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Overview

This is about 3 things:
Programmer expectations
Language self-consistency
Safety



Fundamental Assumption

same bits⇒ same value

for objects of the same scalar type.



Source

This comes from [basic.types.general] p2, p3, and especially p4



Source

For any object (other than a potentially-overlapping subobject) of trivially copy-
able type T, whether or not the object holds a valid value of type T, the un-
derlying bytes making up the object can be copied into an array of char,
unsigned char, or stdǹ::byte. If the content of that array is copied back into
the object, the object shall subsequently hold its original value. (C++23 §6.8.1
[basic.types.general]/2)



Source

For two distinct objects obj1 and obj2 of trivially copyable type T, where nei-
therobj1norobj2 is apotentially-overlappingsubobject, if theunderlyingbytes
making up obj1 are copied into obj2, obj2 shall subsequently hold the same
value as obj1. (C++23 §6.8.1 [basic.types.general]/3)



Source

... For trivially copyable types, the value representation is a set of bits in the ob-
ject representation that determines a value, which is one discrete element of an
implementation-defined set of values. (C++23 §6.8.1 [basic.types.general]/4)



Source
P2434makes this clearer by talking about bit values.

Each trivially copyable typeT has an implementation-defined set of discrete val-
ues. Abit value isamemberofan implementation-defineddisjointpartitionof the
set of values; for scalar types other than object pointer types, each contains no
more than one value. The value representation of an object of typeTdetermines
abit value for that object. Whenanobject acquiresabit value, its valuebecomes
an unspecifiedmember of that bit value that would result in the program having
defined behavior, if any. (P2434 wording for [basic.types.trivial])

https://wg21.link/p2434


Non-assumption

This does not necessarily work the other way round
same value ̸⇒ same bits

e.g. different floating point representations of the same
number.



Second non-assumption

If a and b have different types,
same bits ̸⇒ same value

e.g. signed vs unsigned integers, or integer vs floating
point.



Big Proviso

This only matters if the programmer
“knows” that a and b have the same
bits.



How do we know?
How can we “know” that a and b have the same bits?

Comparison of bits via memcmp or similar
Direct assignment to bits via memcpy or similar
Comparison via an atomic operation, such as
compare_exchange
Copying the bits to an intermediate storage (such as a suitably
sized array of byte or a suitable integer) and comparing that
storage
Copying the bits from a to b via intermediate storage
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Consequences

same bits⇒ same value
means:

same bits⇒ a == b
different values⇒ different bits
a != b⇒ different bits (or something like NaN)
same bits⇒ a and b are interchangeable



Second Assumption

Numbers have no history

This follows from assumption 1, but is important enough to spell out.



Second Assumption Consequences

After a sequence of operations that yields the same
integral values— including via I/O— integers have the
same properties as if left unchanged.



Third Assumption

Comparison results for scalar types
are consistent over time.



Third Assumption Consequences

If I compare two initialized variables a and b then a == b should yield the same
result at different points in the code, if neither a nor b has beenmodified in between.
The same applies to a != b
This applies to copies, and comparisons of copies in other functions.
If the initial comparison was, or arose from, undefined behaviour then all bets are off
anyway.



Fourth Assumption

The bits of an object don’t change
unless the object is modified.

Modifications to an object include modification via pointer or reference, or by
modifying the bits of its object representation directly.



Fourth Assumption Consequences

Operations on other objects cannot modify an object
Copying the object representation of a twice yields the same sequence of byte
objects unless awasmodified in between



Pointers
Pointers are scalar types and trivially copyable types
(basic.types.general p9).

Therefore all the previous points apply to them.

Any case where this does not hold breaks the fundamental
assumptions, andmakes C++ internally inconsistent at the lowest
level.
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Consequences for Pointers
If I compare the bits of two pointers, and they are equal, then I can use either in the
place of the other from then on (assumption 1).

If I compare the bits of two pointers, and they are equal, then the pointers had better
be equal too (assumption 1).
If I cast a pointer to an integer, and that integer compares equal to an integer I
obtained from elsewhere, casting that second integer to a pointer yields a pointer I
can use in place of the original (assumptions 1 and 2).
Deleting an object does not change the bits of a pointer to that object (assumption
4).
If I compare two pointers then the result of that comparison is unchanged if I repeat
it, even if one of the pointed-to objects is deleted (assumptions 1, 3 and 4)
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Interaction with Provenance

Alias analysis relies on the provenance of a pointer to determine whether or not the
object referenced by a pointer can alias another.

