
P3710R0
zstring_view: a string_view with
guaranteed null termination
Date: 2025-02-17
Project: ISO JTC1/SC22/WG21: Programming Language C++
Audience: SG23, LEWG
Author: Alexey Shevlyakov, Marco Foco
Contributors: Joshua Krieghauser
Reply to: marco.foco@gmail.com

History

R0
Document creation

Overview
zstring_view is a lightweight, non-owning string reference which, unlike
std::string_view, guarantees null-termination and is designed for interoperability with
C-style strings and APIs that depend on a terminating null character.
To keep the exposition simple, throughout the document we'll discuss about the class
zstring_view and the type char*, but without loss of generality, all the reasoning can be
extended to a generic basic_zstring_view<CharT, Traits> class and to CharT*
strings.

Motivation

Modern guidelines discourage using raw arrays for safety concerns, suggesting
std::string_view as a replacement where a non-owning reference to a string is required.
However, modern APIs exist alongside legacy APIs that cannot be changed for various reasons,
leading to contradicting requirements and guarantees. Consider the following example:

// third party API that cannot be altered
extern void ext_foo(const char* str);

// legacy interface relying on null-terminated strings
void foo(const char* str){
 ext_foo(str);
}

We could replace the signature of foo:

void foo(std::string_view str){
 // LOGIC ERROR: ext_foo might rely on null-termination
 ext_foo(str.data());
}

However, we do not have control of foo because it's either a third-party API or a legacy API that
we can't change for some other reason. Therefore, replacing the signature of foo with
string_view is impossible, since consume relies on null-termination. Enter zstring_view.
zstring_view is a StringViewLike object that guarantees that its content points to a
null-terminated string and is interoperable with both null-terminated strings and
string_views. It also maintains a subset of suffix-preserving member functions while lacking
operations that do not preserve the suffix—e.g., remove_prefix is fine since it preserves the
suffix and the null-terminator, while remove_suffix is not supported.

In addition, our class contains a new member function c_str(), which is used to retrieve the
null-terminated string. This mimics the same behavior in std::string::c_str(), where the
content is also guaranteed to be null-terminated.

Our example code can be rewritten using zstring_view as follows:

void foo(zstring_view str) {
 ext_foo(str.c_str()); // fine: str is null-terminated
}

zstring_view can also seamlessly interoperate with interfaces accepting string_view, as
it represents a subset of string_view and is implicitly convertible to it (i.e. it is a
StringViewLike):

extern void ext_bar(std::string_view str);

void bar(zstring_view str){
 ext_bar(str); // OK, zstring_view is convertible to string_view
}

Thus we are able to provide a safe and modern interface on the one hand and ensure its
interoperability with legacy interfaces requiring C-style strings.

Constructors
zstring_view constructors are analogous to those of string_view whenever there is a
possibility to check whether a null terminator is present at the right position.

Below we are going to highlight the differences between the constructors of string_view and
zstring_view.
The default constructor initialises the data pointer to empty null-terminated string referencing a
static member defined in the class as

static constexpr char empty_string[] = {char{}}

constexpr zstring_view() noexcept
 : m_data(empty_string), m_count(0) {}

The following constructor is for a pointer with length. Unlike the corresponding string_view
constructor, it requires s to be a pointer to an array of char of size count+1, and a null
terminator must be present at the end of the string (otherwise a precondition violation will
happen).
constexpr zstring_view(const char* s, size_type count)
 pre(traits_type::eq(s[count], char{})
 : m_data(s), m_count(count)
 {}

In accordance with the string_view constructor from a bounded array, this constructor looks
for the null terminator inside the array, and expects at least one to be present: the first
null-terminator will be used to calculate the length of the string. If no terminator is present in the
array, a precondition violation will happen.
template <size_t N>
constexpr zstring_view(const char (&s)[N])
 pre(traits_type::find(s, n+1, char{}) != nullptr)
 : m_data(s), m_length(traits_type::length_s(s))
{}

The "unsafe" constructor for a pointer expects a null-terminator to be present, and doesn't
perform additional checks:

constexpr zstring_view(unsafe_length_t, const char* s) noexcept
 : m_data(s), m_count(traits_type::length(s))

{}

This constructor operates on anything that is similar to a std::string (i.e. has a c_str()
and a length() member function) because it guarantees the presence of a null-terminator.

template <ZStringViewLike T>
constexpr string_view(const T& s)
 : m_data(s.c_str()), m_count(s.length())
{}

Unlike string_view, the range constructor is not supported by zstring_view because an
arbitrary range doesn't guarantee the presence of a null-terminator.

Member functions
Most member functions of zstring_view are equivalent to those of string_view except for the
functions that don’t preserve the suffix.

All the following member functions have the same semantics as string_view: operator=,
begin, cbegin, end, cend, rbegin, crbegin, rend, crend, operator[], at, front,
back, size, length, max_size, empty, copy, compare, starts_with, ends_with,
contains, find, rfind, find_first_of, find_last_of, find_first_not_of,
find_last_not_of.

