
Document number: P1121R3
Date: 2021-04-09
Project: Programming Language C++, WG21
Authors: Maged M. Michael, Michael Wong, Paul McKenney, Geoffrey Romer, Andrew Hunter,
Arthur O'Dwyer, Daisy S. Hollman, JF Bastien, Hans Boehm, David Goldblatt, Frank Birbacher,
Mathias Stearn, Jens Maurer
Email: maged.michael@gmail.com, michael@codeplay.com, paulmck@kernel.org,
gromer@google.com, andrewhhunter@gmail.com, arthur.j.odwyer@gmail.com,
dshollm@sandia.gov, jfbastien@apple.com, hboehm@google.com, davidtgoldblatt@gmail.com,
frank.birbacher@gmail.com, redbeard0531+isocpp@gmail.com, jens.maurer@gmx.net
Reply to: maged.michael@gmail.com, michael@codeplay.com, paulmck@kernel.org

Hazard Pointers: Proposed Interface
and Wording for Concurrency TS 2

Introduction 1

History/Changes from Previous Release 2

Hazard Pointers 4

Comparison of Deferred Reclamation Methods 5

Use Examples 7

Proposed Wording 8

1 Introduction

This paper contains proposed interface and wording for hazard pointers [1], a technique for safe
deferred reclamation. This wording is based on N4700 draft [2]. An implementation is in the
Folly open source library [3]

The proposal was voted to be forwarded by SG1 to LEWG in Rapperswil in June 2018, and was
voted to be forwarded by LEWG to LWG in San Diego in November 2018.

1

mailto:maged.michael@acm.org
mailto:michael@codeplay.com
mailto:paulmck@kernel.org
mailto:gromer@google.com
mailto:andrewhhunter@gmail.com
mailto:arthur.j.odwyer@gmail.com
mailto:dshollm@sandia.gov
mailto:jfbastien@apple.com
mailto:hboehm@google.com
mailto:davidtgoldblatt@gmail.com
mailto:frank.birbacher@gmail.com
mailto:redbeard0531+isocpp@gmail.com
mailto:jens.maurer@gmx.net
mailto:maged.michael@gmail.com
mailto:michael@codeplay.com
mailto:paulmck@kernel.org

Drafts of this paper were reviewed by LWG on 2021-03-19, 2021-03-26, and 2021-04-09. This
paper was voted on 2021-04-09 by LWG to be forwarded to plenary for inclusion in Concurrency
TS 2.

1.1 Motivation
Under optimistic concurrency, threads may use shared resources concurrently with other1

threads that may make such resources unavailable for further use. Care must be taken to
reclaim such resources only after they are guaranteed that no threads will subsequently use
them.

More specifically, concurrent dynamic data structures that employ optimistic concurrency allow
threads to access dynamic objects concurrently with threads that may remove such objects.
Without proper precautions, it is generally unsafe to reclaim the removed objects, as they may
be accessed subsequently by threads that hold references to them. Solutions for the safe
reclamation problem can also be used to prevent the ABA problem, a common problem under
optimistic concurrency.

There are several methods for safe deferred reclamation. The main methods aside from
automatic garbage collection are reference counting, RCU (read-copy-update), and hazard
pointers. Each method has its pros and cons and none of the methods provides the best
features in all cases. Therefore, it is desirable to offer users the opportunity to choose the most
suitable methods for their use cases.

2 History/Changes from Previous Release
Until the June 2018 Rapperswil meeting the interface and wording for hazard pointers were
presented together with those for RCU (Read-Copy-Update) [4] in P0566 [5] with associated
Bugzilla Bug #382. For the history of P0566 see the last revision P0566R5 (pre-Rapperswil).
Earlier interface proposals are in P0233 [6]. This paper is a revision of the hazard pointer
related parts of P0566. The RCU related parts are now in P1122, and the chapter headings from
P0566 are now in P0940.

2021-04 Changes in [P1121R3] from [P1121R2] (after review by
LWG)

● Pervasive changes. The following are the most significant changes.
● Added general design information and examples.

1 Throughout this document, we use to term thread to refer to any thread of execution, including
language-level threads, processes, and signal handlers.

2

● Changed the term epoch to protection epoch and made the use of the term more
precise.

● Made the specification and use of the base object type and derived types more precise.
Added the term hazard-protectable.