If the analysis cannot prove that two pointers cannot alias, then it must assume that
they may alias.
If two pointers compare equal, or their bits compare equal, they must both take on
the union of their two provenances.
If the presence or absence of such a comparison is invisible to the compiler, then it
must assume that there was such a check.
This may require assigning “wildcard” provenance.
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Examples



Example: Avoiding spooky action at a distance

struct X {
X* next;
int value;

};
std::atomic<X*> top{nullptr};

void push(int v) {
X* nv = new X{top.load(), v}; // A
while(!top.compare_exchange_strong(nv->next, nv)) // B
{}

}

int pop() {
X* p = top.load(); // C
while(p &&
!top.compare_exchange_strong(p, p->next)) // D

{}
if(!p) throw std::runtime_error("Empty");
int retval = p->value;
delete p; // E
return retval

}
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If push and pop are called from different
threads, the execution may be
A -> C -> D -> E -> B

nv->next on line B is thus an invalid pointer
value, even though it is not modified.

nv->nextmust maintain its behaviour from the
point of view of comparisons. Either it succeeds
(which means that it has become a pointer to a
newly allocated Xwith the same address), or it
fails, so we can’t rely on it being a pointer to a
valid X object.



Example: Avoiding spooky action at a distance

In real code, the compare-exchangemight succeed because a third thread called pop
and the new X has the same address as the old one. The execution sequence is thus
A -> C -> D -> E -> A’ -> B’ -> B

In such a scenario, subsequent calls to popmust correctly yield the new pointer to the
new object allocated at A’, and not trigger UB when evaluating p->value due to the
pointer referring to the deleted X object.

This behaviour is expected from assumptions 1, 3 and 4.



Example: Avoiding spooky action at a distance

If I replace stdȂ::atomicwith myȂ::atomic that holds a plain pointer and an internal
mutex, this should still work.

⇒ creating a special-case for stdȂ::atomic is insufficient.



Example: Past the end pointers

int x = 1;
int y = 2;

int main() {
int *p1 = &x + 1; // one past the end
int *p2 = &y; // separate object
if(memcmp(p1, p2, sizeof(p1))) { // check

printf("Different address\n");
return 0;

}

assert(p1 == p2);
assert(*p1 == 2);
assert(*p2 == 2);
*p1 = 42;
assert(*p1 == 42);
assert(*p2 == 42);

}
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After the check, we “know” whether p1 and p2
have the same bits. If they don’t, we exit. If they
do, then we can rely on same bits⇒ same
value, so the assertions must not fire.

After the check, p1must be treated as having
the same provenance as p2. They are both
simultaneously a “past-the-end” pointer for x,
and a pointer to y.

If we did not check, then *p1would be
dereferencing a past-the-end pointer (only),
which is UB.

This is only safe because we check.



Examples from the paper



Example 8: delete and new the object without replacing pointer
struct X {

int i;
};

int main() {
X *x= new X{42};
X *y= nullptr;
unsigned char buffer[sizeof(x)];
memcpy(buffer, &x, sizeof(x));

delete x; // deallocate
y= new X{99}; // allocate

unsigned char buffer2[sizeof(x)];
memcpy(buffer2, &y, sizeof(x));
if(memcmp(buffer, buffer2, sizeof(x))) { // check

printf("Different address\n");
return 0;

}

assert(x == y);
assert(y->i == 99);
assert(x->i == 99);

}
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struct X {

int i;
};

int main() {
X *x= new X{42};
X *y= nullptr;
unsigned char buffer[sizeof(x)];
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After the check, we “know” whether x and y
have the same bits. If they don’t, we exit. If they
do, then we can rely on same bits⇒ same
value, so the assertions must not fire.

After the check, xmust be treated as having the
same provenance as y.

This may require giving it “wildcard” provenance
if buffer is passed to an unknown function (e.g.
if memcmpwas user_memcmp)

Alternatively: ensure the allocator never reuses
addresses, so the check always fails.



