
Document Number: P2091R0
Date: 2020-02-12
Audience: Library Working Group
Author: Casey Carter
Reply to: casey@carter.net

Issues with range access CPOs

1 Abstract
This paper began as a Proposed Resolution for GB275 “ranges::begin/end should not accept arrays of
unknown bound,” and grew to cover several problems with the range access customization point objects.
Each problem is small enough to be addressed by an LWG issue, but as they are closely related (if not
intertwined) it seems best to process them as a unit.

2 Discussion
The following largely omits discussion of the constant variations of the range access CPOs cbegin, cend,
crbegin, crend, and cdata for brevity despite that the arguments presented for each CPO apply similarly to
its corresponding constant variation. Imagine that occurrences of e.g. “begin” below are instead occurrences
of “begin (and cbegin).”

2.1 arrays of unknown bound
GB275 states ([2]):

ranges::begin and ranges::end should not accept arrays of unknown bound. The current
definitions of ranges::begin and ranges::end mean that an array of unknown bound is treated
as an empty range. The expressions E + 0 and E + extent_v<T> are both well-formed for [an
expression E with type T which is] an array of unknown bound (with extent_v<T> equal to zero).
Proposed change:
Make ranges::begin(E) and ranges::end(E) ill-formed when E is an array of unknown bound.

In private communication before Belfast, the author and Jonathan Wakely discussed arrays of unknown
bound and their interactions with the range access CPOs extensively and came to the conclusion that begin
and data should accept them to preserve the reasonable behavior of std::begin and std::data, but end
and size should not. It seems logical to relax the range constraint on ranges::iterator_t as well, so it
can continue to express “the type that ranges::begin returns” even in this non-range case.
empty is also easily supported despite the lack of extent since arrays cannot have zero extent.

2.2 arrays of elements with incomplete type
The author and Mr. Wakely also discussed how the range access CPOs should handle arrays whose elements
have incomplete type. Such array types were never considered during the evolution of Ranges, so any status
quo behavior is unintended.
size and empty make sense for these arrays since we can determine the extent. begin and data could be
made to work, but would nonetheless likely produce problems elsewhere in the program since pointers-to-
incomplete-type fail to satisfy weakly_incrementable and therefore all of the iterator concepts including
notably contiguous_iterator. Supporting arrays of incomplete type in the other CPOs seems like a recipe
for disaster: pointer arithmetic doesn’t work, and given that the element type may be completed, we’re
skirting the ODR. Factoring in the instability around memoization of concepts (See GB046 [1]), we should
avoid attempting to support these types in other CPOs for now.

1



2.3 safe_ranges and ranges::data
ranges::begin avoids returning dangling iterators with the “lvalue or safe_range” test, but ranges::data
happily returns dangling pointers for rvalue non-safe_ranges. There’s no particular reason for this, other
than the fact that P0970R1 “Better, Safer Range Access Customization Points” [7] and P0944 “Contiguous
Ranges” [3] were processed at the same time and never reconciled. This seems like an oversight we can
easily correct now by requiring “lvalue or safe_range” arguments in ranges::data just as we already do
for ranges::begin.

2.4 LWG-3258 and poison pills
LWG-3258 “Range access and initializer_list” [4] proposes a change to the initializer_list poison
pills for begin and end, and the addition of similar poison pills to rbegin and rend. This was a great idea, until
P1870R1 “forwarding-range<T> is too subtle” [8], changed the opt-in mechanism for forwarding-range<T>
(now safe_range) from “do rvalues work?” to “is this trait specialized?”. We could and should have removed
the initializer_list poison pills in P1870R1, but did not - so let’s do so now.

