcscoll wcsrchr wctob_ ___

Table 44—Header<cstdlib> synopsis
__

Type Name(s)__
Macros: MB_CUR_MAX__
Functions:
atol mblen strtod wctomb

atof mbstowcs strtol wcstombs

atoi mbtowc stroul__

2 The contents are the same as the Standard C library, with the following modifications:

3 None of the headers shall define the typewchar_t (2.8).

4 The function signaturestrchr(const char*, int) is replaced by the two declarations:

const char* strchr(const char* s, int c);
char* strchr(char* s, int c);

5 both of which have the same behavior as the original declaration.

6 The function signaturestrpbrk(const char*, const char*) is replaced by the two declara-
tions:

21– 30 Strings library DRAFT: 28 April 1995 21.2 Null-terminated sequence utilities

const char* strpbrk(const char* s1 , const char* s2);
char* strpbrk(char* s1 , const char* s2);

7 both of which have the same behavior as the original declaration.

8 The function signaturestrrchr(const char*, int) is replaced by the two declarations:

const char* strrchr(const char* s, int c);
char* strrchr(char* s, int c);

9 both of which have the same behavior as the original declaration.

10 The function signaturestrstr(const char*, const char*) is replaced by the two declarations:

const char* strstr(const char* s1 , const char* s2);
char* strstr(char* s1 , const char* s2);

11 both of which have the same behavior as the original declaration.

12 The function signaturememchr(const void*, int, size_t) is replaced by the two declarations:

const void* memchr(const void* s, int c, size_t n);
void* memchr(void* s, int c, size_t n);

13 both of which have the same behavior as the original declaration.

14 The function signaturewcschr(const wchar_t*, wchar_t) is replaced by the two declarations:

const wchar_t* wcschr(const wchar_t* s, wchar_t c);
wchar_t* wcschr(wchar_t* s, wchar_t c);

15 both of which have the same behavior as the original declaration.

16 The function signaturewcspbrk(const wchar_t*, const wchar_t*) is replaced by the two
declarations:

const wchar_t* wcspbrk(const wchar_t* s1 , const wchar_t* s2);
wchar_t* wcspbrk(wchar_t* s1 , const wchar_t* s2);

17 both of which have the same behavior as the original declaration.

18 The function signaturewcsrchr(const wchar_t*, wchar_t) is replaced by the two declarations:

const wchar_t* wcsrchr(const wchar_t* s, wchar_t c);
wchar_t* wcsrchr(wchar_t* s, wchar_t c);

19 both of which have the same behavior as the original declaration.

20 The function signaturewcswcs(const wchar_t*, const wchar_t*) is replaced by the two dec-
larations:

const wchar_t* wcsstr(const wchar_t* s1 , const wchar_t* s2);
wchar_t* wcsstr(wchar_t* s1 , const wchar_t* s2);

21.2 Null-terminated sequence utilities DRAFT: 28 April 1995 Strings library 21– 31

21 both of which have the same behavior as the original declaration.

22 The function signaturewmemchr(const wwchar_t_t*, int, size_t) is replaced by the two
declarations:

const wchar_t* wmemchr(const wchar_t* s, wchar_t c, size_t n);
wchar_t* wmemchr(wchar_t* s, wchar_t c, size_t n);

23 both of which have the same behavior as the original declaration.

SEE ALSO: ISO C subclauses 7.3, 7.10.7, 7.10.8, and 7.11. Amendment 1 subclauses 4.4, 4.5, and 4.6.

_ ___ ___

22 Localization library [lib.localization]
_ ___ ___

1 This clause describes components that C + + programs may use to encapsulate (and therefore be more port-
able when confronting) cultural differences. The locale facility includes internationalization support for
character classification and string collation, numeric, monetary, and date/time formatting and parsing, and
message retrieval.

2 The following subclauses describe components for locales themselves, the standard facets, and facilities
from the ISO C library, as summarized in Table 45:

Table 45—Localization library summary
_ ___

Subclause Header(s)_ __ ___
22.1 Locales
22.2 Standardlocale Categories

<locale>
_ ___
22.3 C library locales <clocale>_ ___

[lib.locales] 22.1 Locales

Header<locale> synopsis

#include <limits>
#include <string>
#include <iosfwd>
#include <stdexcept> // for runtime_error
#include <vector> // for vector<char>

namespace std {
// subclause 22.1.1, locale:

class locale;
template <class charT, class Traits>

basic_ostream<charT,Traits>&
operator<<(basic_ostream<charT,Traits>& s, const locale& loc);

template <class charT, class Traits>
basic_istream<charT,Traits>&

operator>>(basic_istream<charT,Traits>& s, locale& loc);

22– 2 Localization library DRAFT: 28 April 1995 22.1 Locales

// subclause 22.1.2, convenience interfaces:
template <class charT> bool isspace (charT c, const locale& loc) const;
template <class charT> bool isprint (charT c, const locale& loc) const;
template <class charT> bool iscntrl (charT c, const locale& loc) const;
template <class charT> bool isupper (charT c, const locale& loc) const;
template <class charT> bool islower (charT c, const locale& loc) const;
template <class charT> bool isalpha (charT c, const locale& loc) const;
template <class charT> bool isdigit (charT c, const locale& loc) const;
template <class charT> bool ispunct (charT c, const locale& loc) const;
template <class charT> bool isxdigit(charT c, const locale& loc) const;
template <class charT> bool isalnum (charT c, const locale& loc) const;
template <class charT> bool isgraph (charT c, const locale& loc) const;
template <class charT> charT toupper(charT c, const locale& loc) const;
template <class charT> charT tolower(charT c, const locale& loc) const;

// subclauses 22.2.1 and 22.2.1.3, ctype:
class ctype_base;
template <class charT> class ctype;

class ctype<char>; // specialization
template <class charT> class ctype_byname;

class ctype_byname<char>; // specialization
class codecvt_base;
template <class fromT, class toT, class stateT> class codecvt;
template <class fromT, class toT, class stateT> class codecvt_byname;

// subclauses 22.2.2 and 22.2.3, numeric:
template <class charT, class InputIterator> class num_get;
template <class charT, class OutputIterator> class num_put;
template <class charT> class numpunct;
template <class charT> class numpunct_byname;

// subclause 22.2.4, collation:
template <class charT> class collate;
template <class charT> class collate_byname;

// subclause 22.2.5, date and time:
class time_base;
template <class charT, class InputIterator> class time_get;
template <class charT, class InputIterator> class time_get_byname;
template <class charT, class OutputIterator> class time_put;
template <class charT, class OutputIterator> class time_put_byname;

// subclauses 22.2.6, money:
class money_base;
template <class charT, class InputIterator> class money_get;
template <class charT, class OutputIterator> class money_put;
template <class charT> class moneypunct;
template <class charT> class moneypunct_byname;

// subclause 22.2.7, message retrieval:
class messages_base;
template <class charT> class messages;
template <class charT> class messages_byname;

}

1 The header<locale> defines classes and declares functions that encapsulate and manipulate the informa-
tion peculiar to a locale.173)

173)In this subclause, the type namestruct tm is an incomplete type that is defined in<ctime> .

22.1.1 Classlocale DRAFT: 28 April 1995 Localization library 22– 3

[lib.locale] 22.1.1 Classlocale

namespace std {
class locale {
public:
// types:

class facet;
class id;
typedef unsigned category;
static const category // values assigned here are for exposition only

none = 0,
collate = 0x010, ctype = 0x020,
monetary = 0x040, numeric = 0x080,
time = 0x100, messages = 0x200,
all = collate | ctype | monetary | numeric | time | messages;

// construct/copy/destroy:
locale();
locale(const locale& other);
explicit locale(const char* std_name);
locale(const locale& other , const char* std_name , category);
template <class Facet> locale(const locale& other , Facet* f);
template <class Facet> locale(const locale& other , const locale& one);
locale(const locale& other , const locale& one , category);

~locale(); // non-virtual
const locale& operator=(const locale& other);

// locale operations:
template <class Facet> const Facet& use() const;
template <class Facet> bool has() const;
basic_string<char> name() const;

bool operator==(const locale& other) const;
bool operator!=(const locale& other) const;

template <class charT>
bool operator()(const basic_string<charT>& s1,

const basic_string<charT>& s2) const;

// global locale objects:
static locale global(const locale&);
static const locale& classic();
static locale transparent();

};
}

1 Classlocale implements a type-safe polymorphic set of facets, indexed by facettype. In other words, a
facet has a dual role: in one sense, it’s just a class interface; at the same time, it’s an index into a locale’s set
of facets.

2 Access to the facets of alocale is via two member function templates,locale::use<facet>() and
locale::has<facet>() .

3 [Example:An iostreamoperator<< might be implemented (and specialized, for simplicity of exposi-
tion) as:

22– 4 Localization library DRAFT: 28 April 1995 22.1.1 Classlocale

ostream& operator<<(ostream& s, double f)
{

if (s.opfx()) {
locale loc = s.getloc();
loc.template use< num_put<char> >().put(s, s, loc, f);

}
s.osfx();
return s;

}

—end example]

4 In the call toloc.template use<Facet>() , the type argument chooses a facet, making available all
members of the named type. IfFacet is not present in a locale (or, failing that, in theglobal locale), it
throws the standard exceptionbad_cast . A C + + program can check if a locale implements a particular
facet with the memberhas<Facet>() . User-defined facets may be installed in a locale, and used identi-
cally as may standard facets (22.2.8).

5 All locale semantics are accessed viause<>() andhas<>() , with two exceptions:

— Convenient global interfaces are provided for traditionalctype functions such asisdigit() and
isspace() , so that given a locale objectloc a C + + program can callisspace(c, loc) .

— A member operator templateoperator()(basic_string<C>&, basic_string<C>&) is
provided so that a locale may be used as a predicate argument to the standard collections, to collate
strings.

6 [Note:The purpose of this is to ease the conversion of existing extractors (27.6.1.2).—end note]

7 A locale which does not implement a facet delegates to the global locale in effect at the time that instantia-
tion of use<>() is first called on that facet (22.1.1.5).

8 An instance oflocale is immutable; once a facet reference is obtained from it, that reference remains
usable as long as the locale value itself exists. The effect of imbuing on a stream (27.4.3, 27.4.4), or
installing as the global locale, the result of static memberlocale::transparent() (or any locale
with similar behavior) is unspecified.

9 Caching results from calls to locale facet member functions during calls to iostream inserters and extractors,
and in streambufs between calls tobasic_streambuf::imbue , is explicitly supported (27.5.2).174)

10 A locale constructed from a name string (such as"POSIX"), or from parts of two named locales, or
read from a stream, has a name; all others do not. Named locales may be compared for equality; an
unnamed locale is equal only to (copies of) itself. For an unnamed locale,locale::name() returns the
string“* ”.

[lib.locale.types] 22.1.1.1 locale types

[lib.locale.category] 22.1.1.1.1 Typelocale::category

typedef unsigned category;

1 Valid category values include 0 and thelocale member bitmask elementscollate , ctype ,
monetary , numeric , time , andmessages . In addition,locale memberall is defined such that
the expression

(collate | ctype | monetary | numeric | time | messages) == all

is true . Further, the result of applying operators& and| to any two valid values is itself valid.

174)This implies that member functions of iostream classes cannot safely callimbue() themselves, except as specified elsewhere.

22.1.1.1.1 Typelocale::category DRAFT: 28 April 1995 Localization library 22– 5

2 locale member functions expecting acategory argument require either a validcategory value or
one of the constantsLC_CTYPEetc., defined in<cctype> . Such acategory value identifies a set of
locale categories. Each locale category, in turn, identifies a set of locale facets, as shown in Table 46:

Table 46—Locale Category Facets
_ ___

Category Includes Facets_ __ ___
collate collate<char>, collate<wchar_t>_ ___
ctype ctype<char>, ctype<wchar_t>

codecvt<char,wchar_t,mbstate_t>,
codecvt<wchar_t,char,mbstate_t>_ ___

monetary moneypunct<char>, moneypunct<wchar_t>
moneypunct<char,true>, moneypunct<wchar_t,true>,
money_get<char,InputIterator>,
money_get<wchar_t,InputIterator>,
money_put<char,OutputIterator>,
money_put<wchar_t,OutputIterator>_ ___

numeric numpunct<char>, numpunct<wchar_t>,
num_get<C,InputIterator>, num_put<C,OutputIterator>_ ___

time time_get<char,InputIterator>,
time_put<wchar_t,OutputIterator>,
time_put<char,OutputIterator>,
time_put<wchar_t,OutputIterator>_ ___

messages messages<char>, messages<wchar_t>_ ___

3 An implementation is only required to provide instantiations for the facets identified as implementing a
category . For the facetsnum_get<> andnum_put<> the implementation provided must depend only
on the facetsnumpunct<> and ctype<> , instantiated on the same character type. Other facets are
allowed to depend on any other facet that is part of a standard category.

4 Eachlocale member function which takes acategory argument operates on the corresponding set of
facets. Those facets represented with a template parameterInputIterator or OutputIterator
indicate the set of all possible instantiations on parameters that satisfy the requirements of an Input Iterator
or an Output Iterator, respectively. Those facets represented with a template parameterC represent the set
of all possible instantiations on a parameter that satisfies the requirements for a character on which any of
the iostream components can be instantiated.

5 In declarations of facets, a template formal parameter with nameInputIterator or
OutputIterator indicates that instantiations depend only on the semantics specified for an Input Itera-
tor or an Output Iterator as defined in 24.1.

[lib.locale.facet] 22.1.1.1.2 Classlocale::facet

namespace std {
class locale::facet {
protected:

explicit facet(size_t refs = 0);
virtual ~facet();

private:
facet(const facet&); // not defined
void operator=(const facet&); // not defined

};
}

22– 6 Localization library DRAFT: 28 April 1995 22.1.1.1.2 Classlocale::facet

1 Classfacet is the base class for locale feature sets. A class is afacetif it is publicly derived from another
facet, or if it is a class derived fromlocale::facet and containing a declaration as follows:

static ::std::locale::id id;

Template parameters in this Clause which must be facets are those namedFacet in declarations. A pro-
gram that passes a type that isnot a facet, as an (explicit or deduced) template parameter to a locale func-
tion expecting a facet, is ill-formed.

2 Therefs argument to the constructor is used for lifetime management.

— If (refs == 0) the facet’s lifetime is managed by the locale or locales it is incorporated into;

— if (refs == 1) its lifetime is until explicitly deleted.

3 Constructors of all facets defined in this Clause take such an argument and pass it along to theirfacet
base class constructor. All one-argument constructors defined in this clause areexplicit, preventing their
participation in automatic conversions.

4 For some standard facets a standard“..._byname” class, derived from it, implements the semantics equiva-
lent to that facet of the locale constructed bylocale(const char*) . Each such facet provides a con-
structor that takes aconst char* argument, which names the locale, and arefs argument, which is
passed to the base class constructor. If there is no“..._byname” version of a facet, the base class imple-
ments such semantics itself, sometimes with the help of other facets obtained via alocale argument.

[lib.locale.id] 22.1.1.1.3 Classlocale::id

namespace std {
class locale::id {
public:

id();
private:

void operator=(const id&); // not defined
id(const id&); // not defined

};
}

1 Identification of a locale facet interface, used as an index for lookup and to encapsulate initialization.

2 [Note:Because facets are used by iostreams, potentially while static constructors are running, their initial-
ization cannot depend on programmed static initialization.175) —end note]

[lib.locale.cons] 22.1.1.2 locale constructors and destructor

locale();

1 Default constructor: a snapshot of the current global locale.
Effects: Constructs a locale instance whose value is a snapshot of the current global locale state as set by

locale::global(locale&) or the C functionsetlocale() . This constructor is commonly
used as the default value for arguments of functions that take alocale argument.

locale(const locale& other);

Effects: Constructs a locale which is a copy ofother .

175)One way to do this is forlocale to initialize theid member the first time an instance of the facet is installed into a locale. This
depends only on static storage being zero before constructors run (3.6.2).

22.1.1.2 DRAFT: 28 April 1995 Localization library 22– 7
locale constructors and destructor

const locale& operator=(const locale& other);

Effects: Creates a copy ofother , replacing the current value.
Returns: *this

explicit locale(const char* std_name);

Effects: Constructs a locale using standard C locale names, e.g."POSIX" . The resulting locale imple-
ments semantics defined to be associated with that name.

Requires: The set of valid string argument values is"C" , "" , and any implementation-defined values.

locale(const locale& other , const char* std_name , category);

Effects: Constructs a locale as a copy ofother except for the facets identified by thecategory argu-
ment, which instead implement the same semantics aslocale(std_name) .

Notes: The locale has a name if and only ifother has a name.

template <class Facet> locale(const locale& other , Facet* f);

Effects: Constructs a locale incorporating all facets from the first argument except that of typeFacet , and
installs the second argument as the remaining facet.

Notes: The resulting locale has no name.

template <class Facet> locale(const locale& other , const locale& one);

Effects: Constructs a locale incorporating all facets from the first argument except that identified by
Facet , and that facet from the second argument instead.

Throws: runtime_error if one .template has<Facet>() is false .
Notes: The resulting locale has no name.

locale(const locale& other , const locale& one , category cats);

Effects: Constructs a locale incorporating all facets from the first argument except those that implement
cats , which are instead incorporated from the second argument.

Notes: The resulting locale has a name if and only if the first two arguments have names.

~locale();

2 A non-virtual destructor.

[lib.locale.members] 22.1.1.3 locale members

template <class Facet> const Facet& use() const;

1 Get a reference to a facet of a locale.
Effects: If the requestedFacet is not present in*this , but is present in the current global locale, returns

the global locale’s instance ofFacet . Because locale objects areimmutable, subsequent calls to
use<Facet>() return the same object, regardless of changes to the global locale.176)

176)The only exception to this rule is the locale returned bylocale::transparent() ; it always returns theFacet found in the
global locale at the time of each call.

22– 8 Localization library DRAFT: 28 April 1995 22.1.1.3 locale members

Throws: bad_cast if (this->template has<Facet>() || locale().template
has<Facet>()) is false .

Returns: A reference to the requested facet.
Notes: The result is guaranteed bylocale ’s value semantics to last as long as the value of*this .

template <class Facet> bool has() const;

Returns: An indication whether the facet requested is present in*this . If use<Facet>() has already
been called successfully, returnstrue .

Notes: locale::transparent().template has<Facet>() always returnsfalse .

basic_string<char> name() const;

Returns: The name of*this , if it has one; otherwise, the string"*" .

[lib.locale.operators] 22.1.1.4 locale operators

bool operator==(const locale& other) const;

Returns: true if both arguments are the same locale, or one is a copy of the other, or each has a name
and the names are identical;false otherwise.

bool operator!=(const locale& other) const;

Returns: The result of the expression:!(*this == other)

template <class charT>
bool operator()(const basic_string<charT>& s1 ,

const basic_string<charT>& s2) const;

Effects: Compares two strings according to thecollate<charT> facet.
Notes: This member operator template (and thereforelocale itself) satisfies requirements for a compara-

tor predicate template argument (25) applied to strings.
Returns: The result of the following expression:

use< collate<charT> >().compare(s1 .data(), s1 .data()+ s1 .size(),
s2 .data(), s2 .data()+ s2 .size()) < 0;

1 [Example:A vector of stringsv can be collated according to collation rules in localeloc simply by
(25.3.1, 23.2.5):

std::sort(v.begin(), v.end(), loc);

—end example]

template <class charT, class Traits>
basic_ostream<charT,Traits>&

operator<<(basic_ostream<charT,Traits>& s, const locale& loc);

2 The regular stream output operator for locales (27.6.2.4).
Effects: s << loc .name() << endl .
Returns: The output stream arguments .

22.1.1.4 locale operators DRAFT: 28 April 1995 Localization library 22– 9

template <class charT, class Traits>
basic_istream<charT,Traits>&

operator>>(basic_istream<charT,Traits>& s, loc& loc);

3 The regular stream input operator for locales (27.6.1.2).
Effects: Read a line into a string and construct a locale from it. If either operation fails, indicates a failure

by calling s.setstate(ios_base::failbit) (which may throw ios_base::failure
(27.4.4.3), otherwise, assigns the constructedlocale object into the argumentloc .

Returns: s .

[lib.locale.statics] 22.1.1.5 locale static members

static locale global(const locale& loc);

1 Replaces::setlocale() .
Effects: Sets the global locale to its argument. Subsequent calls to the default constructor, and of other

library functions affected by the functionsetlocale() , use the localeloc until the next call to this
member orsetlocale() .

Returns: The previous global locale.

static const locale& classic();

2 The"C" locale.
Returns: A locale that implements the classic"C" locale semantics, equivalent to the value

locale("C") .
Notes: This locale, its facets, and their member functions, do not change with time.

static locale transparent();

3 The continuously updated global locale.
Returns: A locale which implements semantics that vary dynamically as the global locale is changed.
Notes: The effect of imbuing this locale into an iostreams component is unspecified (_lib.ios.members_).

[lib.locale.convenience] 22.1.2 Convenience interfaces

[lib.classification] 22.1.2.1 Character classification

template <class charT> bool isspace (charT c, const locale& loc) const;
template <class charT> bool isprint (charT c, const locale& loc) const;
template <class charT> bool iscntrl (charT c, const locale& loc) const;
template <class charT> bool isupper (charT c, const locale& loc) const;
template <class charT> bool islower (charT c, const locale& loc) const;
template <class charT> bool isalpha (charT c, const locale& loc) const;
template <class charT> bool isdigit (charT c, const locale& loc) const;
template <class charT> bool ispunct (charT c, const locale& loc) const;
template <class charT> bool isxdigit(charT c, const locale& loc) const;
template <class charT> bool isalnum (charT c, const locale& loc) const;
template <class charT> bool isgraph (charT c, const locale& loc) const;

1 Each of these functionsis F returns the result of the expression:

22– 10 Localization library DRAFT: 28 April 1995 22.1.2.1 Character classification

loc.template use< ctype<charT> >().is(ctype<charT>:: F, c)

whereF is thectype_mask value corresponding to that function (22.2.1).

[lib.conversions] 22.1.2.2 Character conversions

template <class charT> charT toupper(charT c, const locale& loc) const;

Returns: loc.template use<ctype<charT> >().toupper(c) .

template <class charT> charT tolower(charT c, const locale& loc) const;

Returns: loc.template use<ctype<charT> >().tolower(c) .

[lib.locale.categories] 22.2 Standardlocale categories

1 Each of the standard categories includes a family of facets. Some of these implement formatting or parsing,
intended for use by standard or users’ operators<< and>>. Those that take abasic_ios<charT>&
argument obey all formatting conventions specified for members of that class, includingwidth() and
fill() (27.4.3).

[lib.category.ctype] 22.2.1 Thectype category

namespace std {
class ctype_base {
public:

enum ctype_mask { // numeric values are for exposition only.
space=1<<0, print=1<<1, cntrl=1<<2, upper=1<<3, lower=1<<4,
alpha=1<<5, digit=1<<6, punct=1<<7, xdigit=1<<8,
alnum=alpha|digit, graph=alnum|punct

};
};

}

1 The typectype_mask is a bitmask type.

[lib.locale.ctype] 22.2.1.1 Template classctype

template <class charT>
class ctype : public locale::facet, public ctype_base {
public:

typedef charT char_type;
explicit ctype(size_t refs = 0);

bool is(ctype_mask mask, charT c) const;
const charT* is(const charT* low , const charT* high , ctype_mask* vec) const;
const charT* scan_is(ctype_mask mask,

const charT* low , const charT* high) const;
const charT* scan_not(ctype_mask mask,

const charT* low , const charT* high) const;
charT toupper(charT) const;
const charT* toupper(charT* low , const charT* high) const;
charT tolower(charT c) const;
const charT* tolower(charT* low , const charT* high) const;

22.2.1.1 Template classctype DRAFT: 28 April 1995 Localization library 22– 11

charT widen(char c) const;
const char* widen(const char* low , const char* high , charT* to) const;
char narrow(charT c, char dfault) const;
const charT* narrow(const charT* low , const charT*, char dfault ,

char* to) const;

static locale::id id;

protected:
~ctype(); // virtual

virtual bool do_is(ctype_mask mask, charT c) const;
virtual const charT* do_is(const charT* low , const charT* high ,

ctype_mask* vec) const;
virtual const char* do_scan_is(ctype_mask mask,

const charT* low , const charT* high) const;
virtual const char* do_scan_not(ctype_mask mask,

const charT* low , const charT* high) const;
virtual charT do_toupper(charT) const;
virtual const charT* do_toupper(charT* low , const charT* high) const;
virtual charT do_tolower(charT) const;
virtual const charT* do_tolower(charT* low , const charT* high) const;
virtual charT do_widen(char) const;
virtual const char* do_widen(const char* low , const char* high ,

charT* dest) const;
virtual char do_narrow(charT, char dfault) const;
virtual const charT* do_narrow(const charT* low , const charT* high ,

char dfault , char* dest) const;
};

1 Classctype encapsulates the C library<cctype> features. istream members are required to use
ctype<> for character classing during input parsing.

2 The base class implementation implements character classing appropriate to the implementation’s native
character set.

[lib.locale.ctype.members] 22.2.1.1.1ctype members

bool is(ctype_mask mask, charT c) const;
const charT* is(const charT* low , const charT* high ,

ctype_mask* vec) const;

Returns: do_is(mask, c) or do_is(low , high , vec)

const charT* scan_is(ctype_mask mask,
const charT* low , const charT* high) const;

Returns: do_scan_is(mask, low , high)

const charT* scan_not(ctype_mask mask,
const charT* low , const charT* high) const;

Returns: do_scan_not(mask, low , high)

charT toupper(charT) const;
const charT* toupper(charT* low , const charT* high) const;

22– 12 Localization library DRAFT: 28 April 1995 22.2.1.1.1ctype members

Returns: do_toupper(c) or do_toupper(low , high)

charT tolower(charT c) const;
const charT* tolower(charT* low , const charT* high) const;

Returns: do_tolower(c) or do_tolower(low , high)

charT widen(char c) const;
const char* widen(const char* low , const char* high , charT* to) const;

Returns: do_widen(c) or do_widen(low , high , to)

char narrow(charT c, char dfault) const;
const charT* narrow(const charT* low , const charT*, char dfault ,

char* to) const;

Returns: do_narrow(c, dfault) or do_narrow(low , high , dfault , to)

[lib.locale.ctype.virtuals] 22.2.1.1.2ctype virtual functions

bool do_is(ctype_mask mask, charT c) const;
const charT* do_is(const charT* low , const charT* high ,

ctype_mask* vec) const;

Effects: Classifies a character or sequence of characters. For each argument character, identifies a value
Mof typectype_mask The first form returns the result of the expression(M & mask) != 0 . The
second form simply placesMfor all * p where(low <=p && p<high) , intovec [p- low] .

Returns: The first form returnstrue if the character has the characteristics specified. The second form
returnslow .

const char* do_scan_is(ctype_mask mask,
const charT* low , const charT* high) const;

Effects: Locates a character in a buffer that conforms to a classificationmask.
Returns: The smallest pointerp in the range[low , high) such thatis(* p) would returntrue ; oth-

erwise, returnshigh .

const char* do_scan_not(ctype_mask mask,
const charT* low , const charT* high) const;

Effects: Locates a character in a buffer that fails to conform to a classificationmask.
Returns: The smallest pointerp, if any, in the range[low , high) such thatis(* p) would return

false ; otherwise, returnshigh .

charT do_toupper(charT c) const;
const charT* do_toupper(charT* low , const charT* high) const;

Effects: Converts a character or characters to upper case.
Effects: The second form replaces each character* p in the range[low , high) for which a correspond-

ing upper-case character exists, with that character.
Returns: The first form returns the corresponding upper-case character if it is known to exist, or its argu-

ment if not. The second form returnshigh .

22.2.1.1.2ctype virtual functions DRAFT: 28 April 1995 Localization library 22 – 13

charT do_tolower(charT c) const;
const charT* do_tolower(charT* low , const charT* high) const;

Effects: Converts a character or characters to upper case.
Effects: The second form replaces each character* p in the range[low , high) and for which a corre-

sponding lower-case character exists, with that character.
Returns: The first form returns the corresponding lower-case character if it is known to exist, or its argu-

ment if not. The second form returnshigh .

charT do_widen(char c) const;
const char* do_widen(const char* low , const char* high ,

charT* dest) const;

Effects: Applies the simplest reasonable transformation from achar value or sequence ofchar values to
the correspondingcharT value or values. The only characters for which unique transformations are
required are the digits, alphabetic characters,’-’ , ’+’ , newline, and space.
For any namedctype category with actype<charT> facetctw and validctype_mask valueM,
however,(is(M, c) || ! ctw .is(M, do_widen(c))) is true .177)

The second form transforms each character* p in the range[low , high) , placing the result in
dest [p- low] .

Returns: The first form returns the transformed value. The second form returnshigh

char do_narrow(charT c, char dfault) const;
const charT* do_narrow(const charT* low , const charT* high ,

char dfault , char* dest) const;

Effects: Applies the simplest reasonable transformation from acharT value or sequence ofcharT val-
ues to the correspondingchar value or values. The only characters for which unique transformations
are required are the digits, alphabetic characters,’-’ , ’+’ , newline, and space.
For any namedctype category with actype<char> facetctc however, and validctype_mask
valueM, (is(M, c) || ! ctc .is(M, do_narrow(c))) is true . In addition, for any digit
characterc , the expression(do_narrow(c)-’0’) evaluates to the digit value of the character.

Effects: The second form transforms each character* p in the range[low , high) , placing the result (or
dfault if no simple transformation is readly available) indest [p- low] .

Returns: The first form returns the transformed value; ordfault if no mapping is readily available. The
second form returnshigh .

[lib.locale.ctype.byname] 22.2.1.2 Template classctype_byname

template <class charT>
class ctype_byname : public ctype<charT> {
public:

explicit ctype_byname(const char*, size_t refs = 0);
protected:

~ctype_byname(); // virtual
virtual char do_toupper(char) const;
virtual const char* do_toupper(char* low , const char* high) const;
virtual char do_tolower(char) const;
virtual const char* do_tolower(char* low , const char* high) const;

};
}

177)In other words, the transformed character is not a member of any character classification thatc is not also a member of.

22– 14 Localization library DRAFT: 28 April 1995 22.2.1.2 Template classctype_byname

1 This class is specialized for at leastchar andwchar_t .

[lib.facet.ctype.special] 22.2.1.3ctype specializations

namespace std {
class ctype<char> : public locale::facet, public ctype_base {
public:

typedef char char_type;

explicit ctype(const ctype_mask* tab = 0, bool del = false,
size_t refs = 0);

bool is(ctype_mask mask, char c) const;
const char* is(const char* low , const char* high , ctype_mask* vec) const;
const char* scan_is (ctype_mask mask,

const char* low , const char* high) const;
const char* scan_not(ctype_mask mask,

const char* low , const char* high) const;

char toupper(char c) const;
const char* toupper(char* low , const char* high) const;
char tolower(char c) const;
const char* tolower(char* low , const char* high) const;

char widen(char c) const;
const char* widen(const char* low , const char* high , char* to) const;
char narrow(char c, char /*dfault*/) const;
const char* narrow(const char* low , const char* high , char /*dfault*/ ,

char* to) const;

static locale::id id;

protected:
const ctype_mask* const table_;
static const ctype_mask classic_table_[numeric_limits<unsigned char>::max()+1];

~ctype(); // virtual
virtual char do_toupper(char) const;
virtual const char* do_toupper(char* low , const char* high) const;
virtual char do_tolower(char) const;
virtual const char* do_tolower(char* low , const char* high) const;

};
private:

bool delete_it_ // exposition only
}

1 A specializationctype<char> is provided so that the member functions on typechar can be imple-
mentedinline .178)

[lib.facet.ctype.char.dtor] 22.2.1.3.1ctype<char> destructor

~ctype();

Effects: if (delete_it_) delete[] table_;

178)Only thechar (not unsigned char andsigned char) form is provided. The specialization is specified in the standard,
and not left as an implementation detail, because it affects the derivation interface forctype<char> .

22.2.1.3.2ctype<char> members DRAFT: 28 April 1995 Localization library 22– 15

[lib.facet.ctype.char.members] 22.2.1.3.2ctype<char> members

explicit ctype(const ctype_mask* tab = 0, bool del = false,
size_t refs = 0);

Effects: Passes itsrefs argument to its base class constructor, initializes protected membertable_ with
the tab argument if nonzero, or the static valueclassic_table_ otherwise, and initializes the protected
memberdelete_it_ to (tab && del) .

bool is(ctype_mask mask, char c) const;
const char* is(const char* low , const char* high ,

ctype_mask* vec) const;

Effects: The second form, for all* p in the range [low , high) , assignsvec [p- low] to
table_[(unsigned char)* p] .

Returns: The first form returnstable_[(unsigned char)c] & mask ; the second form returnslow .

const char* scan_is(ctype_mask mask,
const char* low , const char* high) const;

Returns: The smallestp in the range[low , high) such that(table[(unsigned char) * p] &
mask) == true .

const char* scan_not(ctype_mask mask,
const char* low , const char* high) const;

Returns: The smallestp in the range[low , high) such that(table[(unsigned char) * p] &
mask) == false .

char toupper(char c) const;
const char* toupper(char* low , const char* high) const;

Returns: do_toupper(c) or do_toupper(low , high)

char tolower(char c) const;
const char* tolower(char* low , const char* high) const;

Returns: do_tolower(c) or do_tolower(low , high)

char widen(char c) const;
const char* widen(const char* low , const char* high ,

char* to) const;

Effects: ::memcpy(to , low , high - low)
Returns: c or hi

char narrow(char c, char /*dfault*/) const;
const char* narrow(const char* low , const char* high ,

char /*dfault*/, char* to) const;

Effects: ::memcpy(to , low , high - low)
Returns: c or high .

22– 16 Localization library DRAFT: 28 April 1995 22.2.1.3.3
ctype<char> overridden virtual functions

[lib.facet.ctype.char.virtuals] 22.2.1.3.3ctype<char> overridden virtual functions

[lib.locale.codecvt] 22.2.1.4 Template classcodecvt

namespace std {
class codecvt_base {
public:

enum result { ok, partial, error, noconv };
};
template <class fromT, class toT, class stateT>
class codecvt : public locale::facet, public codecvt_base {
public:

typedef fromT from_type;
typedef toT to_type;
typedef stateT state_type;

explicit codecvt(size_t refs = 0)

result convert(stateT& state ,
const fromT* from , const fromT* from_end , const fromT*& from_next ,

toT* to , toT* to_limit , toT*& to_next) const;

static locale::id id;

protected:
~codecvt(); // virtual

virtual result do_convert(stateT& state ,
const fromT* from , const fromT* from_end , const fromT*& from_next ,

toT* to , toT* to_limit , toT*& to_next) const;
};

}

1 The classcodecvt<fromT,toT,stateT> is for use when converting from one codeset to another,
such as from wide characters to multibyte characters, or between wide character sets such as Unicode and
EUC. Instances of this facet are typically used in pairs instantiated oppositely.

2 ThestateT argument selects the pair of codesets being mapped between.

3 Implementations are required to provide instantiations for<char,wchar_t,mbstate_t> and
<wchar_t,char,mbstate_t> .

[lib.locale.codecvt.members] 22.2.1.4.1codecvt members

result convert(stateT& state ,
const fromT* from , const fromT* from_end , const fromT*& from_next ,

toT* to , toT* to_limit , toT*& to_next) const;

Returns: do_convert(state , from , from_end , from_next , to , to_limit , to_next);

[lib.locale.codecvt.virtuals] 22.2.1.4.2codecvt virtual functions

result do_convert(stateT& state ,
const fromT* from , const fromT* from_end , const fromT*& from_next ,

toT* to , toT* to_limit , toT*& to_next) const;

Preconditions: (from <=from_end && to <=to_end) well-defined andtrue ; state initialized,
if at the beginning of a sequence, or else equal to the result of converting the preceding characters in the
sequence.

22.2.1.4.2codecvt virtual functions DRAFT: 28 April 1995 Localization library 22 – 17

Effects: Translates characters in the range[from , from_end) , placing the results starting atto .
Stops when it runs out of characters to translate or space to put the results, or if it encounters a character
it cannot convert. It always leaves thefrom_next and to_next pointers pointing one beyond the
last character successfully converted.
If no translation is needed (returnsnoconv), setsto_next equal to argumentto .

Notes: Does not write into* to_limit . Its operations onstate are unspecified.
[Note: This argument can be used, for example, to maintain shift state, to specify conversion options
(such as count only), or to identify a cache of seek offsets.—end note]

Returns: An enumeration value, as summarized in Table 47:

Table 47—convert result values
_ ___

Value Meaning_ __ ___
ok completed the conversion
partial ran out of space in the destination
error encountered afrom_type character it could not convert
noconv no conversion was needed_ ___

[lib.locale.codecvt.byname] 22.2.1.5 Template classcodecvt_byname

namespace std {
template <class fromT, class toT, class stateT>
class codecvt_byname : public codecvt<fromT, toT, stateT> {
public:

explicit codecvt_byname(const char*, size_t refs = 0);
protected:

~codecvt_byname(); // virtual
virtual result do_convert(stateT& state ,

const fromT* from , const fromT* from_end , const fromT*& from_next ,
toT* to , toT* to_limit , toT*& to_next) const;

};
}

[lib.category.numeric] 22.2.2 The numeric category

1 The classesnum_get<> andnum_put<> handle numeric formatting and parsing. Virtual functions are
provided for several numeric types; implementations are allowed to delegate extraction of smaller types to
extractors for larger types, but are not required to do so.

2 The functions take alocale argument because their base class implementation relies onnumpunct<>
members to identify all numeric punctuation preferences, and onctype<> members to perform character
classification.

3 Extractor and inserter members of the standard iostreams are required to usenum_get<> and
num_put<> member functions for formatting and parsing (27.6.1.2.1, 27.6.2.4.1). Theios& argument is
used both for format control, and to report errors, as described in subclauses 27.4.4.3 and 27.4.3.2.

[lib.locale.num.get] 22.2.2.1 Template classnum_get

namespace std {
template <class charT, class InputIterator = istreambuf_iterator<charT> >
class num_get : public locale::facet {
public:

typedef charT char_type;
typedef InputIterator iter_type;
typedef basic_ios<charT> ios;

22– 18 Localization library DRAFT: 28 April 1995 22.2.2.1 Template classnum_get

explicit num_get(size_t refs = 0);

iter_type get(iter_type in , iter_type end , ios&,
const locale&, bool& v) const;

iter_type get(iter_type in , iter_type end , ios& ,
const locale&, long& v) const;

iter_type get(iter_type in , iter_type end , ios&,
const locale&, unsigned long& v) const;

iter_type get(iter_type in , iter_type end , ios&,
const locale&, double& v) const;

iter_type get(iter_type in , iter_type end , ios&,
const locale&, long double& v) const;

static locale::id id;

protected:
~num_get(); // virtual

virtual iter_type do_get(iter_type, iter_type, ios&, const locale&,
bool& v) const;

virtual iter_type do_get(iter_type, iter_type, ios&, const locale&,
long& v) const;

virtual iter_type do_get(iter_type, iter_type, ios&, const locale&,
unsigned long& v) const;

virtual iter_type do_get(iter_type, iter_type, ios&, const locale&,
double& v) const;

virtual iter_type do_get(iter_type, iter_type, ios&, const locale&,
long double& v) const;

};
}

1 The facetnum_get is used to parse numeric values from an input sequence such as an istream.

[lib.facet.num.get.members] 22.2.2.1.1num_get members

iter_type get(iter_type in , iter_type end , ios& str
const locale& loc , bool& val) const;

iter_type get(iter_type in , iter_type end , ios& str
const locale& loc , long& val) const;

iter_type get(iter_type in , iter_type end , ios& str
const locale& loc , unsigned long& val) const;

iter_type get(iter_type in , iter_type end , ios& str
const locale& loc , double& val) const;

iter_type get(iter_type in , iter_type end , ios& str
const locale& loc , long double& val) const;

Returns: do_get(in , end , str , loc , val) .

[lib.facet.num.get.virtuals] 22.2.2.1.2num_get virtual functions

22.2.2.1.2num_get virtual functions DRAFT: 28 April 1995 Localization library 22 – 19

iter_type do_get(iter_type in , iter_type end , ios& str
const locale& loc , bool& val) const;

iter_type do_get(iter_type in , iter_type end , ios& str
const locale& loc , long& val) const;

iter_type do_get(iter_type in , iter_type end , ios& str
const locale& loc , unsigned long& val) const;

iter_type do_get(iter_type in , iter_type end , ios& str
const locale& loc , double& val) const;

iter_type do_get(iter_type in , iter_type end , ios& str
const locale& loc , long double& val) const;

Effects: Reads characters fromin , interpreting them according tostr .flags() , loc .use
template< ctype<charT> > , and loc .use template< numpunct<charT> > .
do_get() ignores the value ofstr .rdstate() ; however, indicates failure by calling
str .setstate(failbit) (which may throwios_base::failure (27.4.4.3)).
If an error occurs,val is unchanged; otherwise it is set to the resulting value.

Notes: Digit group separators are optional; if present, digit grouping is checked after the entire number is
read. When reading a non-numeric boolean value, the names are compared exactly.

Returns: An iterator pointing one past the last character consumed as part of the converted field.

[lib.locale.num.put] 22.2.2.2 Template classnum_put

namespace std {
template <class charT, class OutputIterator = ostreambuf_iterator<charT> >
class num_put : public locale::facet {
public:

typedef charT char_type;
typedef OutputIterator iter_type;
typedef basic_ios<charT> ios;

explicit num_put(size_t refs = 0);

iter_type put(iter_type s, ios& f , const locale& loc , bool v) const;
iter_type put(iter_type s, ios& f , const locale& loc , long v) const;
iter_type put(iter_type s, ios& f , const locale& loc , unsigned long v) const;
iter_type put(iter_type s, ios& f , const locale& loc , double v) const;
iter_type put(iter_type s, ios& f , const locale& loc , long double v) const;

static locale::id id;

protected:
~num_put(); // virtual

virtual iter_type do_put(iter_type, ios&, const locale&, bool v) const;
virtual iter_type do_put(iter_type, ios&, const locale&, long v) const;
virtual iter_type do_put(iter_type, ios&, const locale&, unsigned long) const;
virtual iter_type do_put(iter_type, ios&, const locale&, double v) const;
virtual iter_type do_put(iter_type, ios&, const locale&, long double v) const;

};
}

1 The facetnum_put is used to format numeric values to a character sequence such as an ostream.

22– 20 Localization library DRAFT: 28 April 1995 22.2.2.2.1num_put members

[lib.facet.num.put.members] 22.2.2.2.1num_put members

iter_type put(iter_type out , ios& str
const locale& loc , bool val) const;

iter_type put(iter_type out , ios& str
const locale& loc , long val) const;

iter_type put(iter_type out , ios& str
const locale& loc , unsigned long val) const;

iter_type put(iter_type out , ios& str
const locale& loc , double val) const;

iter_type put(iter_type out , ios& str
const locale& loc , long double val) const;

Returns: do_put(out , str , loc , val) .

[lib.facet.num.put.virtuals] 22.2.2.2.2num_put virtual functions

iter_type do_put(iter_type out , ios& str
const locale& loc , bool val) const;

iter_type do_put(iter_type out , ios& str
const locale& loc , long val) const;

iter_type do_put(iter_type out , ios& str
const locale& loc , unsigned long val) const;

iter_type do_put(iter_type out , ios& str
const locale& loc , double val) const;

iter_type do_put(iter_type out , ios& str
const locale& loc , long double val) const;

Effects: Writes characters to the sequenceout , formattingval according tostr .flags() , loc .use
template< ctype<charT> > , and loc .use template< numpunct<charT> > . Inserts
digit group separators as specified bynumpunct<charT>::do_grouping .

Notes: do_put() ignores and does not change the result ofstr .rdstate() (27.4.3).
Returns: An iterator pointing immediately after the last character produced.

[lib.facet.numpunct] 22.2.3 The numeric punctuation facet

[lib.locale.numpunct] 22.2.3.1 Template classnumpunct

namespace std {
template <class charT>
class numpunct : public locale::facet {
public:

typedef charT char_type;
typedef basic_string<charT> string;

explicit numpunct(size_t refs = 0);

string decimal_point() const;
string thousands_sep() const;
vector<char> grouping() const;
string truename() const;
string falsename() const;

static locale::id id;

22.2.3.1 Template classnumpunct DRAFT: 28 April 1995 Localization library 22– 21

protected:
~numpunct(); // virtual

virtual string do_decimal_point() const;
virtual string do_thousands_sep() const;
virtual vector<char> do_grouping() const;
virtual string do_truename() const; // for bool
virtual string do_falsename() const; // for bool

};
}

1 numpunct<> specifies numeric punctuation. The base class provides classic“C” numeric formats, while
the“..._byname” version supports named locale (e.g. POSIX, X/Open) numeric formatting semantics.

2 The syntax for number formats is as follows, wheredigit represents the radix set specified by the
fmtflags argument value,whitespace is as determined by the facetctype<charT> (22.2.1.1), and
thousands-sep anddecimal-point are the results of correspondingnumpunct<charT> mem-
bers. Integer values have the format:

integer ::= [sign] units
sign ::= plusminus [whitespace]
plusminus ::= ’+’ | ’-’
units ::= digits [thousands-sep units]
digits ::= digit [digits]

and floating-point values have:

floatval ::= [sign] units [decimal-point [digits]] [e [sign] digits] |
[sign] decimal-point digits [e [sign] digits]

e ::= ’e’ | ’E’

where the number of digits betweenthousands-sep s is as specified bydo_grouping() . For pars-
ing, if thedigits portion contains no thousands-separators, no grouping constraint is applied.

[lib.facet.numpunct.members] 22.2.3.1.1numpunct members

string decimal_point() const;

Returns: do_decimal_point()

string thousands_sep() const;

Returns: thousands_sep()

vector<char> grouping() const;

Returns: do_grouping()

string truename() const;
string falsename() const;

Returns: do_truename() or do_falsename() , respectively.

[lib.facet.numpunct.virtuals] 22.2.3.1.2numpunct virtual functions

string do_decimal_point() const;

Returns: A basic_string<charT> for use as the decimal radix separator. If this is not a one-
character string,num_get<charT,InputIterator> is not required to recognize numbers format-
ted using it.

22– 22 Localization library DRAFT: 28 April 1995 22.2.3.1.2numpunct virtual functions

The base class implementation returns"." .

string do_thousands_sep() const;

Returns: A basic_string<charT> for use as the digit group separator. If this is longer than one
character,num_get<charT,InputIterator> is not required to recognize numbers formatted
with it.
The base class implementation returns the empty string.

vector<char> do_grouping() const;

Returns: A vector vec in which each elementvec [i] represents the number of digits in the group at
position i starting with 0 as the rightmost group. Ifvec .size() <= i , the number is the same as
group(i -1) ; if (i <0 || vec [i]<=0) , the size of the digit group is unlimited.
The base class implementation returns the empty vector.

string do_truename() const;
string do_falsename() const;

Returns: A string representing the name of the boolean valuetrue or false , respectively.
In the base class implementation these names are"true" and"false" .

[lib.locale.numpunct.byname] 22.2.3.2 Template classnumpunct_byname

namespace std {
template <class charT>
class numpunct_byname : public numpunct<charT> {

// this class is specialized for char and wchar_t.
public:

explicit numpunct_byname(const char*, size_t refs = 0);
protected:

~numpunct_byname(); // virtual
virtual string do_decimal_point() const;
virtual string do_thousands_sep() const;
virtual vector<char> do_grouping() const;
virtual string do_truename() const; // for bool
virtual string do_falsename() const; // for bool

};
}

[lib.category.collate] 22.2.4 The collate category

[lib.locale.collate] 22.2.4.1 Template classcollate

namespace std {
template <class charT>
class collate : public locale::facet {
public:

typedef charT char_type;
typedef basic_string<charT> string;

explicit collate(size_t refs = 0);

int compare(const charT* low1 , const charT* high1 ,
const charT* low2 , const charT* high2) const;

string transform(const charT* low , const charT* high) const;
long hash(const charT* low , const charT* high) const;

22.2.4.1 Template classcollate DRAFT: 28 April 1995 Localization library 22– 23

static locale::id id;

protected:
~collate(); // virtual

virtual int do_compare(const charT* low1 , const charT* high1 ,
const charT* low2 , const charT* high2) const;

virtual string do_transform(const charT* low , const charT* high) const;
virtual long do_hash (const charT* low , const charT* high) const;

};
}

1 The classcollate<charT> provides features for use in the collation (comparison) and hashing of
strings. A locale member function template,operator() , uses the collate facet to allow a locale to act
directly as the predicate argument for standard algorithms (25) and containers operating on strings. The
base class implementation applies lexicographic ordering (25.3.8).

2 Each function compares a string of characters* p in the range[low , high) .

[lib.locale.collate.members] 22.2.4.1.1collate members

int compare(const charT* low1 , const charT* high1 ,
const charT* low2 , const charT* high2) const;

Returns: do_compare(low 1, high1 , low2 , high2)

string transform(const charT* low , const charT* high) const;

Returns: do_transform(low , high)

long hash(const charT* low , const charT* high) const;

Returns: do_hash(low , high)

[lib.locale.collate.virtuals] 22.2.4.1.2collate virtual functions

int do_compare(const charT* low1 , const charT* high1 ,
const charT* low2 , const charT* high2) const;

Returns: 1 if the first string is greater than the second,-1 if less, zero otherwise.

string transform(const charT* low , const charT* high) const;

Returns: A basic_string<charT> value that, compared lexicographically with the result of calling
transform() on another string, yields the same result as callingcompare() on the same two
strings.179)

long hash(const charT* low , const charT* high) const;

Returns: An integer value equal to the result of callinghash() on any other string for which
compare() returns 0 (equal) when passed the two strings.

Notes: The probability that the result equals that for another string which does not compare equal should
be very small, approaching(2.0/numeric_limits<long>::max()) or less for longer strings.

179)This function is useful when one string is being compared to many other strings.

22– 24 Localization library DRAFT: 28 April 1995 22.2.4.2
Template classcollate_byname

[lib.locale.collate.byname] 22.2.4.2 Template classcollate_byname

namespace std {
template <class charT>
class collate_byname : public collate<charT> {
public:

explicit collate_byname(const char*, size_t refs = 0);
protected:

~collate_byname(); // virtual
virtual int do_compare(const charT* low1 , const charT* high1 ,

const charT* low2 , const charT* high2) const;
virtual string do_transform(const charT* low , const charT* high) const;
virtual long do_hash(const charT* low , const charT* high) const;

};

[lib.category.time] 22.2.5 The time category

1 The classestime_get<charT,InputIterator> and time_put<charT,OutputIterator>
provide date and time formatting and parsing. Theios& argument is used both for format control, and to
report errors, as described in subclauses 27.4.3.1.2 and 27.4.3.1.3.

[lib.locale.time.get] 22.2.5.1 Template classtime_get

namespace std {
class time_base {
public:

enum dateorder { no_order, dmy, mdy, ymd, ydm };
};

template <class charT, class InputIterator = istreambuf_iterator<charT> >
class time_get : public locale::facet, public time_base {
public:

typedef charT char_type;
typedef InputIterator iter_type;
typedef basic_ios<charT> ios;

explicit time_get(size_t refs = 0);

dateorder date_order() const { return do_date_order(); }
iter_type get_time(iter_type s, iter_type end , ios& f ,

const locale& loc , tm* t) const;
iter_type get_date(iter_type s, iter_type end , ios& f ,

const locale& loc , tm* t) const;
iter_type get_weekday(iter_type s, iter_type end , ios& f ,

const locale& loc , tm* t) const;
iter_type get_monthname(iter_type s, iter_type end , ios& f ,

const locale& loc , tm* t) const;
iter_type get_year(iter_type s, iter_type end , ios& f ,

const locale& loc , tm* t) const;

static locale::id id;

22.2.5.1 Template classtime_get DRAFT: 28 April 1995 Localization library 22– 25

protected:
~time_get(); // virtual

virtual dateorder do_date_order() const;
virtual iter_type do_get_time(iter_type s, iter_type end , ios&,

const locale&, tm* t) const;
virtual iter_type do_get_date(iter_type s, iter_type end , ios&,

const locale&, tm* t) const;
virtual iter_type do_get_weekday(iter_type s, iter_type end , ios&,

const locale&, tm* t) const;
virtual iter_type do_get_monthname(iter_type s, ios&,

const locale&, tm* t) const;
virtual iter_type do_get_year(iter_type s, iter_type end , ios&,

const locale&, tm* t) const;
};

}

1 time_get is used to parse a character sequence, extracting components of a time or date into astruct
tm record. Eachget member parses a format as produced by a corresponding format specifier to
time_put<>::put . If the sequence being parsed matches the correct format, the corresponding mem-
bers of thestruct tm argument are set to the values used to produce the sequence; otherwise either an
error is reported or unspecified values are assigned.180)

[lib.locale.time.get.members] 22.2.5.1.1time_get members

dateorder date_order() const;

Returns: do_date_order()

iter_type get_time(iter_type s, iter_type end , ios& str ,
const locale& loc , tm* t) const;

Returns: do_get_time(s, end , str , loc , t)

iter_type get_date(iter_type s, iter_type end , ios& str ,
const locale& loc , tm* t) const;

Returns: do_get_date(s, end , str , loc , t)

iter_type get_weekday(iter_type s, iter_type end , ios& str ,
const locale& loc , tm* t) const;

iter_type get_monthname(iter_type s, iter_type end , ios& str ,
const locale& loc , tm* t) const;

Returns: do_get_weekday(s, end , str , loc , t) or do_get_monthname(s, end ,
str , loc , t

iter_type get_year(iter_type s, iter_type end , ios& str ,
const locale& loc , tm* t) const;

180) In other words, user confirmation is required for reliable parsing of user-entered dates and times, but machine-generated formats
can be parsed reliably. This allows parsers to be aggressive about interpreting user variations on standard formats.

22– 26 Localization library DRAFT: 28 April 1995 22.2.5.1.1 time_get members

Returns: do_get_year(s, end , str , loc , t)

[lib.locale.time.get.virtuals] 22.2.5.1.2time_get virtual functions

dateorder do_date_order() const;

Returns: An enumeration value indicating the preferred order of components for dates composed of day,
month, and year.
Returnsno_order if the date format specified by’X’ contains other variable components (e.g Julian
day, week number, week day).

iter_type do_get_time(iter_type s, iter_type end , ios& str , const locale&,
tm* t) const;

Effects: Reads characters starting ats until it has extracted thosestruct tm members, and remaining
format characters, used to produce the format specified by’X’ , or until it encounters an error or end of
sequence.
Indicates an error by calling, str .setstate(failbit) , which may throw
ios_base::failure (27.4.4.3)).

Returns: An iterator pointing immediately beyond the last character recognized as part of the time, if no
error occurred.

iter_type do_get_date(iter_type s, iter_type end , ios& str , const locale&,
tm* t) const;

Effects: Reads characters starting ats until it has extracted thosestruct tm members, and remaining
format characters, used to produce the format specified by’x’ , or until it encounters an error.
Indicates failure by callingstr .setstate(failbit) (which may throwios_base::failure
(27.4.4.3)).

Returns: An iterator pointing immediately beyond the last character recognized as part of the date, if no
error occurred.

iter_type do_get_weekday(iter_type s, iter_type end , ios& str ,
const locale&, tm* t) const;

iter_type do_get_monthname(iter_type s, iter_type end , ios& str ,
const locale&, tm* t) const;

Effects: Reads characters starting ats until it has extracted the (perhaps abbreviated) name of a weekday
or month. If it finds an abbreviation that is followed by characters that could match a full name, it con-
tinues reading until it matches the full name or fails. It sets the appropriatestruct tm member
accordingly.
Indicates failure by callingstr .setstate(failbit) (which may throwios_base::failure
(27.4.4.3)).

Returns: An iterator pointing immediately beyond the last character recognized as part of a valid name.

iter_type do_get_year(iter_type s, iter_type end , ios& str ,
const locale&, tm* t) const;

Effects: Reads characters starting ats until it has extracted an unambiguous year identifier. It is unspeci-
fied whether two-digit year numbers are accepted, or what century they are assumed to lie in. Sets the
t ->tm_year member accordingly.
Indicates failure by callingstr .setstate(failbit) (which may throwios_base::failure
(27.4.4.3)).

22.2.5.1.2 time_get virtual functions DRAFT: 28 April 1995 Localization library 22 – 27

Returns: An iterator pointing immediately beyond the last character recognized as part of a valid year
identifier.

[lib.locale.time.get.byname] 22.2.5.2 Template classtime_get_byname

namespace std {
template <class charT, class InputIterator = istreambuf_iterator<charT> >
class time_get_byname : public time_get<charT, InputIterator> {
public:

explicit time_get_byname(const char*, size_t refs = 0);
protected:

~time_get_byname(); // virtual
virtual dateorder do_date_order() const;
virtual iter_type do_get_time(iter_type s, iter_type end , ios&,

const locale&, tm* t) const;
virtual iter_type do_get_date(iter_type s, iter_type end , ios&,

const locale&, tm* t) const;
virtual iter_type do_get_weekday(iter_type s, iter_type end , ios&,

const locale&, tm* t) const;
virtual iter_type do_get_monthname(iter_type s, iter_type end , ios&,

const locale&, tm* t) const;
virtual iter_type do_get_year(iter_type s, iter_type end , ios&,

const locale&, tm* t) const;
};

}

[lib.locale.time.put] 22.2.5.3 Template classtime_put

namespace std {
template <class charT, class OutputIterator = ostreambuf_iterator<charT> >
class time_put : public locale::facet {
public:

typedef charT char_type;
typedef OutputIterator iter_type;
typedef basic_ios<charT> ios;

explicit time_put(size_t refs = 0);

// the following is implemented in terms of other member functions.
iter_type put(iter_type s, ios& f , const locale& loc , const tm* tmb ,

const charT* pattern , const charT* pat_end) const;
iter_type put(iter_type s, ios& f , const locale& loc ,

const tm* t , char format , char modifier = 0) const;

static locale::id id;

protected:
~time_put(); // virtual

virtual iter_type do_put(iter_type s, ios&, const locale&, const tm* t ,
char format , char modifier) const;

};
}

[lib.locale.time.put.members] 22.2.5.3.1time_put members

22– 28 Localization library DRAFT: 28 April 1995 22.2.5.3.1 time_put members

iter_type put(iter_type s, ios&, const locale&, const tm* t ,
const charT* pattern , const charT* pat_end) const;

iter_type put(iter_type s, ios&, const locale&, const tm* t ,
char format , char modifier = 0) const;

Effects: The first form interprets the characters betweenpattern and pat_end identically as
strftime() , (though not treating the null character as a terminator), callingdo_put() repeatedly
as needed.
The second form callsdo_put() once, simply passing along its arguments.

Returns: An iterator pointing immediately after the last character produced.

[lib.locale.time.put.virtuals] 22.2.5.3.2time_put virtual functions

iter_type do_put(iter_type s, ios&, const locale&, const tm* t ,
char format , char modifier) const;

Effects: Formats the contents of the parametert into characters placed on the output sequences . Format-
ting is controlled by the parametersformat and modifier , interpreted identically as the format
specifiers in the string argument to the standard library functionstrftime() .181)

Returns: An iterator pointing immediately after the last character produced.

[lib.locale.time.put.byname] 22.2.5.4 Template classtime_put_byname

namespace std {
template <class charT, class OutputIterator = ostreambuf_iterator<charT> >
class time_put_byname : public time_put<charT, OutputIterator>
{
public:

explicit time_put_byname(const char*, size_t refs = 0);
protected:

~time_put_byname(); // virtual
virtual iter_type do_put(iter_type s, ios&, const locale&, const tm* t ,

char format , char modifier) const;
};

}

[lib.category.monetary] 22.2.6 The monetary category

1 These templates handle monetary formats. A template parameter indicates whether local or international
monetary formats are to be used.money_get<> andmoney_put<> usemoneypunct<> members to
determine all formatting details.moneypunct<> provides basic format information for money process-
ing. Theios& argument is used both for format control, and to report errors, as described in subclauses
27.4.3.1.2 and 27.4.3.1.3.

[lib.locale.money.get] 22.2.6.1 Template classmoney_get

181)Interpretation of themodifier argument is implementation-defined, but should follow POSIX conventions.

22.2.6.1 Template classmoney_get DRAFT: 28 April 1995 Localization library 22– 29

namespace std {
template <class charT, bool Intl = false,

class InputIterator = istreambuf_iterator<charT> >
class money_get : public locale::facet {
public:

typedef charT char_type;
typedef InputIterator iter_type;
typedef basic_string<charT> string;
typedef basic_ios<charT> ios;

explicit money_get(size_t refs = 0);

iter_type get(iter_type s, iter_type end , ios& f ,
const locale& loc , double& units) const;

iter_type get(iter_type s, iter_type end , ios& f ,
const locale& loc , string& digits) const;

static locale::id id;

protected:
~money_get(); // virtual

virtual iter_type do_get(iter_type, iter_type, ios&, const locale&,
double& units) const;

virtual iter_type do_get(iter_type, iter_type, ios&, const locale&,
string& digits) const;

};
}

[lib.locale.money.get.members] 22.2.6.1.1money_get members

iter_type get(iter_type s, iter_type end , ios& f ,
const locale& loc , double& quant) const;

iter_type get(s, iter_type end , ios& f ,
const locale& loc , string& quant) const;

Returns: do_get(s, end , f , loc , quant)

[lib.locale.money.get.virtuals] 22.2.6.1.2money_get virtual functions

iter_type do_get(iter_type s, iter_type end , ios& str ,
const locale& loc , double& units) const;

iter_type do_get(iter_type s, iter_type end , ios& strfP,
const locale& loc, string& digits) const;

Effects: Reads characters froms until it has constructed a monetary value, as specified instr .flags()
and themoneypunct<charT> facet ofloc , or until it encounters an error or runs out of characters.
The result is a pure sequence of digits, representing a count of the smallest unit of currency repre-
sentable.182) Digit group separators are optional; if present, digit grouping is checked after all syntactic
elements have been read. Wherespace or none appear in the format pattern, except at the end,
optional whitespace is consumed. Sets the argumentunits or digits from the sequence of digits
found. units is negated, ordigits is preceded by’-’ , for a negative value.
Indicates failure by callingstr .setstate(failbit) (which may throwios_base::failure
(27.4.4.3)).
On error, theunits or digits argument is unchanged.

182)For example, the sequence$1,056.23 in a common U.S. locale would yield, forunits , 105623, or fordigits , “105623 ”.

22– 30 Localization library DRAFT: 28 April 1995 22.2.6.1.2money_get virtual functions

Returns: An iterator pointing immediately beyond the last character recognized as part of a valid monetary
quantity.

[lib.locale.money.put] 22.2.6.2 Template classmoney_put

namespace std {
template <class charT, bool Intl = false,

class OutputIterator = ostreambuf_iterator<charT> >
class money_put : public locale::facet {
public:

typedef charT char_type;
typedef OutputIterator iter_type;
typedef basic_string<charT> string;
typedef basic_ios<charT> ios;

explicit money_put(size_t refs = 0);

iter_type put(iter_type s, ios& f , const locale& loc ,
double units) const;

iter_type put(iter_type s, ios& f , const locale& loc ,
const string& digits) const;

static locale::id id;
static const bool intl = Intl;

protected:
~money_put(); // virtual

virtual iter_type
do_put(iter_type, ios&, const locale&, double units) const;

virtual iter_type
do_put(iter_type, ios&, const locale&, const string& digits) const;

};
}

[lib.locale.money.put.members] 22.2.6.2.1money_put members

iter_type put(iter_type s, ios& f , const locale& loc ,
double quant) const;

iter_type put(iter_type s, ios& f , const locale& loc ,
const string& quant) const;

Returns: do_put(s, f , loc , quant)

[lib.locale.money.put.virtuals] 22.2.6.2.2money_put virtual functions

iter_type do_put(iter_type s, ios& str , const locale& loc ,
double units) const;

iter_type do_put(iter_type s, ios& str , const locale& loc ,
const string& digits) const;

Effects: Writes characters tos , according to the format specified by themoneypunct<charT> facet of
loc , andstr .flags() . Ignores any fractional part ofunits , or any characters indigits beyond
the (optional) leading’-’ and immediately subsequent digits.

Notes: The currency symbol is generated only if(str .flags() & ios::showbase) is true. If
((str .flags() & ios::adjustfield) == ios::internal) the fill characters are
placed wherenone or space appears in the formatting pattern (_lib.money.get.virtuals_).

22.2.6.2.2money_put virtual functions DRAFT: 28 April 1995 Localization library 22 – 31

Returns: An iterator pointing immediately after the last character produced.

[lib.locale.moneypunct] 22.2.6.3 Template classmoneypunct

namespace std {
class money_base {
public:

enum part { none, space, symbol, sign, value };
struct pattern { char field[4]; };

};

template <class charT, bool International = false>
class moneypunct : public locale::facet, public money_base {
public:

typedef charT char_type;
typedef basic_string<charT> string;

explicit moneypunct(size_t refs = 0);

charT decimal_point() const;
charT thousands_sep() const;
vector<char> grouping() const;
string curr_symbol() const;
string positive_sign() const;
string negative_sign() const;
int frac_digits() const;
pattern pos_format() const;
pattern neg_format() const;

static locale::id id;
static const bool intl = International;

protected:
~moneypunct(); // virtual

virtual charT do_decimal_point() const;
virtual charT do_thousands_sep() const;
virtual vector<char> do_grouping() const;
virtual string do_curr_symbol() const;
virtual string do_positive_sign() const;
virtual string do_negative_sign() const;
virtual int do_frac_digits() const;
virtual pattern do_pos_format() const;
virtual pattern do_neg_format() const;

};
}

1 This provides money punctuation, similar tonumpunct<> above (22.2.3.1). In particular, thevalue
portion of the format is:

value ::= units [decimal-point [digits]] |
decimal-point digits

if frac_digits returns a positive value, or just

value ::= units

otherwise. In these forms, thedecimal-point and thousands-separator are as determined
below and the number of digits after the decimal point is exactly the value returned byfrac_digits .

