

Page 1 of 27

P2053R0
2020-03-02

Rostislav Khlebnikov: rkhlebnikov@bloomberg.net
John Lakos: jlakos@bloomberg.net

Defensive Checking Versus Input Validation
NOTE: This whitepaper is intended to advise continued progress toward developing an
appropriate, effective, and successful specification for a (runtime) contract-checking
facility in the C++ Standard, the specific features of which are largely orthogonal to the
thesis of this paper.
N.B.: This paper, the premium version, is rich in details, tangential asides, and
examples. A light version of this paper is planned for practitioners who have no need
for such pettifogging.

ABSTRACT
For a software system to function as intended, the assumptions made by its designers
must be satisfied. Such assumptions fall into one of two distinct categories: (1) The
system must be free from observable defects, and (2) the external input entering the
system must conform to that system’s specifications. Empirical evidence indicates
and anecdotal observations support that these two categories of assumptions are
often confused and/or conflated in practice, leading to both reduced efficiency and
potentially catastrophic failures. In this paper we elucidate important differences
between these two categories affecting how runtime checking of these assumptions is
implemented properly. We then provide novel criteria based on neighborhoods to
discriminate between the two. Only those checks that (1) are inherently defensive in
nature and (2) are or become manifestly defensive when deployed can be considered
truly redundant in theory and safely removable in practice.

INTRODUCTION
The vast majority of software systems accept, in one form or another, certain
structured data as input, process that data in accordance with their respective
specifications, and produce result data as their output. This data-transformation
process may be disrupted in two disparate ways: (1) the software system itself might
contain defects thereby preventing proper data processing and (2) the input data
might be malformed — i.e., syntactically or semantically inconsistent with the
system’s specifications. From the perspective of the developer, these disruptions are
fundamentally and consequentially different.

1) The developer is in control of the system (e.g., the source code) and can take
measures to avoid defects, whereas the input data supplied by the client cannot
be so controlled.

2) Over time, the system’s defect rate (e.g., newly discovered software bugs)
typically decreases, whereas the likelihood of the system encountering
malformed input remains largely the same. In today’s security-aware world, the
need to validate external inputs never goes away.

Page 2 of 27

A well-designed software system will often contain runtime mechanisms for both
verifying its own correctness and validating its external input. The correctness checks
“defend” against the inevitable defects introduced during software development and
subsequent maintenance. Such defensive checks are entirely redundant to the
functional specification of a (defect-free) software system — i.e., they have no effect on
its essential behavior.1 Hence, purely defensive checks can potentially be removed
(e.g., using specific build modes) once the program owner is sufficiently confident that
the software is free of defects. In contrast, input validation is concerned with ensuring
that data entering from outside the perimeter of the trusted region of a subsystem
satisfies the requirements imposed by that subsystem. As with every aspect of
essential behavior, we expect input validation to be tested thoroughly — e.g., by
supplying a wide variety of invalid inputs during unit testing. Once released to
production, however, improper input is typically likely to be encountered in roughly
equal measure as the system itself hardens — that is, of course, unless the external
environment experiences relevant change. These input-validation checks are,
therefore, a necessary part of the program’s essential behavior and hence cannot (ever)
be removed from the final product.

Owing to consequentially prodigious differences between defensive checks and input
validation, conflating implementations of these two kinds of developer-assumption
checking could easily render the software unfit for its purpose. For example, using a
defensive-checking framework, such as <cassert>, to implement input validation
might allow malformed input to harm the system in a build mode where defensive
checks are disabled, thereby leading to hard-to-diagnose crashes, incorrect output,
and perhaps even vulnerability to malicious attacks. Similarly, always attempting to
validate (and, if defective, circumnavigate) at run time the internal logic of a program
(e.g., using hard-coded, unconditional checks) can be just as costly and problematic
for very different reasons despite perhaps at first appearing to be less detrimental.

• Attempting to recover from a program defect (and to continue normally after one
has been detected) is a dubious engineering practice: Even with code that was
carefully and specifically crafted to detect and handle a defect, stipulating that
the program would have to fail for the detection and recovery to work as
intended implies that same known-to-be-broken program simply cannot reliably
uncover the true source and impact of the defect at run time.2

• Since the additional code for handling a defect is (by design) unneeded unless
the program is defective, this already dubious code acts like an invariant check,
is very difficult (if not intractable) to test, and is typically never executed; hence,
the code for handling a defect is itself especially likely to contain latent defects.

• Defect handling (i.e., attempting to recover from defects as opposed to merely

1 The essential behavior of a software system is the behavior that is mandated by that system’s
specification, sometimes referred to as its contract; see khlebnikov19a.
2 Note the practical distinction between a defensive check in newly minted software and a new
defensive check in battle-hardened software: While it would be foolish to proceed after the failure of
the former, very practical reasons exist for proceeding (reporting and continuing) after the failure of
the latter.

Page 3 of 27

detecting and reporting them) affects not only functions that perform the
checks, but also all of their callers, resulting in a combinatorial explosion of
failure modes and greatly increased code complexity generally, thus leading to
a profoundly undesirable maintenance burden (see Figure 1).

• Finally, since these defensive checks are implemented with no consideration of
whether they might become redundant, they will be present even in a defect-
free program, incurring an often noticeable, occasionally substantial, and
eventually needless performance penalty in perpetuity.

float min_float(const float *begin, const float *end)
{
 if (nullptr == begin) throw std::invalid_argument{"null begin"};
 if (nullptr == end) throw std::invalid_argument{"null end"};
 if (std::less<>{}(end, begin)) throw std::invalid_argument{"bad range"};
 if (begin == end) throw std::invalid_argument{"empty range"};

 const float *cur = begin;
 const float *min = begin;
 while (++cur < end) {
 if (std::isnan(*cur)) throw std::domain_error{"unexpected NaN"};

 min = *min < *cur ? min : cur;
 }

 if (min < begin || end <= min) throw std::logic_error{"algorithm failed"};
 if (cur != end) throw std::logic_error{"algorithm failed"};
 return *min;
}

Figure 1: Significant additional complexity introduced by attempting to handle (rather
than merely detect) software defects. Providing the code needed to handle defects in
this function implies that callers of this function also handle all of these logic-error
exceptions, vastly increasing their respective complexities as well.

Despite important differences between these two kinds of checks, developers
commonly treat them interchangeably due to their superficial similarities. This is not
merely an academic concern: Empirical data from extensive usage within Bloomberg3
confirm that these misjudgments occur all too frequently in practice with sometimes
catastrophic results.

This paper aims to help the reader (1) appreciate the fundamental differences between
these two distinct categories of assumptions, (2) learn essential definitions and criteria
to be used in discriminating between the two, and (3) apply these discrimination
techniques to a series of increasingly nuanced use cases that are typical of real-world
production software. Armed with this invaluable knowledge, the reader will begin to
develop an intuition for (and, soon, a deep understanding of) how to interpret properly

3 Stored as part of Bloomberg’s internal defect reports. We have no quantifiable data from outside
Bloomberg, but we have no reason to believe that it would be substantially different.

Page 4 of 27

sometimes-subtle, real-world situations and when (with relative certainty), where, and
why to use which category of assumption check. Although we stop short of describing
how to implement defensive (and other) checks using available tools, references to
such tutorial materials are cited throughout.

DEFENSIVE CHECKING
A defensive check is redundant code that is executed at run time to verify that an
assumption that must be true in a defect-free system holds at the time the check is
executed. Because defensive checks invariably verify programmatic assumptions that
are in some sense local (see the “Discrimination Criteria” section of this paper), such
as a loop invariant, their failure always indicates a software defect. Adding or removing
any proper defensive check — e.g., by modifying the source code or, more
conveniently, by altering the build mode — has no effect (apart from run time) on the
essential behavior of a correct component, subsystem, program, or system. Such
redundant checks, however, are invaluable during development (including during unit
testing) due to their propensity to expose defects early and in proximity to the source
of the error.

