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Value Proposition: Allocator-Aware (AA) Software 
 

NOTE: This white paper (i.e., this is not a proposal) is intended to motivate continued investment 
in developing and maturing better memory allocators in the C++ Standard as well as to counter 
misinformation about allocators, their costs and benefits, and whether they should have a 
continuing role in the C++ library and language. 

ABSTRACT 
The performance benefits of employing local memory allocators are well known and 
substantial. Still, the real-world costs associated with integrating allocators 
throughout a code base, including related training, tools, interface and contract 
complexity, and increased potential for inadvertent misuse, cannot be ignored. A 
fully allocator-aware (AA) software infrastructure (SI) offers a convincing value 
proposition despite substantial upfront costs. The collateral benefits for clients, such 
as object-based instrumentation and effective means of testing allocations, make 
investing in AASI even more compelling. Yet many other unwarranted concerns — 
based on hearsay or specious conjecture — remain. 

In this paper, we discuss all three currently available AA software models, C++11, 
BDE, and PMR (C++17)1  — each of which provides basically the same essential 
benefits but requires widely varying development and maintenance effort. We then 
separate real from imagined costs, presenting some of the many collateral benefits of 
AASI along the way. After all aspects are considered, we continue to advocate for the 
adoption of AA software today for all libraries that potentially have performance-
sensitive clients and specifically for the BDE/PMR model, even as we continue to 
research a language-based solution that might someday all but eliminate the costs 
while amplifying the benefit. 

INTRODUCTION 
Allocating memory dynamically is an inherent aspect of practically every significant 
software system. Although the language-supplied allocation primitives (new and 
delete) typically provide acceptable performance, employing a custom allocation 
strategy would be advantageous, if not absolutely necessary, in many important 
cases. This paper explains why custom memory allocation supported via an 
allocator-aware (AA) software infrastructure (SI) can be practical, cost effective, and 

                                       
1 The BDE (Bloomberg Development Environment) and PMR (polymorphic memory resource) models 
are very similar (the latter being derived from the former), and we often refer to them together as the 
BDE/PMR model.  
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strategically advantageous today, just as it has at Bloomberg and elsewhere since 
1997.2 

Using thoughtfully-chosen local (“arena”) memory allocators to provide custom 
allocation strategies is well known — both anecdotally and through repeated 
controlled experiments3 — to potentially yield significant (sometimes order-of-
magnitude) performance improvements over simply relying on even the most 
efficient state-of-the-art, general-purpose global allocators. This performance boost 
should come as no surprise since, when choosing an allocation strategy, developers 
can leverage in-depth knowledge of their application and its operational environment 
— an option that is clearly unavailable to any general-purpose allocator. 

The two most common ways of achieving high-performing memory management in 
C++ today are to (1) write custom data structures (from scratch) each time a distinct 
allocation strategy is deemed necessary, and (2) build on AA components (provided 
by library developers) that readily support use of arbitrary per-object allocators as 
needed. The costs and benefits for option (1) are extreme: Custom data structures 
produce the highest possible levels of performance and flexibility yet have 
prohibitively high development and maintenance costs; are inherently not reusable 
(nor interoperable with their less-efficient counterparts); and introduce a steep 
learning curve (and typically a high bug rate).4 Option (2) offers nearly the same 
performance advantages of option (1) and provides many other, collateral benefits 
yet requires from clients of AASI libraries only a tiny fraction of the engineering 
effort. 

The introduction of an AASI can, by analogy, be compared to that of a middle-tier 
class of service in the airline industry, such as premium economy or business class. 
Many customers who would otherwise have flown economy might now opt for 
premium economy, which offers extra legroom or laptop room as well as other 
amenities at minimal increased cost. Other customers whose need for comfort would 
have necessitated flying first class can now get nearly the same accommodations by 
opting for business class at a fraction of the cost. Analogously, many software 
subsystems that would have performed acceptably without custom memory 
allocation might now, with little marginal client cost, be optimized (often 
significantly) by exploiting an AASI, and subsystems that would otherwise have been 
forced to create custom data structures can now get substantially the same 
exceptional performance, instrumentation, and placement capabilities at a fraction 
                                       
2 The polymorphic memory allocator model used at Bloomberg and now part of C++ was developed for 
real-world financial software applications in the F.A.S.T. (Financial Analytics & Software 
Transactions) Group at Bear Stearns & Co., Inc., in 1997, and has been in use at Bloomberg since 
2001. 
3 lakos16, bleaney16, lakos17b  
4 Such bespoke data structures could use generic components customized by policies to reduce the 
effort. The decision on which policies to use, however, is either made once per class, limiting the 
ability of clients to customize allocations according to their needs, or is exposed as a template 
parameter, essentially replicating the C++11 allocator model and thus sharing its same deficiencies. 
Moreover, such policy-based generic components are themselves notoriously difficult to write, 
maintain, and test thoroughly. 
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of the development effort for the client. Despite its simplicity, this analogy offers 
considerable depth of insight into the sound microeconomic arguments for adopting 
a robust AASI at large-scale software-development companies such as Bloomberg 
(see Appendix I). 

ALTERNATIVE MODELS FOR AA SOFTWARE 
The engineering costs associated with developing, maintaining, and using AA 
components vary widely with the model. We have extensive experience implementing 
and using three distinct interface models for AA software currently employed in C++ 
today. These models differ primarily in the syntactic details by which custom 
memory-allocation logic is injected when constructing a new object. 

• C++11 model (high cost). The custom allocator’s implementation is embedded 
(at compile time) directly in the object’s type, thereby delivering the most general 
and high-performing of these allocator models. This compile-time-centric model 
guarantees zero runtime and space overheads when using the default (global) 
allocator type5 and enables the placement of objects in memory having 
nonstandard address types.6 Widespread use of this model would, however, 
severely impede client productivity. Because the allocator affects the object’s 
type, much of the code (including the application layer) would need to be 
templated, resulting in reduced maintainability due to acute compile-time 
coupling. Moreover, interoperability among subsystems using distinct allocator 
types would be suffer profoundly.7 In fact, when even a small fraction of 
subsystems requires a distinct allocator, the development and usability costs 
required to support this model are so high that many organizations (including the 
C++ Standards Committee8) will not adopt it universally. 

