
Contracts for C++: Prioritizing
Safety

Presentation Slides of P2680R0
Gabriel Dos Reis

P2743R0 12022-11-11

Software development perspective (P0287)

• “They provide basic mitigation measures for early containment of
undesired program behavior”

• “Contracts are requirements that an operation puts on its arguments
for successful completion and set of guarantees it provides upon
successful completion”

• “structured assert() integrated into the language”
• Basis for principled program analysis and tooling

• Not:
• “Contracts are not a general error reporting mechanism, nor are they

substitute for testing frameworks.”

P2743R0 22022-11-11

https://open-std.org/JTC1/SC22/WG21/docs/papers/2016/p0287r0.pdf

Why Prioritize Safety?

P2743R0 32022-11-11

Securing existing code and viability of C++ in
increasingly unfavorable/hostile environment

P2743R0 42022-11-11

Securing existing code and viability of C++ in
increasingly unfavorable/hostile environment
• Safety issues in software written in C and C++ are increasingly blamed

for why some critical cyberphysical systems are vulnerable
• Active recommendations by various regulatory bodies and others (NIST, NSA,

etc.) to move away from C++

• While the headings start with “memory safety”, technical analysis
shows that the entire type system is involved
• See P2687: Design Alternatives for Type-and-Resource Safe C++

• Upgrade needed to the language to enable safety by default
• Contracts have a key role to play
• Not just syntactic sugar for things we can easily express today

P2743R0 52022-11-11

https://open-std.org/JTC1/SC22/WG21/docs/papers/2022/p2687r0.pdf

Design Principles of P2680

P2743R0 62022-11-11

Requirements for Contracts

• The evaluation of contract predicates shall be free of undefined
behavior
• Key requirement

• They provide basic mitigation framework, they should not themselves
be sources of vulnerabilities

• Several ways to get there:
1. Rewrite the abstract machine specification specifically for contract

evaluation
2. Restrict the set of permitted in contract predicates
3. ???

P2743R0 72022-11-11

Restricted expressions in contract predicates

• Previous efforts (e.g. P0542) choose to specify side effect in contract
predicates as leading to undefined behavior semantics
• See analyses of intricacies in previous C++20-era contracts, numerous EWG

discussions, and papers

• P2680 restricts expressions in contract predicate in order to remove
the undefined behavior aspect.
• Any design that permits undefined behavior in contract predicate evaluation

renders the feature unreliable/useless to help bring safety to C++

P2743R0 82022-11-11

https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0542r5.html

Design principle of P2680

• Start from a sound logical ground

• The evaluation of a contract predicate can perform side effects
between the start and the end of the evaluation of that predicate
expression, but the set of such side-effects are not visible from
outside the code of evaluation of that predicate.

• Gradually expand without compromising the key requirement of no
UB in contract predicate evaluation

P2743R0 92022-11-11

Specifics of P2680

• What can we do without new annotation?
• Take a page from constexpr model

• Don’t confuse with constexpr itself

• A function body can
• side effects its parameters,
• local variables,
• call functions that have same properties
• The body of a function called in a contract predicate must be available in that

same TU

• Starting point to help us provide safety by default in C++

P2743R0 102022-11-11

Suggestions/amendments since P2680

• Make it clear that “usable in a contract predicate” is a property of a
function
• (notionally a bit like ‘noexcept’)

• Add ability to annotate functions usable in contract predicates, so
their implementations can be separated from their interface
• However, the implementation shall still be checked for conformance to the

restriction so as no to introduce UB

• Add a “relaxed” annotation for functions that need side-effects
int fizz(string s) [[pre relaxed: call_mothership(s), not s.empty()]];

P2743R0 112022-11-11

Impacts on std library uses

• Q: Which library functions can I use in contract predicates

• A: Any function that we deem appropriate
• E.g. vec.empty(), str.size(), v.begin(),

• Etc.

• Q: But those std implementations use techniques that violate the
constraints in P2680

• A: Yes, they do, because of lack of contract facilities integrated into
the language

P2743R0 122022-11-11

	Slide 1: Contracts for C++: Prioritizing Safety
	Slide 2: Software development perspective (P0287)
	Slide 3: Why Prioritize Safety?
	Slide 4: Securing existing code and viability of C++ in increasingly unfavorable/hostile environment
	Slide 5: Securing existing code and viability of C++ in increasingly unfavorable/hostile environment
	Slide 6: Design Principles of P2680
	Slide 7: Requirements for Contracts
	Slide 8: Restricted expressions in contract predicates
	Slide 9: Design principle of P2680
	Slide 10: Specifics of P2680
	Slide 11: Suggestions/amendments since P2680
	Slide 12: Impacts on std library uses