22– 32 Localization library DRAFT: 28 April 1995 22.2.6.3.1moneypunct members

[lib.locale.moneypunct.members] 22.2.6.3.1moneypunct members

charT decimal_point() const;
charT thousands_sep() const;
vector<char> grouping() const;
string curr_symbol() const;
string positive_sign() const;
string negative_sign() const;
int frac_digits() const;
pattern pos_format() const;
pattern neg_format() const;

1 Each of these functionsF returns the result of calling the corresponding virtual member functiondo_F() .

[lib.locale.moneypunct.virtuals] 22.2.6.3.2moneypunct virtual functions

charT do_decimal_point() const;

Returns: The radix separator to use in casedo_frac_digits() is greater than zero.183)

charT do_thousands_sep() const;

Returns: The digit group separator to use in casedo_grouping() specifies a digit grouping pattern.184)

vector<char> do_grouping() const;

Returns: A pattern defined identically as the result ofnumpunct<charT>::do_grouping() .185)

string do_curr_symbol() const;

Returns: A string to use as the currency identifier symbol.186)

string do_positive_sign() const;

Returns: The string to use to indicate a positive monetary value.187)

string do_negative_sign() const;

Returns: The string to use to indicate a negative monetary value.
Notes: If it is a one-character string containing’(’ , it is paired with a matching’)’ .

int do_frac_digits() const;

Returns: The number of digits after the decimal radix separator, if any.188)

183)In common U.S. locales this is’.’ .
184)In common U.S. locales this is’,’ .
185)This is most commonly the vector"{ 3 }"
186)For international instantiations (second template parametertrue) this is always four characters long, usually three letters and a
space.
187)This is usually the empty string.
188)In common U.S. locales, this is 2.

22.2.6.3.2moneypunct virtual functions DRAFT: 28 April 1995 Localization library 22 – 33

pattern do_pos_format() const;
pattern do_neg_format() const;

Returns: A pattern , a four-element array specifying the order in which syntactic elements appear in the
monetary format.

Notes: In this array each enumeration valuesymbol , sign , value , and eitherspace or none appears
exactly once.none , if present, is not first;space , if present, is neither first nor last. Otherwise, the
elements may appear in any order. In international instantiations, the result is always{ symbol,
sign, none, value } .189)

[lib.locale.moneypunct.byname] 22.2.6.4 Template classmoneypunct_byname

namespace std {
template <class charT, bool Intl = false>
class moneypunct_byname : public moneypunct<charT, Intl> {
public:

explicit moneypunct_byname(const char*, size_t refs = 0);
protected:

~moneypunct_byname(); // virtual
virtual charT do_decimal_point() const;
virtual charT do_thousands_sep() const;
virtual vector<char> do_grouping() const;
virtual string do_curr_symbol() const;
virtual string do_positive_sign() const;
virtual string do_negative_sign() const;
virtual int do_frac_digits() const;
virtual pattern do_pos_format() const;
virtual pattern do_neg_format() const;

};
}

[lib.category.messages] 22.2.7 The message retrieval category

1 Classmessages<charT> implements retrieval of strings from message catalogs.

[lib.locale.messages] 22.2.7.1 Template classmessages

namespace std {
class messages_base {
public:

typedef THE_POSIX_CATALOG_IDENTIFIER_TYPE catalog;
};

template <class charT>
class messages : public locale::facet, public messages_base {
public:

typedef charT char_type;
typedef int catalog;
typedef basic_string<charT> string;

explicit messages(size_t refs = 0);

catalog open (const basic_string<char>& fn , const locale&) const;
string get (catalog c, int set , int msgid , const string& dfault) const;
void close(catalog c) const;

189)Note that the international symbol usually contains a space, itself; for example,"USD " .

22– 34 Localization library DRAFT: 28 April 1995 22.2.7.1 Template classmessages

static locale::id id;

protected:
~messages(); // virtual

virtual catalog do_open(const basic_string<char>&, const locale&) const;
virtual string do_get(catalog, int set , int msgid ,

const string& dfault) const;
virtual void do_close(catalog) const;

};
}

[lib.locale.messages.members] 22.2.7.1.1messages members

catalog open(const basic_string<char>& name, const locale& loc) const;

Returns: do_open(name, loc) .

string get(catalog cat , int set , int msgid , const string& dfault) const;

Returns: do_get(cat , set , msgid , dfault) .

void close(catalog cat) const;

Effects: Callsdo_close(cat) .

[lib.locale.messages.virtuals] 22.2.7.1.2messages virtual functions

catalog do_open(const basic_string<char>& name,
const locale& loc) const;

Returns: A value that may be passed toget() to retrieve a message, from the message catalog identified
by the string name according to an implementation-defined mapping. The result can be used until it is
passed toclose() .
Returns a value less than 0 if no such catalog can be opened.

Notes: The locale argumentloc is used for character set code conversion when retrieving messages, if
needed.

string do_get(catalog cat , int set , int msgid ,
const string& dfault) const;

Requires: A catalogcat obtained fromopen() and not yet closed.
Returns: A message identified by argumentsset , msgid , and dfault , according to an

implementation-defined mapping. If no such message can be found, returnsdfault .

void do_close(catalog cat) const;

Requires: A catalogcat obtained fromopen() and not yet closed.
Effects: Releases unspecified resources associated withcat .
Notes: The limit on such resources, if any, is implementation-defined.

22.2.7.2 DRAFT: 28 April 1995 Localization library 22– 35
Template classmessages_byname

[lib.locale.messages.byname] 22.2.7.2 Template classmessages_byname

namespace std {
template <class charT>
class messages_byname : public messages<charT> {
public:

explicit messages_byname(const char*, size_t refs = 0);
protected:

~messages_byname(); // virtual
virtual catalog do_open(const basic_string<char>&, const locale&) const;
virtual string do_get(catalog, int set , int msgid ,

const string& dfault) const;
virtual void do_close(catalog) const;

};
}

[lib.facets.examples] 22.2.8 Program-defined facets

1 A C + + program may define facets to be added to a locale and used identically as the built-in facets. To cre-
ate a new facet interface, C + + programs simply derive fromlocale::facet a class containing a static
member:static locale::id id .

2 [Note:The locale member function templates verify its type and storage class.—end note]

3 This initialization/identification system depends only on the initialization to 0 of static objects, before static
constructors are called. When an instance of a facet is installed in a locale, the locale checks whether an id
has been assigned, and if not, assigns one. Before this occurs, any attempteduse of its interface causes the
bad_cast exception to be thrown.

4 [Example:Here is a program that just calls C functions:

#include <locale>
extern "C" void c_function();
int main()
{

using namespace std;
locale::global(locale("")); // same as setlocale(LC_ALL, "");
c_function();
return 0;

}

In other words, C library localization is unaffected.—end example]

5 [Example:Traditional global localization is still easy:

#include <iostream>
#include <locale>
int main(int argc, char** argv)
{

using namespace std;
locale::global(locale("")); // set the global locale

cin.imbue(locale()); // imbue it on the std streams
cout.imbue(locale());
cerr.imbue(locale());
return MyObject(argc, argv).doit();

}

—end example]

6 [Example:Greater flexibility is possible:

22– 36 Localization library DRAFT: 28 April 1995 22.2.8 Program-defined facets

#include <iostream>
#include <locale>
int main()
{

using namespace std;
cin.imbue(locale("")); // the user’s preferred locale
cout.imbue(locale::classic());
double f;
while (cin >> f) cout << f << endl;
return (cin.fail() != 0);

}

In a European locale, with input3.456,78 , output is3456.78 . —end example]

7 This can be important even for simple programs, which may need to write a data file in a fixed format,
regardless of a user’s preference.

8 [Example:Here is an example of the use of locales in a library interface.

// file: Date.h
#include <locale>

...
class Date {

...
public:

Date(unsigned day, unsigned month, unsigned year);
std::string asString(const std::locale& = std::locale());

};
istream& operator>>(istream& s, Date& d);
ostream& operator<<(ostream& s, Date d);
...

This example illustrates two architectural uses of classlocale .

9 The first is as a default argument inDate::asString() , where the default is the global (presumably
user-preferred) locale.

10 The second is in the operators<< and >>, where a locale“hitchhikes” on another object, in this case a
stream, to the point where it is needed.

// file: Date.C
#include <Date>
#include <stringstream>
std::string Date::asString(const std::locale& l)
{

using namespace std;
stringstream s; s.imbue(l);
s << *this; return s.data();

}

std::istream& operator>>(std::istream& s, Date& d)
{

using namespace std;
if (!s.ipfx(0)) return s;
locale loc = s.getloc();
struct tm t;
loc.template use<time_get<char> >().get_date(s, s, 0, loc, &t);
if (s) d = Date(t.tm_day, t.tm_mon + 1, t.tm_year + 1900);
s.isfx();
return s;

}

—end example]

22.2.8 Program-defined facets DRAFT: 28 April 1995 Localization library 22– 37

11 A locale object may be extended with a new facet simply by constructing it with an instance of a class
derived fromlocale::facet . The only member a C + + program must define is the static memberid ,
which identifies your class interface as a new facet.

12 [Example:Classifying Japanese characters:

// file: <jctype>
#include <locale>
namespace My {

using namespace std;
class JCtype : public locale::facet {
public:

static locale::id id; // required for use as a new locale facet
bool is_kanji(wchar_t c);
JCtype() {}

protected:
~JCtype() {}

};
}

// file: filt.C
#include <iostream>
#include <locale>
#include <jctype> // above
std::locale::id JCtype::id; // the static JCtype member declared above.
int main()
{

using namespace std;
typedef ctype<wchar_t> ctype;
locale loc(locale(""), // the user’s preferred locale ...

new My::JCType); // and a new feature ...
wchar_t c = loc.template use<ctype>().widen(’!’);
if (loc.template use<My::JCType>().is_kanji(c))

cout << "no it isn’t!" << endl;
return 0;

}

13 The new facet is used exactly like the built-in facets.—end example]

14 [Example:Replacing an existing facet is even easier. Here we do not define a memberid because we are
reusing thenumpunct<charT> facet interface:

// my_bool.C
#include <iostream>
#include <locale>
#include <string>
namespace My {

using namespace std;
typedef numpunct_byname<char> numpunct;
class BoolNames : public numpunct {

typedef basic_string<char> string;
protected:

string do_truename() { return "Oui Oui!"; }
string do_falsename() { return "Mais Non!"; }

~BoolNames() {}
public:

BoolNames(const char* name) : numpunct(name) {}
};

}

22– 38 Localization library DRAFT: 28 April 1995 22.2.8 Program-defined facets

int main(int argc, char** argv)
{

using namespace std;
// make the user’s preferred locale, except for...
locale loc(locale(""), new My::BoolNames(""));
cout.imbue(loc);
cout << "Any arguments today? " << (argc > 1) << endl;
return 0;

}

—end example]

[lib.c.locales] 22.3 C Library Locales

1 Header<clocale> (Table 48):

Table 48—Header<clocale> synopsis
_ __

Type Name(s)_ __
Macros:

LC_MONETARY LC_NUMERIC LC_TIME_ __
Struct: lconv_ __
Functions: localeconv setlocale_ __

2 The contents are the same as the Standard C library.

SEE ALSO: ISO C subclause 7.10.4.

_ ___ ___

23 Containers library [lib.containers]
_ ___ ___

1 This clause describes components that C + + programs may use to organize collections of information.

2 The following subclauses describe container requirements, and components for sequences and associative
containers, as summarized in Table 49:

Table 49—Containers library summary
_ ____________________________________

Subclause Header(s)_ _____________________________________ ____________________________________
23.1 Requirements_ ____________________________________

<bitset>
<deque>
<list>
<queue>
<stack>

23.2 Sequences

<vector>_ ____________________________________
<map>

23.3 Associative containers
<set>_ ____________________________________

[lib.container.requirements] 23.1 Container requirements

1 Containers are objects that store other objects. They control allocation and deallocation of these objects
through constructors, destructors, insert and erase operations.

2 In the following Table 50,X denotes a container class containing objects of typeT, a andb denote values
of X, u denotes an identifier andr denotes a value ofX&.

23– 2 Containers library DRAFT: 28 April 1995 23.1 Container requirements

Table 50—Container requirements
_ ___

assertion/note
expression return type

pre/post-condition
complexity

_ __ ___
X::value_type T compile time_ ___
X::reference lvalue ofT compile time_ ___
X::const_reference const lvalue ofT compile time_ ___
X::iterator iterator type pointing toT compile time any iterator category except

output iterator._ ___
X::const_iterator compile time iterator type pointing to

const T
any iterator category except
output iterator._ ___

X::difference_type signed integral type compile time is identical to the distance type
of X::iterator and
X::const_iterator_ ___

X::size_type unsigned integral type compile time size_type can represent any
non-negative value of
difference_type_ ___

X u; post:u.size() == 0 . constant_ ___
X(); X().size() == 0 . constant_ ___
X(a); a == X(a) . linear_ ___
X u(a); post:u == a . linear
X u = a; Equivalent to:X u; u = a;_ ___
(&a)->~X(); result is not used post:a.size() == 0 . linear

note: the destructor is applied
to every element ofa, all the
memory is returned._ ___

a.begin(); iterator ; constant
const_iterator

for constanta_ ___
a.end(); iterator ; constant

const_iterator

for constanta_ ___
a == b convertible tobool == is an equivalence relation. linear

a.size()==b.size()

&& equal(a.begin(),

a.end(), b.begin())_ ___
a != b convertible tobool Equivalent to:!(a == b) linear_ ___
a.swap(b); void swap(a,b) constant_ ___

23.1 Container requirements DRAFT: 28 April 1995 Containers library 23– 3

_ __
operational assertion/note complexity

expression return type
semantics pre/post-condition_ ___ __

r = a X& post:r == a . linearif (&r != &a) {
(&r)->X::~X();
new (&r) X(a);
return r; }_ __

a.size() size_type a.end()-a.begin() constant_ __
a.max_size() size_type constantsize() of the

largest possible
container._ __

a.empty() convertible tobool a.size() == 0 constant_ __
a < b convertible tobool linearlexicographical_

compare(a.begin(),
a.end(),b.begin(),
b.end())

pre:< is defined for values of
T. < is a total ordering rela-
tion.

_ __
a > b convertible tobool b < a linear_ __
a <= b convertible tobool !(a > b) linear_ __
a >= b convertible tobool !(a < b) linear_ __

Notes:equal() andlexicographical_compare() are defined in Clause 25.

3 The member functionsize() returns the number of elements in the container. Its semantics is defined by
the rules of constructors, inserts, and erases.

4 begin() returns an iterator referring to the first element in the container.end() returns an iterator
which is the past-the-end value.

5 Constructors for all container types defined in this clause take anAllocator& argument. A copy of this
argument is used for any memory allocation performed, by these constructors and by all member functions,
during the lifetime of each container object.

6 If the iterator type of a container belongs to the bidirectional or random access iterator categories (24.1), the
container is calledreversibleand satisfies the additional requirements in the following Table 51:

23– 4 Containers library DRAFT: 28 April 1995 23.1 Container requirements

Table 51—Reversible container requirements
_ ___

assertion/note
expression return type

pre/post-condition
complexity

_ __ ___
iterator type pointing toT compile timeX::reverse_

iterator
reverse_iterator<iterator,
value_type, reference,
difference_type> for random
access iterator,
reverse_bidirectional_
iterator<iterator,
value_type, reference,
difference_type> for bidirec-
tional iterator._ ___

compile timeX::const_
reverse_
iterator

iterator type pointing to
const T

reverse_iterator<
const_iterator,
value_type,
const_reference,
difference_type> for random
access iterator,
reverse_bidirectional_
iterator<const_iterator,
value_type,
const_reference,
difference_type> for bidirec-
tional iterator._ ___

a.rbegin() reverse_iterator(end()) constantreverse_iterator ;
const_reverse_
iterator for constant
a_ ___

a.rend() reverse_iterator(begin()) constantreverse_iterator ;
const_reverse_
iterator for constant
a_ ___

[lib.sequence.reqmts] 23.1.1 Sequences

1 A sequence is a kind of container that organizes a finite set of objects, all of the same type, into a strictly
linear arrangement. The library provides three basic kinds of sequence containers:vector , list , and
deque . It also provides container adaptors that make it easy to construct abstract data types, such as
stack s orqueue s, out of the basic sequence kinds (or out of other kinds of sequences that the user might
define).

2 In the following Table 52,X denotes a sequence class,a denotes value ofX, i andj denote iterators satis-
fying input iterator requirements,[i, j) denotes a valid range,n denotes a value ofX::size_type , p
denotes a valid iterator toa, q, q1 , q2 denote valid dereferenceable iterators toa, [q1, q2) denotes a
valid range,t denotes a value ofX::value_type .

3 The complexities of the expressions are sequence dependent.

23.1.1 Sequences DRAFT: 28 April 1995 Containers library 23– 5

Table 52—Sequence requirements (in addition to container)
_ ___

assertion/note
expression return type

pre/post-condition_ __ ___
X(n, t) post:size() == n .
X a(n, t); constructs a sequence withn copies oft ._ ___
X(i, j) post:size() == distance betweeni andj .
X a(i, j); constructs a sequence equal to the range[i,j) ._ ___
a.insert(p,t) iterator inserts a copy oft beforep._ ___
a.insert(p,n,t) result is not used inserts n copies oft beforep._ ___
a.insert(p,i,j) result is not used inserts copies of elements in[i,j) beforep._ ___
a.erase(q) result is not used erases the element pointed to byq._ ___
a.erase(q1,q2) result is not used erases the elements in the range[q1,q2) ._ ___

4 vector , list , and deque offer the programmer different complexity trade-offs and should be used
accordingly. vector is the type of sequence that should be used by default.list should be used when
there are frequent insertions and deletions from the middle of the sequence.deque is the data structure of
choice when most insertions and deletions take place at the beginning or at the end of the sequence.

5 iterator andconst_iterator types for sequences have to be at least of the forward iterator cate-
gory.

6 Table 53:

Table 53—Optional sequence operations
_ __

operational
expression return type

semantics
container

_ ___ __
a.front() *a.begin() vector, list, dequeT&; const T& for

constanta_ __
a.back() *a.end() vector, list, dequeT&; const T& for

constanta_ __
a.push_front(x) void a.insert(a.begin(),x) list, deque_ __
a.push_back(x) void a.insert(a.end(),x) vector, list, deque_ __
a.pop_front() void a.erase(a.begin()) list, deque_ __
a.pop_back() void a.erase(--a.end()) vector, list, deque_ __
a[n] *(a.begin() + n) vector, dequeT&; const T& for

constanta_ __

7 All the operations in the above table are provided only for the containers for which they take constant time.

[lib.associative.reqmts] 23.1.2 Associative containers

1 Associative containers provide an ability for fast retrieval of data based on keys. The library provides four
basic kinds of associative containers:set , multiset , mapandmultimap .

2 All of them are parameterized onKey and an ordering relationCompare that induces a total ordering on
elements ofKey. In addition,mapandmultimap associate an arbitrary typeT with theKey. The object
of typeCompare is called thecomparison objectof a container.

23– 6 Containers library DRAFT: 28 April 1995 23.1.2 Associative containers

3 The phrase ‘‘equality of keys’’ means the equivalence relation imposed by the comparison andnot the
operator== on keys. That is, two keysk1 and k2 are considered to be equal if for the comparison
objectcomp, comp(k1, k2) == false && comp(k2, k1) == false .

4 An associative container supportsunique keysif it may contain at most one element for each key. Other-
wise, it supportsequal keys. set and map support unique keys.multiset and multimap support
equal keys.

5 For set andmultiset the value type is the same as the key type. Formapandmultimap it is equal to
pair<const Key, T> .

6 iterator of an associative container is of the bidirectional iterator category.

7 In the following Table 54,X is an associative container class,a is a value ofX, a_uniq is a value ofX
whenX supports unique keys, anda_eq is a value ofX whenX supports multiple keys,i and j satisfy
input iterator requirements and refer to elements ofvalue_type , [i, j) is a valid range,p is a valid
iterator toa, q, q1 , q2 are valid dereferenceable iterators toa, [q1, q2) is a valid range,t is a value of
X::value_type andk is a value ofX::key_type .

23.1.2 Associative containers DRAFT: 28 April 1995 Containers library 23– 7

Table 54—Associative container requirements (in addition to container)
_ ___

assertion/note
expression return type

pre/post-condition
complexity

_ __ ___
X::key_type Key compile time

X::key_compare Compare defaults toless<key_type> compile time

compile timeX::
value_compare

a binary predicate type is the same askey_compare for set
andmultiset ; is an ordering relation
on pairs induced by the first component
(i.e. Key) for mapandmultimap ._ ___

X(c) constructs an empty container; constant
X a(c); usesc as a comparison object_ ___
X() constructs an empty container; constant
X a; usesCompare() as a comparison object_ ___
X(i,j,c);
X a(i,j,c);

constructs an empty container and inserts
elements from the range[i, j) into it;
usesc as a comparison object

NlogN in general (N is
the distance fromi to
j);
linear if [i, j) is
sorted with
value_comp()_ ___

X(i, j) same as above same as above, but usesCompare() as
a comparison object.

X a(i, j);_ ___
a.key_comp() X::key_compare constant returns the comparison object out of

which a was constructed._ ___
a.value_comp() constantX::

value_compare
returns an object ofvalue_compare
constructed out of the comparison object_ ___

logarithmica_uniq.
insert(t)

pair<iterator,
bool>

insertst if and only if there is no element
in the container with key equal to the key
of t . Thebool component of the
returned pair indicates whether the inser-
tion takes place and theiterator com-
ponent of the pair points to the element
with key equal to the key oft ._ ___

23– 8 Containers library DRAFT: 28 April 1995 23.1.2 Associative containers

_ __
assertion/note

expression return type
pre/post-condition

complexity
_ ___ __
a.insert(t) iterator logarithmic insertst and returns the iterator

pointing to the newly inserted ele-
ment._ __

a.insert(p,t) iterator insertst if and only if there is no
element with key equal to the key
of t in containers with unique
keys; always insertst in contain-
ers with equal keys. always
returns the iterator pointing to the
element with key equal to the key
of t . iteratorp is a hint pointing
to where the insert should start to
search.

logarithmic in general,
but amortized constant
if t is inserted right
afterp.

_ __
a.insert(i,j) result is not used inserts the elements from the

range[i, j) into the container.
Nlog(size()+N) (N
is the distance fromi
to j) in general;
linear if [i, j) is
sorted according to
value_comp()_ __

a.erase(k) size_type erases all the elements in the con-
tainer with key equal tok . returns
the number of erased elements.

log(size()) +
count(k)

_ __
a.erase(q) result is not used erases the element pointed to byq. amortized constant_ __
a.erase(q1,q2) result is not used erases all the elements in the range

[q1, q2) .
log(size())+ N
whereN is the distance
from q1 to q2 ._ __

a.find(k) logarithmiciterator ;
const_iterator
for constanta

returns an iterator pointing to an
element with the key equal tok ,
or a.end() if such an element is
not found._ __

a.count(k) size_type returns the number of elements
with key equal tok

log(size()) +
count(k)_ __

a.lower_bound(k) logarithmiciterator ;
const_iterator
for constanta

returns an iterator pointing to the
first element with key not less
thank ._ __

a.upper_bound(k) logarithmiciterator ;
const_iterator
for constanta

returns an iterator pointing to the
first element with key greater than
k ._ __

a.equal_range(k) logarithmicpair<
iterator,iterator> ;
pair<
const_iterator,
const_iterator>
for constanta

equivalent tomake_pair(
a.lower_bound(k),
a.upper_bound(k)) .

_ __

8 The fundamental property of iterators of associative containers is that they iterate through the containers in
the non-descending order of keys where non-descending is defined by the comparison that was used to con-
struct them. For any two dereferenceable iteratorsi andj such that distance fromi to j is positive,

value_comp(*j, *i) == false

23.1.2 Associative containers DRAFT: 28 April 1995 Containers library 23– 9

9 For associative containers with unique keys the stronger condition holds,

value_comp(*i, *j) == true.

[lib.sequences] 23.2 Sequences

1 Headers<bitset> , <deque> , <list> , <queue> , <stack> , and<vector> .

Header<bitset> synopsis

#include <cstddef> // for size_t
#include <string>
#include <stdexcept> // for invalid_argument, out_of_range, overflow_error
#include <iosfwd> // for istream, ostream
namespace std {

template <size_t N> class bitset;

// 23.2.1.3 bitset operations:
template <size_t N> bitset<N> operator&(const bitset<N>&, const bitset<N>&);
template <size_t N> bitset<N> operator|(const bitset<N>&, const bitset<N>&);
template <size_t N> bitset<N> operator^(const bitset<N>&, const bitset<N>&);
template <size_t N> istream& operator>>(istream& is , bitset<N>& x);
template <size_t N> ostream& operator<<(ostream& os , const bitset<N>& x);

}

Header<deque> synopsis

#include <memory> // for allocator
namespace std {

template <class T, class Allocator = allocator> class deque;
template <class T, class Allocator>

bool operator==(const deque<T,Allocator>& x, const deque<T,Allocator>& y);
template <class T, class Allocator>

bool operator< (const deque<T,Allocator>& x, const deque<T,Allocator>& y);
}

Header<list> synopsis

#include <memory> // for allocator
namespace std {

template <class T, class Allocator = allocator> class list;
template <class T, class Allocator>

bool operator==(const list<T,Allocator>& x, const list<T,Allocator>& y);
template <class T, class Allocator>

bool operator< (const list<T,Allocator>& x, const list<T,Allocator>& y);
}

Header<queue> synopsis

#include <functional> // for less
namespace std {

template <class Container> class queue;
template <class Container>

bool operator==(const queue<Container>& x, const queue<Container>& y);
template <class Container>

bool operator< (const queue<Container>& x, const queue<Container>& y);

template <class Container, class Compare = less<Container::value_type> >
class priority_queue;

}

23– 10 Containers library DRAFT: 28 April 1995 23.2 Sequences

Header<stack> synopsis

namespace std {
template <class Container> class stack;
template <class Container>

bool operator==(const stack<Container>& x, const stack<Container>& y);
template <class Container>

bool operator< (const stack<Container>& x, const stack<Container>& y);
}

Header<vector> synopsis

#include <memory> // for allocator
namespace std {

template <class T, class Allocator = allocator> class vector;
template <class T, class Allocator>

bool operator==(const vector<T,Allocator>& x, const vector<T,Allocator>& y);
template <class T, class Allocator>

bool operator< (const vector<T,Allocator>& x, const vector<T,Allocator>& y);

class vector<bool,allocator>;
bool operator==(const vector<bool,allocator>& x,

const vector<bool,allocator>& y);
bool operator< (const vector<bool,allocator>& x,

const vector<bool,allocator>& y);
}

[lib.template.bitset] 23.2.1 Template classbitset

1 The header<bitset> defines a template class and several related functions for representing and manipu-
lating fixed-size sequences of bits.

namespace std {
template<size_t N> class bitset {
public:
// bit reference:

class reference {
public:

~reference();
reference& operator=(bool x); // for b[i] = x;
reference& operator=(const reference&); // for b[i] = b[j];
bool operator~() const; // for x = b[i];
operator bool() const; // for b[i].flip();
reference& flip(); // flips the bit

};

// 23.2.1.1 constructors:
bitset();
bitset(unsigned long val);
explicit bitset(const string& str , size_t pos = 0, size_t n = size_t(-1));

23.2.1 Template classbitset DRAFT: 28 April 1995 Containers library 23– 11

// 23.2.1.2 bitset operations:
bitset<N>& operator&=(const bitset<N>& rhs);
bitset<N>& operator|=(const bitset<N>& rhs);
bitset<N>& operator^=(const bitset<N>& rhs);
bitset<N>& operator<<=(size_t pos);
bitset<N>& operator>>=(size_t pos);
bitset<N>& set();
bitset<N>& set(size_t pos , int val = 1);
bitset<N>& reset();
bitset<N>& reset(size_t pos);
bitset<N> operator~() const;
bitset<N>& flip();
bitset<N>& flip(size_t pos);

// element access:
reference operator[](size_t pos); // for b[i];

unsigned long to_ulong() const;
string to_string() const;
size_t count() const;
size_t size() const;
bool operator==(const bitset<N>& rhs) const;
bool operator!=(const bitset<N>& rhs) const;
bool test(size_t pos) const;
bool any() const;
bool none() const;
bitset<N> operator<<(size_t pos) const;
bitset<N> operator>>(size_t pos) const;

private:
// char array [N]; exposition only

};
}

2 The template classbitset<N> describes an object that can store a sequence consisting of a fixed number
of bits,N.

3 Each bit represents either the value zero (reset) or one (set). Totogglea bit is to change the value zero to
one, or the value one to zero. Each bit has a non-negative positionpos . When converting between an
object of classbitset<N> and a value of some integral type, bit positionpos corresponds to thebit
value1 << pos . The integral value corresponding to two or more bits is the sum of their bit values.

4 The functions described in this subclause can report three kinds of errors, each associated with a distinct
exception:

— an invalid-argumenterror is associated with exceptions of typeinvalid_argument (19.1.4);

— anout-of-rangeerror is associated with exceptions of typeout_of_range (19.1.6);

— anoverflowerror is associated with exceptions of typeoverflow_error (19.1.9).

[lib.bitset.cons] 23.2.1.1bitset constructors

bitset();

Effects: Constructs an object of classbitset<N> , initializing all bits to zero.

190)An implementation is free to store the bit sequence more efficiently.

23– 12 Containers library DRAFT: 28 April 1995 23.2.1.1bitset constructors

bitset(unsigned long val);

Effects: Constructs an object of classbitset<N> , initializing the firstMbit positions to the correspond-
ing bit values inval . M is the smaller ofN and the valueCHAR_BIT * sizeof (unsigned
long) .191)

If M < N, remaining bit positions are initialized to zero.

explicit bitset(const string& str , size_t pos = 0, size_t n = size_t(-1));

Requires: pos <= str .size() .
Throws: out_of_range if pos > str .size() .
Effects: Determines the effective lengthrlen of the initializing string as the smaller ofn and

str .size() - pos .
The function then throwsinvalid_argument if any of therlen characters instr beginning at
positionpos is other than0 or 1.
Otherwise, the function constructs an object of classbitset<N> , initializing the firstMbit positions to
values determined from the corresponding characters in the stringstr . Mis the smaller ofNandrlen .

1 An element of the constructed string has value zero if the corresponding character instr , beginning at
positionpos , is 0. Otherwise, the element has the value one. Character positionpos + M - 1 corre-
sponds to bit position zero. Subsequent decreasing character positions correspond to increasing bit posi-
tions.

2 If M < N , remaining bit positions are initialized to zero.

[lib.bitset.members] 23.2.1.2bitset members

bitset<N>& operator&=(const bitset<N>& rhs);

Effects: Clears each bit in*this for which the corresponding bit inrhs is clear, and leaves all other bits
unchanged.

Returns: *this .

bitset<N>& operator|=(const bitset<N>& rhs);

Effects: Sets each bit in*this for which the corresponding bit inrhs is set, and leaves all other bits
unchanged.

Returns: *this .

bitset<N>& operator^=(const bitset<N>& rhs);

Effects: Toggles each bit in*this for which the corresponding bit inrhs is set, and leaves all other bits
unchanged.

Returns: *this .

bitset<N>& operator<<=(size_t pos);

Effects: Replaces each bit at positionI in *this with a value determined as follows:

— If I < pos , the new value is zero;

— If I >= pos , the new value is the previous value of the bit at positionI - pos .

191)The macroCHAR_BIT is defined in<climits> (18.2).

23.2.1.2 bitset members DRAFT: 28 April 1995 Containers library 23– 13

Returns: *this .

bitset<N>& operator>>=(size_t pos);

Effects: Replaces each bit at positionI in *this with a value determined as follows:

— If pos >= N - I , the new value is zero;

— If pos < N - I , the new value is the previous value of the bit at positionI + pos .
Returns: *this .

bitset<N>& set();

Effects: Sets all bits in*this .
Returns: *this .

bitset<N>& set(size_t pos , int val = 1);

Requires: pos is valid
Throws: out_of_range if pos does not correspond to a valid bit position.
Effects: Stores a new value in the bit at positionpos in *this . If val is nonzero, the stored value is

one, otherwise it is zero.
Returns: *this .

bitset<N>& reset();

Effects: Resets all bits in*this .
Returns: *this .

bitset<N>& reset(size_t pos);

Requires: pos is valid
Throws: out_of_range if pos does not correspond to a valid bit position.
Effects: Resets the bit at positionpos in *this .
Returns: *this .

bitset<N> operator~() const;

Effects: Constructs an objectx of classbitset<N> and initializes it with*this .
Returns: x.flip() .

bitset<N>& flip();

Effects: Toggles all bits in*this .
Returns: *this .

bitset<N>& flip(size_t pos);

Requires: pos is valid
Throws: out_of_range if pos does not correspond to a valid bit position.
Effects: Toggles the bit at positionpos in *this .
Returns: *this .

unsigned long to_ulong() const;

23– 14 Containers library DRAFT: 28 April 1995 23.2.1.2bitset members

Throws: overflow_error if the integral valuex corresponding to the bits in*this cannot be repre-
sented as typeunsigned long .

Returns: x .

string to_string() const;

Effects: Constructs an object of typestring and initializes it to a string of lengthN characters. Each
character is determined by the value of its corresponding bit position in*this . Character positionN
- 1 corresponds to bit position zero. Subsequent decreasing character positions correspond to increas-
ing bit positions. Bit value zero becomes the character0, bit value one becomes the character1.

Returns: The created object.

size_t count() const;

Returns: A count of the number of bits set in*this .

size_t size() const;

Returns: N.

bool operator==(const bitset<N>& rhs) const;

Returns: A nonzero value if the value of each bit in*this equals the value of the corresponding bit in
rhs .

bool operator!=(const bitset<N>& rhs) const;

Returns: A nonzero value if!(*this == rhs) .

bool test(size_t pos) const;

Requires: pos is valid
Throws: out_of_range if pos does not correspond to a valid bit position.
Returns: true if the bit at positionpos in *this has the value one.

bool any() const;

Returns: true if any bit in*this is one.

bool none() const;

Returns: true if no bit in *this is one.

bitset<N> operator<<(size_t pos) const;

Returns: bitset<N>(*this) <<= pos .

bitset<N> operator>>(size_t pos) const;

Returns: bitset<N>(*this) >>= pos .

23.2.1.3 bitset operators DRAFT: 28 April 1995 Containers library 23– 15

[lib.bitset.operators] 23.2.1.3bitset operators

bitset<N> operator&(const bitset<N>& lhs , const bitset<N>& rhs);

Returns: bitset<N>(lhs) &= pos .

bitset<N> operator|(const bitset<N>& lhs , const bitset<N>& rhs);

Returns: bitset<N>(lhs) |= pos .

bitset<N> operator^(const bitset<N>& lhs , const bitset<N>& rhs);

Returns: bitset<N>(lhs) ^= pos .

template <size_t N>
istream& operator>>(istream& is , bitset<N>& x);

1 A formatted input function (27.6.1.2).
Effects: Extracts up toN (single-byte) characters fromis . Stores these characters in a temporary object

str of type string , then evaluates the expressionx = bitset<N>(str) . Characters are
extracted and stored until any of the following occurs:

— Ncharacters have been extracted and stored;

— end-of-file occurs on the input sequence;

— the next input character is neither0 or 1 (in which case the input character is not extracted).

2 If no characters are stored instr , calls is .setstate(ios::failbit) (which may throw
ios_base::failure (27.4.4.3).
Returns: is .

template <size_t N> ostream& operator<<(ostream& os , const bitset<N>& x);

Returns: os << x.to_string() (27.6.2.4).

[lib.deque] 23.2.2 Template classdeque

1 A deque is a kind of sequence that, like avector (23.2.5), supports random access iterators. In addition,
it supports constant time insert and erase operations at the beginning or the end; insert and erase in the mid-
dle take linear time. That is, a deque is especially optimized for pushing and popping elements at the
beginning and end. As with vectors, storage management is handled automatically.

23– 16 Containers library DRAFT: 28 April 1995 23.2.2 Template classdeque

namespace std {
template <class T, class Allocator = allocator>
class deque {
public:
// 23.2.2.1 types:

typedef typename Allocator::types<T>::reference reference;
typedef typename Allocator::types<T>::const_reference const_reference;
typedef typename Allocator::types<T>::pointer iterator;
typedef typename Allocator::types<T>::const_pointer const_iterator;
typedef typename Allocator::size_type size_type;
typedef typename Allocator::difference_type difference_type;
typedef T value_type;
typedef reverse_iterator<iterator, value_type,

reference, difference_type> reverse_iterator;
typedef reverse_iterator<const_iterator, value_type,

const_reference, difference_type> const_reverse_iterator;

// 23.2.2.2 construct/copy/destroy:
explicit deque(Allocator& = Allocator());
explicit deque(size_type n, const T& value = T(), Allocator& = Allocator());
deque(const deque<T,Allocator>& x, Allocator& = Allocator());
template <class InputIterator>

deque(InputIterator first, InputIterator last, Allocator& = Allocator());
~deque();

deque<T,Allocator>& operator=(const deque<T,Allocator>& x);
template <class InputIterator>

void assign(InputIterator first, InputIterator last);
template <class Size, class T>

void assign(Size n, const T& t = T());

// 23.2.2.3 iterators:
iterator begin();
const_iterator begin() const;
iterator end();
const_iterator end() const;
reverse_iterator rbegin();
const_reverse_iterator rbegin() const;
reverse_iterator rend();
const_reverse_iterator rend() const;

// 23.2.2.4 capacity:
size_type size() const;
size_type max_size() const;
void resize(size_type sz, T c = T());
bool empty() const;

// 23.2.2.5 element access:
reference operator[](size_type n);
const_reference operator[](size_type n) const;
const_reference at(size_type n) const;
reference at(size_type n);
reference front();
const_reference front() const;
reference back();
const_reference back() const;

// 23.2.2.6 modifiers:
void push_front(const T& x);
void push_back(const T& x);

23.2.2 Template classdeque DRAFT: 28 April 1995 Containers library 23– 17

iterator insert(iterator position, const T& x = T());
void insert(iterator position, size_type n, const T& x);
template <class InputIterator>

void insert (iterator position, InputIterator first, InputIterator last);

void pop_front();
void pop_back();

void erase(iterator position);
void erase(iterator first, iterator last);
void swap(deque<T,Allocator>&);

};

template <class T, class Allocator>
bool operator==(const deque<T,Allocator>& x, const deque<T,Allocator>& y);

template <class T, class Allocator>
bool operator< (const deque<T,Allocator>& x, const deque<T,Allocator>& y);

}

[lib.deque.types] 23.2.2.1deque types

[lib.deque.cons] 23.2.2.2deque constructors, copy, and assignment

template <class InputIterator>
void assign(InputIterator first, InputIterator last);

Effects:

erase(begin(), end());
insert(begin(), first, last);

template <class Size, class T> void assign(Size n, const T& t = T());

Effects:

erase(begin(), end());
insert(begin(), n, t);

[lib.deque.iterators] 23.2.2.3deque iterator support

[lib.deque.capacity] 23.2.2.4deque capacity

void resize(size_type sz, T c = T());

Effects:

if (sz > size())
s.insert(s.end(), s.size()-sz, v);

else if (sz < size())
s.erase(s.begin()+sz, s.end());

else
; // do nothing

23– 18 Containers library DRAFT: 28 April 1995 23.2.2.5deque element access

[lib.deque.access] 23.2.2.5deque element access

[lib.deque.modifiers] 23.2.2.6deque modifiers

iterator insert(iterator position, const T& x = T());
void insert(iterator position, size_type n, const T& x);
template <class InputIterator>

void insert(iterator position,
InputIterator first, InputIterator last);

Effects: Invalidates all the iterators and references to the deque.
Complexity: In the worst case, inserting a single element into a deque takes time linear in the minimum of

the distance from the insertion point to the beginning of the deque and the distance from the insertion
point to the end of the deque. Inserting a single element either at the beginning or end of a deque
always takes constant time and causes a single call to the copy constructor ofT.

void erase(iterator position);
void erase(iterator first, iterator last);

Effects: Invalidates all the iterators and references to the deque.
The number of calls to the destructor is the same as the number of elements erased, but the number of
the calls to the assignment operator is equal to the minimum of the number of elements before the
erased elements and the number of element after the erased elements.

[lib.list] 23.2.3 Template classlist

1 A list is a kind of sequence that supports bidirectional iterators and allows constant time insert and erase
operations anywhere within the sequence, with storage management handled automatically. Unlike vectors
(23.2.5) and deques (23.2.2), fast random access to list elements is not supported, but many algorithms only
need sequential access anyway.

namespace std {
template <class T, class Allocator = allocator>
class list {
public:
// 23.2.3.1 types:

typedef typename Allocator::types<T>::reference reference;
typedef typename Allocator::types<T>::const_reference const_reference;
typedef typename Allocator::types<T>::pointer iterator;
typedef typename Allocator::types<T>::const_pointer const_iterator;
typedef typename Allocator::size_type size_type;
typedef typename Allocator::difference_type difference_type;
typedef T value_type;
typedef reverse_iterator<iterator, value_type,

reference, difference_type> reverse_iterator;
typedef reverse_iterator<const_iterator, value_type,

const_reference, difference_type> const_reverse_iterator;

23.2.3 Template classlist DRAFT: 28 April 1995 Containers library 23– 19

// 23.2.3.2 construct/copy/destroy:
explicit list(Allocator& = Allocator());
explicit list(size_type n, const T& value = T(),

Allocator& = Allocator());
template <class InputIterator>

list(InputIterator first , InputIterator last ,
Allocator& = Allocator());

list(const list<T,Allocator>& x, Allocator& = Allocator());
~list();

list<T,Allocator>& operator=(const list<T,Allocator>& x);
template <class InputIterator>

void assign(InputIterator first, InputIterator last);
template <class Size, class T>

void assign(Size n, const T& t = T());

// 23.2.3.3 iterators:
iterator begin();
const_iterator begin() const;
iterator end();
const_iterator end() const;
reverse_iterator rbegin();
const_reverse_iterator rbegin() const;
reverse_iterator rend();
const_reverse_iterator rend() const;

// 23.2.3.4 capacity:
bool empty() const;
size_type size() const;
size_type max_size() const;
void resize(size_type sz, T c = T());

// element access:
reference front();
const_reference front() const;
reference back();
const_reference back() const;

// 23.2.3.6 modifiers:
void push_front(const T& x);
void pop_front();
void push_back(const T& x);
void pop_back();

iterator insert(iterator position , const T& x = T());
void insert(iterator position , size_type n, const T& x);
template <class InputIterator>

void insert(iterator position , InputIterator first ,
InputIterator last);

void erase(iterator position);
void erase(iterator position , iterator last);
void swap(list<T,Allocator>&);

// 23.2.3.7 list operations:
void splice(iterator position , list<T,Allocator>& x);
void splice(iterator position , list<T,Allocator>& x, iterator i);
void splice(iterator position , list<T,Allocator>& x, iterator first ,

iterator last);

23– 20 Containers library DRAFT: 28 April 1995 23.2.3 Template classlist

void remove(const T& value);
template <class Predicate> void remove_if(Predicate pred);

void unique();
template <class BinaryPredicate> void unique(BinaryPredicate binary_pred);

void merge(list<T,Allocator>& x);
template <class Compare> void merge(list<T,Allocator>& x, Compare comp);

void sort();
template <class Compare> void sort(Compare comp);

void reverse();
};

template <class T, class Allocator>
bool operator==(const list<T,Allocator>& x, const list<T,Allocator>& y);

template <class T, class Allocator>
bool operator< (const list<T,Allocator>& x, const list<T,Allocator>& y);

}

[lib.list.types] 23.2.3.1 list types

[lib.list.cons] 23.2.3.2 list constructors, copy, and assignment

template <class InputIterator>
void assign(InputIterator first, InputIterator last);

Effects:

erase(begin(), end());
insert(begin(), first, last);

template <class Size, class T> void assign(Size n, const T& t = T());

Effects:

erase(begin(), end());
insert(begin(), n, t);

[lib.list.iterators] 23.2.3.3 list iterator support

[lib.list.capacity] 23.2.3.4 list capacity

void resize(size_type sz, T c = T());

Effects:

if (sz > size())
s.insert(s.end(), s.size()-sz, v);

else if (sz < size())
s.erase(s.begin()+sz, s.end());

else
; // do nothing

23.2.3.5 list element access DRAFT: 28 April 1995 Containers library 23– 21

[lib.list.access] 23.2.3.5 list element access

[lib.list.modifiers] 23.2.3.6 list modifiers

iterator insert(iterator position , const T& x = T());
void insert(iterator position , size_type n, const T& x);
template <class InputIterator>

void insert(iterator position , InputIterator first ,
InputIterator last);

Notes: Does not affect the validity of iterators and references.
Complexity: Insertion of a single element into a list takes constant time and exactly one call to the copy

constructor ofT. Insertion of multiple elements into a list is linear in the number of elements inserted,
and the number of calls to the copy constructor ofT is exactly equal to the number of elements inserted.

void erase(iterator position);
void erase(iterator first, iterator last);

Effects: Invalidates only the iterators and references to the erased elements.
Complexity: Erasing a single element is a constant time operation with a single call to the destructor ofT.

Erasing a range in a list is linear time in the size of the range and the number of calls to the destructor of
typeT is exactly equal to the size of the range.

[lib.list.ops] 23.2.3.7 list operations

1 Since lists allow fast insertion and erasing from the middle of a list, certain operations are provided specifi-
cally for them.

2 list provides three splice operations that destructively move elements from one list to another.

void splice(iterator position , list<T,Allocator>& x);

Requires: &x != this .
Effects: Inserts the contents ofx beforeposition andx becomes empty.
Complexity: Constant time.

void splice(iterator position , list<T,Allocator>& x, iterator i);

Effects: Inserts an element pointed to byi from list x before position and removes the element fromx .
The result is unchanged isposition == i or position == ++i .

Requires: i is a valid dereferenceable iterator ofx .
Complexity: Constant time.

void splice(iterator position , list<T,Allocator>& x, iterator first ,
iterator last);

Effects: Inserts elements in the range[first, last) beforeposition and removes the elements
from x .

Requires: [first, last) is a valid range inx . The result is undefined ifposition is an iterator in
the range[first, last) .

Complexity: Constant time if&x == this ; otherwise, linear time.

void remove(const T& value);
template <class Predicate> void remove_if(Predicate pred);

23– 22 Containers library DRAFT: 28 April 1995 23.2.3.7 list operations

Effects: Erases all the elements in the list referred by the list iteratori for which the following conditions
hold: *i == value, pred(*i) == true .

Notes: Stable: the relative order of the elements that are not removed is the same as their relative order in
the original list.

Complexity: Exactlysize() applications of the corresponding predicate.

void unique();
template <class BinaryPredicate> void unique(BinaryPredicate binary_pred);

Effects: Erases all but the first element from every consecutive group of equal elements in the list.
Complexity: Exactlysize() - 1 applications of the corresponding binary predicate.

void merge(list<T,Allocator>& x);
template <class Compare> void merge(list<T,Allocator>& x, Compare comp);

Effects: Merges the argument list into the list (both are assumed to be sorted).
Notes: Stable: for equal elements in the two lists, the elements from the list always precede the elements

from the argument list.x is empty after the merge.
Complexity: At mostsize() + x.size() - 1 comparisons.

void reverse();

Effects: Reverses the order of the elements in the list.
Complexity: Linear time.

void sort();
template <class Compare> void sort(Compare comp);

Effects: Sorts the list according to theoperator< or acompare function object.
Notes: Stable: the relative order of the equal elements is preserved.
Complexity: ApproximatelyNlogN comparisons, whereN == size() .

[lib.container.adapters] 23.2.4 Container adapters

[lib.queue] 23.2.4.1 Template classqueue

1 Any sequence supporting operationsfront() , back() , push_back() and pop_front() can be
used to instantiatequeue . In particular,list (23.2.3) anddeque (23.2.2) can be used.

nmespace std {
template <class Container>
class queue {
public:

typedef typename Container::value_type value_type;
typedef typename Container::size_type size_type;

protected:
Container c;

23.2.4.1 Template classqueue DRAFT: 28 April 1995 Containers library 23– 23

public:
bool empty() const { return c.empty(); }
size_type size() const { return c.size(); }
value_type& front() { return c.front(); }
const value_type& front() const { return c.front(); }
value_type& back() { return c.back(); }
const value_type& back() const { return c.back(); }
void push(const value_type& x) { c.push_back(x); }
void pop() { c.pop_front(); }

};

template <class Container>
bool operator==(const queue<Container>& x, const queue<Container>& y);

template <class Container>
bool operator< (const queue<Container>& x, const queue<Container>& y);

}

operator==
Returns: x.c == y.c .

operator<
Returns: x.c < y.c .

[lib.priority.queue] 23.2.4.2 Template classpriority_queue

1 Any sequence with random access iterator and supporting operationsfront() , push_back() and
pop_back() can be used to instantiatepriority_queue . In particular,vector (23.2.5) anddeque
(23.2.2) can be used.

namespace std {
template <class Container, class Compare = less<Container::value_type> >
class priority_queue {
public:

typedef typename Container::value_type value_type;
typedef typename Container::size_type size_type;

protected:
Container c;
Compare comp;

public:
explicit priority_queue(const Compare& x = Compare());
template <class InputIterator>

priority_queue(InputIterator first, InputIterator last,
const Compare& x = Compare());

bool empty() const { return c.empty(); }
size_type size() const { return c.size(); }
const value_type& top() const { return c.front(); }
void push(const value_type& x);
void pop();

};
// no equality is provided

}

[lib.priqueue.cons] 23.2.4.2.1priority_queue constructors

priority_queue(const Compare& x = Compare());

Effects: Initializescomp with x .

23– 24 Containers library DRAFT: 28 April 1995 23.2.4.2.1
priority_queue constructors

template <class InputIterator>
priority_queue(InputIterator first, InputIterator last,

const Compare& x = Compare());

Effects:

: c(first, last), comp(x) {
make_heap(c.begin(), c.end(), comp);

}

[lib.priqueue.members] 23.2.4.2.2priority_queue members

void push(const value_type& x);

Effects:

c.push_back(x);
push_heap(c.begin(), c.end(), comp);

void pop();

Effects:

pop_heap(c.begin(), c.end(), comp);
c.pop_back();

[lib.stack] 23.2.4.3 Template classstack

1 Any sequence supporting operationsback() , push_back() andpop_back() can be used to instanti-
atestack . In particular,vector (23.2.5),list (23.2.3) anddeque (23.2.2) can be used.

2 [Example: stack<vector<int> > is an integer stack made out ofvector , and
stack<deque<char> > is a character stack made out ofdeque . —end example]

namespace std {
template <class Container>
class stack {
public:

typedef typename Container::value_type value_type;
typedef typename Container::size_type size_type;

protected:
Container c;

public:
bool empty() const { return c.empty(); }
size_type size() const { return c.size(); }
value_type& top() { return c.back(); }
const value_type& top() const { return c.back(); }
void push(const value_type& x) { c.push_back(x); }
void pop() { c.pop_back(); }

};

template <class Container>
bool operator==(const stack<Container>& x, const stack<Container>& y);

template <class Container>
bool operator< (const stack<Container>& x, const stack<Container>& y);

}

operator==

23.2.4.3 Template classstack DRAFT: 28 April 1995 Containers library 23– 25

Returns: x.c == y.c .

[lib.vector] 23.2.5 Template classvector

1 A vector is a kind of sequence supports random access iterators. In addition, it supports (amortized) con-
stant time insert and erase operations at the end; insert and erase in the middle take linear time. Storage
management is handled automatically, though hints can be given to improve efficiency.

namespace std {
template <class T, class Allocator = allocator>
class vector {
public:
// 23.2.5.1 types:

typedef typename Allocator::types<T>::reference reference;
typedef typename Allocator::types<T>::const_reference const_reference;
typedef typename Allocator::types<T>::pointer iterator;
typedef typename Allocator::types<T>::const_pointer const_iterator;
typedef typename Allocator::size_type size_type;
typedef typename Allocator::difference_type difference_type;
typedef T value_type;
typedef reverse_iterator<iterator, value_type,

reference, difference_type> reverse_iterator;
typedef reverse_iterator<const_iterator, value_type,

const_reference, difference_type> const_reverse_iterator;

// 23.2.5.2 construct/copy/destroy:
explicit vector(Allocator& = Allocator());
explicit vector(size_type n, const T& value = T(), Allocator& = Allocator());
vector(const vector<T,Allocator>& x, Allocator& = Allocator());
template <class InputIterator>

vector(InputIterator first, InputIterator last, Allocator& = Allocator());
~vector();

vector<T,Allocator>& operator=(const vector<T,Allocator>& x);
template <class InputIterator>

void assign(InputIterator first, InputIterator last);
template <class Size, class T> void assign(Size n, const T& t = T());

// 23.2.5.3 iterators:
iterator begin();
const_iterator begin() const;
iterator end();
const_iterator end() const;
reverse_iterator rbegin();
const_reverse_iterator rbegin() const;
reverse_iterator rend();
const_reverse_iterator rend() const;

// 23.2.5.4 capacity:
size_type size() const;
size_type max_size() const;
void resize(size_type sz, T c = T());
size_type capacity() const;
bool empty() const;
void reserve(size_type n);

23– 26 Containers library DRAFT: 28 April 1995 23.2.5 Template classvector

// 23.2.5.5 element access:
reference operator[](size_type n);
const_reference operator[](size_type n) const;
const_reference at(size_type n) const;
reference at(size_type n);
reference front();
const_reference front() const;
reference back();
const_reference back() const;

// 23.2.5.6 modifiers:
void push_back(const T& x);
void pop_back();
iterator insert(iterator position, const T& x = T());
void insert(iterator position, size_type n, const T& x);
template <class InputIterator>

void insert(iterator position, InputIterator first, InputIterator last);
void erase(iterator position);
void erase(iterator first, iterator last);
void swap(vector<T,Allocator>&);

};

template <class T, class Allocator>
bool operator==(const vector<T,Allocator>& x, const vector<T,Allocator>& y);

template <class T, class Allocator>
bool operator< (const vector<T,Allocator>& x, const vector<T,Allocator>& y);

}

[lib.vector.types] 23.2.5.1vector types

[lib.vector.cons] 23.2.5.2vector constructors, copy, and assignment

vector();
explicit vector(size_type n, const T& value = T());
vector(const vector<T,Allocator>& x);
template <class InputIterator>

vector(InputIterator first, InputIterator last);

Complexity: The constructortemplate <class InputIterator> vector(InputIterator
first, InputIterator last) makes onlyN calls to the copy constructor ofT (whereN is the
distance betweenfirst and last) and no reallocations if iterators first and last are of forward, bidi-
rectional, or random access categories. It does at most2N calls to the copy constructor ofT andlogN
reallocations if they are just input iterators, since it is impossible to determine the distance between
first andlast and then do copying.

template <class InputIterator>
void assign(InputIterator first, InputIterator last);

Effects:

erase(begin(), end());
insert(begin(), first, last);

template <class Size, class T> void assign(Size n, const T& t = T());

23.2.5.2 DRAFT: 28 April 1995 Containers library 23– 27
vector constructors, copy, and assignment

Effects:

erase(begin(), end());
insert(begin(), n, t);

[lib.vector.iterators] 23.2.5.3vector iterator support

[lib.vector.capacity] 23.2.5.4vector capacity

size_type capacity() const;

Returns: The size of the allocated storage in the vector.

void reserve(size_type n);

Effects: A directive that informsvector of a planned change in size, so that it can manage the storage
allocation accordingly. It does not change the size of the sequence and takes at most linear time in the
size of the sequence. Reallocation happens at this point if and only if the current capacity is less than
the argument ofreserve .

Notes: After reserve , capacity() is greater or equal to the argument ofreserve if reallocation
happens; and equal to the previous value ofcapacity() otherwise. Reallocation invalidates all the
references, pointers, and iterators referring to the elements in the sequence.
No reallocation takes place during the insertions that happen afterreserve takes place till the time
when the size of the vector reaches the size specified byreserve .

void resize(size_type sz, T c = T());

Effects:

if (sz > size())
s.insert(s.end(), s.size()-sz, v);

else if (sz < size())
s.erase(s.begin()+sz, s.end());

else
; // do nothing

[lib.vector.access] 23.2.5.5vector element access

[lib.vector.modifiers] 23.2.5.6vector modifiers

iterator insert(iterator position, const T& x = T());
void insert(iterator position, size_type n, const T& x);
template <class InputIterator>

void insert(iterator position, InputIterator first, InputIterator last);

Notes: Causes reallocation if the new size is greater than the old capacity. If no reallocation happens, all
the iterators and references before the insertion point remain valid.

Complexity: Inserting a single element into a vector is linear in the distance from the insertion point to the
end of the vector.
The amortized complexity over the lifetime of a vector of inserting a single element at its end is con-
stant. Insertion of multiple elements into a vector with a single call of the insert member function is lin-
ear in the sum of the number of elements plus the distance to the end of the vector.192)

192)In other words, it is much faster to insert many elements into the middle of a vector at once than to do the insertion one at a time.
The insert template member function preallocates enough storage for the insertion if the iteratorsfirst and last are of forward,

23– 28 Containers library DRAFT: 28 April 1995 23.2.5.6vector modifiers

void erase(iterator position);
void erase(iterator first, iterator last);

Effects: Invalidates all the iterators and references after the point of the erase.
The destructor ofT is called the number of times equal to the number of the elements erased, but the
assignment operator ofT is called the number of times equal to the number of elements in the vector
after the erased elements.

[lib.vector.bool] 23.2.6 Classvector<bool>

1 To optimize space allocation, a specialization forbool is provided:193)

namespace std {
class vector<bool,allocator> {
public:
// types:

typedef const reference const_reference;
typedef typename Allocator::types<bool>::pointer iterator;
typedef typename Allocator::types<bool>::const_pointer const_iterator;
typedef typename Allocator::size_type size_type;
typedef typename Allocator::difference_type difference_type;
typedef bool value_type;
typedef reverse_iterator<iterator, value_type,

reference, difference_type> reverse_iterator;
typedef reverse_iterator<const_iterator, value_type,

const_reference, difference_type> const_reverse_iterator;

// bit reference:
class reference {
public:

~reference();
operator bool() const;
reference& operator=(const bool x);
void flip(); // flips the bit

};

// construct/copy/destroy:
explicit vector(Allocator& = Allocator());
explicit vector(size_type n, const bool& value = bool(),

Allocator& = Allocator());
vector(const vector<bool,allocator>& x, Allocator& = Allocator());
template <class InputIterator>

vector(InputIterator first, InputIterator last, Allocator& = Allocator());
~vector();

vector<bool,allocator>& operator=(const vector<bool,allocator>& x);
template <class InputIterator>

void assign(InputIterator first, InputIterator last);
template <class Size, class T> void assign(Size n, const T& t = T());

bidirectional or random access category. Otherwise, it does insert elements one by one and should not be used for inserting into the
middle of vectors.
193)An implementation is expected to provide specializations ofvector<bool> for all supported memory models.

23.2.6 Classvector<bool> DRAFT: 28 April 1995 Containers library 23– 29

// iterators:
iterator begin();
const_iterator begin() const;
iterator end();
const_iterator end() const;
reverse_iterator rbegin();
const_reverse_iterator rbegin() const;
reverse_iterator rend();
const_reverse_iterator rend() const;

// capacity:
size_type size() const;
size_type max_size() const;
void resize(size_type sz, bool c = false);
size_type capacity() const;
bool empty() const;
void reserve(size_type n);

// element access:
reference operator[](size_type n);
const_reference operator[](size_type n) const;
const_reference at(size_type n) const;
reference at(size_type n);
reference front();
const_reference front() const;
reference back();
const_reference back() const;

// modifiers:
void push_back(const bool& x);
void pop_back();
iterator insert(iterator position, const bool& x = bool());
void insert (iterator position, size_type n, const bool& x = bool());
template <class InputIterator>

void insert (iterator position, InputIterator first, InputIterator last);

void erase(iterator position);
void erase(iterator first, iterator last);
void swap(vector<bool,Allocator>&);
void swap(reference x, reference y);
void flip(); // flips all bits

};

bool operator==(const vector<bool,allocator>& x,
const vector<bool,allocator>& y);

bool operator< (const vector<bool,allocator>& x,
const vector<bool,allocator>& y);

}

2
3 reference is a class that simulates the behavior of references of a single bit invector<bool> .

[lib.associative] 23.3 Associative containers

1 Headers<map>and<set> :

Header<map>synopsis

23– 30 Containers library DRAFT: 28 April 1995 23.3 Associative containers

#include <memory> // for allocator
#include <utility> // for pair
#include <functional> // for less

namespace std {
template <class Key, class T, class Compare = less<Key>,

class Allocator = allocator>
class map;

template <class Key, class T, class Compare, class Allocator>
bool operator==(const map<Key,T,Compare,Allocator>& x,

const map<Key,T,Compare,Allocator>& y);
template <class Key, class T, class Compare, class Allocator>

bool operator< (const map<Key,T,Compare,Allocator>& x,
const map<Key,T,Compare,Allocator>& y);

template <class Key, class T, class Compare = less<Key>,
class Allocator = allocator>

class multimap;
template <class Key, class T, class Compare, class Allocator>

bool operator==(const multimap<Key,T,Compare,Allocator>& x,
const multimap<Key,T,Compare,Allocator>& y);

template <class Key, class T, class Compare, class Allocator>
bool operator< (const multimap<Key,T,Compare,Allocator>& x,

const multimap<Key,T,Compare,Allocator>& y);
}

Header<set> synopsis

#include <memory> // for allocator
#include <utility> // for pair
#include <functional> // for less

namespace std {
template <class Key, class Compare = less<Key>, class Allocator = allocator>

class set;
template <class Key, class Compare, class Allocator>

bool operator==(const set<Key,Compare,Allocator>& x,
const set<Key,Compare,Allocator>& y);

template <class Key, class Compare, class Allocator>
bool operator< (const set<Key,Compare,Allocator>& x,

const set<Key,Compare,Allocator>& y);

template <class Key, class Compare = less<Key>, class Allocator = allocator>
class multiset;

template <class Key, class Compare, class Allocator>
bool operator==(const multiset<Key,Compare,Allocator>& x,

const multiset<Key,Compare,Allocator>& y);
template <class Key, class Compare, class Allocator>

bool operator< (const multiset<Key,Compare,Allocator>& x,
const multiset<Key,Compare,Allocator>& y);

}

[lib.map] 23.3.1 Template classmap

1 A map is a kind of associative container that supports unique keys (contains at most one of each key value)
and provides for fast retrieval of values of another typeT based on the keys.

23.3.1 Template classmap DRAFT: 28 April 1995 Containers library 23– 31

namespace std {
template <class Key, class T, class Compare = less<Key>,

class Allocator = allocator>
class map {
public:
// 23.3.1.1 types:

typedef Key key_type;
typedef pair<const Key, T> value_type;
typedef Compare key_compare;

typedef typename Allocator::types<value_type>::reference reference;
typedef typename Allocator::types<value_type>::const_reference

const_reference;
typedef typename Allocator::types<value_type>::pointer iterator;
typedef typename Allocator::types<value_type>::const_pointer

const_iterator;
typedef typename Allocator::size_type size_type;
typedef typename Allocator::difference_type difference_type;
typedef reverse_iterator<iterator, value_type,

reference, difference_type> reverse_iterator;
typedef reverse_iterator<const_iterator, value_type,

const_reference, difference_type> const_reverse_iterator;

class value_compare
: public binary_function<value_type,value_type,bool> {

friend class map;
protected:

Compare comp;
value_compare(Compare c) : comp(c) {}

public:
bool operator()(const value_type& x, const value_type& y) {

return comp(x.first, y.first);
}

};

// 23.3.1.2 construct/copy/destroy:
explicit map(const Compare& comp = Compare(), Allocator& = Allocator());
template <class InputIterator>

map(InputIterator first, InputIterator last,
const Compare& comp = Compare(), Allocator& = Allocator());

map(const map<Key,T,Compare,Allocator>& x, Allocator& = Allocator());
~map();

map<Key,T,Compare,Allocator>&
operator=(const map<Key,T,Compare,Allocator>& x);

// 23.3.1.3 iterators:
iterator begin();
const_iterator begin() const;
iterator end();
const_iterator end() const;
reverse_iterator rbegin();
const_reverse_iterator rbegin() const;
reverse_iterator rend();
const_reverse_iterator rend() const;

// 23.3.1.4 capacity:
bool empty() const;
size_type size() const;
size_type max_size() const;

23– 32 Containers library DRAFT: 28 April 1995 23.3.1 Template classmap

// 23.3.1.5 element access:
T& operator[](const key_type& x);
const T& operator[](const key_type& x) const;

// 23.3.1.6 modifiers:
pair<iterator, bool> insert(const value_type& x);
iterator insert(iterator position, const value_type& x);
template <class InputIterator>

void insert(InputIterator first, InputIterator last);

void erase(iterator position);
size_type erase(const key_type& x);
void erase(iterator first, iterator last);
void swap(map<Key,T,Compare,Allocator>&);

// 23.3.1.7 observers:
key_compare key_comp() const;
value_compare value_comp() const;

// 23.3.1.8 map operations:
iterator find(const key_type& x);
const_iterator find(const key_type& x) const;
size_type count(const key_type& x) const;

iterator lower_bound(const key_type& x);
const_iterator lower_bound(const key_type& x) const;
iterator upper_bound(const key_type& x);
const_iterator upper_bound(const key_type& x) const;

pair<iterator,iterator> equal_range(const key_type& x);
pair<const_iterator,const_iterator> equal_range(const key_type& x) const;

};

template <class Key, class T, class Compare, class Allocator>
bool operator==(const map<Key,T,Compare,Allocator>& x,

const map<Key,T,Compare,Allocator>& y);
template <class Key, class T, class Compare, class Allocator>

bool operator< (const map<Key,T,Compare,Allocator>& x,
const map<Key,T,Compare,Allocator>& y);

}

[lib.map.types] 23.3.1.1map types

[lib.map.cons] 23.3.1.2mapconstructors, copy, and assignment

[lib.map.iterators] 23.3.1.3map iterator support

[lib.map.capacity] 23.3.1.4mapcapacity

[lib.map.access] 23.3.1.5mapelement access

T& operator[](const key_type& x);

Returns: (*((m.insert(make_pair(x, T()))).first)).second .