● Consolidated the definition of possibly-reclaimable.
● Separated the domain default constructor from the explicit one with an optional

parameter. Made the domain constructors noexcept.

2021-01 Changes in [P1121R2] from [P1121R1] (pre-Kona)
● Updates are based on feedback from LWG for D1122R3 (RCU).
● Add namespace std::experimental::inline concurrency_v2.
● Change class to struct.
● Make hazard_pointer_clean_up noexcept.
● Make retire noexcept.
● Several additions to the wording for retire.

2019-01 Changes in [P1121R1] (pre-Kona) from [P1121R0]
(pre-San Diego)

● Removed Section 3 of P1121R1, which provided detailed background for LEWG review
in San Diego.

● Changed instances of "Requires" to "Mandates" and "Expects" according to N4762
[structure.specifications].

2018-11 LEWG Review in San Diego
● LEWG voted to approve the API changes proposed in P1121R1 and to forward the

proposal to LWG for wording review towards inclusion in Concurrency TS 2.

2018-10 Changes in [P1121R0] (pre-San Diego) from [P0566R5]
(pre-Rapperswil)

● Edited the wording of hazard_pointer_obj_base retire(): Added a clarifying note.
Removed instances of the word "then". Added the word "reclaim" to clarify the meaning
of "expression".

● Changed "hazptr" to "hazard_pointer" in class and function names.
● Changed the class name "hazptr_holder" to "hazard_pointer".
● Changed the member function name "reset_protected" to "reset_protection".
● Changed the free function name "hazptr_cleanup" to "hazard_pointer_clean_up".

3

2018-06 LEWG Review in Rapperswil
● See details in Section 3 of P1121R0.

2018-06 SG1 Review in Rapperswil
● SG1 voted to forward the proposal to LEWG, provided that the following changes to the

wording of hazptr_obj_base retire are made: Add a clarifying note. Remove instances of
the word "then". Add the word "reclaim" to clarify the meaning of "expression".

3. Hazard Pointers
A hazard pointer is a single-writer multi-reader pointer that can be owned by at most one thread
at any time. Only the owner of the hazard pointer can set its value, while any number of threads
may read its value. A thread that is about to access dynamic objects optimistically acquires
ownership of a set of hazard pointer to protect such objects from being reclaimed. The owner
thread sets the value of a hazard pointer to point to an object in order to indicate to concurrent
threads — that may remove such object — that the object is not yet safe to reclaim.

Hazard pointers are owned and written by threads that act as users/protectors (i.e., protect
removable objects from unsafe reclamation in order to use such objects) and are read by
threads that act as removers/reclaimers (i.e., may remove and try to reclaim objects). Removers
retire removed objects to the hazard pointer library (i.e., pass the responsibility for reclaiming
the objects to the library code rather than normally by user code). The set of protector and
remover threads may overlap, so the same thread may write to its own hazard pointers to

4

protect objects and read the hazard pointers including those of other threads when attempting to
reclaim retired objects.

The key rule of the hazard pointers method is that a retired object can be reclaimed only
after it is determined that no hazard pointers have been pointing continuously to it from a
time before its retirement.

3.1. Basic Mechanism
Protection:

● By setting a hazard pointer HP to the address of an object A, the owner of the hazard
pointer is telling all threads: “if you (collectively) remove object A after I have set HP to
the address of A, and then retire A, then don’t reclaim A as long as HP continues to point
to A”.

Deferred reclamation:
● After accumulating a number of retired objects (for the sake of amortization):

○ Extract the set of retired objects.
○ Read (no atomicity needed) the values all hazard pointers and keep a private set

of non-null values.
○ For each retired object, lookup its address in the private set of values read from

hazard pointers:
■ If not found, reclaim the object.
■ If found, put the object back in the set of retired objects.

3.2. Domains
The hazard pointers method allows the presence of multiple hazard pointer domains, where the
safe reclamation of resources in one domain does not require checking all the hazard pointers
in different domains. It is possible for the same thread to participate in multiple domains
concurrently. A domain can be specific to one or more resources, or can encompass all sharing
among multiple processes in a system.

3.3. Main Structures and Operations
The main structures of the hazard pointers method are:

● Hazard pointers: pointer-sized variables.
● Retired objects awaiting reclamation.
● Container structures for hazard pointer records and removed objects.