Despite their ability to uncover software defects, defensive checks are not by
themselves a substitute for proper testing of library code, but they supplement such
testing by expediting defect discovery in the code under test. Furthermore, application
developers (compared with low-level–library developers) typically have relatively few
software clients over which to amortize their development costs, a much wider domain
to cover, and (due to direct business drivers) far less time to achieve thorough test
coverage; for these developers in particular, having a robust library with defensive
checks enabled affords an invaluable and low-cost safety net.

Performing/Codifying Defensive Checks

Properly implementing a defensive check typically involves employing a facility, such
as <cassert>, that is designed specifically for this purpose.4 Such defensive-checking
facilities typically provide a (i.e., at least one) construct that accepts a boolean
predicate and has no effect if the predicate evaluates (or would evaluate5) to true;
otherwise some alternative action is taken. Typical defensive-checking frameworks
will provide ways to control, at compile time, whether a given check is to be active at
run time; if such a check is to be inactive, then no runtime code associated with that
check will be generated. Notably, defensive checks can always be enabled or disabled
externally to the source code (e.g., via build options) — e.g., compiling with -DNDEBUG
disables C-style assert macros and invoking the Python interpreter with the -O switch
disables Python assert statements.

4 Bloomberg has had a proprietary macro-based library facility in place since 2004, which it
published it as open source software c. 2010 [bsls]. See also khlebnikov20a for a detailed review of
the BSLS_ASSERT facility.
5 Depending on the framework, if the predicate expression can be determined to be true at compile
time, then evaluating it at run time may be unnecessary.

Page 5 of 27

Proving — solely from (physically) locally accessible information — that a check is
entirely redundant and can be eliminated with no change whatsoever to the essential
behavior of software itself nor any potential client thereof must be possible for a check
to be manifestly defensive (see the “Discrimination Criteria” section). For example,
Figure 2 illustrates a function that is intended to return safely (i.e., with no possibility
of overflow) the average, defined as (a + b) / 2, of any two signed integers a and b.
The function properly avoids overflow in the general case by distributing the division
and then taking supplementary action only if both a and b are odd.

bool is_big(int x) { return x <= INT_MIN / 2 || INT_MAX / 2 <= x; }

int average(int a, int b)
{
 const int res = a / 2 + b / 2 + (a % 2 + b % 2) / 2;

 // Check that when no overflow is possible, this simple,
 // definitional midpoint algorithm yields the same result
 assert(is_big(a) || is_big(b) || res == (a + b) / 2);
 return res;
}

Figure 2: Function returning the average of two signed integers employing a (purely and
manifestly) defensive check to catch local coding defects early.

A thorough test suite would immediately confirm that the code — as written in Figure
2 — is actually incorrect (e.g., a = –2, b = 1 produces –1 instead of 0), but not
everyone writes thorough test drivers (and shame on those who don’t). Still, if
whatever code we finally wind up with works the same as the simple average for the
middle half of the integers and if we can (visually) convince ourselves that the
algorithm works at the boundaries of the integer range, then this defensive check is a
fairly promising bet to catch subtle conceptual defects or annoying typos. This
defensive check also (quickly) exposes the error (i.e., whenever the two inputs have
opposite signs, the negative one is even and the positive one is odd).

Characterizing Side Effects in Defensive-Checking Predicates

A proper defensive check must satisfy two requirements: (1) In a defect-free program,
the check must pass, and (2) removing any given check must — independent of any
other such check — have no effect on the essential behavior of the software. While
these two requirements are closely related, satisfying the first without satisfying the
second is possible, most typically by erroneously allowing a side effect that contributes
to essential behavior to be a part of the predicate of a defensive check. For example,
in Figure 3, in an attempt to verify that the value supplied to the addField method is
successfully inserted into an std::map, the call to emplace appears as the predicate of
an assert statement; if this code is compiled with -DNDEBUG, the value will not be
inserted at all, thereby altering the essential behavior of the software.

Page 6 of 27

class HttpHeaderFields {
 std::map<std::string, std::string> d_fields;

 public:
 void addField(std::string_view name, std::string_view value)
 {
 assert(d_fields.emplace(name, value).second);
 }
};

Figure 3: Example of an essential side effect incorrectly used in the predicate of a
defensive check. Correct code would place the return status in a variable and assert its
value in a separate statement.

As it turns out, however, not all side effects are equally problematic. Depending on
the software requirements, some side effects, such as print statements, temporary
memory allocation/de-allocation, or even (persistent) logging, may be allowed (or at
least tolerated) in defensive-check predicates because essential behavior is unaffected.
A side effect in a defensive-check’s predicate is tolerable if presence or absence of the
side effect in any given thread of program control has no effect on the essential
behavior of the program. A side effect in a defensive check’s predicate within a given
code path is benign if that side effect can have no effect on nonlocal (i.e., any other)
observable behavior within the program.6 Under these definitions, an alternative
(valid) implementation of the addField method (from Figure 3) might incorporate such
benign or tolerable side effects in its defensive checks as illustrated in Figure 4.

class HttpHeaderFields {
 std::map<std::string, std::string> d_fields;

 public:
 bool contains(std::string_view name) const
 {
 std::cout << "Checking whether '" << name << "' is present among "
 << d_fields.size() << " fields."; // (1)

 return d_fields.find(std::string(name)) != d_fields.end(); // (2)
 }

 void addField(std::string_view name, std::string_view value)
 {
 assert(!contains(name)); // (3)
 d_fields.emplace(name, value);
 }
};

Figure 4: Examples of both (1) benign console output and (2) tolerable temporary
allocation side effects used in a (3) defensive-check predicate.

6 A side effect that is not legitimately observable programmatically, such as calling a function that
might alter bits on the program stack in a manner that cannot be accessed without triggering
undefined behavior or one whose only effect is that it takes longer and/or dissipates more heat, is not
considered a side effect for the purposes of this discussion.

Page 7 of 27

INPUT VALIDATION
Unlike defensive checks, input validation is concerned with verifying whether the data
coming into a software system from across its boundary is well formed and suitable
for processing. An input-validation check is essential code that performs a runtime
check used to ensure that data entering from outside the perimeter of the trusted
region of a subsystem satisfies the requirements imposed by that subsystem; such
checks typically provide for a failure path other than merely reporting the error loudly
and aborting the process immediately.

Given that even a defect-free program or software system is capable of encountering
malformed input at any stage in the software development lifecycle, input validation
simply cannot ever be removed from a subsystem safely, i.e., without compromising
the correctness (with regard to the essential behavior) of that subsystem.

Naïvely employing mechanisms intended for defensive checking to do input validation,
albeit enticingly convenient, is woefully ill conceived and can lead to both (1)
insufficient input validation, e.g., when (essential) input-validation checks are
disabled in some build modes (which is itself a software defect), and (2) the inability
of application owners to disable any defensive checks for fear that needed input-
validation checks will be disabled as well.

Performing/Codifying Input Validation

Given that input validation is always essential to meeting systems specifications
(irrespective of the maturity of the software implementing it), such validation must be
performed in all build modes. Use of any form of defensive-checking framework would
introduce valid security concerns — especially when the software might be deployed
in a manner that could grant unprotected access to a bad actor. Hence, a regular
control-flow mechanism, such as an if statement, is both suitable and appropriate
for this purpose, whereas a strictly defensive check, such as a C-style assert, is not.