2.5 P1870 and the advantages of lvalue dispatch
P1870R1 also modified the design of begin, end, rbegin, and rend: these CPOs now only perform lookup and
dispatch with lvalues bound to their argument expression. For example, std::ranges::begin(std::span{some_-
array_argument}) binds a reference we’ll call t to the result of materializing the prvalue std::span{some_-
array_argument}, determines that t.begin() is a valid expression whose decayed type models input_or_-
output_iterator, and then returns t.begin(). Always performing lookup and dispatch with lvalues in this
fashion makes it easier to reason about, implement, and specify the CPOs. We should specify the others
similarly.
While implementing this change, I realized that the forwarding-reference poison pills in the working draft
are insufficiently poisonous. void foo(auto&&) is less-specialized than either void foo(auto&) or void
foo(const auto&), so a void foo(auto&&) poison pill fails to intercept/ambiguate calls to such overgeneric
lvalue functions as intended. We should fix the poison pills by replacing them with two lvalue overloads. (I’m
not certain the poison pills serve a useful design purpose anymore, and I’d like to remove them, but it’s too
late in the cycle for even so small a design change.)

2.6 ADL only for class/enumeration types
Just as LWG-3299 doesn’t want users to specify non-pointer iterator behaviors for pointer-to-program-defined-
type ([5]), we don’t intend for users to specify non-array range behaviors for array-of-program-defined-type.
It’s similarly not intended that users specify range behaviors for functions. We should forbid such silliness
in the range access CPOS just as LWG-3299 does for the iterator machinery by constraining ADL cases to
expressions of class or enumeration type.

2.7 Editorial Feedback
During the merge of P1870R1, the Project Editor expressed dissatisfaction with a couple of phrases used
widely in the CPO wording:

— “an lvalue t that denotes the same object as [subexpression] E” doesn’t make sense when E is a prvalue
since prvalues don’t “denote an object.” We should instead say that T denotes the result of applying
the temporary materialization conversion to E when E is a prvalue.

— “ranges::begin(E) is ill-formed” is not something to which [an expression] can be expression-equivalent.
This category error is repeated in every CPO specification (sometimes twice after application of
P1870R1).

3 Implementation Experience
The proposed changes have been implemented in Microsoft’s STL (See https://github.com/microsoft/STL/pull/432).

4 Technical Specifications
The technical specifications that follow take the form of excerpts from the working draft with change markings:

2



— Text to be struck is in red with strikethough, and
— text to be added is “green” with underline.

Note that these specifications supersede the proposed resolution of LWG-3258 and include the proposed
resolution of LWG-3368 “Exactly when does size return end - begin?” [6].

24 Ranges library [ranges]
[...]

24.2 Header <ranges> synopsis [ranges.syn]
[...]

template<range Rclass T>
using iterator_t = decltype(ranges::begin(declval<RT&>()));

[...]

24.3 Range access [range.access]
[...]

24.3.1 ranges::begin [range.access.begin]
1 The name ranges::begin denotes a customization point object ([customization.point.object]).
2 Given a subexpression E and an lvaluewith type T, let t be an lvalue that denotes the same object as E, if E is

a glvalue and otherwise denotes the result of applying the temporary materialization conversion ([conv.rval])
to E. Then:

—(2.1) ifIf E is an rvalue and enable_safe_range<remove_cvref_t<decltype((E))>remove_cv_t<T>> is
false, ranges::begin(E) is ill-formed. Otherwise, ranges::begin(E) is expression-equivalent to:

—(2.2) Otherwise, if T is an array type ([basic.compound]) and remove_all_extents_t<T> is an incomplete
type, ranges::begin(E) is ill-formed with no diagnostic required.

—(2.3) t + 0 if t is ofOtherwise, if T is an array type ([basic.compound]), ranges::begin(E) is expression-equivalent
to t + 0.

—(2.4) Otherwise, if decay-copy(t.begin()) if it is a valid expression and itswhose type I models input_-
or_output_iterator, ranges::begin(E) is expression-equivalent to decay-copy(t.begin()).

—(2.5) Otherwise, if T is a class or enumeration type and decay-copy(begin(t)) if it is a valid expression and
itswhose type I models input_or_output_iterator with overload resolution performed in a context
that includesin which unqualified lookup for begin finds only the declarations:

template<class T> void begin(T&&) = delete;
template<class T> void begin(initializer_list<T>&&) = delete;
void begin(auto&) = delete;
void begin(const auto&) = delete;

and does not include a declaration of ranges::begin then ranges::begin(E) is expression-equivalent
to decay-copy(begin(t)) with overload resolution performed in the above context.

