
C++ IDENTIFIERS USING UAX 31
STEVE DOWNEY

Created: 2020-09-24 Thu 22:49

1

TABLE OF CONTENTS
C++ Identi�er Syntax using Unicode Standard Annex 31
The Emoji Problem
Script Issues
Other adopters

2

C++ IDENTIFIER SYNTAX USING UNICODE STANDARD ANNEX
31

That C++ identi�ers match the pattern

That portable source is required to be normalized as NFC.
That using unassigned code points be ill-formed.

(XID_Start + _) + XID_Continue*.

3

PROBLEM THIS FIXES : NL 029

Allowed characters include those from U+200b until
U+206x; these are zero-width and control characters that
lead to impossible to type names, indistinguishable names

and unusable code & compile errors (such as those
accidentally including RTL modi�ers).

4

STATUS QUO: WE ALLOW OTHER "WEIRD IDENTIFIER CODE POINTS"
The middle dot · which looks like an operator.
Many non-combining "modi�ers" and accent marks, such as ´ and ¨ and ꓻ
which don't really make sense on their own.
"Tone marks" from various languages, including ˫ (similar to a box-drawing
character ├ which is an operator).
The "Greek question mark" ; (see below)
Symbols which are simply not linguistic, such as ۞ and ༒.

https://gist.github.com/jtbandes/c0b0c072181dcd22c3147802025d0b59#weird-
identi�er-code-points

5

https://gist.github.com/jtbandes/c0b0c072181dcd22c3147802025d0b59#weird-identifier-code-points

UAX 31 - UNICODE IDENTIFIER AND PATTERN SYNTAX
Follows the same principles as originally used for C++
Actively maintained
Stable

6

XID_START AND XID_CONTINUE
Unicode database de�ned properties
Closed under normalization for all four forms
Once a code point has the property it is never removed
Roughly:

Start == letters
Continue == Start + numbers + some punctuation

7

THE EMOJI PROBLEM
The emoji-like code points that we knew about were excluded
We included all unassigned code points
Status Quo Emoji 'support' is an accident, incomplete, and broken

8

STATUS QUO IS BROKEN

9

SOME STATUS QUO EXAMPLES

Not Valid Valid

int ⏰ = 0; int 🕐 = 0;

int ☠ = 0; int 💀 = 0;

int ✋ = 0; int 👊 = 0;

int ✈ = 0; int 🚀 = 0;

int ☹ = 0; int 😀 = 0;

When the character was added to Unicode controls validity

10

STATUS QUO: ♀ AND ♂ ARE DISALLOWED

Gendered variants of emoji are selected by using a zero width joiner together
with the male and female sign.

// Valid
 bool 👷 = true; // Construction Worker
// Not valid
 bool � = false; // Woman Construction Worker ({Construction Worker}{ZWJ}{Female Sign})

11

PROBLEMS ADDING EMOJI AS IDENTIFIERS

12

EMOJI ARE COMPLEX

Not just code points
Need grapheme cluster analysis
May incur costs even for code not using emoji

13

EMOJI ARE NOT "STABLE" IN UNICODE

From the emoji spec

It is possible that the emoji property could be removed.

isEmoji(♟)=false for Emoji Version 5.0, but true for Version
11.0.

14

IDENTIFYING EMOJI IS DIFFICULT

The unicode standard provides a regex that will reject non-emoji, but does not
guarantee a valid emoji sequence.

It's not clear how much of the unicode database would be required for complete
support.

 \p{RI} \p{RI}
 | \p{Emoji}
 (\p{EMod}
 | \x{FE0F} \x{20E3}?
 | [\x{E0020}-\x{E007E}]+ \x{E007F})?
 (\x{200D} \p{Emoji}
 (\p{EMod}
 | \x{FE0F} \x{20E3}?
 | [\x{E0020}-\x{E007E}]+ \x{E007F})?
)*

UNICODE EMOJI

15

https://unicode.org/reports/tr51/

SOME SURPRISING THINGS ARE EMOJI
002A ; Emoji # E0.0 [1] (*) asterisk
0030..0039 ; Emoji # E0.0 [10] (0 ..9) digit zero..digit nine

 {DIGIT ONE}{VARIATION SELECTOR-16}{COMBINING ENCLOSING KEYCAP} �

 {ASTERISK}{VARIATION SELECTOR-16}{COMBINING ENCLOSING KEYCAP} �

/// would this be valid?
int � = 1;

16

FIXING THE EMOJI PROBLEM WOULD MEAN BEING INVENTIVE

Being inventive in an area outside our expertise is HARD

Adopting UAX31 as a base to move forward is conservative

UAX 31 is a known good state

17

SCRIPT ISSUES
Some scripts require characters to control display or require punctuation that

are not in the identi�er set.

18

THIS INCLUDES ENGLISH
Apostrophe and dash

won't
can't
mustn't
mother-in-law

Programmers are used to this and do not notice

19

ZERO WIDTH CHARACTERS ARE EXCLUDED BY UAX 31
Status quo allows these invisible characters

clang 10 warns

<source>:2:6: warning: identi�er contains Unicode character <U+200D>
that is invisible in some environments [-Wunicode-zero-width]

int t<U+200D><U+200D>mp = 0;

int tmp = 0;
int t mp = 0;

20

ZWJ AND ZWNJ
However zero width joiner and non joiner are used in some scripts

Farsi word "names"

نامھای

NOON + ALEF + MEEM + HEH + ALEF + FARSI YEH

Farsi word "a letter"

نامھ ای

NOON + ALEF + MEEM + HEH + ZWNJ + ALEF + FARSI YEH

Anecdotally, these issues are understood and worked around

21

UAX 31 HAS AN EXPENSIVE SOLUTION
Identi�ers can be checked for what script the code points in the identi�er are

used, and the rules for allowed characters can be tailored. This requires a
Unicode database and would require extensive analysis during lexing.

SG 16 does not recommend this.

22

OTHER ADOPTERS
Java ()
Python 3
Erlang

Rust
JS

https://docs.oracle.com/javase/specs/jls/se15/html/jls-3.html#jls-3.8
https://www.python.org/dev/peps/pep-3131/

https://www.erlang.org/erlang-enhancement-proposals/eep-
0040.html

https://rust-lang.github.io/rfcs/2457-non-ascii-idents.html
https://tc39.es/ecma262/

23

https://docs.oracle.com/javase/specs/jls/se15/html/jls-3.html#jls-3.8
https://www.python.org/dev/peps/pep-3131/
https://www.erlang.org/erlang-enhancement-proposals/eep-0040.html
https://rust-lang.github.io/rfcs/2457-non-ascii-idents.html
https://tc39.es/ecma262/