Alternatively, input validation might reasonably be delegated to, say, a library function
provided that the function’s (programmatic) API is designed specifically to
accommodate arbitrary input.7 Figure 5 illustrates proper input validation (e.g., using
if statements and a validating library API) as well as a common mistake (e.g.,
supplying raw input to the programmatic interface of a nonvalidating API).

class ValueCollection {
 // [...]

 static bool isValid(std::string_view value);
 // Return 'true' if the specified 'value' is valid, and 'false' otherwise.

 void add(std::string_view value);
 // [...] The behavior is undefined unless 'isValid(value)' returns 'true'.

7 Such function APIs are said to have a wide contract (i.e., they impose no preconditions on syntactically
valid inputs); see khlebnikov19a.

Page 8 of 27

 int addIfValid(std::string_view value);
 // [...] Return 0 on success, and a nonzero value otherwise. [...]
 // This method has no effect if 'isValid(value)' returns 'false'.
};

int main(int argc, const char *argv[])
{
 if (2 > argc) { // (1)
 return 1;
 }

 ValueCollection values;

 values.add(argv[1]); // (2) BAD IDEA

 if (ValueCollection::isValid(argv[1])) { // (3)
 values.add(argv[1]); // (4)
 } else {
 return 2;
 }

 if (0 != values.addIfValid(argv[1])) { // (5)
 return 2;
 }

 // [...]
}

Figure 5: Examples of correct and incorrect input validation: (1) correctly uses a regular
if statement for input validation; (2) improperly uses a library function having a
nonvalidating API; (3) properly validates input before passing it to the nonvalidating API
in (4); and (5) optimally uses the validating API created specifically for such usage
scenarios.

SUMMARY SO FAR
We propose that programmers face two distinct categories of assumptions when
designing software systems. The first kind of assumption pertains to the correctness
of the software system itself, which is ostensibly under the programmers’ control —
i.e., that the system as a whole works as intended and is otherwise free of defects. The
second kind of assumption pertains to the validity of input originating from outside
the boundaries of the trusted part of the system — i.e., that such input always
satisfies the requirements imposed by the system’s specifications and that invalid
input is always handled appropriately.

Defensive checks, which check assumptions from the first category, are inherently
redundant and optional; the value in performing them typically declines as the
software matures. Input validation, which validates assumptions of the second kind,
is inherently essential and always required; performing it is vital irrespective of the
maturity of the software involved.

Facilities designed to perform defensive checks are ill suited to performing input

Page 9 of 27

validation and vice versa. Moreover, due to the assumption categories’ superficial
similarities, well-intentioned developers can easily (and, in practice, commonly do)
conflate these two categories and fail to implement proper checks for these respective
assumption categories in production code.

In the following sections, we continue to build upon these general observations by
providing a suite of precise definitions and principles pertaining to defensive checks.
We then apply these principles to a series of increasingly nuanced real-world
examples, thereby better elucidating for the working programmer the sometimes-
subtle clues that distinguish defensive checking from input.

DISCRIMINATING BETWEEN DEFENSIVE AND ESSENTIAL CHECKS
Determining whether checking a given assumption about a subsystem can be properly
classified as (at least potentially) redundant and therefore (perhaps at some point)
optional, rather than inherently essential and therefore always mandatory, will inform
the developer of whether the use of any defensive-checking framework (e.g.,
<cassert>) is viable.

With suitable definitions and proper design requirements to guide us, this decision
will often be straightforward, yet, in many real-world scenarios, implementing such a
check appropriately (let alone optimally) is decidedly less clear and demands a much
deeper and nuanced analysis of how systems comprising this subsystem and how
other subsystems, data, and tools will ultimately be packaged, tested, deployed, and
consumed.

In the following, we concisely form the foundational criteria needed for determining
whether a given assumption is — or may reasonably be anticipated to become — one
whose truth can be deduced purely from information available in some well-defined
physically proximate region of the system. If so, then checking that assumption at run
time is — or is anticipated to become — entirely redundant and amenable to a
(optional) defensive check. Otherwise, the assumption remains one of validating
intrinsically external input, thereby requiring the check to be present uniformly and
unconditionally, i.e., in every build mode.

Neighborhoods

As previously suggested, defensive checks are aimed at confirming the truth of
assumptions that must always be true in a properly implemented system. More
specifically, a check is defensive in nature if it is — or is anticipated to become — one
whose truth can always8 be proven from information that is proximately available
within some well-defined physical9 region, which we will refer to generally as a

8 By “always,” we mean that there is never any expectation that this particular check will ever be
deployed in a way where the correctness of overall operation depends upon that check being
performed.
9 We use the term “physical” here to connote that which is collocated in a manifestly inseparable
material way (e.g., a source file, an executable) beyond mere logical cohesion (e.g., namespace).

Page 10 of 27

neighborhood.10 An immediate neighborhood is an atomically cohesive physical region
— e.g., a source file — that is devoid of any pertinent conditional compilation or
source-file inclusion that might render otherwise provably valid assumptions suspect.

Purely Defensive and Contextually Defensive Checks

A specific check is purely defensive if the author or reviewer of the check can (at least
in principle) prove — and perhaps be wrong (see Figure 2) — that this check must
always pass given just the information that is available in the immediate
neighborhood of the check. In other words, regardless of the circumstances of how
the code containing the check is used and deployed,11 a purely defensive check cannot
(in theory) be violated (but occasionally is in practice).

Often, however, a check that is intended to be defensive and entirely optional (e.g., a
precondition check) will not have sufficient information bound into its immediate
physical neighborhood to prove (or otherwise ensure) that — irrespective of how the
subsystem in which it is embedded is used — the assumption being checked cannot
be violated. Such a check, though defensive in nature, does not rise to the level of
being purely defensive. When specificity is needed, we will refer to a nonpure defensive
check as being contextually defensive.

Contextually defensive checks are intentionally redundant and inherently optional
runtime checks that are anticipated to be used only as a part of a larger system that
will be packaged, tested, deployed, and consumed (PTDCed) as an indivisible
physically cohesive unit embodying sufficient information to prove that the
assumption being tested by the check is necessarily true, irrespective of whether that
check is performed. The most obvious and common form of a contextually defensive
check is one that validates a function precondition — e.g., assert(value >= 0) — of
a function (e.g., sqrt) such as might be defined in a (reusable) library (e.g., std).

10 Note that our definition of a neighbourhood differs from ostensibly similar definitions that do not
involve the aspect of physicality. For example, according to Lisa Lippincott (via private
correspondence, February 29, 2020):

A logical neighborhood is a portion of a system that can be reasoned about, understood, and
validated independently of other parts of the system. A typical small neighborhood in a C++
program is a function implementation together with its interface and the interfaces to other
parts of the system, without which the function implementation cannot be understood
[lippincott16, lippincott19]. Some neighborhoods, such as the neighborhood of dynamic
initialization of a namespace-scope object, are not function neighborhoods.
Neighborhoods typically have a boundary: a portion that cannot be logically separated from the
interior of the neighborhood, but also cannot be logically separated from the exterior. The
boundary of a function neighborhood is the set of interfaces by which it connects to the rest of
the system. We can form — and reason about — larger neighborhoods by gluing neighborhoods
together along matching boundaries. (The terms “neighborhood,” “boundary,” “interior,”
“exterior,” and “gluing” come from topology; a procedural system can be described as a
bitopological manifold [lippincott18].)

11 When assessing what constitutes a purely defensive check, we entertain only reasonable (i.e.,
responsible, productive, nonmalicious) coding practices. For example, using the preprocessor to
somehow change the meaning of identifiers or modifying the assembly output (post compilation)
would violate our premise of reasonable practice.