23.3.1.6 mapmodifiers DRAFT: 28 April 1995 Containers library 23– 33

[lib.map.modifiers] 23.3.1.6mapmodifiers

[lib.map.observers] 23.3.1.7mapobservers

[lib.map.ops] 23.3.1.8mapoperations

[lib.multimap] 23.3.2 Template classmultimap

1 A multimap is a kind of associative container that supports equal keys (possibly contains multiple copies
of the same key value) and provides for fast retrieval of values of another typeT based on the keys.

namespace std {
template <class Key, class T, class Compare = less<Key>,

class Allocator = allocator>
class multimap {
public:
// types:

typedef Key key_type;
typedef pair<const Key,T> value_type;
typedef Compare key_compare;

class value_compare
: public binary_function<value_type,value_type,bool> {

friend class multimap;
protected:

Compare comp;
value_compare(Compare c) : comp(c) {}

public:
bool operator()(const value_type& x, const value_type& y) {

return comp(x.first, y.first);
}

};

typedef typename Allocator::types<value_type>::reference reference;
typedef typename Allocator::types<value_type>::const_reference

const_reference;
typedef typename Allocator::types<value_type>::pointer iterator;
typedef typename Allocator::types<value_type>::const_pointer

const_iterator;
typedef typename Allocator::size_type size_type;
typedef typename Allocator::difference_type difference_type;
typedef reverse_iterator<iterator, value_type,

reference, difference_type> reverse_iterator;
typedef reverse_iterator<const_iterator, value_type,

const_reference, difference_type> const_reverse_iterator;

// construct/copy/destroy:
explicit multimap(const Compare& comp = Compare(),

Allocator& = Allocator());
template <class InputIterator>

multimap(InputIterator first, InputIterator last,
const Compare& comp = Compare(), Allocator& = Allocator());

multimap(const multimap<Key,T,Compare,Allocator>& x, Allocator& = Allocator());
~multimap();

multimap<Key,T,Compare,Allocator>&
operator=(const multimap<Key,T,Compare,Allocator>& x);

23– 34 Containers library DRAFT: 28 April 1995 23.3.2 Template classmultimap

// iterators:
iterator begin();
const_iterator begin() const;
iterator end();
const_iterator end() const;
reverse_iterator rbegin();
const_reverse_iterator rbegin() const;
reverse_iterator rend();
const_reverse_iterator rend() const;

// capacity:
bool empty() const;
size_type size() const;
size_type max_size() const;

// modifiers:
iterator insert(const value_type& x);
iterator insert(iterator position, const value_type& x);
template <class InputIterator>

void insert(InputIterator first, InputIterator last);

void erase(iterator position);
size_type erase(const key_type& x);
void erase(iterator first, iterator last);
void swap(multimap<Key,T,Compare,Allocator>&);

// observers:
key_compare key_comp() const;
value_compare value_comp() const;

// map operations:
iterator find(const key_type& x);
const_iterator find(const key_type& x) const;
size_type count(const key_type& x) const;

iterator lower_bound(const key_type& x);
const_iterator lower_bound(const key_type& x) const;
iterator upper_bound(const key_type& x);
const_iterator upper_bound(const key_type& x) const;

pair<iterator,iterator> equal_range(const key_type& x);
pair<const_iterator,const_iterator> equal_range(const key_type& x) const;

};

template <class Key, class T, class Compare, class Allocator>
bool operator==(const multimap<Key,T,Compare,Allocator>& x,

const multimap<Key,T,Compare,Allocator>& y);
template <class Key, class T, class Compare, class Allocator>

bool operator< (const multimap<Key,T,Compare,Allocator>& x,
const multimap<Key,T,Compare,Allocator>& y);

}

[lib.set] 23.3.3 Template classset

1 A set is a kind of associative container that supports unique keys (contains at most one of each key value)
and provides for fast retrieval of the keys themselves.

23.3.3 Template classset DRAFT: 28 April 1995 Containers library 23– 35

namespace std {
template <class Key, class Compare = less<Key>, class Allocator = allocator>
class set {
public:
// 23.3.3.1 types:

typedef Key key_type;
typedef Key value_type;
typedef Compare key_compare;
typedef Compare value_compare;
typedef typename Allocator::types<Key>::reference reference;
typedef typename Allocator::types<Key>::const_reference const_reference;
typedef typename Allocator::types<Key>::pointer iterator;
typedef typename Allocator::types<Key>::const_pointer const_iterator;
typedef typename Allocator::size_type size_type;
typedef typename Allocator::difference_type difference_type;
typedef reverse_iterator<iterator, value_type,

reference, difference_type> reverse_iterator;
typedef reverse_iterator<const_iterator, value_type,

const_reference, difference_type> const_reverse_iterator;

// 23.3.3.2 construct/copy/destroy:
explicit set(const Compare& comp = Compare(), Allocator& = Allocator());
template <class InputIterator>

set(InputIterator first, InputIterator last,
const Compare& comp = Compare(), Allocator& = Allocator());

set(const set<Key,Compare,Allocator>& x, Allocator& = Allocator());
~set();

set<Key,Compare,Allocator>& operator=(const set<Key,Compare,Allocator>& x);

// 23.3.3.3 iterators:
iterator begin();
const_iterator begin() const;
iterator end();
const_iterator end() const;
reverse_iterator rbegin();
const_reverse_iterator rbegin() const;
reverse_iterator rend();
const_reverse_iterator rend() const;

// 23.3.3.4 capacity:
bool empty() const;
size_type size() const;
size_type max_size() const;

// 23.3.3.5 modifiers:
pair<iterator,bool> insert(const value_type& x);
iterator insert(iterator position, const value_type& x);
template <class InputIterator>

void insert(InputIterator first, InputIterator last);

void erase(iterator position);
size_type erase(const key_type& x);
void erase(iterator first, iterator last);
void swap(set<Key,Compare,Allocator>&);

// 23.3.3.6 observers:
key_compare key_comp() const;
value_compare value_comp() const;

23– 36 Containers library DRAFT: 28 April 1995 23.3.3 Template classset

// 23.3.3.7 set operations:
iterator find(const key_type& x) const;
size_type count(const key_type& x) const;

iterator lower_bound(const key_type& x) const;
iterator upper_bound(const key_type& x) const;
pair<iterator,iterator> equal_range(const key_type& x) const;

};

template <class Key, class Compare, class Allocator>
bool operator==(const set<Key,Compare,Allocator>& x,

const set<Key,Compare,Allocator>& y);
template <class Key, class Compare, class Allocator>

bool operator< (const set<Key,Compare,Allocator>& x,
const set<Key,Compare,Allocator>& y);

}

[lib.set.types] 23.3.3.1set types

[lib.set.cons] 23.3.3.2set constructors, copy, and assignment

[lib.set.iterators] 23.3.3.3set iterator support

[lib.set.capacity] 23.3.3.4set capacity

[lib.set.modifiers] 23.3.3.5set modifiers

[lib.set.observers] 23.3.3.6set observers

[lib.set.ops] 23.3.3.7set operations

[lib.multiset] 23.3.4 Template classmultiset

1 A multiset is a kind of associative container that supports equal keys (possibly contains multiple copies
of the same key value) and provides for fast retrieval of the keys themselves.

namespace std {
template <class Key, class Compare = less<Key>, class Allocator = allocator>
class multiset {
public:
// types:

typedef Key key_type;
typedef Key value_type;
typedef Compare key_compare;
typedef Compare value_compare;
typedef typename Allocator::types<Key>::reference reference;
typedef typename Allocator::types<Key>::const_reference const_reference;
typedef typename Allocator::types<Key>::pointer iterator;
typedef typename Allocator::types<Key>::const_pointer const_iterator;
typedef typename Allocator::size_type size_type;
typedef typename Allocator::difference_type difference_type;
typedef reverse_iterator<iterator, value_type,

reference, difference_type> reverse_iterator;
typedef reverse_iterator<const_iterator, value_type,

const_reference, difference_type> const_reverse_iterator;

23.3.4 Template classmultiset DRAFT: 28 April 1995 Containers library 23– 37

// construct/copy/destroy:
explicit multiset(const Compare& comp = Compare(),

Allocator& = Allocator());
template <class InputIterator>

multiset(InputIterator first, InputIterator last,
const Compare& comp = Compare(), Allocator& = Allocator());

multiset(const multiset<Key,Compare,Allocator>& x, Allocator& = Allocator());
~multiset();

multiset<Key,Compare,Allocator>&
operator=(const multiset<Key,Compare,Allocator>& x);

// iterators:
iterator begin();
const_iterator begin() const;
iterator end();
const_iterator end() const;
reverse_iterator rbegin();
const_reverse_iterator rbegin() const;
reverse_iterator rend();
const_reverse_iterator rend() const;

// capacity:
bool empty() const;
size_type size() const;
size_type max_size() const;

// modifiers:
iterator insert(const value_type& x);
iterator insert(iterator position, const value_type& x);
template <class InputIterator>

void insert(InputIterator first, InputIterator last);

void erase(iterator position);
size_type erase(const key_type& x);
void erase(iterator first, iterator last);
void swap(multiset<Key,Compare,Allocator>&);

// observers:
key_compare key_comp() const;
value_compare value_comp() const;

// set operations:
iterator find(const key_type& x) const;
size_type count(const key_type& x) const;

iterator lower_bound(const key_type& x) const;
iterator upper_bound(const key_type& x) const;
pair<iterator,iterator> equal_range(const key_type& x) const;

};

template <class Key, class Compare, class Allocator>
bool operator==(const multiset<Key,Compare,Allocator>& x,

const multiset<Key,Compare,Allocator>& y);
template <class Key, class Compare, class Allocator>

bool operator< (const multiset<Key,Compare,Allocator>& x,
const multiset<Key,Compare,Allocator>& y);

}

_ ___ ___

24 Iterators library [lib.iterators]
_ ___ ___

1 This clause describes components that C + + programs may use to perform iterations over containers (23),
streams (27.6), and stream buffers (27.5).

2 The following subclauses describe iterator requirements, and components for iterator primitives, predefined
iterators, and stream iterators, as summarized in Table 55:

Table 55—Iterators library summary
_ ____________________________________

Subclause Header(s)_ _____________________________________ ____________________________________
24.1 Requirements_ ____________________________________
24.2 Iterator primitives
24.3 Predefined iterators
24.4 Stream iterators

<iterator>

_ ____________________________________

[lib.iterator.requirements] 24.1 Iterator requirements

1 Iterators are a generalization of pointers that allow a C + + program to work with different data structures
(containers) in a uniform manner. To be able to construct template algorithms that work correctly and effi-
ciently on different types of data structures, the library formalizes not just the interfaces but also the seman-
tics and complexity assumptions of iterators. All iteratorsi support the expression*i , resulting in a value
of some class, enumeration, or built-in typeT, called thevalue typeof the iterator. For every iterator typeX
for which equality is defined, there is a corresponding signed integral type called thedistance typeof the
iterator.

2 Since iterators are an abstraction of pointers, their semantics is a generalization of most of the semantics of
pointers in C + +. This ensures that every template function that takes iterators works as well with regular
pointers. This Standard defines five categories of iterators, according to the operations defined on them:
input iterators, output iterators, forward iterators, bidirectional iteratorsand random access iterators, as
shown in Table 56.

Table 56—Relations among iterator categories
_ __
Random access → Bidirectional → Forward → Input

→ Output_ __

3 Forward iterators satisfy all the requirements of the input and output iterators and can be used whenever
either kind is specified; Bidirectional iterators also satisfy all the requirements of the forward iterators and
can be used whenever a forward iterator is specified; Random access iterators also satisfy all the require-
ments of bidirectional iterators and can be used whenever a bidirectional iterator is specified.

4 Besides its category, a forward, bidirectional, or random access iterator can also bemutableor constant
depending on whether the result of the expression*i behaves as a reference or as a reference to a constant.
Constant iterators do not satisfy the requirements for output iterators, and the result of the expression*i
(for constant iteratori) cannot be used in an expression where an lvalue is required.

24– 2 Iterators library DRAFT: 28 April 1995 24.1 Iterator requirements

5 Just as a regular pointer to an array guarantees that there is a pointer value pointing past the last element of
the array, so for any iterator type there is an iterator value that points past the last element of a correspond-
ing container. These values are calledpast-the-endvalues. Values of an iteratori for which the expression
*i is defined are calleddereferenceable. The library never assumes that past-the-end values are derefer-
enceable. Iterators can also have singular values that are not associated with any container. For example,
after the declaration of an uninitialized pointerx (as withint* x;), x must always be assumed to have a
singular value of a pointer. Results of most expressions are undefined for singular values; the only excep-
tion is an assignment of a non-singular value to an iterator that holds a singular value. In this case the sin-
gular value is overwritten the same way as any other value. Dereferenceable and past-the-end values are
always non-singular.

6 An iteratorj is calledreachablefrom an iteratori if and only if there is a finite sequence of applications of
the expression++i that makesi == j . If j is reachable fromi , they refer to the same container.

7 Most of the library’s algorithmic templates that operate on data structures have interfaces that use ranges.
A rangeis a pair of iterators that designate the beginning and end of the computation. A range[i, i) is
an empty range; in general, a range[i, j) refers to the elements in the data structure starting with the
one pointed to byi and up to but not including the one pointed to byj . Range[i, j) is valid if and
only if j is reachable fromi . The result of the application of the algorithms in the library to invalid ranges
is undefined.

8 All the categories of iterators require only those functions that are realizable for a given category in con-
stant time (amortized). Therefore, requirement tables for the iterators do not have a complexity column.

9 In the following sections,a andb denote values ofX, n denotes a value of the distance typeDistance , u,
tmp , andmdenote identifiers,r denotes a value ofX&, t denotes a value of value typeT.

[lib.input.iterators] 24.1.1 Input iterators

1 A class or a built-in typeX satisfies the requirements of an input iterator for the value typeT if the follow-
ing expressions are valid, as shown in Table 57:

Table 57—Input iterator requirements
_ __

operational assertion/note
expression return type

semantics pre/post-condition_ ___ __
X(a) a == X(a) .

note: a destructor is assumed._ __
X u(a);

X u = a; post:u == a ._ __
a == b convertible tobool == is an equivalence relation._ __
a != b convertible tobool !(a == b)_ __
*a T pre:a is dereferenceable.

a == b implies*a == *b ._ __
++r X& pre:r is dereferenceable.

post:r is dereferenceable or
r is past-the-end.
&r == &++r ._ __

r++ convertible to
const X&

{ X tmp = r;
++r;
return tmp; }_ __

*r++ T_ __

24.1.1 Input iterators DRAFT: 28 April 1995 Iterators library 24– 3

2 [Note:For input iterators,a == b does not imply++a == ++b . (Equality does not guarantee the substi-
tution property or referential transparency.) Algorithms on input iterators should never attempt to pass
through the same iterator twice. They should besingle passalgorithms. Value type T is not required to be
an lvalue type.These algorithms can be used with istreams as the source of the input data through the
istream_iterator class. —end note]

[lib.output.iterators] 24.1.2 Output iterators

1 A class or a built-in typeX satisfies the requirements of an output iterator if the following expressions are
valid, as shown in Table 58:

Table 58—Output iterator requirements
_ ___

operational assertion/note
expression return type

semantics pre/post-condition_ __ ___
X(a) a = t is equivalent to

X(a) = t .
note: a destructor is assumed._ ___

X u(a);

X u = a;_ ___
*a = t result is not used_ ___
++r X& &r == &++r ._ ___
r++ convertible to

const X&
{ X tmp = r;

++r;
return tmp; }_ ___

*r++ = t result is not used_ ___

2 [Note: The only valid use of anoperator* is on the left side of the assignment statement.Assignment
through the same value of the iterator happens only once.Algorithms on output iterators should never
attempt to pass through the same iterator twice. They should besingle passalgorithms. Equality and
inequality might not be defined. Algorithms that take output iterators can be used with ostreams as the des-
tination for placing data through theostream_iterator class as well as with insert iterators and insert
pointers. —end note]

[lib.forward.iterators] 24.1.3 Forward iterators

1 A class or a built-in typeX satisfies the requirements of a forward iterator if the following expressions are
valid, as shown in Table 59:

24– 4 Iterators library DRAFT: 28 April 1995 24.1.3 Forward iterators

Table 59—Forward iterator requirements
_ ___

operational assertion/note
expression return type

semantics pre/post-condition_ __ ___
X u; note:u might have a singular

value.
note: a destructor is assumed._ ___

X() note:X() might be singular._ ___
X(a) a == X(a) ._ ___
X u(a); X u; u = a; post:u == a .
X u = a;_ ___
a == b convertible tobool == is an equivalence relation._ ___
a != b convertible tobool !(a == b)_ ___
r = a X& post: r == a._ ___
*a T& pre:a is dereferenceable.

a == b implies*a == *b .
If X is mutable,*a = t is valid._ ___

++r X& pre:r is dereferenceable.
post:r is dereferenceable orr is
past-the-end.
r == s andr is dereference-
able implies++r == ++s .
&r == &++r ._ ___

r++ convertible to
const X&

{ X tmp = r;
++r;
return tmp; }_ ___

*r++ T&_ ___

2 [Note:The condition thata == b implies++a == ++b (which is not true for input and output iterators)
and the removal of the restrictions on the number of the assignments through the iterator (which applies to
output iterators) allows the use of multi-pass one-directional algorithms with forward iterators.—end
note]

[lib.bidirectional.iterators] 24.1.4 Bidirectional iterators

1 A class or a built-in typeX satisfies the requirements of a bidirectional iterator if, in addition to satisfying
the requirements for forward iterators, the following expressions are valid as shown in Table 60:

24.1.4 Bidirectional iterators DRAFT: 28 April 1995 Iterators library 24– 5

Table 60—Bidirectional iterator requirements (in addition to forward iterator)
__

operational assertion/note
expression return type

semantics pre/post-condition__
--r X& pre: there existss such

thatr == ++s .
post:s is dereferenceable.
--(++r) == r .
--r == --r impliesr
== s .
&r == &--r .__

r-- convertible to
const X&

{ X tmp = r;
--r;
return tmp; }__

*r-- convertible toT__

2 [Note:Bidirectional iterators allow algorithms to move iterators backward as well as forward.—end note]

[lib.random.access.iterators] 24.1.5 Random access iterators

1 A class or a built-in typeX satisfies the requirements of a random access iterator if, in addition to satisfying
the requirements for bidirectional iterators, the following expressions are valid as shown in Table 61:

24– 6 Iterators library DRAFT: 28 April 1995 24.1.5 Random access iterators

Table 61—Random access iterator requirements (in addition to bidirectional iterator)
_ __

operational assertion/note
expression return type

semantics pre/post-condition_ ___ __
r += n X& { Distance m =

n;
if (m >= 0)

while (m--)
++r;

else
while (m++)

--r;
return r; }_ __

a + n { X tmp = a;
return tmp +=

n; }

n + a

X a + n == n + a .

_ __
r -= n X& return r += -n;_ __
a - n X { X tmp = a;

return tmp -=
n; }_ __

b - a Distance { TBS } pre: there exists a valuen
of Distance such thata
+ n == b . b == a +
(b - a) ._ __

a[n] convertible toT *(a + n)_ __
a < b convertible tobool b - a > 0 < is a total ordering relation_ __
a > b convertible to bool b < a > is a total ordering relation

opposite to<._ __
a >= b convertible to bool !(a < b)_ __
a <= b convertible to bool !(a > b)_ __

[lib.iterator.tags] 24.1.6 Iterator tags

1 To implement algorithms only in terms of iterators, it is often necessary to infer both of the value type and
the distance type from the iterator. To enable this task it is required that for an iteratori of any category
other than output iterator, the expressionvalue_type(i) returns (T*)(0) and the expression
distance_type(i) returns (Distance*)(0) . For output iterators, these expressions are not
required.

2 [Note: For all the regular pointer types,value_type() anddistance_type() can be defined with
the help of:

template <class T>
inline T* value_type(const T*) { return (T*)(0); }
template <class T>
inline ptrdiff_t* distance_type(const T*) { return (ptrdiff_t*)(0); }

—end note]

3 [Example:To implement a genericreverse function, a C + + program can do the following:

24.1.6 Iterator tags DRAFT: 28 April 1995 Iterators library 24– 7

template <class BidirectionalIterator>
inline void reverse(BidirectionalIterator first, BidirectionalIterator last) {

__reverse(first, last, value_type(first), distance_type(first));
}

4 where__reverse is defined as:

template <class BidirectionalIterator, class T, class Distance>
void __reverse(BidirectionalIterator first, BidirectionalIterator last, T*,

Distance*)
{

Distance n;
distance(first, last, n); // see Iterator operations section
--n;
while (n > 0) {

T tmp = *first;
*first++ = *--last;
*last = tmp;
n -= 2;

}
}

—end example]

5 [Note: If there is an additional pointer typefar such that the difference of twofar pointers is of the type
long , an implementation may define:

template <class T>
inline T* value_type(const T far *) { return (T*)(0); }
template <class T>
inline long* distance_type(const T far *) { return (long*)(0); }

—end note]

6 It is often desirable for a template function to find out what is the most specific category of its iterator argu-
ment, so that the function can select the most efficient algorithm at compile time. To facilitate this, the
library introducescategory tagclasses which are used as compile time tags for algorithm selection. They
are: input_iterator_tag , output_iterator_tag , forward_iterator_tag ,
bidirectional_iterator_tag and random_access_iterator_tag . Every iteratori must
have an expressioniterator_category(i) defined on it that returns the most specific category tag
that describes its behavior.

7 [Example:If the pointer types are defined to be in the random access iterator category by:

template <class T>
inline random_access_iterator_tag

iterator_category(const T*)
{ return random_access_iterator_tag(); }

8 For a program-defined iteratorBinaryTreeIterator , it can be included into the bidirectional iterator
category by saying:

template <class T>
inline bidirectional_iterator_tag iterator_category(

const BinaryTreeIterator<T>&) {
return bidirectional_iterator_tag();

}

—end example]

9 [Example:If a template functionevolve() is well defined for bidirectional iterators, but can be imple-
mented more efficiently for random access iterators, then the implementation is like:

24– 8 Iterators library DRAFT: 28 April 1995 24.1.6 Iterator tags

template <class BidirectionalIterator>
inline void evolve(BidirectionalIterator first, BidirectionalIterator last) {

evolve(first, last, iterator_category(first));
}

template <class BidirectionalIterator>
void evolve(BidirectionalIterator first, BidirectionalIterator last,

bidirectional_iterator_tag) {
// ... more generic, but less efficient algorithm
}

template <class RandomAccessIterator>
void evolve(RandomAccessIterator first, RandomAccessIterator last,

random_access_iterator_tag) {
// ... more efficient, but less generic algorithm
}

—end example]

10 [Example:If a C + + program wants to define a bidirectional iterator for some data structure containing
double and such that it works on a large memory model of the implementation, it can do so with:

class MyIterator : public bidirectional_iterator<double, long> {
// code implementing ++, etc.
};

11 Then there is no need to defineiterator_category , value_type , and distance_type on
MyIterator . —end example]

Header<iterator> synopsis

#include <cstddef> // for ptrdiff_t
#include <iosfwd> // for istream, ostream
#include <ios> // for ios_traits
#include <streambuf> // for streambuf

namespace std {
// subclause _lib.library.primitives_, primitives:

struct input_iterator_tag {};
struct output_iterator_tag {};
struct forward_iterator_tag {};
struct bidirectional_iterator_tag {};
struct random_access_iterator_tag {};

template <class T, class Distance = ptrdiff_t> struct input_iterator {};
struct output_iterator {};
template <class T, class Distance = ptrdiff_t> struct forward_iterator {};
template <class T, class Distance = ptrdiff_t>

struct bidirectional_iterator {};
template <class T, class Distance = ptrdiff_t>

struct random_access_iterator {};

24.1.6 Iterator tags DRAFT: 28 April 1995 Iterators library 24– 9

template <class T, class Distance>
input_iterator_tag iterator_category(const input_iterator<T,Distance>&);

output_iterator_tag iterator_category(const output_iterator&);
template <class T, class Distance>

forward_iterator_tag
iterator_category(const forward_iterator<T,Distance>&);

template <class T, class Distance>
bidirectional_iterator_tag

iterator_category(const bidirectional_iterator<T,Distance>&);
template <class T, class Distance>

random_access_iterator_tag
iterator_category(const random_access_iterator<T,Distance>&);

template <class T> random_access_iterator_tag iterator_category(const T*);

template <class T, class Distance>
T* value_type(const input_iterator<T,Distance>&);

template <class T, class Distance>
T* value_type(const forward_iterator<T,Distance>&);

template <class T, class Distance>
T* value_type(const bidirectional_iterator<T,Distance>&);

template <class T, class Distance>
T* value_type(const random_access_iterator<T,Distance>&);

template <class T> T* value_type(const T*);

template <class T, class Distance>
Distance* distance_type(const input_iterator<T,Distance>&);

template <class T, class Distance>
Distance* distance_type(const forward_iterator<T,Distance>&);

template <class T, class Distance>
Distance* distance_type(const bidirectional_iterator<T,Distance>&);

template <class T, class Distance>
Distance* distance_type(const random_access_iterator<T,Distance>&);

template <class T> ptrdiff_t* distance_type(const T*);

// subclause 24.2.6, iterator operations:
template <class InputIterator, class Distance>

void advance(InputIterator& i, Distance n);
template <class InputIterator, class Distance>

void distance(InputIterator first, InputIterator last, Distance& n);

// subclause 24.3, predefined iterators:
template <class BidirectionalIterator, class T,

class Reference, class Distance = ptrdiff_t>
class reverse_bidirectional_iterator;

template <class BidirectionalIterator, class T, class Reference, class Distance>
bool operator==(

const reverse_bidirectional_iterator
<BidirectionalIterator,T,Reference,Distance>& x,

const reverse_bidirectional_iterator
<BidirectionalIterator,T,Reference,Distance>& y);

24– 10 Iterators library DRAFT: 28 April 1995 24.1.6 Iterator tags

template <class RandomAccessIterator, class T, class Distance = ptrdiff_t>
class reverse_iterator : public random_access_iterator<T,Distance>;

template <class RandomAccessIterator, class T, class Distance>
bool operator==(

const reverse_iterator<RandomAccessIterator,T,Reference,Distance>& x,
const reverse_iterator<RandomAccessIterator,T,Reference,Distance>& y);

template <class RandomAccessIterator, class T, class Distance>
bool operator<(

const reverse_iterator<RandomAccessIterator,T,Reference,Distance>& x,
const reverse_iterator<RandomAccessIterator,T,Reference,Distance>& y);

template <class RandomAccessIterator, class T, class Distance>
Distance operator-(

const reverse_iterator<RandomAccessIterator,T,Reference,Distance>& x,
const reverse_iterator<RandomAccessIterator,T,Reference,Distance>& y);

template <class RandomAccessIterator, class T, class Distance>
reverse_iterator<RandomAccessIterator,T,Reference,Distance> operator+

(Distance n,
const reverse_iterator<RandomAccessIterator,T,Reference,Distance>& x);

template <class Container> class back_insert_iterator;
template <class Container>

back_insert_iterator<Container> back_inserter(Container& x);

template <class Container> class front_insert_iterator;
template <class Container>

front_insert_iterator<Container> front_inserter(Container& x);

template <class Container> class insert_iterator;
template <class Container, class Iterator>

insert_iterator<Container> inserter(Container& x, Iterator i);

// subclauses 24.4, stream iterators:
template <class T, class Distance = ptrdiff_t> class istream_iterator;
template <class T, class Distance>

bool operator==(const istream_iterator<T,Distance>& x,
const istream_iterator<T,Distance>& y);

template <class T> class ostream_iterator;

template<class charT, class traits = ios_traits<charT> >
class istreambuf_iterator;

template <class charT, class traits = ios_traits<charT> >
bool operator==(istreambuf_iterator<charT,traits>& a,

istreambuf_iterator<charT,traits>& b);
template <class charT, class traits = ios_traits<charT> >

bool operator!=(istreambuf_iterator<charT,traits>& a,
istreambuf_iterator<charT,traits>& b);

template <class charT, class traits = ios_char_traits<charT> >
class ostreambuf_iterator;

output_iterator iterator_category (const ostreambuf_iterator&);
template<class charT, class traits = ios_char_traits<charT> >

bool operator==(ostreambuf_iterator<charT,traits>& a,
ostreambuf_iterator<charT,traits>& b);

template<class charT, class traits = ios_char_traits<charT> >
bool operator!=(ostreambuf_iterator<charT,traits>& a,

ostreambuf_iterator<charT,traits>& b);
}

24.2 Iterator primitives DRAFT: 28 April 1995 Iterators library 24 – 11

[lib.iterator.primitives] 24.2 Iterator primitives

1 To simplify the task of defining theiterator_category , value_type anddistance_type for
user def inable iterators, the library provides the following predefined classes and functions:

[lib.std.iterator.tags] 24.2.1 Standard iterator tags

namespace std {
struct input_iterator_tag {};
struct output_iterator_tag {};
struct forward_iterator_tag {};
struct bidirectional_iterator_tag {};
struct random_access_iterator_tag {};

}

[lib.basic.iterators] 24.2.2 Basic iterators

namespace std {
template <class T, class Distance = ptrdiff_t> struct input_iterator {};
struct output_iterator{};
template <class T, class Distance = ptrdiff_t> struct forward_iterator {};
template <class T, class Distance = ptrdiff_t> struct bidirectional_iterator {};
template <class T, class Distance = ptrdiff_t> struct random_access_iterator {};

}

1 [Note:output_iterator is not a template because output iterators do not have either value type or dis-
tance type defined.—end note]

[lib.iterator.category] 24.2.3 iterator_category

template <class T, class Distance>
input_iterator_tag

iterator_category(const input_iterator<T,Distance>&);

Returns: input_iterator_tag() .

output_iterator_tag iterator_category(const output_iterator&);

Returns: output_iterator_tag() .

template <class T, class Distance>
forward_iterator_tag

iterator_category(const forward_iterator<T,Distance>&);

Returns: forward_iterator_tag() .

template <class T, class Distance>
bidirectional_iterator_tag

iterator_category(const bidirectional_iterator<T,Distance>&);

Returns: bidirectional_iterator_tag() .

template <class T, class Distance>
random_access_iterator_tag

iterator_category(const random_access_iterator<T,Distance>&);

24– 12 Iterators library DRAFT: 28 April 1995 24.2.3 iterator_category

Returns: random_access_iterator_tag() .

template <class T>
random_access_iterator_tag iterator_category(const T*);

Returns: random_access_iterator_tag() .

[lib.value.type] 24.2.4 value_type

template <class T, class Distance>
T* value_type(const input_iterator<T,Distance>&);

template <class T, class Distance>
T* value_type(const forward_iterator<T,Distance>&);

template <class T, class Distance>
T* value_type(const bidirectional_iterator<T,Distance>&);

template <class T, class Distance>
T* value_type(const random_access_iterator<T,Distance>&);

template <class T> T* value_type(const T*);

Returns: (T*)(0) .

[lib.distance.type] 24.2.5 distance_type

template <class T, class Distance>
Distance* distance_type(const input_iterator<T,Distance>&);

template <class T, class Distance>
Distance* distance_type(const forward_iterator<T,Distance>&);

template <class T, class Distance>
Distance* distance_type(const bidirectional_iterator<T,Distance>&);

template <class T, class Distance>
Distance* distance_type(const random_access_iterator<T,Distance>&);

Returns: (Distance*)(0) .

template <class T> ptrdiff_t* distance_type(const T*);

Returns: (ptrdiff_t*)(0) .

[lib.iterator.operations] 24.2.6 Iterator operations

1 Since only random access iterators provide+ and- operators, the library provides two template functions
advance anddistance . These functions use+ and - for random access iterators (and are, therefore,
constant time for them); for input, forward and bidirectional iterators they use++ to provide linear time
implementations.

template <class InputIterator, class Distance>
void advance(InputIterator& i, Distance n);

Requires: n may be negative only for random access and bidirectional iterators.
Effects: Increments (or decrements for negativen) iterator referencei by n.

template <class InputIterator, class Distance>
void distance(InputIterator first, InputIterator last, Distance& n);

24.2.6 Iterator operations DRAFT: 28 April 1995 Iterators library 24– 13

Effects: Incrementsn by the number of times it takes to get fromfirst to last .194)

[lib.predef.iterators] 24.3 Predefined iterators

[lib.reverse.iterators] 24.3.1 Reverse iterators

1 Bidirectional and random access iterators have corresponding reverse iterator adaptors that iterate through
the data structure in the opposite direction. They have the same signatures as the corresponding iterators.
The fundamental relation between a reverse iterator and its corresponding iteratori is established by the
identity: &*(reverse_iterator(i)) == &*(i - 1) .

2 This mapping is dictated by the fact that while there is always a pointer past the end of an array, there might
not be a valid pointer before the beginning of an array.

3 The formal class parameterT of reverse iterators should be instantiated with the type that
Iterator::operator* returns, which is usually a reference type. For example, to obtain a reverse
iterator for int* , one should declarereverse_iterator<int*, int&> . To obtain a constant
reverse iterator forint* , one should declarereverse_iterator<const int*, const int&> .
The interface thus allows one to use reverse iterators with those iterator types for whichoperator*
returns something other than a reference type.

[lib.reverse.bidir.iter] 24.3.1.1 Template classreverse_bidirectional_iterator

namespace std {
template <class BidirectionalIterator, class T,

class Reference = T&, class Distance = ptrdiff_t>
class reverse_bidirectional_iterator

: public bidirectional_iterator<T,Distance> {
protected:

BidirectionalIterator current;
public:

reverse_bidirectional_iterator();
explicit reverse_bidirectional_iterator(BidirectionalIterator x);
BidirectionalIterator base(); // explicit
Reference operator*();
reverse_bidirectional_iterator<BidirectionalIterator,T,Reference,Distance>&

operator++();
reverse_bidirectional_iterator<BidirectionalIterator,T,Reference,Distance>

operator++(int);
reverse_bidirectional_iterator<BidirectionalIterator,T,Reference,Distance>&

operator--();
reverse_bidirectional_iterator<BidirectionalIterator,T,Reference,Distance>

operator--(int);
};

template <class BidirectionalIterator, class T, class Distance>
bool operator==(

const reverse_bidirectional_iterator
<BidirectionalIterator,T,Reference,Distance>& x,

const reverse_bidirectional_iterator
<BidirectionalIterator,T,Reference,Distance>& y);

}

194)distance must be a three argument function storing the result into a reference instead of returning the result because the dis-
tance type cannot be deduced from built-in iterator types such asint* .

24– 14 Iterators library DRAFT: 28 April 1995 24.3.1.2
reverse_bidirectional_iterator operations

[lib.reverse.bidir.iter.ops] 24.3.1.2 reverse_bidirectional_iterator operations

[lib.reverse.bidir.iter.cons] 24.3.1.2.1reverse_bidirectional_iterator constructor

explicit reverse_bidirectional_iterator(BidirectionalIterator x);

Effects: Initializescurrent with x .

[lib.reverse.bidir.iter.conv] 24.3.1.2.2 Conversion

BidirectionalIterator base(); // explicit

Returns: current

[lib.reverse.bidir.iter.op.star] 24.3.1.2.3operator*

Reference operator*();

Effects:

BidirectionalIterator tmp = current;
return *--tmp;

[lib.reverse.bidir.iter.op++] 24.3.1.2.4operator++

reverse_bidirectional_iterator<BidirectionalIterator,T,Reference,Distance>&
operator++();

Effects: --current;
Returns: *this

reverse_bidirectional_iterator<BidirectionalIterator,T,Reference,Distance>
operator++(int);

Effects:

reverse_bidirectional_iterator<BidirectionalIterator,T,Reference,Distance>
tmp = *this;

--current;
return tmp;

[lib.reverse.bidir.iter.op--] 24.3.1.2.5operator--

reverse_bidirectional_iterator
<BidirectionalIterator,T,Reference,Distance>&

operator--();

Effects: ++current
Returns:

reverse_bidirectional_iterator<BidirectionalIterator,T,Reference,Distance>
operator--(int);

24.3.1.2.5operator-- DRAFT: 28 April 1995 Iterators library 24 – 15

Effects:

reverse_bidirectional_iterator
<BidirectionalIterator,T,Reference,Distance> tmp = *this;

++current;
return tmp;

[lib.reverse.bidir.iter.op==] 24.3.1.2.6operator==

template <class BidirectionalIterator, class T, class Reference, class Distance>
bool operator==(

const reverse_bidirectional_iterator
<BidirectionalIterator,T,Reference,Distance>& x,

const reverse_bidirectional_iterator
<BidirectionalIterator,T,Reference,Distance>& y);

Returns: BidirectionalIterator(x) == BidirectionalIterator(y) .

[lib.reverse.iterator] 24.3.1.3 Template classreverse_iterator

namespace std {
template <class RandomAccessIterator, class T,

class Reference = T&, class Distance = ptrdiff_t>
class reverse_iterator : public random_access_iterator<T,Distance> {
protected:

RandomAccessIterator current;
public:

reverse_iterator();
explicit reverse_iterator(RandomAccessIterator x);

RandomAccessIterator base(); // explicit
Reference operator*();

reverse_iterator<RandomAccessIterator,T,Reference,Distance>& operator++();
reverse_iterator<RandomAccessIterator,T,Reference,Distance> operator++(int);
reverse_iterator<RandomAccessIterator,T,Reference,Distance>& operator--();
reverse_iterator<RandomAccessIterator,T,Reference,Distance> operator--(int);

reverse_iterator<RandomAccessIterator,T,Reference,Distance>
operator+ (Distance n) const;

reverse_iterator<RandomAccessIterator,T,Reference,Distance>&
operator+=(Distance n);

reverse_iterator<RandomAccessIterator,T,Reference,Distance>
operator- (Distance n) const;

reverse_iterator<RandomAccessIterator,T,Reference,Distance>&
operator-=(Distance n);

Reference operator[](Distance n);

template <class RandomAccessIterator, class T,
class Reference, class Distance>

bool operator==(
const reverse_iterator<RandomAccessIterator,T,Reference,Distance>& x,
const reverse_iterator<RandomAccessIterator,T,Reference,Distance>& y);

template <class RandomAccessIterator, class T,
class Reference, class Distance>

bool operator<(
const reverse_iterator<RandomAccessIterator,T,Reference,Distance>& x,
const reverse_iterator<RandomAccessIterator,T,Reference,Distance>& y);

24– 16 Iterators library DRAFT: 28 April 1995 24.3.1.3
Template classreverse_iterator

template <class RandomAccessIterator, class T,
class Reference, class Distance>

Distance operator-(
const reverse_iterator<RandomAccessIterator,T,Reference,Distance>& x,
const reverse_iterator<RandomAccessIterator,T,Reference,Distance>& y);

template <class RandomAccessIterator, class T,
class Reference, class Distance>

reverse_iterator<RandomAccessIterator,T,Reference,Distance> operator+(
Distance n,
const reverse_iterator

<RandomAccessIterator,T,Reference,Distance>& x);
};

}

1 [Note:There is no way a default forT can be expressed in terms ofBidirectionalIterator because
the value type cannot be deduced from built-in iterators such asint* . Otherwise, it would have been writ-
ten as:

template <class BidirectionalIterator,
class T = typename BidirectionalIterator::reference_type,
class Distance = typename BidirectionalIterator::difference_type>

class reverse_bidirectional_iterator: bidirectional_iterator<T,Distance> {
/* ... */
};

—end note]

[lib.reverse.iter.ops] 24.3.1.4 reverse_iterator operations

[lib.reverse.iter.cons] 24.3.1.4.1reverse_iterator constructor

explicit reverse_iterator(RandomAccessIterator x);

Effects: Initializescurrent with x .

[lib.reverse.iter.conv] 24.3.1.4.2 Conversion

RandomAccessIterator base(); // explicit

Returns: current

[lib.reverse.iter.op.star] 24.3.1.4.3operator*

Reference operator*();

Effects:

RandomAccessIterator tmp = current;
return *--tmp;

[lib.reverse.iter.op++] 24.3.1.4.4operator++

reverse_iterator<RandomAccessIterator,T,Reference,Distance>&
operator++();

24.3.1.4.4operator++ DRAFT: 28 April 1995 Iterators library 24 – 17

Effects: --current;
Returns: *this

reverse_iterator<RandomAccessIterator,T,Reference,Distance>
operator++(int);

Effects:

reverse_iterator<RandomAccessIterator,T,Reference,Distance> tmp = *this;
--current;
return tmp;

[lib.reverse.iter.op--] 24.3.1.4.5operator--

reverse_iterator<RandomAccessIterator,T,Reference,Distance>&
operator--();

Effects: ++current
Returns:

reverse_iterator<RandomAccessIterator,T,Reference,Distance>
operator--(int);

Effects:

reverse_iterator<RandomAccessIterator,T,Reference,Distance> tmp = *this;
++current;
return tmp;

[lib.reverse.iter.op==] 24.3.1.4.6operator==

template <class RandomAccessIterator, class T,
class Reference, class Distance>

bool operator==(
const reverse_iterator<RandomAccessIterator,T,Reference,Distance>& x,
const reverse_iterator<RandomAccessIterator,T,Reference,Distance>& y);

Returns: x.current == y.current

[lib.insert.iterators] 24.3.2 Insert iterators

1 To make it possible to deal with insertion in the same way as writing into an array, a special kind of iterator
adaptors, calledinsert iterators, are provided in the library. With regular iterator classes,

while (first != last) *result++ = *first++;

2 causes a range[first, last) to be copied into a range starting with result. The same code with
result being an insert iterator will insert corresponding elements into the container. This device allows
all of the copying algorithms in the library to work in theinsert modeinstead of the regular overwrite
mode.

3 An insert iterator is constructed from a container and possibly one of its iterators pointing to where inser-
tion takes place if it is neither at the beginning nor at the end of the container. Insert iterators satisfy the
requirements of output iterators.operator* returns the insert iterator itself. The assignment
operator=(const T& x) is defined on insert iterators to allow writing into them, it insertsx right
before where the insert iterator is pointing. In other words, an insert iterator is like a cursor pointing into
the container where the insertion takes place.back_insert_iterator inserts elements at the end of a
container, front_insert_iterator inserts elements at the beginning of a container, and

24– 18 Iterators library DRAFT: 28 April 1995 24.3.2 Insert iterators

insert_iterator inserts elements where the iterator points to in a container.back_inserter ,
front_inserter , andinserter are three functions making the insert iterators out of a container.

[lib.back.insert.iterator] 24.3.2.1 Template classback_insert_iterator

namespace std {
template <class Container>
class back_insert_iterator : public output_iterator {
protected:

Container& container;

public:
explicit back_insert_iterator(Container& x);
back_insert_iterator<Container>&

operator=(const typename Container::value_type& value);

back_insert_iterator<Container>& operator*();
back_insert_iterator<Container>& operator++();
back_insert_iterator<Container> operator++(int);

};

template <class Container>
back_insert_iterator<Container> back_inserter(Container& x);

}

[lib.back.insert.iter.ops] 24.3.2.2back_insert_iterator operations

[lib.back.insert.iter.cons] 24.3.2.2.1back_insert_iterator constructor

explicit back_insert_iterator(Container& x);

Effects: Initializescontainer with x .

[lib.back.insert.iter.op=] 24.3.2.2.2back_insert_iterator::operator=

back_insert_iterator<Container>&
operator=(const typename Container::value_type& value);

Effects: container.push_back(value);
Returns: *this .

[lib.back.insert.iter.op*] 24.3.2.2.3back_insert_iterator::operator*

back_insert_iterator<Container>& operator*();

Returns: *this .

[lib.back.insert.iter.op++] 24.3.2.2.4back_insert_iterator::operator++

back_insert_iterator<Container>& operator++();
back_insert_iterator<Container> operator++(int);

Returns: *this .

24.3.2.2.5back_inserter DRAFT: 28 April 1995 Iterators library 24 – 19

[lib.back.inserter] 24.3.2.2.5back_inserter

template <class Container>
back_insert_iterator<Container> back_inserter(Container& x);

Returns: back_insert_iterator<Container>(x) .

[lib.front.insert.iterator] 24.3.2.3 Template classfront_insert_iterator

namespace std {
template <class Container>
class front_insert_iterator : public output_iterator {
protected:

Container& container;

public:
explicit front_insert_iterator(Container& x);
front_insert_iterator<Container>&

operator=(const typename Container::value_type& value);

front_insert_iterator<Container>& operator*();
front_insert_iterator<Container>& operator++();
front_insert_iterator<Container> operator++(int);

};

template <class Container>
front_insert_iterator<Container> front_inserter(Container& x);

}

Returns: front_insert_iterator<Container>(x) .

[lib.front.insert.iter.ops] 24.3.2.4 front_insert_iterator operations

[lib.front.insert.iter.cons] 24.3.2.4.1front_insert_iterator constructor

explicit front_insert_iterator(Container& x);

Effects: Initializescontainer with x .

[lib.front.insert.iter.op=] 24.3.2.4.2front_insert_iterator::operator=

front_insert_iterator<Container>&
operator=(const typename Container::value_type& value);

Effects: container.push_front(value);
Returns: *this .

[lib.front.insert.iter.op*] 24.3.2.4.3front_insert_iterator::operator*

front_insert_iterator<Container>& operator*();

Returns: *this .

24– 20 Iterators library DRAFT: 28 April 1995 24.3.2.4.4
front_insert_iterator::operator++

[lib.front.insert.iter.op++] 24.3.2.4.4front_insert_iterator::operator++

front_insert_iterator<Container>& operator++();
front_insert_iterator<Container> operator++(int);

Returns: *this .

[lib.front.inserter] 24.3.2.4.5front_inserter

template <class Container>
front_insert_iterator<Container> front_inserter(Container& x);

Returns: front_insert_iterator<Container>(x) .

[lib.insert.iterator] 24.3.2.5 Template classinsert_iterator

namespace std {
template <class Container>
class insert_iterator : public output_iterator {
protected:

Container& container;
typename Container::iterator iter;

public:
insert_iterator(Container& x, typename Container::iterator i);
insert_iterator<Container>&

operator=(const typename Container::value_type& value);

insert_iterator<Container>& operator*();
insert_iterator<Container>& operator++();
insert_iterator<Container> operator++(int);

};

template <class Container, class Iterator>
insert_iterator<Container> inserter(Container& x, Iterator i);

}

[lib.insert.iter.ops] 24.3.2.6 insert_iterator operations

[lib.insert.iter.cons] 24.3.2.6.1insert_iterator constructor

insert_iterator(Container& x, Iterator i);

Effects: Initializescontainer with x anditer with i .

[lib.insert.iter.op=] 24.3.2.6.2insert_iterator::operator=

insert_iterator<Container>&
operator=(const typename Container::value_type& value);

Effects:

iter = container.insert(iter, value);
++iter;

24.3.2.6.2 DRAFT: 28 April 1995 Iterators library 24– 21
insert_iterator::operator=

Returns: *this .

[lib.insert.iter.op*] 24.3.2.6.3insert_iterator::operator*

insert_iterator<Container>& operator*();

Returns: *this .

[lib.insert.iter.op++] 24.3.2.6.4insert_iterator::operator++

insert_iterator<Container>& operator++();
insert_iterator<Container> operator++(int);

Returns: *this .

[lib.inserter] 24.3.2.6.5inserter

template <class Container>
insert_iterator<Container> inserter(Container& x);

Returns: insert_iterator<Container>(x,typename Container::iterator(i)) .

[lib.stream.iterators] 24.4 Stream iterators

1 To make it possible for algorithmic templates to work directly with input/output streams, appropriate
iterator-like template classes are provided.

2 [Example:

partial_sum_copy(istream_iterator<double>(cin), istream_iterator<double>(),
ostream_iterator<double>(cout, "\n"));

reads a file containing floating point numbers fromcin , and prints the partial sums ontocout . —end
example]

[lib.istream.iterator] 24.4.1 Template classistream_iterator

1 istream_iterator<T> reads (usingoperator>>) successive elements from the input stream for
which it was constructed. After it is constructed, and every time++ is used, the iterator reads and stores a
value ofT. If the end of stream is reached (operator void*() on the stream returnsfalse), the iter-
ator becomes equal to theend-of-stream iterator value. The constructor with no arguments
istream_iterator() always constructs an end of stream input iterator object, which is the only legiti-
mate iterator to be used for the end condition. The result ofoperator* on an end of stream is not
defined. For any other iterator value aconst T& is returned. It is impossible to store things into istream
iterators. The main peculiarity of the istream iterators is the fact that++ operators are not equality preserv-
ing, that is,i == j does not guarantee at all that++i == ++j . Every time++ is used a new value is
read.

2 The practical consequence of this fact is that istream iterators can be used only for one-pass algorithms,
which actually makes perfect sense, since for multi-pass algorithms it is always more appropriate to use in-
memory data structures. Two end-of-stream iterators are always equal. An end-of-stream iterator is not
equal to a non-end-of-stream iterator. Two non-end-of-stream iterators are equal when they are constructed
from the same stream.

24– 22 Iterators library DRAFT: 28 April 1995 24.4.1
Template classistream_iterator

namespace std {
template <class T, class Distance = ptrdiff_t>
class istream_iterator : public input_iterator<T,Distance> {
public:

istream_iterator();
istream_iterator(istream& s);
istream_iterator(const istream_iterator<T,Distance>& x);

~istream_iterator();

const T& operator*() const;
istream_iterator<T,Distance>& operator++();
istream_iterator<T,Distance> operator++(int);

};

template <class T, class Distance>
bool operator==(const istream_iterator<T,Distance>& x,

const istream_iterator<T,Distance>& y);
}

[lib.ostream.iterator] 24.4.2 Template classostream_iterator

1 ostream_iterator<T> writes (usingoperator<<) successive elements onto the output stream from
which it was constructed. If it was constructed withchar* as a constructor argument, this string, called a
delimiter string, is written to the stream after everyT is written. It is not possible to get a value out of the
output iterator. Its only use is as an output iterator in situations like

while (first != last) *result++ = *first++;

2 ostream_iterator is defined as:

namespace std {
template <class T>
class ostream_iterator : public output_iterator {
public:

ostream_iterator(ostream& s);
ostream_iterator(ostream& s, const char* delimiter);
ostream_iterator(const ostream_iterator<T>& x);

~ostream_iterator();
ostream_iterator<T>& operator=(const T& value);

ostream_iterator<T>& operator*();
ostream_iterator<T>& operator++();
ostream_iterator<T> operator++(int);

};

[lib.istreambuf.iterator] 24.4.3 Template classistreambuf_iterator

namespace std {
template<class charT, class traits = ios_traits<charT> >
class istreambuf_iterator {
public:

typedef charT char_type;
typedef traits traits_type;
typedef typename traits::int_type int_type;
typedef basic_streambuf<charT,traits> streambuf;
typedef basic_istream<charT,traits> istream;

class proxy;

24.4.3 DRAFT: 28 April 1995 Iterators library 24– 23
Template classistreambuf_iterator

public:
istreambuf_iterator();
istreambuf_iterator(istream& s);
istreambuf_iterator(streambuf* s);
istreambuf_iterator(const proxy& p);
charT operator*();
istreambuf_iterator<charT,traits>& operator++();
proxy operator++(int);
bool equal(istreambuf_iterator& b);

private:
streambuf* sbuf_; exposition only

};
}

1 The template classistreambuf_iterator reads successivecharactersfrom the streambuf for which
it was constructed.operator* provides access to the current input character, if any. Each time
operator++ is evaluated, the iterator advances to the next input character. If the end of stream is
reached (streambuf::sgetc() returnstraits::eof()), the iterator becomes equal to theend of stream
iterator value. The default constructoristreambuf_iterator() and the constructor
istreambuf_iterator(0) both construct an end of stream iterator object suitable for use as an end-
of-range.

2 The result of operator*() on an end of stream is undefined. For any other iterator value a
char_type is returned. It is impossible to assign a character via an input iterator.

3 Note that in the input iterators,++ operators are notequality preserving, that is,i == j does not guaran-
tee at all that++i == ++j . Every time++ is evaluated a new value is used.

4 The practical consequence of this fact is that anistreambuf_iterator object can be used only for
one-pass algorithms. Two end of stream iterators are always equal. An end of stream iterator is not equal
to a non-end of stream iterator.

[lib.istreambuf.iterator::proxy] 24.4.3.1 Template classistreambuf_iterator::proxy

namespace std {
template <class charT, class traits = ios_traits<charT> >
class istream_iterator<charT, traits>::proxy {

charT keep_;
basic_streambuf<charT,traits>* sbuf_;
proxy(charT c,

basic_streambuf<charT,traits>* sbuf);
: keep_(c), sbuf_(sbuf) {}

public:
charT operator*() { return keep_; }

};
}

1 Class istream_iterator<charT,traits>::proxy provides a temporary placeholder as the
return value of the post-increment operator (operator++). It keeps the character pointed to by the previ-
ous value of the iterator for some possible future access to get the character.

[lib.istreambuf.iterator.cons] 24.4.3.2 istreambuf_iterator constructors

istreambuf_iterator();

Effects: Constructs the end-of-stream iterator.

24– 24 Iterators library DRAFT: 28 April 1995 24.4.3.2
istreambuf_iterator constructors

istreambuf_iterator(basic_istream<charT,traits>& s);

Effects: Constructs the istream_iterator pointing to the basic_streambuf object
*(s.rdbuf()) .

istreambuf_iterator(const proxy& p);

Effects: Constructs theistreambuf_iterator pointing to thebasic_streambuf object related to
theproxy objectp.

[lib.istreambuf.iterator::op*] 24.4.3.3 istreambuf_iterator::operator*

charT operator*()

Effects: Extract one character pointed to by thestreambuf * sbuf_.

[lib.istreambuf.iterator::op++] 24.4.3.4 istreambuf_iterator::operator++

istreambuf_iterator<charT,traits>&
istreambuf_iterator<charT,traits>::operator++();

Effects: Advances the iterator and returns the result

proxy istreambuf_iterator<charT,traits>::operator++(int);

Effects: Advances the iterator and returns theproxy object keeping the character pointed to by the previ-
ous iterator.

[lib.istreambuf.iterator::equal] 24.4.3.5 istreambuf_iterator::equal

bool equal(istreambuf_iterator<charT,traits>& b);

Returns: true if and only if both iterators are either at end-of-stream, or are the end-of-stream value,
regardless of whatstreambuf they iterator over.

[lib.iterator.category.i] 24.4.3.6 iterator_category

input_iterator iterator_category(const istreambuf_iterator& s);

Returns: the category of the iterators .

[lib.istreambuf.iterator::op==] 24.4.3.7operator==

namespace std {
template <class charT, class traits = ios_traits<charT> >

bool operator==(istreambuf_iterator<charT,traits>& a,
istreambuf_iterator<charT,traits>& b);

}

Returns: a.equal(b) .

24.4.3.8 operator!= DRAFT: 28 April 1995 Iterators library 24 – 25

[lib.istreambuf.iterator::op!=] 24.4.3.8operator!=

namespace std {
template <class charT, class traits = ios_traits<charT> >

bool operator!=(istreambuf_iterator<charT,traits>& a,
istreambuf_iterator<charT,traits>& b);

}

Returns: ! a.equal(b) .

[lib.ostreambuf.iterator] 24.4.4 Template classostreambuf_iterator

namespace std {
template <class charT, class traits = ios_char_traits<charT> >
class ostreambuf_iterator {
public:

typedef charT char_type;
typedef traits traits_type;
typedef basic_streambuf<charT,traits> streambuf;
typedef basic_ostream<charT,traits> ostream;

public:
ostreambuf_iterator();
ostreambuf_iterator(ostream& s);
ostreambuf_iterator(streambuf* s);
ostreambuf_iterator& operator=(charT c);

ostreambuf_iterator& operator*();
ostreambuf_iterator& operator++();
ostreambuf_iterator operator++(int);

bool equal(ostreambuf_iterator& b);

private:
streambuf* sbuf_; exposition only

};

output_iterator iterator_category (const ostreambuf_iterator&);

template<class charT, class traits = ios_char_traits<charT> >
bool operator==(ostreambuf_iterator<charT,traits>& a,

ostreambuf_iterator<charT,traits>& b);
template<class charT, class traits = ios_char_traits<charT> >

bool operator!=(ostreambuf_iterator<charT,traits>& a,
ostreambuf_iterator<charT,traits>& b);

}

1 The template classostreambuf_iterator writes successivecharactersonto the output stream from
which it was constructed. It is not possible to get a value out of the output iterator.

2 Two output iterators are equal if they are constructed with the same output streambuf.

[lib.ostreambuf.iter.cons] 24.4.4.1ostreambuf_iterator constructors

ostreambuf_iterator();

24– 26 Iterators library DRAFT: 28 April 1995 24.4.4.1
ostreambuf_iterator constructors

Effects: : sbuf_(0) {}

ostreambuf_iterator(ostream& s);

Effects: : sbuf_(s.rdbuf()) {}

ostreambuf_iterator(streambuf* s);

Effects: : sbuf_(s) {}

ostreambuf_iterator<charT,traits>&
operator=(charT c);

Effects:

sbuf_->sputc(c);

Returns: *this .

[lib.ostreambuf.iter.ops] 24.4.4.2ostreambuf_iterator operations

ostreambuf_iterator<charT,traits>& operator*();

Returns: *this .

ostreambuf_iterator<charT,traits>& operator++();
ostreambuf_iterator<charT,traits> operator++(int);

Returns: *this .

bool equal(ostreambuf_iterator& b);

Returns: sbuf_ == b.sbuf .

[lib.ostreambuf.iterator.nonmembers] 24.4.4.3ostreambuf_iterator non-member
operations

output_iterator iterator_category (const ostreambuf_iterator&);

Returns: output_iterator() .

template<class charT, class traits = ios_char_traits<charT> >
bool operator==(ostreambuf_iterator<charT,traits>& a,

ostreambuf_iterator<charT,traits>& b);

Returns: a.equal(b) .

template<class charT, class traits = ios_char_traits<charT> >
bool operator!=(ostreambuf_iterator<charT,traits>& a,

ostreambuf_iterator<charT,traits>& b);

Returns: !a.equal(b) .

_ ___ ___

25 Algorithms library [lib.algorithms]
_ ___ ___

1 This clause describes components that C + + programs may use to perform algorithmic operations on contain-
ers (23) and other sequences.

