
Document #: P2187R0
Date: 2020-06-18
Project: ISO SC22/WG21 Programming Language C++
Title: std::swap_if, std::predictable
Reply-to: Nathan Myers <ncm@cantrip.org>
Target: C++23
Audience: SG18 LEWGI

std::swap_if, std::predictable

This paper proposes a new Standard Library primitive swap_if, currently used
implicitly (but very suboptimally) in nearly half of Standard Library algorithms,
and equally useful for users’ algorithms. Although swap_if is trivial to code
correctly, current shipping compilers generate markedly sub-optimal code for
naïve implementations.

In addition, it proposes a means to indicate to Standard Library facilities that
the results of an ordering predicate in a particular use have turned out to
be predictable, so that a more appropriate variant of the algorithm may be
substituted.

History
P2187R0 In delayed version of 2020-06-15 mailing.

Introduction
Almost half the algorithms in std, exemplified by std::sort, depend on a
conditional-swap operation, used in circumstances where the condition is typically
not especially predictable. For example, the conditional-swap operation might
appear in the body of a partition loop as:

if (*right < pivot) {
std::swap(*left, *right);
++left;

}

Testing reveals that the performance of such algorithms can be improved by more
than a factor of two[1][2] simply by changing the implementation of conditional-
swap to avoid the pipeline stalls that follow branch mispredictions. (It may be
surprising, even hard to believe, that the naïve conditional-swap above often
results in very poor algorithm performance. Please consult the references in case
of doubt.[3])

This paper proposes a new library algorithm, swap_if. A fully generic imple-
mentation of swap_if, coded to avoid the worst hardware inefficiencies, might
look like:

1

template <movable T>
bool swap_if(bool c, T& a, T& b) {

T tmp[2] = { move(a), move(b) };
b = move(tmp[1-c]), a = move(tmp[c]);
return c;

}

Because it performs identically the same sequence of instructions for both possible
values of its bool argument, varying only the array indices, it avoids a likely
mis-predicted branch and pipeline stall. In the the partition loop mentioned
above, it might be called as:

left += swap_if(*right < pivot, *left, *right);

Discussion

Testing demonstrates that the best implementation of swap_if for scalar values
on common modern hardware uses cmov instructions. However, no mainstream
compiler emits cmov instructions to implement the generic swap_if as coded
above. One compiler peephole-optimized an explicit specialization on int:

template <> bool swap_if<int>(bool c, int& a, int& b) {
int ta = a, tb = b;
a = -c&tb | c-1&ta, b = -c&ta | c-1&tb;
return c;

}

Other compilers checked produce markedly sub-optimal code for both alterna-
tives.

Despite such sub-optimal code generation, however, a sort implemented using
either swap_if above, and built with current shipping compilers, nonetheless
strongly outperforms the std::sort provided in current Standard Library im-
plementations, when applied to random scalar input.

Once std::swap_if is provided in the Standard Library, and finds use in
user algorithms, implementers might be motivated to implement it optimally,
yielding further performance gains; and to use it in Standard Library algorithms,
improving them as well. It should be straightforward to peephole-optimize the
generic swap_if above so that cmov instructions are emitted, where supported,
in cases where T fits in a register.

A Refinement
Order-dependent algorithms are sometimes used in circumstances where the com-
parison results turn out to be highly predictable. (The threshold of predictability
for which an otherwise-suboptimal branching swap_if implementation is pre-
ferred is north of 90% on current hardware.) Users may then find that a library
algorithm, usually much faster when implemented with a branchless swap_if,

2

turns out to be slower for their particular data. They need a convenient way to
roll back to branching version.

To that end, we propose a new predicate wrapper, std::predictable:

template <predicate Predicate, bool is = true>
struct predictable {

std::remove_reference<Predicate>::type
pred; // name for exposition only

explicit predictable(Predicate&& p) : pred(p) {}

template <typename... Args>
constexpr bool operator()(Args&&... args) {

return ::std::invoke(p, args...);
}

};

whose op() simply forwards its arguments to the captured predicate; and a
corresponding customization-point trait, std::is_predictable:

template <typename> constexpr bool is_predictable = false;
template <predicate P, bool is>

constexpr bool is_predictable<predictable<P,is> = is;

Standard library components that take a predicate argument may be passed
a predicate wrapped in std::predictable as a way to request that the im-
plementation use a conditional-branching swap_if in preference to the default,
branchless version, and any other accommodations that seem appropriate. It
might be used like:

auto v = std::vector{ 3, 5, 2, 7, 9 };
std::sort(v.begin(), v.end()); // unpredicted
std::sort(v.begin(), v.end(), // predicted

std::predictable([](int a, int b) { return a > b; }));

Note that the annotation does not, itself, affect the predicate implementation, or
even how it is applied. It is purely a medium to conduct the caller’s expectation
of predictability deep into the algorithm’s implementation, and there help to
choose what is hoped to be the best implementation for the input data being
operated on. This doubles the number of such algorithm implementation variants
available without need to invent and expose numerous new names for them.
Furthermore, it parameterizes the choice so it is easier to use in generic code
than differently-named algorithms would be.