Page 11 of 27

Internal Assertions and Postconditions

Whether we consider a postcondition to be contextually versus purely defensive is
perhaps of only academic interest since every postcondition is always contractually
predicated on all of its preconditions being met. The same can be said of any internal
assertions that depend on preconditions being satisfied. Again, to consider a check
purely defensive would require theoretically no syntactically valid way in which that
function could be invoked that would produce a result that violates the checked
assumption. For consistency, we say that a postcondition along with any intermediate
checks in the body of a function can be considered purely defensive only if (1) the
function has a wide contract or (2) the check can otherwise be proven to be true
irrespective of any combination of precondition assumptions being met.

In practice, however, internal assertions and postconditions are routinely allowed to
presume that all preconditions are met. This presumption is natural and intuitive
given that the code itself makes the same sorts of presumptions in a way that the
compiler is free to observe. If, for example, a precondition of a function (e.g., strlen)
is that a supplied pointer must hold the address of a null-terminated string (and hence
is not itself null), then the implementation of the function can reasonably and properly
presume (unconditionally) that the supplied pointer is not null and can dereference it
without any attempt at validation, since any such (permanent) validating check would
be considered supererogatory runtime overhead. Adding here a contextually defensive
check for a null pointer cannot introduce new undefined behavior because the very
same undesirable behavior will occur regardless of whether the check is active.

When potential undefined behavior is introduced by the predicate of a defensive check,
we may choose to guard that implicit assumption with the predicate of a separate
(e.g., contextually defensive) check (itself introducing no undefined behavior) that
necessarily precedes the ostensibly problematic check in every build mode where it
might be active. When there is no possibility that any (language) undefined behavior
is introduced by the predicate of a (e.g., defensive) check in any build mode, we refer
to such a check as being UB-safe. It remains an open question as to whether making
all defensive checks UB-safe is a best practice, especially when they would otherwise
be shadowed anyway.

Preconditions

A precondition is both a requirement imposed on each caller of a function and an
assumption that the implementer of the function may presume to be true. Libraries
(especially reusable ones) have historically presented points of contention with their
implementers trusting (let alone assuming, i.e., for optimization purposes12) that a
given precondition is always met. Although developers seem to widely accept that
violating a precondition check is incontrovertibly a software defect and that

12 In some (proposed) defensive-checking facilities, if a check is not actively performed, then the
compiler is permitted to presume that the assumption is unconditionally true and to optimize
accordingly. Whether such a feature is desirable or useful (as of February 2020) is a matter of active
research and debate within SG21 (the Contracts Study Group) of the C++ Standards Committee.

Page 12 of 27

attempting to check such assumptions is inherently defensive in nature, they can
harbor a strong reluctance to ever disabling such checks for fear that, someday, such
an assumption might suddenly be violated. Though the users of such a library are not
typically known to a library author, the library functionality is (or should be) designed
specifically to be PTDCed as an inseparable part of a larger, cohesive software system
wherein the programmatic clients of the library can reasonably be expected to uphold
and enforce the (presumably thoroughly documented13) library requirements. This
presumption of PTDCed entities is precisely what justifies the classification of
precondition checks as being (contextually) defensive in nature and therefore
implemented as independently and externally configurable rather than hard coded or
tied to a function’s parameters and/or essential behavior (as specified in its contract).

Although libraries may be (re)used by many (e.g., application) clients, each client of a
library uses that library in its own specific way. As soon as a component embodying
a contextually defensive check has been inseparably bound into a physically cohesive
subsystem (a.k.a. neighborhood) containing sufficient information to prove or
otherwise know that the assumption being checked is necessarily true in any context
in which the composite (i.e., client) subsystem might reasonably be used, the
contextually defensive check (in theory) no longer serves any practical purpose. With
respect to this specific cohesive subsystem, the heretofore contextually defensive
check is now manifestly defensive and can (at least in theory) now (or, in practice, at
some point) be safely disabled.

Defensive Checks in Larger Systems

Contextually defensive checks are not necessarily limited to a single executable and
might well deal with larger, more inclusive systems involving other programs, data,
tools, and so on as long as the PTDC criteria are eventually satisfied. For example, a
configuration file read at run time might be considered to provide consistently and
permanently reliable information if the executable along with the configuration file are
intended to be PTDCed together (with no comprised parts ever being modified
subsequently) as, say, a container image. Furthermore, even network communication
among multiple services deployed in a cluster might be deemed trusted by the
engineering teams developing these distinct services; hence, checks verifying their
validity could be considered defensive in nature.

Confirming that information external to an executable will be received reliably (beyond
a reasonable doubt) may, however, involve monumental effort, often requiring complex
deployment and system-wide testing, potentially specific to the target hardware.
What’s more, all the physical hardware must be sequestered within a physically
confined and secured area (e.g., a proprietary data center). If such effort is not justified

13 In addition to proper testing and deployment strategies, ensuring proper communication among
the (possibly many, distinct) developers of the subsystems is also important. Providing contract
descriptors in a natural language greatly facilitates such communication. See khlebnikov20b for an
in-depth (mostly programming-language-agnostic) analysis of how such contract descriptions are
presented effectively and synergistically with typical defensive-checking facilities.

Page 13 of 27

— or perhaps even impossible, e.g., due to the services being accessible to anyone on
the Internet — then treating the communication among even concurrently deployed
subsystems as satisfying even the spirit of this PTDC criteria is flat-out wrong,
irrespective of the precise mode of communication (e.g., sockets, named pipes, shared
memory segments, direct calls to a runtime-loaded shared library, or via language
bindings).

Summary

Use of defensive-checking frameworks is reserved for checks that can be reasonably
classified as being either purely or contextually defensive. Checks that are not
expected to eventually satisfy the PTDC criteria are not defensive in nature and are
therefore ill suited to such frameworks. Whether a check can be reasonably
considered defensive in nature is usually obvious, sometimes subtle, and, on rare
occasion, debatable (see the following section). The definitions provided above are
reprised concisely for the reader’s convenience in Figure 6.

Contextually Defensive Check — A defensive check that is not purely defensive, i.e., one
whose truth cannot be proven from its immediate neighborhood yet is defensive in nature;
hence, it is anticipated that, in every case where the check is part of an entity that is consumed
by external users, sufficient information will always be available (at compile time) to prove (at
least in principle) that the check is manifestly defensive.

Defensive Check — A runtime check that is intentionally redundant and inherently optional
and that must necessarily be true when incorporated into any defect-free program, system, or
other entity that is presented for consumption by external users.

Defensive in Nature — A property of a check whereby the check itself is provided with the
understanding that the unit of software implementing that check is either already manifestly
defensive (i.e., purely defensive) or else will invariably be bound into a larger entity satisfying
the PTDC criteria, which will in turn render the check manifestly defensive.

External User — A consumer (of an entity) that does not (or perhaps cannot reliably) satisfy
the PTDC criteria for the entity.

Immediate Neighborhood — The physically contiguous (monolithic) region surrounding the
implementation of a defensive check, devoid of constructs that might reasonably cast doubt as
to whether the otherwise noncontextually defensive check is in fact manifestly defensive (e.g.,
conditional compilation and #include directives between the check and the information
required to prove the truth of the checked assumption).

Manifestly Defensive Check — A check is manifestly defensive for a given physical region if
the information contained within that region is sufficient to prove (at compile time and in any
build mode) that the assumption it checks is true in every context for which that region might
be incorporated for consumption by external users.

Neighborhood — A physical subregion of an entity containing a defensive check that when
PTDCed would be sufficient to render that check manifestly defensive.

Purely Defensive Check — A manifestly noncontextually defensive check, i.e., one whose
unconditional redundancy (i.e., within every syntactically correct program) can be proven
locally (e.g., by a human reviewer), irrespective of whether and how its local neighborhood is
ultimately bound into other entities for consumption by external users.