Example 9: using stdȂ::atomic to hold the pointer
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int i;
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int main() {
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X *y= nullptr;
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This is muchmore representative of real code.
The check is done in
compare_exchange_strong, but the
consequence is the same.

If p is different from temp, then we exit.

If we don’t exit, then p (which holds x) is the
same as temp (which holds y), so x and y have
the same bits, and thus the same value, so the
asserts must not fire.



Remaining examples from the paper



Comparisons 1: Pointers that compare equal should be
interchangeable

void f(int* p,int* q){
*q=99;
bool same=false;
if(p==q){

*p=42;
same=true;
assert(*q==42);

}

assert(same?(*q==42):(*q==99));
}



Comparisons 2: Pointer equality is consistent

bool compare(int* const p, int* const q){
return p==q;

}

void f(int* const p, int* const q){
bool const same=(p==q);
g(p,q);
assert(same==(p==q));
assert(same==compare(p,q));

}



Comparisons 3: Compilers must be able to assume no aliasing in
certain circumstances

void f(){
int x=42;
g();
assert(x==42);

}



Comparisons 4: Validity of pointers is contagious after comparison

void f(){
int * const p=new int(42);
delete p;
int * const q=new int(99);

if(p==q){
assert(*p==99);

}
}



Example 1: memcpy on a pointer

int main() {
int *x= new int(42);
int *y= nullptr;
memcpy(&y,&x,sizeof(x));
assert(x == y);
assert(*y==42);

}



Example 2: memcpy via buffer

int main() {
int *x= new int(42);
int *y= nullptr;
unsigned char buffer[sizeof(x)];
memcpy(buffer, &x, sizeof(x));
memcpy(&y, buffer, sizeof(x));
assert(x == y);
assert(*y == 42);

}



Example 3: reinterpret_cast to an integer

int main() {
int *x= new int(42);
int *y= nullptr;
uintptr_t temp= reinterpret_cast<uintptr_t>(x);
y= reinterpret_cast<int *>(temp);
assert(x == y);
assert(*y == 42);

}



Example 4: memcpywith modification

int main() {
int *x= new int(42);
int *y= nullptr;
unsigned char buffer[sizeof(x)];
memcpy(buffer, &x, sizeof(x));
for(auto &c : buffer) {

c^= 0x55;
}
for(auto &c : buffer) {

c^= 0x55;
}
memcpy(&y, buffer, sizeof(x));
assert(x == y);
assert(*y == 42);

}



Example 5: memcpy and write to a file

int main() {
int *x= new int(42);
int *y= nullptr;
unsigned char buffer[sizeof(x)];
memcpy(buffer, &x, sizeof(x));

auto file= fopen("tempfile", "wb");
auto written= fwrite(buffer, 1, sizeof(buffer), file);
assert(written == sizeof(buffer));
fclose(file);

memset(buffer, 0, sizeof(buffer));

file= fopen("tempfile", "rb");
auto read= fread(buffer, 1, sizeof(buffer), file);
assert(read == sizeof(buffer));
fclose(file);
memcpy(&y, buffer, sizeof(x));
assert(x == y);
assert(*y == 42);

}



Example 6: destroy and recreate the object

struct X {
int i;

};

int main() {
X *x= new X{42};
X *y= nullptr;
unsigned char buffer[sizeof(x)];
memcpy(buffer, &x, sizeof(x));

x->~X();
new(x) X{99};

memcpy(&y, buffer, sizeof(x));
assert(x == y);
assert(y->;i == 99);
assert(x->i == 99);

}



Example 7: delete and new the object
struct X {

int i;
};

int main() {
X *x= new X{42};
X *y= nullptr;
unsigned char buffer[sizeof(x)];
memcpy(buffer, &x, sizeof(x));

delete x;
y= new X{99};

unsigned char buffer2[sizeof(x)];
memcpy(buffer2, &y, sizeof(x));

if(memcmp(buffer, buffer2, sizeof(x))) {
printf("Different address\n");
return 0;

}

memcpy(&x, buffer2, sizeof(x));

assert(x == y);
assert(y->i == 99);
assert(x->i == 99);

}