—(2.6) Otherwise, ranges::begin(E) is ill-formed.
3 [Note: This case canDiagnosable ill-formed cases above result in substitution failure when ranges::begin(E)

appears in the immediate context of a template instantiation. —end note ]
4 [Note: Whenever ranges::begin(E) is a valid expression, its type models input_or_output_iterator.
—end note ]

24.3.2 ranges::end [range.access.end]
1 The name ranges::end denotes a customization point object ([customization.point.object]).
2 Given a subexpression E and an lvaluewith type T, let t be an lvalue that denotes the same object as E, if E is

a glvalue and otherwise denotes the result of applying the temporary materialization conversion ([conv.rval])
to E. Then:

3

http://eel.is/c++draft/customization.point.object
http://eel.is/c++draft/conv.rval
http://eel.is/c++draft/basic.compound
http://eel.is/c++draft/basic.compound
http://eel.is/c++draft/customization.point.object
http://eel.is/c++draft/conv.rval


—(2.1) ifIf E is an rvalue and enable_safe_range<remove_cvref_t<decltype((E))>remove_cv_t<T>> is
false, ranges::end(E) is ill-formed. Otherwise, ranges::end(E) is expression-equivalent to:

—(2.2) Otherwise, if T is an array type ([basic.compound]) and remove_all_extents_t<T> is an incomplete
type, ranges::end(E) is ill-formed with no diagnostic required.

—(2.3) Otherwise, if T is an array of unknown bound, ranges::end(E) is ill-formed.
—(2.4) Otherwise, if T is an array, ranges::end(E) is expression-equivalent to t + extent_v<T> if E is of

array type ([basic.compound]) T.
—(2.5) Otherwise, if decay-copy(t.end()) if it is a valid expression and itswhose type S models

sentinel_for<decltype(ranges::begin(E))iterator_t<T>>

then ranges::end(E) is expression-equivalent to decay-copy(t.end()).
—(2.6) Otherwise, decay-copy(end(t)) if it T is a class or enumeration type and decay-copy(end(t)) is a

valid expression and itswhose type S models
sentinel_for<decltype(ranges::begin(E))iterator_t<T>>

with overload resolution performed in a context that includesin which unqualified lookup for end finds
only the declarations:

template<class T> void end(T&&) = delete;
template<class T> void end(initializer_list<T>&&) = delete;
void end(auto&) = delete;
void end(const auto&) = delete;

and does not include a declaration of ranges::end then ranges::end(E) is expression-equivalent to
decay-copy(end(t)) with overload resolution performed in the above context.

—(2.7) Otherwise, ranges::end(E) is ill-formed.
3 [Note: This case canDiagnosable ill-formed cases above result in substitution failure when ranges::end(E)

appears in the immediate context of a template instantiation. —end note ]
4 [Note: Whenever ranges::end(E) is a valid expression, the types S and I of ranges::end(E) and

ranges::begin(E) model sentinel_for<S, I>. —end note ]
[...]

24.3.5 ranges::rbegin [range.access.rbegin]
1 The name ranges::rbegin denotes a customization point object ([customization.point.object]).
2 Given a subexpression E and an lvaluewith type T, let t be an lvalue that denotes the same object as E, if E is

a glvalue and otherwise denotes the result of applying the temporary materialization conversion ([conv.rval])
to E. Then:

—(2.1) ifIf E is an rvalue and enable_safe_range<remove_cvref_t<decltype((E))>remove_cv_t<T>> is
false, ranges::rbegin(E) is ill-formed. Otherwise, ranges::rbegin(E) is expression-equivalent to:

—(2.2) Otherwise, if T is an array type ([basic.compound]) and remove_all_extents_t<T> is an incomplete
type, ranges::rbegin(E) is ill-formed with no diagnostic required.

—(2.3) Otherwise, if decay-copy(t.rbegin()) if it is a valid expression and itswhose type I models input_-
or_output_iterator, ranges::rbegin(E) is expression-equivalent to decay-copy(t.rbegin()).