Page 14 of 27

PTDC —Package, Test, Deploy, and Consume

PTDCed —Packaged, Tested, Deployed, and Consumed.

PTDC Criteria — A criteria applied to an entity that will be made available for consumption by
external users wherein any of its initially physically separable constituent parts have been
PTDCed together, yielding one immutable physically cohesive (atomic) unit comprising them all.

UB-safe — The property of a (e.g., defensive) check that indicates the check itself cannot
possibly trigger undefined behavior in any build mode, e.g., because any undefined behavior
that might have been introduced by its predicate is guarded by either (permanent) validating
code or some other defensive check that would necessarily be active and occur earlier in any
conceivable build mode in which the original check was active.

Shadowed — The property of a defensive check that indicates the check itself cannot possibly
trigger new undefined behavior in any build mode because, for the undefined behavior that
might be introduced by its predicate, the identical form of undefined behavior is also introduced
in either (permanent) validating code or in some other defensive check that would necessarily
be active and occur (either earlier or later) in any conceivable build mode in which the original
check was active.

Figure 6: Summary of terms pertaining to defensive checks.

REAL-WORLD ASSUMPTION-CHECKING SCENARIOS
Armed with a thorough understanding of what conceptually distinguishes defensive
checking from input validation, we now present a sequence of real-world examples
that cross the narrow divide separating the two.

Internal Logic Checks

Checks that verify essential properties of implemented algorithms naturally satisfy
the requirements of defensive-in-nature checks in that, in any defect-free program,
they are (by definition) redundant. For example, such properties may include logic
ensuring that an array has been sorted prior to performing binary search, that a
certain condition must hold upon exit from a loop, or that a simpler — albeit slower
or (see Figure 2) more constrained — algorithm arrives at the same result. Figure 7
illustrates all three of these sorts of checks, which, in this instance and considering
that the checks can be shown to hold true using information derived exclusively from
their immediate neighborhood, can each be accurately classified as being purely
defensive.

bool containsSamples(const std::vector<int>& rawData,
 const std::vector<int>& transformedSamples)
{
 std::vector<int> data{rawData.size()};
 std::transform(rawData.begin(), rawData.end(), data.begin() &transformDatum);

 // Sort the two halves and either merge them or discard the second half.
 auto mid = data.begin() + data.size() / 2;
 std::sort(data.begin(), mid);
 std::sort(mid, data.end());

Page 15 of 27

 if (useBothHalves(data.begin(), mid, data.end())) {
 std::inplace_merge(data.begin(), mid, data.end());
 } else {
 data.resize(std::distance(data.begin(), mid));
 }

 // About to start binary searching - 'data' will be sorted regardless of
 // which branch was taken above.
 assert(std::is_sorted(data.begin(), data.end()));

 for (int sample: transformedSamples) {
 auto first = data.begin();
 auto last = data.end();
 auto count = data.size();

 while (count > 0) {
 auto step = count / 2;
 auto it = first + step;
 if (*it < sample) {
 first = ++it;
 count -= step + 1;
 }
 else {
 count = step;
 }
 }
 // 'count' will be exactly 0 after the loop.
 assert(0 == count);

 bool found = first != last && *first == sample;
 if (!found) {
 // A linear search always arrives at the same result.
 assert(data.end() == std::find(data.begin(), data.end(), sample)));
 return false;
 }
 }

 return true;
}

Figure 7: Examples of purely defensive checks.

Unreliable Input Sources

If a subsystem has as sources of input entities that are not within the control of that
subsystem, no physical neighborhood that encompasses both the input and checks
validating the input can reasonably be defined. The PTDC criteria cannot apply to
such checks; therefore, for the designers of that subsystem to classify them as
defensive would be irresponsible. Hence, presuming that any such externally supplied
nonprogrammatic input is potentially flawed and being prepared to handle such
flawed input accordingly is always wise. Even if the desired course of action for
malformed input is to abort the program on failure, this should not be performed with
a defensive check so that the verification will be applied in every build mode.

Page 16 of 27

For example, failing to consistently validate input that might be received from even a
well-intentioned human operator will inevitably lead to unpredictable intermittent
failures. As a second example, input received by a public HTTP server might not be
simply accidentally malformed but could also arrive from a malicious actor aiming to
destabilize the system; all such input requests should therefore always be validated
thoroughly. Figure 8 illustrates both of these concerns.

int main(int argc, const char *argv)
{
 assert(2 <= argc); BAD IDEA: Asserting number of command-line input arguments.
 int port = atoi(argv[1]);
 assert(0 <= port && port <= 65535); BAD IDEA: Asserting specific command-line values.
 HttpServer().listenForever(
 port,
 [](const HttpRequest& request) {
 // ALL checks below are misclassified as defensive. VERY BAD IDEA
 assert(request.method() == "GET");
 assert(request.uri() == "/")
 assert(request.headers().content_type() == "application/text");
 assert(request.data().size() <= 1024);

 // ...
 }
);
}

Figure 8: An example of a (poorly engineered) public-facing HTTP server that misuses a
defensive-checking framework (namely <cassert>) to perform input validation.

Precondition and Postcondition Checks

A function’s contract may impose certain preconditions — i.e., semantic limitations on
syntactically valid inputs and/or ambient object (or program) state — for its invocation
to be considered valid. Failure by the caller to satisfy any one of those preconditions
results in (library) undefined behavior, which is automatically considered a software
defect, irrespective of whether essential (or any other) behavior is affected. The set of
preconditions and postconditions — i.e., what the function guarantees to have
happened given valid arguments and proper state — form a contract between the
function and its clients.

Although the client invoking a library function (including one having preconditions) is
generally unknown to the function, the caller and callee are nonetheless expected to
eventually become part of a larger logically cohesive entity that is PTDCed as an
inseparable physical unit. Therefore, classifying precondition checks as contextually
defensive and employing a defensive-checking framework to detect inadvertent
function misuse by its (trusted) programmatic clients is a reasonable practice.14 For

14 Note that a function is never under any obligation to (defensively) check all (or even any) of its
preconditions that are (or should) be fully documented as part of its (natural-language) contract. Not

Page 17 of 27

example, a binarySearch function extracted from the containsSamples function in
Figure 7 might require, as a precondition, that the input range be sorted, as illustrated
in Figure 9.

// Precondition: [first, last) represents a nondecreasing sequence of values.
bool binarySearch(const int *first, const int *last, int value) {
 // Full (expensive) a priori precondition check (1).
 assert(std::is_sorted(first, last));
 auto cur = first;
 auto count = last - first;

 while (count > 0) {
 auto step = count / 2;
 auto mid = cur + step;

 // Partial (inexpensive) precondition check (2).
 assert(*cur <= *it);

 if (*mid < value) {
 cur = ++mid;
 count -= step + 1;
 }
 else {
 count = step;
 }
 }
 // `count` must be exactly 0 after the loop
 assert(0 == count);

 bool result = cur != last && *cur == value;
 // Postcondition check (3).
 assert(result == (last != std::find(first, last, value)));
 return result;
}

Figure 9: Binary search function that uses defensive checks for its precondition checks
(1) and (2) as well as its postcondition check (3).

Note that in contrast to Figure 7 (where a binary search was performed in the context
of another, larger function), after factoring out independently callable binarySearch
function, the is_sorted check, while still a defensive in nature, changed its category
from a purely defensive internal logic check to a contextually defensive precondition
check. In the context of the original containsSamples function, this check is, however,
obviously manifestly defensive. This duality reflects both the intuition behind why
precondition checks are defensive in nature and also how a change in the physical

only is such a check explicitly not part of its contract, but in some cases doing so might be prohibitively
expensive if not impossible. By employing a defensive-checking framework, such as BSLS_ASSERT or
the one originally proposed for C++20, that affords the ability to enable inexpensive checks (e.g., default
level) without necessarily enabling more expensive ones (e.g., audit level), a library developer can
provide a diverse set of clients with better control over apportioning runtime resources commensurate
with their own respective states in the software development lifecycle.