The key operations are:
● Allocate a hazard pointer.

5

● Acquire ownership of a hazard pointer.
● Set the value of a hazard pointer to protect an object.
● Clear the value of a hazard pointer.
● Release ownership of a hazard pointer.
● Retire a removed object.
● Read the value of a hazard pointer.

The rationale for using a polymorphic allocator for the allocation of hazard pointers (at least for
the TS proposal) is to avoid the virality of allocator template parameters and to allow custom
domains to use custom allocation (e.g., a fixed number of preallocated hazard pointers).

3.4. Pros and Cons
The main advantages of the hazard pointers method are that:

1. The number of removed objects that are not yet reclaimed is bounded.
2. Readers do not interfere with each other or with writers
3. Cache friendly access patterns.
4. Constant time complexity for traversal and expected amortized constant time for

determination of safe reclamation per retired object.

4. Comparison of Deferred Reclamation Methods
Reference
Counting

Split
Reference
Counting

RCU Hazard
Pointers

Unreclaimed
objects

Bounded Bounded Unbounded Bounded

Contention among
readers

Can be very high Can be very high No contention No contention

Traversal speed Atomic updates Atomic updates No or low
overhead

Low overhead

Reference
acquisition

Unconditional Unconditional Unconditional Conditional

Automatic
reclamation

Yes Yes No No

Blocking while
protecting objects

Yes Yes No or
complicated

Yes

Advantages

6

5 Use Examples

5.1 Copy-on-Write
struct Block : hazard_pointer_obj_base<Block> { V val_; ... };

atomic<Block*> block_;

U reader_op() {

hazard_pointer h = make_hazard_pointer();

Block* p = h.protect(block_);

return f(p); // safe to access *p

} // RAII end of protection

void writer(Block* newb) { // May be called concurrently with readers

Block* oldb = block_.exchange(newb);

oldb->retire(); // reclaim *oldb when safe

}

5.2 Search Ordered Single-Writer Singly-Linked List
struct Node : hazard_pointer_obj_base<Node> {

T elem_;

atomic<Node*> next_;

Node(T e, Node* n) : elem_(e), next_(n) {}

};

atomic<Node*> head_{nullptr};

bool contains(const T& val) const {

/* Two hazard pointers for hand-over-hand traversal */

hazard_pointer hptr_prev = make_hazard_pointer();

hazard_pointer hptr_curr = make_hazard_pointer();

while (true) {

atomic<Node*>* prev = &head_;

7

Node* curr = prev->load(std::memory_order_acquire);

while (true) {

if (!curr) return false;

if (!hptr_curr.try_protect(curr, *prev)) break;

Node* next = curr->next_.load(std::memory_order_acquire);

if (prev->load(std::memory_order_acquire) != curr) break;

if (curr->elem_ >= val) return curr->elem_ == val;

prev = &(curr->next_);

curr = next;

swap(hptr_curr, hptr_prev);

}

}

}

// For more details see

https://github.com/facebook/folly/blob/master/folly/synchronization/example/H

azptrSWMRSet.h

6 Proposed wording
? Hazard Pointers [hazptr]

1. A hazard pointer is a single-writer multi-reader pointer that can be owned by at most one
thread at any time. Only the owner of the hazard pointer can set its value, while any
number of threads may read its value. The owner thread sets the value of a hazard
pointer to point to an object in order to indicate to concurrent threads — that may delete
such an object — that the object is not yet safe to delete.

2. A class type T is hazard-protectable if it has exactly one public base class of type
hazard_pointer_obj_base<T,D> for some D and no base classes of type
hazard_pointer_obj_base<T’,D’> for any other combination T’, D’. An object is
hazard-protectable if it is of hazard-protectable type.

3. The span between creation and destruction of a hazard pointer h is partitioned into a
series of protection epochs; in each protection epoch, h either is associated with a
hazard-protectable object, or is unassociated. Upon creation, a hazard pointer is
unassociated. Changing the association (possibly to the same object) initiates a new
protection epoch and ends the preceding one.