Operations that don't preserve the suffix are not supported in zstring_view, so
remove_prefix can be applied, but remove_suffix can't (the object would contain a
non-terminated string).
For substr, we have two versions: one returning the tail of the string, which will return a
zstring_view because the buffer will be properly null terminated:

constexpr zstring_view substr(size_t pos) const
 pre(pos =< size())
{
 return { c_str() + pos, size() - pos };
}

the other, with two parameters, cannot guarantee the presence of the null-termination within the
substring, so it will simply return a string_view:

constexpr string_view substr(size_t pos, size_t count) const
 pre(pos =< size())
{
 return { c_str() + pos, std::min(count, size() - pos) };

}

Concepts
Similarly to P3566R1 we introduce a set of concepts that will allow us to build

● ZStringViewLike
○ Same as StringViewLike, but for zstring_view
○ Accepts char*

● SafeZStringViewLike
○ Similar to StringViewLike, but for zstring_view (i.e.

SafeZStringViewLike<T> is true for all types T that are implicitly convertible
to zstring_view as described in this paper: doesn't accept char*)

● UnsafeZStringViewLike
○ ZStringViewLike && !SafeZStringViewLike
○ UnsafeZStringViewLike<T> is true for all types T that are implicitly

convertible to zstring_view, but are not SafeZStringViewLike

Usage Experience
We implemented zstring_view during a safety-improvement initiativethroughout our
codebase, where we wanted to remove all the unsafe usages of C string functions (e.g.
strlen, strcpy, strdup...) and migrate towards safer string constructs.

Other proposals we submitted to the committee, such as P3566 and P3711, are part of this
journey, and reflect our experience in dealing with string safety issues.

We're currently using zstring_view as part of a migration path from const char* to
string_view.
We asked our developers to be intentional when using c_str() vs data() member functions,
respectively, to declare whether or not they expect the string to be null-terminator.

Introducing zstring_view we proposed these rule, which proved to be very effective: use
data() when the null-terminator is not expected (e.g. because the pointer is passed to an
external function without its length), and use c_str() when the code expects a null-terminator
(e.g. when the string is passed to unsafe system functions). We're using this feature in our
migration towards string_view-only code, as we can just try swapping the zstring_view
with a string_view to see if there are zero usages of c_str() (which is missing from
string_view).

Moreover, zstring_view can be used to return an internal string instead of returning a const
string& (typing too strict), or returning a string_view (no guarantee for null terminator).

http://wg21.link/p3566
https://wg21.link/p3711

Returning zstring_view gives more flexibility about internal representation of null-terminated
strings: it will still behave very similarly to a const std::string&, without risking accidental
implicit copies.

The final goal of our project is to convert all the API to receive string_view as parameter,
and make them return instances of zstring_view when they were returning string.

zstring_view, however, proved to be useful when initially migrating an API without changing
the implementation too much: just replace the const char* parameter with a
zstring_view, change the internal code to use the parameter with <variable>.c_str(),
and then change the usages.
Example

void f(const char*x) {
 external_library::g(x);
}

void f1() {
 std::string a1 = ...;
 f(a1.c_str());
}

void f2() {
 constexpr char a2[] = "test";
 f(a2);
}

void f3() {
 const char* a3 = <some char*>;
 f(a3);
}

When updating the API we will change f to:

void f(zstring_view x) {
 external_library::g(x.c_str());
}

Consequently the functions f1 and f3 need to be changed (f2 doesn't need any change
because a zstring_view can be implicitly constructed from a char[N])

void f1() {
 std::string a1 = ...;
 f(a1);

}

void f3() {
 const char* a3 = <some char*>;
 f(zstring_view(unsafe_length, a3));
}

In this way, the usage of an unbounded string (a3) will remain tracked, while we simplified the
invocation for strings (in f1).

Once the f function is updated (for example using a function new_g from our
external_library), the parameter type can be changed to string_view:

void f(string_view x) {
 external_library::new_g(x.data(), x.length());
}

Conclusion
From our experience, zstring_view is an excellent tool for improving string safety in C++
code, and provides a good migration path from old C-style string processing to more modern
string representations, overcoming the limitations of the current use of string and
string_view.

References
● P3081R0: Herb Sutter - "Core safety Profiles: Specification, adoptability, and impact"
● P3436R1: Herb Sutter - "Strategy for removing safety-related UB by default"
● P3566: Marco Foco - "You shall not pass char* - Safety concerns working with

unbounded null-terminated strings"

https://wg21.link/p3081
https://wg21.link/P3436R1
http://wg21.link/P3566

	P3710R0
	zstring_view: a string_view with guaranteed null termination
	History
	R0

	Overview
	Motivation
	Constructors
	Member functions
	Concepts
	Usage Experience
	Conclusion
	References