Page 18 of 27

neighborhood of the check might well affect its classification (i.e., purely versus
contextually defensive).

In a similar manner, postconditions also correspond to purely defensive internal logic
checks and yet hyper-technically cannot be classified as purely defensive if they
depend on the degree of trueness of any of the function’s preconditions. In practice,
however, most contextually defensive postcondition checks of robustly written
libraries are guarded by the precondition checks enabled or disabled together with the
postcondition checks, implying that the postcondition checks would not typically be
reached should preconditions be violated.

Moreover, violating a precondition, which is considered soft (library) undefined
behavior, can easily lead to hard (language) undefined behavior by running afoul of
the assumptions implicit in the function’s implementation itself. Hence, even if
classified as input validation, the postcondition check would be of little use if the
function’s preconditions do not hold. To facilitate local reasoning, a common practice
is to classify (misclassify) postconditions (and, similarly, internal logic checks) as
being purely defensive even when they presume that the preconditions are true.

Furthermore, when invoking an external function, the standard practice is to assume
that the function is implemented correctly (and tested thoroughly); hence,
postconditions can, for all practical purposes, be considered guaranteed to be correct
with respect to any local proof of correctness that makes use of them. Without such
an assumption, any hope for the scalability of such local correctness proofs would be
lost.

Sidebar: Precondition Checks in Hierarchically Reusable Libraries
During the development of hierarchically reusable software,15 it is not uncommon for
a piece of low-level functionality to be used locally in other functionality where its
preconditions checks are initially purely (and hence manifestly) defensive, and then
later, after fine-grained physical factoring, only contextually defensive, as evidenced
in Figures Figure 7 and Figure 9, respectively. Another common practice is to expect
that a particular assumption regarding a reusable function’s arguments and/or an
ambient object’s (or program’s) state might naturally be able to be guaranteed in some
calling contexts, thereby qualifying a check for this assumption to be considered
(contextually) defensive (often with no need to return status); yet other clients might
be better served if this assumption were addressed in the input-validation realm, with
the function always checking and reporting a failure status whenever the assumption
is false.

Having just a contextually defensive check would force all clients to perform the check
themselves — even if that might mean duplicating work that will need to be done
anyway; providing only a (permanent) validating check would impose an unnecessary

15 A hierarchically reusable library is a library designed for general use where each function exposes
its fully factored implementation as a fine-grained (acyclic) physical hierarchy of homogenous atomic
physical entities called components; see lakos20, sections 0.4–0.5, pp. 20–43.

Page 19 of 27

performance penalty on all clients that can themselves guarantee, at little or no added
cost (or risk of coding error), that a function’s preconditions are satisfied. Empowering
the library client to decide whether their particular use case requires (optional)
defensive checking or (essential) input validation is, therefore, prudent.16 While this
sort of pseudo-dual (defensive versus input checking) classification can be
approximated by allowing a single function to be configured via a runtime flag (or at
compile time using a function template parameter), providing two entirely distinct
functions — each customized to suit its respective client’s manifestly different needs
— is almost always wise. Figure 10 illustrates one way of rendering such a dual API
supplemented by a validity-checking function.

struct DatetimeIntervalUtil {
 static bool isValidCalendarInterval(const DatetimeInterval& interval);
 // Return 'true' if the specified 'interval' is valid according to the
 // calendar and 'false' otherwise.

 static DatetimeInterval parse(std::string_view data);
 // Parse a DatetimeInterval from the specified 'data'. The behavior
 // is undefined unless 'data' contains a valid date-time interval.

 static int tryParse(DatetimeInterval *result, std::string_view data);17
 // Load into the specified 'result' a date-time interval defined by the
 // specified 'data'. Return 0 on success, and a nonzero value if 'data'
 // does not contain a pair of formatted valid date-time values or as if
 // 'isValidCalendarInterval' returns 'false' for the parsed interval.
};

Figure 10: Example rendering of a dual API (nonvalidating alongside validating).

Resource Files

Checking the validity of external resources, such as configuration files, is typically
within the purview of input validation, especially if external users can modify such
files. A typical application performing such input validation is illustrated in Figure 11.

int main(int argc, const char *argv[])
{
 if (2 > argc) { std::cerr << "Configuration file not provided."; return 1; }

 std::ifstream config(argv[1]);
 if (!config) { std::cerr << "Can't open file " << argv[1]; return 2; }

16 Control of whether to perform input validation must be entirely in the hands of the immediate
client of the reusable library and must not be conflated with the global (e.g., build-system level)
controls for activating or deactivating defensive checks.
17 When following the coding conventions used in the BDE family of libraries, the name of the
function with the validating API would instead affix the suffix IfValid with the resulting identifier
being parseIfValid.

Page 20 of 27

 std::vector<DateTimeInterval> intervals;
 std::string line;
 while (config >> line) {
 DateTimeInterval interval;
 if (0 != DateTimeIntervalUtil::tryParse(&interval, line)) {
 std::cerr << "Invalid date-time interval encountered.";
 return 3;
 }
 intervals.push_back(interval);
 }

 // Continue with valid 'intervals'...
}

Figure 11: Properly validated (user-supplied) configuration.

If, however, the developer intended these resources to be modified by only the
application developer, we might consider whether some (or all) of these checks could
be considered defensive in nature and simply assert them. This idea is enticing for the
potentially computationally intensive and repeated checks performed by tryParse in
the tight loop, affecting the application startup time. However, discounting the
possibility of human beings making a mistake when defining or editing these
resources would itself be an error.

Even if systemwide testing confirming the validity of the external resources is
performed postdeployment, relying on this validity to continue even when any part of
a PTDCed system can be modified after deployment (without being re-PTDCed) violates
the PTDC criteria imposing no postdeployment changes to the constituent parts (and
is asking for trouble). Expecting text quickly typed into a command line by a human
being to be valid is more dubious still. For such checks to be justifiably classified as
manifestly defensive, the PDTC criteria must be satisfied.

Since the engineer, no matter how qualified and careful, is not part of a physically
inseparable unit that undergoes packaging, testing, deployment, and use along with
the rest of software system, any changes made by such actors will necessarily lead to
the entire system being re-PTDCed. In the case of a command line, the input will need
to be captured statically, say, within a script. With a fully encapsulating process in
place (e.g., one that uses containerization), reclassifying the checks as being defensive
in nature may be feasible, and these checks can then eventually be disabled in
production once sufficient hardening has occurred, thereby affording better startup
performance. Figure 12 illustrates how such containerized application might be
implemented.

int main(int argc, const char *argv[])
{
 assert(2 == argc);

 std::ifstream config(argv[1]);
 assert(config);

Page 21 of 27

 std::vector<DateTimeInterval> intervals;
 using string_it = std::istream_iterator<std::string>;
 std::transform(
 string_it(config), string_it(),
 std::back_inserter(intervals),
 &DateTimeIntervalUtil::parse);

 // Continue with valid 'intervals'...
}

Figure 12: Containerized application with configuration checks reclassified as
defensive.

When it comes to internal data files, other simpler alternatives to containerization
fully satisfy both the letter and the spirit of the PTDC criteria. For example, one can
checksum the data in the file using a secure hash, such as SHA-2 (e.g., SHA-256),
and embed that in the source code of the program. Then, when the file is read, its
checksum is unconditionally verified against the embedded hash using a conventional
if statement. If the checksums match, the program proceeds normally; otherwise, a
short, descriptive message is printed and the program explicitly exits, e.g., using
std::abort() or std::terminate(). In this way, we can effectively use the
containerizing properties of the program’s executable image cheaply and effectively to
ensure that the external files do not change independently of the overall system.

