

Renaming any_invocable

Document: P2265R0 (2020-12-06)
Author: Kevlin Henney <kevlin@curbralan.com>
Audience: Library Evolution Working Group
Project: ISO/IEC JTC1/SC22/WG21 14882: Programming Language — C++

Express co-ordinate ideas in similar form.

This principle, that of parallel construction, requires that expressions of similar
content and function should be outwardly similar. The likeness of form enables the
reader to recognize more readily the likeness of content and function.

William Strunk, Jr., and E B White, The Elements of Style

1. Abstract
This paper recommends revisiting the proposed name of any_invocable (P02881),
recommending that any name chosen follows prior art and user expectation more closely.

2. Overview
P0288 proposes a move-only counterpart to std::function. This meets a number of
well-defined use cases and makes the function-wrapper functionality offered by the standard
more complete, complementing what is already offered by existing std::function and what
is proposed for function_ref (P07922).

This paper makes no attempt to revise the functionality proposed in P0288, which, as it
stands, will be a welcome addition to the standard. The functionality for any_invocable is
largely defined as a constrained subset of the functionality offered by std::function, with
the most notable constraint that it is a move-only type. As P0288's abstract states:

This paper proposes a conservative, move-only equivalent of std::function.

What this paper proposes is that the name for the class template should more closely match
what a user would expect given knowledge of std::function and the description offered in
the abstract. While nobody expects the Spanish Inquisition3, it is also fair to say that no C++
developer would expect any_invocable as the name for a move-only std::function.

This paper outlines what we want from a name, how any_invocable measures up, and
recommendations for renaming it.

1 P0288R7, any_invocable by Matt Calabrese and Ryan McDougall,
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2020/p0288r7.html
2 P0792, function_ref: a non-owning reference to a Callable by Vittorio Romeo,
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p0792r5.html
3 See https://en.wikipedia.org/wiki/The_Spanish_Inquisition_(Monty_Python)

mailto:kevlin@curbralan.com
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2020/p0288r7.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p0792r5.html
https://en.wikipedia.org/wiki/The_Spanish_Inquisition_(Monty_Python)

3. What we want from a name
It is widely acknowledged that naming is one of the hardest problems in computer science4.
The process for any_invocable highlights this: straw polls for the name revealed not only a
lack of consensus, but also a lack of majority. None of the proposed names even came
close: in the final poll of 57, only 10 were cast for any_invocable, which was marginally
ahead of four other names out of a total of thirteen. It is not clear that simply repolling without
a proper consideration of requirements would be any more meaningful, or that it would not
run foul of the Abilene paradox5.

Identifiers in the standard are used by a potential audience of over 5 million developers6.
This user base has a number of needs from any name that are rarely articulated. In no
particular order, we can attempt to list some of these practicalities and expectations:

1. A name should be descriptive. A reader should be able to read a name and have a
reasonable chance at understanding what it represents and the role it plays in code,
i.e., the description should be meaningful to the reader.

For example, unordered_set.

2. A name and its explanation should be as close together as possible. The
distance between what a name represents and a more complete explanation of the
named feature or facility should be as small as possible, which implies there should
be common terminology between the name and the explanation, and that the
principle of least astonishment is respected.

For example, sort is an unsurprising name for a function or template that sorts a
container or range of elements, and the term sort is to be found in any explanation of
what it does.

3. A name should be concise. The danger of descriptive names that fit their
explanation is that what they might gain in explicitness, they may lose in
convenience. Names are created to appear in code, and they should not require
autocompletion or IMAX screens to be considered usable. Names also need to be
short, but not so short that they are ambiguous, cryptic, or reminiscent of the Great
Vowel Shortage of the 1970s and 1980s.

4. A name should be complete. Significant aspects of the feature named should not
be omitted. This is, of course, in tension with the desire to be concise. Less
significant aspects of a type or function should be omitted in favour of more
significant ones when the result would otherwise be a shopping list.

5. A name should be consistent with existing terminology and experience.
Similarity creates familiarity and recognition. Names already in the reader's

4 "There are only two hard things in computer science: cache invalidation and naming things." Phil
Karlton
5 "In the Abilene paradox, a group of people collectively decide on a course of action that is counter to
the preferences of many or all of the individuals in the group."
https://en.wikipedia.org/wiki/Abilene_paradox
6 See https://www.daxx.com/blog/development-trends/number-software-developers-world

2

https://en.wikipedia.org/wiki/Abilene_paradox
https://www.daxx.com/blog/development-trends/number-software-developers-world

vocabulary provide a good basis for understanding names for features and facilities
that are new. Where two ideas are related, that relationship should be apparent. This
is the principle that, all other things being equal, prior art should be followed in
preference to invention where a concept is already named and in widespread usage,
whether within the C++ standard, the broader C++ community, other programming
languages, or other relevant domains.

For example, when function was included into TR1 from Boost it retained its name,
which was further preserved with its adoption into C++11.

6. A name should be well-formed. Although identifier names are subject to a number
of constraints, they should not be awkward on the page or in the mouth. As much as
is appropriate, the identifiers in the C++ standard follow the spelling and grammatical
conventions of US English.

It would be too much to say these considerations form a set of requirements, as that implies
both a rigorous and explicit approach to requirements this paper is not claiming and that it is
possible for names, in general, to meet all requirements. In many cases, the most any
choice of name can hope to achieve is a fair balance between these sometimes
contradictory desires. Naming is more a matter of compromise than perfection.