The formal semantics of all library components are unaffected by the outcome of
is_predictable, so their descriptions in the Standard are unchanged. Better-
quality implementations will provide variants of each affected algorithm, visible
only by improved performance when used correctly.

3

Other primitives
There may be other primitives used in common algorithms that would benefit
from a similar treatment. Worked examples to add to this proposal are solicited.
(Possible: select, rotate_if)

Proposed WP Text
In 25.8 Sorting and related operations [alg.sorting], a new subsection:

25.8.x Predictability . [predictability]

namespace std {
template <typename T>

constexpr bool is_predictable;

template <predicate Predicate, bool is = true>
struct predictable;

template <bool predicting, movable T>
constexpr bool swap_if(bool c, T& x, T& y);

template <movable T>
constexpr bool swap_if(bool c, T& x, T& y);

}

1. The utilities defined here aid in modulating how algorithms rely on the
predictability of the results of calls to their predicate arguments, where
prediction derives from the recent runtime history of such results.

2. It is intended that the runtime performance of swap_if, according as its
bool template argument is true or false, respectively, should or should
not depend strongly on the runtime predictability of c.

25.8.x.1 Variable template is_predictable [is.predictable]

namespace std {
template <typename T>

constexpr bool is_predictable = false;

template <predicate P, bool is>
constexpr bool is_predictable<predictable<P, is>> = is;

}

1. The name is_predictable denotes a customization point object
[customization.point.object].

2. [Note: Its value may be used to select, during translation, an algorithm
variant appropriate to a caller’s expectation for the runtime behavior of
the predicate P. –end note] [Example:

4

left += swap_if<is_predictable<Pred>>(
std::invoke(pred, *right, pivot), *left, *right);

—end example]

25.8.x.2 Class template predictable [predictable]

namespace std {
template <predicate Predicate, bool is = true>

struct predictable {
std::remove_reference<Predicate>::type

!pred!; // name for exposition only

explicit predictable(Predicate&& p) : pred(p) {}

template <typename... Args>
constexpr bool operator()(Args&&... args) {

std::invoke(pred, args...);
}
template <typename... Args>

constexpr bool operator()(Args&&... args) const {
std::invoke(pred, args...);

}
};

}

1. predictable is a wrapper used to indicate to a recipient that the result
of the predicate should be treated as highly predictable, in circumstances
where such predictability may have a pronounced effect on the runtime
performance of the recipient.

2. [Example:

auto v = std::vector{ 3, 5, 2, 7, 9 };
std::sort(v.begin(), v.end()); // unpredicted
std::sort(v.begin(), v.end(), // predicted

std::predictable([](int a, int b) { return a > b; }));

—end example]

25.8.x.2.1 Constructor . [predictable.ctor]

explicit predictable(Predicate&& p) : pred(p) {}

1. Effects: Moves p into pred.

25.8.x.2.2 Member operator() [predictable.call]

template <typename... Args>
constexpr bool operator()(Args&&... args);

5

template <typename... Args>
constexpr bool operator()(Args&&... args) const;

1. Effects: Invokes member pred passing args by perfect forwarding
[func.require].

25.8.x.3 swap_if [swap.if]

template <bool predicting, movable T>
constexpr bool swap_if(bool c, T& x, T& y);

1. Effects: If and only if c is true, x takes the previous value of y and y
takes the previous value of x, as if by move-assignment. May call swap(x,
y) if T models swappable and predicting is true.

2. Returns: c.
3. Remark: An implementation without branching is preferred for the case

where predicting is false.

template <movable T>
constexpr bool swap_if(bool c, T& x, T& y);

1. Returns: ::std::swap_if<false,T>(c, x, y).

References
[1]: https://arxiv.org/abs/1604.06697

[2]: http://github.com/ncm/sortfast/

[3]: http://cantrip.org/sortfast.html

6

https://arxiv.org/abs/1604.06697
http://github.com/ncm/sortfast/
http://cantrip.org/sortfast.html

	std::swap_if, std::predictable
	History
	Introduction
	Discussion

	A Refinement
	Other primitives
	Proposed WP Text
	25.8.x Predictability . [predictability]
	25.8.x.1 Variable template is_predictable [is.predictable]
	25.8.x.2 Class template predictable [predictable]
	25.8.x.2.1 Constructor . [predictable.ctor]
	25.8.x.2.2 Member operator() [predictable.call]
	25.8.x.3 swap_if [swap.if]

	References