• BDE model (moderate cost). A pointer to an allocator base class is embedded in 
every object that might directly allocate memory, even when using the default 
allocator. Although somewhat less general than the C++11 model,9 the 
engineering effort required to manually “plumb” these polymorphic allocators 
throughout an object’s constructors is substantially reduced. Moreover, because 
polymorphic allocators do not invade their (compile-time) types, objects using 
distinct allocator types can interoperate naturally in nontemplated contexts.10 
Furthermore, this classically object-oriented model enables clients to request an 

                                       
5 Other models could be made to approach zero space overhead by encoding the default allocator as a 
single bit; doing so, however, is counter-indicated by benchmarks of typical use cases. 
6 E.g., only the C++11 model supports shared memory. 
7 E.g., a function template expecting two arguments of (exactly) the same type would fail to 
instantiate if instead passed, for example, two vectors employing different allocator types. 
8 C++11-model allocators are not currently used in every class within the Standard Library where 
allocators would be appropriate (e.g., std::path). 
9 BDE allocators do not support placement in shared memory, which is a rare and highly specific use 
case. 
10 In particular, objects employing BDE-model allocators can serve as output parameters where proxy 
objects, such as std::string_view, would be unsuitable. 
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object’s allocator (via its base-class address) without the clients themselves being 
templates. 

• PMR model (moderate cost). This model, sometimes also referred to as the 
C++17 model,11 is derived from — and behaves essentially the same as — the 
BDE model; the only (syntactic) difference is that the pointer to the polymorphic 
base class is wrapped in an object that meets the requirements of a C++11 
allocator (and hence can also serve as an adapter to C++11 code that uses 
allocators).12 Moving forward, this PMR model is expected to increasingly 
supplant the older BDE model at Bloomberg.13 

By maintaining an appropriate AA subset of our code base using any one of the 
aforementioned models, we provide essentially all the benefits typically sought from 
custom solutions at greatly reduced client effort and (depending on the model) 
greatly reduced overall engineering cost. 

PERFORMANCE BENEFITS 
Reductions in overall run times resulting from local (“arena”) memory allocation can 
manifest both during memory allocation/deallocation itself and also during access 
to allocated memory (irrespective of the manner or cost of its allocation); the 
modality of use (e.g., short-running versus long-running) will govern which aspect of 
reduced run time dominates. Unlike general-purpose global allocators, which must 
perform acceptably in all circumstances, special-purpose local allocators (such as 
monotonic allocators), where applicable, can afford unique advantages.14 

1) Allocation/Deallocation. Memory-allocation profiles vary widely across 
applications. One common pattern for short-running programs is to build up 
a data structure, access it briefly (often without modification), and then 
destroy it. In such cases, maintaining an ability to delete individual parts (as 
required of a general-purpose allocator) is unnecessarily costly in both time 
and space. In contrast, using a local monotonic allocator instead,15 for which  
deallocation is a no-op (no operation) and memory is reclaimed only when the 

                                       
11 Although C++17 supports the entire C++11 model, we sometimes use the term C++17 model as 
shorthand for the polymorphic-memory-allocator (PMR) model within C++17. 
12 halpern14, halpern17 
13 A joint management-sponsored initiative between the BDE (Bloomberg Development Environment) 
and the recently announced Bloomberg Software Engineering teams is the creation of what is being 
tentatively dubbed bde4.0. This inclusive effort — explicitly involving London and New York — is 
intended to produce a “stepping stone” that will allow us to bring the older in-house versions of 
(mostly) standard-compliant libraries in sync with modern C++ facilities, eliminating incompatibilities 
(e.g., resulting from nonstandard namespaces) and thereby facilitating easy integration with open-
source, third-party, and other standard-compliant libraries. 
14 For expert advice on how to design an effective local allocator, see weis20. 
15 Paul Williams observed (c. 2006) the first widely recognized (albeit anecdotal) evidence of the 
dramatic performance benefits afforded by monotonic allocators at Bloomberg in Bloomberg’s front 
end [lakos17b, Part I, approximately 7:28]. 
 



Page 5 of 27 

allocator is destroyed, affords significant performance benefits.16 Depending 
on the data structure, improvements of up to 5 times have been realized.17  

Another common pattern is to repeatedly allocate and deallocate memory 
blocks having a few distinct sizes (e.g., for distinct object footprints) 
throughout the lifetime of the program. Such memory-allocation profiles 
benefit from the use of a local multipool allocator, which internally manages 
dynamically growing pools of fixed-size memory chunks, caching any 
deallocated chunks for efficient reuse, with or without thread synchronization 
(see item 3). 

Each of these kinds of local allocators is a form of managed allocator, which 
supports reclaiming all memory allocated by it in a single (client-invokable) 
operation. Thus, memory blocks allocated via managed allocators need not be 
deallocated individually, and objects that manage no resources other than 
memory need not even be destroyed!18 Using this (admittedly advanced) en 
masse technique, which we will hereafter refer to as winking-out), additional 
runtime performance gains of as much as 20% have been observed.19 

2) Access Locality. To realize high runtime performance, modern computers 
organize memory hierarchically into multiple levels — L1, L2, and L3 caches, 
main memory, and secondary storage (disk or flash memory) — where each 
level of the hierarchy is typically one to four orders of magnitude slower than 
the one above it. The more densely packed the memory blocks within a 
working set,20 the less likely the program is to overflow a specific cache and 
rely on a slower layer of the memory hierarchy. Additionally, (hardware or 
software) prefetching, which heuristically anticipates the next line to be 
brought into cache or the next page to be brought into main memory, provides 
benefits only when the data items being accessed are close together in the 
address space.21 

Achieving locality (i.e., physical proximity of separately allocated memory 
blocks accessed repeatedly over a relatively short period of time) often plays 
an even greater role in reducing overall run time than does efficient 

                                       
16 BDE-model monotonic allocators were first employed at Bear Stearns (c. 1997) where they reduced 
the destruction time of complex financial-model objects from over 9 seconds to such a small time 
interval that it didn’t even show up on the IBM/Rational Quantify (formerly Pure Quantify) profiler 
[lakos17b, Part I, approximately 5:10]. 
17 bleaney16, lakos16 
18 Per the C++ Language Standard, reusing undestroyed object memory is explicitly not undefined 
behavior as long as the abandoned object never again accesses such reused memory. 
19 bleaney16, lakos16 
20 The working set of a process is the collection of information referenced by the process in a specific 
period of time [denning68]. 
21 Locality of reference [denning05] enables the processor to bring data into or to keep data in faster 
layers of the memory hierarchy when they are likely to be accessed in the immediate future 
[stallings10]. An easy-to-read (albeit less definitive) description of locality of reference can be found 
in wikipedia19. 
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allocation/deallocation of the memory itself — especially for long-running 
programs. Absent the “corralling effect” of internal memory boundaries 
afforded by local arenas, the initially high-locality memory organization of 
tightly accessed subsystems may, over time, diffuse22 across virtual memory, 
leading to performance degradation often exceeding an order of magnitude.23 
Using local memory arenas to ensure locality of reference allows us to realize 
(and to maintain throughout the lifetime of the process) the full runtime-
performance potential of the underlying hardware.24 