2 The following subclauses describe components for non-modifying sequence operation, modifying sequence
operations, sorting and related operations, and algorithms from the ISO C library, as summarized in Table
62:

Table 62—Algorithms library summary
_ ___

Subclause Header(s)_ __ ___
25.1 Non-modifying sequence operations
25.2 Mutating sequence operations
25.3 Sorting and related operations

<algorithm>

_ ___
25.4 C library algorithms <cstdlib>_ ___

Header<algorithm> synopsis

namespace std {
// subclause 25.1, non-modifying sequence operations:

template<class InputIterator, class Function>
Function for_each(InputIterator first , InputIterator last , Function f);

template<class InputIterator, class T>
InputIterator find(InputIterator first , InputIterator last , const T& value);

template<class InputIterator, class Predicate>
InputIterator find_if(InputIterator first , InputIterator last ,

Predicate pred);
template<class ForwardIterator1, class ForwardIterator2>

ForwardIterator1
find_end(ForwardIterator1 first1 , ForwardIterator1 last1 ,

ForwardIterator2 first2 , ForwardIterator2 last2);
template<class ForwardIterator1, class ForwardIterator2,

class BinaryPredicate>
ForwardIterator1

find_end(ForwardIterator1 first1 , ForwardIterator1 last1 ,
ForwardIterator2 first2 , ForwardIterator2 last2 ,
BinaryPredicate pred);

25– 2 Algorithms library DRAFT: 28 April 1995 25 Algorithms library

template<class ForwardIterator1, class ForwardIterator2>
ForwardIterator1

find_first_of(ForwardIterator1 first1 , ForwardIterator1 last1 ,
ForwardIterator2 first2 , ForwardIterator2 last2);

template<class ForwardIterator1, class ForwardIterator2,
class BinaryPredicate>

ForwardIterator1
find_first_of(ForwardIterator1 first1 , ForwardIterator1 last1 ,

ForwardIterator2 first2 , ForwardIterator2 last2 ,
BinaryPredicate pred);

template<class InputIterator>
InputIterator adjacent_find(InputIterator first , InputIterator last);

template<class InputIterator, class BinaryPredicate>
InputIterator adjacent_find(InputIterator first , InputIterator last ,

BinaryPredicate pred);

template<class InputIterator, class T, class Size>
void count(InputIterator first , InputIterator last , const T& value ,

Size& n);
template<class InputIterator, class Predicate, class Size>

void count_if(InputIterator first , InputIterator last , Predicate pred,
Size& n);

template<class InputIterator1, class InputIterator2>
pair<InputIterator1, InputIterator2>

mismatch(InputIterator1 first1 , InputIterator1 last1 ,
InputIterator2 first2);

template<class InputIterator1, class InputIterator2, class BinaryPredicate>
pair<InputIterator1, InputIterator2>

mismatch(InputIterator1 first1 , InputIterator1 last1 ,
InputIterator2 first2 , BinaryPredicate pred);

template<class InputIterator1, class InputIterator2>
bool equal(InputIterator1 first1 , InputIterator1 last1 ,

InputIterator2 first2);
template<class InputIterator1, class InputIterator2, class BinaryPredicate>

bool equal(InputIterator1 first1 , InputIterator1 last1 ,
InputIterator2 first2 , BinaryPredicate pred);

template<class ForwardIterator1, class ForwardIterator2>
ForwardIterator1 search(ForwardIterator1 first1 , ForwardIterator1 last1 ,

ForwardIterator2 first2 , ForwardIterator2 last2);
template<class ForwardIterator1, class ForwardIterator2,

class BinaryPredicate>
ForwardIterator1 search(ForwardIterator1 first1 , ForwardIterator1 last1 ,

ForwardIterator2 first2 , ForwardIterator2 last2 ,
BinaryPredicate pred);

template<class ForwardIterator, class Size, class T>
ForwardIterator search(ForwardIterator first , ForwardIterator last ,

Size count , const T& value);
template<class ForwardIterator, class Size, class T, class BinaryPredicate>

ForwardIterator1 search(ForwardIterator first , ForwardIterator last ,
Size count , T value ,
BinaryPredicate pred);

25 Algorithms library DRAFT: 28 April 1995 Algorithms library 25 – 3

// subclause 25.2, modifying sequence operations:
// 25.2.1, copy:

template<class InputIterator, class OutputIterator>
OutputIterator copy(InputIterator first , InputIterator last ,

OutputIterator result);
template<class BidirectionalIterator1, class BidirectionalIterator2>

BidirectionalIterator2
copy_backward(BidirectionalIterator1 first , BidirectionalIterator1 last ,

BidirectionalIterator2 result);

// 25.2.2, swap:
template<class T> void swap(T& a, T& b);
template<class ForwardIterator1, class ForwardIterator2>

ForwardIterator2 swap_ranges(ForwardIterator1 first1 , ForwardIterator1 last1 ,
ForwardIterator2 first2);

template<class ForwardIterator1, class ForwardIterator2>
void iter_swap(ForwardIterator1 a, ForwardIterator2 b);

template<class InputIterator, class OutputIterator, class UnaryOperation>
OutputIterator transform(InputIterator first , InputIterator last ,

OutputIterator result , UnaryOperation op);
template<class InputIterator1, class InputIterator2, class OutputIterator,

class BinaryOperation>
OutputIterator transform(InputIterator1 first1 , InputIterator1 last1 ,

InputIterator2 first2 , OutputIterator result ,
BinaryOperation binary_op);

template<class ForwardIterator, class T>
void replace(ForwardIterator first , ForwardIterator last ,

const T& old_value , const T& new_value);
template<class ForwardIterator, class Predicate, class T>

void replace_if(ForwardIterator first , ForwardIterator last ,
Predicate pred, const T& new_value);

template<class InputIterator, class OutputIterator, class T>
OutputIterator replace_copy(InputIterator first , InputIterator last ,

OutputIterator result ,
const T& old_ value , const T& new_ value);

template<class Iterator, class OutputIterator, class Predicate, class T>
OutputIterator replace_copy_if(Iterator first , Iterator last ,

OutputIterator result ,
Predicate pred , const T& new_ value);

template<class ForwardIterator, class T>
void fill(ForwardIterator first , ForwardIterator last , const T& value);

template<class OutputIterator, class Size, class T>
void fill_n(OutputIterator first , Size n, const T& value);

template<class ForwardIterator, class Generator>
void generate(ForwardIterator first , ForwardIterator last , Generator gen);

template<class OutputIterator, class Size, class Generator>
void generate_n(OutputIterator first , Size n, Generator gen);

25– 4 Algorithms library DRAFT: 28 April 1995 25 Algorithms library

template<class ForwardIterator, class T>
ForwardIterator remove(ForwardIterator first , ForwardIterator last ,

const T& value);
template<class ForwardIterator, class Predicate>

ForwardIterator remove_if(ForwardIterator first , ForwardIterator last ,
Predicate pred);

template<class InputIterator, class OutputIterator, class T>
OutputIterator remove_copy(InputIterator first , InputIterator last ,

OutputIterator result , const T& value);
template<class InputIterator, class OutputIterator, class Predicate>

OutputIterator remove_copy_if(InputIterator first , InputIterator last ,
OutputIterator result , Predicate pred);

template<class ForwardIterator>
ForwardIterator unique(ForwardIterator first , ForwardIterator last);

template<class ForwardIterator, class BinaryPredicate>
ForwardIterator unique(ForwardIterator first , ForwardIterator last ,

BinaryPredicate pred);
template<class InputIterator, class OutputIterator>

OutputIterator unique_copy(InputIterator first , InputIterator last ,
OutputIterator result);

template<class InputIterator, class OutputIterator, class BinaryPredicate>
OutputIterator unique_copy(InputIterator first , InputIterator last ,

OutputIterator result , BinaryPredicate pred);

template<class BidirectionalIterator>
void reverse(BidirectionalIterator first , BidirectionalIterator last);

template<class BidirectionalIterator, class OutputIterator>
OutputIterator reverse_copy(BidirectionalIterator first ,

BidirectionalIterator last ,
OutputIterator result);

template<class ForwardIterator>
void rotate(ForwardIterator first , ForwardIterator middle ,

ForwardIterator last);
template<class ForwardIterator, class OutputIterator>

OutputIterator rotate_copy(ForwardIterator first , ForwardIterator middle ,
ForwardIterator last , OutputIterator result);

template<class RandomAccessIterator>
void random_shuffle(RandomAccessIterator first , RandomAccessIterator last);

template<class RandomAccessIterator, class RandomNumberGenerator>
void random_shuffle(RandomAccessIterator first , RandomAccessIterator last ,

RandomNumberGenerator& rand);

// 25.2.12, partitions:
template<class BidirectionalIterator, class Predicate>

BidirectionalIterator partition(BidirectionalIterator first ,
BidirectionalIterator last ,
Predicate pred);

template<class BidirectionalIterator, class Predicate>
BidirectionalIterator stable_partition(BidirectionalIterator first ,

BidirectionalIterator last ,
Predicate pred);

25 Algorithms library DRAFT: 28 April 1995 Algorithms library 25 – 5

// subclause 25.3, sorting and related operations:
// 25.3.1, sorting:

template<class RandomAccessIterator>
void sort(RandomAccessIterator first , RandomAccessIterator last);

template<class RandomAccessIterator, class Compare>
void sort(RandomAccessIterator first , RandomAccessIterator last ,

Compare comp);

template<class RandomAccessIterator>
void stable_sort(RandomAccessIterator first , RandomAccessIterator last);

template<class RandomAccessIterator, class Compare>
void stable_sort(RandomAccessIterator first , RandomAccessIterator last ,

Compare comp);

template<class RandomAccessIterator>
void partial_sort(RandomAccessIterator first , RandomAccessIterator middle,

RandomAccessIterator last);
template<class RandomAccessIterator, class Compare>

void partial_sort(RandomAccessIterator first , RandomAccessIterator middle,
RandomAccessIterator last , Compare comp);

template<class InputIterator, class RandomAccessIterator>
RandomAccessIterator

partial_sort_copy(InputIterator first , InputIterator last ,
RandomAccessIterator result_first ,
RandomAccessIterator result_last);

template<class InputIterator, class RandomAccessIterator, class Compare>
RandomAccessIterator

partial_sort_copy(InputIterator first , InputIterator last ,
RandomAccessIterator result_first ,
RandomAccessIterator result_last ,
Compare comp);

template<class RandomAccessIterator>
void nth_element(RandomAccessIterator first , RandomAccessIterator nth ,

RandomAccessIterator last);
template<class RandomAccessIterator, class Compare>

void nth_element(RandomAccessIterator first , RandomAccessIterator nth ,
RandomAccessIterator last , Compare comp);

// 25.3.3, binary search:
template<class ForwardIterator, class T>

ForwardIterator lower_bound(ForwardIterator first , ForwardIterator last ,
const T& value);

template<class ForwardIterator, class T, class Compare>
ForwardIterator lower_bound(ForwardIterator first , ForwardIterator last ,

const T& value , Compare comp);

template<class ForwardIterator, class T>
ForwardIterator upper_bound(ForwardIterator first , ForwardIterator last ,

const T& value);
template<class ForwardIterator, class T, class Compare>

ForwardIterator upper_bound(ForwardIterator first , ForwardIterator last ,
const T& value , Compare comp);

25– 6 Algorithms library DRAFT: 28 April 1995 25 Algorithms library

template<class ForwardIterator, class T>
pair<ForwardIterator, ForwardIterator>

equal_range(ForwardIterator first , ForwardIterator last , const T& value);
template<class ForwardIterator, class T, class Compare>

pair<ForwardIterator, ForwardIterator>
equal_range(ForwardIterator first , ForwardIterator last , const T& value ,

Compare comp);

template<class ForwardIterator, class T>
bool binary_search(ForwardIterator first , ForwardIterator last ,

const T& value);
template<class ForwardIterator, class T, class Compare>

bool binary_search(ForwardIterator first , ForwardIterator last ,
const T& value , Compare comp);

// 25.3.4, merge:
template<class InputIterator1, class InputIterator2, class OutputIterator>

OutputIterator merge(InputIterator1 first1 , InputIterator1 last1 ,
InputIterator2 first2 , InputIterator2 last2 ,
OutputIterator result);

template<class InputIterator1, class InputIterator2, class OutputIterator,
class Compare>

OutputIterator merge(InputIterator1 first1 , InputIterator1 last1 ,
InputIterator2 first2 , InputIterator2 last2 ,
OutputIterator result , Compare comp);

template<class BidirectionalIterator>
void inplace_merge(BidirectionalIterator first ,

BidirectionalIterator middle,
BidirectionalIterator last);

template<class BidirectionalIterator, class Compare>
void inplace_merge(BidirectionalIterator first ,

BidirectionalIterator middle,
BidirectionalIterator last , Compare comp);

// 25.3.5, set operations:
template<class InputIterator1, class InputIterator2>

bool includes(InputIterator1 first1 , InputIterator1 last1 ,
InputIterator2 first2 , InputIterator2 last2);

template<class InputIterator1, class InputIterator2, class Compare>
bool includes(InputIterator1 first1 , InputIterator1 last1 ,

InputIterator2 first2 , InputIterator2 last2 , Compare comp);

template<class InputIterator1, class InputIterator2, class OutputIterator>
OutputIterator set_union(InputIterator1 first1 , InputIterator1 last1 ,

InputIterator2 first2 , InputIterator2 last2 ,
OutputIterator result);

template<class InputIterator1, class InputIterator2, class OutputIterator,
class Compare>

OutputIterator set_union(InputIterator1 first1 , InputIterator1 last1 ,
InputIterator2 first2 , InputIterator2 last2 ,
OutputIterator result , Compare comp);

25 Algorithms library DRAFT: 28 April 1995 Algorithms library 25 – 7

template<class InputIterator1, class InputIterator2, class OutputIterator>
OutputIterator set_intersection(InputIterator1 first1 , InputIterator1 last1 ,

InputIterator2 first2 , InputIterator2 last2 ,
OutputIterator result);

template<class InputIterator1, class InputIterator2, class OutputIterator,
class Compare>

OutputIterator set_intersection(InputIterator1 first1 , InputIterator1 last1 ,
InputIterator2 first2 , InputIterator2 last2 ,
OutputIterator result , Compare comp);

template<class InputIterator1, class InputIterator2, class OutputIterator>
OutputIterator set_difference(InputIterator1 first1 , InputIterator1 last1 ,

InputIterator2 first2 , InputIterator2 last2 ,
OutputIterator result);

template<class InputIterator1, class InputIterator2, class OutputIterator,
class Compare>

OutputIterator set_difference(InputIterator1 first1 , InputIterator1 last1 ,
InputIterator2 first2 , InputIterator2 last2 ,
OutputIterator result , Compare comp);

template<class InputIterator1, class InputIterator2, class OutputIterator>
OutputIterator

set_symmetric_difference(InputIterator1 first1 , InputIterator1 last1 ,
InputIterator2 first2 , InputIterator2 last2 ,
OutputIterator result);

template<class InputIterator1, class InputIterator2, class OutputIterator,
class Compare>

OutputIterator
set_symmetric_difference(InputIterator1 first1 , InputIterator1 last1 ,

InputIterator2 first2 , InputIterator2 last2 ,
OutputIterator result , Compare comp);

// 25.3.6, heap operations:
template<class RandomAccessIterator>

void push_heap(RandomAccessIterator first , RandomAccessIterator last);
template<class RandomAccessIterator, class Compare>

void push_heap(RandomAccessIterator first , RandomAccessIterator last ,
Compare comp);

template<class RandomAccessIterator>
void pop_heap(RandomAccessIterator first , RandomAccessIterator last);

template<class RandomAccessIterator, class Compare>
void pop_heap(RandomAccessIterator first , RandomAccessIterator last ,

Compare comp);

template<class RandomAccessIterator>
void make_heap(RandomAccessIterator first , RandomAccessIterator last);

template<class RandomAccessIterator, class Compare>
void make_heap(RandomAccessIterator first , RandomAccessIterator last ,

Compare comp);

template<class RandomAccessIterator>
void sort_heap(RandomAccessIterator first , RandomAccessIterator last);

template<class RandomAccessIterator, class Compare>
void sort_heap(RandomAccessIterator first , RandomAccessIterator last ,

Compare comp);

25– 8 Algorithms library DRAFT: 28 April 1995 25 Algorithms library

// 25.3.7, minimum and maximum:
template<class T> const T& min(const T& a, const T& b);
template<class T, class Compare>

const T& min(const T& a, const T& b, Compare comp);
template<class T> const T& max(const T& a, const T& b);
template<class T, class Compare>

const T& max(const T& a, const T& b, Compare comp);

template<class InputIterator>
InputIterator min_element(InputIterator first , InputIterator last);

template<class InputIterator, class Compare>
InputIterator min_element(InputIterator first , InputIterator last ,

Compare comp);
template<class InputIterator>

InputIterator max_element(InputIterator first , InputIterator last);
template<class InputIterator, class Compare>

InputIterator max_element(InputIterator first , InputIterator last ,
Compare comp);

template<class InputIterator1, class InputIterator2>
bool lexicographical_compare(InputIterator1 first1 , InputIterator1 last1 ,

InputIterator2 first2 , InputIterator2 last2);
template<class InputIterator1, class InputIterator2, class Compare>

bool lexicographical_compare(InputIterator1 first1 , InputIterator1 last1 ,
InputIterator2 first2 , InputIterator2 last2 ,
Compare comp);

// 25.3.9, permutations
template<class BidirectionalIterator>

bool next_permutation(BidirectionalIterator first ,
BidirectionalIterator last);

template<class BidirectionalIterator, class Compare>
bool next_permutation(BidirectionalIterator first ,

BidirectionalIterator last , Compare comp);
template<class BidirectionalIterator>

bool prev_permutation(BidirectionalIterator first ,
BidirectionalIterator last);

template<class BidirectionalIterator, class Compare>
bool prev_permutation(BidirectionalIterator first ,

BidirectionalIterator last , Compare comp);
}

3 All of the algorithms are separated from the particular implementations of data structures and are parame-
terized by iterator types. Because of this, they can work with program-defined data structures, as long as
these data structures have iterator types satisfying the assumptions on the algorithms.

4 Both in-place and copying versions are provided for certain algorithms.195) When such a version is pro-
vided foralgorithm it is calledalgorithm_copy . Algorithms that take predicates end with the suffix_if
(which follows the suffix_copy).

5 The Predicate class is used whenever an algorithm expects a function object that when applied to the
result of dereferencing the corresponding iterator returns a value testable astrue . In other words, if an
algorithm takesPredicate pred as its argument andfirst as its iterator argument, it should work
correctly in the constructif (pred (* first)){...} . The function objectpred is assumed not to
apply any non-constant function through the dereferenced iterator.

195)The decision whether to include a copying version was usually based on complexity considerations. When the cost of doing the
operation dominates the cost of copy, the copying version is not included. For example,sort_copy is not included since the cost of
sorting is much more significant, and users might as well docopy followed bysort .

25 Algorithms library DRAFT: 28 April 1995 Algorithms library 25 – 9

6 TheBinaryPredicate class is used whenever an algorithm expects a function object that when applied
to the result of dereferencing two corresponding iterators or to dereferencing an iterator and typeT whenT
is part of the signature returns a value testable astrue . In other words, if an algorithm takes
BinaryPredicate binary_pred as its argument andfirst1 and first2 as its iterator argu-
ments, it should work correctly in the constructif (pred (*first, * first2)){...} .
BinaryPredicate always takes the first iterator type as its first argument, that is, in those cases whenT
value is part of the signature, it should work correctly in the context ofif (pred (*first,
value)){...} . binary_pred shall not apply any non-constant function through the dereferenced
iterators.

7 In the description of the algorithms operators+ and- are used for some of the iterator categories for which
they do not have to be defined. In these cases the semantics ofa+n is the same is that of

{ X tmp = a;
advance(tmp, n);
return tmp;

}

and that ofa-b is the same as of

{ Distance n;
distance(a, b, n);
return n;

}

[lib.alg.nonmodifying] 25.1 Non-modifying sequence operations

[lib.alg.foreach] 25.1.1 For each

template<class InputIterator, class Function>
Function for_each(InputIterator first , InputIterator last , Function f);

Effects: Applies f to the result of dereferencing every iterator in the range[first , last) .
Requires: f shall not apply any non-constant function through the dereferenced iterator.
Returns: f .
Complexity: Appliesf exactlylast - first times.
Notes: If f returns a result, the result is ignored.

[lib.alg.find] 25.1.2 Find

template<class InputIterator, class T>
InputIterator find(InputIterator first , InputIterator last ,

const T& value);

template<class InputIterator, class Predicate>
InputIterator find_if(InputIterator first , InputIterator last ,

Predicate pred);

Returns: The first iteratori in the range[first , last) for which the following corresponding condi-
tions hold:*i == value , pred (*i) == true . Returnslast if no such iterator is found.

Complexity: At mostlast - first applications of the corresponding predicate.

25– 10 Algorithms library DRAFT: 28 April 1995 25.1.3 Find End

[lib.alg.find.end] 25.1.3 Find End

template<class ForwardIterator1, class ForwardIterator2>
ForwardIterator1

find_end(ForwardIterator1 first1 , ForwardIterator1 last1 ,
ForwardIterator2 first2 , ForwardIterator2 last2);

template<class ForwardIterator1, class ForwardIterator2,
class BinaryPredicate>

ForwardIterator1
find_end(ForwardIterator1 first1 , ForwardIterator1 last1 ,

ForwardIterator2 first2 , ForwardIterator2 last2 ,
BinaryPredicate pred);

Effects: Finds a subsequence of equal values in a sequence.
Returns: The last iteratori in the range[first1 + (last2 - first2), last1) such that for any

non-negative integern < (last2 - first2) , the following corresponding conditions hold:*(i-n)
== *(last2-n), pred(*(i-n),*(last2-n)) == true . Returnslast1 if no such itera-
tor is found.

Complexity: At mostlast1 - first1 applications of the corresponding predicate.

[lib.alg.find.first.of] 25.1.4 Find First

template<class ForwardIterator1, class ForwardIterator2>
ForwardIterator1

find_first_of(ForwardIterator1 first1 , ForwardIterator1 last1 ,
ForwardIterator2 first2 , ForwardIterator2 last2);

template<class ForwardIterator1, class ForwardIterator2,
class BinaryPredicate>

ForwardIterator1
find_first_of(ForwardIterator1 first1 , ForwardIterator1 last1 ,

ForwardIterator2 first2 , ForwardIterator2 last2 ,
BinaryPredicate pred);

Effects: Finds a subsequence of equal values in a sequence.
Returns: The first iteratori in the range[first1 , last1-(last2-first2)) such that for any

non-negative integern < (last2 - first2) , the following corresponding conditions hold:*i ==
*(first2+n), pred(i,first2+n) == true . Returnslast1 if no such iterator is found.

Complexity: Exactly find_first_of(first1 ,last1,first2+n) applications of the corre-
sponding predicate.

[lib.alg.adjacent.find] 25.1.5 Adjacent find

template<class InputIterator>
InputIterator adjacent_find(InputIterator first , InputIterator last);

template<class InputIterator, class BinaryPredicate>
InputIterator adjacent_find(InputIterator first , InputIterator last ,

BinaryPredicate pred);

Returns: The first iteratori such that bothi and i + 1 are in the range[first , last) for which
the following corresponding conditions hold:*i == *(i + 1), pred (*i, *(i + 1)) ==
true . Returnslast if no such iterator is found.

25.1.5 Adjacent find DRAFT: 28 April 1995 Algorithms library 25– 11

Complexity: Exactly find(first , last , value) - first applications of the corresponding
predicate.

[lib.alg.count] 25.1.6 Count

template<class InputIterator, class T, class Size>
void count(InputIterator first , InputIterator last , const T& value ,

Size& n);

template<class InputIterator, class Predicate, class Size>
void count_if(InputIterator first , InputIterator last , Predicate pred ,

Size& n);

Effects: Adds ton the number of iteratorsi in the range[first , last) for which the following cor-
responding conditions hold:*i == value , pred (*i) == true .

Complexity: Exactly last - first applications of the corresponding predicate.
Notes: count must store the result into a reference argument instead of returning the result because the

size type cannot be deduced from built-in iterator types such asint* .

[lib.mismatch] 25.1.7 Mismatch

template<class InputIterator1, class InputIterator2>
pair<InputIterator1, InputIterator2>

mismatch(InputIterator1 first1 , InputIterator1 last1 ,
InputIterator2 first2);

template<class InputIterator1, class InputIterator2,
class BinaryPredicate>

pair<InputIterator1, InputIterator2>
mismatch(InputIterator1 first1 , InputIterator1 last1 ,

InputIterator2 first2 , BinaryPredicate pred);

Returns: A pair of iteratorsi andj such thatj == first2 + (i - first1) andi is the first iter-
ator in the range[first1 , last1) for which the following corresponding conditions hold:

!(*i == *(first2 + (i - first1))), pred (*i, *(first2 + (i - first1))) == false

Returns the pairlast1 andfirst2 + (last1 - first1) if such an iteratori is not found.
Complexity: At mostlast1 - first1 applications of the corresponding predicate.

[lib.alg.equal] 25.1.8 Equal

template<class InputIterator1, class InputIterator2>
bool equal(InputIterator1 first1 , InputIterator1 last1 ,

InputIterator2 first2);

template<class InputIterator1, class InputIterator2,
class BinaryPredicate>

bool equal(InputIterator1 first1 , InputIterator1 last1 ,
InputIterator2 first2 , BinaryPredicate pred);

Returns: true if for every iteratori in the range[first1 , last1) the following corresponding con-
ditions hold: *i == *(first2 + (i - first1)), pred (*i, *(first2 + (i -
first1))) == true . Otherwise, returnsfalse .

25– 12 Algorithms library DRAFT: 28 April 1995 25.1.8 Equal

Complexity: At mostlast1 - first1 applications of the corresponding predicate.

[lib.alg.search] 25.1.9 Search

template<class ForwardIterator1, class ForwardIterator2>
ForwardIterator1

search(ForwardIterator1 first1 , ForwardIterator1 last1 ,
ForwardIterator2 first2 , ForwardIterator2 last2);

template<class ForwardIterator1, class ForwardIterator2,
class BinaryPredicate>

ForwardIterator1
search(ForwardIterator1 first1 , ForwardIterator1 last1 ,

ForwardIterator2 first2 , ForwardIterator2 last2 ,
BinaryPredicate pred);

Effects: Finds a subsequence of equal values in a sequence.
Returns: The first iteratori in the range[first1 , last1 - (last2 - first2)) such that for

any non-negative integern less thanlast 2 - first2 the following corresponding conditions hold:
*(i + n) == *(first2 + n), pred (*(i + n), *(first2 + n)) == true .
Returnslast1 if no such iterator is found.196)

Complexity: At most(last1 - first1) * (last2 - first2) applications of the correspond-
ing predicate.

template<class ForwardIterator, class Size, class T>
ForwardIterator

search(ForwardIterator first , ForwardIterator last , Size count ,
const T& value);

template<class ForwardIterator, class Size, class T,
class BinaryPredicate>

ForwardIterator1
search(ForwardIterator first , ForwardIterator last , Size count ,

T value , BinaryPredicate pred);

Effects: Finds a subsequence of equal values in a sequence.
Returns: The first iteratori in the range[first , last - count) such that for any non-negative

integern less thancount the following corresponding conditions hold:*(i + n) == value,
pred (*(i + n),value) == true . Returnslast if no such iterator is found.

Complexity: At most(last1 - first1) * count applications of the corresponding predicate.

[lib.alg.modifying.operations] 25.2 Mutating sequence operations

196) The Knuth-Morris-Pratt algorithm is not used here. While the KMP algorithm guarantees linear time, it tends to be slower in
most practical cases than the naive algorithm with worst-case quadratic behavior. The worst case is extremely unlikely. Most imple-
mentations will provide a specialization:

char* search(char* first1 , char* last1 , char* first2 , char* last2);

that will use a variation of the Boyer-Moore algorithm for fast string searching.

25.2.1 Copy DRAFT: 28 April 1995 Algorithms library 25– 13

[lib.alg.copy] 25.2.1 Copy

template<class InputIterator, class OutputIterator>
OutputIterator copy(InputIterator first , InputIterator last ,

OutputIterator result);

Effects: Copies elements. For each non-negative integern < (last - first) , performs
*(result + n) = *(first + n) .

Returns: result + (last - first) .
Requires: result shall not be in the range[first , last) .
Complexity: Exactly last - first assignments.

template<class BidirectionalIterator1, class BidirectionalIterator2>
BidirectionalIterator2

copy_backward(BidirectionalIterator1 first ,
BidirectionalIterator1 last ,
BidirectionalIterator2 result);

Effects: Copies elements in therange [first , last) into the range[result - (last -
first), result) starting fromlast - 1 and proceeding tofirst . 197) For each positive inte-
gern <= (last - first) , Performs*(result - n) = *(last - n) .

Requires: result shall not be in the range[first , last) .
Returns: result - (last - first) .
Complexity: Exactly last - first assignments.

[lib.alg.swap] 25.2.2 Swap

template<class T> void swap(T& a, T& b);

Effects: Exchanges values stored in two locations.

template<class ForwardIterator1, class ForwardIterator2>
ForwardIterator2

swap_ranges(ForwardIterator1 first1 , ForwardIterator1 last1 ,
ForwardIterator2 first2);

Effects: For each non-negative integern < (last1 - first1) performs:swap(*(first1 +
n), *(first2 + n)) .

Requires: The two ranges[first1 , last1) and[first2 , first2 + (last1 - first1))
shall not overlap.

Returns: first 2 + (last1 - first1) .
Complexity: Exactly last1 - first1 swaps.

template<class ForwardIterator1, class ForwardIterator2>
void iter_swap(ForwardIterator1 a, ForwardIterator2 b);

Effects: Exchanges the values pointed to by the two iteratorsa andb.

197)copy_backward (_lib.copy.backward_) should be used instead of copy whenlast is in the range[result - (last -
first), result) .

25– 14 Algorithms library DRAFT: 28 April 1995 25.2.3 Transform

[lib.alg.transform] 25.2.3 Transform

template<class InputIterator, class OutputIterator,
class UnaryOperation>

OutputIterator
transform(InputIterator first , InputIterator last ,

OutputIterator result , UnaryOperation op);

template<class InputIterator1, class InputIterator2,
class OutputIterator, class BinaryOperation>

OutputIterator
transform(InputIterator1 first1 , InputIterator1 last1 ,

InputIterator2 first2 , OutputIterator result ,
BinaryOperation binary_op);

Effects: Assigns through every iteratori in the range[result , result + (last1 - first1))
a new corresponding value equal toop(*(first1 + (i - result)) or
binary_op (*(first1 + (i - result), *(first2 + (i - result))) .

Requires: op andbinary_op shall not have any side effects.
Returns: result + (last1 - first1) .
Complexity: Exactly last1 - first1 applications ofop or binary_op
Notes: result may be equal tofirst in case of unary transform, or tofirst1 or first2 in case of

binary transform.

[lib.alg.replace] 25.2.4 Replace

template<class ForwardIterator, class T>
void replace(ForwardIterator first , ForwardIterator last ,

const T& old_value , const T& new_value);

template<class ForwardIterator, class Predicate, class T>
void replace_if(ForwardIterator first , ForwardIterator last ,

Predicate pred , const T& new_ value);

Effects: Substitutes elements referred by the iteratori in the range[first , last) with new_value ,
when the following corresponding conditions hold:*i == old_value , pred (*i) == true .

Complexity: Exactly last - first applications of the corresponding predicate.

template<class InputIterator, class OutputIterator, class T>
OutputIterator

replace_copy(InputIterator first , InputIterator last ,
OutputIterator result ,
const T& old_value , const T& new_value);

template<class Iterator, class OutputIterator, class Predicate, class T>
OutputIterator

replace_copy_if(Iterator first , Iterator last ,
OutputIterator result ,
Predicate pred , const T& new_value);

Effects: Assigns to every iteratori in the range[result , result + (last - first)) either
new_value or *(first + (i - result)) depending on whether the following corresponding
conditions hold:
(first + (i - result)) == old_value , pred ((first + (i - result))) ==

25.2.4 Replace DRAFT: 28 April 1995 Algorithms library 25– 15

true .
Returns: result + (last - first) .
Complexity: Exactly last - first applications of the corresponding predicate.

[lib.alg.fill] 25.2.5 Fill

template<class ForwardIterator, class T>
void fill(ForwardIterator first , ForwardIterator last , const T& value);

template<class OutputIterator, class Size, class T>
void fill_n(OutputIterator first , Size n, const T& value);

Effects: Assigns value through all the iterators in the range[first , last) or [first , first +
n) .

Complexity: Exactly last - first (or n) assignments.

[lib.alg.generate] 25.2.6 Generate

template<class ForwardIterator, class Generator>
void generate(ForwardIterator first , ForwardIterator last ,

Generator gen);

template<class OutputIterator, class Size, class Generator>
void generate_n(OutputIterator first , Size n, Generator gen);

Effects: Invokes the function object gen and assigns the return value ofgen though all the iterators in the
range[first , last) or [first , first + n) .

Requires: gen takes no arguments.
Complexity: Exactly last - first (or n) invocations ofgen and assignments.

[lib.alg.remove] 25.2.7 Remove

template<class ForwardIterator, class T>
ForwardIterator remove(ForwardIterator first , ForwardIterator last ,

const T& value);

template<class ForwardIterator, class Predicate>
ForwardIterator remove_if(ForwardIterator first , ForwardIterator last ,

Predicate pred);

Effects: Eliminates all the elements referred to by iteratori in the range[first , last) for which the
following corresponding conditions hold:*i == value , pred (*i) == true .

Returns: The end of the resulting range.
Notes: Stable: the relative order of the elements that are not removed is the same as their relative order in

the original range.
Complexity: Exactly last - first applications of the corresponding predicate.

25– 16 Algorithms library DRAFT: 28 April 1995 25.2.7 Remove

template<class InputIterator, class OutputIterator, class T>
OutputIterator

remove_copy(InputIterator first , InputIterator last ,
OutputIterator result , const T& value);

template<class InputIterator, class OutputIterator, class Predicate>
OutputIterator

remove_copy_if(InputIterator first , InputIterator last ,
OutputIterator result , Predicate pred);

Effects: Copies all the elements referred to by the iteratori in the range[first , last) for which the
following corresponding conditions do not hold:*i == value , pred (*i) == true .

Returns: The end of the resulting range.
Complexity: Exactly last - first applications of the corresponding predicate.
Notes: Stable: the relative order of the elements in the resulting range is the same as their relative order in

the original range.

[lib.alg.unique] 25.2.8 Unique

template<class ForwardIterator>
ForwardIterator unique(ForwardIterator first , ForwardIterator last);

template<class ForwardIterator, class BinaryPredicate>
ForwardIterator unique(ForwardIterator first , ForwardIterator last ,

BinaryPredicate pred);

Effects: Eliminates all but the first element from every consecutive group of equal elements referred to by
the iteratori in the range[first , last) for which the following corresponding conditions hold:
*i == *(i - 1) or pred (*i, *(i - 1)) == true

Returns: The end of the resulting range.
Complexity: Exactly(last - first) - 1 applications of the corresponding predicate.

template<class InputIterator, class OutputIterator>
OutputIterator

unique_copy(InputIterator first , InputIterator last ,
OutputIterator result);

template<class InputIterator, class OutputIterator,
class BinaryPredicate>

OutputIterator
unique_copy(InputIterator first , InputIterator last ,

OutputIterator result , BinaryPredicate pred);

Effects: Copies only the first element from every consecutive group of equal elements referred to by the
iterator i in the range[first , last) for which the following corresponding conditions hold:*i
== *(i - 1) or pred (*i, *(i - 1)) == true

Returns: The end of the resulting range.
Complexity: Exactly last - first applications of the corresponding predicate.

25.2.9 Reverse DRAFT: 28 April 1995 Algorithms library 25– 17

[lib.alg.reverse] 25.2.9 Reverse

template<class BidirectionalIterator>
void reverse(BidirectionalIterator first , BidirectionalIterator last);

Effects: For each non-negative integeri <= (last - first)/2 , appliesswap to all pairs of itera-
torsfirst + i, (last - i) - 1 .

Complexity: Exactly(last - first)/2 swaps.

template<class BidirectionalIterator, class OutputIterator>
OutputIterator

reverse_copy(BidirectionalIterator first ,
BidirectionalIterator last , OutputIterator result);

Effects: Copies the range[first , last) to the range[result , result + (last -
first)) such that for any non-negative integeri < (last - first) the following assignment
takes place:

*(result + (last - first) - i) = *(first + i)

Requires: The ranges[first , last) and[result , result + (last - first)) shall not
overlap.

Returns: result + (last - first) .
Complexity: Exactly last - first assignments.

[lib.alg.rotate] 25.2.10 Rotate

template<class ForwardIterator>
void rotate(ForwardIterator first , ForwardIterator middle ,

ForwardIterator last);

Effects: For each non-negative integeri < (last - first) , places the element from the position
first + i into positionfirst + (i + (last - middle)) % (last - first) .

Notes: This is a left rotate.
Requires: [first , middle) and[middle , last) are valid ranges.
Complexity: At mostlast - first swaps.

template<class ForwardIterator, class OutputIterator>
OutputIterator

rotate_copy(ForwardIterator first , ForwardIterator middle ,
ForwardIterator last , OutputIterator result);

Effects: Copies the range[first , last) to the range[result , result + (last -
first)) such that for each non-negative integeri < (last - first) the following assignment
takes place:

*(first + i) = *(result + (i + (middle - first)) % (last - first))

Returns: result + (last - first) .
Requires The ranges[first , last) and [result , result + (last - first)) shall not

overlap.
Complexity: Exactly last - first assignments.

25– 18 Algorithms library DRAFT: 28 April 1995 25.2.11 Random shuffle

[lib.alg.random.shuffle] 25.2.11 Random shuffle

template<class RandomAccessIterator>
void random_shuffle(RandomAccessIterator first ,

RandomAccessIterator last);

template<class RandomAccessIterator, class RandomNumberGenerator>
void random_shuffle(RandomAccessIterator first ,

RandomAccessIterator last ,
RandomNumberGenerator& rand);

Effects: Shuffles the elements in the range[first , last) with uniform distribution.
Complexity: Exactly(last - first) - 1 swaps.
Notes: random_shuffle() can take a particular random number generating function objectrand

such that rand (n) (where n is a positive argument of type
RandomAccessIterator::distance) returns a randomly chosen value of type
RandomAccessIterator::distance) in the interval[0, n) .

[lib.alg.partitions] 25.2.12 Partitions

template<class BidirectionalIterator, class Predicate>
BidirectionalIterator

partition(BidirectionalIterator first ,
BidirectionalIterator last , Predicate pred);

Effects: Places all the elements in the range[first , last) that satisfypred before all the elements
that do not satisfy it.

Returns: An iterator i such that for any iteratorj in the range[first , i) , pred (*j) == true ,
and for any iteratork in the range[i, last) , pred (*j) == false .

Complexity: At most(last - first)/2 swaps. Exactlylast - first applications of the predi-
cate is done.

template<class BidirectionalIterator, class Predicate>
BidirectionalIterator

stable_partition(BidirectionalIterator first ,
BidirectionalIterator last , Predicate pred);

Effects: Places all the elements in the range[first , last) that satisfypred before all the elements
that do not satisfy it.

Returns: An iterator i such that for any iteratorj in the range[first , i) , pred (*j) == true ,
and for any iteratork in the range[i, last) , pred (*j) == false . The relative order of the
elements in both groups is preserved.

Complexity: At most(last - first) * log(last - first) swaps, but only linear number of
swaps if there is enough extra memory. Exactlylast - first applications of the predicate.

[lib.alg.sorting] 25.3 Sorting and related operations

1 All the operations in this section have two versions: one that takes a function object of typeCompare and
one that uses anoperator< .

2 Compare is used as a function object which returnstrue if the first argument is less than the second, and
false otherwise.Compare comp is used throughout for algorithms assuming an ordering relation. It is
assumed thatcomp will not apply any non-constant function through the dereferenced iterator.

25.3 Sorting and related operations DRAFT: 28 April 1995 Algorithms library 25– 19

3 For all algorithms that takeCompare , there is a version that usesoperator< instead. That is,
comp(*i, *j) == true defaults to*i < *j == true . For the algorithms to work correctly,
comp has to induce a total ordering on the values.

4 A sequence issorted with respect to a comparatorcomp if for any iteratori pointing to the sequence and
any non-negative integern such thati + n is a valid iterator pointing to an element of the sequence,
comp(*(i + n), *i) == false .

5 In the descriptions of the functions that deal with ordering relationships we frequently use a notion of
equality to describe concepts such as stability. The equality to which we refer is not necessarily an
operator== , but an equality relation induced by the total ordering. That is, two elementa and b are
considered equal if and only if!(a < b) && !(b < a) .

[lib.alg.sort] 25.3.1 Sorting

[lib.sort] 25.3.1.1sort

template<class RandomAccessIterator>
void sort(RandomAccessIterator first , RandomAccessIterator last);

template<class RandomAccessIterator, class Compare>
void sort(RandomAccessIterator first , RandomAccessIterator last ,

Compare comp);

Effects: Sorts the elements in the range[first , last) .
Complexity: ApproximatelyNlogN (whereN == last - first) comparisons on the average.198)

[lib.stable.sort] 25.3.1.2stable_sort

template<class RandomAccessIterator>
void stable_sort(RandomAccessIterator first , RandomAccessIterator last);

template<class RandomAccessIterator, class Compare>
void stable_sort(RandomAccessIterator first , RandomAccessIterator last ,

Compare comp);

Effects: Sorts the elements in the range[first , last) .
Complexity: It does at mostN(logN) 2 (whereN == last - first) comparisons; if enough extra

memory is available, it isNlogN .
Notes: Stable: the relative order of the equal elements is preserved.

[lib.partial.sort] 25.3.1.3partial_sort

198)If the worst case behavior is importantstable_sort() (25.3.1.2) orpartial_sort() (25.3.1.3) should be used.

25– 20 Algorithms library DRAFT: 28 April 1995 25.3.1.3 partial_sort

template<class RandomAccessIterator>
void partial_sort(RandomAccessIterator first ,

RandomAccessIterator middle ,
RandomAccessIterator last);

template<class RandomAccessIterator, class Compare>
void partial_sort(RandomAccessIterator first ,

RandomAccessIterator middle ,
RandomAccessIterator last ,
Compare comp);

Effects: Places the firstmiddle - first sorted elements from the range[first , last) into the
range[first , middle) . The rest of the elements in the range[middle , last) are placed in
an undefined order.

Complexity: It takes approximately(last - first) * log(middle - first) comparisons.

[lib.partial.sort.copy] 25.3.1.4partial_sort_copy

template<class InputIterator, class RandomAccessIterator>
RandomAccessIterator

partial_sort_copy(InputIterator first , InputIterator last ,
RandomAccessIterator result_first ,
RandomAccessIterator result_last);

template<class InputIterator, class RandomAccessIterator,
class Compare>

RandomAccessIterator
partial_sort_copy(InputIterator first , InputIterator last ,

RandomAccessIterator result_first ,
RandomAccessIterator result_last ,
Compare comp);

Effects: Places the firstmin(last - first , result_last - result_first) sorted ele-
ments into the range[result_first , result_first + min(last - first ,
result_last - result_first)) .

Returns: The smaller of:result_last or result_first + (last - first)
Complexity: Approximately(last - first) * log(min(last - first , result_last

- result_first)) comparisons.

[lib.alg.nth.element] 25.3.2 Nth element

template<class RandomAccessIterator>
void nth_element(RandomAccessIterator first , RandomAccessIterator nth ,

RandomAccessIterator last);

template<class RandomAccessIterator, class Compare>
void nth_element(RandomAccessIterator first , RandomAccessIterator nth ,

RandomAccessIterator last , Compare comp);

1 After nth_element the element in the position pointed to bynth is the element that would be in that
position if the whole range were sorted. Also for any iteratori in the range[first , nth) and any iter-
ator thej in range[nth , last) it holds that:!(*i > *j) or comp(*i, *j) == false .

25.3.2 Nth element DRAFT: 28 April 1995 Algorithms library 25– 21

Complexity: Linear on average.

[lib.alg.binary.search] 25.3.3 Binary search

1 All of the algorithms in this section are versions of binary search. They work on non-random access itera-
tors minimizing the number of comparisons, which will be logarithmic for all types of iterators. They are
especially appropriate for random access iterators, since these algorithms do a logarithmic number of steps
through the data structure. For non-random access iterators they execute a linear number of steps.

[lib.lower.bound] 25.3.3.1 lower_bound

template<class ForwardIterator, class T>
ForwardIterator

lower_bound(ForwardIterator first , ForwardIterator last ,
const T& value);

template<class ForwardIterator, class T, class Compare>
ForwardIterator

lower_bound(ForwardIterator first , ForwardIterator last ,
const T& value , Compare comp);

Effects: Finds the first position into which value can be inserted without violating the ordering.
Returns: The furthermost iteratori in the range[first , last) such that for any iteratorj in the

range [first , i) the following corresponding conditions hold:*j < value or comp(*j,
value) == true

Complexity: At mostlog(last - first) + 1 comparisons.

[lib.upper.bound] 25.3.3.2upper_bound

template<class ForwardIterator, class T>
ForwardIterator

upper_bound(ForwardIterator first , ForwardIterator last ,
const T& value);

template<class ForwardIterator, class T, class Compare>
ForwardIterator

upper_bound(ForwardIterator first , ForwardIterator last ,
const T& value , Compare comp);

Effects: Finds the furthermost position into which value can be inserted without violating the ordering.
Returns: The furthermost iteratori in the range[first , last) such that for any iteratorj in the

range [first , i) the following corresponding conditions hold:!(value < *j) or
comp(value , *j) == false

Complexity: At mostlog(last - first) + 1 comparisons.

[lib.equal.range] 25.3.3.3equal_range

25– 22 Algorithms library DRAFT: 28 April 1995 25.3.3.3 equal_range

template<class ForwardIterator, class T>
pair<ForwardIterator, ForwardIterator>

equal_range(ForwardIterator first ,
ForwardIterator last , const T& value);

template<class ForwardIterator, class T, class Compare>
pair<ForwardIterator, ForwardIterator>

equal_range(ForwardIterator first ,
ForwardIterator last , const T& value ,
Compare comp);

Effects: Finds the largest subrange[i, j) such that the value can be inserted at any iteratork in it. k
satisfies the corresponding conditions:!(*k < value) && !(value < *k) or comp(*k,
value) == false && comp(value , *k) == false .

Complexity: At most2 * log(last - first) + 1 comparisons.

[lib.binary.search] 25.3.3.4binary_search

template<class ForwardIterator, class T>
bool binary_search(ForwardIterator first , ForwardIterator last ,

const T& value);

template<class ForwardIterator, class T, class Compare>
bool binary_search(ForwardIterator first , ForwardIterator last ,

const T& value , Compare comp);

Returns: true if there is an iteratori in the range[first last) that satisfies the corresponding con-
ditions: !(*i < value) && !(value < *i) or comp(*i, value) == false &&
comp(value , *i) == false .

Complexity: At mostlog(last - first) + 2 comparisons.

[lib.alg.merge] 25.3.4 Merge

template<class InputIterator1, class InputIterator2,
class OutputIterator>

OutputIterator
merge(InputIterator1 first1 , InputIterator1 last1 ,

InputIterator2 first2 , InputIterator2 last2 ,
OutputIterator result);

template<class InputIterator1, class InputIterator2,
class OutputIterator, class Compare>

OutputIterator
merge(InputIterator1 first1 , InputIterator1 last1 ,

InputIterator2 first2 , InputIterator2 last2 ,
OutputIterator result , Compare comp);

Effects: Merges two sorted ranges[first1 , last1) and [first2 , last2) into the range
[result , result + (last1 - first1) + (last2 - first2)) .

1 The resulting range shall not overlap with either of the original ranges.
Returns: result + (last1 - first1) + (last2 - first2) .
Complexity: At most(last1 - first1) + (last2 - first2) - 1 comparisons.

25.3.4 Merge DRAFT: 28 April 1995 Algorithms library 25– 23

Notes: Stable: for equal elements in the two ranges, the elements from the first range always precede the
elements from the second.

template<class BidirectionalIterator>
void inplace_merge(BidirectionalIterator first ,

BidirectionalIterator middle ,
BidirectionalIterator last);

template<class BidirectionalIterator, class Compare>
void inplace_merge(BidirectionalIterator first ,

BidirectionalIterator middle ,
BidirectionalIterator last , Compare comp);

Effects: Merges two sorted consecutive ranges[first , middle) and [middle, last) , putting
the result of the merge into the range[first , last) .

Complexity: When enough additional memory is available,(last - first) - 1 comparisons. If no
additional memory is available, an algorithm with complexityNlogN (whereN is equal tolast -
first) may be used.

Notes: Stable: for equal elements in the two ranges, the elements from the first range always precede the
elements from the second.

[lib.alg.set.operations] 25.3.5 Set operations on sorted structures

1 This section defines all the basic set operations on sorted structures. They even work withmultiset s
(23.3.4) containing multiple copies of equal elements. The semantics of the set operations are generalized
to multiset s in a standard way by definingunion() to contain the maximum number of occurrences
of every element,intersection() to contain the minimum, and so on.

[lib.includes] 25.3.5.1 includes

template<class InputIterator1, class InputIterator2>
bool includes(InputIterator1 first1 , InputIterator1 last1 ,

InputIterator2 first2 , InputIterator2 last2);

template<class InputIterator1, class InputIterator2, class Compare>
bool includes(InputIterator1 first1 , InputIterator1 last1 ,

InputIterator2 first2 , InputIterator2 last2 ,
Compare comp);

Returns: true if every element in the range[first2 , last2) is contained in the range[first1 ,
last1) . Returnsfalse otherwise.

Complexity: At most2 * ((last1 - first1) + (last2 - first2)) - 1 comparisons.

[lib.set.union] 25.3.5.2set_union

25– 24 Algorithms library DRAFT: 28 April 1995 25.3.5.2 set_union

template<class InputIterator1, class InputIterator2,
class OutputIterator>

OutputIterator
set_union(InputIterator1 first1 , InputIterator1 last1 ,

InputIterator2 first2 , InputIterator2 last2 ,
OutputIterator result);

template<class InputIterator1, class InputIterator2,
class OutputIterator, class Compare>

OutputIterator
set_union(InputIterator1 first1 , InputIterator1 last1 ,

InputIterator2 first2 , InputIterator2 last2 ,
OutputIterator result , Compare comp);

Effects: Constructs a sorted union of the elements from the two ranges.
Requires: The resulting range shall not overlap with either of the original ranges.
Returns: The end of the constructed range.
Complexity: At most2 * ((last1 - first1) + (last2 - first2)) - 1 comparisons.
Notes: Stable: if an element is present in both ranges, the one from the first range is copied.

[lib.set.intersection] 25.3.5.3set_intersection

template<class InputIterator1, class InputIterator2,
class OutputIterator>

OutputIterator
set_intersection(InputIterator1 first1 , InputIterator1 last1 ,

InputIterator2 first2 , InputIterator2 last2 ,
OutputIterator result);

template<class InputIterator1, class InputIterator2,
class OutputIterator, class Compare>

OutputIterator
set_intersection(InputIterator1 first1 , InputIterator1 last1 ,

InputIterator2 first2 , InputIterator2 last2 ,
OutputIterator result , Compare comp);

Effects: Constructs a sorted intersection of the elements from the two ranges.
Requires: The resulting range shall not overlap with either of the original ranges.
Returns: The end of the constructed range.
Complexity: At most2 * ((last1 - first1) + (last2 - first2)) - 1 comparisons.
Notes: Stable, that is, if an element is present in both ranges, the one from the first range is copied.

[lib.set.difference] 25.3.5.4set_difference

25.3.5.4 set_difference DRAFT: 28 April 1995 Algorithms library 25 – 25

template<class InputIterator1, class InputIterator2,
class OutputIterator>

OutputIterator
set_difference(InputIterator1 first1 , InputIterator1 last1 ,

InputIterator2 first2 , InputIterator2 last2 ,
OutputIterator result);

template<class InputIterator1, class InputIterator2,
class OutputIterator, class Compare>

OutputIterator
set_difference(InputIterator1 first1 , InputIterator1 last1 ,

InputIterator2 first2 , InputIterator2 last2 ,
OutputIterator result , Compare comp);

Effects: Constructs a sorted difference of the elements from the two ranges.
Requires: The resulting range shall not overlap with either of the original ranges.
Returns: The end of the constructed range.
Complexity: At most2 * ((last1 - first1) + (last2 - first2)) - 1 comparisons.

[lib.set.symmetric.difference] 25.3.5.5set_symmetric_difference

template<class InputIterator1, class InputIterator2,
class OutputIterator>

OutputIterator
set_symmetric_difference(InputIterator1 first1 , InputIterator1 last1 ,

InputIterator2 first2 , InputIterator2 last2 ,
OutputIterator result);

template<class InputIterator1, class InputIterator2,
class OutputIterator, class Compare>

OutputIterator
set_symmetric_difference(InputIterator1 first1 , InputIterator1 last1 ,

InputIterator2 first2 , InputIterator2 last2 ,
OutputIterator result , Compare comp);

Effects: Constructs a sorted symmetric difference of the elements from the two ranges.
Requires: The resulting range shall not overlap with either of the original ranges.
Returns: The end of the constructed range.
Complexity: At most2 * ((last1 - first1) + (last2 - first2)) - 1 comparisons.

[lib.alg.heap.operations] 25.3.6 Heap operations

1 A heapis a particular organization of elements in a range between two random access iterators[a, b) .
Its two key properties are:

(1) *a is the largest element in the range and

(2) *a may be removed bypop_heap() , or a new element added bypush_heap() , in O(logN) time.

2 These properties make heaps useful as priority queues.

3 make_heap() converts a range into a heap andsort_heap() turns a heap into a sorted sequence.

25– 26 Algorithms library DRAFT: 28 April 1995 25.3.6.1 push_heap

[lib.push.heap] 25.3.6.1push_heap

template<class RandomAccessIterator>
void push_heap(RandomAccessIterator first , RandomAccessIterator last);

template<class RandomAccessIterator, class Compare>
void push_heap(RandomAccessIterator first , RandomAccessIterator last ,

Compare comp);

Requires: The range[first , last - 1) shall be a valid heap.
Effects: Places the value in the locationlast - 1 into the resulting heap[first , last) .
Complexity: At mostlog(last - first) comparisons.

[lib.pop.heap] 25.3.6.2pop_heap

template<class RandomAccessIterator>
void pop_heap(RandomAccessIterator first , RandomAccessIterator last);

template<class RandomAccessIterator, class Compare>
void pop_heap(RandomAccessIterator first , RandomAccessIterator last ,

Compare comp);

Requires: The range[first , last) shall be a valid heap.
Effects: Swaps the value in the locationfirst with the value in the locationlast - 1 and makes

[first , last - 1) into a heap.
Complexity: At most2 * log(last - first) comparisons.

[lib.make.heap] 25.3.6.3make_heap

template<class RandomAccessIterator>
void make_heap(RandomAccessIterator first , RandomAccessIterator last);

template<class RandomAccessIterator, class Compare>
void make_heap(RandomAccessIterator first , RandomAccessIterator last ,

Compare comp);

Effects: Constructs a heap out of the range[first , last) .
Complexity: At most3 * (last - first) comparisons.

[lib.sort.heap] 25.3.6.4sort_heap

template<class RandomAccessIterator>
void sort_heap(RandomAccessIterator first , RandomAccessIterator last);

template<class RandomAccessIterator, class Compare>
void sort_heap(RandomAccessIterator first , RandomAccessIterator last ,

Compare comp);

Effects: Sorts elements in the heap[first , last) .
Complexity: At mostNlogN comparisons (whereN == last - first).
Notes: Not stable.

25.3.7 Minimum and maximum DRAFT: 28 April 1995 Algorithms library 25– 27

[lib.alg.min.max] 25.3.7 Minimum and maximum

template<class T> const T& min(const T& a, const T& b);
template<class T, class Compare>

const T& min(const T& a, const T& b, Compare comp);

Returns: The smaller value.
Notes: Returns the first argument when their arguments are equal.

template<class T> const T& max(const T& a, const T& b);
template<class T, class Compare>

const T& max(const T& a, const T& b, Compare comp);

Returns: The larger value.
Notes: Returns the first argument when their arguments are equal.

template<class InputIterator>
InputIterator min_element(InputIterator first , InputIterator last);

template<class InputIterator, class Compare>
InputIterator min_element(InputIterator first , InputIterator last ,

Compare comp);

Returns: The first iteratori in the range[first , last) such that for any iteratorj in the range
[first , last) the following corresponding conditions hold:!(*j < *i) or comp(*j, *i)
== false

Complexity: Exactly max((last - first) - 1, 0) applications of the corresponding compar-
isons.

template<class InputIterator>
InputIterator max_element(InputIterator first , InputIterator last);

template<class InputIterator, class Compare>
InputIterator max_element(InputIterator first , InputIterator last ,

Compare comp);

Returns: The first iteratori in the range[first , last) such that for any iteratorj in the range
[first , last) the following corresponding conditions hold:!(*i < *j) or comp(*i, *j)
== false .

Complexity: Exactly max((last - first) - 1, 0) applications of the corresponding compar-
isons.

[lib.alg.lex.comparison] 25.3.8 Lexicographical comparison

template<class InputIterator1, class InputIterator2>
bool

lexicographical_compare(InputIterator1 first1 , InputIterator1 last1 ,
InputIterator2 first2 , InputIterator2 last2);

template<class InputIterator1, class InputIterator2, class Compare>
bool

lexicographical_compare(InputIterator1 first1 , InputIterator1 last1 ,
InputIterator2 first2 , InputIterator2 last2 ,
Compare comp);

25– 28 Algorithms library DRAFT: 28 April 1995 25.3.8 Lexicographical comparison

Returns: true if the sequence of elements defined by the range[first1 , last1) is lexicographi-
cally less than the sequence of elements defined by the range[first2 , last2) .
Returnsfalse otherwise.

Complexity: At mostmin((last1 - first1), (last2 - first2)) applications of the corre-
sponding comparison.

[lib.alg.permutation.generators] 25.3.9 Permutation generators

template<class BidirectionalIterator>
bool next_permutation(BidirectionalIterator first ,

BidirectionalIterator last);

template<class BidirectionalIterator, class Compare>
bool next_permutation(BidirectionalIterator first ,

BidirectionalIterator last , Compare comp);

Effects: Takes a sequence defined by the range[first , last) and transforms it into the next permu-
tation. The next permutation is found by assuming that the set of all permutations is lexicographically
sorted with respect tooperator< or comp. If such a permutation exists, it returnstrue . Otherwise,
it transforms the sequence into the smallest permutation, that is, the ascendingly sorted one, and returns
false .

Complexity: At most(last - first)/2 swaps.

template<class BidirectionalIterator>
bool prev_permutation(BidirectionalIterator first ,

BidirectionalIterator last);

template<class BidirectionalIterator, class Compare>
bool prev_permutation(BidirectionalIterator first ,

BidirectionalIterator last , Compare comp);

Effects: Takes a sequence defined by the range[first , last) and transforms it into the previous per-
mutation. The previous permutation is found by assuming that the set of all permutations is lexico-
graphically sorted with respect tooperator< or comp.

Returns: true if such a permutation exists. Otherwise, it transforms the sequence into the largest permu-
tation, that is, the descendingly sorted one, and returnsfalse .

Complexity: At most(last - first)/2 swaps.

[lib.alg.c.library] 25.4 C library algorithms

1 Header<cstdlib> (partial, Table 63):

Table 63—Header<cstdlib> synopsis
_ _________________________________

Type Name(s)_ _________________________________
Functions: bsearch qsort_ _________________________________

2 The contents are the same as the Standard C library.

[Note:For the Standard C library function:

void qsort(void* base , size_t nmemb, size_t size ,
int (* compar)(const void*, const void*));

25.4 C library algorithms DRAFT: 28 April 1995 Algorithms library 25 – 29

the function argumentcompar shall haveextern "C" linkage (7.5). Also, sincecompar() may
throw an exception,qsort() is allowed to propagate the exception (17.3.4.8).—end note]

SEE ALSO: ISO C subclause 7.10.5.

_ ___ ___

26 Numerics library [lib.numerics]
_ ___ ___

1 This clause describes components that C + + programs may use to perform seminumerical operations.

2 The following subclauses describe components for complex number types, numeric (n-at-a-time) arrays,
generalized numeric algorithms, and facilities included from the ISO C library, as summarized in Table 64:

Table 64—Numerics library summary
_ __

Subclause Header(s)_ ___ __
26.1 Requirements_ __
26.2 Complex numbers <complex>_ __
26.3 Numeric arrays <valarray>_ __
26.4 Generalized numeric operations<numeric>_ __

<cmath>
26.5 C library

<cstdlib>_ __

[lib.numeric.requirements] 26.1 Numeric type requirements

1 Thecomplex andvalarray components are parameterized by the type of information they contain and
manipulate. A C + + program shall instantiate these components with types that satisfy the following require-
ments:199)

— T is not an abstract class (it has no pure virtual member functions);

— T is not a reference type;

— T is not cv-qualified;

— If T is a class, it has a public default constructor;

— If T is a class, it has a public copy constructor with the signatureT::T(const T&)

— If T is a class, it has a public destructor;

— If T is a class, it has a public assignment operator whose signature is either
T& T::operator=(const T&) or T& T::operator=(T)

— If T is a class, its assignment operator, copy and default constructors, and destructor must correspond to
each other in the following sense: Initialization of raw storage using the default constructor, followed by
assignment, is semantically equivalent to initialization of raw storage using the copy constructor.
Destruction of an object, followed by initialization of its raw storage using the copy constructor, is
semantically equivalent to assignment to the original object.
[Note:This rule states that there must not be any subtle differences in the semantics of initialization ver-
sus assignment. This gives an implementation considerable flexibility in how arrays are initialized.
[Example:An implementation is allowed to initialize avalarray by allocating storage using thenew

199) In other words, value types. These include built-in arithmetic types, pointers, the library classcomplex , and instantiations of
valarray for value types.

26– 2 Numerics library DRAFT: 28 April 1995 26.1 Numeric type requirements

operator (which implies a call to the default constructor for each element) and then assigning each ele-
ment its value. Or the implementation can allocate raw storage and use the copy constructor to initialize
each element.—end example]
If the distinction between initialization and assignment is important for a class, or if it fails to satisfy
any of the other conditions listed above, the programmer should usevector (23.2.5) instead of
valarray for that class;—end note]

— If T is a class, it does not overload unaryoperator& .

2 In addition, many member and related functions ofvalarray< T> can be successfully instantiated and
will exhibit well-defined behavior if and only ifT satisfies additional requirements specified for each such
member or related function.

3 [Example:It is valid to instantiatevalarray< complex >, but operator>() will not be successfully
instantiated forvalarray< complex > operands, sincecomplex does not have any ordering operators.
—end example]

[lib.complex.numbers] 26.2 Complex numbers

1 The header<complex> defines a template class, and numerous functions for representing and manipulat-
ing complex numbers.

Header<complex> synopsis

namespace std {
template<class T> class complex;
class complex<float>;
class complex<double>;
class complex<long double>;

// 26.2.5 operators:
template<class T>

complex<T> operator+(const complex<T>&, const complex<T>&);
template<class T> complex<T> operator+(const complex<T>&, T);
template<class T> complex<T> operator+(T, const complex<T>&);

template<class T> complex<T> operator-(const complex<T>&, const complex<T>&);
template<class T> complex<T> operator-(const complex<T>&, T);
template<class T> complex<T> operator-(T, const complex<T>&);

template<class T> complex<T> operator*(const complex<T>&, const complex<T>&);
template<class T> complex<T> operator*(const complex<T>&, T);
template<class T> complex<T> operator*(T, const complex<T>&);

template<class T> complex<T> operator/(const complex<T>&, const complex<T>&);
template<class T> complex<T> operator/(const complex<T>&, const T>&);
template<class T> complex<T> operator/(T, const complex<T>&);

template<class T> complex<T> operator+(const complex<T>&);
template<class T> complex<T> operator-(const complex<T>&);

template<class T> complex<T> operator==(const complex<T>&, const complex<T>&);
template<class T> complex<T> operator==(const complex<T>&, T);
template<class T> complex<T> operator==(T, const complex<T>&);

template<class T> complex<T> operator!=(const complex<T>&, const complex<T>&);
template<class T> complex<T> operator!=(const complex<T>&, T);
template<class T> complex<T> operator!=(T, const complex<T>&);

26.2 Complex numbers DRAFT: 28 April 1995 Numerics library 26– 3

template<class T> istream& operator>>(istream&, complex<T>&);
template<class T> ostream& operator<<(ostream&, const complex<T>&);

// 26.2.6 values:

template<class T> T real(const complex<T>&);
template<class T> T imag(const complex<T>&);

template<class T> T abs(const complex<T>&);
template<class T> T arg(const complex<T>&);
template<class T> T norm(const complex<T>&);

template<class T> complex<T> conj(const complex<T>&);
template<class T> complex<T> polar(T, T);

// 26.2.7 transcendentals:
template<class T> complex<T> acos (const complex<T>&);
template<class T> complex<T> asin (const complex<T>&);
template<class T> complex<T> atan (const complex<T>&);
template<class T> complex<T> atan2(const complex<T>&, const complex<T>&);
template<class T> complex<T> atan2(const complex<T>&, T);
template<class T> complex<T> atan2(T, const complex<T>&);
template<class T> complex<T> cos (const complex<T>&);
template<class T> complex<T> cosh (const complex<T>&);
template<class T> complex<T> exp (const complex<T>&);
template<class T> complex<T> log (const complex<T>&);
template<class T> complex<T> log10(const complex<T>&);

template<class T> complex<T> pow(const complex<T>&, int);
template<class T> complex<T> pow(const complex<T>&, T);
template<class T> complex<T> pow(const complex<T>&, const complex<T>&);
template<class T> complex<T> pow(T, const complex<T>&);

template<class T> complex<T> sin (const complex<T>&);
template<class T> complex<T> sinh (const complex<T>&);
template<class T> complex<T> sqrt (const complex<T>&);
template<class T> complex<T> tan (const complex<T>&);
template<class T> complex<T> tanh (const complex<T>&);

}

[lib.complex] 26.2.1 Template classcomplex

namespace std {
template<class T>
class complex {
public:

complex();
complex(T re);
complex(T re , T im);
template<class X> complex(const complex<X>&);

T real() const;
T imag() const;
template<class X> complex<T>& operator= (const complex<X>&);
template<class X> complex<T>& operator+=(const complex<X>&);
template<class X> complex<T>& operator-=(const complex<X>&);
template<class X> complex<T>& operator*=(const complex<X>&);
template<class X> complex<T>& operator/=(const complex<X>&);

};

26– 4 Numerics library DRAFT: 28 April 1995 26.2.1 Template classcomplex

1 The classcomplex describes an object that can store the Cartesian components,real() andimag() , of
a complex number.

[lib.complex.special] 26.2.2 complex specializations

class complex<float> {
public:

complex(float re = 0.0f, float im = 0.0f);
explicit complex(const complex<double>&);
explicit complex(const complex<long double>&);

float real() const;
float imag() const;
template<class X> complex<float>& operator= (const complex<X>&);
template<class X> complex<float>& operator+=(const complex<X>&);
template<class X> complex<float>& operator-=(const complex<X>&);
template<class X> complex<float>& operator*=(const complex<X>&);
template<class X> complex<float>& operator/=(const complex<X>&);

};

class complex<double> {
public:

complex(double re = 0.0, double im = 0.0);
complex(const complex<float>&);
explicit complex(const complex<long double>&);

double real() const;
double imag() const;
template<class X> complex<double>& operator= (const complex<X>&);
template<class X> complex<double>& operator+=(const complex<X>&);
template<class X> complex<double>& operator-=(const complex<X>&);
template<class X> complex<double>& operator*=(const complex<X>&);
template<class X> complex<double>& operator/=(const complex<X>&);

};

class complex<long double> {
public:

complex(long double re = 0.0L, long double im = 0.0L);
complex(const complex<float>&);
complex(const complex<double>&);

long double real() const;
long double imag() const;
template<class X> complex<long double>& operator= (const complex<X>&);
template<class X> complex<long double>& operator+=(const complex<X>&);
template<class X> complex<long double>& operator-=(const complex<X>&);
template<class X> complex<long double>& operator*=(const complex<X>&);
template<class X> complex<long double>& operator/=(const complex<X>&);

};

[lib.complex.members] 26.2.3 complex member functions

template<class T> complex(T re = T(), T im = T());

Effects: Constructs an object of classcomplex .

1 Postcondition:real() == re && imag() == im .

26.2.4 complex member operators DRAFT: 28 April 1995 Numerics library 26– 5

[lib.complex.member.ops] 26.2.4 complex member operators

template<class T> complex<T>& operator+=(const complex<T>& rhs);

Effects: Adds the complex valuerhs to the complex value*this and stores the sum in*this .
Returns: *this .

template<class T> complex<T>& operator-=(const complex<T>& rhs);

Effects: Subtracts the complex valuerhs from the complex value*this and stores the difference in
*this .

Returns: *this .

template<class T> complex<T>& operator*=(const complex<T>& rhs);

Effects: Multiplies the complex valuerhs by the complex value*this and stores the product in*this .
Returns: *this .

template<class T> complex<T>& operator/=(const complex<T>& rhs);

Effects: Divides the complex valuerhs into the complex value*this and stores the quotient in*this .
Returns: *this .

[lib.complex.ops] 26.2.5 complex non-member operations

template<class T> complex<T> operator+(const complex<T>& lhs);

Notes: unary operator.
Returns: complex<T>(lhs) .

template<class T>
complex<T> operator+(const complex<T>& lhs , const complex<T>& rhs);

template<class T> complex<T> operator+(const complex<T>& lhs , T rhs);
template<class T> complex<T> operator+(T lhs , const complex<T>& rhs);

Returns: complex<T>(lhs) += rhs .

template<class T> complex<T> operator-(const complex<T>& lhs);

Notes: unary operator.
Returns: complex<T>(- lhs .real(),- lhs .imag()) .

template<class T>
complex<T> operator-(const complex<T>& lhs , const complex<T>& rhs);

template<class T> complex<T> operator-(const complex<T>& lhs , T rhs);
template<class T> complex<T> operator-(T lhs , const complex<T>& rhs);

Returns: complex<T>(lhs) -= rhs .

template<class T>
complex<T> operator*(const complex<T>& lhs , const complex<T>& rhs);

template<class T> complex<T> operator*(const complex<T>& lhs , T rhs);
template<class T> complex<T> operator*(T lhs , const complex<T>& rhs);

26– 6 Numerics library DRAFT: 28 April 1995 26.2.5 complex non-member operations

Returns: complex<T>(lhs) *= rhs .

template<class T>
complex<T> operator/(const complex<T>& lhs , const complex<T>& rhs);

template<class T> complex<T> operator/(const complex<T>& lhs , T rhs);
template<class T> complex<T> operator/(T lhs , const complex<T>& rhs);

Returns: complex<T>(lhs) /= rhs .

template<class T>
bool operator==(const complex<T>& lhs , const complex<T>& >rhs);

template<class T> bool operator==(const complex<T>& lhs , T rhs);
template<class T> bool operator==(T lhs , const complex<T>& rhs);

Returns: lhsP.real() == rhs.real() && lhs.imag() == rhs.imag() .
Notes: The imaginary part is assumed to beT() , or 0.0, for theT arguments.

template<class T>
bool operator!=(complex<T>& lhs , complex<T>& rhs);

template<class T> bool operator!=(complex<T>& lhs , T rhs);
template<class T> bool operator!=(T lhs , complex<T>& rhs);

Returns: rhs)!(lhs ==

template<class T> istream& operator>>(istream& is , complex<T>& x);

Effects: Extracts a complex numberx of the form:u, (u) , or (u,v) , whereu is the real part andv is the
imaginary part (27.6.1.2).

Requires: The input values be convertible toT.
If bad input is encountered, callsis .setstate(ios::failbit) (which may throw
ios::failure (27.4.4.3).

Returns: is .

template<class T>
ostream& operator<<(ostream& os , complex x);

Returns: os << ’(’ << x.real() << ’,’ << x.imag() << ’)’ .

[lib.complex.value.ops] 26.2.6 complex value operations

template<class T> T real(const complex<T>& x);

Returns: x.real() .

template<class T> T imag(const complex<T>& x);

Returns: x.imag() .

template<class T> T arg(const complex<T>& x);

Returns: theTBS of x .

template<class T> T norm(const complex<T>& x);

26.2.6 complex value operations DRAFT: 28 April 1995 Numerics library 26– 7

Returns: the squared magnitude ofx .

template<class T> complex<T> conj(const complex<T>& x);

Returns: theTBS of x .

template<class T> complex<T> polar(T rho , const t& theta);

Returns: the complex value corresponding to a complex number whose magnitude isrho and whose
phase angle istheta .

[lib.complex.transcendentals] 26.2.7 complex transcendentals

template<class T> complex<T> acos (const complex<T>& x);
template<class T> complex<T> asin (const complex<T>& x);
template<class T> complex<T> atan (const complex<T>& x);
template<class T> complex<T> atan2(const complex<T>& x);
template<class T> complex<T> atan2(const complex<T>& x, T y);
template<class T> complex<T> atan2(T x, const complex<T>& y);
template<class T> complex<T> cos (const complex<T>& x);
template<class T> complex<T> cosh (const complex<T>& x);
template<class T> complex<T> exp (const complex<T>& x);
template<class T> complex<T> log (const complex<T>& x);
template<class T> complex<T> log10(const complex<T>& x);
template<class T>

complex<T> pow(const complex<T>& x, const complex<T>& y);
template<class T> complex<T> pow (const complex<T>& x, T y);
template<class T> complex<T> pow (T x, const complex<T>& y);
template<class T> complex<T> pow (const complex<T>& x, int y);
template<class T> complex<T> sin (const complex<T>& x);
template<class T> complex<T> sinh (const complex<T>& x);
template<class T> complex<T> sqrt (const complex<T>& x);
template<class T> complex<T> tan (const complex<T>& x);
template<class T> complex<T> tanh (const complex<T>& x);

1 For each of these functionsF, returns acomplex value corresponding to the mathematical function (26.5)
computed forcomplex arguments.

