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1 Introduction

The alignment requirements of an object or type can be specified in C++ by using the alignas(x)
specifier (where x is a power of 2).

The current specification of the alignof operator (7.6.2.5 [expr.alignof]) allows it to be applied only
to types, not to objects. Since the alignment attribute may be applied to objects, and since existing
practice permits querying the alignment of objects, it should be considered whether to allow this in
Standard C++ as well.[9]

The following paper discusses design issues that need to be considered in order to allow con-
sistently querying the alignment of an object (vs. the object’s type) using the alignof
operator.

2 Motivation and Scope

C++11 introduced alignment control and query capabilities through a paper from 2007 [10].

Unfortunately, the current alignof operator is inconsistent between different compilers, and incon-
sistent within the standard itself.

Further research has exposed a divergence between C’s objects and C++’s objects, which I believe
is the result of the similar yet different syntax for struct in the languages, resulting in the current
alignment section in the standard not resolving critical issues sufficiently. These issues, as well as
suggested fixes, are described in this paper.

In essence, I suggest the following code is ill-formed (as is its C equivalent, thanks to Error 2):

typedef struct alignas(32){
}U;

typedef struct alignas(16){ // Error 1: weaker alignment of object than its members’ alignment
U u;

}V;

int main() {
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alignas(16) U u; // Error 2: weaker alignment of object than the alignment of its type
}

I suggest that the following code be well-formed, with alignof(u) == 64 and alignof(V) == 32:

typedef struct alignas(16) {
}U;

typedef struct alignas(32) { // OK
U u;

}V;

int main() {
alignas(64) U u;
alignof(u); // Not valid in C++20: only alignof(type) is allowed.
alignof(V); // Not addressed in the standard: alignment of type with aligned members.

}

3 Definitions

The (relevant) definitions from the C++ standard regarding the alignment attribute are as follows:

• Fundamental alignment: An alignment less than or equal to the greatest alignment supported
by the implementation in all contexts, which is equal to alignof(std::max_align_t)

• Extended alignment: An alignment greater than alignof(std::max_align_t).

• Over-aligned type: A type having an extended alignment requirement.

• Stricter alignment: An alignment with a greater value.

• Weaker alignment: An alignment with a lesser value.

4 Proposed Changes: Suggested Design

In order to qualify the alignment of an expression, a few issues described below need to be resolved.
The design in this section relies on the following assumptions:

1. As has been discussed before, as well as for aligning the behaviour with C, the alignment is
not part of the type system. As a result, the alignment of an object shouldn’t apply as a
parameter for the overloading mechanism.

2. The alignment of a type should be resolved by all the different limitations which are applied
by its declarations as well as its definition (including hardware limitations, if such exist).

3. The alignment of an object can’t be weaker than the alignment of its object type. This results
from section 6.7.6 Alignment [basic.align/1]:
[...] An object type imposes an alignment requirement on every object of that type; stricter
alignment can be requested using the alignment specifier (9.12.2)
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Sections [4.1], [4.2] describe incompatibility issues with C. There are additional topics
derived from and additional to those changes, all changes are described in section [5]

4.1 The alignment of an object type’s declaration vs. object definition

Consider the following C code: (https://godbolt.org/z/kv9NkF)
typedef struct U U;
struct U {
}__attribute__((aligned (32)));

int main() {
_Alignas(16) U u; // Gcc, Clang: both compilers throw error
_Alignas(64) U v; // OK
_Alignof(v); // Clang: warning: ’alignof’ applied to an expression is a GNU extension.

// Gcc, Clang: alignof(v) == 64
}

And its equivalent C++ code: (https://godbolt.org/z/HqoFnw)
typedef struct alignas(32){
}U;

int main() {
alignas(16) U u; // Gcc ,MSVC: allow specifying weaker alignment than of type, Clang: error. (1)
alignof(u); // Gcc: alignof(u) == 16, Clang, MSVC: error
alignas(64) U v; // OK
alignof(v); // Clang: warning: ’alignof’ applied to an expression is a GNU extension.

// Gcc, Clang: alignof(v) == 64, MSVC: error. (2)
}

The issues presented in the example are as follows:

• Issue (1): As described above, the C++ standard [14] (as well as the C standard [13]) specifies
that an object type’s alignment restricts the object’s alignment [1], resulting in: an object
can’t be defined with alignas() specifier which describes alignment that is weaker than its
type. However, the standard does not state the result of describing such an alignment.