Larger Neighborhoods

Thus far we have considered defensive checks in entities as small as the body of a
single function to systems comprising programs, files, and other artifacts executing
on a single computer. Given our strict criteria for employing defensive-in-nature
checks, using them to (defensively) check data passing across process boundaries, let
alone among processes running on multiple machines, might seem dubious. However,
defensive checks can be viable in neighborhoods larger than those previously
considered. Their applicability, as ever, is enabled by physical proximity and governed
by compliance with the PTDC criteria.

First, imagine that we have a request/response system running on a single, very large,
multicore supercomputer that handles concurrent users by spawning numerous
identical processes. Imagine further that the state of each active client session can be
maintained in static memory, swapped out (in binary form) to secondary storage using
memory-mapped I/O, and then later swapped in again (at the same virtual memory
address) to any of the available processes. What makes such an architecture feasible
is the presumption that each of the processes are identical clones; if so much as a
single byte in a relocatable image of one of the processes were to diverge, the
save/restore functionality would likely fail, often spectacularly. Given a robust library
that defensively checks object invariants,18 we might choose to enable those checks

18 An object invariant is an assumption that, in every defect-free program, is true from the moment an
object’s constructor returns until the moment that object’s destructor is invoked — except, perhaps,

Page 22 of 27

when designing the infrastructure to spin up the system. Once that mechanism is
sufficiently proven, we may eventually choose to disable those invariant checks while
making no other changes to the system. In a defect-free system, we can know that all
object invariants will hold irrespective of whether they are checked (redundantly) at
run time; hence, this single-computer multiprocessing scenario satisfied the PTDC
criteria.

Next, let’s imagine that we have two computers that communicate via sockets using,
say, the HTTP/2 wire format. Is it ever reasonable to presume that the information
traveling between these computers satisfies the PTDC criteria? As previously stated,
if the sockets are connected using a public network, then the answer is an emphatic
no. If, however, the connection is via a dedicated line and the computers are
sequestered (e.g., confined to a single, secure room) and controlled together (i.e.,
under the same authority), then the entire room might reasonably be treated as a
neighborhood, provided, of course, that all the constituent parts can be reliably
PTDCed and then secured such that no part is subject to independent modification.

As our final example, let’s now imagine a large data center, such as might be found
at a major financial information services company. These massive computing
facilities, containing an untold number of server machines, must run continuously
24/7, with no illusion that they can ever all be stopped, updated, tested, and
redeployed in unison, and yet — at this scale — eliminating even a few cycles per
customer request can translate to significant savings in terms of reduced hardware
footprint, heat dissipation, and so on. So how can local defensive checks possibly help
here?

For illustration purposes, imagine we have a (small) computing center consisting of
just 100 machines (arranged in a ten by ten array, M[10][10]) each running (on
average) roughly 1000 (nearly) identical processes (105 processes in total) that perform
(essentially) the same request/response functionality. Each time this massively
replicated process is to be updated, all of the relevant, fully unit-tested componentized
software is linked to form a physically monolithic executable image, which, now
immutable, is then beta-tested in a simulated production environment. Such
simulated production testing is very valuable but is no substitute for production
hardening, so eventually the software will need to be exercised (in production) by live
customers.

Unit tested or not, deploying new software to production is a delicate task, and, of
necessity, we must proceed carefully. Hence, a new version of our server process is
never rolled out to our user machines all at once but in increasing (e.g., quadratically)
waves. First, we bring down a single user (server) machine, say M[0][0], replace the
current version of the executable with the new one, and then proceed to spin up all
the processes on that machine. Then we bring it online and basically wait to see what
happens. If, after some time, no problems arise, we continue the rollout by bringing

during execution of one of that object’s member or friend functions (i.e., any function having access
to that object’s non-public state).

Page 23 of 27

up, say, three more machines, e.g., M[1][0], M[1][1], and M[0][1], and again we wait.
With each successive wave, we roll out more machines until all of them are executing
processes spawned by the same new executable. If at any point we discover a problem,
then we reverse the process and return to our previous state. So, how can defensive
checks help us here?

In the absence of defensive checks, the rollout process must proceed slowly because,
unless the system crashes outright, our (human) customers typically require time to
observe anomalies, realize things aren’t quite right anymore, and call customer
support to report the newly experienced problem. Now suppose instead that each new
system was built in two ways: with and without defensive checking enabled. How
might we proceed differently? We might start by deploying the slower but more robust
defensively checked version on M[0][0] and see what happens there first. With
defensive checking enabled throughout every process on that first machine, any
violations of defensively checked internal assumptions (i.e., those relating specifically
to the correctness of the process itself) will be quickly flagged, and we can abort the
next wave much earlier. If, after a short delay, no such problem is reported, we can
then proceed (much more quickly than without defensive checking enabled) with the
second wave and so on.

Since defensive checking requires additional computer resources, we will not want all
of our hardware to be doing such redundant runtime checking for long. Even as the
first wave continues to spread over our computer farm, we can begin to introduce a
second wave that replaces the defensively built executables with leaner, nondefensive
ones — now with greatly reduced concern that these new, higher performance
executables will be disruptive in production.

What makes this approach fundamentally sound is the understanding that (1) the
executable itself is PTDCed and then tested as a nonmodifiable unit before it is ever
deployed to production, and (2) once all of the new executables are deployed and
running in unison, they too have effectively been PTDCed as a yet larger nonmodifiable
unit — i.e., the entire computer farm can, in effect, be considered one gigantic
neighborhood! Hence, once everything appears to be working well, we need not endure
the often substantial runtime overhead of always rechecking what now satisfies the
PTDC criteria, is provably correct (in principle), and is observably so (in practice).

Additionally, because all the processes are, by design, identical and running on
similar hardware, any one of them can serve as a safeguard to sample the client traffic
of the server farm. So, instead of removing all of the 100 defensively instrumented
executables from the farm, we might choose to leave a few machines running the
slower, more robust, defensively checked version in place. In this way, we can titrate
the cost of performing statistically significant, practically useful defensive checking
on a random subset of customer queries — from 100% to 1% or anything in between
— just in case something in the external environment changes such that previously
unproven code paths begin to execute.

Finally, this dual-wave–based rollout approach naturally scales to computer facilities
of almost arbitrary size. Instead of having just a two-dimensional 10 x 10 grid, imagine

Page 24 of 27

a three-dimensional block19 of machines M[100][100][100] in an edifice the size of a
warehouse (109 processes). The same sort of two-phased, multiwave rollout approach
(while keeping just a tiny fraction of the machines enabled for statistically useful
defensive checking) pertains. A concise summary of the various principles elucidated
in this and the preceding subsections for selecting defensive checking versus input
validation in real-world scenarios are summarized in Figure 13.

Subsection Title/Topic Principles Being Demonstrated
Internal logic checks Immediate physical neighborhood

Purely defensive checks
Unreliable input sources External users

Input validation
Precondition and postcondition
checks

Contextually defensive checks
PTDC
Manifestly defensive checks
Shadowing other sources of undefined behav-
ior

Resource files Evolving physical neighborhood
Larger neighborhoods PTDC achieved through replication

Staged rollout with defensive checking
Statistically significant partial checking

Figure 13: Brief summary of principles elucidated per subsection.