—(2.4) Otherwise, decay-copy(rbegin(t)) if it T is a class or enumeration type and decay-copy(rbegin(t))
is a valid expression and itswhose type I models input_or_output_iterator with overload resolution
performed in a context that includesin which unqualified lookup for rbegin finds only the declaration:s

template<class T> void rbegin(T&&) = delete;
void rbegin(auto&) = delete;
void rbegin(const auto&) = delete;

and does not include a declaration of ranges::rbegin then ranges::rbegin(E) is expression-equivalent
to decay-copy(rbegin(t)) with overload resolution performed in the above context.

—(2.5) Otherwise, make_reverse_iterator(ranges::end(t)) if both ranges::begin(t) and ranges::end(t)
are valid expressions of the same type I which models bidirectional_iterator ([iterator.concept.bidir]),
ranges::rbegin(E) is expression-equivalent to make_reverse_iterator(ranges::end(t)).

—(2.6) Otherwise, ranges::rbegin(E) is ill-formed.

4

http://eel.is/c++draft/basic.compound
http://eel.is/c++draft/basic.compound
http://eel.is/c++draft/customization.point.object
http://eel.is/c++draft/conv.rval
http://eel.is/c++draft/basic.compound
http://eel.is/c++draft/iterator.concept.bidir


3 [Note: This case canDiagnosable ill-formed cases above result in substitution failure when ranges::rbegin(E)
appears in the immediate context of a template instantiation. —end note ]

4 [Note: Whenever ranges::rbegin(E) is a valid expression, its type models input_or_output_iterator.
—end note ]

24.3.6 ranges::rend [range.access.rend]
1 The name ranges::rend denotes a customization point object ([customization.point.object]).
2 Given a subexpression E and an lvaluewith type T, let t be an lvalue that denotes the same object as E, if E is

a glvalue and otherwise denotes the result of applying the temporary materialization conversion ([conv.rval])
to E. Then:

—(2.1) ifIf E is an rvalue and enable_safe_range<remove_cvref_t<decltype((E))>remove_cv_t<T>> is
false, ranges::rend(E) is ill-formed. Otherwise, ranges::rend(E) is expression-equivalent to:

—(2.2) Otherwise, if T is an array type ([basic.compound]) and remove_all_extents_t<T> is an incomplete
type, ranges::rend(E) is ill-formed with no diagnostic required.

—(2.3) Otherwise, if decay-copy(t.rend()) if it is a valid expression and itswhose type S models
sentinel_for<decltype(ranges::rbegin(E))>

then ranges::rend(E) is expression-equivalent to decay-copy(t.rend()).
—(2.4) Otherwise, decay-copy(rend(t)) if it T is a class or enumeration type and decay-copy(rend(t)) is

a valid expression and itswhose type S models
sentinel_for<decltype(ranges::rbegin(E))>

with overload resolution performed in a context that includesin which unqualified lookup for rend finds
only the declaration:s

template<class T> void rend(T&&) = delete;
void rend(auto&) = delete;
void rend(const auto&) = delete;

and does not include a declaration of ranges::rend then ranges::rbegin(E) is expression-equivalent
to decay-copy(rend(t)) with overload resolution performed in the above context.

—(2.5) Otherwise, make_reverse_iterator(ranges::begin(t)) if both ranges::begin(t) and ranges::end(t)
are valid expressions of the same type I which models bidirectional_iterator ([iterator.concept.bidir]),
then ranges::rend(E) is expression-equivalent to make_reverse_iterator(ranges::begin(t)).

—(2.6) Otherwise, ranges::rend(E) is ill-formed.
3 [Note: This case canDiagnosable ill-formed cases above result in substitution failure when ranges::rend(E)

appears in the immediate context of a template instantiation. —end note ]
4 [Note: Whenever ranges::rend(E) is a valid expression, the types S and I of ranges::rend(E) and

ranges::rbegin(E) model sentinel_for<S, I>. —end note ]
[...]

