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C++ IDENTIFIER SYNTAX USING UNICODE STANDARD ANNEX
31

That C++ identi�ers match the pattern

That portable source is required to be normalized as NFC.
That using unassigned code points be ill-formed.

(XID_Start + _ ) + XID_Continue*.
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PROBLEM THIS FIXES : NL 029

Allowed characters include those from U+200b until
U+206x; these are zero-width and control characters that
lead to impossible to type names, indistinguishable names

and unusable code & compile errors (such as those
accidentally including RTL modi�ers).
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STATUS QUO: WE ALLOW OTHER "WEIRD IDENTIFIER CODE POINTS"
The middle dot · which looks like an operator.
Many non-combining "modi�ers" and accent marks, such as ´ and ¨ and ꓻ
which don't really make sense on their own.
"Tone marks" from various languages, including ˫ (similar to a box-drawing
character ├ which is an operator).
The "Greek question mark" ; (see below)
Symbols which are simply not linguistic, such as ۞ and ༒.

https://gist.github.com/jtbandes/c0b0c072181dcd22c3147802025d0b59#weird-
identi�er-code-points
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UAX 31 - UNICODE IDENTIFIER AND PATTERN SYNTAX
Follows the same principles as originally used for C++
Actively maintained
Stable
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XID_START AND XID_CONTINUE
Unicode database de�ned properties
Closed under normalization for all four forms
Once a code point has the property it is never removed
Roughly:

Start == letters
Continue == Start + numbers + some punctuation
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THE EMOJI PROBLEM
The emoji-like code points that we knew about were excluded
We included all unassigned code points
Status Quo Emoji 'support' is an accident, incomplete, and broken
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STATUS QUO IS BROKEN
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SOME STATUS QUO EXAMPLES

Not Valid Valid

int ⏰ = 0; int 🕐 = 0;

int ☠  = 0; int 💀 = 0;

int ✋  = 0; int 👊 = 0;

int ✈ = 0; int 🚀 = 0;

int ☹  = 0; int 😀 = 0;

When the character was added to Unicode controls validity
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STATUS QUO: ♀ AND ♂ ARE DISALLOWED

Gendered variants of emoji are selected by using a zero width joiner together
with the male and female sign.

// Valid 
    bool 👷 = true; //  Construction Worker
// Not valid 
    bool � = false; // Woman Construction Worker ({Construction Worker}{ZWJ}{Female Sign}) 
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PROBLEMS ADDING EMOJI AS IDENTIFIERS
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EMOJI ARE COMPLEX

Not just code points
Need grapheme cluster analysis
May incur costs even for code not using emoji
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EMOJI ARE NOT "STABLE" IN UNICODE

From the emoji spec

It is possible that the emoji property could be removed.

isEmoji(♟)=false for Emoji Version 5.0, but true for Version
11.0.
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IDENTIFYING EMOJI IS DIFFICULT

The unicode standard provides a regex that will reject non-emoji, but does not
guarantee a valid emoji sequence.

It's not clear how much of the unicode database would be required for complete
support.

    \p{RI} \p{RI} 
    | \p{Emoji} 
        ( \p{EMod} 
        | \x{FE0F} \x{20E3}? 
        | [\x{E0020}-\x{E007E}]+ \x{E007F} )? 
        (\x{200D} \p{Emoji} 
          ( \p{EMod} 
          | \x{FE0F} \x{20E3}? 
          | [\x{E0020}-\x{E007E}]+ \x{E007F} )? 
        )* 

UNICODE EMOJI
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SOME SURPRISING THINGS ARE EMOJI
002A          ; Emoji                # E0.0   [1] (* )       asterisk 
0030..0039    ; Emoji                # E0.0  [10] (0 ..9 )    digit zero..digit nine 

   {DIGIT ONE}{VARIATION SELECTOR-16}{COMBINING ENCLOSING KEYCAP} � 
 
   {ASTERISK}{VARIATION SELECTOR-16}{COMBINING ENCLOSING KEYCAP} � 

/// would this be valid?
int � = 1; 
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FIXING THE EMOJI PROBLEM WOULD MEAN BEING INVENTIVE

Being inventive in an area outside our expertise is HARD

Adopting UAX31 as a base to move forward is conservative

UAX 31 is a known good state
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SCRIPT ISSUES
Some scripts require characters to control display or require punctuation that

are not in the identi�er set.
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THIS INCLUDES ENGLISH
Apostrophe and dash

won't
can't
mustn't
mother-in-law

Programmers are used to this and do not notice
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ZERO WIDTH CHARACTERS ARE EXCLUDED BY UAX 31
Status quo allows these invisible characters

clang 10 warns

<source>:2:6: warning: identi�er contains Unicode character <U+200D>
that is invisible in some environments [-Wunicode-zero-width]

int t<U+200D><U+200D>mp = 0;

int tmp = 0; 
int t  mp = 0; 
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ZWJ AND ZWNJ
However zero width joiner and non joiner are used in some scripts

Farsi word "names"

نامھای

NOON + ALEF + MEEM + HEH + ALEF + FARSI YEH

Farsi word "a letter"

نامھ ای

NOON + ALEF + MEEM + HEH + ZWNJ + ALEF + FARSI YEH

Anecdotally, these issues are understood and worked around
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UAX 31 HAS AN EXPENSIVE SOLUTION
Identi�ers can be checked for what script the code points in the identi�er are

used, and the rules for allowed characters can be tailored. This requires a
Unicode database and would require extensive analysis during lexing.

SG 16 does not recommend this.
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OTHER ADOPTERS
Java ( )
Python 3 
Erlang 

Rust 
JS 

https://docs.oracle.com/javase/specs/jls/se15/html/jls-3.html#jls-3.8
https://www.python.org/dev/peps/pep-3131/

https://www.erlang.org/erlang-enhancement-proposals/eep-
0040.html

https://rust-lang.github.io/rfcs/2457-non-ascii-idents.html
https://tc39.es/ecma262/
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