CONCLUSION
Making assumptions is inherent to writing any software system. We have identified
two distinct and nonoverlapping kinds of assumptions: (1) those pertaining to the
correctness of a software system itself (i.e., the system does what it is expected to do)
and (2) those pertaining to the validity of the external data passing across autonomous
system boundaries (i.e., the externally supplied input conforms to what the system is
expected to handle). Assumptions of the first kind are generally knowable and (in
principle) provable based solely on the information available when packaging the
system or (e.g., massively replicated) subsystem; hence, any subsequent runtime
validation of such assumptions is redundant, entirely superfluous in a defect-free
program, and referred to generally as defensive checking. Assumptions of the second
kind, on the other hand, are unknowable locally; must (for correctness) always be
validated at run time; and, whenever determined to be false, must somehow be
handled (even if only to reliably terminate execution). This second category of
assumption checking, referred to generally as input validation, must always continue
to be present and active (e.g., in every build mode).

19 Note that heat dissipation can become a governing factor, especially in a three-dimensional block.

Page 25 of 27

Consistently discriminating accurately between these two disjoint assumption
categories is critically important for software systems to be correct (and thus stable).
Failing to properly categorize an assumption, which can (and often does) happen in
practice, might lead to both gross inefficiencies (e.g., when a defensive check outlives
its usefulness) and catastrophic failures (e.g., when checks that are required even in
an otherwise defect-free program are inappropriately disabled in the name of runtime
performance).

Even if the assumptions are properly categorized, it is important to be mindful of
potential failures associated with side effects and potential introduction of (language)
undefined behavior in predicates of defensive checks. In particular, in defensively
checked predicates, side effects that affect essential behavior are defects and those
that don’t affect behavior might be considered benign or at least tolerable. With respect
to introducing undefined behavior, any defensive check may be UB-safe (no additional
undefined behavior possible) or at least shadowed (by the same undefined behavior)
in every build mode. Understanding these distinctions underlies proper practical
implementation of defensive checks, including reasonable predication of postcondition
and other internal checks on the degree of trueness of all preconditions.

We have identified several important properties related to successfully characterizing
whether a given assumption will ultimately be knowable before run time or else (for
the system to be defect-free) always require runtime validation (see Figure 6 for a
comprehensive taxonomy). A check is (1) defensive in nature if its degree of trueness
is — or is anticipated always to be — deducible from information proximately available
in some well-defined physically cohesive region called a neighborhood; (2) purely
defensive if it can be proven — irrespective of the context in which its (intrinsically
physically contiguous) immediate neighborhood resides; and (3) contextually defensive
if it satisfies the first of the above definitions but not the second.

A system comprised of smaller, physically separable entities that are PTDCed together
forms a neighborhood for a (contextually) defensive-in-nature check if the degree of
trueness of that check can (in principle) be proven when the system is packaged, in
which case the check becomes manifestly defensive with respect to this specific
deployment.

As the seminal contribution of this paper, we nominate the PTDC criteria as the
measure by which to adjudicate whether a check can be considered defensive in
nature (i.e., eventually provably redundant) and, hence, removed without affecting
either the correctness or essential behavior of a defect-free program. The PTDC criteria
require that a PTDCed system — i.e., one having a neighborhood sufficient to prove a
given assumption — is unilaterally controlled such that none of its constituent pieces
is susceptible to postpackaging modification.

When applied to a series of increasingly nuanced real-world examples (see Figure 13),
the PTDC criteria quickly and clearly exposed the fundamental nature of several
classically difficult-to-categorize assumptions. Defensive checks (for security reasons
as well as correctness) are never appropriate for assumptions that involve knowledge
that emanates or propagates through any part of the overall system (e.g., via a public

Page 26 of 27

network) not under the complete authority and control of the overall system owner.
Furthermore, they are not amenable to even trusted direct (raw) human input (e.g.,
command line, console, control file) unless such input is captured (e.g., in a script or
data file) and PTDCed along with the system such that no part is subsequently
modifiable. And yet certain assumptions that span processes and even machines can
— with sufficient diligence — still be treated as part of a very large neighborhood and
therefore amenable for defensive checking (e.g., when multiple instances of essentially
the same process are running as part of a larger multiprocessing system). Such
diligence was motivated in that, for a massively parallel multiprocessing system,
statistically valid and very useful information can be collected — at substantially
reduced runtime overhead — simply by enabling defensive checking in only a small
fraction of the otherwise identical production processes.

Finally, we posit that even properly categorized defensive checks are no substitute for
thorough unit testing but are effective at accelerating code-defect detection — both
during development and after deployment to production. Moreover, defensive checks
in library code provide a welcome safety net for application clients, especially when
inevitable time pressures preclude a more methodical and systematic (e.g., unit-
testing) approach. Even “proofs” that supposedly cannot be wrong (in theory)
occasionally are (in practice); hence, the redundancy of (sometimes) calculating
something in two very different ways and getting the same result adds a solid measure
of confidence that the calculation is correct. As implementers of defensive checks,
however, we must always be mindful that some assumptions are inherently defensive
in nature while others are not.

The goal of this paper was and is to elucidate — to all developers — how to correctly
discriminate between two important and disjoint assumption categories and, hence,
when the use of a defensive-checking framework, such as <cassert>, is appropriate.20

REFERENCES
bsls. https://github.com/bloomberg/bde/tree/master/groups/bsl/bsls

khlebnikov19a. R. Khlebnikov and J. Lakos. “Contracts, Undefined Behavior, and
Defensive Programming,” C++ Standards Committee Working Group ISOCPP, Technical
Report P1743R0, 2019 (originally published internally to Bloomberg, 2017).
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p1743r0.pdf

khlebnikov19b. R. Khlebnikov “Avoid Misuse of Contracts!” C++ Conference
(CppCon), Aurora, CO, September 2019.
https://youtu.be/KFJ5p-T-S7Q

khlebnikov20a. R. Khlebnikov and J. Lakos. “Defensive Programming using
BSLS_ASSERT/BSLS_REVIEW,” C++ Standards Committee Working Group ISOCPP,
Technical Report Draft D2110, forthcoming.

20 khlebnikov19b is a conference talk that inspired this paper.

https://github.com/bloomberg/bde/tree/master/groups/bsl/bsls
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p1743r0.pdf
https://youtu.be/KFJ5p-T-S7Q

Page 27 of 27

khlebnikov20b. R. Khlebnikov and J. Lakos. “Delineating C++ Contracts in English,”
C++ Standards Committee Working Group ISOCPP, Technical Report Draft D2111,
forthcoming.

lakos20. J. Lakos. Large-Scale C++ Volume I: Process and Architecture. Boston:
Addison-Wesley, 2020 (published December 17, 2019).

lippincott16. L. Lippincott. “Procedural function interfaces,” C++ Standards
Committee Working Group ISOCPP, Technical Report P0465R0, 2016.
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0465r0.pdf

lippincott18. L. Lippincott. “The Shape of a Program,” ACCU, Bristol, April 2018.
https://youtu.be/IP5akjPwqEA

lippincott19. L. Lippincott “The Truth of a Procedure,” C++ Conference (CppCon),
Aurora, CO, September 2019.
https://youtu.be/baKqCOLKcPc

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0465r0.pdf
https://youtu.be/IP5akjPwqEA
https://youtu.be/baKqCOLKcPc

	Abstract
	Introduction
	Defensive Checking
	Performing/Codifying Defensive Checks
	Characterizing Side Effects in Defensive-Checking Predicates

	Input Validation
	Performing/Codifying Input Validation

	Summary so Far
	Discriminating Between Defensive and Essential Checks
	Neighborhoods
	Purely Defensive and Contextually Defensive Checks
	Internal Assertions and Postconditions
	Preconditions
	Defensive Checks in Larger Systems
	Summary

	Real-World Assumption-Checking Scenarios
	Internal Logic Checks
	Unreliable Input Sources
	Precondition and Postcondition Checks
	Sidebar: Precondition Checks in Hierarchically Reusable Libraries

	Resource Files
	Larger Neighborhoods

	Conclusion
	References