24.3.9 ranges::size [range.prim.size]
1 The name ranges::size denotes a customization point object ([customization.point.object]).
2 The expression ranges::size(E) for someGiven a subexpression E with type T is expression-equivalent to:,

let t be an lvalue that denotes the same object as E if E is a glvalue and otherwise denotes the result of
applying the temporary materialization conversion ([conv.rval]) to E. Then:

—(2.1) If T is an array of unknown bound ([dcl.array]), ranges::size(E) is ill-formed.
—(2.2) decay-copy(extent_v<T>) Otherwise, if T is an array type ([basic.compound]), ranges::size(E) is

expression-equivalent to decay-copy(extent_v<T>).
—(2.3) Otherwise, if disable_sized_range<remove_cv_t<T>> ([range.sized]) is false:
—(2.4) Otherwise, decay-copy(E.size()) if it disable_sized_range<remove_cv_t<T>> ([range.sized]) is

false and decay-copy(t.size()) is a valid expression and itsof integer-like type I is integer-like
([iterator.concept.winc]), ranges::size(E) is expression-equivalent to decay-copy(E.size()).

—(2.5) Otherwise, decay-copy(size(E)) if it T is a class or enumeration type, disable_sized_range<remove_cv_t<T>>
is false, and decay-copy(size(t)) is a valid expression and itsof integer-like type I is integer-like

5

http://eel.is/c++draft/customization.point.object
http://eel.is/c++draft/conv.rval
http://eel.is/c++draft/basic.compound
http://eel.is/c++draft/iterator.concept.bidir
http://eel.is/c++draft/customization.point.object
http://eel.is/c++draft/conv.rval
http://eel.is/c++draft/dcl.array
http://eel.is/c++draft/basic.compound
http://eel.is/c++draft/range.sized
http://eel.is/c++draft/range.sized
http://eel.is/c++draft/iterator.concept.winc


with overload resolution performed in a context that includesin which unqualified lookup for size finds
only the declaration:s

template<class T> void size(T&&) = delete;
void size(auto&) = delete;
void size(const auto&) = delete;

and does not include a declaration of ranges::size then ranges::size(E) is expression-equivalent
to decay-copy(size(E)) with overload resolution performed in the above context.

—(2.6) Otherwise, if make-unsigned-like(ranges::end(Et) - ranges::begin(Et)) ([range.subrange][range.syn])
if it is a valid expression and the types I and S of ranges::begin(Et) and ranges::end(Et) (re-
spectively) model both sized_sentinel_for<S, I> ([iterator.concept.sizedsentinel]) and forward_-
iterator<I>, then ranges::size(E) is expression-equivalent to make-unsigned-like(ranges::end(t)
- ranges::begin(t)). However, E is evaluated only once.

—(2.7) Otherwise, ranges::size(E) is ill-formed.
3 [Note: This case canDiagnosable ill-formed cases above result in substitution failure when ranges::size(E)

appears in the immediate context of a template instantiation. —end note ]
4 [Note: Whenever ranges::size(E) is a valid expression, its type is integer-like. —end note ]

24.3.10 ranges::empty [range.prim.empty]
1 The name ranges::empty denotes a customization point object ([customization.point.object]).
2 The expression ranges::empty(E) for someGiven a subexpression E is expression-equivalent to:with type

T, let t be an lvalue that denotes the same object as E if E is a glvalue and otherwise denotes the result of
applying the temporary materialization conversion ([conv.rval]) to E. Then:

—(2.1) If T is an array of unknown bound ([basic.compound]), ranges::empty(E) is ill-formed.
—(2.2) Otherwise, if bool((E)t.empty()) if it is a valid expression, ranges::empty(E) is expression-equivalent

to bool(t.empty()).
—(2.3) Otherwise, if (ranges::size(Et) == 0) if it is a valid expression, ranges::empty(E) is expression-equivalent

to (ranges::size(t) == 0).
—(2.4) Otherwise, EQ, where EQ isif bool(ranges::begin(Et) == ranges::end(Et)) except that E is only

evaluated once, if EQ is a valid expression and the type of ranges::begin(Et) models forward_-
iterator, ranges::empty(E) is expression-equivalent to bool(ranges::begin(t) == ranges::end(t)).