[lib.numarray] 26.3 Numeric arrays

Header<valarray> synopsis

#include <cstddef> // for size_t
namespace std {

template<class T> class valarray; // An array of type T
class slice; // a BLAS-like slice out of an array
template<class T> class slice_array;
class gslice; // a generalized slice out of an array
template<class T> class gslice_array;
template<class T> class mask_array; // a masked array
template<class T> class indirect_array; // an indirected array

26– 8 Numerics library DRAFT: 28 April 1995 26.3 Numeric arrays

template<class T> valarray<T> operator*
(const valarray<T>&, const valarray<T>&);

template<class T> valarray<T> operator* (const valarray<T>&, const T&);
template<class T> valarray<T> operator* (const T&, const valarray<T>&);

template<class T> valarray<T> operator/
(const valarray<T>&, const valarray<T>&);

template<class T> valarray<T> operator/ (const valarray<T>&, const T&);
template<class T> valarray<T> operator/ (const T&, const valarray<T>&);

template<class T> valarray<T> operator%
(const valarray<T>&, const valarray<T>&);

template<class T> valarray<T> operator% (const valarray<T>&, const T&);
template<class T> valarray<T> operator% (const T&, const valarray<T>&);

template<class T> valarray<T> operator+
(const valarray<T>&, const valarray<T>&);

template<class T> valarray<T> operator+ (const valarray<T>&, const T&);
template<class T> valarray<T> operator+ (const T&, const valarray<T>&);

template<class T> valarray<T> operator-
(const valarray<T>&, const valarray<T>&);

template<class T> valarray<T> operator- (const valarray<T>&, const T&);
template<class T> valarray<T> operator- (const T&, const valarray<T>&);

template<class T> valarray<T> operator^
(const valarray<T>&, const valarray<T>&);

template<class T> valarray<T> operator^ (const valarray<T>&, const T&);
template<class T> valarray<T> operator^ (const T&, const valarray<T>&);

template<class T> valarray<T> operator&
(const valarray<T>&, const valarray<T>&);

template<class T> valarray<T> operator& (const valarray<T>&, const T&);
template<class T> valarray<T> operator& (const T&, const valarray<T>&);

template<class T> valarray<T> operator|
(const valarray<T>&, const valarray<T>&);

template<class T> valarray<T> operator| (const valarray<T>&, const T&);
template<class T> valarray<T> operator| (const T&, const valarray<T>&);

template<class T> valarray<T> operator<<
(const valarray<T>&, const valarray<T>&);

template<class T> valarray<T> operator<<(const valarray<T>&, const T&);
template<class T> valarray<T> operator<<(const T&, const valarray<T>&);

template<class T> valarray<T> operator>>
(const valarray<T>&, const valarray<T>&);

template<class T> valarray<T> operator>>(const valarray<T>&, const T&);
template<class T> valarray<T> operator>>(const T&, const valarray<T>&);

template<class T> valarray<T> operator&&
(const valarray<T>&, const valarray<T>&);

template<class T> valarray<T> operator&&(const valarray<T>&, const T&);
template<class T> valarray<T> operator&&(const T&, const valarray<T>&);

template<class T> valarray<T> operator||
(const valarray<T>&, const valarray<T>&);

template<class T> valarray<T> operator||(const valarray<T>&, const T&);
template<class T> valarray<T> operator||(const T&, const valarray<T>&);

26.3 Numeric arrays DRAFT: 28 April 1995 Numerics library 26– 9

template<class T>
valarray<bool> operator==(const valarray<T>&, const valarray<T>&);

template<class T> valarray<bool> operator==(const valarray<T>&, const T&);
template<class T> valarray<bool> operator==(const T&, const valarray<T>&);
template<class T>

valarray<bool> operator!=(const valarray<T>&, const valarray<T>&);
template<class T> valarray<bool> operator!=(const valarray<T>&, const T&);
template<class T> valarray<bool> operator!=(const T&, const valarray<T>&);

template<class T>
valarray<bool> operator< (const valarray<T>&, const valarray<T>&);

template<class T> valarray<bool> operator< (const valarray<T>&, const T&);
template<class T> valarray<bool> operator< (const T&, const valarray<T>&);
template<class T>

valarray<bool> operator> (const valarray<T>&, const valarray<T>&);
template<class T> valarray<bool> operator> (const valarray<T>&, const T&);
template<class T> valarray<bool> operator> (const T&, const valarray<T>&);
template<class T>

valarray<bool> operator<=(const valarray<T>&, const valarray<T>&);
template<class T> valarray<bool> operator<=(const valarray<T>&, const T&);
template<class T> valarray<bool> operator<=(const T&, const valarray<T>&);
template<class T>

valarray<bool> operator>=(const valarray<T>&, const valarray<T>&);
template<class T> valarray<bool> operator>=(const valarray<T>&, const T&);
template<class T> valarray<bool> operator>=(const T&, const valarray<T>&);

template<class T> T min(const valarray<T>&);
template<class T> T max(const valarray<T>&);

template<class T> valarray<T> abs (const valarray<T>&);
template<class T> valarray<T> acos (const valarray<T>&);
template<class T> valarray<T> asin (const valarray<T>&);
template<class T> valarray<T> atan (const valarray<T>&);

template<class T> valarray<T> atan2(const valarray<T>&, const valarray<T>&);
template<class T> valarray<T> atan2(const valarray<T>&, const T&);
template<class T> valarray<T> atan2(const T&, const valarray<T>&);

template<class T> valarray<T> cos (const valarray<T>&);
template<class T> valarray<T> cosh (const valarray<T>&);
template<class T> valarray<T> exp (const valarray<T>&);
template<class T> valarray<T> log (const valarray<T>&);
template<class T> valarray<T> log10(const valarray<T>&);

template<class T> valarray<T> pow (const valarray<T>&, const valarray<T>&);
template<class T> valarray<T> pow (const valarray<T>&, const T&);
template<class T> valarray<T> pow (const T&, const valarray<T>&);

template<class T> valarray<T> sin (const valarray<T>&);
template<class T> valarray<T> sinh (const valarray<T>&);
template<class T> valarray<T> sqrt (const valarray<T>&);
template<class T> valarray<T> tan (const valarray<T>&);
template<class T> valarray<T> tanh (const valarray<T>&);

}

1 The header<valarray> defines five template classes (valarray , slice_array , gslice_array ,
mask_array , andindirect_array), two classes (slice andgslice), and a series of related func-
tion signatures for representing and manipulating arrays of values.

26– 10 Numerics library DRAFT: 28 April 1995 26.3 Numeric arrays

2 The valarray array classes are defined to be free of certain forms of aliasing, thus allowing operations
on these classes to be optimized.

3 These library functions are permitted to throw anbad_alloc (18.4.2.1) exception if there are not suffi-
cient resources available to carry out the operation. Note that the exception is not mandated.

[lib.template.valarray] 26.3.1 Template classvalarray

namespace std {
template<class T> class valarray {
public:

// 26.3.1.1 construct/destroy:
valarray();
explicit valarray(size_t);
valarray(const T&, size_t);
valarray(const T*, size_t);
valarray(const valarray&);
valarray(const slice_array<T>&);
valarray(const gslice_array<T>&);
valarray(const mask_array<T>&);
valarray(const indirect_array<T>&);

~valarray();

// 26.3.1.2 assignment:
valarray<T>& operator=(const valarray<T>&);
valarray<T>& operator=(const slice_array<T>&);
valarray<T>& operator=(const gslice_array<T>&);
valarray<T>& operator=(const mask_array<T>&);
valarray<T>& operator=(const indirect_array<T>&);

// 26.3.1.3 element access:
T operator[](size_t) const;
T& operator[](size_t);

// _lib.valarray.subset_ subset operations:
valarray<T> operator[](slice) const;
slice_array<T> operator[](slice);
valarray<T> operator[](const gslice&) const;
gslice_array<T> operator[](const gslice&);
valarray<T> operator[](const valarray<bool>&) const;
mask_array<T> operator[](const valarray<bool>&);
valarray<T> operator[](const valarray<size_t>&) const;
indirect_array<T> operator[](const valarray<size_t>&);

// 26.3.1.5 unary operators:
valarray<T> operator+() const;
valarray<T> operator-() const;
valarray<T> operator~() const;
valarray<T> operator!() const;

// 26.3.1.6 computed assignment:
valarray<T>& operator*= (const T&);
valarray<T>& operator/= (const T&);
valarray<T>& operator%= (const T&);
valarray<T>& operator+= (const T&);
valarray<T>& operator-= (const T&);
valarray<T>& operator^= (const T&);
valarray<T>& operator&= (const T&);
valarray<T>& operator|= (const T&);
valarray<T>& operator<<=(const T&);
valarray<T>& operator>>=(const T&);

26.3.1 Template classvalarray DRAFT: 28 April 1995 Numerics library 26– 11

valarray<T>& operator*= (const valarray<T>&);
valarray<T>& operator/= (const valarray<T>&);
valarray<T>& operator%= (const valarray<T>&);
valarray<T>& operator+= (const valarray<T>&);
valarray<T>& operator-= (const valarray<T>&);
valarray<T>& operator^= (const valarray<T>&);
valarray<T>& operator|= (const valarray<T>&);
valarray<T>& operator&= (const valarray<T>&);
valarray<T>& operator<<=(const valarray<T>&);
valarray<T>& operator>>=(const valarray<T>&);

// 26.3.1.7 member functions:
size_t length() const;
operator T*();
operator const T*() const;

T sum() const;
void fill(const T&);
T min() const;
T max() const;

valarray<T> shift (int) const;
valarray<T> cshift(int) const;
valarray<T> apply(T func(T)) const;
valarray<T> apply(T func(const T&)) const;
void free();

};
}

1 The template classvalarray< T> is a one-dimensional smart array, with elements numbered sequentially
from zero. It is a representation of the mathematical concept of an ordered set of values. The illusion of
higher dimensionality may be produced by the familiar idiom of computed indices, together with the pow-
erful subsetting capabilities provided by the generalized subscript operators.200)

2 An implementation is permitted to qualify any of the functions declared in<valarray> asinline .

[lib.valarray.cons] 26.3.1.1valarray constructors

valarray();

Effects: Constructs an object of classvalarray< T>,201) which has zero length until it is passed into a
library function as a modifiable lvalue or through a non-constantthis pointer. This default construc-
tor is essential, since arrays ofvalarray are likely to prove useful. There must also be a way to
change the size of an array after initialization; this is supplied by the semantics of the assignment opera-
tor.

explicit valarray(size_t);

1 The array created by this constructor has a length equal to the value of the argument. The elements of the
array are constructed using the default constructor for the instantiating typeT.

200) The intent is to specify an array template that has the minimum functionality necessary to address aliasing ambiguities and the
proliferation of temporaries. Thus, thevalarray template is neither a matrix class nor a field class. However, it is a very useful
building block for designing such classes.
201)For convenience, such objects are referred to as ‘‘arrays’’ throughout the remainder of subclause 26.3.

26– 12 Numerics library DRAFT: 28 April 1995 26.3.1.1valarray constructors

valarray(const T&, size_t);

2 The array created by this constructor has a length equal to the second argument. The elements of the array
are initialized with the value of the first argument.

valarray(const T*, size_t);

3 The array created by this constructor has a length equal to the second argumentn. The values of the ele-
ments of the array are initialized with the firstn values pointed to by the first argument. If the value of the
second argument is greater than the number of values pointed to by the first argument, the behavior is unde-
fined. This constructor is the preferred method for converting a C array to avalarray object.

valarray(const valarray<T>&);

4 The array created by this constructor has the same length as the argument array. The elements are initial-
ized with the values of the corresponding elements of the argument array. This copy constructor creates a
distinct array rather than an alias. Implementations in which arrays share storage are permitted, but they
must implement a copy-on-reference mechanism to ensure that arrays are conceptually distinct.

valarray(const slice_array<T>&);
valarray(const gslice_array<T>&);
valarray(const mask_array<T>&);
valarray(const indirect_array<T>&);

5 These conversion constructors convert one of the four reference templates to avalarray .

~valarray();

[lib.valarray.assign] 26.3.1.2valarray assignment

valarray<T>& operator=(const valarra<T>y&);

1 The assignment operator modifies the length of the*this array to be equal to that of the argument array.
Each element of the*this array is then assigned the value of the corresponding element of the argument
array. Assignment is the usual way to change the length of an array after initialization. Assignment results
in a distinct array rather than an alias.

valarray<T>& operator=(const slice_array<T>&);
valarray<T>& operator=(const gslice_array<T>&);
valarray<T>& operator=(const mask_array<T>&);
valarray<T>& operator=(const indirect_array<T>&);

2 These operators allow the results of a generalized subscripting operation to be assigned directly to a
valarray .

26.3.1.3 valarray element access DRAFT: 28 April 1995 Numerics library 26– 13

[lib.valarray.access] 26.3.1.3valarray element access

T operator[](size_t) const;
T& operator[](size_t);

1 When applied to a constant array, the subscript operator returns the value of the corresponding element of
the array. When applied to a non-constant array, the subscript operator returns a reference to the corre-
sponding element of the array.

2 Thus, the expression(a[i] = q, a[i]) == q evaluates as true for any non-constant
valarray<T> a , anyT q , and for anysize_t i such that the value ofi is less than the length ofa.

3 The expression&a[i+j] == &a[i] + j evaluates as true for allsize_t i andsize_t j such
that i+j is less than the length of the non-constant arraya.

4 Likewise, the expression&a[i] != &b[j] evaluates astrue for any two non-constant arraysa andb
and for anysize_t i andsize_t j such thati is less than the length ofa andj is less than the length
of b. This property indicates an absence of aliasing and may be used to advantage by optimizing compil-
ers.202)

5 The reference returned by the subscript operator for a non-constant array is guaranteed to be valid until the
array to whose data it refers is passed into any library function as a modifiable lvalue or through a non-
constthis pointer.

6 Computed assigns [such asvalarray& operator+=(const valarray&)] do not by themselves
invalidate references to array data. If the subscript operator is invoked with asize_t argument whose
value is not less than the length of the array, the behavior is undefined.

[lib.valarray.sub] 26.3.1.4valarray subset operations

valarray<T> operator[](slice) const;
slice_array<T> operator[](slice);
valarray<T> operator[](const gslice&) const;
gslice_array<T> operator[](const gslice&);
valarray<T> operator[](const valarray<bool>&) const;
mask_array<T> operator[](const valarray<bool>&);
valarray<T> operator[](const valarray<size_t>&) const;
indirect_array<T> operator[](const valarray<size_t>&);

1 Each of these operations returns a subset of the array. Theconst -qualified versions return this subset as a
newvalarray . The non-const versions return a class template object which has reference semantics to
the original array.

[lib.valarray.unary] 26.3.1.5valarray unary operators

valarray<T> operator+() const;
valarray<T> operator-() const;
valarray<T> operator~() const;
valarray<T> operator!() const;

202) Compilers may take advantage of inlining, constant propagation, loop fusion, tracking of pointers obtained fromoperator
new, and other techniques to generate efficientvalarray s.

26– 14 Numerics library DRAFT: 28 April 1995 26.3.1.5valarray unary operators

1 Each of these operators may only be instantiated for a typeT to which the indicated operator can be applied
and for which the indicated operator returns a value which is of type &T or which may be unambiguously
converted to typeT.

2 Each of these operators returns an array whose length is equal to the length of the array. Each element of
the returned array is initialized with the result of applying the indicated operator to the corresponding ele-
ment of the array.

[lib.valarray.cassign] 26.3.1.6valarray computed assignment

valarray<T>& operator*= (const valarray<T>&);
valarray<T>& operator/= (const valarray<T>&);
valarray<T>& operator%= (const valarray<T>&);
valarray<T>& operator+= (const valarray<T>&);
valarray<T>& operator-= (const valarray<T>&);
valarray<T>& operator^= (const valarray<T>&);
valarray<T>& operator&= (const valarray<T>&);
valarray<T>& operator|= (const valarray<T>&);
valarray<T>& operator<<=(const valarray<T>&);
valarray<T>& operator>>=(const valarray<T>&);

1 Each of these operators may only be instantiated for a typeT to which the indicated operator can be
applied. Each of these operators performs the indicated operation on each of its elements and the corre-
sponding element of the argument array.

2 The array is then returned by reference.

3 If the array and the argument array do not have the same length, the behavior is undefined. The appearance
of an array on the left hand side of a computed assignment doesnot invalidate references or pointers.

valarray<T>& operator*= (const T&);
valarray<T>& operator/= (const T&);
valarray<T>& operator%= (const T&);
valarray<T>& operator+= (const T&);
valarray<T>& operator-= (const T&);
valarray<T>& operator^= (const T&);
valarray<T>& operator&= (const T&);
valarray<T>& operator|= (const T&);
valarray<T>& operator<<=(const T&);
valarray<T>& operator>>=(const T&);

4 Each of these operators may only be instantiated for a typeT to which the indicated operator can be
applied.

5 Each of these operators applies the indicated operation to each element of the array and the scalar argument.

6 The array is then returned by reference.

7 The appearance of an array on the left hand side of a computed assignment doesnot invalidate references or
pointers to the elements of the array.

[lib.valarray.members] 26.3.1.7valarray member functions

size_t length() const;

26.3.1.7 valarray member functions DRAFT: 28 April 1995 Numerics library 26– 15

1 This function returns the number of elements in the array.

operator T*();
operator const T*() const;

2 A non-constant array may be converted to a pointer to the instantiating type. A constant array may be con-
verted to a pointer to the instantiating type, qualified byconst .

3 It is guaranteed that&a[0] == (T*)a for any non-constantvalarray<T> a . The pointer returned
for a non-constant array (whether or not it points to a type qualified byconst) is valid for the same dura-
tion as a reference returned by thesize_t subscript operator. The pointer returned for a constant array is
valid for the lifetime of the array.203)

T sum() const;

This function may only be instantiated for a typeT to whichoperator+= can be applied. This function
returns the sum of all the elements of the array.

4 If the array has length 0, the behavior is undefined. If the array has length 1,sum returns the value of ele-
ment 0. Otherwise, the returned value is calculated by applyingoperator+= to a copy of an element of
the array and all other elements of the array in an unspecified order.

void fill(const T&);

This function assigns the value of the argument to all the elements of the array. The length of the array is
not changed, nor are any pointers or references to the elements of the array invalidated.

valarray<T> shift(int) const;

5 This function returns an array whose length is identical to the array, but whose element values are shifted
the number of places indicated by the argument.

6 A positive argument value results in a left shift, a negative value in a right shift, and a zero value in no shift.

7 [Example:If the argument has the value -2, the first two elements of the result will be constructed using the
default constructor; the third element of the result will be assigned the value of the first element of the argu-
ment; etc. —end example]

valarray<T> cshift(int) const;

8 This function returns an array whose length is identical to the array, but whose element values are shifted in
a circular fashion the number of places indicated by the argument.

9 A positive argument value results in a left shift, a negative value in a right shift, and a zero value in no shift.

valarray<T> apply(T func(T)) const;
valarray<T> apply(T func(const T&)) const;

10 These functions return an array whose length is equal to the array. Each element of the returned array is
assigned the value returned by applying the argument function to the corresponding element of the array.

203)This form of access is essential for reusability and cross-language programming.

26– 16 Numerics library DRAFT: 28 April 1995 26.3.1.7valarray member functions

void free();

11 This function sets the length of an array to zero.204)

[lib.valarray.nonmembers] 26.3.2 valarray non-member operations

[lib.valarray.binary] 26.3.2.1valarray binary operators

template<class T> valarray<T> operator* (const valarray<T>&, const valarray<T>&);
template<class T> valarray<T> operator/ (const valarray<T>&, const valarray<T>&);
template<class T> valarray<T> operator% (const valarray<T>&, const valarray<T>&);
template<class T> valarray<T> operator+ (const valarray<T>&, const valarray<T>&);
template<class T> valarray<T> operator- (const valarray<T>&, const valarray<T>&);
template<class T> valarray<T> operator^ (const valarray<T>&, const valarray<T>&);
template<class T> valarray<T> operator& (const valarray<T>&, const valarray<T>&);
template<class T> valarray<T> operator| (const valarray<T>&, const valarray<T>&);
template<class T> valarray<T> operator<<(const valarray<T>&, const valarray<T>&);
template<class T> valarray<T> operator>>(const valarray<T>&, const valarray<T>&);
template<class T> valarray<T> operator&&(const valarray<T>&, const valarray<T>&);
template<class T> valarray<T> operator||(const valarray<T>&, const valarray<T>&);

1 Each of these operators may only be instantiated for a typeT to which the indicated operator can be applied
and for which the indicated operator returns a value which is of typeT or which can be unambiguously con-
verted to typeT.

2 Each of these operators returns an array whose length is equal to the lengths of the argument arrays. Each
element of the returned array is initialized with the result of applying the indicated operator to the corre-
sponding elements of the argument arrays.

3 If the argument arrays do not have the same length, the behavior is undefined.

204)An implementation may reclaim the storage used by the array when this function is called.

26.3.2.1 valarray binary operators DRAFT: 28 April 1995 Numerics library 26– 17

template<class T> valarray<T> operator* (const valarray<T>&, const T&);
template<class T> valarray<T> operator* (const T&, const valarray<T>&);
template<class T> valarray<T> operator/ (const valarray<T>&, const T&);
template<class T> valarray<T> operator/ (const T&, const valarray<T>&);
template<class T> valarray<T> operator% (const valarray<T>&, const T&);
template<class T> valarray<T> operator% (const T&, const valarray<T>&);
template<class T> valarray<T> operator+ (const valarray<T>&, const T&);
template<class T> valarray<T> operator+ (const T&, const valarray<T>&);
template<class T> valarray<T> operator- (const valarray<T>&, const T&);
template<class T> valarray<T> operator- (const T&, const valarray<T>&);
template<class T> valarray<T> operator^ (const valarray<T>&, const T&);
template<class T> valarray<T> operator^ (const T&, const valarray<T>&);
template<class T> valarray<T> operator& (const valarray<T>&, const T&);
template<class T> valarray<T> operator& (const T&, const valarray<T>&);
template<class T> valarray<T> operator| (const valarray<T>&, const T&);
template<class T> valarray<T> operator| (const T&, const valarray<T>&);
template<class T> valarray<T> operator<<(const valarray<T>&, const T&);
template<class T> valarray<T> operator<<(const T&, const valarray<T>&);
template<class T> valarray<T> operator>>(const valarray<T>&, const T&);
template<class T> valarray<T> operator>>(const T&, const valarray<T>&);
template<class T> valarray<T> operator&&(const valarray<T>&, const T&);
template<class T> valarray<T> operator&&(const T&, const valarray<T>&);
template<class T> valarray<T> operator||(const valarray<T>&, const T&);
template<class T> valarray<T> operator||(const T&, const valarray<T>&);

4 Each of these operators may only be instantiated for a typeT to which the indicated operator can be applied
and for which the indicated operator returns a value which is of typeT or which can be unambiguously con-
verted to typeT.

5 Each of these operators returns an array whose length is equal to the length of the array argument. Each
element of the returned array is initialized with the result of applying the indicated operator to the corre-
sponding element of the array argument and the scalar argument.

[lib.valarray.comparison] 26.3.2.2valarray comparison operators

template<class T> valarray<bool> operator==(const valarray<T>&, const valarray<T>&);
template<class T> valarray<bool> operator!=(const valarray<T>&, const valarray<T>&);
template<class T> valarray<bool> operator< (const valarray<T>&, const valarray<T>&);
template<class T> valarray<bool> operator> (const valarray<T>&, const valarray<T>&);
template<class T> valarray<bool> operator<=(const valarray<T>&, const valarray<T>&);
template<class T> valarray<bool> operator>=(const valarray<T>&, const valarray<T>&);

1 Each of these operators may only be instantiated for a typeT to which the indicated operator can be applied
and for which the indicated operator returns a value which is of typebool or which can be unambiguously
converted to typebool .

2 Each of these operators returns abool array whose length is equal to the length of the array arguments.
Each element of the returned array is initialized with the result of applying the indicated operator to the cor-
responding elements of the argument arrays.

3 If the two array arguments do not have the same length, the behavior is undefined.

26– 18 Numerics library DRAFT: 28 April 1995 26.3.2.2valarray comparison operators

template<class T> valarray<bool> operator==(const valarray&, const T&);
template<class T> valarray<bool> operator==(const T&, const valarray&);
template<class T> valarray<bool> operator!=(const valarray&, const T&);
template<class T> valarray<bool> operator!=(const T&, const valarray&);
template<class T> valarray<bool> operator< (const valarray&, const T&);
template<class T> valarray<bool> operator< (const T&, const valarray&);
template<class T> valarray<bool> operator> (const valarray&, const T&);
template<class T> valarray<bool> operator> (const T&, const valarray&);
template<class T> valarray<bool> operator<=(const valarray&, const T&);
template<class T> valarray<bool> operator<=(const T&, const valarray&);
template<class T> valarray<bool> operator>=(const valarray&, const T&);
template<class T> valarray<bool> operator>=(const T&, const valarray&);

4 Each of these operators may only be instantiated for a typeT to which the indicated operator can be applied
and for which the indicated operator returns a value which is of typebool or which can be unambiguously
converted to typebool .

5 Each of these operators returns abool array whose length is equal to the length of the array argument.
Each element of the returned array is initialized with the result of applying the indicated operator to the cor-
responding element of the array and the scalar argument.

[lib.valarray.min.max] 26.3.2.3valarray min and max functions

template<class T> T min(const valarray<T>& a);
template<class T> T max(const valarray<T>& a);

1 These functions may only be instantiated for a typeT to which operator> and operator< may be
applied and for whichoperator> andoperator< return a value which is of typebool or which can
be unambiguously converted to typebool .

2 These functions return the minimum (a.min()) or maximum (a. .max()) value found in the argument
arraya.

3 The value returned for an array of length 0 is undefined. For an array of length 1, the value of element 0 is
returned. For all other array lengths, the determination is made usingoperator> andoperator< , in a
manner analogous to the application ofoperator+= for thesum function.

[lib.valarray.transcend] 26.3.2.4valarray transcendentals

26.3.2.4 valarray transcendentals DRAFT: 28 April 1995 Numerics library 26– 19

template<class T> valarray<T> abs (const valarray<T>&);
template<class T> valarray<T> acos (const valarray<T>&);
template<class T> valarray<T> asin (const valarray<T>&);
template<class T> valarray<T> atan (const valarray<T>&);
template<class T> valarray<T> atan2(const valarray<T>&, const valarray<T>&);
template<class T> valarray<T> atan2(const valarray<T>&, const T&);
template<class T> valarray<T> atan2(const T&, const valarray<T>&);
template<class T> valarray<T> cos (const valarray<T>&);
template<class T> valarray<T> cosh (const valarray<T>&);
template<class T> valarray<T> exp (const valarray<T>&);
template<class T> valarray<T> log (const valarray<T>&);
template<class T> valarray<T> log10(const valarray<T>&);
template<class T> valarray<T> pow (const valarray<T>&, const valarray<T>&);
template<class T> valarray<T> pow (const valarray<T>&, const T&);
template<class T> valarray<T> pow (const T&, const valarray<T>&);
template<class T> valarray<T> sin (const valarray<T>&);
template<class T> valarray<T> sinh (const valarray<T>&);
template<class T> valarray<T> sqrt (const valarray<T>&);
template<class T> valarray<T> tan (const valarray<T>&);
template<class T> valarray<T> tanh (const valarray<T>&);

1 Each of these functions may only be instantiated for a typeT to which a unique function with the indicated
name can be applied. This function must return a value which is of typeT or which can be unambiguously
converted to typeT.

[lib.class.slice] 26.3.3 Classslice

namespace std {
class slice {
public:

slice();
slice(size_t, size_t, size_t);

size_t start() const;
size_t length() const;
size_t stride() const;

};
}

1 Theslice class represents a BLAS-like slice from an array. Such a slice is specified by a starting index,
a length, and a stride.205)

[lib.cons.slice] 26.3.3.1slice constructors

slice();
slice(size_t start , size_t length , size_t stride);
slice(const slice&);

1 The default constructor forslice creates aslice which specifies no elements. A default constructor is
provided only to permit the declaration of arrays of slices. The constructor with arguments for a slice takes
a start, length, and stride parameter.

205)C + + programs may instantiate this class.

26– 20 Numerics library DRAFT: 28 April 1995 26.3.3.1slice constructors

2 [Example:slice(3, 8, 2) constructs a slice which selects elements 3, 5, 7, ... 17 from an array.
—end example]

[lib.slice.access] 26.3.3.2slice access functions

size_t start() const;
size_t length() const;
size_t stride() const;

1 These functions return the start, length, or stride specified by aslice object.

[lib.template.slice.array] 26.3.4 Template classslice_array

namespace std {
template <class T> class slice_array {
public:

void operator= (const valarray<T>&) const;
void operator*= (const valarray<T>&) const;
void operator/= (const valarray<T>&) const;
void operator%= (const valarray<T>&) const;
void operator+= (const valarray<T>&) const;
void operator-= (const valarray<T>&) const;
void operator^= (const valarray<T>&) const;
void operator&= (const valarray<T>&) const;
void operator|= (const valarray<T>&) const;
void operator<<=(const valarray<T>&) const;
void operator>>=(const valarray<T>&) const;

void fill(const T&);
~slice_array();

private:
slice_array();
slice_array(const slice_array&);
slice_array& operator=(const slice_array&);
// remainder implementation defined

};
}

1 Theslice_array template is a helper template used by theslice subscript operator

slice_array<T> valarray<T>::operator[](slice);

It has reference semantics to a subset of an array specified by aslice object.

2 [Example:The expressiona[slice(1, 5, 3)] = b; has the effect of assigning the elements ofb to
a slice of the elements ina. For the slice shown, the elements selected froma are 1, 4, ..., 13. —end
example]

3 [Note: C + + programs may not instantiateslice_array , since all its constructors are private. It is
intended purely as a helper class and should be transparent to the user.—end note]

[lib.cons.slice.arr] 26.3.4.1slice_array constructors

slice_array();
slice_array(const slice_array&);

1 The slice_array template has no public constructors. These constructors are declared to be private.
These constructors need not be defined.

26.3.4.2 slice_array assignment DRAFT: 28 April 1995 Numerics library 26– 21

[lib.slice.arr.assign] 26.3.4.2slice_array assignment

void operator=(const valarray<T>&) const;
slice_array& operator=(const slice_array&);

1 The second of these two assignment operators is declared private and need not be defined. The first has ref-
erence semantics, assigning the values of the argument array elements to selected elements of the
valarray<T> object to which theslice_array object refers.

[lib.slice.arr.comp.assign] 26.3.4.3slice_array computed assignment

void operator*= (const valarray<T>&) const;
void operator/= (const valarray<T>&) const;
void operator%= (const valarray<T>&) const;
void operator+= (const valarray<T>&) const;
void operator-= (const valarray<T>&) const;
void operator^= (const valarray<T>&) const;
void operator&= (const valarray<T>&) const;
void operator|= (const valarray<T>&) const;
void operator<<=(const valarray<T>&) const;
void operator>>=(const valarray<T>&) const;

1 These computed assignments have reference semantics, applying the indicated operation to the elements of
the argument array and selected elements of thevalarray<T> object to which theslice_array
object refers.

[lib.slice.arr.fill] 26.3.4.4slice_array fill function

void fill(const T&);

1 This function has reference semantics, assigning the value of its argument to the elements of the
valarray<T> object to which theslice_array object refers.

[lib.class.gslice] 26.3.5 Thegslice class

namespace std {
class gslice {
public:

gslice();
gslice(size_t s, const valarray<size_t>& l, const valarray<size_t>& d);

size_t start() const;
valarray<size_t> length() const;
valarray<size_t> stride() const;

};
}

1 This class represents a generalized slice out of an array. Agslice is defined by a starting offset (s), a set
of lengths (l j), and a set of strides (dj). The number of lengths must equal the number of strides.

2 A gslice represents a mapping from a set of indices (i j), equal in number to the number of strides, to a
single indexk. It is useful for building multidimensional array classes using thevalarray template,
which is one-dimensional. The set of one-dimensional index values specified by agslice are
k = s+

j
Σ i j dj where the multidimensional indicesi j range in value from 0 tol i j − 1.

26– 22 Numerics library DRAFT: 28 April 1995 26.3.5 Thegslice class

3 [Example:Thegslice specification

start = 3
length = {2, 4, 3}
stride = {19, 4, 1}

yields the sequence of one-dimensional indices

k = 3+ (0 , 1)×19= (0 , 1 , 2 , 3)×4+ (0 , 1 , 2)×1

which are ordered as shown in the following table:

(i 0, i 1, i 2, k) =
(0, 0, 0, 3),
(0, 0, 1, 4),
(0, 0, 2, 5),
(0, 1, 0, 7),
(0, 1, 1, 8),
(0, 1, 2, 9),
(0, 2, 0, 11),
(0, 2, 1, 12),
(0, 2, 2, 13),
(0, 3, 0, 15),
(0, 3, 1, 16),
(0, 3, 2, 17),
(1, 0, 0, 22),
(1, 0, 1, 23),
...
(1, 3, 2, 36)

That is, the highest-ordered index turns fastest.—end example]

4 It is possible to have degenerate generalized slices in which an address is repeated.

5 [Example:If the stride parameters in the previous example are changed to {1, 1, 1}, the first few elements
of the resulting sequence of indices will be

(0, 0, 0, 3),
(0, 0, 1, 4),
(0, 0, 2, 5),
(0, 1, 0, 4),
(0, 1, 1, 5),
(0, 1, 2, 6),
...

—end example]

6 If a degenerate slice is used as the argument to the non-const version of operator[](const
gslice&) , the resulting behavior is undefined.

[lib.gslice.cons] 26.3.5.1gslice constructors

gslice();
gslice(size_t start , const valarray<size_t>& lengths ,

const valarray<size_t>& strides);
gslice(const gslice&);

1 The default constructor creates agslice which specifies no elements. The constructor with arguments
builds agslice based on a specification of start, lengths, and strides, as explained in the previous section.

26.3.5.2 gslice access functions DRAFT: 28 April 1995 Numerics library 26– 23

[lib.gslice.access] 26.3.5.2gslice access functions

size_t start() const;
valarray<size_t> length() const;
valarray<size_t> stride() const;

These access functions return the representation of the start, lengths, or strides specified for thegslice .

[lib.template.gslice.array] 26.3.6 Template classgslice_array

namespace std {
template <class T> class gslice_array {
public:

void operator= (const valarray<T>&) const;
void operator*= (const valarray<T>&) const;
void operator/= (const valarray<T>&) const;
void operator%= (const valarray<T>&) const;
void operator+= (const valarray<T>&) const;
void operator-= (const valarray<T>&) const;
void operator^= (const valarray<T>&) const;
void operator&= (const valarray<T>&) const;
void operator|= (const valarray<T>&) const;
void operator<<=(const valarray<T>&) const;
void operator>>=(const valarray<T>&) const;

void fill(const T&);
~gslice_array();

private:
gslice_array();
gslice_array(const gslice_array&);
gslice_array& operator=(const gslice_array&);
// remainder implementation defined

};
}

1 This template is a helper template used by theslice subscript operator

gslice_array<T> valarray<T>::operator[](const gslice&);

It has reference semantics to a subset of an array specified by agslice object.

2 Thus, the expressiona[gslice(1, length, stride)] = b has the effect of assigning the ele-
ments ofb to a generalized slice of the elements ina.

3 [Note: C + + programs may not instantiategslice_array , since all its constructors are private. It is
intended purely as a helper class and should be transparent to the user.—end note]

[lib.gslice.array.cons] 26.3.6.1gslice_array constructors

gslice_array();
gslice_array(const gslice_array&);

1 Thegslice_array template has no public constructors. It declares the above constructors to be private.
These constructors need not be defined.

26– 24 Numerics library DRAFT: 28 April 1995 26.3.6.2gslice_array assignment

[lib.gslice.array.assign] 26.3.6.2gslice_array assignment

void operator=(const valarray<T>&) const;
gslice_array& operator=(const gslice_array&);

1 The second of these two assignment operators is declared private and need not be defined. The first has ref-
erence semantics, assigning the values of the argument array elements to selected elements of the
valarray<T> object to which thegslice_array refers.

[lib.gslice.array.comp.assign] 26.3.6.3gslice_array computed assignment

void operator*= (const valarray<T>&) const;
void operator/= (const valarray<T>&) const;
void operator%= (const valarray<T>&) const;
void operator+= (const valarray<T>&) const;
void operator-= (const valarray<T>&) const;
void operator^= (const valarray<T>&) const;
void operator&= (const valarray<T>&) const;
void operator|= (const valarray<T>&) const;
void operator<<=(const valarray<T>&) const;
void operator>>=(const valarray<T>&) const;

1 These computed assignments have reference semantics, applying the indicated operation to the elements of
the argument array and selected elements of thevalarray<T> object to which thegslice_array
object refers.

[lib.gslice.array.fill] 26.3.6.4gslice_array fill function

void fill(const T&);

1 This function has reference semantics, assigning the value of its argument to the elements of the
valarray<T> object to which thegslice_array object refers.

[lib.template.mask.array] 26.3.7 Template classmask_array

namespace std {
template <class T> class mask_array {
public:

void operator= (const valarray<T>&) const;
void operator*= (const valarray<T>&) const;
void operator/= (const valarray<T>&) const;
void operator%= (const valarray<T>&) const;
void operator+= (const valarray<T>&) const;
void operator-= (const valarray<T>&) const;
void operator^= (const valarray<T>&) const;
void operator&= (const valarray<T>&) const;
void operator|= (const valarray<T>&) const;
void operator<<=(const valarray<T>&) const;
void operator>>=(const valarray<T>&) const;

26.3.7 Template classmask_array DRAFT: 28 April 1995 Numerics library 26– 25

void fill(const T&);
~mask_array();

private:
mask_array();
mask_array(const mask_array&);
mask_array& operator=(const mask_array&);
// remainder implementation defined

};
}

1 This template is a helper template used by the mask subscript operator:
mask_array<T> valarray<T>::operator[](const valarray<bool>&) .

It has reference semantics to a subset of an array specified by a boolean mask. Thus, the expression
a[mask] = b; has the effect of assigning the elements ofb to the masked elements ina (those for
which the corresponding element inmask is true .

2 [Note:C + + programs may not declare instances ofmask_array , since all its constructors are private. It is
intended purely as a helper class, and should be transparent to the user.—end note]

[lib.mask.array.cons] 26.3.7.1mask_array constructors

mask_array();
mask_array(const mask_array&);

1 The mask_array template has no public constructors. It declares the above constructors to be private.
These constructors need not be defined.

[lib.mask.array.assign] 26.3.7.2mask_array assignment

void operator=(const valarray<T>&) const;
mask_array& operator=(const mask_array&);

1 The second of these two assignment operators is declared private and need not be defined. The first has ref-
erence semantics, assigning the values of the argument array elements to selected elements of the
valarray<T> object to which it refers.

[lib.mask.array.comp.assign] 26.3.7.3mask_array computed assignment

void operator*= (const valarray<T>&) const;
void operator/= (const valarray<T>&) const;
void operator%= (const valarray<T>&) const;
void operator+= (const valarray<T>&) const;
void operator-= (const valarray<T>&) const;
void operator^= (const valarray<T>&) const;
void operator&= (const valarray<T>&) const;
void operator|= (const valarray<T>&) const;
void operator<<=(const valarray<T>&) const;
void operator>>=(const valarray<T>&) const;

1 These computed assignments have reference semantics, applying the indicated operation to the elements of
the argument array and selected elements of thevalarray<T> object to which the mask object refers.

26– 26 Numerics library DRAFT: 28 April 1995 26.3.7.4mask_array fill function

[lib.mask.array.fill] 26.3.7.4mask_array fill function

void fill(const T&);

This function has reference semantics, assigning the value of its argument to the elements of the
valarray<T> object to which themask_array object refers.

[lib.template.indirect.array] 26.3.8 Template classindirect_array

namespace std {
template <class T> class indirect_array {
public:

void operator= (const valarray<T>&) const;
void operator*= (const valarray<T>&) const;
void operator/= (const valarray<T>&) const;
void operator%= (const valarray<T>&) const;
void operator+= (const valarray<T>&) const;
void operator-= (const valarray<T>&) const;
void operator^= (const valarray<T>&) const;
void operator&= (const valarray<T>&) const;
void operator|= (const valarray<T>&) const;
void operator<<=(const valarray<T>&) const;
void operator>>=(const valarray<T>&) const;

void fill(const T&);
~indirect_array();

private:
indirect_array();
indirect_array(const indirect_array&);
indirect_array& operator=(const indirect_array&);
// remainder implementation defined

};
}

1 This template is a helper template used by the indirect subscript operator
indirect_array<T> valarray<T>::operator[](const valarray<int>&) .

It has reference semantics to a subset of an array specified by anindirect_array . Thus the expression
a[indirect] = b; has the effect of assigning the elements ofb to the elements ina whose indices
appear inindirect .

2 [Note: C + + programs may not declare instances ofindirect_array , since all its constructors are pri-
vate. It is intended purely as a helper class, and should be transparent to the user.—end note]

[lib.indirect.array.cons] 26.3.8.1 indirect_array constructors

indirect_array();
indirect_array(const indirect_array&);

The indirect_array template has no public constructors. The constructors listed above are private.
These constructors need not be defined.

[lib.indirect.array.assign] 26.3.8.2 indirect_array assignment

void operator=(const valarray<T>&) const;
indirect_array& operator=(const indirect_array&);

26.3.8.2 indirect_array assignment DRAFT: 28 April 1995 Numerics library 26– 27

1 The second of these two assignment operators is declared private and need not be defined. The first has ref-
erence semantics, assigning the values of the argument array elements to selected elements of the
valarray<T> object to which it refers.

2 If the indirect_array specifies an element in thevalarray<T> object to which it refers more than
once, the behavior is undefined.

3 [Example:

int addr = {2, 3, 1, 4, 4};
valarray<int> indirect(addr, 5);
valarray<double> a(0., 10), b(1., 5);
array[indirect] = b;

results in undefined behavior since element 4 is specified twice in the indirection.—end example]

[lib.indirect.array.comp.assign] 26.3.8.3 indirect_array computed assignment

void operator*= (const valarray<T>&) const;
void operator/= (const valarray<T>&) const;
void operator%= (const valarray<T>&) const;
void operator+= (const valarray<T>&) const;
void operator-= (const valarray<T>&) const;
void operator^= (const valarray<T>&) const;
void operator&= (const valarray<T>&) const;
void operator|= (const valarray<T>&) const;
void operator<<=(const valarray<T>&) const;
void operator>>=(const valarray<T>&) const;

1 These computed assignments have reference semantics, applying the indicated operation to the elements of
the argument array and selected elements of thevalarray<T> object to which theindirect_array
object refers.

2 If the indirect_array specifies an element in thevalarray<T> object to which it refers more than
once, the behavior is undefined.

[lib.indirect.array.fill] 26.3.8.4 indirect_array fill function

void fill(const T&);

1 This function has reference semantics, assigning the value of its argument to the elements of the
valarray<T> object to which theindirect_array object refers.

[lib.numeric.ops] 26.4 Generalized numeric operations

Header<numeric> synopsis

namspace std {
template <class InputIterator, class T>

T accumulate(InputIterator first , InputIterator last , T init);
template <class InputIterator, class T, class BinaryOperation>

T accumulate(InputIterator first , InputIterator last , T init ,
BinaryOperation binary_op);

26– 28 Numerics library DRAFT: 28 April 1995 26.4 Generalized numeric operations

template <class InputIterator1, class InputIterator2, class T>
T inner_product(InputIterator1 first1 , InputIterator1 last1 ,

InputIterator2 first2 , T init);
template <class InputIterator1, class InputIterator2, class T,

class BinaryOperation1, class BinaryOperation2>
T inner_product(InputIterator1 first1 , InputIterator1 last1 ,

InputIterator2 first2 , T init ,
BinaryOperation1 binary_op1 , BinaryOperation2 binary_op2);

template <class InputIterator, class OutputIterator>
OutputIterator partial_sum(InputIterator first , InputIterator last ,

OutputIterator result);
template <class InputIterator, class OutputIterator, class BinaryOperation>

OutputIterator partial_sum(InputIterator first , InputIterator last ,
OutputIterator result , BinaryOperation binary_op);

template <class InputIterator, class OutputIterator>
OutputIterator adjacent_difference(InputIterator first , InputIterator last ,

OutputIterator result);
template <class InputIterator, class OutputIterator, class BinaryOperation>

OutputIterator adjacent_difference(InputIterator first , InputIterator last ,
OutputIterator result ,
BinaryOperation binary_op);

}

[lib.accumulate] 26.4.1 Accumulate

template <class InputIterator, class T>
T accumulate(InputIterator first , InputIterator last , T init);

template <class InputIterator, class T, class BinaryOperation>
T accumulate(InputIterator first , InputIterator last , T init ,

BinaryOperation binary_op);

Effects: Initializes the accumulatoracc with the initial valueinit and then modifies it withacc =
acc + *i or acc = binary_op(acc, *i) for every iteratori in the range[first, last)
in order.206)

Requires: binary_op shall not cause side effects.

[lib.inner.product] 26.4.2 Inner product

template <class InputIterator1, class InputIterator2, class T>
T inner_product(InputIterator1 first1 , InputIterator1 last1 ,

InputIterator2 first2 , T init);
template <class InputIterator1, class InputIterator2, class T,

class BinaryOperation1, class BinaryOperation2>
T inner_product(InputIterator1 first1 , InputIterator1 last1 ,

InputIterator2 first2 , T init ,
BinaryOperation1 binary_op1 ,
BinaryOperation2 binary_op2);

Effects: Computes its result by initializing the accumulatoracc with the initial valueinit and then mod-
ifying it with acc = acc + (*i1) * (*i2) or acc = binary_op1(acc,
binary_op2(*i1, *i2)) for every iteratori1 in the range[first, last) and iteratori2 in

206)accumulate is similar to the APL reduction operator and Common Lisp reduce function, but it avoids the difficulty of defining
the result of reduction on an empty sequence by always requiring an initial value.

26.4.2 Inner product DRAFT: 28 April 1995 Numerics library 26– 29

the range[first2, first2 + (last - first)) in order.
Requires: binary_op1 andbinary_op2 shall not cause side effects.

[lib.partial.sum] 26.4.3 Partial sum

template <class InputIterator, class OutputIterator>
OutputIterator

partial_sum(InputIterator first , InputIterator last ,
OutputIterator result);

template
<class InputIterator, class OutputIterator, class BinaryOperation>

OutputIterator
partial_sum(InputIterator first , InputIterator last ,

OutputIterator result , BinaryOperation binary_op);

Effects: Assigns to every iteratori in the range[result, result + (last - first)) a value
correspondingly equal to
((...(*first + *(first + 1)) + ...) + *(first + (i - result)))
or
binary_op(binary_op(..., binary_op(*first, *(first + 1)),...),
*(first + (i - result)))

Returns: result + (last - first) .
Complexity: Exactly(last - first) - 1 applications ofbinary_op .
Requires: binary_op is expected not to have any side effects.
Notes: result may be equal tofirst .

[lib.adjacent.difference] 26.4.4 Adjacent difference

template <class InputIterator, class OutputIterator>
OutputIterator

adjacent_difference(InputIterator first , InputIterator last ,
OutputIterator result);

template
<class InputIterator, class OutputIterator, class BinaryOperation>

OutputIterator
adjacent_difference(InputIterator first , InputIterator last ,

OutputIterator result ,
BinaryOperation binary_op);

Effects: Assigns to every element referred to by iteratori in the range[result + 1, result +
(last - first)) a value correspondingly equal to
*(first + (i - result)) - *(first + (i - result) - 1)
or
binary_op(*(first + (i - result)), *(first + (i - result) - 1)) .
result gets the value of*first .

Requires: binary_op shall not have any side effects.
Notes: result may be equal tofirst .
Returns: result + (last - first) .
Complexity: Exactly(last - first) - 1 applications ofbinary_op .

26– 30 Numerics library DRAFT: 28 April 1995 26.5 C Library

[lib.c.math] 26.5 C Library

1 Headers<cmath> and<cstdlib> (abs() , div() , rand() , srand()).

Table 64—Header<cmath> synopsis
_ __

Type Name(s)_ __
Macro: HUGE_VAL_ __
Functions:
acos ceil fabs ldexp pow

asin cos floor log sin

atan cosh fmod log10 sinh

atan2 exp frexp modf sqrt_ __

Table 64—Header<cstdlib> synopsis
_ ______________________________

Type Name(s)_ ______________________________
Macros: RAND_MAX_ ______________________________
Types: div_t ldiv_t_ ______________________________
Functions:
abs labs srand

div ldiv rand_ ______________________________

2 The contents are the same as the Standard C library, with the following additions:

3 In addition to theint versions of certain math functions in<cstdlib> , C + + addslong overloaded ver-
sions of these functions, with the same semantics.

4 The added signatures are:

long abs(long); // labs()
ldiv_t div(long, long); // ldiv()

5 In addition to thedouble versions of the math functions in<cmath> , C + + addsfloat and long
double overloaded versions of these functions, with the same semantics.

6 The added signatures are:

26.5 C Library DRAFT: 28 April 1995 Numerics library 26– 31

float abs (float);
float acos (float);
float asin (float);
float atan (float);
float atan2(float, float);
float ceil (float);
float cos (float);
float cosh (float);
float exp (float);
float fabs (float);
float floor(float);
float fmod (float, float);
float frexp(float, int*);
float modf (float, float*);
float ldexp(float, int);
float log (float);
float log10(float);
float pow (float, float);
float pow (float, int);
float sin (float);
float sinh (float);
float sqrt (float);
float tan (float);
float tanh (float);

double abs(double); // fabs()
double pow(double, int);

26– 32 Numerics library DRAFT: 28 April 1995 26.5 C Library

long double abs (long double);
long double acos (long double);
long double asin (long double);
long double atan (long double);
long double atan2(long double, long double);
long double ceil (long double);
long double cos (long double);
long double cosh (long double);
long double exp (long double);
long double fabs (long double);
long double floor(long double);
long double frexp(long double, int*);
long double fmod (long double, long double);
long double frexp(long double, int*);
long double log (long double);
long double log10(long double);
long double modf (long double, long double*);
long double pow (long double, long double);
long double pow (long double, int);
long double sin (long double);
long double sinh (long double);
long double sqrt (long double);
long double tan (long double);
long double tanh (long double);

SEE ALSO: ISO C subclauses 7.5, 7.10.2, 7.10.6.

_ ___ ___

27 Input/output library [lib.input.output]
_ ___ ___

1 This clause describes components that C + + programs may use to perform input/output operations.

2 The following subclauses describe requirements for stream parameters, and components for forward decla-
rations of iostreams, predefined iostreams objects, base iostreams classes, stream buffering, stream format-
ting and manipulators, string streams, and file streams, as summarized in Table 65:

Table 65—Input/output library summary
_ ___

Subclause Header(s)_ __ ___
27.1 Requirements_ ___
27.2 Forward declarations <iosfwd>_ ___
27.3 Standard iostream objects <iostream>_ ___
27.4 Iostreams base classes <ios>_ ___
27.5 Stream buffers <streambuf>_ ___

<istream>
<ostream>27.6 Formatting and manipulators
<iomanip>_ ___
<sstream>

27.7 String streams
<cstdlib>_ ___
<fstream>
<cstdio>27.8 File streams
<cwchar>_ ___

[lib.iostreams.requirements] 27.1 Iostreams requirements

[lib.iostreams.definitions] 27.1.1 Definitions

1 Additional definitions:

— character In this clause, the term ‘‘character’’ means any unit element which, treated sequentially, can
represent text. The term does not only meanchar andwchar_t type objects, but any value which
can be represented by a type which provides the definitions specified in (21.1.1.1).

— character container typeCharacter container type is a class or a type used to represent acharacter. It
is used for one of the template parameter of the iostream class templates.

— iostream class templatesThe iostream class templates are templates defined in this clause that take two
template arguments:charT andtraits . The argumentcharT is a character container class, and the
argumenttraits is a structure which defines additional characteristics and functions of the character
type represented bycharT necessary to implement the iostream class templates.

— narrow-oriented iostream classesThe narrow-oriented iostream classes are the instantiations of the
iostream class templates on the character container classchar and the default value of thetraits
parameter. The traditional iostream classes are regarded as the narrow-oriented iostream classes
(27.3.1).

27– 2 Input/output library DRAFT: 28 April 1995 27.1.1 Definitions

— wide-oriented iostream classesThe wide-oriented iostream classes are the instantiations of the ios-
tream class templates on the character container classwchar_t and the default value of thetraits
parameter. (27.3.2).

— repositional streams and arbitrary-positional streamsA repositional stream, can seek to only the
position where we previously encountered. On the other hand, anarbitrary-positionalstream can seek
to any integral position within the length of the stream. Every arbitrary-positional stream is reposi-
tional.

[lib.iostreams.type.reqmts] 27.1.2 Type requirements

1 There are several types and functions needed for implementing the iostream class templates. Some of these
types and functions depend on the definition of the character container type. The collection of these func-
tions describes the behavior which the implementation of the iostream class templates expects to the char-
acter container class.

[lib.iostreams.char.t] 27.1.2.1 TypeCHAR_T

1 Those C + + programs that provide a character container type as the template parameter have to provide all of
these functions as well as the container class itself. The collection of these functions can be regarded as the
collection of the common definitions for the implementation of the character container class.

2 No special definition/declaration is provided here. The base class (or struct),string_char_traits
provides the definitions common between the string class templates and the iostream class templates.

3 Convertible to typeINT_T.

[lib.iostreams.int.t] 27.1.2.2 TypeINT_T

1 Anothercharacter container typewhich can also hold an end-of-file value. It is used as the return type of
some of the iostream class member functions. IfCHAR_T is eitherchar or wchar_t , INT_T shall be
int or wint_t , respectively.

[lib.iostreams.off.t] 27.1.2.3 TypeOFF_T

1 A type that can represent offsets to positional information.207) It is used to represent:

— a signed displacement, measured in characters, from a specified position within a sequence.

— an absolute position within a sequence.

2 The valueOFF_T(– 1) can be used as an error indicator.

3 The effect of passing to any function defined in this clause anOFF_T value not obtained from a function
defined in this clause (for example, assigned an arbitrary integer), is undefined, except where otherwise
noted.

4 Convertible to typePOS_T.208)But no validity of the resultingPOS_T value is ensured, whether or not the
OFF_T value is valid.

[lib.iostreams.pos.t] 27.1.2.4 TypePOS_T

1 An implementation-defined type for seek operations which describes an object that can store all the infor-
mation necessary to reposition to the position.

2 The typePOS_T describes an object that can store all the information necessary to restore an arbitrary
sequence to a previousstream positionandconversion state.209)

207)It is usually a synonym for one if the signed basic integral types whose representation at least as many bits as typelong .
208)An implementation may use the same type for bothOFF_T andPOS_T.
209)The conversion state is used for sequences that translate between wide-character and generalized multibyte encoding, as described
in Amendment 1 to the C Standard.

27.1.2.4 TypePOS_T DRAFT: 28 April 1995 Input/output library 27 – 3

3 With a stream buffer for a repositional stream (but not an arbitrary-positional stream), a C + + program can
either obtain the current position of the stream buffer or specify the previous position previously obtained

4 A class or built-in typeP satisfies the requirements of a position type, and a class or built-in typeOsatisfies
the requirements of an offset type if the following expressions are valid, as shown in Table 66.

5 In the following table,

— P refers to typePOS_T,

— p andq refer to an values of typePOS_T,

— Orefers to typeOFF_T,

— o refers to a value of typeOFF_T, and

— i refers to a value of typeint .

Table 66—Position type requirements
_ ___

operational assertion/note
expression return type

semantics pre/post-condition_ __ ___
P(i) p == P(i)

note: a destructor is assumed._ ___
P p(i);

P p = i; post:p == P(i) ._ ___
P(o) POS_T converts from offset_ ___
O(p) OFF_T converts to offset_ ___
p == q convertible to bool == is an equivalence relation_ ___
p != q convertible to bool !(p==q)_ ___
q = p + o POS_T + offset q-o == p
p += o_ ___
q = p - o POS_T - offset q+o == p
p -= o_ ___
o = p - q OFF_T distance q+o == p_ ___

6 The behavior of the stream after restoring the position with aPOS_T value modified using any other arith-
metic operations is undefined.

7 The stream operations whose return type isPOS_T may returnPOS_T(OFF_T(– 1)) as aninvalid POS_T
valueto signal an error.

8 The conversionPOS_T(OFF_T(– 1)) constructs the invalidPOS_T value, which is available only for com-
paring to the return value of such member functions.

[lib.iostream.forward] 27.2 Forward declarations

Header<iosfwd> synopsis

27– 4 Input/output library DRAFT: 28 April 1995 27.2 Forward declarations

namespace std {
template<class charT> class basic_ios;
template<class charT> class basic_istream;
template<class charT> class basic_ostream;

typedef basic_ios<char> ios;
typedef basic_ios<wchar_t> wios;

typedef basic_istream<char> istream;
typedef basic_istream<wchar_t> wistream;

typedef basic_ostream<char> ostream;
typedef basic_ostream<wchar_t> wostream;

}

1 The template classbasic_ios<charT,traits> serves as a base class for the classes
basic_istream<charT,traits> andbasic_ostream<charT,traits> .

2 The classios is an instance of the template classbasic_ios , specialized by the typechar .

3 The classwios is a version of the template classbasic_ios specialized by the typewchar_t .

[lib.iostream.objects] 27.3 Standard iostream objects

Header<iostream> synopsis

#include <fstream>

namespace std {
extern istream cin;
extern ostream cout;
extern ostream cerr;
extern ostream clog;

extern wistream win;
extern wostream wout;
extern wostream werr;
extern wostream wlog;

}

1 The header<iostream> declares objects that associate objects with the standard C streams provided for
by the functions declared in<cstdio> (27.8.2).

2 Mixing operations on corresponding wide- and narrow-character streams follows the same semantics as
mixing such operations onFILE s, as specified in Amendment 1 of the ISO C standard. The objects are
constructed, and the associations are established, the first time an object of class
basic_ios<charT,traits>::Init is constructed. The objects arenot destroyed during program
execution.210)

[lib.narrow.stream.objects] 27.3.1 Narrow stream objects

istream cin;

210)Constructors and destructors for static objects can access these objects to read input fromstdin or write output tostdout or
stderr .

27.3.1 Narrow stream objects DRAFT: 28 April 1995 Input/output library 27– 5

1 The objectcin controls input from an unbuffered stream buffer associated with the objectstdin ,
declared in<cstdio> .

2 After the objectcin is initialized,cin.tie() returnscout .

ostream cout;

3 The objectcout controls output to an unbuffered stream buffer associated with the objectstdout ,
declared in<cstdio> (27.8.2).

ostream cerr;

4 The objectcerr controls output to an unbuffered stream buffer associated with the objectstderr ,
declared in<cstdio> (27.8.2).

5 After the objectcerr is initialized,cerr.flags() & unitbuf is nonzero.

ostream clog;

6 The objectclog controls output to a stream buffer associated with the objectstderr , declared in
<cstdio> (27.8.2).

[lib.wide.stream.objects] 27.3.2 Wide stream objects

wistream win;

1 The objectwin controls input from an unbuffered stream buffer associated with the objectstdin ,
declared in<cstdio> .

2 After the objectwin is initialized,win.tie() returnswout .

wostream wout;

3 The objectwout controls output to an unbuffered stream buffer associated with the objectstdout ,
declared in<cstdio> (27.8.2).

wostream werr;

4 The objectwerr controls output to an unbuffered stream buffer associated with the objectstderr ,
declared in<cstdio> (27.8.2).

5 After the objectwerr is initialized,werr.flags() & unitbuf is nonzero.

wostream wlog;

6 The objectwlog controls output to a stream buffer associated with the objectstderr , declared in
<cstdio> (27.8.2).

27– 6 Input/output library DRAFT: 28 April 1995 27.4 Iostreams base classes

[lib.iostreams.base] 27.4 Iostreams base classes

Header<ios> synopsis

#include <stdexcept> // for exception

namespace std {
typedef OFF_T streamoff;
typedef OFF_T wstreamoff;
typedef INT_T streamsize;

template <class charT> struct ios_traits<charT>;
struct ios_traits<char>;
struct ios_traits<wchar_t>;

class ios_base;
template<class charT, class traits = ios_traits<charT> >

class basic_ios;
typedef basic_ios<char> ios;
typedef basic_ios<wchar_t> wios;

// 27.4.5, manipulators:
ios_base& boolalpha (ios_base& str);
ios_base& noboolalpha(ios_base& str);

ios_base& showbase (ios_base& str);
ios_base& noshowbase (ios_base& str);

ios_base& showpoint (ios_base& str);
ios_base& noshowpoint(ios_base& str);

ios_base& showpos (ios_base& str);
ios_base& noshowpos (ios_base& str);

ios_base& skipws (ios_base& str);
ios_base& noskipws (ios_base& str);

ios_base& uppercase (ios_base& str);
ios_base& nouppercase(ios_base& str);

// 27.4.5.2 adjustfield:
ios_base& internal (ios_base& str);
ios_base& left (ios_base& str);
ios_base& right (ios_base& str);

// 27.4.5.3 basefield:
ios_base& dec (ios_base& str);
ios_base& hex (ios_base& str);
ios_base& oct (ios_base& str);

// 27.4.5.4 floatfield:
ios_base& fixed (ios_base& str);
ios_base& scientific (ios_base& str);

}

27.4.1 Types DRAFT: 28 April 1995 Input/output library 27– 7

[lib.stream.types] 27.4.1 Types

typedef OFF_T streamoff;

1 The typestreamoff is an implementation-defined type that satisfies the requirements of typeOFF_T
(27.1.2.3).

typedef OFF_T wstreamoff;

2 The typewstreamoff is an implementation-defined type that satisfies the requirements of typeOFF_T
(27.1.2.3).

typedef POS_T streampos;

3 The typestreampos is an implementation-defined type that satisfies the requirements of typePOS_T
(27.1.2.4).

typedef POS_T wstreampos;

4 The typewstreampos is an implementation-defined type that satisfies the requirements of typePOS_T
(27.1.2.4).

typedef INT_T streamsize;

5 The typestreamsize is a synonym for one of the signed basic integral types. It is used to represent the
number of characters transferred in an I/O operation, or the size of I/O buffers.211)

[lib.ios.traits] 27.4.2 Template structios_traits

namespace std {
template <class charT> struct ios_traits<charT> {
// 27.4.2.1 Types:

typedef charT char_type;
typedef INT_T int_type;
typedef POS_T pos_type;
typedef OFF_T off_type;
typedef To be specifiedstate_type;

// 27.4.2.2 values:
static char_type eos();
static int_type eof();
static int_type not_eof(char_type c);
static char_type newline();
static size_t length(const char_type* s);

// 27.4.2.3 tests:
static bool eq_char_type(char_type, char_type);
static bool eq_int_type (int_type, int_type);
static bool is_eof(int_type);
static bool is_whitespace(const ctype<char_type> ctype&, char_type c);

211)streamsize is used in most places where ISO C would usesize_t . Most of the uses ofstreamsize could usesize_t ,
except for thestrstreambuf constructors, which require negative values. It should probably be the signed type corresponding to
size_t (which is what Posix.2 callsssize_t).

27– 8 Input/output library DRAFT: 28 April 1995 27.4.2 Template struct ios_traits

// 27.4.2.4 conversions:
static char_type to_char_type(int_type);
static int_type to_int_type (char_type);
static char_type* copy(char_type* dst , const char_type* src , size_t n) ;

static state_type get_state(pos_type pos);
static pos_type get_pos (streampos fpos , state_type state);

};
}

1 The template structios_traits<charT> is a traits class which maintains the definitions of the types
and functions necessary to implement the iostream class templates. The template parametercharT repre-
sents thecharacter container typeand each specialized version provides the default definitions correspond-
ing to the specialized character container type.

2 An implementation shall provide the following two instantiations ofios_traits :

struct ios_traits<char>;
struct ios_traits<wchar_t>;

[lib.ios.traits.types] 27.4.2.1 ios_traits types
state_type is an implementation-defined value-oriented type. It holds theconversion state, and is com-
patible with the functionlocale::codecvt() .

[lib.ios.traits.values] 27.4.2.2 ios_traits value functions

char_type eos();

Returns: The null character which is used for the terminator of null terminated character strings. The
default constructor for the character container type provides the value.

int_type eof();

Returns: an int_type value which represents the end-of-file. It is returned by several functions to indi-
cate end-of-file state (no more input from an input sequence or no more output permitted to an output
sequence), or to indicate an invalid return value.

int_type not_eof(char_type c);

Returns: a value other than the end-of-file, even ifc==eof() .
Notes: It is used inbasic_streambuf<charT,traits>::overflow() .
Returns: int_type(c) if c!=eof() .

char_type newline();

Returns: a character value which represent the newline character of the basic character set.
Notes: It appears as the default parameter ofbasic_istream<charT,traits>::getline() .

size_t length(const char_type* s);

Effects: Determines the length of a null terminated character string pointed to bys .

27.4.2.3 ios_traits test functions DRAFT: 28 April 1995 Input/output library 27– 9

[lib.ios.traits.tests] 27.4.2.3 ios_traits test functions

bool eq_char_type(char_type c1 , char_type c2);

Returns: true if c1 andc2 represent the same character.

bool eq_int_type(int_type c1 , int_type c2);

Returns: true if c1 andc2 represent the same character.

bool is_eof(int_type c);

Returns: true if c represents the end-of-file.

bool is_whitespace(char_type c, const ctype<char_type>& ctype);

Returns: true if c represents a whitespace character. The default definition is as if it returns
ctype .isspace(c) . (See also 27.6.1.1.2)

1 An implementation of the iostream class templates may use all of the above static member functions in
addition to the following three functions provided from the base struct
string_char_traits<CHAR_T> .

[lib.ios.traits.convert] 27.4.2.4 ios_traits conversion functions

char_type to_char_type(int_type c);

Effects: Converts a valid character value represented in theint_type to the correspondingchar_type
value. Ifc is the end-of-file value, the return value is unspecified.

int_type to_int_type(char_type c);

Effects: Converts a valid character value represented in thechar_type to the correspondingint_type
value.

char_type* copy(char_type* dest , const char_type* src , size_t n);

Effects: Copiesn characters from the object pointed to bysrc into the object pointed to bydest . If
copying takes place between objects that overlap, the behavior is undefined.

state_type get_state(pos_type pos);

Returns: 0.

pos_type get_pos(streampos fpos , state_type state);

Returns: pos_type(pos) .