For example, grammatically the word any is an adjective but, as a concrete type, any plays
the role of a noun. This can be seen to violate (6). This grammatical quirk, however, is
subordinate to (5): C++17's std::any is named for boost::any, a longstanding Boost
library, before which it was written up7 as any based on implementation experience in
previous projects. This in turn took its name in the 1990s from the any type in CORBA's IDL8
and the ANY type in ASN.19. Nowadays, any (or Any) is a common name for a universal or
top (⊤) type, e.g., TypeScript, Scala, Swift. Prior art and familiarity make a stronger case for
the term any than violating a part of a speech makes against it — the needs of the any
outweigh the needs of the few10.

4. How any_invocable measures up to what we want
Reflecting on any_invocable:

1. A name should be descriptive. The name has two components: any is a
recognised type; as a term, invocable is relatively recent in C++ standardisation, and
only became a first class name in C++20 as the std::invocable concept. A reader
well versed in C++20 might reasonably expect any_invocable to be a postpositively
named version of std::any that was invocable, i.e., supported the function-call
operator. (The prepositive name for such a feature would be invocable_any.) In
terms of its design and usage, however, any_invocable is related to
std::function and not std::any.

7 "Valued Conversions" by Kevlin Henney, C++ Report, July 2000
8 OMG Interface Definition Language, https://www.omg.org/spec/IDL/
9 ITU-T X.208, Specification of Abstract Syntax Notation One (ASN.1)
10 With apologies to Mr Spock, see Star Trek II: The Wrath of Khan.

3

https://www.omg.org/spec/IDL/

2. A name and its explanation should be as close together as possible. The
explanation of any_invocable is "a conservative, move-only equivalent of
std::function", which shares no common terminology.

3. A name should be concise. any_invocable is easy to type and to read and would
not dominate any expression it was a part of.

4. A name should be complete. any_invocable has three characteristics of interest:
(i) its instances can be used as function objects; (ii) it is a move-only type; (iii) it uses
type-erasure. Of these three characteristics, (i) and (ii) are the most important to how
the type is considered and used; (iii) is a secondary detail, and is of more interest in
implementation (e.g., the use of the External Polymorphism pattern11) than in usage.
The name any_invocable is named for (i) and (iii). Its move-only nature (ii), i.e.,
non-copyability, might be considered one of its most defining features and its
distinguishing characteristic when discussed alongside its older sibling
std::function, but it is not mentioned.

Although any_invocable tales an invocable rather than a callable, as
std::function does, this difference is a relatively trivial variation on the theme of
function objects, and is a difference that could be easily removed with a modest
future proposal to std::function, a change that would neither justify a name
change nor raise an eyebrow.

5. A name should be consistent with existing terminology and experience. The
name any_invocable shares no familial resemblance with std::function and
function_ref. There is little precedent in the standard or elsewhere for the name
any_invocable. The recognised name for a polymorphic function wrapper
(something that is at least callable and uses type erasure) is function.

LEWG's repurposing of any as a prefix to mean just type erasure rather than a whole
value type is not necessarily unreasonable, but it is neither widespread nor often
necessary. Such a prefixing convention may have a role when better names cannot
be found, and when any is followed by a name that denotes something concrete
rather than a partial concept, but that is not the case here.

6. A name should be well-formed. It is common and appropriate practice to use an
adjective in naming a property or capability of a thing, e.g., invocable and callable,
and when expressed in code these are often abstract base classes or concepts, i.e.,
they express a partial capability rather than a whole type. Naming a concrete type
this way is unusual. any_invocable is composed of two adjectives collectively
masquerading as a noun. Two wrongs do not often make a right.

11 "External Polymorphism" by Chris Cleeland, Douglas C Schmidt, and Tim Harrison, Pattern
Languages of Program Design 3, Addison-Wesley, 1998

4

5. Recommendations
This paper recommends revisiting the naming of any_invocable ("a name only an expert
committee member could love"12) and selecting a name that more closely meets the
expectations of the C++ user community and that more closely follows prior art. Whether the
six considerations listed in this paper are used as a checklist is immaterial.

The specific recommendation of this paper is that whatever name is chosen should include
the word function. This matches expectation, prior art, and the function_ref proposal.
The name carries most of the weight of invocability and type erasure, which addresses that
aspect of completeness. To highlight the move-only nature of the type, the affixes movable,
move_only, and move seem to be best suited. My first preference would be for
movable_function, with move_only_function a close second and move_function a more
distant third. All these names satisfy the principle of least astonishment13, and others may be
possible.

The abbreviations m, mo, and mv (mentioned in the name poll in P0288), however, are out of
step with current naming trends and may be considered overly terse for the context (likewise
fn, fun, and func) and perhaps a little cryptic. The unique prefix has much of the right
connotation and builds on a longstanding and widely understood convention, with
unique_function being the former and clearly understood name of any_invocable.
However, unique tends to refer to a quality of adopted ownership that is not relevant for
existing or proposed function.

6. Acknowledgements
My thanks to Jonathan Wakely, Peter Brett, Walter E Brown, James Dennett, and Nevin
Liber for comments that have led to, guided, and improved this paper.

12 P1737: unique_function vs. any_invokable - Bikeshedding Off the Rails by Nevin Lieber,
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p1737r0.pdf

13 https://wiki.c2.com/?PrincipleOfLeastAstonishment

5

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p1737r0.pdf
https://wiki.c2.com/?PrincipleOfLeastAstonishment