3) Thread Locality. Multithreaded programming introduces additional 
inefficiencies to memory allocation and access that can be mitigated using 
local allocators. Whenever a structure or set of related structures is to be used 
(i.e., created, accessed, modified, or destroyed) by only a single thread at a 
time, costly synchronization (e.g., via mutexes or atomic instructions) required 
of general-purpose allocators can be avoided through judicious use of local 
allocators. Microbenchmarks of such scenarios consistently demonstrate 
performance improvements of roughly 4 times.25 Moreover, by sequestering 
(into a separate arena) memory that is known a priori to be accessed by only a 
single thread at a time, local allocators naturally avoid accidental cache-line 
contention (also called false sharing) caused by inadvertently interleaved 
allocations of small unrelated memory blocks that might subsequently be 
accessed by distinct concurrent threads.26 

Maximizing performance, therefore, requires global knowledge of the application as 
well as a solid understanding of both when to use which kinds of allocators and how 
to do so correctly.27 

COSTS 
Two meaningfully distinct types of costs naturally form when creating and effectively 
exploiting an AASI: (1) the upfront costs to library developers of creating (and 
maintaining) an AASI, and (2) the incremental costs to application clients of 

                                       
22 Diffusion is the spreading out of related memory blocks and should not be confused with 
fragmentation, which is a phenomenon that occurs (most typically in coalescing allocators) when 
ample memory is available but not as sufficiently large contiguous blocks. 
23 bleaney16, lakos16 
24 Local arenas typically ensure that all blocks within a page have been allocated from the same 
arena. Additionally, because most local arenas are intended for use within a single thread, blocks can 
be packed tightly into contiguous cache lines without fear of creating false sharing. Indeed, multiple 
(complete or partial) blocks sharing a cache line can be beneficial in this case, as the blocks 
belonging to the arena are likely to be used together. 
25 bleaney16, lakos16 
26 In other words, when objects “travel” among threads together with their local allocator (e.g.,  
tasks dispatched to a thread pool), cross-thread synchronization, false sharing, and other needless 
pessimizations (such as padding that deliberately wastes space in local cache lines) are naturally and 
effortlessly eliminated. 
27 To learn much more about how to make effective use of local allocators in application as well as 
infrastructure development, see halpern20a. 
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exploiting (or ignoring) AA aspects of the SI. While this section details the costs as 
they exist today, an effort is underway to integrate allocators into the C++ language 
such that both the upfront and incremental costs are drastically reduced — and in 
many cases eliminated — for both the library and application development teams, 
shifting essentially all of the burden onto the compiler itself.28 

 

Upfront Costs  

The upfront costs to create an AASI include making each memory-allocating 
infrastructure class AA, e.g., by applying a scripted series of modifications to a 
previously allocator-unaware class. Such modifications typically29 amount to adding 
an optional trailing pointer-to-allocator parameter to every constructor and 
assiduously forwarding those parameters to base classes, data members, and any 
other managed subobjects as well as tagging the overall type as being AA via an 
allocator-trait metafunction.30 

• The principle upfront cost is the added maintenance burden. Making software 
AA using BDE-model allocators, albeit tedious and potentially error prone, is 
straightforward, increasing line-count by 4 to 17 percent,31 with 10 percent 
commonly recognized as typical source-code overhead. Training developers on 
how to write AA types (let alone how to test AA types properly) is 
incontrovertibly a significant upfront cost. Moreover, any time spent on 
allocator mechanics imposes a real opportunity cost on the organization as 
those same experienced software engineers become less available for other 
tasks. 
 

• The concomitant additional risk of introducing AA-related software defects is 
mitigated by the use of static-analysis tools such as bde_verify,32 which can 
alert developers to missing or misapplied transformations. A prototype of 
bde_verify that automatically transforms typical33 components to BDE-

                                       
28 An approach being considered for integrating allocators into the C++ language is described in 
meredith19. The effort to develop a compiler supporting these new features — much like the effort to 
develop self-driving cars — requires significant upfront investment yet (when finally available) will so 
dramatically lower barriers to creating and maintaining an AASI (similar to autonomously operating a 
vehicle) as to be dispositive toward this paper’s thesis. 
29 Class templates require metaprogramming in their constructors to correctly handle objects of 
dependent type that are not known to be AA until instantiation time. Container class templates must 
further add metaprogramming to their insertion methods for propagating allocators to potentially AA 
elements of dependent type. The implementation of these more difficult AA class templates is typically 
performed by standard-library suppliers or core development groups (e.g., BDE at Bloomberg) and is 
facilitated by library utilities such as those described in halpern18.  
30 To learn how to augment classes to make them AA in the BDE model, see halpern20b. 
31 This data pertains to BDE (library) source code (c. May 2017).  
32 bde_verify is a Bloomberg tool that checks code for deviations from a number of best practices 
and style guidelines, in particular ensuring that AA components are put together correctly. 
33 I.e., components that are not especially difficult, e.g., those not implementing (general-purpose) 
generic, templated, or container types. 
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model allocator awareness is available today. Enhancing bde_verify is a one-
time technological-advancement cost that, although substantial, is expected 
to substantially reduce risk along with other upfront costs. 

 

Incremental Costs  

The incremental costs for a typical client of an AASI over an allocator-unaware SI are 
relatively small. An application client that chooses to take an active role in managing 
the memory of an AASI class need merely supply the address of the desired allocator 
to the class’s constructor. Clients who elect not to partake simply ignore all mention 
of allocators and write their code as usual. 

• While the substantial net savings in development effort for application clients 
who currently exploit AA software is clear, the overall savings for all 
application developers, including the many who don’t exploit AA features 
(currently an overwhelming majority), is less so. Beyond just the initial 
upfront development costs (typically born by SI developers), making an 
infrastructure class AA enlarges its (programmatic) interface and (English) 
contract34; the additional parameters and methods required to support AA 
software impose new complexities, thereby increasing the cognitive burden on 
clients — even when they are indifferent to the benefits afforded by an AASI. 

• Naïvely or otherwise carelessly supplying local allocators will invariably lead to 
client misuse via programmer errors, some of which can be surprisingly 
subtle. An obvious (albeit infrequent) user error is for the lifetime of an object 
to be allowed to exceed that of its allocator.35 Much more commonly, however, 
a client will try to employ a special-purpose allocator that is ill-suited to their 
needs.36 For example, declaring a monotonic allocator outside of a loop and 
then using that allocator to construct an object defined within the loop’s body 
(and hence recreating that object on each iteration) might cause memory 
consumption to grow without bound. The likelihood of client misuse is 
exacerbated when a (substandard) implementation unexpectedly allocates 
temporary memory.37 Even when the misuse is not catastrophic, 

                                       
34 khlebnikov19 
35 The effect of an object outliving its local allocator is similar to that of returning (from a function) a 
“dangling” pointer (to an automatic variable). When using the scoped allocator model [halpern08, pp. 
2–6], however, a local allocator is typically created on the program stack just prior to creating the 
object (or objects) consuming memory from that allocator. Hence, when using this common idiom, the 
C++ language itself automatically guarantees that the lifetime of the allocator spans that of all such 
objects that depend on it. 
36That monotonic allocators necessarily consume excessive memory when used with containers, such 
as std::vector and std::string, that grow geometrically is a popular misconception; the 
consumption of memory for such a container when coupled with a monotonic allocator is in fact 
always just a constant factor larger (i.e., similar in magnitude to that of a single extra reallocation). 
37An especially insidious case of this sort of inadvertent “misuse” involved assignment between two 
BitArray objects within a loop. Assuming two BitArray objects hold the same number of bits, no 
reallocation is needed. As a development expedient, however, it is not uncommon to use the idiom of 
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misapplication of AA technology can easily increase both development and 
maintenance costs without improving runtime performance. 