[lib.ios.base] 27.4.3 Classios_base

namespace std {
class ios_base {
public:

class failure;

27– 10 Input/output library DRAFT: 28 April 1995 27.4.3 Classios_base

typedef T1 fmtflags;
static const fmtflags boolalpha;
static const fmtflags dec;
static const fmtflags fixed;
static const fmtflags hex;
static const fmtflags internal;
static const fmtflags left;
static const fmtflags oct;
static const fmtflags right;
static const fmtflags scientific;
static const fmtflags showbase;
static const fmtflags showpoint;
static const fmtflags showpos;
static const fmtflags skipws;
static const fmtflags unitbuf;
static const fmtflags uppercase;
static const fmtflags adjustfield;
static const fmtflags basefield;
static const fmtflags floatfield;

typedef T2 iostate;
static const iostate badbit;
static const iostate eofbit;
static const iostate failbit;
static const iostate goodbit;

typedef T3 openmode;
static const openmode app;
static const openmode ate;
static const openmode binary;
static const openmode in;
static const openmode out;
static const openmode trunc;

typedef T4 seekdir;
static const seekdir beg;
static const seekdir cur;
static const seekdir end;

class Init;

// 27.4.4.3 iostate flags:

iostate exceptions() const;
void exceptions(iostate except);

// 27.4.3.2 fmtflags state:
fmtflags flags() const;
fmtflags flags(fmtflags fmtfl);
fmtflags setf(fmtflags fmtfl);
fmtflags setf(fmtflags fmtfl , fmtflags mask);
void unsetf(fmtflags mask);

int_type fill() const;
int_type fill(int_type ch);

27.4.3 Classios_base DRAFT: 28 April 1995 Input/output library 27 – 11

int precision() const;
int precision(int prec);
int width() const;
int width(int wide);

// 27.4.3.3 locales:
locale imbue(const locale& loc);
locale getloc() const;

// 27.4.3.4 storage:
static int xalloc();
long& iword(int index);
void*& pword(int index);

protected:
ios_base();

private:
// static int index ; exposition only
// int* iarray ; exposition only
// void** parray ; exposition only

};
}

1 ios_base defines several member types:

— a classfailure derived fromexception ;

— a classInit ;

— three bitmask types,fmtflags , iostate , andopenmode;

— an enumerated type,seekdir .

2 It maintains several kinds of data:

— state information that reflects the integrity of the stream buffer;

— control information that influences how to interpret (format) input sequences and how to generate (for-
mat) output sequences;

— additional information that is stored by the program for its private use.

3 [Note:For the sake of exposition, the maintained data is presented here as:

— static int index , specifies the next available unique index for the integer or pointer arrays main-
tained for the private use of the program, initialized to an unspecified value;

— int* iarray , points to the first element of an arbitrary-length integer array maintained for the pri-
vate use of the program;

— void** parray , points to the first element of an arbitrary-length pointer array maintained for the
private use of the program.—end note]

[lib.ios.types] 27.4.3.1 Types

[lib.ios::failure] 27.4.3.1.1 Classios_base::failure

27– 12 Input/output library DRAFT: 28 April 1995 27.4.3.1.1 Classios_base::failure

namespace std {
class ios_base::failure : public exception {
public:

explicit failure(const string& msg);
virtual ~failure();
virtual const char* what() const;

};
}

1 The classfailure defines the base class for the types of all objects thrown as exceptions, by functions in
the iostreams library, to report errors detected during stream buffer operations.

explicit failure(const string& msg);

Effects: Constructs an object of classfailure , initializing the base class withexception(msg) .
Postcondition: what() == msg.str()

const char* what() const;

Returns: The messagemsg with which the exception was created.

[lib.ios::fmtflags] 27.4.3.1.2 Typeios_base::fmtflags

typedef T1 fmtflags;

1 The typefmtflags is a bitmask type (17.2.2.1.2). Setting its elements has the effects indicated in Table
67:

Table 67—fmtflags effects
_ ___

Element Effect(s) if set_ __ ___
boolalpha insert and extractbool type in alphabetic format
dec converts integer input or generates integer output in decimal base
fixed generate floating-point output in fixed-point notation;
hex converts integer input or generates integer output in hexadecimal base;
internal adds fill characters at a designated internal point in certain generated output;
left adds fill characters on the right (final positions) of certain generated output;
oct converts integer input or generates integer output in octal base;
right adds fill characters on the left (initial positions) of certain generated output;
scientific generates floating-point output in scientific notation;
showbase generates a prefix indicating the numeric base of generated integer output;
showpoint generates a decimal-point character unconditionally in generated floating-point

output;
showpos generates a+ sign in non-negative generated numeric output;
skipws skips leading white space before certain input operations;
unitbuf flushes output after each output operation;
uppercase replaces certain lowercase letters with their uppercase equivalents in generated

output._ ___

2 Typefmtflags also defines the constants indicated in Table 68:

27.4.3.1.2 Typeios_base::fmtflags DRAFT: 28 April 1995 Input/output library 27 – 13

Table 68—fmtflags constants
_ ___

Constant Allowable values_ __ ___
adjustfield left | right | internal

basefield dec | oct | hex

floatfield scientific | fixed_ ___

[lib.ios::iostate] 27.4.3.1.3 Typeios_base::iostate

typedef T2 iostate;

1 The typeiostate is a bitmask type (17.2.2.1.2) that contains the elements indicated in Table 69:

Table 69—iostate effects
_ ___

Element Effect(s) if set_ __ ___
badbit indicates a loss of integrity in an input or output sequence (such as an irrecover-

able read error from a file);
eofbit indicates that an input operation reached the end of an input sequence;
failbit indicates that an input operation failed to read the expected characters, or that an

output operation failed to generate the desired characters._ ___

2 Type iostate also defines the constant:

— goodbit , the value zero.

[lib.ios::openmode] 27.4.3.1.4 Typeios_base::openmode

typedef T3 openmode;

1 The typeopenmode is a bitmask type (17.2.2.1.2). It contains the elements indicated in Table 70:

Table 70—openmode effects
_ ___

Element Effect(s) if set_ __ ___
app seek to end before each write
ate open and seek to end immediately after opening
binary perform input and output in binary mode (as opposed to text mode)
in open for input
out open for output
trunc truncate an existing stream when opening_ ___

[lib.ios::seekdir] 27.4.3.1.5 Typeios_base::seekdir

typedef T4 seekdir;

1 The typeseekdir is an enumerated type (17.2.2.1.1) that contains the elements indicated in Table 71:

27– 14 Input/output library DRAFT: 28 April 1995 27.4.3.1.5 Typeios_base::seekdir

Table 71—seekdir effects
_ __
Element Meaning_ ___ __
beg request a seek (for subsequent input or output) relative to the beginning of the stream
cur request a seek relative to the current position within the sequence
end request a seek relative to the current end of the sequence_ __

[lib.ios::Init] 27.4.3.1.6 Classios_base::Init

namespace std {
class ios_base::Init {
public:

Init();
~Init();

private:
// static int init_cnt ; exposition only

};
}

1 The classInit describes an object whose construction ensures the construction of the eight objects
declared in<iostream> (27.3) that associate file stream buffers with the standard C streams provided for
by the functions declared in<cstdio> (27.8.2).

Init();

Effects: Constructs an object of classInit . If init_cnt is zero, the function stores the value one in
init_cnt , then constructs and initializes the objectscin , cout , cerr , clog (27.3.1),win , wout ,
werr , andwlog (27.3.2). In any case, the function then adds one to the value stored ininit_cnt .

~Init();

Effects: Destroys an object of classInit . The function subtracts one from the value stored in
init_cnt and, if the resulting stored value is one, callscout.flush() , cerr.flush() , and
clog.flush() .

[lib.fmtflags.state] 27.4.3.2 ios_base fmtflags state functions

fmtflags flags() const;

Returns: The format control information for both input and output.

fmtflags flags(fmtflags fmtfl);

Postcondition: fmtfl == flags() .
Returns: The previous value offlags() .

fmtflags setf(fmtflags fmtfl);

Effects: Setsfmtfl in flags() .
Returns: The previous value offlags() .

27.4.3.2 DRAFT: 28 April 1995 Input/output library 27– 15
ios_base fmtflags state functions

fmtflags setf(fmtflags fmtfl , fmtflags mask);

Effects: Clearsmask in flags() , setsfmtfl & mask in flags() .
Returns: The previous value offlags() .

void unsetf(fmtflags mask);

Effects: Clearsmask in flags() .

int_type fill() const;

Returns: The character to use to pad (fill) an output conversion to the specified field width (27.6.2.4).

int_type fill(int_type fillch);

Postcondition: &fillch == fill() .
Returns: The previous value offill() .

int precision() const;

Returns: The precision (number of digits after the decimal point) to generate on certain output conver-
sions.

int precision(int prec);

Postcondition: prec == precision() .
Returns: The previous value ofprecision() .

int width() const;

Returns: The field width (number of characters) to generate on certain output conversions.

int width(int wide);

Postcondition: wide == width() .
Returns: The previous value ofwidth() .

[lib.ios.base.locales] 27.4.3.3 ios_base locale functions

locale imbue(const locale loc);

Postcondition: loc == getloc() .
Returns: The previous value ofgetloc() .

locale getloc() const;

Returns: The classic"C" locale if no locale has been imbued. Otherwise, returns the locale in which to
perform locale-dependent input and output operations.

27– 16 Input/output library DRAFT: 28 April 1995 27.4.3.4 ios_base storage functions

[lib.ios.base.storage] 27.4.3.4 ios_base storage functions

static int xalloc();

Returns: index ++.

long& iword(int idx);

Effects: If iarray is a null pointer, allocates an array ofint of unspecified size and stores a pointer to
its first element iniarray . The function then extends the array pointed at byiarray as necessary to
include the elementiarray [idx] . Each newly allocated element of the array is initialized to zero.

Returns: iarray [idx] .
Notes: After a subsequent call toiword(int) for the same object, the earlier return value may no longer

be valid.212)

void* & pword(int idx);

Effects: If parray is a null pointer, allocates an array of pointers tovoid of unspecified size and stores a
pointer to its first element inparray . The function then extends the array pointed at byparray as
necessary to include the elementparray [idx] . Each newly allocated element of the array is initial-
ized to a null pointer.

Returns: parray [idx] .
Notes: After a subsequent call topword(int) for the same object, the earlier return value may no longer

be valid.

[lib.ios.base.cons] 27.4.3.5 ios_base constructors

ios_base();

Effects: Constructs an object of classios_base , assigning initial values to its member objects. The
postconditions of this function are indicated in Table 72:

Table 72—ios_base() effects
_ __

Element Value_ ___ __
rdstate() goodbit if sb is not a null pointer, otherwisebadbit .
exceptions() goodbit
flags() skipws | dec
width() zero
precision() 6
fill() the space character
getloc() locale::classic()
index ???
iarray a null pointer
parray a null pointer_ __

212)An implementation is free to implement both the integer array pointed at byiarray and the pointer array pointed at byparray
as sparse data structures, possibly with a one-element cache for each.

27.4.4 Template classbasic_ios DRAFT: 28 April 1995 Input/output library 27 – 17

[lib.ios] 27.4.4 Template classbasic_ios

namespace std {
template<class charT, class traits = ios_traits<charT> >
class basic_ios : public ios_base {
public:
// Types:

typedef charT char_type;
typedef typename traits::int_type int_type;
typedef typename traits::pos_type pos_type;
typedef typename traits::off_type off_type;

operator bool() const
bool operator!() const
iostate rdstate() const;
void clear(iostate state = goodbit);
void setstate(iostate state);
bool good() const;
bool eof() const;
bool fail() const;
bool bad() const;

// 27.4.4.1 Constructor/destructor:
explicit basic_ios(basic_streambuf<charT,traits>* sb);
virtual ~basic_ios();

// 27.4.4.2 Members:
basic_ostream<charT,traits>* tie() const;
basic_ostream<charT,traits>* tie(basic_ostream<charT,traits>* tiestr);

basic_streambuf<charT,traits>* rdbuf() const;
basic_streambuf<charT,traits>* rdbuf(basic_streambuf<charT,traits>* sb);

basic_ios& copyfmt(const basic_ios& rhs);

// 27.4.3.3 locales:
locale imbue(const locale& loc);

protected:
basic_ios();
void init(basic_streambuf<charT,traits>* sb);

};
}

[lib.basic.ios.cons] 27.4.4.1basic_ios constructors

explicit basic_ios(basic_streambuf<charT,traits>* sb);

Effects: Constructs an object of classbasic_ios , assigning initial values to its member objects by call-
ing init(sb) .

basic_ios();

Effects: Constructs an object of classbasic_ios (27.4.3.5),

void init(basic_streambuf<charT,traits>* sb);

27– 18 Input/output library DRAFT: 28 April 1995 27.4.4.2 Member functions

[lib.basic.ios.members] 27.4.4.2 Member functions

basic_ostream<charT,traits>* tie() const;

Returns: An output sequence that istied to (synchronized with) an input sequence controlled by the
stream buffer.

basic_ostream<charT,traits>* tie(basic_ostream<charT,traits>* tiestr);

Postcondition: tiestr == tie() .
Returns: The previous value oftie() .

basic_streambuf<charT,traits>* rdbuf() const;

Returns: A pointer to thestreambuf associated with the stream.

basic_streambuf<charT,traits>* rdbuf(basic_streambuf<charT,traits>* sb);

Postcondition: sb == rdbuf() .
Effects: Callsclear() .
Returns: The previous value ofrdbuf() .

// 27.4.3.3 locales:
locale imbue(const locale& loc);

Effects: Calls ios_base::imbue(loc) (27.4.3.3) andrdbuf()->pubimbue(loc) (27.5.2.2.1).

basic_ios& copyfmt(const basic_ios& rhs);

Effects: Assigns to the member objects of*this the corresponding member objects ofrhs , except that:

— rdstate() is left unchanged;

— exceptions() is altered last by callingexception(rhs.except) .

— The contents of arrays pointed at bypword andiword are copied not the pointers themselves.213)

1 If any newly stored pointer values in*this point at objects stored outside the objectrhs , and those
objects are destroyed whenrhs is destroyed, the newly stored pointer values are altered to point at newly
constructed copies of the objects.
Returns: *this .

[lib.iostate.flags] 27.4.4.3basic_ios iostate flags functions

operator bool() const

Returns: !fail() .

bool operator!() const

Returns: fail() .

213)This suggests an infinite amount of copying, but the implementation can keep track of the maximum element of the arrays that is
non-zero.

27.4.4.3 DRAFT: 28 April 1995 Input/output library 27– 19
basic_ios iostate flags functions

iostate rdstate() const;

Returns: The control state of the stream buffer.

void clear(iostate state = goodbit) throw(failure);

Postcondition: state == rdstate() .
Effects: If (rdstate() & exceptions()) == 0 , returns. Otherwise, the function throws an

objectfail of classbasic_ios::failure (27.4.3.1.1), constructed with implementation-defined
argument values.

void setstate(iostate state) throw(failure);

Effects: Calls clear(rdstate() | state) (which may throw basic_ios::failure
(27.4.3.1.1)).

bool good() const;

Returns: rdstate() == 0

bool eof() const;

Returns: true if eofbit is set inrdstate() .

bool fail() const;

Returns: true if failbit or badbit is set inrdstate() .214)

bool bad() const;

Returns: true if badbit is set inrdstate() .

iostate exceptions() const;

Returns: A mask that determines what elements set inrdstate() cause exceptions to be thrown.

void exceptions(iostate except);

Postcondition: except == exceptions() .
Effects: Callsclear(rdstate()) .

[lib.std.ios.manip] 27.4.5 ios_base manipulators

[lib.fmtflags.manip] 27.4.5.1 fmtflags manipulators

ios_base& boolalpha(ios_base& str);

Effects: Callsstr .setf(ios_base::boolalpha) .
Returns: str .215)

214)Checkingbadbit also forfail() is historical practice.

27– 20 Input/output library DRAFT: 28 April 1995 27.4.5.1 fmtflags manipulators

ios_base& noboolalpha(ios_base& str);

Effects: Callsstr .unsetf(ios_base::boolalpha) .
Returns: str .

ios_base& showbase(ios_base& str);

Effects: Callsstr .setf(ios_base::showbase) .
Returns: str .
Notes: Does not affect any extractors.

ios_base& noshowbase(ios_base& str);

Effects: Callsstr .unsetf(ios_base::showbase) .
Returns: str .

ios_base& showpoint(ios_base& str);

Effects: Callsstr .setf(ios_base::showpoint) .
Returns: str .

ios_base& noshowpoint(ios_base& str);

Effects: Callsstr .unsetf(ios_base::showpoint) .
Returns: str .

ios_base& showpos(ios_base& str);

Effects: Callsstr .setf(ios_base::showpos) .
Returns: str .

ios_base& noshowpos(ios_base& str);

Effects: Callsstr .unsetf(ios_base::showpos) .
Returns: str .

ios_base& skipws(ios_base& str);

Effects: Callsstr .setf(ios_base::skipws) .
Returns: str .

ios_base& noskipws(ios_base& str);

Effects: Callsstr .unsetf(ios_base::skipws) .
Returns: str .

ios_base& uppercase(ios_base& str);

Effects: Callsstr .setf(ios_base::uppercase) .
Returns: str .

ios_base& nouppercase(ios_base& str);

27.4.5.1 fmtflags manipulators DRAFT: 28 April 1995 Input/output library 27 – 21

Effects: Callsstr .unsetf(ios_base::uppercase) .
Returns: str .

[lib.adjustfield.manip] 27.4.5.2adjustfield manipulators

ios_base& internal(ios_base& str);

Effects: Callsstr .setf(ios_base::internal, ios_base::adjustfield) .
Returns: str .

ios_base& left(ios_base& str);

Effects: Callsstr .setf(ios_base::left, ios_base::adjustfield) .
Returns: str .

ios_base& right(ios_base& str);

Effects: Callsstr .setf(ios_base::right, ios_base::adjustfield) .
Returns: str .

[lib.basefield.manip] 27.4.5.3basefield manipulators

ios_base& dec(ios_base& str);

Effects: Callsstr .setf(ios_base::dec, ios_base::basefield) .
Returns: str .

ios_base& hex(ios_base& str);

Effects: Callsstr .setf(ios_base::hex, ios_base::basefield) .
Returns: str .

ios_base& oct(ios_base& str);

Effects: Callsstr .setf(ios_base::oct, ios_base::basefield) .
Returns: str .

[lib.floatfield.manip] 27.4.5.4 floatfield manipulators

ios_base& fixed(ios_base& str);

Effects: Callsstr .setf(ios_base::fixed, ios_base::floatfield) .
Returns: str .

ios_base& scientific(ios_base& str);

Effects: Callsstr .setf(ios_base::scientific, ios_base::floatfield) .
Returns: str .

215) The function signature dec(ios_base&) can be called by the function signaturebasic_ostream&
stream::operator<<(basic_ostream& (*)(basic_ostream&)) to permit expressions of the formcout << dec to
change the format flags stored incout .

27– 22 Input/output library DRAFT: 28 April 1995 27.5 Stream buffers

[lib.stream.buffers] 27.5 Stream buffers

Header<streambuf> synopsis

#include <ios> // for ios_traits

namespace std {
template<class charT, class traits = ios_traits<charT> >

class basic_streambuf;
typedef basic_streambuf<char> streambuf;
typedef basic_streambuf<wchar_t> wstreambuf;

}

1 The header<streambuf> defines types that control input from and output tocharactersequences.

[lib.streambuf.reqts] 27.5.1 Stream buffer requirements

1 Stream buffers can impose various constraints on the sequences they control. Some constraints are:

— The controlled input sequence can be not readable.

— The controlled output sequence can be not writable.

— The controlled sequences can be associated with the contents of other representations for character
sequences, such as external files.

— The controlled sequences can support operationsdirectly to or from associated sequences.

— The controlled sequences can impose limitations on how the program can read characters from a
sequence, write characters to a sequence, put characters back into an input sequence, or alter the stream
position.

2 Each sequence is characterized by three pointers which, if non-null, all point into the samecharT array
object. The array object represents, at any moment, a (sub)sequence of characters from the sequence.
Operations performed on a sequence alter the values stored in these pointers, perform reads and writes
directly to or from associated sequences, and alter ‘‘the stream position’’ and conversion state as needed to
maintain this subsequence relationship. The three pointers are:

— thebeginning pointer,or lowest element address in the array (calledxbeg here);

— the next pointer,or next element address that is a current candidate for reading or writing (called
xnext here);

— theend pointer,or first element address beyond the end of the array (calledxend here).

3 The following semantic constraints shall always apply for any set of three pointers for a sequence, using the
pointer names given immediately above:

— If xnext is not a null pointer, thenxbeg and xend shall also be non-null pointers into the same
charT array, as described above.

— If xnext is not a null pointer andxnext < xend for an output sequence, then awrite positionis
available. In this case,* xnext shall be assignable as the next element to write (to put, or to store a
character value, into the sequence).

— If xnext is not a null pointer andxbeg < xnext for an input sequence, then aputback positionis
available. In this case,xnext [-1] shall have a defined value and is the next (preceding) element to
store a character that is put back into the input sequence.

— If xnext is not a null pointer andxnext < xend for an input sequence, then aread positionis avail-
able. In this case,* xnext shall have a defined value and is the next element to read (to get, or to
obtain a character value, from the sequence).

27.5.2 DRAFT: 28 April 1995 Input/output library 27– 23
Template classbasic_streambuf<charT,traits>

[lib.streambuf] 27.5.2 Template classbasic_streambuf<charT,traits>

namespace std {
template<class charT, class traits = ios_traits<charT> >
class basic_streambuf {
public:
// Types:

typedef charT char_type;
typedef typename traits::int_type int_type;
typedef typename traits::pos_type pos_type;
typedef typename traits::off_type off_type;

virtual ~basic_streambuf();

// 27.5.2.2.1 locales:
locale pubimbue(const locale & loc);
locale getloc() const;

// 27.5.2.2.2 buffer and positioning:
basic_streambuf<char_type,traits>*

pubsetbuf(char_type* s, streamsize n);
pos_type pubseekoff(off_type off , ios_base::seekdir way,

ios_base::openmode which = ios_base::in | ios_base::out);
pos_type pubseekpos(pos_type sp ,

ios_base::openmode which = ios_base::in | ios_base::out);
int pubsync();

// Get and put areas:
// 27.5.2.2.3 Get area:

int in_avail();
int_type snextc();
int_type sbumpc();
int_type sgetc();
int sgetn(char_type* s, streamsize n);

// 27.5.2.2.4 Putback:
int_type sputbackc(char_type c);
int sungetc();

// 27.5.2.2.5 Put area:
int sputc(char_type c);
int_type sputn(const char_type* s, streamsize n);

protected:
basic_streambuf();

// 27.5.2.3.1 Get area:
char_type* eback() const;
char_type* gptr() const;
char_type* egptr() const;
void gbump(int n);
void setg(char_type* gbeg , char_type* gnext , char_type* gend);

// 27.5.2.3.2 Put area:
char_type* pbase() const;
char_type* pptr() const;
char_type* epptr() const;
void pbump(int n);
void setp(char_type* pbeg , char_type* pend);

27– 24 Input/output library DRAFT: 28 April 1995 27.5.2
Template classbasic_streambuf<charT,traits>

// 27.5.2.4 virtual functions:
// 27.5.2.4.1 Locales:

virtual void imbue(const locale & loc);

// 27.5.2.4.2 Buffer management and positioning:
virtual basic_streambuf<char_type,traits>*

setbuf(char_type* s, streamsize n);
virtual pos_type seekoff(off_type off , ios_base::seekdir way,

ios_base::openmode which = ios_base::in | ios_base::out);
virtual pos_type seekpos(pos_type sp ,

ios_base::openmode which = ios_base::in | ios_base::out);
virtual int sync();

// 27.5.2.4.3 Get area:
virtual int showmanyc();
virtual streamsize xsgetn(char_type* s, streamsize n);
virtual int_type underflow();
virtual int_type uflow();

// 27.5.2.4.4 Putback:
virtual int_type pbackfail(int_type c = traits::eof());

// 27.5.2.4.5 Put area:
virtual streamsize xsputn(const char_type* s, streamsize n);
virtual int_type overflow (int_type c = traits::eof());

};
}

1 The class templatebasic_streambuf<charT,traits> serves as an abstract base class for deriving
variousstream bufferswhose objects each control twocharacter sequences:

— a characterinput sequence;

— a characteroutput sequence.

2 The classstreambuf is an instantiation of the template classbasic_streambuf specialized by the
typechar .

3 The classwstreambuf is an instantiation of the template classbasic_streambuf specialized by the
typewchar_t .

[lib.streambuf.cons] 27.5.2.1basic_streambuf constructors

basic_streambuf();

Effects: Constructs an object of classbasic_streambuf<charT,traits> and initializes:216)

— all its pointer member objects to null pointers,

— thegetloc() member to the return value oflocale::classic() .
Notes: Once thegetloc() member is initialized, results of calling locale member functions, and of

members of facets so obtained, can safely be cached until the next time the memberimbue is called.

216)The default constructor is protected for classbasic_streambuf to assure that only objects for classes derived from this class
may be constructed.

27.5.2.2 DRAFT: 28 April 1995 Input/output library 27– 25
basic_streambuf public member functions

[lib.streambuf.members] 27.5.2.2basic_streambuf public member functions

[lib.streambuf.locales] 27.5.2.2.1 Locales

locale pubimbue(const locale& loc);

Postcondition: loc == getloc() .
Effects: Calls imbue(loc) .
Returns: Previous value ofgetloc() .

locale getloc() const;

Returns: If pubimbue() has ever been called, then the last value ofloc supplied, otherwise classic
"C" locale locale::classic() . If called after pubimbue() has been called but before
pubimbue has returned (i.e. from within the call ofimbue()) then it returns the previous value.

[lib.streambuf.buffer] 27.5.2.2.2 Buffer management and positioning

basic_streambuf<char_type,traits>* pubsetbuf(char_type* s, streamsize n);

Returns: setbuf(s, n) .

pos_type pubseekoff(off_type off , ios_base::seekdir way,
ios_base::openmode which = ios_base::in | ios_base::out);

Returns: seekoff(off , way, which) .

pos_type pubseekpos(pos_type sp ,
ios_base::openmode which = ios_base::in | ios_base::out);

Returns: seekpos(sp , which) .

int pubsync();

Returns: sync() .

[lib.streambuf.pub.get] 27.5.2.2.3 Get area

int in_avail();

Returns: If a read position is available, returnsgend() - gnext() . Otherwise returns
showmanyc() (27.5.2.4.3).

int_type snextc();

Effects: Callssbumpc() .
Returns: if that function returnstraits::eof() , returns traits::eof() . Otherwise, returns

sgetc() .
Notes: Usestraits::eof() .

int_type sbumpc();

27– 26 Input/output library DRAFT: 28 April 1995 27.5.2.2.3 Get area

Returns: If the input sequence read position is not available, returnsuflow() . Otherwise, returns
char_type(*gptr()) and increments the next pointer for the input sequence.

int_type sgetc();

Returns: If the input sequence read position is not available, returnsunderflow() . Otherwise, returns
char_type(*gptr()) .

int sgetn(char_type* s, streamsize n);

Returns: xsgetn(s, n) .

[lib.streambuf.pub.pback] 27.5.2.2.4 Putback

int_type sputbackc(char_type c);

Returns: If the input sequence putback position is not available, or ifc != gptr()[-1] , returns
pbackfail(c) . Otherwise, decrements the next pointer for the input sequence and returns
*gptr() .

int sungetc();

Returns: If the input sequence putback position is not available, returnspbackfail() . Otherwise,
decrements the next pointer for the input sequence and returns*gptr() .

[lib.streambuf.pub.put] 27.5.2.2.5 Put area

int sputc(char_type c);

Returns: If the output sequence write position is not available, returnsoverflow(c) . Otherwise, stores
c at the next pointer for the output sequence, increments the pointer, and returns*pptr() .

int_type sputn(const char_type* s, streamsize n);

Returns: xsputn(s, n) .

[lib.streambuf.protected] 27.5.2.3basic_streambuf protected member functions

[lib.streambuf.get.area] 27.5.2.3.1 Get area access

char_type* eback() const;

Returns: The beginning pointer for the input sequence.

char_type* gptr() const;

Returns: The next pointer for the input sequence.

char_type* egptr() const;

Returns: The end pointer for the output sequence.

void gbump(int n);

27.5.2.3.1 Get area access DRAFT: 28 April 1995 Input/output library 27– 27

Effects: Advances the next pointer for the input sequence byn.

void setg(char_type* gbeg , char_type* gnext , char_type* gend);

Postconditions: gbeg == eback() , gnext == gptr() , andgend == egptr() .

[lib.streambuf.put.area] 27.5.2.3.2 Put area access

char_type* pbase() const;

Returns: The beginning pointer for the output sequence.

char_type* pptr() const;

Returns: The next pointer for the output sequence.

char_type* epptr() const;

Returns: The end pointer for the output sequence.

void pbump(int n);

Effects: Advances the next pointer for the output sequence byn.

void setp(char_type* pbeg , char_type* pend);

Postconditions: pbeg == pbase() , pbeg == pptr() , andpend == epptr() .

[lib.streambuf.virtuals] 27.5.2.4basic_streambuf virtual functions

[lib.streambuf.virt.locales] 27.5.2.4.1 Locales

void imbue(const locale&)

Effects: Change any translations based on locale.
Note: Allows the derived class to be informed of changes in locale at the time they occur. Between invo-

cations of this function a class derived from streambuf can safely cache results of calls to locale func-
tions and to members of facets so obtained.

Default behavior: Does nothing.

[lib.streambuf.virt.buffer] 27.5.2.4.2 Buffer management and positioning

basic_streambuf* setbuf(char_type* s, streamsize n);

Effects: Performs an operation that is defined separately for each class derived frombasic_streambuf
in this clause (27.7.1.3, 27.8.1.4).

Default behavior: Returnsthis .

pos_type seekoff(off_type off , ios_base::seekdir way,
ios_base::openmode which

= ios_base::in | ios_base::out);

Effects: Alters the stream positions within one or more of the controlled sequences in a way that is defined
separately for each class derived frombasic_streambuf in this clause (27.7.1.3, 27.8.1.4).

27– 28 Input/output library DRAFT: 28 April 1995 27.5.2.4.2
Buffer management and positioning

Default behavior: Returns an object of classpos_type that stores aninvalid stream position(27.1.1).

pos_type seekpos(pos_type sp ,
ios_base::openmode which = in | out);

Effects: Alters the stream positions within one or more of the controlled sequences in a way that is defined
separately for each class derived frombasic_streambuf in this clause (_lib.stringbuf::seekpos_,
lib.filebuf::seekpos).

Default behavior: Returns an object of classpos_type that stores aninvalid stream position.

int sync();

Effects: Synchronizes the controlled sequences with the arrays. That is, ifpbase() is non-null the char-
acters betweenpbase() andpptr() are written to the controlled sequence, and ifgptr() is non-
null, the characters betweengptr() andegptr() are restored to the input sequence. The pointers
may then be reset as appropriate.

Returns: -1 on failure. What constitutes failure is determined by each derived class (27.8.1.4).
Default behavior: Returns zero.

[lib.streambuf.virt.get] 27.5.2.4.3 Get area

int showmanyc(); 217)

Returns: a guaranteed lower bound on the number of characters that can be read from the input sequence
before a call touflow() or underflow() returnstraits::eof() . A positive return value of
indicates that the next such call will not returntraits::eof() .218)

Default behavior: Returns zero.
Notes: Usestraits::eof() .

streamsize xsgetn(char_type* s, streamsize n);

Effects: Assigns up ton characters to successive elements of the array whose first element is designated
by s . The characters assigned are read from the input sequence as if by repeated calls tosbumpc() .
Assigning stops when eithern characters have been assigned or a call tosbumpc() would return
traits::eof() .

Returns: The number of characters assigned.219)

Notes: Usestraits::eof() .

int_type underflow();

Notes: The public members ofbasic_streambuf call this virtual function only ifgptr() is null or
gptr() >= egptr()

Returns: the firstcharacterof thepending sequence, if possible, without moving the input sequence posi-
tion past it. If the pending sequence is null then the function fails.

1 Thepending sequenceof characters is defined as the concatenation of:

a) If gptr() is non-NULL, then theegptr() - gptr() characters starting atgptr() , otherwise
the empty sequence.

217)The morphemes ofshowmany are "es-how-many-see", not "show-manic".
218)The next such call might fail by throwing an exception. The intention is that the next call will return ‘‘immediately.’’
219)Classes derived frombasic_streambuf can provide more efficient ways to implementxsgetn() andxsputn() by over-
riding these definitions from the base class.

27.5.2.4.3 Get area DRAFT: 28 April 1995 Input/output library 27– 29

b) Some sequence (possibly empty) of characters read from the input sequence.

2 Theresult characteris

a) If the pending sequence is non-empty, the first character of the sequence.

b) If the pending sequence empty then the next character that would be read from the input sequence.

3 Thebackup sequenceis defined as the concatenation of:

a) If eback() is null then empty,

b) Otherwise thegptr() - eback() characters beginning ateback() .
Effects: The function sets up thegptr() andegptr() satisfying one of:

a) If the pending sequence is non-empty,egptr() is non-null andegptr() - gptr() characters
starting atgptr() are the characters in the pending sequence

b) If the pending sequence is empty, eithergptr() is null orgptr() andegptr() are set to the same
non-NULLpointer.

4 If eback() and gptr() are non-null then the function is not constrained as to their contents, but the
‘‘usual backup condition’’ is that either:

a) If the backup sequence contains at leastgptr() - eback() characters, then thegptr() -
eback() characters starting ateback() agree with the lastgptr() - eback() characters of the
backup sequence.

b) Or then characters starting atgptr() - n agree with the backup sequence (wheren is the length of
the backup sequence)

Returns: traits::eof() to indicate failure.
Default behavior: Returnstraits::eof() .

int_type uflow();

Requires: The constraints are the same as forunderflow() , except that the result character is transfered
from the pending sequence to the backup sequence, and the pending sequence may not be empty before
the transfer.

Default behavior: Calls underflow(traits::eof()) . If underflow() returns
traits::eof() , returnstraits::eof() . Otherwise, doesgbump(-1) and returns*gptr() .

Returns: traits::not_eof(c) .
Notes: Usestraits::eof() .

[lib.streambuf.virt.pback] 27.5.2.4.4 Putback

int_type pbackfail(int c = traits::eof());

Notes: The public functions ofbasic_streambuf call this virtual function only whengptr() is null,
gptr() == eback() , or *gptr() != c . Other calls shall also satisfy that constraint.
Thepending sequenceis defined as forunderflow() , with the modifications that

— If c == traits::eof() then the input sequence is backed up one character before the pending
sequence is determined.

— If c != traits::eof() thenc is prepended. Whether the input sequence is backed up or modi-
fied in any other way is unspecified.

Postcondition: On return, the constraints ofgptr() , eback() , and pptr() are the same as for
underflow() .

Returns: traits::eof() to indicate failure. Failure may occur because the input sequence could not
be backed up, or if for some other reason the pointers could not be set consistent with the constraints.
pbackfail() is called only when put back has really failed.

27– 30 Input/output library DRAFT: 28 April 1995 27.5.2.4.4 Putback

Returns some value other thantraits::eof() to indicate success.
Default behavior: Returnstraits::eof() .

[lib.streambuf.virt.put] 27.5.2.4.5 Put area

streamsize xsputn(const char_type* s, streamsize n);

Effects: Writes up ton characters to the output sequence ‘‘as if’’ by repeated calls tosputc(c) . The
characters written are obtained from successive elements of the array whose first element is designated
by s . Writing stops when eithern characters have been written or a call tosputc(c) would return
traits::eof() .

Returns: The number of characters written.

int_type overflow(int_type c = traits::eof());

Effects: Consumes some initial subsequence of the characters of thepending sequence. The pending
sequence is defined as the concatenation of

a) if pbase() is NULL then the empty sequence otherwise,pptr() - pbase() characters beginning
atpbase() .

b) if c == traits::eof() then the empty sequence otherwise, the sequence consisting ofc .
Notes: The member functionssputc() and sputn() call this function in case that no room can be

found in the put buffer enough to accomodate the argument character sequence.
Requires: Every overriding definition of this virtual function shall obey the following constraints:

1) The effect of consuming a character on the associated output sequence is specified220)

2) Let r be the number of characters in the pending sequence not consumed. Ifr is non-zero then
pbase() andpptr() must be set so that:pptr() - pbase() == r and ther characters start-
ing at pbase() are the associated output stream. In caser is zero (all characters of the pending
sequence have been consumed) then eitherpbase() is set toNULL, or pbase() andpptr() are
both set to the same non-NULLvalue.

3) The function may fail if either appending some character to the associated output stream fails or if it is
unable to establishpbase() andpptr() according to the above rules.

Returns: traits::eof() or throws an exception if the function fails.
Otherwise, returns some value other thantraits::eof() to indicate success.221)

Default behavior: Returnstraits::eof() .

[lib.iostream.format] 27.6 Formatting and manipulators

Header<istream> synopsis

220)That is, for each class derived from an instance ofbasic_streambuf in this clause (27.7.1, 27.8.1.1), a specification of how
consuming a character effects the associated output sequence is given. There is no requirement on a program-defined class.
221)Typically, overflow returnsc to indicate success.

27.6 Formatting and manipulators DRAFT: 28 April 1995 Input/output library 27– 31

#include <ios> // for ios_traits

namespace std {
template <class charT, class traits = ios_traits<charT> >

class basic_istream;
typedef basic_istream<char> istream;
typedef basic_istream<wchar_t> wistream;

template<class charT, class traits>
basic_istream<charT,traits>& ws(basic_istream<charT,traits>& is);

}

Header<ostream> synopsis

#include <ios> // for ios_traits

namespace std {
template <class charT, class traits = ioc_traits<charT> >

class basic_ostream;
typedef basic_ostream<char> ostream;
typedef basic_ostream<wchar_t> wostream;

template<class charT, class traits>
basic_ostream<charT,traits>& endl(basic_ostream<charT,traits>& os);

template<class charT, class traits>
basic_ostream<charT,traits>& ends(basic_ostream<charT,traits>& os);

template<class charT, class traits>
basic_ostream<charT,traits>& flush(basic_ostream<charT,traits>& os);

}

Header<iomanip> synopsis

#include <istream>
#include <ostream>

namespace std {
typedef ? smanip;

smanip resetiosflags(ios_base::fmtflags mask);
smanip setiosflags (ios_base::fmtflags mask);
smanip setbase(int base);
smanip setfill(int c);
smanip setprecision(int n);
smanip setw(int n);

}

[lib.input.streams] 27.6.1 Input streams

1 The header<istream> defines a type and a function signature that control input from a stream buffer.

[lib.istream] 27.6.1.1 Template classbasic_istream

27– 32 Input/output library DRAFT: 28 April 1995 27.6.1.1 Template classbasic_istream

namespace std {
template <class charT, class traits = ios_traits<charT> >
class basic_istream : virtual public basic_ios<charT,traits> {
public:
// Types:

typedef charT char_type;
typedef typename traits::int_type int_type;
typedef typename traits::pos_type pos_type;
typedef typename traits::off_type off_type;

// _lib.istream.cons_ Constructor/destructor:
explicit basic_istream(basic_streambuf<charT,traits>* sb);
virtual ~basic_istream();

// 27.6.1.1.2 Prefix/suffix:
bool ipfx(bool noskipws = false);
void isfx();

// 27.6.1.2 Formatted input:
basic_istream<charT,traits>& operator>>

(basic_istream<charT,traits>& (* pf)(basic_istream<charT,traits>&))
basic_istream<charT,traits>& operator>>

(basic_ios<charT,traits>& (* pf)(basic_ios<charT,traits>&))
basic_istream<charT,traits>& operator>>(char_type* s);

basic_istream<charT,traits>& operator>>(char_type& c);
basic_istream<charT,traits>& operator>>(bool& n);
basic_istream<charT,traits>& operator>>(short& n);
basic_istream<charT,traits>& operator>>(unsigned short& n);
basic_istream<charT,traits>& operator>>(int& n);
basic_istream<charT,traits>& operator>>(unsigned int& n);
basic_istream<charT,traits>& operator>>(long& n);
basic_istream<charT,traits>& operator>>(unsigned long& n);
basic_istream<charT,traits>& operator>>(float& f);
basic_istream<charT,traits>& operator>>(double& f);
basic_istream<charT,traits>& operator>>(long double& f);

basic_istream<charT,traits>& operator>>(void*& p);
basic_istream<charT,traits>& operator>>

(basic_streambuf<char_type,traits>* sb);

// 27.6.1.3 Unformatted input:
streamsize gcount() const;
int_type get();
basic_istream<charT,traits>& get(char_type& c);
basic_istream<charT,traits>& get(char_type* s, streamsize n,

char_type delim = traits::newline());
basic_istream<charT,traits>& get(basic_streambuf<char_type,traits>& sb ,

char_type delim = traits::newline());

basic_istream<charT,traits>& getline(char_type* s, streamsize n,
char_type delim = traits::newline());

basic_istream<charT,traits>& ignore
(streamsize n = 1, int_type delim = traits::eof());

int_type peek();
basic_istream<charT,traits>& read (char_type* s, streamsize n);
streamsize readsome(char_type* s, streamsize n);

27.6.1.1 Template classbasic_istream DRAFT: 28 April 1995 Input/output library 27 – 33

basic_istream<charT,traits>& putback(char_type c);
basic_istream<charT,traits>& unget();
int sync();

pos_type tellg();
basic_istream<charT,traits>& seekg(pos_type&);
basic_istream<charT,traits>& seekg(off_type&, ios_base::seekdir);

};
}

1 The classbasic_istream defines a number of member function signatures that assist in reading and
interpreting input from sequences controlled by a stream buffer.

2 Two groups of member function signatures share common properties: theformatted input functions(or
extractors) and theunformatted input functions.Both groups of input functions are described as if they
obtain (orextract) input charactersby calling rdbuf()->sbumpc() or rdbuf()->sgetc() . They
may use other public members ofistream except that they do not invoke any virtual members of
rdbuf() exceptuflow() .

3 If rdbuf()->sbumpc() or rdbuf()->sgetc() returnstraits::eof() , then the input function,
except as explicitly noted otherwise, completes its actions and doessetstate(eofbit) , which may
throw ios_base::failure (27.4.4.3), before returning.

4 If one of these called functions throws an exception, then unless explicitly noted otherwise the input func-
tion callssetstate(badbit) and if badbit is on inexception() rethrows the exception without
completing its actions.

[lib.basic.istream.cons] 27.6.1.1.1basic_istream constructors

explicit basic_istream(basic_streambuf<charT,traits>* sb);

Effects: Constructs an object of classbasic_istream , assigning initial values to the base class by call-
ing basic_ios::init(sb) (27.4.4.1).

Postcondition: gcount() == 0

virtual ~basic_istream();

Effects: Destroys an object of classbasic_istream .
Notes: Does not perform any operations ofrdbuf() .

[lib.istream.prefix] 27.6.1.1.2basic_istream prefix and suffix

bool ipfx(bool noskipws = false);

Effects: If good() is true , prepares for formatted or unformatted input. First, iftie() is not a null
pointer, the function callstie()->flush() to synchronize the output sequence with any associated
external C stream.222) If noskipws is zero andflags() & skipws is nonzero, the function
extracts and discards each character as long as the next available input characterc is a whitespace char-
acter.

Notes: The function basic_istream<charT,traits>::ipfx() uses the functionbool
traits::is_whitespace(charT, const locale*) in the traits structure to determine
whether the next input character is whitespace or not.

222)The calltie()->flush() does not necessarily occur if the function can determine that no synchronization is necessary.

27– 34 Input/output library DRAFT: 28 April 1995 27.6.1.1.2
basic_istream prefix and suffix

1 To decide if the characterc is a whitespace character, the function performs ‘‘as if’’ it executes the follow-
ing code fragment:

ctype<charT> ctype = getloc().use<ctype<charT> >();
if (traits::is_whitespace (c, ctype)!=0)
// c is a whitespace character.

Returns: If, after any preparation is completed,good() is true , returnstrue . Otherwise, it calls
setstate(failbit) (which may throw ios_base::failure (27.4.4.3)) and returns
false .223)

2 [Example:A typical implementation of theipfx() function may be as follows:

template <class charT, class traits = ios_traits<charT> >
int basic_istream<charT,traits>::ipfx() {

...
// skipping whitespace according to a constraint function,
// is_whitespace

intT c;
typedef ctype<charT> ctype_type;
ctype_type& ctype = getloc().use<ctype_type>();
while ((c = rdbuf()->snextc()) != traits::eof()) {

if (!traits::is_whitespace (c,ctype)==0) {
rdbuf()->sputbackc (c);
break;

}
}
...

}

—end example]

3 When using ios_traits<char> or ios_traits<wchar_t> , the behavior of the function
traits::is_whitespace() is ‘‘as if’’ it invokes:

ctype = getloc().use<ctype<charT> >().is(ctype<charT>::space, c);

(see 27.4.2.3); otherwise, the behavior of the functiontraits::is_whitespace() is unspecified.

4 [Example:Those C + + programs that want to use locale-independent whitespace predicate can specify their
definition of is_whitespace in their newios_traits as follows:

struct my_traits : public ios_traits<char> {
typedef my_char_traits char_traits;

};

struct my_char_traits : public ios_traits<char> {
static bool is_whitespace (char c, const ctype<charT>& ctype) {
....(my own implementation)...
}

};

—end example]

void isfx();

Effects: None.

223)The functionsipfx(int) andisfx() can also perform additional implementation-dependent operations.

27.6.1.2 Formatted input functions DRAFT: 28 April 1995 Input/output library 27– 35

[lib.istream.formatted] 27.6.1.2 Formatted input functions

[lib.istream.formatted.reqmts] 27.6.1.2.1 Common requirements

1 Each formatted input function begins execution by callingipfx() . If that function returnstrue , the
function endeavors to obtain the requested input. In any case, the formatted input function ends by calling
isfx() , then returns*this

2 Some formatted input functions endeavor to obtain the requested input by parsing characters extracted from
the input sequence, converting the result to a value of some scalar data type, and storing the converted value
in an object of that scalar data type.

3 The numeric conversion behaviors of the following extractors are locale-dependent.

operator>>(short& val);
operator>>(unsigned short& val);
operator>>(int& val);
operator>>(unsigned int& val);
operator>>(long& val);
operator>>(unsigned long& val);
operator>>(float& val);
operator>>(double& val);
operator>>(long double& val);

As in the case of the inserters, these extractors depend on the locale’snum_get<> (22.2.2.1) object to per-
form parsing the input stream data. The conversion occurs ‘‘as if’’ it performed the following code frag-
ment:

HOLDTYPE tmp;
num_get<charT>& fmt = loc.use< num_get<charT> >();
fmt.get (*this, 0, *this, loc, tmp);
if ((TYPE)tmp != tmp) { // set fail bit...
} else val = (TYPE)tmp;

In the above fragment,loc stands for the private member of thebasic_ios class,TYPE stands for the
type of the argument of the extractor, andHOLDTYPE is as follows;

— for short , int andlong , HOLDTYPE is long ;

— for unsigned short , unsigned int and unsigned long , HOLDTYPE is unsigned
long .

— for float , double , HOLDTYPE is double .

— for long double , HOLDTYPE is long double .

4 The first argument provides an object of theistream_iterator class which is an iterator pointed to an
input stream. It bypasses istreams and uses streambufs directly. Classlocale relies on this type as its
interface to istream, since the flexibility it has been abstracted away from direct dependence on istream.

5 In case the converting result is a value of either an integral type (short , unsigned short , int ,
unsigned int , long , unsigned long) or a float type (float , double , long double), per-
forming to parse and convert the result depend on the imbuedlocale object. So the behavior of the
above type extractors are locale-dependent. The imbuedlocale object uses an
istreambuf_iterator to access the input character sequence.

6 The behavior of such functions is described in terms of the conversion specification ‘‘as if’’ for an equiva-
lent call to the function::fscanf() 224) operating with the global locale set togetloc() , with the

224)The signaturefscanf(FILE*, const char*, ...) is declared in<cstdio> (27.8.2)

27– 36 Input/output library DRAFT: 28 April 1995 27.6.1.2.1 Common requirements

following alterations:

— The formatted input function extracts characters from a stream buffer, rather than reading them from an
input file.225)

— If (flags() & skipws) == 0 , the function does not skip any leading white space. In that case, if
the next input character is white space, the scan fails.

— If the converted data value cannot be represented as a value of the specified scalar data type, a scan fail-
ure occurs.

7 [Note: For conversion to an integral type other than a character type, the function determines the integral
conversion specifier as indicated in Table 73:

Table 73—Integer conversions
__

State stdio equivalent__
(flags() & basefield) == oct %o__
(flags() & basefield) == hex %x
(flags() & uppercase) != 0 %X__
(flags() & basefield) == 0 %i__
Otherwise,__
signed integral type %d__
unsigned integral type %u__

—end note]

8 If the scan fails for any reason, the formatted input function callssetstate(failbit) , which may
throw ios_base::failure (27.4.4.3).

[lib.istream::extractors] 27.6.1.2.2basic_istream::operator>>

basic_istream<charT,traits>& operator>>
(basic_istream<charT,traits>& (* pf)(basic_istream<charT,traits>&))

Returns: pf (*this) .226)

basic_istream<charT,traits>& operator>>
(basic_ios<charT,traits>& (* pf)(basic_ios<charT,traits>&));

Effects: Callspf (*this) , then returns*this .227)

basic_istream<charT,traits>& operator>>(char_type* s);

Effects: Extracts characters and stores them into successive locations of an array whose first element is
designated bys .228) If width() is greater than zero, the maximum number of characters storedn is
width() ; otherwise it isnumeric_limits<int>::max() (18.2.1).

1 Characters are extracted and stored until any of the following occurs:

— n-1 characters are stored;

225)The stream buffer can, of course, be associated with an input file, but it need not be.
226)See, for example, the function signaturews(basic_istream&) (27.6.1.4).
227)See, for example, the function signaturedec(basic_ios<charT,traits>&) (27.4.5.3).
228)Note that this function is not overloaded on typessigned char andunsigned char .

27.6.1.2.2 DRAFT: 28 April 1995 Input/output library 27– 37
basic_istream::operator>>

— end-of-file occurs on the input sequence;

— traits::is_whitespace(c,ctype) is true for the next available input characterc . In the
above code fragment, the argumentctype is acquired bygetloc().use<ctype<charT> >() .

2 If the function stores no characters, it callssetstate(failbit) , which may throw
ios_base::failure (27.4.4.3). In any case, it then stores a null character into the next successive
location of the array and callswidth(0) .
Returns: *this .
Notes: Usestraits::eos() .

basic_istream<charT,traits>& operator>>(char_type& c);

Effects: Extracts a character, if one is available, and stores it inc . Otherwise, the function calls
setstate(failbit) .

Returns: *this .

basic_istream<charT,traits>& operator>>(bool& n);

Effects: Converts a boolean value, if one is available, and stores it inx .
Returns: *this .
Notes: Behaves as if:

getloc().use<num_get<charT,istreambuf_iterator<charT,traits> >().
get(*this, 0, *this, getloc(), n);

[Note: num_get<>::get() just sets theiostate flags, without checking whetherfailure()
should be thrown; sooperator>>() needs to check that.—end note]

3 If flags .flag() & ios_base::boolalpha is false , num_get<>::get() (22.2.2) tries to
read an integer value, which if found must be 0 or 1; if theboolalpha flag is true , it reads characters
until it determines whether thenumpunct<>::truename() or falsename() sequence229) is pre-
sent. In either case if an exact match is not found callssetstate(failbit) .

basic_istream<charT,traits>& operator>>(short& n);

Effects: Converts a signed short integer, if one is available, and stores it inn.
Returns: *this .

basic_istream<charT,traits>& operator>>(unsigned short& n);

Effects: Converts an unsigned short integer, if one is available, and stores it inn.
Returns: *this .

basic_istream<charT,traits>& operator>>(int& n);

Effects: Converts a signed integer, if one is available, and stores it inn.
Returns: *this .

basic_istream<charT,traits>& operator>>(unsigned int& n);

Effects: Converts an unsigned integer, if one is available, and stores it inn.

229)The boolean value names for the default classic“C” locale are“false ” and“true ”.

27– 38 Input/output library DRAFT: 28 April 1995 27.6.1.2.2
basic_istream::operator>>

Returns: *this .

basic_istream<charT,traits>& operator>>(long& n);

Effects: Converts a signed long integer, if one is available, and stores it inn.
Returns: *this .

basic_istream<charT,traits>& operator>>(unsigned long& n);

Effects: Converts an unsigned long integer, if one is available, and stores it inn.
Returns: *this .

basic_istream<charT,traits>& operator>>(float& f);

Effects: Converts afloat , if one is available, and stores it inf .
Returns: *this .

basic_istream<charT,traits>& operator>>(double& f);

Effects: Converts adouble , if one is available, and stores it inf .
Returns: *this .

basic_istream<charT,traits>& operator>>(long double& f);

Effects: Converts along double , if one is available, and stores it inf .
Returns: *this .

basic_istream<charT,traits>& operator>>(void*& p);

Effects: Converts a pointer tovoid , if one is available, and stores it inp.
Returns: *this .

basic_istream<charT,traits>& operator>>
(basic_streambuf<charT,traits>* sb);

Requires: sb shall be non-null.
Effects: If sb is null, callssetstate(badbit) , which may throwios_base::failure (27.4.4.3).

Extracts characters from*this and inserts them in the output sequence controlled bysb . Characters
are extracted and inserted until any of the following occurs:

— end-of-file occurs on the input sequence;

— inserting in the output sequence fails (in which case the character to be inserted is not extracted);

— an exception occurs (in which case the exception is caught).setstate(badbit) is not called

4 If the function inserts no characters, it callssetstate(failbit) , which may throw
ios_base::failure (27.4.4.3). If failure was due to catching an exception thrown while extracting
characters fromsb and failbit is on in exceptions() (27.4.4.3), then the caught exception is
rethrown.
Returns: *this .

27.6.1.3 Unformatted input functions DRAFT: 28 April 1995 Input/output library 27– 39

[lib.istream.unformatted] 27.6.1.3 Unformatted input functions

1 Each unformatted input function begins execution by callingipfx(1) . If that function returns nonzero,
the function endeavors to extract the requested input. It also counts the number of characters extracted. In
any case, the unformatted input function ends by storing the count in a member object and callingisfx() ,
then returning the value specified for the unformatted input function.

streamsize gcount() const;

Returns: The number of characters extracted by the last unformatted input member function called for the
object.

int_type get();

Effects: Extracts a characterc , if one is available. Otherwise, the function callssetstate(failbit) ,
which may throwios_base::failure (27.4.4.3),

Returns: c if available, otherwisetraits::eof() .

basic_istream<charT,traits>& get(char_type& c);

Effects: Extracts a character, if one is available, and assigns it toc .230) Otherwise, the function calls
setstate(failbit) (which may throwios_base::failure (27.4.4.3)).

Returns: *this .

basic_istream<charT,traits>& get(char_type* s, streamsize n,
char_type delim = traits::newline());

Effects: Extracts characters and stores them into successive locations of an array whose first element is
designated bys .231)Characters are extracted and stored until any of the following occurs:

— n - 1 characters are stored;

— end-of-file occurs on the input sequence (in which case the function callssetstate(eofbit));

— c == delim for the next available input characterc (in which casec is not extracted).

2 If the function stores no characters, it callssetstate(failbit) (which may throw
ios_base::failure (27.4.4.3)). In any case, it then stores a null character into the next successive
location of the array.
Returns: *this .

basic_istream<charT,traits>& get(basic_streambuf<char_type,traits>& sb ,
char_type delim = traits::newline());

Effects: Extracts characters and inserts them in the output sequence controlled byrdbuf() . Characters
are extracted and inserted until any of the following occurs:

— end-of-file occurs on the input sequence;

— inserting in the output sequence fails (in which case the character to be inserted is not extracted);

— c == delim for the next available input characterc (in which casec is not extracted);

— an exception occurs (in which case, the exception is caught but not rethrown).

230)Note that this function is not overloaded on typessigned char andunsigned char .
231)Note that this function is not overloaded on typessigned char andunsigned char .

27– 40 Input/output library DRAFT: 28 April 1995 27.6.1.3 Unformatted input functions

3 If the function inserts no characters, it callssetstate(failbit) , which may throw
ios_base::failure (27.4.4.3).
Returns: *this .

basic_istream<charT,traits>& getline(char_type* s, streamsize n,
char_type delim = traits::newline());

Effects: Extracts characters and stores them into successive locations of an array whose first element is
designated bys .232)Characters are extracted and stored until one of the following occurs:

1) end-of-file occurs on the input sequence (in which case the function callssetstate(eofbit));

2) c == delim for the next available input characterc (in which case the input character is extracted but
not stored);233)

3) n - 1 characters are stored (in which case the function callssetstate(failbit)).

4 These conditions are tested in the order shown.234)

5 If the function extracts no characters, it callssetstate(failbit) (which may throw
ios_base::failure (27.4.4.3)).235)

6 In any case, it then stores a null character (usingtraits::eos()) into the next successive location of
the array.
Returns: *this .

7 [Example:

#include <iostream>

int main()
{

using namespace std;
const int line_buffer_size = 100;

char buffer[line_buffer_size];
int line_number = 0;
while (cin.getline(buffer, line_buffer_size) || cin.gcount()) {

int count = cin.gcount();
if (cin.eof())

cout << "Partial final line"; // cin.fail() is false
else if (cin.fail()) {

cout << "Partial long line";
cin.clear(cin.rdstate() & ~ios::failbit);

} else {
count--; // Don’t include ’\n’ in count
cout << "Line " << ++line_number;

}
cout << " (" << count << " chars): " << buffer << endl;

}
}

—end example]

232)Note that this function is not overloaded on typessigned char andunsigned char .
233)Since the final input character is ‘‘extracted,’’ it is counted in thegcount() , even though it is not stored.
234)This allows an input line which exactly fills the buffer, without settingfailbit . This is different behavior than the historical
AT&T implementation.
235)This implies an empty input line will not causefailbit to be set.

27.6.1.3 Unformatted input functions DRAFT: 28 April 1995 Input/output library 27– 41

basic_istream<charT,traits>&
ignore(int n = 1, int_type delim = traits::eof());

Effects: Extracts characters and discards them. Characters are extracted until any of the following occurs:

— if n != numeric_limits<int>::max() (18.2.1),n characters are extracted

— end-of-file occurs on the input sequence (in which case the function callssetstate(eofbit) ,
which may throwios_base::failure (27.4.4.3));

— c == delim for the next available input characterc (in which casec is extracted).
Notes: The last condition will never occur ifdelim == traits::eof() .
Returns: *this .

int_type peek();

Returns: traits::eof() if good() is false. Otherwise, returnsrdbuf()->sgetc() .

basic_istream<charT,traits>& read(char_type* s, streamsize n);

Effects: Extracts characters and stores them into successive locations of an array whose first element is
designated bys .236)Characters are extracted and stored until either of the following occurs:

— n characters are stored;

— end-of-file occurs on the input sequence (in which case the function callssetstate(failbit) ,
which may throwios_base::failure (27.4.4.3)).

Returns: *this .

streamsize readsome(char_type* s, streamsize n);

Effects: Extracts characters and stores them into successive locations of an array whose first element is
designated bys .

Returns: A value based onin_avail() :

— If in_avail() < 0 , calls setstate(eofbit) (which may throwios_base::failure
(27.4.4.3)), and returns zero;

— If in_avail() == 0 , returns zero;

— If in_avail() > 0 , returnsread(s, min(in_avail(), n)) .

basic_istream<charT,traits>& putback(char_type c);

Effects: Calls rdbuf->sputbackc(c) . If that function returns traits::eof() , calls
setstate(badbit) (which may throwios_base::failure (27.4.4.3)).

Returns: *this .

basic_istream<charT,traits>& unget();

Effects: Calls rdbuf->sungetc() . If that function returns traits::eof() , calls
setstate(badbit) (which may throwios_base::failure (27.4.4.3)).

Returns: *this .

236)Note that this function is not overloaded on typessigned char andunsigned char .

27– 42 Input/output library DRAFT: 28 April 1995 27.6.1.3 Unformatted input functions

int sync();

Effects: If rdbuf() is a null pointer, returnstraits::eof() . Otherwise, callsrdbuf()-
>pubsync() and, if that function returnstraits::eof() , calls setstate(badbit) (which
may throw ios_base::failure (27.4.4.3), and returnstraits::eof() . Otherwise, returns
zero.

Notes: Usestraits::eof() .

pos_type tellg();

Returns: if fail() == true , returnsstreampos(-1) to indicate failure. Otherwise, returns
rdbuf()->pubseekoff(0, cur, in) .

basic_istream<charT,traits>& seekg(pos_type& pos);

Effects: If fail() != true , executesrdbuf()->pubseekpos(pos) .
Returns: *this .

basic_istream<charT,traits>& seekg(off_type& off , ios_base::seekdir dir);

Effects: If fail() != true , executesrdbuf()->pubseekoff(off , dir) .
Returns: *this .

[lib.istream.manip] 27.6.1.4 Standardbasic_istream manipulators

namespace std {
template<class charT, class traits>

basic_istream<charT,traits>& ws(basic_istream<charT,traits>& is);
}

Effects: Skips any whitespace in the input sequence: saves a copy ofis .fmtflags , then clears
is .skipws in is .flags() . Then calls is .ipfx() , then is .isfx() , then restores
is .flags() to its saved value.

Returns: is .

[lib.output.streams] 27.6.2 Output streams

1 The header<ostream> defines a type and several function signatures that control output to a stream
buffer.

[lib.ostream] 27.6.2.1 Template classbasic_ostream

namespace std {
template <class charT, class traits = ioc_traits<charT> >
class basic_ostream : virtual public basic_ios<charT,traits> {
public:
// Types:

typedef charT char_type;
typedef typename traits::int_type int_type;
typedef typename traits::pos_type pos_type;
typedef typename traits::off_type off_type;

// 27.6.2.2 Constructor/destructor:
explicit basic_ostream(basic_streambuf<char_type,traits>* sb);
virtual ~basic_ostream();

27.6.2.1 Template classbasic_ostream DRAFT: 28 April 1995 Input/output library 27 – 43

// 27.6.2.3 Prefix/suffix:
bool opfx();
void osfx();

// 27.6.2.4 Formatted output:
basic_ostream<charT,traits>& operator<<

(basic_ostream<charT,traits>& (* pf)(basic_ostream<charT,traits>&));
basic_ostream<charT,traits>& operator<<

(basic_ios<charT,traits>& (* pf)(basic_ios<charT,traits>&));
basic_ostream<charT,traits>& operator<<(const char_type* s);

basic_ostream<charT,traits>& operator<<(char_type c);
basic_ostream<charT,traits>& operator<<(bool n);
basic_ostream<charT,traits>& operator<<(short n);
basic_ostream<charT,traits>& operator<<(unsigned short n);
basic_ostream<charT,traits>& operator<<(int n);
basic_ostream<charT,traits>& operator<<(unsigned int n);
basic_ostream<charT,traits>& operator<<(long n);
basic_ostream<charT,traits>& operator<<(unsigned long n);
basic_ostream<charT,traits>& operator<<(float f);
basic_ostream<charT,traits>& operator<<(double f);
basic_ostream<charT,traits>& operator<<(long double f);

basic_ostream<charT,traits>& operator<<(void* p);
basic_ostream<charT,traits>& operator<<

(basic_streambuf<char_type,traits>* sb);

// 27.6.2.5 Unformatted output:
basic_ostream<charT,traits>& put(char_type c);
basic_ostream<charT,traits>& write(const char_type* s, streamsize n);

basic_ostream<charT,traits>& flush();

pos_type tellp();
basic_ostream<charT,traits>& seekp(pos_type&);
basic_ostream<charT,traits>& seekp(off_type&, ios_base::seekdir);

};
}

1 The classbasic_ostream defines a number of member function signatures that assist in formatting and
writing output to output sequences controlled by a stream buffer.

2 Two groups of member function signatures share common properties: theformatted output functions(or
inserters) and theunformatted output functions.Both groups of output functions generate (orinsert) output
charactersby actions equivalent to callingrdbuf().sputc(int) . They may use other public mem-
bers of basic_ostream except that they do not invoke any virtual members ofrdbuf() except
overflow() . If the called function throws an exception, the output function calls
setstate(badbit) , which may throwios_base::failure (27.4.4.3), and ifbadbit is on in
exceptions() rethrows the exception.

[lib.ostream.cons] 27.6.2.2basic_ostream constructors

explicit basic_ostream(basic_streambuf<charT,traits>* sb);

Effects: Constructs an object of classbasic_ostream , assigning initial values to the base class by call-
ing basic_ios<charT,traits>::init(sb) (27.4.4.1).

Postcondition: rdbuf() == sb .

27– 44 Input/output library DRAFT: 28 April 1995 27.6.2.2 basic_ostream constructors

virtual ~basic_ostream();

Effects: Destroys an object of classbasic_ostream .
Notes: Does not perform any operations onrdbuf() .

[lib.ostream.prefix] 27.6.2.3basic_ostream prefix and suffix functions

bool opfx();

1 If good() is nonzero, prepares for formatted or unformatted output. Iftie() is not a null pointer, calls
tie()->flush() .237)

Returns: good() .238)

void osfx();

2 If (flags() & unitbuf) != 0 , callsflush() .

pos_type tellp();

Returns: if fail() == true , returnsstreampos(-1) to indicate failure. Otherwise, returns
rdbuf()->pubseekoff(0, cur, out) .

basic_ostream<charT,traits>& seekp(pos_type& pos);

Effects: If fail() != true , executesrdbuf()->pubseekpos(pos) .
Returns: *this .

basic_ostream<charT,traits>& seekp(off_type& off , ios_base::seekdir dir);

If fail() != true , executesrdbuf()->pubseekoff(off , dir) .
Returns:

[lib.ostream.formatted] 27.6.2.4 Formatted output functions

[lib.ostream.formatted.reqmts] 27.6.2.4.1 Common requirements

1 Each formatted output function begins execution by callingopfx() . If that function returns nonzero, the
function endeavors to generate the requested output. In any case, the formatted output function ends by
callingosfx() , then returning the value specified for the formatted output function.

2 The numeric conversion behaviors of the following inserters are locale-dependent (22.2.2):

operator<<(short val);
operator<<(unsigned short val);
operator<<(int val);
operator<<(unsigned int val);
operator<<(long val);
operator<<(unsigned long val);
operator<<(float val);
operator<<(double val);
operator<<(long double val);

237)The calltie()->flush() does not necessarily occur if the function can determine that no synchronization is necessary.
238)The function signaturesopfx() andosfx() can also perform additional implementation-dependent operations.

27.6.2.4.1 Common requirements DRAFT: 28 April 1995 Input/output library 27– 45

3 The classesnum_get<> andnum_put<> handle locale-dependent numeric formatting and parsing. The
above inserter functions refers the imbuedlocale value to utilize these numeric formatting functionality.
The formatting conversion occurs as if it performed the following code fragment:

num_put<charT>& fmt = loc.use< num_put<charT> >();
fmt.put (ostreambuf_iterator(*this), *this, loc, val);

In the above fragment,loc stands for the private member of thebasic_ios class which maintains the
imbued locale object. The first argument provides an object of theostreambuf_iterator class
which is an iterator for ostream class. It bypasses ostreams and uses streambufs directly. Classlocale
relies on these types as its interface to iostreams, since for flexibility it has been abstracted away from
direct dependence onostream .