• Issue (2): There are multiple references to functionality derived from allowing alignof(exp),
however, the standard does not allow alignof(exp). As a result, there is inconsistency between
different compilers, and between C and C++ standards.

Proposed changes:

• Issue (1): Add that describing a weaker alignment for an object than required by its object
type will resolve with an error. (Aligned with C, Aligned with Clang, Breaking Gcc’s and
MSVC’s behaviour)

• Issue (2): Standardize the existing practice - allow alignof(exp). this will affect additional
features such as the alignment of a pointer and of a reference.

4.2 The alignment of an object with aligned members

The alignment of an object in C is resolved to the strictest amongst its members [6.7.5][4].
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Consider the following C code: (https://godbolt.org/z/wtJvS_)

typedef struct V V;
typedef struct S S;
typedef struct U U;

struct V {} __attribute__((aligned (64)));
struct S {} __attribute__((aligned (32)));
struct U{

S s;
V v;

} __attribute__((aligned (16))); // This alignment is ignored in both gcc and clang

int main() {
alignof(U); // alignof(U) is valid, and equals 64

}

And its equivalent C++ code: (https://godbolt.org/z/5Wx-V2)

typedef struct alignas(64) V {} V;
typedef struct alignas(32) S {} S;
typedef struct alignas(16) U{ // Gcc: ignored, Clang: error, MSVC: warning. (1)

S s;
V v;

} U;

int main() {
alignof(U); // When compiles, alignof(U) equals 64. (2)

}

A section with the example which is described here exists in the standard [3], yet the wording
diverges from C [6.7.5][4]. As a result, two specifications are missing here:

• Issue (1): There is no rule defining whether describing an alignment of an object which is
weaker than the alignment required by its members should result in an error, a warning, or
be ignored.

• Issue (2): There is no rule defining what is the alignment of an object, whose members (in
the broad sense) have alignment requirements, and so this is an open issue. (Although, in
section [basic.align][2], in the example’s explanation, it’s assumed that the struct’s alignment
is restricted by its members’ alignment)

Proposed changes:

• Issue (1): Add describing a weaker alignment for an object than is required by its members
will resolve with an error. (Stricter than C, Aligned with Clang, Breaking Gcc’s and MSVC’s
behaviour)

• Issue (2): Restore the rule from C (replacing "type" with "entity"), this will result in: The
alignment of an entity should be stricter than or equal to its members’ alignment.
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5 Proposed Changes: Alternative Design

5.1 The alignment of an object type’s declaration vs. object definition [4.1]

For issue (1), I suggested:
Add that describing a weaker alignment for an object than required by its object type will resolve
with an error. (Aligned with C, Aligned with Clang, Breaking Gcc’s and MSVC’s behaviour)

the following alternatives could be considered:

• Option 1: Add that describing a weaker alignment for an object than required by its object
type will be ignored. (Breaking C behaviour, aligned with Gcc’s)

• Option 2: Add that describing a weaker alignment for an object than required by its object
type will resolve with a warning. (Breaking C behaviour, contain change for all compilers)

In both cases the suggestions are for behaviour weaker than of C’s struct, and will increase the
difference between the languages regarding the struct keyword, as well as ignore the alignment
explicit demand, therefore I don’t recommend it.

5.2 The alignment of an object with aligned members [4.2]

For issue (1), I suggested:
Add describing a weaker alignment for an object than is required by its members will resolve with
an error. (Stricter than C, Aligned with Clang, Breaking Gcc’s and MSVC’s behaviour)

the following alternatives could be considered:

• Option 1: Add describing a weaker alignment for an object than is required by its members
will be ignored. (Aligned with C, Breaking Clang’s behaviour)

• Option 2: Add describing a weaker alignment for an object than is required by its members
will resolve with a warning. (Aligned with C (with the addition of a warning), Aligned with
MSVC, Breaking Clang’s behaviour)

The incentive for a stricter rule suggested in section [4.2] is to avoid specified instructions not
executed. Since alignment is a requirement explicitly specified, I believe not implementing the
alignment requirement should result with an error. In addition, since the C struct’s syntax is
different, it will only break C++ code, in which there is already an inconsistency on this
topic.