4. A hazard pointer belongs to exactly one domain.
5. An object of type hazard_pointer is either empty or owns a hazard pointer. Each

hazard pointer is owned by exactly one object of type hazard_pointer.
[Note: An empty hazard_pointer object is different from a hazard_pointer object that
owns an unassociated hazard pointer. An empty hazard_pointer object does not own
any hazard pointers. — end note]

8

6. An object x of hazard-protectable type T is retired to a domain with a deleter of type D
when the member function hazard_pointer_obj_base<T,D>::retire is invoked on
x. Any given object x shall be retired at most once.

7. A retired object x is reclaimed by invoking its deleter with a pointer to x.
8. A hazard-protectable object x is definitely reclaimable in a domain dom with respect to

an evaluation A if:
a. x is not reclaimed, and
b. x is retired to dom in an evaluation that happens before A, and
c. for all hazard pointers h that belong to dom, the end of any protection epoch

where h is associated with x happens before A.
9. A hazard-protectable object x is possibly reclaimable in domain dom with respect to an

evaluation A if:
a. x is not reclaimed; and
b. x is retired to dom in an evaluation R and A does not happen before R; and
c. for all hazard pointers h that belong to dom, A does not happen before the end of

any protection epoch where h is associated with x; and
d. for all hazard pointers h belonging to dom and for every protection epoch E of h

during which h is associated with x:
i. A does not happen before the end of E, and
ii. if the beginning of E happens before x is retired, the end of E strongly

happens before A, and
iii. if E began by an evaluation of try_protect with argument src, label its

atomic load operation L. If there exists an atomic modification B on src

such that L observes a modification that is modification-ordered before B,
and B happens before x is retired, the end of E strongly happens before
A. [Note: In typical use, a store to src sequenced before retiring x will be
such an atomic operation B.]

[Note: The latter two conditions convey the informal notion that a protection
epoch that began before retiring x, as implied either by the happens-before
relation or the coherence order of some source, delays the reclamation of x. --
end note]

[Example— The following example shows how hazard pointers allow updates to be carried out
in the presence of concurrent readers. The object of type hazard_pointer in print_name

protects the object *ptr from being reclaimed by ptr->retire until the end of the protection
epoch.

struct Name : public hazard_pointer_obj_base<Name> { /* details */ };

atomic<Name*> name;

// called often and in parallel!

void print_name() {

hazard_pointer h = make_hazard_pointer();

9

Name* ptr = h.protect(name); /* Protection epoch starts */

/* ... safe to access *ptr ... */

} /* Protection epoch ends. */

// called rarely, but possibly concurrently with print_name

void update_name(Name* new_name) {

Name* ptr = name.exchange(new_name);

ptr->retire();

}

—end example]

?.1 Header <hazard_pointer> synopsis [hazptr.syn]

namespace std::experimental::inline concurrency_v2 {

// ?.2, class hazard_pointer_domain

class hazard_pointer_domain;

// ?.3, Default hazard_pointer_domain

hazard_pointer_domain& hazard_pointer_default_domain() noexcept;

// ?.4, Clean up

void hazard_pointer_clean_up(

hazard_pointer_domain& domain = hazard_pointer_default_domain())

noexcept;

// ?.5, class template hazard_pointer_obj_base

template <typename T, typename D = default_delete<T>>

class hazard_pointer_obj_base;

// ?.6, class hazard_pointer

class hazard_pointer;

// ?.7, Construct non-empty hazard_pointer

hazard_pointer make_hazard_pointer(

hazard_pointer_domain& domain = hazard_pointer_default_domain());

// ?.8, Hazard pointer swap

void swap(hazard_pointer&, hazard_pointer&) noexcept;

}

10

?.2 Class hazard_pointer_domain [hazptr.domain]
? 2.1 General [hazptr.domain.general]

1. The number of unreclaimed possibly-reclaimable objects retired to a domain is bounded.
The bound is implementation-defined. [Note: The bound can be independent of other
domains and can be a function of the number of hazard pointers belonging to the
domain, the number of threads that retire objects to the domain, and the number of
threads that use hazard pointers belonging to the domain. -- end note]

2. Concurrent access to a domain does not incur a data race ([intro.races)].

class hazard_pointer_domain {

public:

hazard_pointer_domain() noexcept;

explicit hazard_pointer_domain(

pmr::polymorphic_allocator<byte> poly_alloc) noexcept;

hazard_pointer_domain(const hazard_pointer_domain&) = delete;

hazard_pointer_domain& operator=(const hazard_pointer_domain&) = delete;

~hazard_pointer_domain();

};

?.2.2 Member functions [hazptr.domain.mem]
hazard_pointer_domain() noexcept;

1. Effects: Equivalent to
hazard_pointer_domain({});

explicit hazard_pointer_domain(

pmr::polymorphic_allocator<byte> poly_alloc) noexcept;

1. Remarks: All allocation and deallocation related to hazard pointers belonging to this
domain use a copy of poly_alloc.