• Making C++ types AA sometimes comes at the price of incompatibility with C++ 
language features, inhibiting the programmer’s ability to use some of the more 
modern features of the C++ language.38 For example, creating AA types 
requires additional consideration during construction and assignment and 
therefore cannot currently take advantage of compiler-generated constructors 
or assignment operators (a problem exacerbated in C++11 by rvalue 
overloads), nor can such types be constructed using aggregate initialization.  

• To properly dispose of the memory used by an AA object, the lifetime of the 
object must not exceed the lifetime of its allocator. This lifetime management 
not only requires additional care from the developer, but also limits allocator 
applicability when using standard-library facilities that manage object 
lifetimes, such as shared_ptr and weak_ptr, since they neither track nor 
extend allocator lifetime. This cost, though non-zero, is typically less than the 
cost of avoiding dangling pointers or references in general because the normal 
structure of a program that uses local allocators is such that an allocator and 
the objects that use it are created and destroyed in a nested fashion within 
the same scope. Preventing dangling allocators when using shared_ptr is 
simply a matter of using the default allocator or, better, designing the program 
well enough that the maximum scope of the shared objects is well understood. 

• Using allocators effectively in large industrial settings will of necessity incur 
significant administrative costs in education, tools, and governance. Code 
reviews, proper training, and allocator-use policies are essential costs that 
must be borne by any organization hoping to realize the full advantage 
afforded by an AASI. Investment in static-analysis tools (such as bde_verify) 
that detect erroneous or unwise allocator use (such as objects that outlive 
their allocators or a monotonic allocator servicing objects created repeatedly 
within a loop) are essential to reducing the burden on client programmers and 
to improving the robustness of the application codebase in their charge.  

 

Despite all these very real and substantial upfront and incremental costs, a credible 
value proposition remains. 

                                       
always first creating a temporary object (using the original object’s allocator) to build the result before 
swapping it with the object being assigned to (thereby automatically establishing the strong-
exception-safety guarantee). The combination of such low QoI (Quality of Implementation) and an 
unrealized (though not unrealistic) expectation on the part of the caller led eventually to memory 
exhaustion (thereby forcing process termination). See halpern20a and halpern20b. 
38 The erroneous conjecture that allocators do not interact well with modern C++’s move semantics is, 
however, debunked in the “Common (But Unfounded) Concerns” section of this paper. 
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COLLATERAL BENEFITS 
If the aforementioned performance benefits alone were insufficient to justify the 
added costs associated with AA types, consider that several important collateral ones 
— not necessarily related to performance — go well beyond what even fully custom 
data structures can provide.39 

Rapid prototyping and enhanced predictability. Maintaining a hierarchically 
reusable40 AASI (along with a set of useful predefined allocators) encourages 
proactive experimentation. One could posit, for example, that a particular allocation 
strategy should yield an order-of-magnitude performance boost for a given 
subsystem. Having an AASI makes it easy for a developer to quickly inject into the 
subsystem a (typically off-the-shelf) allocator implementing the identified strategy.41 
If this quick-and-dirty experiment fails to produce the anticipated gains, the 
allocator can just as easily be removed or replaced by a different one. Such 
pragmatically valuable experimentation would be exorbitantly expensive if it 
required modifying a custom data structure with a hard-coded allocation strategy. 
Moreover, the business value of readily determining if (and to what extent) one or 
another custom allocation strategy would be beneficial should not be 
underestimated: Such prototyping removes much of the guesswork — and therefore 
the risk — associated with estimating the true effort needed to develop a product. 

Modularity and composition (reuse). BDE/PMR allocators are typically chainable, 
i.e., one allocator provides some memory-management functionality and goes to 
another backing allocator when additional memory is needed. Chaining allows 
specialized allocators to be readily combined in myriad useful ways. For example, it 
is trivially easy to layer an allocation strategy that excels at allocating many small 
equal-sized blocks on top of one that is tuned for arbitrarily large ones. Moreover, 
chaining can incorporate various forms of instrumentation, e.g., for testing, metrics 
gathering, and monitoring. 

Testing and instrumentation. A test allocator42 can be an indispensable tool for 
ensuring the correctness of AA types. A bslma::TestAllocator,43 for example, can 
be used to log memory-management-related activity, match deallocation with known 
allocations, check for memory leaks, or confirm exception safety, e.g., by throwing 
bsl::bad_alloc exceptions at strategic points in test scenarios. Using the allocator 

                                       
39Changing the allocate/deallocate code path has been awkward due to its heretofore global nature. 
Some of the additional benefits of AA derive directly from the runtime polymorphism afforded by the 
BDE/PMR model, which enable an object’s owner to inject arbitrary logic into this vital code path 

without having to restructure or even recompile the code that uses those objects. 
40 lakos20, section 0.4 
41 halpern20a 
42Since Lakos (employed at the time by the F.A.S.T. group at Bear Stearns & Co., Inc.) first conceived 
(c. 1997) of the BDE-model test allocators, they have caught innumerable memory- and exception-
related bugs early in the software development life cycle. 
43A proposal for a PMR-model test allocator — based on our bslma::TestAllocator — has been 
submitted for consideration as part of the C++ Standard Library [feher18]. 
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interface also makes possible the adding of instrumentation for debugging (e.g., 
detecting leaks or logging allocations), gathering metrics, and discovering the usage 
patterns needed to tune memory allocators in production systems.44 Although off-
the-shelf tools can be used to profile running programs, such external tools are 
often too heavyweight for use in production and are invariably incapable of providing 
object-specific information. The plug-in nature of polymorphic allocators, however, 
makes using an instrumented allocator straightforward and practical in every 
conceivable context, from the smallest of unit tests to the largest of production 
programs.   

