
Remove Default Candidate Executor 
Document Number: D2161R1 
Date: 2020-05-28 
Reply-to: Robert Leahy <rleahy@rleahy.ca> 
Audience: SG4 

Abstract 
This paper proposes that associated_executor not provide a default candidate type. 

Background 
The Networking TS [1] introduces “associators:” Binary class templates whose arguments are 
the “source type” and the “candidate type” (respectively) (§13.2.7.8 [async.reqmts.associator]). 
A default (the “default candidate type”) is required to be provided for the “candidate type” (i.e. an 
associator must be usable as if it were a unary class template). 

The purpose of an associator is to obtain an instance of an “associated object” based on a 
“source object” (an instance of the source type) and optionally a “candidate object” (an instance 
of the candidate type). The type of the associated object (i.e. the “associated type”) is available 
through the type member type alias and the actual computation of the associated object may 
be performed via the get static member function. This member function must be invocable as if 
it were a unary or binary function (in the unary case only the source object is accepted whereas 
the binary case accepts both the source object and candidate object). 

There are two associators provided by the Networking TS: associated_executor (§13.12 
[async.assoc.exec]) and associated_allocator (§13.5 [async.assoc.alloc]) which obtain 
objects whose types satisfy the Executor (§13.2.2 [async.reqmts.executor]) and 
ProtoAllocator (§13.2.1 [async.reqmts.proto.allocator]) named type requirements 
(respectively). They have default candidate types system_executor and allocator<void> 
(respectively). 

P2149R0 [2] was written in response to discussion in Prague 2020 SG4 which brought the 
design and usability of system_executor into question. P2149R0 proposed a two pronged 
solution: 

● Add inline_executor to replace system_executor as the default candidate type for 
associated_executor and 

● Remove system_executor 

 



Subsequent discussion of P2149R0 on the reflector made it obvious that this two pronged 
approach was coupling two separable questions: 

● Should system_executor be the default candidate type for associated_executor? 
● Should system_executor exist at all? 

This paper provides a vehicle to consider the former question with subsequent revisions of 
P2149 being a vehicle to consider the latter. 

Motivation 
In general the presence of a default implies that there is both: 

● A choice to be made and 
● A certain choice (the default) which is likely to be correct 

In choosing either a model of Executor or ProtoAllocator it is clear that the former of these is 
satisfied. If this was not the case either: 

● Associators for these named type requirements would not exist or 
● Those associators would be completely unused 

Neither of which is the case. 

When applied to the selection of a module of ProtoAllocator there is a strong argument to be 
made that the latter implication is satisfied. Overwhelmingly users do not choose models of 
Allocator other than allocator<T>. This strongly indicates that allocator<void> is likely to 
be the correct choice whenever someone would be faced with a choice of ProtoAllocator. 
The standard library already reifies this by defaulting Allocator template parameters to 
allocator<T> seemingly at every turn. 

The argument for a default Executor is much weaker. In the formulation above it is supposed 
that a default must be “likely to be correct.” There are two meanings of “correct” which we 
should consider: 

● What the user would choose anyway 
● Having properties such that it is an acceptable choice notwithstanding 

Based on the author’s experience io_context::executor_type is much more likely to be 
used than system_executor. However much current experience (including most of the 
author’s) with the Networking TS (and Asio) is from a time before P1322 [3]. 

Post-P1322 a persuasive argument could be made that system_executor is what the user 
chooses in most cases. Discussion in SG4 in Prague 2020 and on the reflector indicates that 
the raison d'être of system_executor is to encapsulate the operating system’s global thread 



pool. This global thread pool may have access to information and functionality the user does not 
which may make it optimal in most situations. 