~hazard_pointer_domain();

1. Preconditions: All hazard pointers belonging to *this have been destroyed.
2. Effects: Reclaims all objects retired to this domain that have not yet been reclaimed.

?.3 Default hazard_pointer_domain [hazptr.domain.default]
hazard_pointer_domain& hazard_pointer_default_domain() noexcept;

1. Returns: A reference to the default hazard_pointer_domain.

11

2. Remarks: The default domain has an unspecified allocator and has static storage
duration. The initialization of the default domain strongly happens before this function
returns; the sequencing is otherwise unspecified.

?.4 Clean up [hazptr.cleanup]
void hazard_pointer_clean_up(

hazard_pointer_domain& domain = hazard_pointer_default_domain()) noexcept;

1. Effects: May reclaim possibly-reclaimable objects retired to domain.
2. Postconditions: All definitely-reclaimable objects retired to domain have been reclaimed.
3. Synchronization: The completion of the deleter for each reclaimed object synchronizes

with the return from this function call.

?.5 Class template hazard_pointer_obj_base [hazptr.base]

template <typename T, typename D = default_delete<T>>

class hazard_pointer_obj_base {

public:

void retire(

D d = D(),

hazard_pointer_domain& domain = hazard_pointer_default_domain())

noexcept;

void retire(hazard_pointer_domain& domain) noexcept;

protected:

hazard_pointer_obj_base() = default;

private:

D deleter; // exposition only

};

1. A client-supplied template argument D shall be a function object type ([function.object])
for which, given a value d of type D and a value ptr of type T*, the expression d(ptr) is
valid and has the effect of disposing of the pointer as appropriate for that deleter.

2. The behavior of a program that adds specializations for hazard_pointer_obj_base is
undefined.

3. D shall meet the requirements for Cpp17DefaultConstructible and
Cpp17MoveAssignable.

4. T may be an incomplete type.

void retire(

D d = D(),

hazard_pointer_domain& domain = hazard_pointer_default_domain()) noexcept;

1.

12

2. Mandates: T is a hazard-protectable type.
3. Preconditions: *this is a base class subobject of an object x of type T. x is not retired.

Move-assigning D from d does not throw an exception. The expression
d(addressof(x)) has well-defined behavior and does not throw an exception.

4. Effects: Move-assigns d to deleter, thereby setting it as the deleter of x, then retires x

to domain.
5. Invoking the retire function may reclaim possibly-reclaimable objects retired to domain.

void retire(hazard_pointer_domain& domain) noexcept;

1. Effects: Equivalent to
retire(D(), domain);

?.6 Class hazard_pointer [hazptr.holder]

class hazard_pointer {

public:

hazard_pointer() noexcept;

hazard_pointer(hazard_pointer&&) noexcept;

hazard_pointer& operator=(hazard_pointer&&) noexcept;

~hazard_pointer();

[[nodiscard]] bool empty() const noexcept;

template <typename T>

T* protect(const atomic<T*>& src) noexcept;

template <typename T>

bool try_protect(T*& ptr, const atomic<T*>& src) noexcept;

template <typename T>

void reset_protection(const T* ptr) noexcept;

void reset_protection(nullptr_t = nullptr) noexcept;

void swap(hazard_pointer&) noexcept;

};

?.6.1 Constructors [hazptr.holder.ctor]
hazard_pointer() noexcept;

1. Postconditions: *this is empty.

13

hazard_pointer(hazard_pointer&& other) noexcept;

1. Postconditions: If other is empty, *this is empty. Otherwise, *this owns the hazard
pointer originally owned by other; other is empty.

?.6.2 Destructor [hazptr.holder.dtor]
~hazard_pointer();

1. Effects: If *this is not empty, destroys the hazard pointer owned by *this, thereby
ending its current protection epoch.