—(2.5) Otherwise, ranges::empty(E) is ill-formed.
3 [Note: This case canDiagnosable ill-formed cases above result in substitution failure when ranges::empty(E)

appears in the immediate context of a template instantiation. —end note ]
4 [Note: Whenever ranges::empty(E) is a valid expression, it has type bool. —end note ]

24.3.11 ranges::data [range.prim.data]
1 The name ranges::data denotes a customization point object ([customization.point.object]).
2 The expression ranges::data(E) for someGiven a subexpression E is expression-equivalent to:with type T,

let t be an lvalue that denotes the same object as E if E is a glvalue and otherwise denotes the result of
applying the temporary materialization conversion ([conv.rval]) to E. Then:

—(2.1) If E is an rvalue and enable_safe_range<remove_cv_t<T>> is false, ranges::data(E) is ill-formed.
—(2.2) Otherwise, if T is an array type ([basic.compound]) and remove_all_extents_t<T> is an incomplete

type, ranges::data(E) is ill-formed with no diagnostic required.
—(2.3) If E is an lvalue,Otherwise, if decay-copy(Et.data()) if it is a valid expression of pointer to object

type, ranges::data(E) is expression-equivalent to decay-copy(t.data()).
—(2.4) Otherwise, if ranges::begin(Et) is a valid expression whose type models contiguous_iterator,

ranges::data(E) is expresssion-equivalent to to_address(ranges::begin(E)).
—(2.5) Otherwise, ranges::data(E) is ill-formed.

3 [Note: This case canDiagnosable ill-formed cases above result in substitution failure when ranges::data(E)
appears in the immediate context of a template instantiation. —end note ]

6

http://eel.is/c++draft/range.subrange
http://eel.is/c++draft/range.syn
http://eel.is/c++draft/iterator.concept.sizedsentinel
http://eel.is/c++draft/customization.point.object
http://eel.is/c++draft/conv.rval
http://eel.is/c++draft/basic.compound
http://eel.is/c++draft/customization.point.object
http://eel.is/c++draft/conv.rval
http://eel.is/c++draft/basic.compound


4 [Note: Whenever ranges::data(E) is a valid expression, it has pointer to object type. —end note ]

Bibliography
[1] Great Britain. GB046: Allow caching of evaluations of concept specializations. https://github.com/

cplusplus/nbballot/issues/45. Accessed: 2020-01-12.

[2] Great Britain. GB275: ranges::begin/end should not accept arrays of unknown bound. https:
//github.com/cplusplus/nbballot/issues/271. Accessed: 2020-01-10.

[3] Casey Carter. P0944R0: Contiguous ranges, February 2018. https://wg21.link/p0944r0.

[4] LWG. Issue 3258: Range access and initializer_list. https://wg21.link/lwg3258. Accessed:
2020-01-10.

[5] LWG. Issue 3299: Pointers don’t need customized iterator behavior. https://wg21.link/lwg3299.
Accessed: 2020-01-10.

[6] LWG. Issue 3368: Exactly when does size return end - begin? https://wg21.link/lwg3368. Accessed:
2020-01-19.

[7] Eric Niebler. P0970R1: Better, safer range access customization points, May 2018. https://wg21.link/
p0970r1.

[8] Barry Revzin. P1870R1: forwarding-range<t> is too subtle, November 2019. https://wg21.link/
p1870r1.

7

https://github.com/cplusplus/nbballot/issues/45
https://github.com/cplusplus/nbballot/issues/45
https://github.com/cplusplus/nbballot/issues/271
https://github.com/cplusplus/nbballot/issues/271
https://wg21.link/p0944r0
https://wg21.link/lwg3258
https://wg21.link/lwg3299
https://wg21.link/lwg3368
https://wg21.link/p0970r1
https://wg21.link/p0970r1
https://wg21.link/p1870r1
https://wg21.link/p1870r1

	1 Abstract
	2 Discussion
	2.1 arrays of unknown bound
	2.2 arrays of elements with incomplete type
	2.3 safe_rangeconceptindex]safe_range@safe_ranges and ranges::data
	2.4 LWG-3258 and poison pills
	2.5 P1870 and the advantages of lvalue dispatch
	2.6 ADL only for class/enumeration types
	2.7 Editorial Feedback

	3 Implementation Experience
	4 Technical Specifications
	24 Ranges library
	24.2 Header <ranges> synopsis
	24.3 Range access

	Bibliography