This is where the second meaning of “correct” becomes relevant. Even if users would 
overwhelmingly choose system_executor there are still users who would not and if 
system_executor has properties which make it a surprising, bug prone default it is ill fitted to 
that role. 

system_executor has several such properties. 

system_context is permitted to execute any number of submitted work items in parallel. Users 
may have strict parallelism requirements enforced by their choice of executor (e.g. the 
underlying execution context forms an “implicit strand” [4]). Silently falling back to 
system_executor introduces data races (i.e. undefined behavior) in such situations. 

system_context makes progress on work items in the background detached from any user 
controlled thread. The user’s chosen executor on the other hand may have an underlying 
execution context which permits the user to control precisely when work is and is not executing 
(e.g. the “run functions” of io_context (§14.2 [io_context.io_context])). If work is silently 
submitted via system_executor then work items may be making progress when the user 
reasonably believes no such thing can occur. This is another source of accidental data races 
(i.e. undefined behavior). 

system_context may arbitrarily extend the lifetime of submitted work items and associated 
services. While the Networking TS provides a way to ensure that the Networking TS no longer 
makes forward progress on work items (system_context::stop and system_context::join 
(§13.19 [async.system.context])) there is no way to ensure that the lifetimes of all submitted 
work items and associated services have ended. By contrast a user may intend to use an 
executor whose underlying execution context allows them to precisely control when the lifetime 
of work items and services shall end (e.g. io_context by way of the ExecutionContext 
named type requirement (§13.2.3 [async.reqmts.executioncontext]) (in the case of work items) 
and deriving from execution_context (§13.7.1 [async.exec.ctx.dtor]) (in the case of services)). 
Inadvertently submitting work items to system_executor may therefore lead to all manner of 
lifetime bugs (i.e. undefined behavior). 

Notably each of these properties stems from the fact that the singleton instance of 
execution_context is as such a global variable. 

P2149R0 proposes inline_executor as a default candidate type for associated_executor. 
However as it lacks a stateful execution context instances of this type are unable to provide a 
satisfactory implementation of post and its implementation thereof simply throws an exception. 
There’s no reason to move what is logically a programming mistake (not concretely specifying 
where you want code to execute) to runtime. 



In trying to synthesize an executor analogue of std::allocator<void> the Networking TS has 
encountered a problem: Memory and execution agents [5] are both resources which programs 
must manage but there’s a fundamental difference between the two making the former 
amenable to a default, global implementation but not the latter: Memory is static and does not 
perform actions independent being acted upon. 

Unary defer, dispatch, & post 
The majority of the Networking TS does not make use of the default candidate executor. Instead 
the Networking TS largely specifies that the “I/O executor” (§13.2.7.8 
[async.reqmts.async.io.exec]) be provided as a candidate object where an executor is obtained 
via associated_executor. There are three exceptions to this, the three unary overloads of: 

● defer (§13.24 [async.defer]) 
● dispatch (§13.22 [async.dispatch]) 
● post (§13.23 [async.post]) 

Each of which is an initiating function (§13.2.7 [async.reqmts.async]) which accepts a 
completion token (§13.2.7.2 [async.reqmts.async.token]) whose completion handler has a 
signature of void(). Since they accept only a completion token there’s no clear candidate 
object and indeed they are specified not to provide one. 

Given what the Networking TS means by “defer” and “dispatch” it is clear that unary defer and 
dispatch could be implemented without requiring a handle to an external executor. Since 
simply invoking the completion handler synthesized from the provided completion token directly 
within defer or dispatch does not violate their contract they could be specified to provide an 
executor which executes all work “inline” as a candidate object. While this approach is possible 
and does not violate the contracts of those functions it may still be surprising. Users may be 
expecting a certain associated executor to be chosen, may have associated it incorrectly, and 
may be surprised that this compile time bug is lifted silently into a runtime bug. 

Moreover post clearly cannot be implemented in this manner. Due to its contract something 
beyond an “inline” executor is required. 

Removing these overloads completely is the most obvious approach. They are used by the 
Networking TS itself and therefore the impact would be minimal. However it seems 
heavy-handed to remove this functionality for all types given that there are many completion 
handler types which can plausibly benefit from it. 

Revision 0 of this paper proposed solving this by specifying defer, dispatch, and post to 
provide a synthetic candidate object (i.e. an implementation-defined type synthesized solely for 
this purpose) and then checking at compile time if the type of the associated executor was that 



type. If this was the case it would indicate that the completion handler did not provide an 
associated executor and the initiating function would fail to compile. 