Whole-object placement and garbage collection. Allocators enable client control 
over the placement of (entire) objects in special types of memory with relative ease. 
One can readily arrange for objects to reside in high-bandwidth memory, memory 
that is hardware protected (no read and/or write access), or persistent or file-
mapped (mmap) memory.45 The same wink-out mechanism typically used to avoid 
calling individual destructors on a collection of AA objects can also be used for non-
performance-related purposes, such as a form of garbage collection: An entire set of 
objects having related lifetimes can be reclaimed at once by releasing them from a 
managed allocator, even when some of the objects are no longer referenceable. In 
contrast, consider a temporary graph of interconnected nodes that uses shared_ptr 
and weak_ptr to represent the edges of a graph such that deleting a key node 
causes the smart pointers to delete all of the connected nodes in a recursive 
destructor cascade. Using raw pointers to represent the graph’s edges, allocating 
graph nodes from an arena allocator, and disposing of the entire graph at once 
simply by destroying the allocator would be simpler, less error prone, and far more 
efficient.46 

Pluggable customization. The utility of allocators for obtaining both performance 
and nonperformance benefits is open-ended. These benefits depend largely (albeit 
indirectly) on the ability to plug new allocators into existing infrastructure at run 
time, though many of the benefits remain available (in whole or in part) when using 

                                       
44The ubiquitous BDE-model AASI at Bloomberg was leveraged particularly effectively by what is 
known as the tagged allocator store (TAS), a framework Brock Peabody invented at Bloomberg (c. 
2011) to track memory usage within individual instances of subsystems of a running application. In 
addition to bslma::Allocator, the custom allocator (which was also inherited from 
gtkma::AllocatorStore) allowed client objects that were aware of the possibility of such 
instrumentation to attempt a lateral dynamic_cast. If the cast succeed, client objects could use the 
alternate interface to report their subsystem memory usage on a per-object basis. These fine-grained 
per-object metrics (compared to typical static, scoped, or type-based ones) readily enabled real-time, 
at-scale monitoring of individual production subsystem instances that might potentially be overusing 
memory. The conspicuously successful TAS framework remains in active production use today 
[halpern20a; halpern20b].  
45 BDE-model allocators were a natural fit with Bloomberg’s home-grown approach to saving/sharing 
(identical) process state on disk via saverange on fnch memory using the GmallocAllocator, which 
implements the bslma::Allocator protocol [lakos17b, Part I, approximately 6:40]. 
46A recursive destructor cascade resulting from smart pointers is not typically tail recursive and is 
hence susceptible to program-stack overflow; the wink-out approach, however, is always safe. 
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even C++11-model allocators. Absent an AA infrastructure, realizing even a fraction 
of these benefits would require a prohibitively large expenditure of effort, especially 
when it involves modifying custom data structures. In particular, bespoke data 
structures lack the seamless interoperability necessary to be practicable at scale. 

COMMON (BUT UNFOUNDED) CONCERNS 
Those new to BDE/PMR-model memory allocators might (understandably) be 
skeptical of adopting a ubiquitous AASI compared with other less invasive and more 
targeted approaches that claim similar performance gains. 

  

State-of-the-Art Global Allocators 

Advances in global memory allocators47 have led to dramatic performance 
improvements, especially with respect to real-world multithreaded applications.48,49 
Wouldn’t replacing the compiler-supplied global memory allocator with a newer, state-
of-the-art allocator achieve most (if not all) of the real benefits derived from assiduous 
use of local allocators designed into a program?  

The short answer is no.50 The design of every general-purpose allocator is still driven 
by the assumptions regarding specific runtime patterns; tcmalloc,51 for example, is 
optimized for multithreaded programs where the allocation pattern within each 
thread is not known in advance and allocations from one thread might be freed from 
another. Moreover, a global allocator that is linked as part of a library cannot 
significantly influence code generation, e.g., by reserving (automatic) storage on the 
program stack. In contrast, local allocators chosen for a specific usage pattern (e.g., 
many same-size allocations, single-threaded, or all-at-once teardown) that is known 
in advance to the application programmer can both avoid pessimistic assumptions 
and obviate runtime analysis. What’s more, even when a global allocator would 
provide adequate performance, it would provide none of the collateral benefits 
afforded by an AASI.  

Zero-Overhead-Principle Compliance 

For all but the C++11 model, AA objects require maintaining extra state, even for the 
most common case (i.e., where the default allocator is used), and necessarily employ 
virtual-function dispatch when allocating and deallocating memory. Don’t these 
overheads violate the zero-overhead principle? 

                                       
47 E.g., since the seminal coalescing memory-allocation strategy proposed by Doug Lea in the late 
1980s [lea89]. 
48 Examples of smart multithreading global allocators are tcmalloc [ghemawat07], ptmalloc, Hoard 
[berger00], and jemalloc [evans02]. Each has applications at which they excel and situations in 
which they are less adept, although our informal testing shows that jemalloc is slightly better than 
the others as a general-purpose choice. For optimal performance, these allocators should be tested 
and compared using your specific application. 
49 berger02 
50 lakos16, Section 2, p. 4; bleaney16; lakos17b 
51 ghemawat07 
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Not at all. The parts of a program that do not make use of AASI components do not 
pay even the demonstrably small cost for extra allocator state or virtual function 
calls. Therefore, having an AASI available does not violate the zero-overhead 
principle (ZOP) any more than would, say, providing a class having virtual functions. 

This concern is misguided based on two separate aspects: object size and run time. 

1) The overall object-size overhead that typically (but not necessarily) results 
when employing the underlying allocation model need not necessarily increase 
object footprint size. Some or all of it (and potentially even other object state 
that would normally reside in the footprint) may be relocated to the 
dynamically allocated memory itself.52,53 This relocation, however, is always 
subject to a space/time tradeoff, and such compressed-footprint 
implementations are rarely found in highly tuned code because performance 
measurements seldom favor them.54 
 

2) Runtime overhead due to virtual dispatch is (perhaps counterintuitively) all 
but nonexistent. With simple, short-lived, allocate-use-deallocate patterns 
(where the overhead would matter most), the client’s compiler typically has 
full (source-level) visibility into the implementations of both the container and 
the allocation functionality being injected and is therefore able to devirtualize 
the calls, eliminating entirely any runtime cost of virtual dispatch.55,56 
Conversely, locality (or lack thereof) typically dominates runtime performance 
for longer-running processes, irrespective of any allocation/deallocation 
suboptimality (e.g., due to virtual dispatch).57  
  

                                       
52 On older Sun platforms supporting natural alignment [lakos96, Section 10.1.1, “Natural 
Alignment,” pp. 662–665], for example, the footprint of an std::vector consisted of just a single 
word (e.g., four bytes) unless the sizeof the contained element was 1, in which case the template 
was specialized to yield two words instead of one. This design tradeoff favors compactness for the 
empty vector and therefore immense performance gains for sparse matrices (i.e., vectors of vectors) 
but at the expense of (more typical) nonsparse ones. 
53 Consider that general-purpose allocators commonly prepend small amounts of bookkeeping 
storage just below the (starting) address of the returned memory; storing the address of the allocator 
itself there is no different.  
54 For example, a too-clever-by-half design for short-string optimization (SSO) was conceived of 
separately by Lakos and Alexandrescu c. 2000 (see, e.g., alexandrescu04). Using this design, the last 
byte in the SSO buffer was intended to hold the bookkeeping state in such a way that it would 
become 0 (and hence dually serve as the terminating null character) for a maximally long string 
fitting into the footprint. This design is not used in BDE today because it was measured to be 
significantly slower for its intended clients than a more horizontal (less space-efficient) encoding. 
55 lakos16, Section 7, pp. 12–28; bleaney16 
56 As a demonstration of devirtualization [halpern19], we defined a simple string-like class that uses 
a BDE-model allocator, and we observed that the compiler inlines the allocate and deallocate 
calls rather than invoking them through the vtbl. Some current compilers, however, surprisingly fail 
to devirtualize nearly identical code that uses a pmr::polymorphic_allocator, which simply wraps 
a pointer to pmr::memory_resource. 
57 lakos16, Section 8, pp. 28–47; bleaney16 
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As a source of design guidance, the ZOP is less useful for library features than for 
language features. As SI developers, we often make practical performance-related 
choices and tradeoffs during library design.  

