
Consistent character literal encoding
Document #: P2316R2
Date: 2021-09-14
Programming Language C++
Audience: CWG
Reply-to: Corentin Jabot <corentin.jabot@gmail.com>

Abstract

Character literals in preprocessor conditional should behave like they do in C++ expression.

This proposal first appeared as part of P2178R1 [3].

Revisions

R2

Wording fixes.

R1

At EWG’s request we contacted implementers to confirm they had no issue with this proposal.
We also added a note explaining why we do not propose a feature macro.

Motivation

Consider the following code:

#if 'A' == '\x41'
//...
#endif
if ('A' == 0x41){}

Both conditions are not guaranteed to yield a similar result, as the value of character literals
in preprocessor conditional is not required to be identical to that of character literals in
expressions.

However, a survey of the 1300+ open sources projects available on vcpkg shows that the
primary use case for these macros is exactly to detect the narrow literal encoding at compile

1

mailto:corentin.jabot@gmail.com
https://wg21.link/P2178R1
http://eel.is/c++draft/cpp#cond-12
http://eel.is/c++draft/cpp#cond-12
http://eel.is/c++draft/cpp#cond-12

time and all compilers available on compiler explorer treat these literals as if they were in the
narrow literal encoding.

Notably, a few libraries use that pattern to detect EBCDIC or ASCII narrow literal encoding. Of
the 50 usages of the pattern, all but one were in C libraries.

For example, this code is in sqlite.c

/*
** Check to see if this machine uses EBCDIC. (Yes, believe it or
** not, there are still machines out there that use EBCDIC.)
*/
#if 'A' == '\301'
define SQLITE_EBCDIC 1
#else
define SQLITE_ASCII 1
#endif

While we think there should be a better way to detect encodings in C++ [1], there is no reason
to deprecate that feature.

Instead, we recommend adopting the standard practice and user expectation of converting
these literals to the narrow literal encoding before evaluating them.

SG16 poll

August 26th, 2020
Poll: Proposal 11 (of P2178R0 [2]): We agree that the same character encoding should be used
for character literal in translation phase 4 and 7.

Attendees: 10
No objection to unanimous consent.

Implementers feedback

MSVC and EDG implementers reported having no issue with this proposal and confirmed it
already matches existing behavior of their respective implementation. This is also the case
for Clang and GCC (whose code is open source).

Feature Macro

Because this paper proposes to standardize the behavior of all existing implementations, we
are not proposing the addition of a feature macro.

2

https://github.com/sqlite/sqlite/blob/master/src/sqliteInt.h#L739
https://wg21.link/P2178R0

Wording

�? Preprocessing directives [cpp]

�? Conditional inclusion [cpp.cond]

The resulting tokens comprise the controlling constant expression which is evaluated ac-
cording to the rules of [expr.const] using arithmetic that has at least the ranges specified
in [support.limits]. For the purposes of this token conversion and evaluation all signed and
unsigned integer types act as if they have the same representation as, respectively, intmax_t
or uintmax_t. [Note: Thus on an implementation where std::numeric_limits<int>::max() is
0x7FFF and std::numeric_limits<unsigned int>::max() is 0xFFFF, the integer literal 0x8000 is
signed and positive within a #if expression even though it is unsigned in translation phase
7. —end note] This includes interpreting character-literal s which may involve converting
escape sequences into execution character setmembers. Whether the numeric value for these
character-literal s matches the value obtained when an identical character-literal occurs in an
expression (other than within a #if or #elif directive) is implementation-defined. [Note: Thus,
the constant expression in the following #if directive and if statement is not guaranteed to
evaluate to the same value in these two contexts:

#if 'z' - 'a' == 25
if ('z' - 'a' == 25)

—end note] Also, whether a single-character character-literal may have a negative value is
implementation-defined. This includes interpreting character-literal according to the rules
in [lex.ccon]. [Note: The associated character encodings of literals are the same in #if and
#elif directives and in any expression. —end note]

Each subexpression with type bool is subjected to integral promotion before processing
continues.

Acknowledgments

References

[1] Corentin Jabot. P1885R2: Naming text encodings to demystify them. https://wg21.link/
p1885r2, 3 2020.

[2] Corentin Jabot. P2178R0: Misc lexing and string handling improvements. https://wg21.
link/p2178r0, 6 2020.

[3] Corentin Jabot. P2178R1: Misc lexing and string handling improvements. https://wg21.
link/p2178r1, 7 2020.

[N4878] Richard Smith Working Draft, Standard for Programming Language C++
https://wg21.link/N4878

3

https://wg21.link/p1885r2
https://wg21.link/p1885r2
https://wg21.link/p2178r0
https://wg21.link/p2178r0
https://wg21.link/p2178r1
https://wg21.link/p2178r1
https://wg21.link/N4878

	1 Abstract
	2 Revisions
	2.1 R2
	2.2 R1

	3 Motivation
	4 SG16 poll
	5 Implementers feedback
	6 Feature Macro
	7 Wording
	8 Preprocessing directives
	8.1 Conditional inclusion

	9 Acknowledgments
	10 References