6 Proposed Changes: Impact On the Standard

1. In alignment definition [basic.align]:

• Specify in [basic.align/1] that the alignment can be affected by hardware: in our opinion,
this is beyond the scope of the standard, however, since there is already acknowledgement
of this (for example, in section atomic [8]) I suggest adding it to alignment definition as
well.
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• Move the sentence from the end of [basic.align/1] referring to alignment of type vs.
object type to a different bullet. Add describing a weaker alignment will result in an
error. (Aligned with C, Aligned with Clang, Breaking Gcc’s and MSVC’s
behaviour)

2. In alignof() definition [expr.alignof]:

• Add in [expr.alignof/1] allowing the alignof(exp). This will result in additional standard
features becoming valid (such as alignof reference [7], currently unsupported).

• Add querying the alignment of an object declared with different alignment values in
different translation units is UB. (It is already specified under [dcl.align], but it is also
relevant to the alignof() expression)

3. In alignas() definition [dcl.align]:

• Restore the [dcl.align/5] section, aligning it with C. Add the combined effect of all
alignment-specifiers in a declaration shall not specify an alignment less strict than of
its members (in the broad sense).

• Moreover, I suggest to specify explicitly, that describing such an alignment will resolve
with and error. (Stricter than C, Aligned with Clang, Breaking Gcc’s and
MSVC’s behaviour)

4. Add minor fix: add existing practice of alignment in reinterpret_cast [6].
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7 Proposed Wording

• Adding a restriction regarding stating alignment of an object weaker than its members:

6.7.6 Alignment [basic.align]

1 Object types have alignment requirements (6.8.1, 6.8.2) which place restrictions on the ad-
dresses at which an object of that type may be allocated. An alignment is an implementation-
defined integer value representing the number of bytes between successive addresses at which
a given object can be allocated. In addition to alignment requirements, the alignment of an
entity can be affected by its memory location as well as the hardware type.

2 An object type imposes an alignment requirement on every object of that type; stricter
alignment can be requested using the alignment specifier (9.12.2). describing a weaker align-
ment will result in an error.

3 A fundamental alignment is represented by an alignment less than or equal to the greatest
alignment supported by the implementation in all contexts, which is equal to alignof(std::max-
_align_t) (17.2). The alignment required for a type might be different when it is used as the
type of a complete object and when it is used as the type of a subobject. [...]

• Changing Alignment section as follows, allowing alignof(exp), and specifying UB for querying
alignment of an entity declared with different alignments in different translation units:

7.6.2.5 Alignof [expr.alignof]

1 An alignof expression yields the alignment requirement of its operand type. The operand
shall be a type-id representing a complete object type, or an unparenthesized id-expression
or an unparenthesized data class member access (7.6.1.4) of a complete object, or an array
thereof, or a reference to one of those types.

2 The result is a prvalue of type std::size_t. [Note: An alignof expression is an integral
constant expression (7.7). The type std::size_t is defined in the standard header <cstddef>
(17.2.1, 17.2.4). — end note]

3 Querying the alignment of an object type declared with different alignments in different
translation units will result in undefined behavior.

4 When alignof is applied to a reference type, the result is the alignment of the referenced
type. When alignof is applied to an array type, the result is the alignment of the element type.

• Fix the wording in alignment specifier section, define the alignment value of an object with
aligned members, and add specifying otherwise yields an error:

9.12.2 Alignment specifier [dcl.align]
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5 The combined effect of all alignment-specifiers in a declaration shall not specify an alignment
that is less strict than the alignment that would otherwise be required for the type of the ob-
ject or member being declared, specifying such an alignment will result in an error. Moreover,
the combined effect of all alignment-specifiers in a declaration shall not specify an alignment
that is less strict than the alignment that would be required for the entity being declared if
all alignment-specifiers appertaining to that entity were omitted. [Example:
struct alignas(8) S {};
struct alignas(1) U {
S s;
}; // error: U specifies an alignment that is less strict than if the alignas(1) were omitted.

— end example]

• Add existing practice of alignment in reinterpret_cast [6]:

7.6.1.9 Reinterpret cast [expr.reinterpret.cast]

7 [...] [Note: Converting a prvalue of type pointer to T 1 to the type pointer to T 2 (where T1
and T2 are object types and where the alignment requirements of T2 are no strcter than those
of T1) and back to its original type yields the original pointer value, as well as its alignment.
end note]

8 Future Topics To Be Examined

Consistency of std::allocate::allocate and std::get_temporary_buffer support for object with smaller
alignment than the type.
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