1) An example of a tradeoff that offers benefits to some with (essentially) no cost 
for any (i.e., a “Pareto-optimal” performance improvement, which would not 
actually be a tradeoff) is the replacement of an O(N) algorithm with an O(log N) 
one for cases invariably involving only sufficiently large values of N. 

2) An example of solid benefits for some but at a small cost to many or all is the 
Standard’s requirement that std::list<T>::size() be O(1), which 
effectively mandates a larger footprint size for all such list objects.  

3) And lastly, an example of a stark performance tradeoff, having benefits for the 
expected case, with significant cost for less-typical cases, is short-string (aka 
small-string) optimization (SSO). The increased footprint of a string that 
supports SSO is wasteful for strings that are either empty or too large to fit in 
the short-string buffer. Nevertheless, the benefit for the typical or expected 
case is so large that the specification for std::string was designed to permit 
implementation using SSO, and all major library vendors do so. 

In addition to pure performance tradeoffs, we sometimes make design choices that 
trade off functionality for ease of use. An example of a design tradeoff heavily 
favoring functionality over ease of use is that of the C++11 allocator model. In 
addition to always guaranteeing absolutely zero runtime and space overhead when 
using global allocators, the C++11 allocator model is maximally general (e.g., enough 
so to support allocating even shared memory) but is also considered all but 
unusable for most programmers. On the other hand, a BDE/PMR-based AASI, 
which restricts usage to just conventional memory addresses, is an example of 
making this tradeoff in the opposite direction: A few hearty souls will fend for 
themselves, so that all can thrive. 

In addition to deliberately excluding some forms of alternative (e.g., shared) memory, 
BDE/PMR-based AASI also makes another tradeoff: The cost of maintaining an 
extra allocator pointer (the so-called “allocator tax”) is similar to mandating that 
everyone purchase automobile insurance, a modest cost required of all drivers so 
that funds are available in case of accident. Keep in mind that this runtime 
overhead where no special allocator is needed is typically negligible — e.g., 
compared with that of, say, SSO. 

Developing highly performant (hierarchically) reusable libraries requires 
performance tradeoffs that necessarily impose some degree of undesirable costs on 
some class of potential users. Would a library that is not somehow AA be considered 
to violate the ZOP because it imposes the cost of global (suboptimal, untunable) 
memory allocation on all users of that library? By that metric, every reusable library 
would violate ZOP, which is clearly an absurd assertion! We maintain that the 
tradeoff favoring a BDE/PMR-model AASI over either a C++11-model AASI or no 
AASI at all is sound.  
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Verification/Testing Complexity  

Failure to properly annotate types or propagate allocators can undermine the 
effectiveness of the allocation strategy and can lead to memory leaks, especially when 
winking-out memory. Aren’t extensive verification, testing, and/or peer review 
required to avoid such errors? 

Use of virtually any new C++ library or language feature adds some amount of 
testing burden for the client. Use of allocators is entirely opt-in; client developers 
unconcerned with employing alternative allocators can simply ignore any optional 
allocator arguments and use the currently installed default allocator automatically, 
thus requiring no change to verification or testing methodology. Winking-out 
memory — with or without invoking destructors — is admittedly a powerful and 
potentially dangerous technique; like many other expert-level C++ features, engineer 
training and discipline will be essential to avoid inadvertently misapplying it. 

Compared to other, more irregular techniques, correct use of allocators with a 
consistent AASI can, precisely because of their regularity, be more readily checked 
at compile time via static-analysis tools, such as bde_verify, or at run time (in test 
drivers) using, for example, bslma::TestAllocator. On the client side, quotidian 
use of bde_verify can prevent common errors, such as returning an object 
constructed using a local allocator on the program stack or repeated use of the same 
monotonic allocator from within a loop. Thus, BDE-model allocators can, in 
practice, be substantially less error prone than many other, less regular forms of 
custom memory allocation. 

Compatibility with Modern C++ Style 

C++11 encourages a style of programming where objects are more often passed and 
returned by value, sometimes relying on rvalue references to move these objects 
efficiently. In contrast, BDE style relies on passing AA objects (by address) as 
arguments to achieve optimal efficiency and control over the allocator employed. 

Whether or not an object returned from a function is AA has absolutely no effect on 
the effectiveness or advisability of passing and returning objects by value.  

Employing solely the return-by-value style significantly impedes performance in 
cases where a function returning an allocating object is used repeatedly, regardless 
of whether allocator customization is desired.58 For example, if a function returning 
a vector by value is called in a loop, then that vector object must necessarily be 
created and destroyed on each iteration, thus obviating any possibility of object 
pooling (an oft touted “alternative” to AA software, see “Compared to non-AA 
Alternatives,” below). 

By contrast, if the address of the resulting object is passed into the function as a 
modifiable argument, internal memory will typically be allocated during the first call 

                                       
58 For exactly this reason, the BDE style guidelines discourage returning objects (by value) that 
allocate memory (irrespective of whether or not it is AA). 
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to the function, occasionally grow (when necessary) during subsequent calls up to 
some high-water mark, and be repeatedly reused thereafter.   

Entirely separately, to support non-default allocators, the function should accept 
the would-be returned AA object as a pointer parameter (return-by-argument) so that 
the caller can construct (using the desired local allocator) the object that is to hold 
the result. A return-by-value–style interface (if desired for clients who are content 
with using default allocators) can then be built on top of an underlying pass-by-
argument interface (but not vice versa).59 

Move vs. Allocate 

When two objects use different allocators, move assignment degenerates to a copy 
operation and swap has undefined behavior; doesn’t that imply that local allocators 
should be avoided to enable such operations? 