4 Some formatted output functions endeavor to generate the requested output by converting a value from
some scalar orNTBS type to text form and inserting the converted text in the output sequence. The behavior
of such functions is described in terms of the conversion specification ‘‘as if’’ for an equivalent call to the
function ::fprintf() ,239) operating with the global locale set togetloc() , with the following alter-
ations:

— The formatted output function insertscharactersin a stream buffer, rather than writing them to an out-
put file.240)

— The formatted output function uses the fill character returned byfill() as the padding character
(rather than the space character for left or right padding, or0 for internal padding).

5 If the operation fails for any reason, the formatted output function callssetstate(badbit) , which may
throw ios_base::failure (27.4.4.3).

6 [Note:For conversion from an integral type other than a character type, the function determines the integral
conversion specifier as indicated in Table 74:

Table 74—Integer conversions
__

State stdio equivalent__
(flags() & basefield) == oct %o__
(flags() & basefield) == hex %x
(flags() & uppercase) != 0 %X__
Otherwise,__
signed integral type %d__
unsigned integral type %u__

—end note]

7 [Note: For conversion from a floating-point type, the function determines the floating-point conversion
specifier as indicated in Table 75:

239)The signaturefprintf(FILE*, const char_type*, ...) is declared in<cstdio> (27.8.2).
240)The stream buffer can, of course, be associated with an output file, but it need not be.

27– 46 Input/output library DRAFT: 28 April 1995 27.6.2.4.1 Common requirements

Table 75—Floating-point conversions
_ ___

State stdio equivalent_ __ ___
(flags() & floatfield) == fixed %f_ ___
(flags() & floatfield) == scientific %e
(flags() & uppercase) != 0 %E_ __ ___
Otherwise,_ ___

%g
(flags() & uppercase) != 0 %G_ ___

—end note]

8 [Note:The conversion specifier has the following additional qualifiers prepended as indicated in Table 76:

Table 76—Floating-point conversions
_ ___

Type(s) State stdio equivalent_ __ ___
(flags() & showpos) != 0 +
(flags() & showbase) != 0 #

an integral type other than
a character type_ ___

(flags() & showpos) != 0 +
a floating-point type

(flags() & showpoint) != 0 #_ ___

—end note]

9 [Note:For any conversion, ifwidth() is nonzero, then a field width is specified in the conversion specifi-
cation. The value iswidth() . —end note]

10 For conversion from a floating-point type, if(flags() & fixed) != 0 or if precision() > 0 ,
thenprecision() is specified in the conversion specification.

11 [Note:Moreover, for any conversion, padding with the fill character returned byfill() behaves as indi-
cated in Table 77:

Table 77—Fill padding
_ __

State Justification fprintf flag,padding_ ___ __
(flags() & adjustfield)==left left (pad after text) (none), space padding_ __
(flags() & adjustfield)==internal internal 0, zero padding241)

_ __
Otherwise right (pad before text) -, space padding_ __

—end note]

12 Unless explicitly stated otherwise for a particular inserter, each formatted output function callswidth(0)
after determining the field width.

[lib.ostream.inserters] 27.6.2.4.2basic_ostream::operator<<

basic_ostream<charT,traits>& operator<<
(basic_ostream<charT,traits>& (* pf)(basic_ostream<charT,traits>&))

241)The conversion specification#o generates a leading0 which isnota padding character.

27.6.2.4.2 DRAFT: 28 April 1995 Input/output library 27– 47
basic_ostream::operator<<

Returns: pf (*this) .242)

basic_ostream<charT,traits>& operator<<
(basic_ios<charT,traits>& (* pf)(basic_ios<charT,traits>&))

Effects: Callspf (*this) .
Returns: *this .243)

basic_ostream<charT,traits>& operator<<(const char_type* s);

Requires: s shall be a null-terminated byte string.
Effects: Converts theNTBS s with the conversion specifiers .
Returns: *this .

basic_ostream<charT,traits>& operator<<(char_type c);

Effects: Converts thechar_type c with the conversion specifierc and a field width of zero.244)

Notes: The stored field width (basic_ios<charT,traits>::width()) is not set to zero.
Returns: *this .

basic_ostream<charT,traits>& operator<<(bool n);

1 Behaves as if:

getloc().use<num_put<charT,istreambuf_iterator<charT,traits> >()
.put(*this, *this, getloc(), n);

which writes out a 0 or 1, or the results ofgetloc().use<numpunct<charT> >().truename()
or falsename() (22.2.2), according as whether theboolalpha flag is set.
Returns: *this .

basic_ostream<charT,traits>& operator<<(short n);

Effects: Converts the signed short integern with the integral conversion specifier preceded byh.
Returns: *this .

basic_ostream<charT,traits>& operator<<(unsigned short n);

Effects: Converts the unsigned short integern with the integral conversion specifier preceded byh.
Returns: *this .

basic_ostream<charT,traits>& operator<<(int n);

Effects: Converts the signed integern with the integral conversion specifier.
Returns: *this .

basic_ostream<charT,traits>& operator<<(unsigned int n);

242)See, for example, the function signatureendl(basic_ostream&) (27.6.2.6) .
243)See, for example, the function signaturedec(ios_base&) (27.4.5.3).
244)Note that this function is not overloaded on typessigned char andunsigned char .

27– 48 Input/output library DRAFT: 28 April 1995 27.6.2.4.2
basic_ostream::operator<<

Effects: Converts the unsigned integern with the integral conversion specifier.
Returns: *this .

basic_ostream<charT,traits>& operator<<(long n);

Effects: Converts the signed long integern with the integral conversion specifier preceded byl .
Returns: *this .

basic_ostream<charT,traits>& operator<<(unsigned long n);

Effects: Converts the unsigned long integern with the integral conversion specifier preceded byl .
Returns: *this .

basic_ostream<charT,traits>& operator<<(float f);

Effects: Converts thefloat f with the floating-point conversion specifier.
Returns: *this .

basic_ostream<charT,traits>& operator<<(double f);

Effects: Converts thedouble f with the floating-point conversion specifier.
Returns: *this .

basic_ostream<charT,traits>& operator<<(long double f);

Effects: Converts thelong double f with the floating-point conversion specifier preceded byL.
Returns: *this .

basic_ostream<charT,traits>& operator<<(void* p);

Effects: Converts the pointer tovoid p with the conversion specifierp.
Returns: *this .

basic_ostream<charT,traits>& operator<<
(basic_streambuf<charT,traits>* sb);

Effects: Gets characters fromsb and inserts them in*this . Characters are read fromsb and inserted
until any of the following occurs:

— end-of-file occurs on the input sequence;

— inserting in the output sequence fails (in which case the character to be inserted is not extracted);

— an exception occurs while getting a character fromsb (in which case, the exception is rethrown).

2 If the function inserts no characters or if it stopped because an exception was thrown while extracting a
character, it callssetstate(failbit) (which may throwios_base::failure (27.4.4.3)). If an
exception was thrown while extracting a character andfailbit is on in exceptions() the caught
exception is rethrown.
Returns: *this .

27.6.2.5 Unformatted output functions DRAFT: 28 April 1995 Input/output library 27– 49

[lib.ostream.unformatted] 27.6.2.5 Unformatted output functions

1 Each unformatted output function begins execution by callingopfx() . If that function returns nonzero,
the function endeavors to generate the requested output. In any case, the unformatted output function ends
by callingosfx() , then returning the value specified for the unformatted output function.

basic_ostream<charT,traits>& put(char_type c);

Effects: Inserts the characterc , if possible.245)

2 Otherwise, callssetstate(badbit) (which may throwios_base::failure (27.4.4.3)).
Returns: *this .

basic_ostream& write(const char_type* s, streamsize n);

Effects: Obtains characters to insert from successive locations of an array whose first element is desig-
nated bys .246)Characters are inserted until either of the following occurs:

— n characters are inserted;

— inserting in the output sequence fails (in which case the function callssetstate(badbit) , which
may throwios_base::failure (27.4.4.3)).

Returns: *this .

basic_ostream& flush();

3 If rdbuf() is not a null pointer, callsrdbuf()->pubsync() . If that function returns
traits::eof() , callssetstate(badbit) (which may throwios_base::failure (27.4.4.3)).
Returns: *this .

[lib.ostream.manip] 27.6.2.6 Standardbasic_ostream manipulators

namespace std {
template<class charT, class traits>

basic_ostream<charT,traits>& endl(basic_ostream<charT,traits>& os);
}

Effects: Callsos .put(traits::newline()) , thenos .flush() .
Returns: os .247)

namespce std {
template<class charT, class traits>

basic_ostream<charT,traits>& ends(basic_ostream<charT,traits>& os);
}

Effects: Inserts a null character into the output sequence: callsos .put(traits::eos()).
Returns: os .

245)Note that this function is not overloaded on typessigned char andunsigned char .
246)Note that this function is not overloaded on typessigned char andunsigned char .
247)The effect of executingcout << endl is to insert a newline character in the output sequence controlled bycout , then syn-
chronize it with any external file with which it might be associated.

27– 50 Input/output library DRAFT: 28 April 1995 27.6.2.6
Standard basic_ostream manipulators

namespace std {
template<class charT, class traits>

basic_ostream<charT,traits>& flush(basic_ostream<charT,traits>& os);
}

Effects: Callsos .flush() .
Returns: os .

[lib.std.manip] 27.6.3 Standard manipulators

1 The header<iomanip> defines a type and several related functions that use this type to provide extractors
and inserters that alter information maintained by classios_base and its derived classes.

2 The typesmanipis an implementation-defined function type (8.3.5) returned by the standard manipulators.

smanip resetiosflags(ios_base::fmtflags mask);

Returns: smanip(f , mask), wheref can be defined as:248)

template<class charT, class traits>
ios_base& f (ios_base& str , ios_base::fmtflags mask)
{ // reset specified flags

str .setf(ios_base::fmtflags(0), mask);
return str ;

}

smanip setiosflags(ios_base::fmtflags mask);

Returns: smanip(f ,mask), wheref can be defined as:

ios_base& f (ios_base& str , ios_base::fmtflags mask)
{ // set specified flags

str .setf(mask);
return str ;

}

smanip setbase(int base);

Returns: smanip(f , base), wheref can be defined as:

ios_base& f (ios_base& str , int base)
{ // set basefield

str .setf(n == 8 ? ios_base::oct :
n == 10 ? ios_base::dec :
n == 16 ? ios_base::hex :

ios_base::fmtflags(0), ios_base::basefield);
return str ;

}

smanip setfill(int c);

248)The expressioncin >> resetiosflags(ios_base::skipws) clearsios_base::skipws in the format flags stored
in the istream object cin (the same as cin >> noskipws), and the expression cout <<
resetiosflags(ios_base::showbase) clearsios_base::showbase in the format flags stored in theostream object
cout (the same ascout << noshowbase).

27.6.3 Standard manipulators DRAFT: 28 April 1995 Input/output library 27– 51

Returns: smanip(f , c), wheref can be defined as:

ios_base& f (ios_base& str , int c)
{ // set fill character

str .fill(c);
return str ;

}

smanip setprecision(int n);

Returns: smanip(f , n), wheref can be defined as:

ios_base& f (ios_base& str , int n)
{ // set precision

str .precision(n);
return str ;

}

smanip setw(int n);

Returns: smanip(f , n), wheref can be defined as:

ios_base& f (ios_base& str , int n)
{ // set width

str .width(n);
return str ;

}

[lib.string.streams] 27.7 String-based streams

1 The header<sstream> defines three template classes, and six types, that associate stream buffers with
objects of classbasic_string , as described in subclause 21.1.

Header<sstream> synopsis

#include <streambuf>
#include <istream>
#include <ostream>

namespace std {
template <class charT, class traits = int_charT_traits<charT> >

class basic_stringbuf;
typedef basic_stringbuf<char> stringbuf;
typedef basic_stringbuf<wchar_t> wstringbuf;

template <class charT, class traits = ios_traits<charT> >
class basic_istringstream;

typedef basic_istringstream<char> istringstream;
typedef basic_istringstream<wchar_t> wistringstream;

template <class charT, class traits = ios_traits<charT> >
class basic_ostringstream;

typedef basic_ostringstream<char> ostringstream;
typedef basic_ostringstream<wchar_t> wostringstream;

}

27– 52 Input/output library DRAFT: 28 April 1995 27.7 String-based streams

Table 77—Header<cstdlib> synopsis
_ ________________________
Type Name(s)_ ________________________
Functions:

atoi strtod

atol strtol_ ________________________

2
SEE ALSO: ISO C subclause 7.10.1.

[lib.stringbuf] 27.7.1 Template classbasic_stringbuf

namespace std {
template <class charT, class traits = int_charT_traits<charT> >
class basic_stringbuf : public basic_streambuf<charT,traits> {
public:
// Types:

typedef charT char_type;
typedef typename traits::int_type int_type;
typedef typename traits::pos_type pos_type;
typedef typename traits::off_type off_type;

// 27.7.1.1 Constructors:
explicit basic_stringbuf(ios_base::openmode which

= ios_base::in | ios_base::out);
explicit basic_stringbuf(const basic_string<char_type>& str ,

ios_base::openmode which
= ios_base::in | ios_base::out);

// 27.7.1.2 Get and set:
basic_string<char_type> str() const;
void str(const basic_string<char_type>& s);

protected:
// 27.7.1.3 Overridden virtual functions:

virtual int_type underflow();
virtual int_type pbackfail(int_type c = traits::eof());
virtual int_type overflow (int_type c = traits::eof());

virtual pos_type seekoff(off_type off , ios_base::seekdir way,
ios_base::openmode which

= ios_base::in | ios_base::out);
virtual pos_type seekpos(pos_type sp ,

ios_base::openmode which
= ios_base::in | ios_base::out);

private:
// ios_base::openmode mode; exposition only

};
}

1 The classbasic_stringbuf is derived frombasic_streambuf to associate possibly the input
sequence and possibly the output sequence with a sequence of arbitrarycharacters. The sequence can be
initialized from, or made available as, an object of classbasic_string .

27.7.1.1 DRAFT: 28 April 1995 Input/output library 27– 53
basic_stringbuf constructors

[lib.stringbuf.cons] 27.7.1.1basic_stringbuf constructors

explicit basic_stringbuf(ios_base::openmode which =
ios_base::in | ios_base::out);

Effects: Constructs an object of classbasic_stringbuf , initializing the base class with
basic_streambuf() (27.5.2.1), and initializingmodewith which .

Notes: The function allocates no array object.

explicit basic_stringbuf(const basic_string<char_type>& str ,
ios_base::openmode which = ios_base::in | ios_base::out);

Effects: Constructs an object of classbasic_stringbuf , initializing the base class with
basic_streambuf() , initializing the base class withbasic_streambuf() (27.5.2.1), and ini-
tializing modewith which .

Postconditions: str() == str . If str .size() > 0 , sets the get and/or put pointers as indicated in
Table 78:

Table 78—str get/set areas
_ ___

Condition Setting_ __ ___
(which & ios_base::in) != 0 setg(str(),str(),str()+ str .size())_ ___
(which & ios_base::out) != 0 setp(str(),str(),str()+ str .size())_ ___

[lib.stringbuf.members] 27.7.1.2 Member functions

basic_string<char_type> str() const;

Returns: The return value of this function are indicated in Table 79:

Table 79—str return values
_ __

Condition Return Value_ ___ __
basic_string<char_type>(eback(),egptr()-eback())(mode & basic_ios::in)

!= 0 and (gptr() != 0)_ __
basic_string<char_type>(pbase(),pptr()-pbase())(mode & basic_ios::out)

!= 0 and (pptr() != 0)_ __
Otherwise basic_string<char_type>()_ __

void str(const basic_string<char_type>& s);

Effects: If s.length() is zero, executes:

setg(0, 0, 0);
setp(0, 0);

Postcondition: str() == s . If str .size() > 0 , sets the get and/or put pointers as indicated in
Table 80:

27– 54 Input/output library DRAFT: 28 April 1995 27.7.1.2 Member functions

Table 80—str get/set areas
_ ___

Condition Setting_ __ ___
(which & ios_base::in) != 0 setg(str(),str(),str()+ str .size())_ ___
(which & ios_base::out) != 0 setp(str(),str(),str()+ str .size())_ ___

[lib.stringbuf.virtuals] 27.7.1.3 Overridden virtual functions

int_type underflow();

Returns: If the input sequence has a read position available, returnschar_type(*gptr()) .
Otherwise, returnstraits::eof() .

int_type pbackfail(int_type c = traits::eof());

Effects: Puts back the character designated byc to the input sequence, if possible, in one of three ways:

— If c != traits::eof() , if the input sequence has a putback position available, and if
char_type(c) == char_type(gptr()[-1]) , assignsgptr() - 1 to gptr() .
Returns:c .

— If c != traits::eof() , if the input sequence has a putback position available, and ifmode &
ios_base::out is nonzero, assignsc to *--gptr() .
Returns:char_type(c) .

— If c == traits::eof() and if the input sequence has a putback position available, assigns
gptr() - 1 to gptr() .
Returns:char_type(c) .

Returns: traits::eof() to indicate failure.
Notes: If the function can succeed in more than one of these ways, it is unspecified which way is chosen.

int_type overflow(int_type c = traits::eof());

Effects: Appends the character designated byc to the output sequence, if possible, in one of two ways:

— If c != traits::eof() and if either the output sequence has a write position available or the func-
tion makes a write position available (as described below), the function callssputc(c) .
Signals success by returningc .

— If c == traits::eof() , there is no character to append.
Signals success by returning a value other thantraits::eof() .

Notes: The function can alter the number of write positions available as a result of any call.
Returns: traits::eof() to indicate failure.

1 [Note: The function can make a write position available only if(mode & ios_base::out) != 0 .
To make a write position available, the function reallocates (or initially allocates) an array object with a suf-
ficient number of elements to hold the current array object (if any), plus one additional write position. If
(mode & ios_base::in) != 0 , the function alters the read end pointeregptr() to point just past
the new write position (as does the write end pointerepptr()). —end note]

pos_type seekoff(off_type off , ios_base::seekdir way,
ios_base::openmode which

= ios_base::in | ios_base::out);

27.7.1.3 Overridden virtual functions DRAFT: 28 April 1995 Input/output library 27– 55

Effects: Alters the stream position within one of the controlled sequences, if possible, as indicated in Table
81:

Table 81—seekoff positioning
_ ___

Conditions Result_ __ ___
(which & basic_ios::in) != 0 positions the input sequence_ ___
(which & basic_ios::out) != 0 positions the output sequence_ ___
Otherwise,

positions both the input and the output sequences(which & (basic_ios::in |
basic_ios::out)) ==
(basic_ios::in |
basic_ios::out))
and way == either
basic_ios::beg or
basic_ios::end_ ___
Otherwise, the positioning operation fails._ ___

2 For a sequence to be positioned, if its next pointer (eithergptr() or pptr()) is a null pointer, the posi-
tioning operation fails. Otherwise, the function determinesnewoff as indicated in Table 82:

Table 82—newoff values
_ ___

Condition newoff Value_ __ ___
way == basic_ios::beg 0_ ___
way == basic_ios::cur the next pointer minus the begin-

ning pointer (xnext - xbeg)._ ___
way == basic_ios::end the end pointer minus the begin-

ning pointer (xend - xbeg)_ ___
the positioning operation fails If (newoff + off) < 0,

or (xend - xbeg) < (new-
off + off)_ ___

3 Otherwise, the function assignsxbeg + newoff + off to the next pointerxnext .
Returns: pos_type(newoff) , constructed from the resultant offsetnewoff (of type off_type),

that stores the resultant stream position, if possible. If the positioning operation fails, or if the con-
structed object cannot represent the resultant stream position, the object stores an invalid stream posi-
tion.

pos_type seekpos(pos_type sp , ios_base::openmode which
= ios_base::in | ios_base::out);

Effects: Alters the stream position within one of the controlled sequences, if possible, to correspond to the
stream position stored insp (as described below).

— If (which & basic_ios::in) != 0 , positions the input sequence.

— If (which & basic_ios::out) != 0 , positions the output sequence.

— If the function positions neither sequence, the positioning operation fails.

4 For a sequence to be positionedif its next pointer (eithergptr() or pptr()) is a null pointer, the posi-
tioning operation fails. Otherwise, the function determinesnewoff from sp .offset() :

27– 56 Input/output library DRAFT: 28 April 1995 27.7.1.3 Overridden virtual functions

— If newoff is an invalid stream position, has a negative value, or has a value greater than (xend -
xbeg), the positioning operation fails.

— Otherwise, the function addsnewoff to the beginning pointerxbeg and stores the result in the next
pointerxnext .

Returns: pos_type(newoff) , constructed from the resultant offsetnewoff (of type off_type),
that stores the resultant stream position, if possible. If the positioning operation fails, or if the con-
structed object cannot represent the resultant stream position, the object stores an invalid stream posi-
tion.

[lib.istringstream] 27.7.2 Template classbasic_istringstream

namespace std {
template <class charT, class traits = ios_traits<charT> >
class basic_istringstream : public basic_istream<charT,traits> {
public:
// Types:

typedef charT char_type;
typedef typename traits::int_type int_type;
typedef typename traits::pos_type pos_type;
typedef typename traits::off_type off_type;

// 27.7.2.1 Constructors:
explicit basic_istringstream(ios_base::openmode which = ios_base::in);
explicit basic_istringstream(const basic_string<charT>& str ,

ios_base::openmode which = ios_base::in);

// 27.7.2.2 Members:
basic_stringbuf<charT,traits>* rdbuf() const;

basic_string<charT> str() const;
void str(const basic_string<charT>& s);

private:
// basic_stringbuf<charT,traits> sb ; exposition only

};
}

1 The class basic_istringstream<charT,traits> supports reading objects of class
basic_string<charT,traits> . It uses abasic_stringbuf object to control the associated
storage. For the sake of exposition, the maintained data is presented here as:

— sb , thestringbuf object.

[lib.istringstream.cons] 27.7.2.1basic_istringstream constructors

explicit basic_istringstream(ios_base::openmode which = ios_base::in);

Effects: Constructs an object of classbasic_istringstream<charT,traits> , initializing the
base class with basic_istream(& sb) and initializing sb with
basic_stringbuf<charT,traits>(which)) (27.7.1.1).

explicit basic_istringstream(const basic_string<charT>& str ,
ios_base::openmode which = ios_base::in);

Effects: Constructs an object of classbasic_istringstream<charT,traits> , initializing the
base class with basic_istream(& sb) and initializing sb with
basic_stringbuf<charT,traits>(str , which)) (27.7.1.1).

27.7.2.2 Member functions DRAFT: 28 April 1995 Input/output library 27– 57

[lib.istringstream.members] 27.7.2.2 Member functions

basic_stringbuf<charT,traits>* rdbuf() const;

Returns: (basic_stringbuf<charT,traits>*)& sb .

basic_string<charT> str() const;

Returns: rdbuf()->str() .

void str(const basic_string<charT>& s);

Effects: Callsrdbuf()->str(s) .

[lib.ostringstream] 27.7.2.3 Classbasic_ostringstream

namespace std {
template <class charT, class traits = ios_traits<charT> >
class basic_ostringstream : public basic_ostream<charT,traits> {
public:
// Types:

typedef charT char_type;
typedef typename traits::int_type int_type;
typedef typename traits::pos_type pos_type;
typedef typename traits::off_type off_type;

// 27.7.2.4 Constructors/destructor:
explicit basic_ostringstream(ios_base::openmode which = ios_base::out);
explicit basic_ostringstream(const basic_string<charT>& str ,

ios_base::openmode which = ios_base::out);
virtual ~basic_ostringstream();

// 27.7.2.5 Members:
basic_stringbuf<charT,traits>* rdbuf() const;

basic_string<charT> str() const;
void str(const basic_string<charT>& s);

private:
// basic_stringbuf<charT,traits> sb ; exposition only

};
}

1 The class basic_ostringstream<charT,traits> supports writing objects of class
basic_string<charT,traits> . It uses abasic_stringbuf object to control the associated
storage. For the sake of exposition, the maintained data is presented here as:

— sb , thestringbuf object.

[lib.ostringstream.cons] 27.7.2.4basic_ostringstream constructors

explicit basic_ostringstream(ios_base::openmode which = ios_base::out);

Effects: Constructs an object of classbasic_ostringstream , initializing the base class with
basic_ostream(& sb) and initializing sb with
basic_stringbuf<charT,traits>(which)) (27.7.1.1).

27– 58 Input/output library DRAFT: 28 April 1995 27.7.2.4
basic_ostringstream constructors

explicit basic_ostringstream(const basic_string<charT>& str ,
ios_base::openmode which = ios_base::out);

Effects: Constructs an object of classbasic_ostringstream<charT,traits> , initializing the
base class with basic_ostream(& sb) and initializing sb with
basic_stringbuf<charT,traits>(str , which)) (27.7.1.1).

[lib.ostringstream.members] 27.7.2.5 Member functions

basic_stringbuf<charT,traits>* rdbuf() const;

Returns: (basic_stringbuf<charT,traits>*)& sb .

basic_string<charT> str() const;

Returns: rdbuf()->str() .

void str(const basic_string<charT>& s);

Effects: Callsrdbuf()->str(s) .

[lib.file.streams] 27.8 File-based streams

[lib.fstreams] 27.8.1 File streams

1 The header<fstream> defines three class templates, and six types, that associate stream buffers with
files and assist reading and writing files.

Header<fstream> synopsis

#include <streambuf>
#include <istream>
#include <ostream>

namespace std {
template <class charT, class traits = ios_traits<charT> >

class basic_filebuf;
typedef basic_filebuf<char> filebuf;
typedef basic_filebuf<wchar_t> wfilebuf;

template <class charT, class traits = ios_traits<charT> >
class basic_ifstream;

typedef basic_ifstream<char> ifstream;
typedef basic_ifstream<wchar_t> wifstream;

template <class charT, class traits = ios_traits<charT> >
class basic_ofstream;

typedef basic_ofstream<char> ofstream;
typedef basic_ofstream<wchar_t> wofstream;

}

2 In this subclause, the type nameFILE is a synonym for the typeFILE .249)

— File A File provides an external source/sink stream whoseunderlaid character typeis char (byte).250)

249)FILE is defined in<cstdio> (27.8.2).
250) A File is a sequence of multibyte characters. In order to provide the contents as a wide character sequence,filebuf should
convert between wide character sequences and multibyte character sequences.

27.8.1 File streams DRAFT: 28 April 1995 Input/output library 27– 59

— Multibyte character and Files A File provides byte sequences. So the streambuf (or its derived
classes) treats a file as the external source/sink byte sequence. In a large character set environment,
multibyte character sequences are held in files. In order to provide the contents of a file as wide charac-
ter sequences, wide-oriented filebuf, namely wfilebuf should convert wide character sequences.
Because of necessity of the conversion between the external source/sink streams and wide character
sequences.

[lib.filebuf] 27.8.1.1 Template classbasic_filebuf

namespace std {
template <class charT, class traits = ios_traits<charT> >
class basic_filebuf : public basic_streambuf<charT,traits> {
public:
// Types:

typedef charT char_type;
typedef typename traits::int_type int_type;
typedef typename traits::pos_type pos_type;
typedef typename traits::off_type off_type;

// 27.8.1.2 Constructors/destructor:
basic_filebuf();
virtual ~basic_filebuf();

// 27.8.1.3 Members:
bool is_open() const;
basic_filebuf<charT,traits>* open(const char* s, ios_base::openmode mode);
basic_filebuf<charT,traits>* close();

protected:
// 27.8.1.4 Overridden virtual functions:

virtual int showmanyc();
virtual int_type underflow();
virtual int_type pbackfail(int_type c = traits::eof());
virtual int_type overflow (int_type c = traits::eof());

virtual basic_streambuf<charT,traits>*
setbuf(char_type* s, streamsize n);

virtual pos_type seekoff(off_type off , ios_base::seekdir way,
ios_base::openmode which

= ios_base::in | ios_base::out);
virtual pos_type seekpos(pos_type sp , ios_base::openmode which

= ios_base::in | ios_base::out);
virtual int sync();
virtual void imbue(const locale& loc);

};
}

1 The classbasic_filebuf<charT,traits> associates both the input sequence and the output
sequence with a file.

2 The restrictions on reading and writing a sequence controlled by an object of class
basic_filebuf<charT,traits> are the same as for reading and writing with the Standard C library
FILE s.

3 In particular:

— If the file is not open for reading or for update, the input sequence cannot be read.

— If the file is not open for writing or for update, the output sequence cannot be written.

— A joint file position is maintained for both the input sequence and the output sequence.

27– 60 Input/output library DRAFT: 28 April 1995 27.8.1.1 Template classbasic_filebuf

4 In order to support file I/O and multibyte/wide character conversion, conversions are performed using
getloc() . Specifically:

— when input is performed, bytes are read from the file and converted tocharT ‘‘as if’’ by using
getloc().use<codecvt<char,charT,ios_traits::state_type> >()

— when output is performed,charT ’s are converted tochar ‘‘as if’’ by using
getloc().use<codecvt<charT,char,ios_traits::state_type> >() .

[lib.filebuf.cons] 27.8.1.2basic_filebuf constructors

basic_filebuf();

Effects: Constructs an object of classbasic_filebuf<charT,traits> , initializing the base class
with basic_streambuf<charT,traits>() (27.5.2.1).

Postcondition: is_open() == false .

virtual ~basic_filebuf();

Effects: Destroys an object of classbasic_filebuf<charT,traits> . Callsclose() .

[lib.filebuf.members] 27.8.1.3 Member functions

bool is_open() const;

Returns: true if the associated file is available and open.

basic_filebuf<charT,traits>* open(const char* s, ios_base::openmode mode);

Effects: If is_open() == false , returns a null pointer. Otherwise, calls
basic_streambuf<charT,traits>::basic_streambuf() (27.5.2.1).
It then opens a file, if possible, whose name is theNTBS s (‘‘as if’’ by calling
::fopen(s, modstr)).
[Note:TheNTBS modstr is determined frommode & ~ios_base::ate as indicated in Table 83:

Table 83—File open modes
_ __

ios_base

Value(s)
stdio equivalent

_ ___ __
in "r"

out | trunc "w"

out | app "a"

in | out "r+"

in | binary "rb"

out | trunc | binary "wb"

out | app | binary "ab"

in | out "r+

in | out | trunc "w+"

in | out | app "a+"

in | out | binary "r+b"

in | out | trunc | binary "w+b"

in | out | app | binary "a+b"_ __

—end note]

27.8.1.3 Member functions DRAFT: 28 April 1995 Input/output library 27– 61

1 If the open operation succeeds and(mode & ios_base::ate) != 0 , positions the file to the end
(‘‘as if’’ by calling ::fseek(file ,0,SEEK_END)).251)

2 If the repositioning operation fails, callsclose() and returns a null pointer to indicate failure.
Returns: this if successful, a null pointer otherwise.

basic_filebuf<charT,traits>* close();

Effects: If is_open() == false , returns a null pointer. Otherwise, closes the file (‘‘as if’’ by calling
::fclose(file)).252)

Returns: this on success, a null pointer otherwise.
Postcondition: is_open() == false .

[lib.filebuf.virtuals] 27.8.1.4 Overridden virtual functions

int showmanyc();

Requires: is_open() == true .
Effects: Behaves the same asbasic_streambuf::showmanyc() (27.5.2.4).
Notes: An implementation might well provide an overriding definition for this function signature if it can

determine that more characters can be read from the input sequence.

int_type underflow();

Requires: is_open() == true .
Effects: Behaves according to the description ofbasic_streambuf<charT,traits>::

underflow() , with the specialization that a sequence of characters is read from the input sequence
‘‘as if’’ by reading from the associated file into an internal buffer (from_buf) and then ‘‘as if’’ doing

char from_buf[FSIZE];
char* from_end;
charT to_buf[TSIZE];
charT* to_end;
codecvt_base::result r

= getloc().use<codecvt<char,charT,typename ios_traits::state_type> >().
convert(st,from_buf,from_buf+FSIZE,from_end,

to_buf, to_buf+to_size, to_end);

This must be done in such a way that the class can recover the position (fpos_t) corresponding to each
character betweento_buf andto_end. If the value ofr indicates thatconvert() ran out of space in
to_buf , retry with a largerto_buf .

int_type pbackfail(int_type c = traits::eof());

Requires: is_open() == true .
Effects: Puts back the character designated byc to the input sequence, if possible, in one of four ways:

— If c != traits::eof() and if the function makes a putback position available and if
char_type(c) == char_type(gptr()[-1]) , decrements the next pointer for the input
sequence,gptr() .

— If c != traits::eof() and if the function makes a putback position available, and if the function
is permitted to assign to the putback position, decrements the next pointer for the input sequence, and
storesc there.

251)The macroSEEK_ENDis defined, and the function signaturesfopen(const char_type*, const char_type*) and
fseek(FILE*, long, int) are declared, in<cstdio> (27.8.2).
252)The function signaturefclose(FILE*) is declared, in<cstdio> (27.8.2).

27– 62 Input/output library DRAFT: 28 April 1995 27.8.1.4 Overridden virtual functions

— If c == traits::eof() and if either the input sequence has a putback position available or the
function makes a putback position available, decrements the next pointer for the input sequence,
gptr() .

Returns: traits::eof() to indicate failure, otherwisec .
Notes: If is_open() == false , the function always fails.

The function does not put back a character directly to the input sequence.
If the function can succeed in more than one of these ways, it is unspecified which way is chosen. The
function can alter the number of putback positions available as a result of any call.

Default behavior: Returnstraits::eof() .

int_type overflow(int_type c = traits::eof());

Requires: is_open() == true .
Effects: Behaves according to the description of

basic_streambuf<charT,traits>::overflow(c) , except that the behavior of ‘‘consuming
characters’’ is performed by first coverting ‘‘as if’’ by:

charT* b = pbase();
charT* p = pptr();
charT* end;
char buf[BSIZE];
char* ebuf;
codecvt_base::result r

= getloc().use<codecvt<charT, char, ios_traits::state_type> >().
convert(st,b(),p(),end,buf,buf+BSIZE,ebuf);

and then

— If r == codecvt_base::error then fail.

— If r == codecvt_base::noconv then output chararcters fromb upto (and not including)p.

— If r == codecvt_base::partial then output to the file characters frombuf upto ebuf , and
repeat using characters fromend to p. If output fails, fail (without repeating).

— Otherwise output frombuf to ebuf , and fail if output fails. At this point ifb != p andb == end
(buf isn’t large enough) then increaseBSIZE and repeat from the beginning.

Returns: traits::eof() to indicate failure. Ifis_open() == false , the function always fails.

basic_streambuf* setbuf(char_type* s, int n);

pos_type seekoff(off_type off , ios_base::seekdir way,
ios_base::openmode which

= ios_base::in | ios_base::out);

Requires: is_open() == true .
Effects: The current state is determined as follows: If the the last operation wasoverflow() , the current

state is obtained by combining the shiftstate contained inst with the current position (fpos_t) of the
file. If the last operation wasunderflow() , the shiftstate and file position are determined (according
to whatever means they were saved byunderflow()) as corresponding topptr() .
Then, alters the stream position within the controlled sequences, if possible, as described below.
If is_open() == false , the positioning operation fails. Otherwise, repositions within the associ-
ated file (‘‘as if’’ by calling::fseek(file , off , whence) .253)

[Note:The function determines one of three values for the argumentwhence , of typeint , as indicated

253)The macrosSEEK_SET, SEEK_CUR, andSEEK_ENDare defined, and the function signaturefseek(FILE*, long, int)
is declared, in<cstdio> (27.8.2).

27.8.1.4 Overridden virtual functions DRAFT: 28 April 1995 Input/output library 27– 63

in Table 84:

Table 84—seekoff effects
_ _____________________________________

way Value stdio Equivalent_ ______________________________________ _____________________________________
basic_ios::beg SEEK_SET

basic_ios::cur SEEK_CUR

basic_ios::end SEEK_END_ _____________________________________

—end note]
The function extracts the conversion state fromoff by means ofget_offstate() to reset the
rdstate() member.

Returns: a newly constructedpos_type object that stores the resultant stream position, if possible. If
the positioning operation fails, or if the object cannot represent the resultant stream position, returns an
invalid stream position (27.1.2.4).

pos_type seekpos(pos_type sp , ios_base::openmode which
= ios_base::in | ios_base::out);

Requires: is_open() == true .

int sync();

void imbue(const locale& loc);

Effects: Callssync() and ifsync() fails, sets a flag and the next call to any virtual will fail.

[lib.ifstream] 27.8.1.5 Template classbasic_ifstream

namespace std {
template <class charT, class traits = file_traits<charT> >
class basic_ifstream : public basic_istream<charT,traits> {
public:
// Types:

typedef charT char_type;
typedef typename traits::int_type int_type;
typedef typename traits::pos_type pos_type;
typedef typename traits::off_type off_type;

// 27.8.1.6 Constructors:
basic_ifstream();
explicit basic_ifstream(const char* s, openmode mode = in);

// 27.8.1.7 Members:
basic_filebuf<charT,traits>* rdbuf() const;

bool is_open();
void open(const char* s, openmode mode = in);
void close();

private:
// basic_filebuf<charT,traits> sb ; exposition only

};
}

27– 64 Input/output library DRAFT: 28 April 1995 27.8.1.5
Template classbasic_ifstream

1 The class basic_ifstream<charT,traits> supports reading from named files. It uses a
basic_filebuf<charT,traits> object to control the associated sequence. For the sake of exposi-
tion, the maintained data is presented here as:

— sb , thefilebuf object.

[lib.ifstream.cons] 27.8.1.6basic_ifstream constructors

basic_ifstream();

Effects: Constructs an object of classbasic_ifstream<charT,traits> , initializing the base class
with basic_istream(& sb) and initializing sb with basic_filebuf<charT,traits>())
(_lib.istream.cons_, 27.8.1.2).

explicit basic_ifstream(const char* s, openmode mode = in);

Effects: Constructs an object of classbasic_ifstream , initializing the base class with
basic_istream(& sb) and initializing sb with basic_filebuf<charT,traits>())
(_lib.istream.cons_, 27.8.1.2), then callsrdbuf()->open(s, mode) .

[lib.ifstream.members] 27.8.1.7 Member functions

explicit basic_filebuf<charT,traits>* rdbuf() const;

Returns: (basic_filebuf<charT,traits>*)& sb .

bool is_open();

Returns: rdbuf()->is_open() .

void open(const char* s, openmode mode = in);

Effects: Calls rdbuf()->open(s, mode) . If is_open() returns false , calls
setstate(failbit) (which may throwios_base::failure (27.4.4.3)).

void close();

Effects: Calls rdbuf()->close() and, if that function returnsfalse , callssetstate(failbit)
(which may throwios_base::failure (27.4.4.3)).

[lib.ofstream] 27.8.1.8 Template classbasic_ofstream

namespace std {
template <class charT, class traits = file_traits<charT> >
class basic_ofstream : public basic_ostream<charT,traits> {
public:
// Types:

typedef charT char_type;
typedef typename traits::int_type int_type;
typedef typename traits::pos_type pos_type;
typedef typename traits::off_type off_type;

// 27.8.1.9 Constructors:
basic_ofstream();
explicit basic_ofstream(const char* s, openmode mode = out);

27.8.1.8 DRAFT: 28 April 1995 Input/output library 27– 65
Template classbasic_ofstream

// 27.8.1.10 Members:
basic_filebuf<charT,traits>* rdbuf() const;

bool is_open();
void open(const char* s, ios_base::openmode mode = out | trunc);
void close();

private:
// basic_filebuf<charT,traits> sb ; exposition only

};
}

1 The class basic_ofstream<charT,traits> supports writing to named files. It uses a
basic_filebuf<charT,traits> object to control the associated sequence. For the sake of exposi-
tion, the maintained data is presented here as:

— sb , thefilebuf object.

[lib.ofstream.cons] 27.8.1.9basic_ofstream constructors

basic_ofstream();

Effects: Constructs an object of classbasic_ofstream<charT,traits> , initializing the base class
with basic_ostream(& sb) and initializing sb with basic_filebuf<charT,traits>())
(27.6.2.2, 27.8.1.2).

explicit basic_ofstream(const char* s, openmode mode = out);

Effects: Constructs an object of classbasic_ofstream<charT,traits> , initializing the base class
with basic_ostream(& sb) and initializing sb with basic_filebuf<charT,traits>())
(27.6.2.2, 27.8.1.2), then callsrdbuf()->open(s, mode) .

[lib.ofstream.members] 27.8.1.10 Member functions

basic_filebuf<charT,traits>* rdbuf() const;

Returns: (basic_filebuf<charT,traits>*)& sb .

bool is_open();

Returns: rdbuf()->is_open() .

void open(const char* s, openmode mode = out);

Effects: Calls rdbuf()->open(s, mode) . If is_open() is then false , calls
setstate(failbit) (which may throwios_base::failure (27.4.4.3)).

void close();

Effects: Calls rdbuf()->close() and, if that function fails (returns a null pointer), calls
setstate(failbit) (which may throwios_base::failure (27.4.4.3)).

27– 66 Input/output library DRAFT: 28 April 1995 27.8.2 C Library files

[lib.c.files] 27.8.2 C Library files

1 Headers<cstdio> , and<cwchar> .

Table 84—Header<cstdio> synopsis
_ ___

Type Name(s)_ ___
Macros:
BUFSIZ L_tmpnam SEEK_SET TMP_MAX

EOF NULL <cstdio> stderr _IOFBF

FILENAME_MAX SEEK_CUR stdin _IOLBF

FOPEN_MAX SEEK_END stdout _IONBF_ ___
Types: FILE fpos_t size_t <cstdio>_ ___
Functions:
clearerr fgets fscanf gets rewind tmpfile

fclose fopen fseek perror scanf tmpnam

feof fprintf fsetpos printf setbuf ungetc

ferror fputc ftell putc setvbuf vprintf

fflush fputs fwrite puts sprintf vprintf

fgetc fread getc remove sscanf vsprintf

fgetpos freopen getchar rename tmpfile_ ___

Table 84—Header<cwchar> synopsis
_ ___

Type Name(s)_ ___
Macros: NULL <cwchar> WCHAR_MAX WCHAR_MIN WEOF <cwchar>_ ___
Types: mbstate_t wint_t <cwchar>_ ___
Struct: tm <cwchar>_ ___
Functions:
btowc getwchar ungetwc wcscpy wcsrtombs wmemchr

fgetwc mbrlen vfwprintf wcscspn wcsspn wmemcmp

fgetws mbrtowc vswprintf wcsftime wcsstr wmemcpy

fputwc mbsinit vwprintf wcslen wcstod wmemmove

fputws mbsrtowcs wcrtomb wcsncat wcstok wmemset

fwide putwc wcscat wcsncmp wcstol wprintf

fwprintf putwchar wcschr wcsncpy wcstoul wscanf

fwscanf swprintf wcscmp wcspbrk wcsxfrm

getwc swscanf wcscoll wcsrchr wctob_ ___

2 The contents are the same as the Standard C library, except that none of the headers defineswchar_t .

SEE ALSO: ISO C subclause 7.9, Amendment 1 subclause 4.6.2.

_ ___ ___

Annex A (informative)
Grammar summary [gram]
_ ___ ___

1 This summary of C + + syntax is intended to be an aid to comprehension. It is not an exact statement of the
language. In particular, the grammar described here accepts a superset of valid C + + constructs. Disam-
biguation rules (6.8, 7.1, 10.2) must be applied to distinguish expressions from declarations. Further,
access control, ambiguity, and type rules must be used to weed out syntactically valid but meaningless con-
structs.

[gram.key] A.1 Keywords

1 New context-dependent keywords are introduced into a program bytypedef (7.1.3), namespace (7.3.1),
class (9), enumeration (7.2), andtemplate (14) declarations.

typedef-name:
identifier

namespace-name:
original-namespace-name
namespace-alias

original-namespace-name:
identifier

namespace-alias:
identifier

class-name:
identifier
template-class-id

enum-name:
identifier

template-name:
identifier

Note that atypedef-namenaming a class is also aclass-name(9.1).

[gram.lex] A.2 Lexical conventions

preprocessing-token:
header-name
identifier
pp-number
character-literal
string-literal
preprocessing-op-or-punc
each non-white-space character that cannot be one of the above

A– 2 Grammar summary DRAFT: 28 April 1995 A.2 Lexical conventions

token:
identifier
keyword
literal
operator
punctuator

identifier:
nondigit
identifier nondigit
identifier digit

nondigit: one of
_ a b c d e f g h i j k l m

n o p q r s t u v w x y z
A B C D E F G H I J K L M
N O P Q R S T U V W X Y Z

digit: one of
0 1 2 3 4 5 6 7 8 9

preprocessing-op-or-punc: one of
{ } [] # ## = ()
<: :> <% %> %: %:%: ; : ...
new delete new[] delete[] ? ::
+ - * / % ^ & | ~
! = < > += -= *= /= %=
^= &= |= << >> >>= <<= == !=
<= >= && || ++ -- , ->* ->
and bitand bitor compl new<%%> delete<%%>
not or xor and_eq not_eq or_eq xor_eq

literal:
integer-literal
character-literal
floating-literal
string-literal
boolean-literal

integer-literal:
decimal-literal integer-suffixopt

octal-literal integer-suffixopt

hexadecimal-literal integer-suffixopt

decimal-literal:
nonzero-digit
decimal-literal digit

octal-literal:
0
octal-literal octal-digit

hexadecimal-literal:
0x hexadecimal-digit
0X hexadecimal-digit
hexadecimal-literal hexadecimal-digit

A.2 Lexical conventions DRAFT: 28 April 1995 Grammar summary A– 3

nonzero-digit: one of
1 2 3 4 5 6 7 8 9

octal-digit: one of
0 1 2 3 4 5 6 7

hexadecimal-digit:one of
0 1 2 3 4 5 6 7 8 9
a b c d e f
A B C D E F

integer-suffix:
unsigned-suffix long-suffixopt

long-suffix unsigned-suffixopt

unsigned-suffix:one of
u U

long-suffix: one of
l L

character-literal:
’ c-char-sequence’
L’ c-char-sequence’

c-char-sequence:
c-char
c-char-sequence c-char

c-char:
any member of the source character set except

the single-quote’ , backslash\ , or new-line character
escape-sequence

escape-sequence:
simple-escape-sequence
octal-escape-sequence
hexadecimal-escape-sequence

simple-escape-sequence:one of
\’ \" \? \\
\a \b \f \n \r \t \v

octal-escape-sequence:
\ octal-digit
octal-escape-sequence octal-digit

hexadecimal-escape-sequence:
\x hexadecimal-digit
hexadecimal-escape-sequence hexadecimal-digit

floating-literal:
fractional-constant exponent-partopt floating-suffixopt

digit-sequence exponent-part floating-suffixopt

fractional-constant:
digit-sequenceopt . digit-sequence
digit-sequence.

A– 4 Grammar summary DRAFT: 28 April 1995 A.2 Lexical conventions

exponent-part:
e signopt digit-sequence
E signopt digit-sequence

sign: one of
+ -

digit-sequence:
digit
digit-sequence digit

floating-suffix: one of
f l F L

string-literal:
" s-char-sequenceopt"
L" s-char-sequenceopt"

s-char-sequence:
s-char
s-char-sequence s-char

s-char:
any member of the source character set except

the double-quote" , backslash\ , or new-line character
escape-sequence

boolean-literal:
false
true

[gram.basic] A.3 Basic concepts

translation unit:
declaration-seqopt

[gram.expr] A.4 Expressions

primary-expression:
literal
this
:: identifier
:: operator-function-id
:: qualified-id
(expression)
id-expression

id-expression:
unqualified-id
qualified-id

unqualified-id:
identifier
operator-function-id
conversion-function-id
˜ class-name
template-id

A.4 Expressions DRAFT: 28 April 1995 Grammar summary A– 5

qualified-id:
nested-name-specifiertemplate opt unqualified-id

postfix-expression:
primary-expression
postfix-expression[expression]
postfix-expression(expression-listopt)
simple-type-specifier(expression-listopt)
postfix-expression. template opt id-expression
postfix-expression-> template opt id-expression
postfix-expression++
postfix-expression--
dynamic_cast < type-id > (expression)
static_cast < type-id > (expression)
reinterpret_cast < type-id > (expression)
const_cast < type-id > (expression)
typeid (expression)
typeid (type-id)

expression-list:
assignment-expression
expression-list, assignment-expression

unary-expression:
postfix-expression
++ unary-expression
-- unary-expression
unary-operator cast-expression
sizeof unary-expression
sizeof (type-id)
new-expression
delete-expression

unary-operator: one of
* & + - ! ~

new-expression:
:: opt new new-placementopt new-type-id new-initializeropt

:: opt new new-placementopt (type-id) new-initializeropt

new-placement:
(expression-list)

new-type-id:
type-specifier-seq new-declaratoropt

new-declarator:
* cv-qualifier-seqopt new-declaratoropt

:: opt nested-name-specifier* cv-qualifier-seqopt new-declaratoropt

direct-new-declarator

direct-new-declarator:
[expression]
direct-new-declarator[constant-expression]

new-initializer:
(expression-listopt)

A– 6 Grammar summary DRAFT: 28 April 1995 A.4 Expressions

delete-expression:
:: opt delete cast-expression
:: opt delete [] cast-expression

cast-expression:
unary-expression
(type-id) cast-expression

pm-expression:
cast-expression
pm-expression.* cast-expression
pm-expression->* cast-expression

multiplicative-expression:
pm-expression
multiplicative-expression* pm-expression
multiplicative-expression/ pm-expression
multiplicative-expression% pm-expression

additive-expression:
multiplicative-expression
additive-expression+ multiplicative-expression
additive-expression- multiplicative-expression

shift-expression:
additive-expression
shift-expression<< additive-expression
shift-expression>> additive-expression

relational-expression:
shift-expression
relational-expression< shift-expression
relational-expression> shift-expression
relational-expression<= shift-expression
relational-expression>= shift-expression

equality-expression:
relational-expression
equality-expression== relational-expression
equality-expression!= relational-expression

and-expression:
equality-expression
and-expression& equality-expression

exclusive-or-expression:
and-expression
exclusive-or-expression̂ and-expression

inclusive-or-expression:
exclusive-or-expression
inclusive-or-expression| exclusive-or-expression

logical-and-expression:
inclusive-or-expression
logical-and-expression&& inclusive-or-expression

A.4 Expressions DRAFT: 28 April 1995 Grammar summary A– 7

logical-or-expression:
logical-and-expression
logical-or-expression|| logical-and-expression

conditional-expression:
logical-or-expression
logical-or-expression? expression: assignment-expression

assignment-expression:
conditional-expression
unary-expression assignment-operator assignment-expression
throw-expression

assignment-operator:one of
= *= /= %= += -= >>= <<= &= ^= |=

expression:
assignment-expression
expression, assignment-expression

constant-expression:
conditional-expression

[gram.stmt.stmt] A.5 Statements

statement:
labeled-statement
expression-statement
compound-statement
selection-statement
iteration-statement
jump-statement
declaration-statement
try-block

labeled-statement:
identifier : statement
case constant-expression: statement
default : statement

expression-statement:
expressionopt ;

compound-statement:
{ statement-seqopt }

statement-seq:
statement
statement-seq statement

selection-statement:
if (condition) statement
if (condition) statementelse statement
switch (condition) statement

condition:
expression
type-specifier-seq declarator= assignment-expression

A– 8 Grammar summary DRAFT: 28 April 1995 A.5 Statements

iteration-statement:
while (condition) statement
do statement while (expression) ;
for (for-init-statement conditionopt ; expressionopt) statement

for-init-statement:
expression-statement
simple-declaration

jump-statement:
break ;
continue ;
return expressionopt ;
goto identifier ;

declaration-statement:
block-declaration

[gram.dcl.dcl] A.6 Declarations

declaration-seq:
declaration
declaration-seq declaration

declaration:
block-declaration
function-definition
template-declaration
linkage-specification
namespace-definition

block-declaration:
simple-declaration
asm-definition
namespace-alias-definition
using-declaration
using-directive

simple-declaration:
decl-specifier-seqopt init-declarator-listopt ;

decl-specifier-seqopt init-declarator-listopt ;

decl-specifier:
storage-class-specifier
type-specifier
function-specifier
friend
typedef

decl-specifier-seq:
decl-specifier-seqopt decl-specifier

storage-class-specifier:
auto
register
static
extern
mutable

A.6 Declarations DRAFT: 28 April 1995 Grammar summary A– 9

function-specifier:
inline
virtual
explicit

typedef-name:
identifier

type-specifier:
simple-type-specifier
class-specifier
enum-specifier
elaborated-type-specifier
cv-qualifier

simple-type-specifier:
:: opt nested-name-specifieropt type-name
char
wchar_t
bool
short
int
long
signed
unsigned
float
double
void

type-name:
class-name
enum-name
typedef-name

elaborated-type-specifier:
class-key :: opt nested-name-specifieropt identifier
enum :: opt nested-name-specifieropt identifier

class-key:
class
struct
union

enum-name:
identifier

enum-specifier:
enum identifieropt { enumerator-listopt }

enumerator-list:
enumerator-definition
enumerator-list , enumerator-definition

enumerator-definition:
enumerator
enumerator = constant-expression

enumerator:
identifier

A– 10 Grammar summary DRAFT: 28 April 1995 A.6 Declarations

original-namespace-name:
identifier

namespace-definition:
named-namespace-definition
unnamed-namespace-definition

named-namespace-definition:
original-namespace-definition
extension-namespace-definition

original-namespace-definition:
namespace identifier { namespace-body}

extension-namespace-definition:
namespace original-namespace-name{ namespace-body}

unnamed-namespace-definition:
namespace { namespace-body}

namespace-body:
declaration-seqopt

id-expression:
unqualified-id
qualified-id

nested-name-specifier:
class-or-namespace-name:: nested-name-specifieropt

class-or-namespace-name:
class-name
namespace-name

namespace-name:
original-namespace-name
namespace-alias

namespace-alias:
identifier

namespace-alias-definition:
namespace identifier = qualified-namespace-specifier ;

qualified-namespace-specifier:
:: opt nested-name-specifieropt class-or-namespace-name

using-declaration:
using :: opt nested-name-specifier unqualified-id;
using :: unqualified-id;

using-directive:
using namespace :: opt nested-name-specifieropt namespace-name ;

asm-definition:
asm (string-literal) ;

linkage-specification:
extern string-literal { declaration-seqopt }
extern string-literal declaration

A.6 Declarations DRAFT: 28 April 1995 Grammar summary A– 11

declaration-seq:
declaration
declaration-seq declaration

[gram.dcl.decl] A.7 Declarators

init-declarator-list:
init-declarator
init-declarator-list , init-declarator

init-declarator:
declarator initializeropt

declarator:
direct-declarator
ptr-operator declarator

direct-declarator:
declarator-id
direct-declarator (parameter-declaration-clause) cv-qualifier-seqopt exception-specificationopt

direct-declarator [constant-expressionopt]
(declarator)

ptr-operator:
* cv-qualifier-seqopt

&
:: opt nested-name-specifier* cv-qualifier-seqopt

cv-qualifier-seq:
cv-qualifier cv-qualifier-seqopt

cv-qualifier:
const
volatile

declarator-id:
id-expression
nested-name-specifieropt type-name

type-id:
type-specifier-seq abstract-declaratoropt

type-specifier-seq:
type-specifier type-specifier-seqopt

abstract-declarator:
ptr-operator abstract-declaratoropt

direct-abstract-declarator

direct-abstract-declarator:
direct-abstract-declaratoropt (parameter-declaration-clause) cv-qualifier-seqopt exception-specificationopt

direct-abstract-declaratoropt [constant-expressionopt]
(abstract-declarator)

parameter-declaration-clause:
parameter-declaration-listopt ... opt

parameter-declaration-list, ...

A– 12 Grammar summary DRAFT: 28 April 1995 A.7 Declarators

parameter-declaration-list:
parameter-declaration
parameter-declaration-list, parameter-declaration

parameter-declaration:
decl-specifier-seq declarator
decl-specifier-seq declarator= assignment-expression
decl-specifier-seq abstract-declaratoropt

decl-specifier-seq abstract-declaratoropt = assignment-expression

function-definition:
decl-specifier-seqopt declarator ctor-initializeropt function-body
decl-specifier-seqopt declarator function-try-block

function-body:
compound-statement

initializer:
= initializer-clause
(expression-list)

initializer-clause:
assignment-expression
{ initializer-list , opt }
{ }

initializer-list:
initializer-clause
initializer-list , initializer-clause

[gram.class] A.8 Classes

class-name:
identifier
template-id

class-specifier:
class-head{ member-specificationopt }

class-head:
class-key identifieropt base-clauseopt

class-key nested-name-specifier identifier base-clauseopt

class-key:
class
struct
union

member-specification:
member-declaration member-specificationopt

access-specifier: member-specificationopt

member-declaration:
decl-specifier-seqopt member-declarator-listopt ;
function-definition ; opt

qualified-id ;
using-declaration

A.8 Classes DRAFT: 28 April 1995 Grammar summary A– 13

member-declarator-list:
member-declarator
member-declarator-list, member-declarator

member-declarator:
declarator pure-specifieropt

declarator constant-initializeropt

identifieropt : constant-expression

pure-specifier:
= 0

constant-initializer:
= constant-expression

[gram.class.derived] A.9 Derived classes

base-clause:
: base-specifier-list

base-specifier-list:
base-specifier
base-specifier-list, base-specifier

base-specifier:
:: opt nested-name-specifieropt class-name
virtual access-specifieropt :: opt nested-name-specifieropt class-name
access-specifier virtualopt :: opt nested-name-specifieropt class-name

access-specifier:
private
protected
public

[gram.special] A.10 Special member functions

class-name(expression-listopt)

conversion-function-id:
operator conversion-type-id

conversion-type-id:
type-specifier-seq conversion-declaratoropt

conversion-declarator:
ptr-operator conversion-declaratoropt

ctor-initializer:
: mem-initializer-list

mem-initializer-list:
mem-initializer
mem-initializer , mem-initializer-list

mem-initializer:
mem-initializer-id (expression-listopt)

A– 14 Grammar summary DRAFT: 28 April 1995 A.10 Special member functions

mem-initializer-id:
:: opt nested-name-specifieropt class-name
identifier

[gram.over] A.11 Overloading

operator-function-id:
operator operator

operator: one of
new delete new[] delete[]
+ - * / % ^ & | ~
! = < > += -= *= /= %=
^= &= |= << >> >>= <<= == !=
<= >= && || ++ -- , ->* ->
() []

[gram.temp] A.12 Templates

template-declaration:
template < template-parameter-list> declaration

template-parameter-list:
template-parameter
template-parameter-list, template-parameter

template-id:
template-name< template-argument-list>

template-name:
identifier

template-argument-list:
template-argument
template-argument-list, template-argument

template-argument:
assignment-expression
type-id
template-name

elaborated-type-specifier:
...
typename :: opt nested-name-specifier identifier full-template-argument-listopt

full-template-argument-list:
< template-argument-list>

explicit-instantiation:
template declaration

specialization:
declaration

template-parameter:
type-parameter
parameter-declaration

A.12 Templates DRAFT: 28 April 1995 Grammar summary A– 15

type-parameter:
class identifieropt

class identifieropt = type-id
typename identifieropt

typename identifieropt = type-id
template < template-parameter-list> class identifieropt

template < template-parameter-list> class identifieropt = template-name

[gram.except] A.13 Exception handling

try-block:
try compound-statement handler-seq

function-try-block:
try ctor-initializer-opt function-body handler-seq

handler-seq:
handler handler-seqopt

handler:
catch (exception-declaration) compound-statement

exception-declaration:
type-specifier-seq declarator
type-specifier-seq abstract-declarator
type-specifier-seq
...

throw-expression:
throw assignment-expressionopt

exception-specification:
throw (type-id-listopt)

type-id-list:
type-id
type-id-list , type-id

_ ___ ___

Annex B (informative)
Implementation quantities [limits]
_ ___ ___

1 Because computers are finite, C + + implementations are inevitably limited in the size of the programs they
can successfully process. Every implementation shall document those limitations where known. This doc-
umentation may cite fixed limits where they exist, say how to compute variable limits as a function of
available resources, or say that fixed limits do not exist or are unknown.

2 The limits may constrain quantities that include those described below or others. The bracketed number
following each quantity is recommended as the minimum for that quantity. However, these quantities are
only guidelines and do not determine compliance.

— Nesting levels of compound statements, iteration control structures, and selection control structures
[256].

— Nesting levels of conditional inclusion [256].

— Pointer, array, and function declarators (in any combination) modifying an arithmetic, structure, union,
or incomplete type in a declaration [256].

— Nesting levels of parenthesized expressions within a full expression [256].

— Number of initial characters in an internal identifier or macro name [1 024].

— Number of initial characters in an external identifier [1 024].

— External identifiers in one translation unit [65 536].

— Identifiers with block scope declared in one block [1 024].

— Macro identifiers simultaneously defined in one transation unit [65 536].

— Parameters in one function definition [256].

— Arguments in one function call [256].

— Parameters in one macro definition [256].

— Arguments in one macro invocation [256].

— Characters in one logical source line [65 536].

— Characters in a character string literal or wide string literal (after concatenation) [65 536].

— Size of an object [262 144].

— Nesting levels for#include files [256].

— Case labels for aswitch statement (excluding those for any nestedswitch statements) [16 384].

— Data members in a single class, structure, or union [16 384].

— Enumeration constants in a single enumeration [4 096].

— Levels of nested class, structure, or union definitions in a singlestruct-declaration-list[256].

— Functions registered byatexit() [32].

B– 2 Implementation quantities DRAFT: 28 April 1995 B Implementation quantities

— Direct and indirect base classes [16 384].

— Direct base classes for a single class [1 024].

— Members declared in a single class [4 096].

— Final overriding virtual functions in a class, accessible or not [16 384].

— Direct and indirect virtual bases of a class [1 024].

— Static members of a class [1 024].

— Friend declarations in a class [4 096].

— Access control declarations in a class [4 096].

— Member initializers in a constructor definition [6 144].

— Scope qualifications of one identifier [256].

— Nested external specifications [1 024].

— Template arguments in a template declaration [1 024].

— Recursively nested template instantiations [17].

— Handlers pertry block [256].

— Throw specifications on a single function declaration [256].

_ ___ ___

Annex C (informative)
Compatibility [diff]
_ ___ ___

1 This Annex summarizes the evolution of C + + since the first edition ofThe C + + Programming Language
and explains in detail the differences between C + + and C. Because the C language as described by this
International Standard differs from the dialects of Classic C used up till now, we discuss the differences
between C + + and ISO C as well as the differences between C + + and Classic C.

2 C + + is based on C (K&R78) and adopts most of the changes specified by the ISO C standard. Converting
programs among C + +, K&R C, and ISO C may be subject to vicissitudes of expression evaluation. All dif-
ferences between C + + and ISO C can be diagnosed by a processor. With the exceptions listed in this
Annex, programs that are both C + + and ISO C have the same meaning in both languages.

[diff.c] C.1 Extensions

1 This subclause summarizes the major extensions to C provided by C + +.

[diff.early] C.1.1 C + + features available in 1985

1 This subclause summarizes the extensions to C provided by C + + in the 1985 version of its manual:

2 The types of function parameters can be specified (8.3.5) and will be checked (5.2.2). Type conversions
will be performed (5.2.2). This is also in ISO C.

3 Single-precision floating point arithmetic may be used forfloat expressions; 3.9.1 and 4.8. This is also
in ISO C.

4 Function names can be overloaded; 13.

5 Operators can be overloaded; 13.5.

6 Functions can be inline substituted; 7.1.2.

7 Data objects can beconst ; 7.1.5. This is also in ISO C.

8 Objects of reference type can be declared; 8.3.2 and 8.5.3.

9 A free store is provided by thenew anddelete operators; 5.3.4, 5.3.5.

10 Classes can provide data hiding (11), guaranteed initialization (12.1), user-defined conversions (12.3), and
dynamic typing through use of virtual functions (10.3).

11 The name of a class or enumeration is a type name; 9.

12 A pointer to any non-const and non-volatile object type can be assigned to avoid* ; 4.10. This is
also in ISO C.

13 A pointer to function can be assigned to avoid* ; 4.10.

14 A declaration within a block is a statement; 6.7.

15 Anonymous unions can be declared; 9.6.

C– 2 Compatibility DRAFT: 28 April 1995 C.1.2 C + + features added since 1985

[diff.c++] C.1.2 C + + features added since 1985

1 This subclause summarizes the major extensions of C + + since the 1985 version of this manual:

2 A class can have more than one direct base class (multiple inheritance); 10.1.

3 Class members can beprotected ; 11 .

4 Pointers to class members can be declared and used; 8.3.3, 5.5.

5 Operatorsnew anddelete can be overloaded and declared for a class; 5.3.4, 5.3.5, 12.5. This allows the
“assignment tothis ” technique for class specific storage management to be removed to the anachronism
subclause; C.3.3.

6 Objects can be explicitly destroyed; 12.4.

7 Assignment and initialization are defined as memberwise assignment and initialization; 12.8.

8 Theoverload keyword was made redundant and moved to the anachronism subclause; C.3.

9 General expressions are allowed as initializers for static objects; 8.5.

10 Data objects can bevolatile ; 7.1.5. Also in ISO C.

11 Initializers are allowed forstatic class members; 9.5.

12 Member functions can bestatic ; 9.5.

13 Member functions can beconst andvolatile ; 9.4.2.

14 Linkage to non-C + + program fragments can be explicitly declared; 7.5.

15 Operators-> , ->* , and, can be overloaded; 13.5.

16 Classes can be abstract; 10.4.

17 Prefix and postfix application of++ and-- on a user-defined type can be distinguished.

18 Templates; 14.

19 Exception handling; 15.

20 Thebool type (3.9.1).

[diff.iso] C.2 C + + and ISO C

1 The subclauses of this subclause list the differences between C + + and ISO C, by the chapters of this docu-
ment.

[diff.lex] C.2.1 Clause 2: lexical conventions

Subclause 2.2

1 Change:C + + style comments (//) are added
A pair of slashes now introduce a one-line comment.
Rationale: This style of comments is a useful addition to the language.
Effect on original feature: Change to semantics of well-defined feature. A valid ISO C expression con-
taining a division operator followed immediately by a C-style comment will now be treated as a C + + style
comment. For example:

{
int a = 4;
int b = 8 //* divide by a*/ a;
+a;

}

C.2.1 Clause 2: lexical conventions DRAFT: 28 April 1995 Compatibility C– 3

Difficulty of converting: Syntactic transformation. Just add white space after the division operator.
How widely used:The token sequence//* probably occurs very seldom.