?.6.3 Assignment [hazptr.holder.assign]
hazard_pointer& operator=(hazard_pointer&& other) noexcept;

1. Effects: If this == &other is true, no effect. Otherwise, if *this is not empty, destroys
the hazard pointer owned by *this, thereby ending its current protection epoch.

2. Postconditions: If other was empty, *this is empty. Otherwise, *this owns the hazard
pointer originally owned by other. If this != &other is true, other is empty.

3. Returns: *this.

?.6.4 Member functions [hazptr.holder.mem]
[[nodiscard]] bool empty() const noexcept;

1. Returns: true if and only if *this is empty.

template <typename T>

T* protect(const atomic<T*>& src) noexcept;

1. Effects: Equivalent to

T* ptr = src.load(memory_order_relaxed);

while (!try_protect(ptr, src)) {}

return ptr;

template <typename T>

bool try_protect(T*& ptr, const atomic<T*>& src) noexcept;

1. Mandates: T is a hazard-protectable type.
2. Preconditions: *this is not empty.
3. Effects:

a. Initializes a variable old of type T* with the value of ptr.
b. Evaluates the function call reset_protection(old).

14

c. Assigns the value of src.load(std::memory_order_acquire) to ptr.
d. If old == ptr is false, evaluates the function call reset_protection().

4. Returns: old == ptr. [Note: It is possible for try_protect to return true when ptr is
a null pointer. — end note]

5. Complexity: Constant.

template <typename T>

void reset_protection(const T* ptr) noexcept;

1. Mandates: T is a hazard-protectable type.
2. Preconditions: *this is not empty.
3. Effects: If ptr is a null pointer value, invokes reset_protection(). Otherwise,

associates the hazard pointer owned by *this with *ptr, thereby ending the current
protection epoch.

void reset_protection(nullptr_t = nullptr) noexcept;

1. Preconditions: *this is not empty.
2. Postconditions: The hazard pointer owned by *this is unassociated.

void swap(hazard_pointer& other) noexcept;

1. Effects: Swaps the hazard pointer ownership of this object with that of other.
[Note: The owned hazard pointers, if any, remain unchanged during the swap and
continue to be associated with the respective objects that they were protecting before
the swap, if any. No protection epochs are ended or initiated. — end note]

2. Complexity: Constant.

?.7 make_hazard_pointer [hazptr.make]
hazard_pointer make_hazard_pointer(

hazard_pointer_domain& domain = hazard_pointer_default_domain());

1. Effects: Constructs a hazard pointer belonging to domain.
2. Returns: A hazard_pointer object that owns the newly-constructed hazard pointer.
3. Throws: Any exception thrown by the allocator of domain.

?.8 hazard_pointer specialized algorithms [hazptr.holder.special]
void swap(hazard_pointer& a, hazard_pointer& b) noexcept;

1. Effects: Equivalent to a.swap(b).

15

Acknowledgements
The authors thank Keith Bostic, Olivier Giroux, Pablo Halpern, Davis Herring, Lee Howes,
Bronek Kozicki, Nathan Myers, Xiao Shi, Tim Song, Viktor Vafeiadis, Tony Van Eerd, Dave
Watson, Anthony Williams and other members of SG1, SG14, LEWG, and LWG for useful
discussions and suggestions that helped improve this paper and its earlier versions.

References
[1] Maged M Michael. "Hazard pointers: Safe memory reclamation for lock-free objects."
Parallel and Distributed Systems, IEEE Transactions on 15.6 (2004): 491-504.

[2] N4700 http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/n4700.pdf

[3] Hazard Pointer Implementation:
https://github.com/facebook/folly/blob/master/folly/synchronization/Hazptr*

[4] P0461 Proposed RCU C++ API http://wg21.link/P0461

[5] P0566 Proposed Wording for Concurrent Data Structures: Hazard Pointer and
Read Copy Update (RCU). http://wg21.link/P0566

[6] P0233 Hazard Pointers: Safe Resource Reclamation for Optimistic Concurrency.
http://wg21.link/P0233

16

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/n4700.pdf
https://github.com/facebook/folly/blob/master/folly/synchronization
http://wg21.link/P0461
http://wg21.link/P0566
http://wg21.link/P0233