On the contrary, because the time to access memory often overshadows the time 
needed to allocate and deallocate it,60 copies commonly provide better overall 
runtime performance than moves61 — particularly in large, long-running systems 
where smaller, densely packed subclusters of data are accessed (repeatedly) in 
bursts. Modern computer architectures exploit such locality to improve runtime 
performance62; indiscriminate use of move operations tends to degrade performance 
by reducing locality of reference.63 

When the current working set is sufficiently small (e.g., it can fit into main memory 
or perhaps even cache), the overhead due to diffusion is far less pronounced and 
might well favor moves over copies as is typically the case within a single container. 
If the entire program is sufficiently small, a single, global allocator — possibly even 
the default one64 — will usually suffice. Conversely, when the working set is too 
large to fit within a specific level of the memory hierarchy (e.g., L1 cache, L3 cache, 
or main memory), the loss in performance (due to loss of temporal locality and 
thrashing) will invariably overwhelm any runtime overhead of copying data into a 
local arena.65 Moreover, if the objects being accessed are smaller than an atomically 

                                       
59 Having both styles colocated within the same scope, however, would needlessly clutter the interface 
for both sets of clients and would impose on clients of the lower-level interface an unnecessary 
physical dependency on the higher-level interface. 
60 lakos16, bleaney16 
61 halpern20d 
62 See Item 2, “Access Locality,” in the “Performance Benefits” section of this paper. 
63 E.g., when the (overall) system size exceeded L3 cache size, one benchmark using move performed 
only one third as fast as the same program using copy [halpern20d]. When system size approached 
twice the size of physical memory, the move version was only one tenth as fast. 
64 Note that a performance improvement of roughly 4 times was observed [lakos16, Section 10, pp. 
53–57] using an unsynchronized local multipool allocator compared to the default global one. 
65 A recent test of moves and copies [halpern20d] conducted at Bloomberg showed a 1.5 to 2.5 times 
speedup of copy over move for data sets from 4MB to 32MB with either a large number of small 
subsystems or a small number of large subsystems when each element was accessed 512 to 8096 
times. The root cause of this effect is not yet fully understood, but hardware prefetching is suspected 
to have played a role in speeding up access to elements stored close together in physical memory. 
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fetched block of memory, such as a cache line or (more commonly) a page, then a 
significant speed-up (due to spatial locality and constructive interference) occurs 
when objects that are used together share a common block (irrespective of any 
specific access pattern or prefetching algorithms).66 

The BDE/PMR allocator model directly facilitates optimizing moves (and swaps) by 
copying data when it is most likely to be beneficial to performance and eliminating 
copies otherwise. In particular, because a container using the BDE/PMR model 
propagates its allocator to each of its contained elements, moves within such a 
container (e.g., during insert, delete, or sorting operations) never degenerate to 
copies and swaps remain O(1).67 If different subsystems (i.e., architecturally 
significant subregions of a program having independent access patterns) use 
different allocators (as they typically should), logical move operations across 
subsystems result in data being physically copied, thus preserving locality within 
each subsystem, whereas moves within an arena (where locality already exists) do 
degrade to copies. 

Because access time rather than move/copy time typically dominates runtime 
performance for large systems, programmers must manufacture a domain of locality 
for each subsystem. This need for locality, achieved via local (arena) memory 
allocation, naturally takes precedence over preferring moves to copies.  

Compared to Non-AA Alternatives 

Object pools and factories serve to reduce overhead caused by allocating memory, so 
why aren’t these other approaches good (if not better) alternatives to allocators? 

First, while these other more specialized (perhaps more familiar) higher-level 
techniques serve a valuable purpose, they are not a general substitute for fine-
grained, articulate memory allocation. Where applicable, object pools avoid creating 
and destroying objects across disparate uses, thereby also reducing the frequency 
with which individual piece parts are allocated. Object pools and associated factories 
are often ideal for application-level purposes. For innumerable other purposes, 
however — e.g., implementing contiguous-storage containers, such as std::vector 
or std::deque — they are simply not applicable. Moreover, their utility in programs 
having high utilization (U) of the type being pooled would be dubious.68 

                                       
66 Given a sufficiently large L3 cache, the entire working set (in terms of cache lines) would 
theoretically fit in L3 and yet (due to pathological diffusion throughout virtual memory pages) fail to 
fit within physical memory, thereby resulting in page thrashing. 
67 When swapping individual objects that might not share a common allocator, however, using 
alternative (e.g., > O(1) and/or potentially throwing) swap routines that do not require allocator 
equality is appropriate. As with move, such an alternative swap would make full copies of the objects 
being swapped if and only if their allocators do not compare equal, i.e., exactly those circumstances 
where copying elements is likely to be preferred over simply swapping pointers. 
68 Memory utilization and its effects on performance are described in detail at 55:15 in Part I of 
lakos17b. See also lakos16 and bleaney16. 
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Second, even when these more specialized techniques are applicable, they are never 
significantly faster and often are less performant than the standard pieces of a well-
designed and well-implemented AASI. Unlike AA containers, ad hoc containers that 
are specialized to use these techniques are not ubiquitously interoperable and do 
not scale as well to large code bases. Other than where having such higher-level 
specialized constructs offers clear usability gains,69 the development (e.g., training) 
overhead of maintaining multiple ways of accomplishing the same task is reason 
enough to generally avoid them.  

Third, when object pools and factories are a good fit, they are most appropriately 
built on top of hierarchically reusable AASI components, such as an adaptive 
memory pool (which, of course, is naturally AA already). Given that the hard work 
has already been done, the object pool would naturally be AA as well. A factory or 
object pool that does not use a (plug-in) allocator is, in effect, doing the job of both 
the pool and the allocator, thus gratuitously reducing the modularity of the 
software. 

Finally, even when these alternative approaches are the right answer, unless they 
themselves are AA, they forfeit all the collateral benefits of an AASI and are therefore 
hardly better — and often significantly slower — than their fully custom 
counterparts. 

CONCLUSION 
Custom memory-allocation strategies imbued in C++ software can have tremendous 
beneficial impact, principally in the form of enhanced runtime performance but also 
in flexible object placement, instrumentation, and so on. Historically, however, 
application clients have realized these various benefits only through use of custom 
data structures at truly exorbitant development and maintenance costs. 

Whether to make use of custom memory allocation is an economic decision that 
affects both the developer making the decision and the business as a whole. When 
an application developer determines that the benefits of employing custom memory 
allocation outweigh the costs, then such custom allocation is indicated. Thus, more 
software will reap the benefits of custom memory allocation if the costs — both real 
and perceived — are kept low. 

In this paper, we proposed having an (appropriately) AASI as an alternative way for 
application developers to realize nearly the same advantages of fully customized 
memory management but at a tiny fraction of the client cost. Furthermore, having 
such AASI in place affords less-needful clients these very same advantages with 
minimal added effort.  

Supporting an enterprise-wide AASI does introduce associated fixed engineering 
costs. These extra costs are borne largely by SI developers, but they also result from 
added operational overhead (e.g., developer-facing tools, training, and 

                                       
69 E.g., object pools used in long-running programs in which complex objects are routinely recycled to 
avoid the (gratuitous) runtime cost of repeatedly destroying and then recreating them. 
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documentation) and/or added risk due to accidental (client) misuse. Other concerns 
might call into question the desirability of having AASI at all. When looking at the 
BDE and PMR models, however, these understandable objections (and other, less 
well-reasoned ones) are readily dispatched by real-world experience and empirical 
data. 