Subclause 2.8

2 Change:New Keywords
New keywords are added to C + +; see 2.8.
Rationale: These keywords were added in order to implement the new semantics of C + +.
Effect on original feature: Change to semantics of well-defined feature. Any ISO C programs that used
any of these keywords as identifiers are not valid C + + programs.
Difficulty of converting: Syntactic transformation. Converting one specific program is easy. Converting a
large collection of related programs takes more work.
How widely used:Common.

Subclause 2.9.2

3 Change:Type of character literal is changed fromint to char
Rationale: This is needed for improved overloaded function argument type matching. For example:

int function(int i);
int function(char c);

function(’x’);

It is preferable that this call match the second version of function rather than the first.
Effect on original feature: Change to semantics of well-defined feature. ISO C programs which depend
on

sizeof(’x’) == sizeof(int)

will not work the same as C + + programs.
Difficulty of converting: Simple.
How widely used:Programs which depend uponsizeof(’x’) are probably rare.

[diff.basic] C.2.2 Clause 3: basic concepts

Subclause 3.1

1 Change:C + + does not have“tentative definitions” as in C
E.g., at file scope,

int i;
int i;

is valid in C, invalid in C + +. This makes it impossible to define mutually referential file-local static objects,
if initializers are restricted to the syntactic forms of C. For example,

struct X { int i; struct X *next; };

static struct X a;
static struct X b = { 0, &a };
static struct X a = { 1, &b };

Rationale: This avoids having different initialization rules for built-in types and user-defined types.
Effect on original feature: Deletion of semantically well-defined feature.
Difficulty of converting: Semantic transformation. In C + +, the initializer for one of a set of mutually-
referential file-local static objects must invoke a function call to achieve the initialization.
How widely used:Seldom.

C– 4 Compatibility DRAFT: 28 April 1995 C.2.2 Clause 3: basic concepts

Subclause 3.3

2 Change:A struct is a scope in C + +, not in C
Rationale: Class scope is crucial to C + +, and a struct is a class.
Effect on original feature: Change to semantics of well-defined feature.
Difficulty of converting: Semantic transformation.
How widely used:C programs usestruct extremely frequently, but the change is only noticeable when
struct , enumeration, or enumerator names are referred to outside thestruct . The latter is probably
rare.

Subclause 3.5 [also 7.1.5]

3 Change:A name of file scope that is explicitly declaredconst , and not explicitly declaredextern , has
internal linkage, while in C it would have external linkage
Rationale: Becauseconst objects can be used as compile-time values in C + +, this feature urges program-
mers to provide explicit initializer values for eachconst . This feature allows the user to putconst
objects in header files that are included in many compilation units.
Effect on original feature: Change to semantics of well-defined feature.
Difficulty of converting: Semantic transformation
How widely used:Seldom

Subclause 3.6

4 Change:Main cannot be called recursively and cannot have its address taken
Rationale: The main function may require special actions.
Effect on original feature: Deletion of semantically well-defined feature
Difficulty of converting: Trivial: create an intermediary function such asmymain(argc, argv) .
How widely used:Seldom

Subclause 3.9

5 Change:C allows“compatible types” in several places, C + + does not
For example, otherwise-identicalstruct types with different tag names are“compatible” in C but are dis-
tinctly different types in C + +.
Rationale: Stricter type checking is essential for C + +.
Effect on original feature: Deletion of semantically well-defined feature.
Difficulty of converting: Semantic transformation The“typesafe linkage” mechanism will find many, but
not all, of such problems. Those problems not found by typesafe linkage will continue to function properly,
according to the“layout compatibility rules” of this International Standard.
How widely used:Common.

Subclause 4.10

6 Change:Convertingvoid* to a pointer-to-object type requires casting

char a[10];
void *b=a;
void foo() {
char *c=b;
}

ISO C will accept this usage of pointer to void being assigned to a pointer to object type. C + + will not.
Rationale: C + + tries harder than C to enforce compile-time type safety.
Effect on original feature: Deletion of semantically well-defined feature.

C.2.2 Clause 3: basic concepts DRAFT: 28 April 1995 Compatibility C– 5

Difficulty of converting: Could be automated. Violations will be diagnosed by the C + + translator. The fix
is to add a cast. For example:

char *c = (char *) b;

How widely used: This is fairly widely used but it is good programming practice to add the cast when
assigning pointer-to-void to pointer-to-object. Some ISO C translators will give a warning if the cast is not
used.

Subclause 4.10

7 Change:Only pointers to non-const and non-volatile objects may be implicitly converted tovoid*
Rationale: This improves type safety.
Effect on original feature: Deletion of semantically well-defined feature.
Difficulty of converting: Could be automated. A C program containing such an implicit conversion from
(e.g.) pointer-to-const-object to void* will receive a diagnostic message. The correction is to add an
explicit cast.
How widely used:Seldom.

[diff.expr] C.2.3 Clause 5: expressions

Subclause 5.2.2

1 Change:Implicit declaration of functions is not allowed
Rationale: The type-safe nature of C + +.
Effect on original feature: Deletion of semantically well-defined feature. Note: the original feature was
labeled as“obsolescent” in ISO C.
Difficulty of converting: Syntactic transformation. Facilities for producing explicit function declarations
are fairly widespread commercially.
How widely used:Common.

Subclause 5.3.3, 5.4

2 Change:Types must be declared in declarations, not in expressions
In C, a sizeof expression or cast expression may create a new type. For example,

p = (void*)(struct x {int i;} *)0;

declares a new type, struct x .
Rationale: This prohibition helps to clarify the location of declarations in the source code.
Effect on original feature: Deletion of a semantically well-defined feature.
Difficulty of converting: Syntactic transformation.
How widely used:Seldom.

[diff.stat] C.2.4 Clause 6: statements

Subclause 6.4.2, 6.6.4 (switch and goto statements)

1 Change: It is now invalid to jump past a declaration with explicit or implicit initializer (except across
entire block not entered)
Rationale: Constructors used in initializers may allocate resources which need to be de-allocated upon
leaving the block. Allowing jump past initializers would require complicated run-time determination of
allocation. Furthermore, any use of the uninitialized object could be a disaster. With this simple compile-
time rule, C + + assures that if an initialized variable is in scope, then it has assuredly been initialized.
Effect on original feature: Deletion of semantically well-defined feature.

C– 6 Compatibility DRAFT: 28 April 1995 C.2.4 Clause 6: statements

Difficulty of converting: Semantic transformation.
How widely used:Seldom.

Subclause 6.6.3

2 Change: It is now invalid to return (explicitly or implicitly) from a function which is declared to return a
value without actually returning a value
Rationale: The caller and callee may assume fairly elaborate return-value mechanisms for the return of
class objects. If some flow paths execute a return without specifying any value, the processor must embody
many more complications. Besides, promising to return a value of a given type, and then not returning such
a value, has always been recognized to be a questionable practice, tolerated only because very-old C had no
distinction between void functions and int functions.
Effect on original feature: Deletion of semantically well-defined feature.
Difficulty of converting: Semantic transformation. Add an appropriate return value to the source code,
e.g. zero.
How widely used:Seldom. For several years, many existing C processors have produced warnings in this
case.

[diff.dcl] C.2.5 Clause 7: declarations

Subclause 7.1.1

1 Change:In C + +, thestatic or extern specifiers can only be applied to names of objects or functions
Using these specifiers with type declarations is illegal in C + +. In C, these specifiers are ignored when used
on type declarations. Example:

static struct S { // valid C, invalid in C + +
int i;
// ...
};

Rationale: Storage class specifiers don’t have any meaning when associated with a type. In C + +, class
members can be defined with thestatic storage class specifier. Allowing storage class specifiers on
type declarations could render the code confusing for users.
Effect on original feature: Deletion of semantically well-defined feature.
Difficulty of converting: Syntactic transformation.
How widely used:Seldom.

Subclause 7.1.3

2 Change: A C + + typedef name must be different from any class type name declared in the same scope
(except if the typedef is a synonym of the class name with the same name). In C, a typedef name and a
struct tag name declared in the same scope can have the same name (because they have different name
spaces)
Example:

typedef struct name1 { /*...*/ } name1; // valid C and C + +
struct name { /*...*/ };
typedef int name; // valid C, invalid C + +

Rationale: For ease of use, C + + doesn’t require that a type name be prefixed with the keywordsclass ,
struct or union when used in object declarations or type casts. Example:

class name { /*...*/ };
name i; // i has type ’class name’

Effect on original feature: Deletion of semantically well-defined feature.

C.2.5 Clause 7: declarations DRAFT: 28 April 1995 Compatibility C– 7

Difficulty of converting: Semantic transformation. One of the 2 types has to be renamed.
How widely used:Seldom.

Subclause 7.1.5 [see also 3.5]

3 Change:const objects must be initialized in C + + but can be left uninitialized in C
Rationale: A const object cannot be assigned to so it must be initialized to hold a useful value.
Effect on original feature: Deletion of semantically well-defined feature.
Difficulty of converting: Semantic transformation.
How widely used:Seldom.

Subclause 7.1.5 (type specifiers)

4 Change:Banning implicit int
In C + + a decl-specifier-seqmust contain atype-specifier. In the following example, the left-hand column
presents valid C; the right-hand column presents equivalent C + +:

void f(const parm); void f(const int parm);
const n = 3; const int n = 3;
main() int main()

/* ... */ /* ... */

Rationale: In C + +, implicit int creates several opportunities for ambiguity between expressions involving
function-like casts and declarations. Explicit declaration is increasingly considered to be proper style.
Liaison with WG14 (C) indicated support for (at least) deprecating implicit int in the next revision of C.
Effect on original feature: Deletion of semantically well-defined feature.
Difficulty of converting: Syntactic transformation. Could be automated.
How widely used:Common.

Subclause 7.2

5 Change:C + + objects of enumeration type can only be assigned values of the same enumeration type. In C,
objects of enumeration type can be assigned values of any integral type
Example:

enum color { red, blue, green };
color c = 1; // valid C, invalid C + +

Rationale: The type-safe nature of C + +.
Effect on original feature: Deletion of semantically well-defined feature.
Difficulty of converting: Syntactic transformation. (The type error produced by the assignment can be
automatically corrected by applying an explicit cast.)
How widely used:Common.

Subclause 7.2

6 Change:In C + +, the type of an enumerator is its enumeration. In C, the type of an enumerator isint .
Example:

enum e { A };
sizeof(A) == sizeof(int) // in C
sizeof(A) == sizeof(e) // in C + +
/* and sizeof(int) is not necessary equal to sizeof(e) */

Rationale: In C + +, an enumeration is a distinct type.
Effect on original feature: Change to semantics of well-defined feature.
Difficulty of converting: Semantic transformation.

C– 8 Compatibility DRAFT: 28 April 1995 C.2.5 Clause 7: declarations

How widely used:Seldom. The only time this affects existing C code is when the size of an enumerator is
taken. Taking the size of an enumerator is not a common C coding practice.

[diff.decl] C.2.6 Clause 8: declarators

Subclause 8.3.5

1 Change:In C + +, a function declared with an empty parameter list takes no arguments.
In C, an empty parameter list means that the number and type of the function arguments are unknown"
Example:

int f(); // means int f(void) in C + +
// int f(unknown) in C

Rationale: This is to avoid erroneous function calls (i.e. function calls with the wrong number or type of
arguments).
Effect on original feature: Change to semantics of well-defined feature. This feature was marked as
“obsolescent” in C.
Difficulty of converting: Syntactic transformation. The function declarations using C incomplete declara-
tion style must be completed to become full prototype declarations. A program may need to be updated
further if different calls to the same (non-prototype) function have different numbers of arguments or if the
type of corresponding arguments differed.
How widely used:Common.

Subclause 8.3.5 [see 5.3.3]

2 Change: In C + +, types may not be defined in return or parameter types. In C, these type definitions are
allowed
Example:

void f(struct S { int a; } arg) {} // valid C, invalid C + +
enum E { A, B, C } f() {} // valid C, invalid C + +

Rationale: When comparing types in different compilation units, C + + relies on name equivalence when C
relies on structural equivalence. Regarding parameter types: since the type defined in an parameter list
would be in the scope of the function, the only legal calls in C + + would be from within the function itself.
Effect on original feature: Deletion of semantically well-defined feature.
Difficulty of converting: Semantic transformation. The type definitions must be moved to file scope, or in
header files.
How widely used:Seldom. This style of type definitions is seen as poor coding style.

Subclause 8.4

3 Change: In C + +, the syntax for function definition excludes the“old-style” C function. In C,“old-style”
syntax is allowed, but deprecated as“obsolescent.”
Rationale: Prototypes are essential to type safety.
Effect on original feature: Deletion of semantically well-defined feature.
Difficulty of converting: Syntactic transformation.
How widely used:Common in old programs, but already known to be obsolescent.

Subclause 8.5.2

4 Change: In C + +, when initializing an array of character with a string, the number of characters in the string
(including the terminating’\0’) must not exceed the number of elements in the array. In C, an array can
be initialized with a string even if the array is not large enough to contain the string terminating’\0’

C.2.6 Clause 8: declarators DRAFT: 28 April 1995 Compatibility C– 9

Example:

char array[4] = "abcd"; // valid C, invalid C + +

Rationale: When these non-terminated arrays are manipulated by standard string routines, there is potential
for major catastrophe.
Effect on original feature: Deletion of semantically well-defined feature.
Difficulty of converting: Semantic transformation. The arrays must be declared one element bigger to
contain the string terminating’\0’ .
How widely used:Seldom. This style of array initialization is seen as poor coding style.

[diff.class] C.2.7 Clause 9: classes

Subclause 9.1 [see also 7.1.3]

1 Change: In C + +, a class declaration introduces the class name into the scope where it is declared and hides
any object, function or other declaration of that name in an enclosing scope. In C, an inner scope declara-
tion of a struct tag name never hides the name of an object or function in an outer scope
Example:

int x[99];
void f()
{

struct x { int a; };
sizeof(x); /* size of the array in C */
/* size of the struct in C + + */

}

Rationale: This is one of the few incompatibilities between C and C + + that can be attributed to the new C + +
name space definition where a name can be declared as a type and as a nontype in a single scope causing
the nontype name to hide the type name and requiring that the keywordsclass , struct , union or
enum be used to refer to the type name. This new name space definition provides important notational
conveniences to C + + programmers and helps making the use of the user-defined types as similar as possible
to the use of built-in types. The advantages of the new name space definition were judged to outweigh by
far the incompatibility with C described above.
Effect on original feature: Change to semantics of well-defined feature.
Difficulty of converting: Semantic transformation. If the hidden name that needs to be accessed is at glo-
bal scope, the:: C + + operator can be used. If the hidden name is at block scope, either the type or the
struct tag has to be renamed.
How widely used:Seldom.

Subclause 9.8

2 Change: In C + +, the name of a nested class is local to its enclosing class. In C the name of the nested class
belongs to the same scope as the name of the outermost enclosing class
Example:

struct X {
struct Y { /* ... */ } y;

};
struct Y yy; // valid C, invalid C + +

Rationale: C + + classes have member functions which require that classes establish scopes. The C rule
would leave classes as an incomplete scope mechanism which would prevent C + + programmers from main-
taining locality within a class. A coherent set of scope rules for C + + based on the C rule would be very
complicated and C + + programmers would be unable to predict reliably the meanings of nontrivial examples
involving nested or local functions.
Effect on original feature: Change of semantics of well-defined feature.

C– 10 Compatibility DRAFT: 28 April 1995 C.2.7 Clause 9: classes

Difficulty of converting: Semantic transformation. To make the struct type name visible in the scope of
the enclosing struct, the struct tag could be declared in the scope of the enclosing struct, before the enclos-
ing struct is defined. Example:

struct Y; // struct Y and struct X are at the same scope
struct X {

struct Y { /* ... */ } y;
};

All the definitions of C struct types enclosed in other struct definitions and accessed outside the scope of
the enclosing struct could be exported to the scope of the enclosing struct. Note: this is a consequence of
the difference in scope rules, which is documented at subclause 3.3 above.
How widely used:Seldom.

Subclause 9.10

3 Change: In C + +, a typedef name may not be redefined in a class declaration after being used in the declara-
tion
Example:

typedef int I;
struct S {

I i;
int I; // valid C, invalid C + +

};

Rationale: When classes become complicated, allowing such a redefinition after the type has been used can
create confusion for C + + programmers as to what the meaning of ’I’ really is.
Effect on original feature: Deletion of semantically well-defined feature.
Difficulty of converting: Semantic transformation. Either the type or the struct member has to be
renamed.
How widely used:Seldom.

[diff.special] C.2.8 Clause 12: special member functions

Subclause 12.8 (copying class objects)

1 Change:Copying volatile objects
The implicitly-declared copy constructor and implicitly-declared copy assignment operator cannot make a
copy of a volatile lvalue. For example, the following is valid in ISO C:

struct X { int i; };
struct X x1, x2;
volatile struct X x3 = {0};
x1 = x3; // invalid C++
x2 = x3; // also invalid C++

Rationale: Several alternatives were debated at length. Changing the parameter tovolatile const X&
would greatly complicate the generation of efficient code for class objects. Discussion of providing two
alternative signatures for these implicitly-defined operations raised unanswered concerns about creating
ambiguities and complicating the rules that specify the formation of these operators according to the bases
and members.
Effect on original feature: Deletion of semantically well-defined feature.
Difficulty of converting: Semantic transformation. If volatile semantics are required for the copy, a user-
declared constructor or assignment must be provided. If non-volatile semantics are required, an explicit
const_cast can be used.
How widely used:Seldom.

C.2.9 Clause 16: preprocessing directives DRAFT: 28 April 1995 Compatibility C– 11

[diff.cpp] C.2.9 Clause 16: preprocessing directives

Subclause 16.8 (predefined names)

1 Change:Whether_ _STDC_ _ is defined and if so, what its value is, are implementation-defined
Rationale: C + + is not identical to ISO C. Mandating that_ _STDC_ _ be defined would require that transla-
tors make an incorrect claim. Each implementation must choose the behavior that will be most useful to its
marketplace.
Effect on original feature: Change to semantics of well-defined feature.
Difficulty of converting: Semantic transformation.
How widely used:Programs and headers that reference_ _STDC_ _ are quite common.

[diff.anac] C.3 Anachronisms

1 The extensions presented here may be provided by an implementation to ease the use of C programs as C + +
programs or to provide continuity from earlier C + + implementations. Note that each of these features has
undesirable aspects. An implementation providing them should also provide a way for the user to ensure
that they do not occur in a source file. A C + + implementation is not obliged to provide these features.

2 The wordoverload may be used as adecl-specifier(7) in a function declaration or a function definition.
When used as adecl-specifier, overload is a reserved word and cannot also be used as an identifier.

3 The definition of a static data member of a class for which initialization by default to all zeros applies (8.5,
9.5) may be omitted.

4 An old style (that is, pre-ISO C) C preprocessor may be used.

5 An int may be assigned to an object of enumeration type.

6 The number of elements in an array may be specified when deleting an array of a type for which there is no
destructor; 5.3.5.

7 A single functionoperator++() may be used to overload both prefix and postfix++ and a single func-
tion operator--() may be used to overload both prefix and postfix-- ; 13.5.6.

8
[diff.fct.def] C.3.1 Old style function definitions

1 The C function definition syntax

old-function-definition:
decl-specifiersopt old-function-declarator declaration-seqopt function-body

old-function-declarator:
declarator (parameter-listopt)

parameter-list:
identifier
parameter-list , identifier

For example,

max(a,b) int b; { return (a<b) ? b : a; }

may be used. If a function defined like this has not been previously declared its parameter type will be
taken to be(...) , that is, unchecked. If it has been declared its type must agree with that of the declara-
tion.

2 Class member functions may not be defined with this syntax.

C– 12 Compatibility DRAFT: 28 April 1995 C.3.2 Old style base class initializer

[diff.base.init] C.3.2 Old style base class initializer

1 In a mem-initializer(12.6.2), theclass-namenaming a base class may be left out provided there is exactly
one immediate base class. For example,

class B {
// ...

public:
B (int);

};

class D : public B {
// ...
D(int i) : (i) { /* ... */ }

};

causes theB constructor to be called with the argumenti .

[diff.this] C.3.3 Assignment tothis

1 Memory management for objects of a specific class can be controlled by the user by suitable assignments to
the this pointer. By assigning to thethis pointer before any use of a member, a constructor can imple-
ment its own storage allocation. By assigning the null pointer tothis , a destructor can avoid the standard
deallocation operation for objects of its class. Assigning the null pointer tothis in a destructor also sup-
pressed the implicit calls of destructors for bases and members. For example,

class Z {
int z[10];
Z() { this = my_allocator(sizeof(Z)); }
~Z() { my_deallocator(this); this = 0; }

};

2 On entry into a constructor,this is nonnull if allocation has already taken place (as it will have forauto ,
static , and member objects) and null otherwise.

3 Calls to constructors for a base class and for member objects will take place (only) after an assignment to
this . If a base class’s constructor assigns tothis , the new value will also be used by the derived class’s
constructor (if any).

4 Note that if this anachronism exists either the type of thethis pointer cannot be a*const or the enforce-
ment of the rules for assignment to a constant pointer must be subverted for thethis pointer.

[diff.bound] C.3.4 Cast of bound pointer

1 A pointer to member function for a particular object may be cast into a pointer to function, for example,
(int(*)())p->f . The result is a pointer to the function that would have been called using that member
function for that particular object. Any use of the resulting pointer is– as ever– undefined.

[diff.class.nonnested] C.3.5 Nonnested classes

1 Where a class is declared within another class and no other class of that name is declared in the program
that class can be used as if it was declared outside its enclosing class (exactly as a Cstruct). For exam-
ple,

C.3.5 Nonnested classes DRAFT: 28 April 1995 Compatibility C– 13

struct S {
struct T {

int a;
};
int b;

};

struct T x; // meaning ‘S::T x;’

[diff.library] C.4 Standard C library

1 This subclause summarizes the contents of the C + + Standard library included from the Standard C library.
It also summarizes the explicit changes in definitions, declarations, or behavior from the ISO/IEC
9899:1990 and ISO/IEC 9899:1990/DAM 1 noted in other subclauses (17.3.1.2, 18.1, 21.2).

2 The C + + Standard library provides 54 standard macros from the C library, as shown in Table 85.

3 The header names (enclosed in< and>) indicate that the macro may be defined in more than one header.
All such definitions are equivalent (3.2).

Table 85—Standard Macros
_ __
assert HUGE_VAL NULL <cstring> SIGILL va_arg

BUFSIZ LC_ALL NULL <ctime> SIGINT va_end

CLOCKS_PER_SEC LC_COLLATE NULL <cwchar> SIGSEGV va_start

EDOM LC_CTYPE offsetof SIGTERM WCHAR_MAX

EOF LC_MONETARY RAND_MAX SIG_DFL WCHAR_MIN

ERANGE LC_NUMERIC SEEK_CUR SIG_ERR WEOF <cwchar>

errno LC_TIME SEEK_END SIG_IGN WEOF <cwctype>

EXIT_FAILURE L_tmpnam SEEK_SET stderr _IOFBF

EXIT_SUCCESS MB_CUR_MAX setjmp stdin _IOLBF

FILENAME_MAX NULL <cstddef> SIGABRT stdout _IONBF

FOPEN_MAX NULL <cstdio> SIGFPE TMP_MAX_ __

4 The C + + Standard library provides 45 standard values from the C library, as shown in Table 86:

Table 86—Standard Values
_ __
CHAR_BIT FLT_DIG INT_MIN MB_LEN_MAX

CHAR_MAX FLT_EPSILON LDBL_DIG SCHAR_MAX

CHAR_MIN FLT_MANT_DIG LDBL_EPSILON SCHAR_MIN

DBL_DIG FLT_MAX LDBL_MANT_DIG SHRT_MAX

DBL_EPSILON FLT_MAX_10_EXP LDBL_MAX SHRT_MIN

DBL_MANT_DIG FLT_MAX_EXP LDBL_MAX_10_EXP UCHAR_MAX

DBL_MAX FLT_MIN LDBL_MAX_EXP UINT_MAX

DBL_MAX_10_EXP FLT_MIN_10_EXP LDBL_MIN ULONG_MAX

DBL_MAX_EXP FLT_MIN_EXP LDBL_MIN_10_EXP USHRT_MAX

DBL_MIN FLT_RADIX LDBL_MIN_EXP

DBL_MIN_10_EXP FLT_ROUNDS LONG_MAX

DBL_MIN_EXP INT_MAX LONG_MIN_ __

5 The C + + Standard library provides 19 standard types from the C library, as shown in Table 87:

C– 14 Compatibility DRAFT: 28 April 1995 C.4 Standard C library

Table 87—Standard Types
_ __
clock_t ldiv_t size_t <cstdio> wctrans_t

div_t mbstate_t size_t <cstring> wctype_t

FILE ptrdiff_t<cstddef> size_t <ctime> wint_t <cwchar>

fpos_t sig_atomic_t time_t wint_t <cwctype>

jmp_buf size_t <cstddef> va_list_ __

6 The C + + Standard library provides 2 standard structures from the C library, as shown in Table 88:

Table 88—Standard Structs
_ _____________________
lconv tm <ctime>_ _____________________

7 The C + + Standard library provides 208 standard functions from the C library, as shown in Table 89:

Table 89—Standard Functions

abort fgetpos gmtime log10 rewind strtok wcscspn

abs fgets isalnum longjmp scanf strtol wcsftime

acos fgetwc isalpha malloc setbuf strxfrm wcslen

asctime fgetws iscntrl mblen setlocale swprintf wcsncat

asin floor isdigit mbrlen setvbuf swscanf wcsncmp

atan fmod isgraph mbrtowc signal system wcsncpy

atan2 fopen islower mbsinit sin tan wcspbrk

atexit fprintf isprint mbsrtowcs sinh tanh wcsrchr

atof fputc ispunct mbstowcs sprintf time wcsrtombs

atoi fputs isspace mbtowc sqrt tmpfile wcsspn

atol fputwc isupper memchr srand tmpnam wcsstr

bsearch fputws iswalnum memcmp sscanf tolower wcstod

btowc fread iswalpha memcpy strcat toupper wcstok

calloc free iswcntrl memmove strchr towctrans wcstol

ceil freopen iswctype memset strcmp towlower wcstombs

clearerr frexp iswdigit mktime strcoll towupper wcstoul

clock fscanf iswgraph modf strcpy ungetc wcsxfrm

cos fseek iswlower perror strcspn ungetwc wctob

cosh fsetpos iswprint pow strerror vfwprintf wctomb

ctime ftell iswpunct printf strftime vprintf wctrans

difftime fwide iswspace putc strlen vprintf wctype

div fwprintf iswupper puts strncat vsprintf wmemchr

exit fwrite iswxdigit putwc strncmp vswprintf wmemcmp

exp fwscanf isxdigit putwchar strncpy vwprintf wmemcpy

fabs getc labs qsort stroul wcrtomb wmemmove

fclose getchar ldexp raise strpbrk wcscat wmemset

feof getenv ldiv rand strrchr wcschr wprintf

ferror gets localeconv realloc strspn wcscmp wscanf

fflush getwc localtime remove strstr wcscoll

fgetc getwchar log rename strtod wcscpy___

C.4.1 Modifications to headers DRAFT: 28 April 1995 Compatibility C– 15

[diff.mods.to.headers] C.4.1 Modifications to headers

1 For compatibility with the Standard C library, the C + + Standard library provides the 18C headers(D.1), but
their use is deprecated in C + +.

[diff.mods.to.definitions] C.4.2 Modifications to definitions

[diff.wchar.t] C.4.2.1 Typewchar_t

1 wchar_t is a keyword in this International Standard (2.8). It does not appear as a type name defined in
any of<cstddef> , <cstdlib> , or<cwchar> (21.2).

[diff.header.iso646.h] C.4.2.2 Header<iso646.h>

1 The tokensand , and_eq , bitand , bitor , compl , not_eq , not , or , or_eq , andxor , Standard
(2.8). They do not appear as macro names defined in<ciso646> .

[diff.null] C.4.2.3 MacroNULL

1 The macroNULL, defined in any of<clocale> , <cstddef> , <cstdio> , <cstdlib> , <cstring> ,
<ctime> , or <cwchar> , is an implementation-defined C + + null-pointer constant in this International
Standard (18.1).254)

[diff.mods.to.declarations] C.4.3 Modifications to declarations

1 Header<cstring> : The following functions have different declarations:

— strchr

— strpbrk

— strrchr

— strstr

— memchr

2 Subclause (21.2) describes the changes.

[diff.mods.to.behavior] C.4.4 Modifications to behavior

1 Header<cstdlib> : The following functions have different behavior:

— atexit

— exit

Subclause (18.3) describes the changes.

2 Header<csetjmp> : The following functions have different behavior:

— longjmp

Subclause (18.7) describes the changes.

254)Possible definitions include0 and0L , but not(void*)0 .

C– 16 Compatibility DRAFT: 28 April 1995 C.4.4.1
Macro offsetof(type , member-designator)

[diff.offsetof] C.4.4.1 Macrooffsetof(type , member-designator)

1 The macrooffsetof , defined in<cstddef> , accepts a restricted set oftype arguments in this Inter-
national Standard. Subclause (18.1) describes the change.

[diff.malloc] C.4.4.2 Memory allocation functions

1 The functionscalloc , malloc , andrealloc are restricted in this International Standard. Subclause
(20.4.6) describes the changes.

_ ___ ___

Annex D (normative)
Compatibility features [depr]
_ ___ ___

1 This Clause describes features of the C + + Standard that are specified for compatibility with existing imple-
mentations.

[depr.c.headers] D.1 Standard C library headers

1 For compatibility with the Standard C library, the C + + Standard library provides the 18C headers, as shown
in Table 90:

Table 90—C Headers

<assert.h> <iso646.h> <setjmp.h> <stdio.h> <wchar.h>
<ctype.h> <limits.h> <signal.h> <stdlib.h> <wctype.h>
<errno.h> <locale.h> <stdarg.h> <string.h>
<float.h> <math.h> <stddef.h> <time.h>

2 Each C header, whose name has the formname.h , includes its corresponding C + + headercname, fol-
lowed by an explicitusing-declaration(7.3.3) for each name placed in the standard library namespace by
the header (17.3.1.2).

3 [Example:The header<cstdlib> provides its declarations and definitions within the namespacestd .
The header<stdlib.h> makes these available in the global name space, much as in the C Standard.
—end example]

[depr.ios.members] D.2 Old iostreams members

1 The following member names are in addition to names specified in Clause_lib.iostreams_:

namespace std {
class ios_base {
public:

typedef T1 io_state;
typedef T2 open_mode;
typedef T3 seek_dir;
// remainder unchanged

};
}

2 The typeio_state is a synonym for an integer type (indicated here asT1) that permits certain member
functions to overload others on parameters of typeiostate and provide the same behavior.

3 The typeopen_mode is a synonym for an integer type (indicated here asT2) that permits certain member
functions to overload others on parameters of typeopenmode and provide the same behavior.

D– 2 Compatibility features DRAFT: 28 April 1995 D.2 Old iostreams members

4 The typeseek_dir is a synonym for an integer type (indicated here asT3) that permits certain member
functions to overload others on parameters of typeiostate and provide the same behavior.

5 An implementation may provide the following additional member function, which has the effect of calling
sbumpc() (27.5.2.2.3):

namespace std {
template<class charT, class traits = ios_traits<charT> >
class basic_streambuf {
public:

void stossc();
// remainder unchanged

};
}

6 An implementation may provide the following member functions that overload signatures specified in
Clause_lib.iostreams_:

namespace std {
template<class charT, class Traits> class basic_ios {
public:

void clear(io_state state);
void setstate(io_state state);
// remainder unchanged

};

class ios_base {
public:

void exceptions(io_state);
// remainder unchanged

};

template<class charT, class traits = ios_traits<charT> >
class basic_streambuf {
public:

pos_type pubseekoff(off_type off , ios_base::seek_dir way,
ios_base::open_mode which = ios_base::in | ios_base::out);

pos_type pubseekpos(pos_type sp ,
ios_base::open_mode which = ios_base::in | ios_base::out);

// remainder unchanged
};

template <class charT, class traits = ios_traits<charT> >
class basic_filebuf : public basic_streambuf<charT,traits> {
public:

basic_filebuf<charT,traits>* open(const char* s, ios_base::open_mode mode);
// remainder unchanged

};

template <class charT, class traits = file_traits<charT> >
class basic_ifstream : public basic_istream<charT,traits> {
public:

void open(const char* s, open_mode mode = in);
// remainder unchanged

};

D.2 Old iostreams members DRAFT: 28 April 1995 Compatibility features D– 3

template <class charT, class traits = file_traits<charT> >
class basic_ofstream : public basic_ostream<charT,traits> {
public:

void open(const char* s, ios_base::open_mode mode = out | trunc);
// remainder unchanged

};

}

7 The effects of these functions is to call the corresponding member function specified in Clause
lib.iostreams.

[depr.str.strstreams] D.3 char* streams

1 The header<strstream> (and, as per D.1,<strstream.h>) defines three types that associate stream
buffers with character array objects and assist reading and writing such objects.

[depr.strstreambuf] D.3.1 Classstrstreambuf

namespace std {
class strstreambuf : public streambuf<char> {
public:

explicit strstreambuf(streamsize alsize_arg = 0);
strstreambuf(void* (* palloc_arg)(size_t), void (* pfree_arg)(void*));
strstreambuf(char* gnext_arg , streamsize n, char* pbeg_arg = 0);
strstreambuf(const char* gnext_arg , streamsize n);

strstreambuf(signed char* gnext_arg , streamsize n,
signed char* pbeg_arg = 0);

strstreambuf(const signed char* gnext_arg , streamsize n);
strstreambuf(unsigned char* gnext_arg , streamsize n,

unsigned char* pbeg_arg = 0);
strstreambuf(const unsigned char* gnext_arg , streamsize n);

virtual ~strstreambuf();

void freeze(bool = 1);
char* str();
int pcount();

protected:
virtual int_type overflow (int_type c = ios_traits<char>::eof());
virtual int_type pbackfail(int_type c = ios_traits<char>::eof());
virtual int_type underflow();
virtual pos_type seekoff(off_type off , ios_base::seekdir way,

ios_base::openmode which
= ios_base::in | ios_base::out);

virtual pos_type seekpos(pos_type sp , ios_base::openmode which
= ios_base::in | ios_base::out);

virtual streambuf<char>* setbuf(char* s, streamsize n);

D– 4 Compatibility features DRAFT: 28 April 1995 D.3.1 Classstrstreambuf

private:
// typedef T1 strstate ; exposition only
// static const strstate allocated ; exposition only
// static const strstate constant ; exposition only
// static const strstate dynamic ; exposition only
// static const strstate frozen ; exposition only
// strstate strmode ; exposition only
// streamsize alsize ; exposition only
// void* (* palloc)(size_t); exposition only
// void (* pfree)(void*); exposition only

};
}

1 The classstrstreambuf associates the input sequence, and possibly the output sequence, with an object
of some character array type, whose elements store arbitrary values. The array object has several
attributes.

2 [Note:For the sake of exposition, these are represented as elements of a bitmask type (indicated here asT1)
calledstrstate . The elements are:

— allocated , set when a dynamic array object has been allocated, and hence should be freed by the
destructor for thestrstreambuf object;

— constant , set when the array object hasconst elements, so the output sequence cannot be written;

— dynamic , set when the array object is allocated (or reallocated) as necessary to hold a character
sequence that can change in length;

— frozen , set when the program has requested that the array object not be altered, reallocated, or freed.
—end note]

3 [Note:For the sake of exposition, the maintained data is presented here as:

— strstate strmode , the attributes of the array object associated with thestrstreambuf object;

— int alsize , the suggested minimum size for a dynamic array object;

— void* (* palloc)(size_t) , points to the function to call to allocate a dynamic array object;

— void (* pfree)(void*) , points to the function to call to free a dynamic array object.—end note]

4 Each object of classstrstreambuf has aseekable area, delimited by the pointersseeklow and
seekhigh . If gnext is a null pointer, the seekable area is undefined. Otherwise,seeklow equals
gbeg and seekhigh is eitherpend , if pend is not a null pointer, orgend .

[depr.strstreambuf.cons] D.3.1.1 strstreambuf constructors

explicit strstreambuf(streamsize alsize_arg = 0);

Effects: Constructs an object of classstrstreambuf , initializing the base class withstreambuf() .
The postconditions of this function are indicated in Table 91:

Table 91—strstreambuf(streamsize) effects
_ _________________________

Element Value_ __________________________ _________________________
strmode dynamic
alsize alsize_arg
palloc a null pointer
pfree a null pointer_ _________________________

D.3.1.1 strstreambuf constructors DRAFT: 28 April 1995 Compatibility features D– 5

strstreambuf(void* (* palloc_arg)(size_t), void (* pfree_arg)(void*));

Effects: Constructs an object of classstrstreambuf , initializing the base class withstreambuf() .
The postconditions of this function are indicated in Table 92:

Table 92—strstreambuf(void* (*)(size_t),void (*)(void*) effects
_ _____________________________

Element Value_ ______________________________ _____________________________
strmode dynamic
alsize an unspecified value
palloc palloc_arg
pfree pfree_arg_ _____________________________

strstreambuf(char* gnext_arg , streamsize n, char * pbeg_arg = 0);
strstreambuf(signed char* gnext_arg , streamsize n,

signed char * pbeg_arg = 0);
strstreambuf(unsigned char* gnext_arg , streamsize n,

unsigned char * pbeg_arg = 0);

Effects: Constructs an object of classstrstreambuf , initializing the base class withstreambuf() .
The postconditions of this function are indicated in Table 93:

Table 93—strstreambuf(charT*,streamsize,charT*) effects
_ _____________________________

Element Value_ ______________________________ _____________________________
strmode 0
alsize an unspecified value
palloc a null pointer
pfree a null pointer_ _____________________________

1 gnext_arg shall point to the first element of an array object whose number of elementsN is determined
as follows:

— If n > 0 , N is n.

— If n == 0 , N is ::strlen(gnext_arg) .

— If n < 0 , N is INT_MAX.255)

2 If pbeg_arg is a null pointer, the function executes:

setg(gnext_arg , gnext_arg , gnext_arg + N);

3 Otherwise, the function executes:

setg(gnext_arg , gnext_arg , pbeg_arg);
setp(pbeg_arg , pbeg_arg + N);

255) The function signaturestrlen(const char*) is declared in<cstring> . (21.2). The macroINT_MAX is defined in
<climits> (18.2).

D– 6 Compatibility features DRAFT: 28 April 1995 D.3.1.1 strstreambuf constructors

strstreambuf(const char* gnext_arg , streamsize n);
strstreambuf(const signed char* gnext_arg , streamsize n);
strstreambuf(const unsigned char* gnext_arg , streamsize n);

Effects: Behaves the same asstrstreambuf((char*) gnext_arg , n) , except that the constructor
also setsconstant in strmode .

virtual ~strstreambuf();

Effects: Destroys an object of classstrstreambuf . The function frees the dynamically allocated array
object only if strmode & allocated != 0 and strmode & frozen == 0 . (Subclause
lib.strstreambuf.virtuals describes how a dynamically allocated array object is freed.)

[depr.strstreambuf.members] D.3.1.2 Member functions

void freeze(bool freezefl = 1);

Effects: If strmode & dynamic is non-zero, alters the freeze status of the dynamic array object as fol-
lows:

— If freezefl is false , the function setsfrozen in strmode .

— Otherwise, it clearsfrozen in strmode .

char* str();

Effects: Calls freeze() , then returns the beginning pointer for the input sequence,gbeg .
Notes: The return value can be a null pointer.

int pcount() const;

Effects: If the next pointer for the output sequence,pnext , is a null pointer, returns zero. Otherwise,
returns the current effective length of the array object as the next pointer minus the beginning pointer
for the output sequence,pnext - pbeg .

[depr.strstreambuf.virtuals] D.3.1.3 strstreambuf overridden virtual functions

int_type overflow(int_type c = ios_traits<char>::eof());

Effects: Appends the character designated byc to the output sequence, if possible, in one of two ways:

— If c != eof() and if either the output sequence has a write position available or the function makes a
write position available (as described below), assignsc to * pnext ++.
Returns(char) c .

— If c == eof() , there is no character to append.
Returns a value other thaneof() .

1 Returnseof() to indicate failure.
Notes: The function can alter the number of write positions available as a result of any call.

To make a write position available, the function reallocates (or initially allocates) an array object with a
sufficient number of elementsn to hold the current array object (if any), plus at least one additional
write position. How many additional write positions are made available is otherwise unspecified.256) If
palloc is not a null pointer, the function calls(* palloc)(n) to allocate the new dynamic array

256)An implementation should consideralsize in making this decision.

D.3.1.3 DRAFT: 28 April 1995 Compatibility features D– 7
strstreambuf overridden virtual functions

object. Otherwise, it evaluates the expressionnew charT[n] . In either case, if the allocation fails,
the function returnseof() . Otherwise, it setsallocated in strmode .

2 To free a previously existing dynamic array object whose first element address isp: If pfree is not a null
pointer, the function calls(* pfree)(p) . Otherwise, it evaluates the expressiondelete[] p.

3 If strmode & dynamic == 0 , or if strmode & frozen != 0 , the function cannot extend the
array (reallocate it with greater length) to make a write position available.

int_type pbackfail(int_type c = ios_traits<char>::eof());

4 Puts back the character designated byc to the input sequence, if possible, in one of three ways:

— If c != eof() , if the input sequence has a putback position available, and if(char) c ==
(char) gnext [-1] , assignsgnext - 1 to gnext .
Returns(char) c.

— If c != eof() , if the input sequence has a putback position available, and ifstrmode & con-
stant is zero, assignsc to *-- gnext .
Returns(char) c .

— If c == eof() and if the input sequence has a putback position available, assignsgnext - 1 to
gnext .
Returns(char) c .

5 Returnseof() to indicate failure.
Notes: If the function can succeed in more than one of these ways, it is unspecified which way is chosen.

The function can alter the number of putback positions available as a result of any call.

int_type underflow();

Effects: Reads a character from theinput sequence, if possible, without moving the stream position past it,
as follows:

— If the input sequence has a read position available the function signals success by returning
(char*) gnext .

— Otherwise, if the current write next pointerpnext is not a null pointer and is greater than the current
read end pointergend , makes aread positionavailable by: assigning togend a value greater than
gnext and no greater thanpnext .
Returns(char)* gnext .

6 Returnseof() to indicate failure.
Notes: The function can alter the number of read positions available as a result of any call.

pos_type seekoff(off_type off , seekdir way, openmode which = in | out);

Effects: Alters the stream position within one of the controlled sequences, if possible, as indicated in Table
94:

D– 8 Compatibility features DRAFT: 28 April 1995 D.3.1.3
strstreambuf overridden virtual functions

Table 94—seekoff positioning
_ __

Conditions Result_ ___ __
(which & ios::in) != 0 positions the input sequence_ __
(which & ios::out) != 0 positions the output sequence_ __
Otherwise,

positions both the input and the output sequences(which & (ios::in |
ios::out)) == (ios::in |
ios::out))
and way == either
ios::beg or ios::end_ __
Otherwise, the positioning operation fails._ __

7 For a sequence to be positioned, if its next pointer is a null pointer, the positioning operation fails. Other-
wise, the function determinesnewoff as indicated in Table 95:

Table 95—newoff values
_ ___

Condition newoff Value_ __ ___
way == ios::beg 0_ ___
way == ios::cur the next pointer minus the begin-

ning pointer (xnext - xbeg)_ ___
way == ios::end seekhigh minus the beginning

pointer (seekhigh - xbeg)_ ___
the positioning operation failsIf (newoff + off) <

(seeklow - xbeg),
or (seekhigh - xbeg) <
(newoff + off)_ ___

8 Otherwise, the function assignsxbeg + newoff + off to the next pointerxnext .
Returns: pos_type(newoff) , constructed from the resultant offsetnewoff (of type off_type),

that stores the resultant stream position, if possible. If the positioning operation fails, or if the con-
structed object cannot represent the resultant stream position, the object stores an invalid stream posi-
tion.

pos_type seekpos(pos_type sp , ios_base::openmode which
= ios_base::in | ios_base::out);

Effects: Alters the stream position within one of the controlled sequences, if possible, to correspond to the
stream position stored insp (as described below).

— If (which & ios::in) != 0 , positions the input sequence.

— If (which & ios::out) != 0 , positions the output sequence.

— If the function positions neither sequence, the positioning operation fails.

9 For a sequence to be positioned, if its next pointer is a null pointer, the positioning operation fails. Other-
wise, the function determinesnewoff from sp .offset() :

— If newoff is an invalid stream position, has a negative value, or has a value greater than (seekhigh -
seeklow), the positioning operation fails

D.3.1.3 DRAFT: 28 April 1995 Compatibility features D– 9
strstreambuf overridden virtual functions

— Otherwise, the function addsnewoff to the beginning pointerxbeg and stores the result in the next
pointerxnext .

Returns: pos_type(newoff) , constructed from the resultant offsetnewoff (of type off_type),
that stores the resultant stream position, if possible. If the positioning operation fails, or if the con-
structed object cannot represent the resultant stream position, the object stores an invalid stream posi-
tion.

streambuf<char>* setbuf(char* s, streamsize n);

Effects: Performs an operation that is defined separately for each class derived fromstrstreambuf .
Default behavior: the same as forstreambuf::setbuf(char*, streamsize) .

[depr.istrstream] D.3.2 Template classistrstream

namespace std {
class istrstream : public istream<char> {
public:

explicit istrstream(const char* s);
explicit istrstream(char* s);
istrstream(const char* s, streamsize n);
istrstream(char* s, streamsize n);
virtual ~istrstream();

strstreambuf* rdbuf() const;
char *str();

private:
// strstreambuf sb ; exposition only

};
}

1 The classistrstream supports the reading of objects of classstrstreambuf . It supplies a
strstreambuf object to control the associated array object. For the sake of exposition, the maintained
data is presented here as:

— sb , thestrstreambuf object.

[depr.istrstream.cons] D.3.2.1 istrstream constructors

explicit istrstream(const char* s);
explicit istrstream(char* s);

Effects: Constructs an object of classistrstream , initializing the base class withistream(& sb) and
initializing sb with strstreambuf(s,0)) . s shall designate the first element of anNTBS.

istrstream(const char* s, streamsize n);

Effects: Constructs an object of classistrstream , initializing the base class withistream(& sb) and
initializing sb with strstreambuf(s, n)) . s shall designate the first element of an array whose
length is n elements, andn shall be greater than zero.

[depr.istrstream.members] D.3.2.2 Member functions

strstreambuf* rdbuf() const;

Returns: (strstreambuf*)& sb .

D– 10 Compatibility features DRAFT: 28 April 1995 D.3.2.2 Member functions

char* str();

Returns: rdbuf()->str() .

[depr.ostrstream] D.3.3 Template classostrstream

namespace std {
class ostrstream : public ostream<char> {
public:

ostrstream();
ostrstream(char* s, int n, ios_base::openmode mode = ios_base::out);
virtual ~ostrstream();

strstreambuf* rdbuf() const;
void freeze(int freezefl = 1);
char* str();
int pcount() const;

private:
// strstreambuf sb ; exposition only

};
}

1 The classostrstream supports the writing of objects of classstrstreambuf . It supplies a
strstreambuf object to control the associated array object. For the sake of exposition, the maintained
data is presented here as:

— sb , thestrstreambuf object.

[depr.ostrstream.cons] D.3.3.1 ostrstream constructors

ostrstream();

Effects: Constructs an object of classostrstream , initializing the base class withostream(& sb) and
initializing sb with strstreambuf()) .

ostrstream(char* s, int n, ios_base::openmode mode = ios_base::out);

Effects: Constructs an object of classostrstream , initializing the base class withostream(& sb) ,
and initializingsb with one of two constructors:

— If mode & app == 0 , thens shall designate the first element of an array ofn elements.
The constructor isstrstreambuf(s, n, s) .

— If mode & app != 0 , thens shall designate the first element of an array ofn elements that contains
anNTBS whose first element is designated bys .
The constructor isstrstreambuf(s, n, s + ::strlen(s)) .257)

[depr.ostrstream.members] D.3.3.2 Member functions

strstreambuf* rdbuf() const;

Returns: (strstreambuf*)& sb .

void freeze(int freezefl = 1);

257)The function signaturestrlen(const char*) is declared in<cstring> (21.2).

D.3.3.2 Member functions DRAFT: 28 April 1995 Compatibility features D– 11

Effects: Callsrdbuf()->freeze(freezefl) .

char* str();

Returns: rdbuf()->str() .

int pcount() const;

Returns: rdbuf()->pcount() .

	1 - General
	1.1
	1.2
	1.3
	1.4
	1.5
	1.6
	1.7
	1.8

	2 - Lexical conventions
	2.1
	2.2
	2.3
	2.4
	2.5
	2.6
	2.7
	2.8
	2.9
	2.9.1
	2.9.2
	2.9.3
	2.9.4
	2.9.5

	3 - Basic concepts
	3.1
	3.2
	3.3
	3.3.1
	3.3.2
	3.3.3
	3.3.4
	3.3.5
	3.3.6
	3.3.7
	3.3.8
	3.3.9

	3.4
	3.5
	3.6
	3.6.1
	3.6.2
	3.6.3

	3.7
	3.7.1
	3.7.2
	3.7.3
	3.7.3.1
	3.7.3.2

	3.7.4

	3.8
	3.9
	3.9.1
	3.9.2
	3.9.3
	3.9.4

	3.10

	4 - Standard conversions
	4.1
	4.2
	4.3
	4.4
	4.5
	4.6
	4.7
	4.8
	4.9
	4.10
	4.11
	4.12
	4.13

	5 - Expressions
	5.1
	5.2
	5.2.1
	5.2.2
	5.2.3
	5.2.4
	5.2.5
	5.2.6
	5.2.7
	5.2.8
	5.2.9
	5.2.10

	5.3
	5.3.1
	5.3.2
	5.3.3
	5.3.4
	5.3.5

	5.4
	5.5
	5.6
	5.7
	5.8
	5.9
	5.10
	5.11
	5.12
	5.13
	5.14
	5.15
	5.16
	5.17
	5.18
	5.19

	6 - Statements
	6.1
	6.2
	6.3
	6.4
	6.4.1
	6.4.2

	6.5
	6.5.1
	6.5.2
	6.5.3

	6.6
	6.6.1
	6.6.2
	6.6.3
	6.6.4

	6.7
	6.8

	7 - Declarations
	7.1
	7.1.1
	7.1.2
	7.1.3
	7.1.4
	7.1.5
	7.1.5.1
	7.1.5.2
	7.1.5.3

	7.2
	7.3
	7.3.1
	7.3.1.1
	7.3.1.2
	7.3.1.3
	7.3.1.4

	7.3.2
	7.3.3
	7.3.4

	7.4
	7.5

	8 - Declarators
	8.1
	8.2
	8.3
	8.3.1
	8.3.2
	8.3.3
	8.3.4
	8.3.5
	8.3.6

	8.4
	8.5
	8.5.1
	8.5.2
	8.5.3

	9 - Classes
	9.1
	9.2
	9.3
	9.4
	9.4.1
	9.4.2

	9.5
	9.5.1
	9.5.2

	9.6
	9.7
	9.8
	9.9
	9.10

	10 - Derived classes
	10.1
	10.2
	10.3
	10.4

	11 - Member access control
	11.1
	11.2
	11.3
	11.4
	11.5
	11.6
	11.7

	12 - Special member functions
	12.1
	12.2
	12.3
	12.3.1
	12.3.2

	12.4
	12.5
	12.6
	12.6.1
	12.6.2

	12.7
	12.8

	13 - Overloading
	13.1
	13.2
	13.3
	13.3.1
	13.3.1.1
	13.3.1.1.1
	13.3.1.1.2

	13.3.1.2
	13.3.1.3
	13.3.1.4

	13.3.2
	13.3.3
	13.3.3.1
	13.3.3.1.1
	13.3.3.1.2
	13.3.3.1.3
	13.3.3.1.4

	13.3.3.2

	13.4
	13.5
	13.5.1
	13.5.2
	13.5.3
	13.5.4
	13.5.5
	13.5.6
	13.5.7

	13.6

	14 - Templates
	14.1
	14.2
	14.2.1
	14.2.2
	14.2.3
	14.2.4

	14.3
	14.3.1
	14.3.2
	14.3.3

	14.4
	14.5
	14.6
	14.6.1
	14.6.2

	14.7
	14.8
	14.9
	14.10
	14.10.1
	14.10.2
	14.10.3
	14.10.4
	14.10.5
	14.10.6

	14.11
	14.12
	14.13

	15 - Exception handling
	15.1
	15.2
	15.3
	15.4
	15.5
	15.5.1
	15.5.2

	15.6

	16 - Preprocessing directives
	16.1
	16.2
	16.3
	16.3.1
	16.3.2
	16.3.3
	16.3.4
	16.3.5

	16.4
	16.5
	16.6
	16.7
	16.8

	17 - Library introduction
	17.1
	17.2
	17.2.1
	17.2.1.1
	17.2.1.2
	17.2.1.3
	17.2.1.4

	17.2.2
	17.2.2.1
	17.2.2.1.1
	17.2.2.1.2
	17.2.2.1.3
	17.2.2.1.3.1
	17.2.2.1.3.2
	17.2.2.1.3.3

	17.2.2.2
	17.2.2.3

	17.3
	17.3.1
	17.3.1.1
	17.3.1.2
	17.3.1.3

	17.3.2
	17.3.2.1
	17.3.2.2

	17.3.3
	17.3.3.1
	17.3.3.1.1
	17.3.3.1.2
	17.3.3.1.3

	17.3.3.2
	17.3.3.3
	17.3.3.4
	17.3.3.5
	17.3.3.6
	17.3.3.7

	17.3.4
	17.3.4.1
	17.3.4.2
	17.3.4.3
	17.3.4.4
	17.3.4.5
	17.3.4.6
	17.3.4.7
	17.3.4.8

	18 - Language support library
	18.1
	18.2
	18.2.1
	18.2.1.1
	18.2.1.2
	18.2.1.3
	18.2.1.4

	18.2.2

	18.3
	18.4
	18.4.1
	18.4.1.1
	18.4.1.2
	18.4.1.3

	18.4.2
	18.4.2.1
	18.4.2.2
	18.4.2.3

	18.5
	18.5.1
	18.5.2
	18.5.3

	18.6
	18.6.1
	18.6.1.1
	18.6.1.2
	18.6.1.3
	18.6.1.4

	18.6.2
	18.6.2.1
	18.6.2.2
	18.6.2.3

	18.7

	19 - Diagnostics library
	19.1
	19.1.1
	19.1.2
	19.1.3
	19.1.4
	19.1.5
	19.1.6
	19.1.7
	19.1.8
	19.1.9

	19.2
	19.3

	20 - General utilities library
	20.1
	20.2
	20.2.1
	20.2.2

	20.3
	20.3.1
	20.3.2
	20.3.3
	20.3.4
	20.3.5
	20.3.6
	20.3.6.1
	20.3.6.2
	20.3.6.3
	20.3.6.4

	20.3.7

	20.4
	20.4.1
	20.4.1.1
	20.4.1.2
	20.4.1.3

	20.4.2
	20.4.3
	20.4.3.1
	20.4.3.2
	20.4.3.3
	20.4.3.4
	20.4.3.5

	20.4.4
	20.4.4.1
	20.4.4.2
	20.4.4.3

	20.4.5
	20.4.5.1
	20.4.5.2

	20.4.6

	20.5

	21 - Strings library
	21.1
	21.1.1
	21.1.1.1
	21.1.1.2
	21.1.1.3
	21.1.1.4
	21.1.1.5
	21.1.1.6
	21.1.1.7
	21.1.1.8
	21.1.1.8.1
	21.1.1.8.2
	21.1.1.8.3
	21.1.1.8.4
	21.1.1.8.5
	21.1.1.8.6
	21.1.1.8.7
	21.1.1.8.8

	21.1.1.9
	21.1.1.9.1
	21.1.1.9.2
	21.1.1.9.3
	21.1.1.9.4
	21.1.1.9.5
	21.1.1.9.6
	21.1.1.9.7
	21.1.1.9.8

	21.1.1.10
	21.1.1.10.1
	21.1.1.10.2
	21.1.1.10.3
	21.1.1.10.4
	21.1.1.10.5
	21.1.1.10.6
	21.1.1.10.7
	21.1.1.10.8

	21.1.2
	21.1.3
	21.1.4
	21.1.5

	21.2

	22 - Localization library
	22.1
	22.1.1
	22.1.1.1
	22.1.1.1.1
	22.1.1.1.2
	22.1.1.1.3

	22.1.1.2
	22.1.1.3
	22.1.1.4
	22.1.1.5

	22.1.2
	22.1.2.1
	22.1.2.2

	22.2
	22.2.1
	22.2.1.1
	22.2.1.1.1
	22.2.1.1.2

	22.2.1.2
	22.2.1.3
	22.2.1.3.1
	22.2.1.3.2
	22.2.1.3.3

	22.2.1.4
	22.2.1.4.1
	22.2.1.4.2

	22.2.1.5

	22.2.2
	22.2.2.1
	22.2.2.1.1
	22.2.2.1.2

	22.2.2.2
	22.2.2.2.1
	22.2.2.2.2

	22.2.3
	22.2.3.1
	22.2.3.1.1
	22.2.3.1.2

	22.2.3.2

	22.2.4
	22.2.4.1
	22.2.4.1.1
	22.2.4.1.2

	22.2.4.2

	22.2.5
	22.2.5.1
	22.2.5.1.1
	22.2.5.1.2

	22.2.5.2
	22.2.5.3
	22.2.5.3.1
	22.2.5.3.2

	22.2.5.4

	22.2.6
	22.2.6.1
	22.2.6.1.1
	22.2.6.1.2

	22.2.6.2
	22.2.6.2.1
	22.2.6.2.2

	22.2.6.3
	22.2.6.3.1
	22.2.6.3.2

	22.2.6.4

	22.2.7
	22.2.7.1
	22.2.7.1.1
	22.2.7.1.2

	22.2.7.2

	22.2.8

	22.3

	23 - Containers library
	23.1
	23.1.1
	23.1.2

	23.2
	23.2.1
	23.2.1.1
	23.2.1.2
	23.2.1.3

	23.2.2
	23.2.2.1
	23.2.2.2
	23.2.2.3
	23.2.2.4
	23.2.2.5
	23.2.2.6

	23.2.3
	23.2.3.1
	23.2.3.2
	23.2.3.3
	23.2.3.4
	23.2.3.5
	23.2.3.6
	23.2.3.7

	23.2.4
	23.2.4.1
	23.2.4.2
	23.2.4.2.1
	23.2.4.2.2

	23.2.4.3

	23.2.5
	23.2.5.1
	23.2.5.2
	23.2.5.3
	23.2.5.4
	23.2.5.5
	23.2.5.6

	23.2.6

	23.3
	23.3.1
	23.3.1.1
	23.3.1.2
	23.3.1.3
	23.3.1.4
	23.3.1.5
	23.3.1.6
	23.3.1.7
	23.3.1.8

	23.3.2
	23.3.3
	23.3.3.1
	23.3.3.2
	23.3.3.3
	23.3.3.4
	23.3.3.5
	23.3.3.6
	23.3.3.7

	23.3.4

	24 - Iterators library
	24.1
	24.1.1
	24.1.2
	24.1.3
	24.1.4
	24.1.5
	24.1.6

	24.2
	24.2.1
	24.2.2
	24.2.3
	24.2.4
	24.2.5
	24.2.6

	24.3
	24.3.1
	24.3.1.1
	24.3.1.2
	24.3.1.2.1
	24.3.1.2.2
	24.3.1.2.3
	24.3.1.2.4
	24.3.1.2.5
	24.3.1.2.6

	24.3.1.3
	24.3.1.4
	24.3.1.4.1
	24.3.1.4.2
	24.3.1.4.3
	24.3.1.4.4
	24.3.1.4.5
	24.3.1.4.6

	24.3.2
	24.3.2.1
	24.3.2.2
	24.3.2.2.1
	24.3.2.2.2
	24.3.2.2.3
	24.3.2.2.4
	24.3.2.2.5

	24.3.2.3
	24.3.2.4
	24.3.2.4.1
	24.3.2.4.2
	24.3.2.4.3
	24.3.2.4.4
	24.3.2.4.5

	24.3.2.5
	24.3.2.6
	24.3.2.6.1
	24.3.2.6.2
	24.3.2.6.3
	24.3.2.6.4
	24.3.2.6.5

	24.4
	24.4.1
	24.4.2
	24.4.3
	24.4.3.1
	24.4.3.2
	24.4.3.3
	24.4.3.4
	24.4.3.5
	24.4.3.6
	24.4.3.7
	24.4.3.8

	24.4.4
	24.4.4.1
	24.4.4.2
	24.4.4.3

	25 - Algorithms library
	25.1
	25.1.1
	25.1.2
	25.1.3
	25.1.4
	25.1.5
	25.1.6
	25.1.7
	25.1.8
	25.1.9

	25.2
	25.2.1
	25.2.2
	25.2.3
	25.2.4
	25.2.5
	25.2.6
	25.2.7
	25.2.8
	25.2.9
	25.2.10
	25.2.11
	25.2.12

	25.3
	25.3.1
	25.3.1.1
	25.3.1.2
	25.3.1.3
	25.3.1.4

	25.3.2
	25.3.3
	25.3.3.1
	25.3.3.2
	25.3.3.3
	25.3.3.4

	25.3.4
	25.3.5
	25.3.5.1
	25.3.5.2
	25.3.5.3
	25.3.5.4
	25.3.5.5

	25.3.6
	25.3.6.1
	25.3.6.2
	25.3.6.3
	25.3.6.4

	25.3.7
	25.3.8
	25.3.9

	25.4

	26 - Numerics library
	26.1
	26.2
	26.2.1
	26.2.2
	26.2.3
	26.2.4
	26.2.5
	26.2.6
	26.2.7

	26.3
	26.3.1
	26.3.1.1
	26.3.1.2
	26.3.1.3
	26.3.1.4
	26.3.1.5
	26.3.1.6
	26.3.1.7

	26.3.2
	26.3.2.1
	26.3.2.2
	26.3.2.3
	26.3.2.4

	26.3.3
	26.3.3.1
	26.3.3.2

	26.3.4
	26.3.4.1
	26.3.4.2
	26.3.4.3
	26.3.4.4

	26.3.5
	26.3.5.1
	26.3.5.2

	26.3.6
	26.3.6.1
	26.3.6.2
	26.3.6.3
	26.3.6.4

	26.3.7
	26.3.7.1
	26.3.7.2
	26.3.7.3
	26.3.7.4

	26.3.8
	26.3.8.1
	26.3.8.2
	26.3.8.3
	26.3.8.4

	26.4
	26.4.1
	26.4.2
	26.4.3
	26.4.4

	26.5

	27 - Input/output library
	27.1
	27.1.1
	27.1.2
	27.1.2.1
	27.1.2.2
	27.1.2.3
	27.1.2.4

	27.2
	27.3
	27.3.1
	27.3.2

	27.4
	27.4.1
	27.4.2
	27.4.2.1
	27.4.2.2
	27.4.2.3
	27.4.2.4

	27.4.3
	27.4.3.1
	27.4.3.1.1
	27.4.3.1.2
	27.4.3.1.3
	27.4.3.1.4
	27.4.3.1.5
	27.4.3.1.6

	27.4.3.2
	27.4.3.3
	27.4.3.4
	27.4.3.5

	27.4.4
	27.4.4.1
	27.4.4.2
	27.4.4.3

	27.4.5
	27.4.5.1
	27.4.5.2
	27.4.5.3
	27.4.5.4

	27.5
	27.5.1
	27.5.2
	27.5.2.1
	27.5.2.2
	27.5.2.2.1
	27.5.2.2.2
	27.5.2.2.3
	27.5.2.2.4
	27.5.2.2.5

	27.5.2.3
	27.5.2.3.1
	27.5.2.3.2

	27.5.2.4
	27.5.2.4.1
	27.5.2.4.2
	27.5.2.4.3
	27.5.2.4.4
	27.5.2.4.5

	27.6
	27.6.1
	27.6.1.1
	27.6.1.1.1
	27.6.1.1.2

	27.6.1.2
	27.6.1.2.1
	27.6.1.2.2

	27.6.1.3
	27.6.1.4

	27.6.2
	27.6.2.1
	27.6.2.2
	27.6.2.3
	27.6.2.4
	27.6.2.4.1
	27.6.2.4.2

	27.6.2.5
	27.6.2.6

	27.6.3

	27.7
	27.7.1
	27.7.1.1
	27.7.1.2
	27.7.1.3

	27.7.2
	27.7.2.1
	27.7.2.2
	27.7.2.3
	27.7.2.4
	27.7.2.5

	27.8
	27.8.1
	27.8.1.1
	27.8.1.2
	27.8.1.3
	27.8.1.4
	27.8.1.5
	27.8.1.6
	27.8.1.7
	27.8.1.8
	27.8.1.9
	27.8.1.10

	27.8.2

	A - Grammar summary
	A.1
	A.2
	A.3
	A.4
	A.5
	A.6
	A.7
	A.8
	A.9
	A.10
	A.11
	A.12
	A.13

	B - Implementation quantities
	C - Compatibility
	C.1
	C.1.1
	C.1.2

	C.2
	C.2.1
	C.2.2
	C.2.3
	C.2.4
	C.2.5
	C.2.6
	C.2.7
	C.2.8
	C.2.9

	C.3
	C.3.1
	C.3.2
	C.3.3
	C.3.4
	C.3.5

	C.4
	C.4.1
	C.4.2
	C.4.2.1
	C.4.2.2
	C.4.2.3

	C.4.3
	C.4.4
	C.4.4.1
	C.4.4.2

	D - Compatibility features
	D.1
	D.2
	D.3
	D.3.1
	D.3.1.1
	D.3.1.2
	D.3.1.3

	D.3.2
	D.3.2.1
	D.3.2.2

	D.3.3
	D.3.3.1
	D.3.3.2