During review in SG4 (teleconference on May 14, 2020) it was pointed out that while this 
technique may work in some (or even most) situations it would not work in all situations. There 
may nominally exist an association for a certain completion handler type however it may simply 
wrap the candidate object. This does not fulfill the expectation that the association provide a 
bona fide executor but does obfuscate the implementation-defined type such that the check 
proposed by revision 0 fails to render this situation ill-formed. 

Also discussed during SG4 was providing a truly unary version of get_associated_executor. 
However this would constitute a large change of the associator machinery (turning 
get_associated_executor and get_associated_allocator into customization point objects 
was also discussed) and is beyond the narrow scope of this paper. 

The entirety of this issue is caused by the perspective that unary defer, dispatch, and post 
accept only a completion token and therefore have no “I/O executor” to use as a candidate 
object. If we shift our perspective we could regard the completion handler (synthesized from the 
competition token) as an “I/O object” from which must be able to obtain an executor by making a 
nullary call to the member function get_executor. This would be in line with the mechanism 
employed by the unspecialized version of associated_executor (§13.12.1 
[async.assoc.exec.members]): If the source type provides a member type alias executor_type 
then an executor is obtained by nullary-invoking the member function get_executor. 

Proposed Changes 

Associator 
§13.2.7.8/2-5 [async.reqmts.associator]: 

An associator shall be a class template that takes two template type arguments. The first 
template argument is the source type S. The second template argument is the candidate type C. 
The second template argument shall be defaulted to some default candidate type D that satisfies 
the type requirements R. 

An associator shall additionally satisfy the requirements in Table 6. In this table, X is a class 
template that meets the associator requirements, S is the source type, s is a value of type S or 
const S, C is the candidate type, and c is a (possibly const) value of type C, D is the default 
candidate type, and d is a (possibly const) value of type D that is the default candidate object. 

[...] 



Finally, the associator shall provide the following type alias and function template in the 
enclosing namespace: 

template<class S, class C = D> using X_t = typename X <S, C>::type; 

template<class S, class C = D> 
typename X <S, C>::type get_X (const S& s, const C& c = d) 
{ 

    return X <S, C>::get(s, c); 

} 

where X is replaced with the name of the associator class template. 

The first and third rows must be stricken from table 6. 

associated_executor 

§13.1 [async.synop]: 

[...] 

template<class T, class Executor = system_executor> 
struct associated_executor;  

[...] 

§13.12/1 [async.assoc.exec]: 

Class template associated_executor is an associator for the Executor type requirements, 
with default candidate type system_executor and default candidate object 
system_executor(). 

namespace std { 

namespace experimental { 

namespace net { 

inline namespace v1 { 

    template<class T, class Executor = system_executor> 
    struct associated_executor { 

        using type = see below; 

        static type get(const T& t, const Executor& e = Executor()) noexcept; 
    }; 

} // inline namespace v1 

} // namespace net 



} // namespace experimental 

} // namespace std 

The second row must be stricken from table 9. 

§13.12/2 [async.assoc.exec.members]: 

type get(const T& t, const Executor& e = Executor()) noexcept; 

[...] 

get_associated_executor 

§13.1 [async.synop]: 

[...] 

template<class T> 

associated_executor_t<T> get_associated_executor(const T& t) noexcept; 

[...] 

§13.13/1 [async.assoc.exec.get]: 

template<class T> 

associated_executor_t<T> get_associated_executor(const T& t) noexcept; 

Returns: associated_executor::get(t). 

associated_executor_t 

§13.1 [async.synop]: 

[...] 

template<class T, class Executor = system_executor> 
using associated_executor_t = typename associated_executor::type; 

[...] 

make_work_guard 

§13.1 [async.synop]: 

[...] 



template<class T> 

executor_work_guard<associated_executor_t<T>> make_work_guard(const T& t); 

[...] 

§13.17/5-6 [async.make.work.guard]: 

template<class T> 

executor_work_guard<associated_executor_t<T>> make_work_guard(const T& t); 

Returns: make_work_guard(get_associated_executor(t)). 

Remarks: This function shall not participate in overload resolution unless is_executor_v<T> is 
false and is_convertible<T&, execution_context&>::value is false. 

dispatch, post, & defer 
Insert the following before §13.22/3 [async.dispatch], §13.23/3 [async.post], and §13.24/3 
[async.defer]: 

Requires: If typename async_completion<CompletionToken, 
void()>::completion_handler_type>::executor_type is invalid or does not denote a type 
the program is ill-formed. 

§13.22/3.2 [async.dispatch], §13.23/3.2 [async.post], and §13.24/3.2 [async.defer]: 

● Performs ex.[...](std::move(completion.completion_handler), alloc), where ex 
is the result of get_associated_executor(completion.completion_handler, 
e).get_executor(), and alloc is the result of 
get_associated_allocator(completion.completion_handler). 

§13.22/6 [async.dispatch], §13.23/6 [async.post], and §13.24/6 [async.defer]: 

Effects: 

● Constructs an object completion of type async_completion<CompletionToken, 
void()>, initialized with token. 

● If associated_executor_t<typename async_completion<CompletionToken, 
void()>::completion_handler_type, Executor> and Executor are the same type, 
evaluates the expression 
get_associated_executor(completion.completion_handler, ex) == ex, and if 
true then let f denote completion.completion_handler, otherwise cConstructs a 
function object f containing as members: 

● a copy of the completion handler h, initialized with 
std::move(completion.completion_handler), 



● an executor_work_guard object w for the completion handler’s associated 
executor, initialized with make_work_guard(h, ex) 

and where the effect of f() is: 
● w.get_executor().dispatch(std::move(h), alloc), where alloc is the 

result of get_associated_allocator(h), followed by 
● w.reset(). 

● Performs ex.[...](std::move(f), alloc), where alloc is the result of 
get_associated_allocator(completion.completion_handler) prior to the 
construction of f immediately after the construction of completion. 

Implementations 
Chris Kohlhoff has implemented revision 0 [6] and revision 1 [7] of this paper against 
“standalone” Asio. 

Acknowledgements 
The author would like to thank Chris Kohlhoff for his assistance in exploring this design space 
and preparing this paper. 

Revision History 

Revision 1 
● Corrected minor spelling and grammar mistakes 
● Added a section addressing concerns relating to unary defer, dispatch, and post 
● Updated section on implementations 
● Updated proposed changes section relating to unary defer, dispatch, and post 

Review History 

SG4 Teleconference May 14, 2020 
Revision 0 was presented to SG4. The following polls were taken: 

Forward P2161R0 to LEWG as-is? 
SF F N A SA 

0  0 0 6 2 

 



We should remove the default from associated_executor in its current form? 
SF F N A SA 

6  1 1 0 0 

 
We should explore adding a unary associated_executor? 
SF F N A SA 

1  1 5 1 0 

 
Encourage further exploration of adding unary associated_executor, calling 
.get_executor(), or another way of getting an executor without a fallback? 
Unanimous consent 

References 
[1] J. Wakely. Working Draft, C++ Extensions for Networking N4771 
[2] R. Leahy. Remove system_executor (Revision 0) P2149 
[3] C. Kohlhoff. Networking TS enhancements to enable custom I/O executors (Revision 1) 
P1322 
[4] C. Kohlhoff. Strands: Use Threads Without Explicit Locking 
[5] J. Hoberock, M. Garland, C. Kohlhoff, C. Mysen, C. Edwards, G. Brown, D. Hollman, L. 
Howes, K. Shoop, L. Baker, E. Niebler, et al. A Unified Executors Proposal for C++ (Revision 
13) P0443 
[6] https://github.com/chriskohlhoff/asio/tree/5b2720d9b52153e342a3eaa5c8723b0eec293903 
[7] https://github.com/chriskohlhoff/asio/tree/95dea1ef19f9513c80d7eabe168a67df623d6928 