When all of the costs of having an AASI are weighed against its demonstrated 
benefits, one might reverse the question and ask, “Can we afford not to invest in an 
AASI?” By committing to maintaining an appropriate AA subset of our code base 
now, we stand to gain most of the benefits otherwise possible only through custom 
client solutions, while improving application-development time, interoperability, and 
stability. We hope to do better though; in the future, we can eliminate virtually all of 
the fixed SI costs by promoting our language-based solution and bringing it to 
fruition by investing in compiler development via the BB20V initiative70. Investing in 
such compiler development — just like investing in the development of self-driving 
cars — will dramatically reduce the effort required from infrastructure developers to 
make software AA while improving both the quality and the performance of the 
resulting components. 

                                       
70 Conceived by John Lakos in early 2018, Bloomberg’s 2020 Vision (BB20V) initiative [lakos18] is 
jointly supported by Bloomberg’s Chief Technology Officer and its engineering services. BB20V 
includes a focused effort to bring C++23-like compiler technology (e.g., via GCC and Clang) to 
Bloomberg well before some features are part of the official C++ Standard through proactive 
development and deployment (at scale) of four specifically targeted business-critical features, namely 
concepts [sutton17, romeo18], contracts [dosreis16, berne18a, berne18b, berne19], modules 
[lakos17a, burgers19, dosreis15], and allocators [halpern20c]. 
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APPENDIX I: LIKENING AA SOFTWARE TO AIRLINE BUSINESS CLASS 
The economic advantages afforded by AA software are in many ways analogous to 
the extra classes of seats available from modern airlines. Before the late 1970s,71 
airlines offered just two classes of service: Economy (also called Coach) and First 
Class. Given differentiated levels of service, clients in two distinct categories might 
individually derive increased benefit over access to just a single seat class, thereby 
improving the potential profit margin for the airline itself. First Class offered 
maximal comfort and flexibility but at a price few could afford. Economy provided 
basic service and functionality for those who could not afford the cost of First Class, 
but those customers might appreciate First-Class–level service were it less 
expensive. 

Software that allocates memory could have analogous categories. First Class would 
be custom data structures, which offer maximal performance and flexibility 
managing memory for the few clients who can justify such exorbitant engineering 
costs. Economy would provide new and delete only, i.e., basic memory 
management for those clients who cannot justify writing custom data structures 
themselves though they might appreciate the added benefits such customizations (or 
suitable alternatives) offer were they able to afford them.  

To further maximize customer satisfaction and their own profit,72 airlines 
subsequently introduced two additional classes of service that compete directly with 
their respective classical counterparts. Business Class offers most of the comfort 
and flexibility of First Class at a fraction of the cost, and Premium Economy 
provides more comfort than Economy at a small additional cost. 

The relationships among the new seating categories and the analogous category for 
software memory allocation are summarized in the table below. For software that 
allocates memory dynamically, our proposed AASI offers an analogous category that 
combines the two new classes of seats. Like airline-seat categories, this middle AASI 
will draw customers from both extremes: new/delete and full-custom. Projects that 
might never have been considered for custom memory management now have 
another option because the incremental cost (to clients) of exploiting available AA 
types (i.e., by supplying preexisting specialized memory allocators to AA objects) is 
small, just like the cost difference between Economy and Premium Economy. 
Similarly, developers, pressed by performance or other requirements into creating 
custom data structures, may rejoice in simplifying their development efforts with 
easy-to-implement, component-based AA solutions (our Business Class service) that 
effectively address their typical requirements far more economically than any 
custom (First Class) alternative. 

                                       
71 brancatelli12  
72 price discrimination in microeconomics 
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Seat Cost/Benefit Analogous Meaning 
   

Economy Minimal cost but little (if any) flexibility Creating/using allocator-unaware objects 
   

Premium 
Economy 

Costs slightly more than Economy yet 
affords substantially increased flexibility  

Creating/using AA software rather than 
(classical) allocator-unaware objects 
a 

Business 
Class 

Costs far less than First Class yet affords 
nearly everything one might reasonably want 

Creating/using AA software rather than 
(classical) bespoke data structures 

   
First 
Class 

As good as it gets but prohibitively 
expensive 

Creating/using bespoke data structures 

  
Just as Business Class greatly lowers the cost for some would-be First-Class 
customers and Premium Economy lures less indulgent (yet discerning) Economy 
customers, making an appropriate subset of our software infrastructure allocator-
aware would provide essentially all the benefits typically sought from custom 
solutions at greatly reduced developer costs (depending on the model73), thereby 
impacting both the new/delete and full-custom classical software-client categories. 

Technical Details (for the Mathematically Inclined) 

The figure below illustrates the economic picture as an AASI is made available to 
client developers. Along the x-axis is a curated set of client components, sorted in 
increasing order (depicted by the heavy dotted line) of the perceived value derived 
from having that component support the best possible local memory management. 
Components at the extreme left of the graph would derive little or no benefit from 
supplying a custom allocator (no matter how easy providing one would be), and 
components on the extreme right simply cannot fulfill their purpose absent 
handcrafted, custom-tuned memory allocation. In between these extremes lies a 
unique threshold percentile a, at which the perceived marginal value of 
customization first exceeds its marginal cost and rational and capable clients 
(absent an AASI) would theoretically be indifferent to creating customized, memory-
management data structures.74 

                                       
73 Although all of the allocator models are significantly less costly for clients than custom data 
structures, the C++11 model is still difficult to use and prohibitively expensive for SI implementers. 
The BDE and PMR models are much less costly for clients and SI implementers alike. 
74 A variant of this graph, with thorough narration, appears in lakos19 starting at 4:50.  
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Once we introduce an AASI, two other important percentiles on the x-axis 
materialize. To the left of a is a percentile, a-, below which the perceived (net) 
marginal value of exploiting an AASI is considered insignificant. To the left of a-, 
(Economy) clients wisely continue to avoid supplying custom allocators and hence 
derive no benefit from the new AASI. To the right of a is a percentile a+, above which 
(First-Class) clients will choose to write their own custom data structures, regardless 
of any reusable AASI alternative, and hence they too will gain no benefit from our 
new AASI. 

Introducing an AASI adds value enjoyed by clients in the percentile range (a-, a+) 
who actively choose to exploit the AA aspects. The light gray block in the range (a, 
a+) shows the consistently significant potential cost savings over providing full-
custom solutions and retains almost the same derived value.75 (Compare this case to 
the cost savings of choosing Business Class rather than First Class.) The dark gray 
area under the potential-value curve in the range (a-, a+) shows the varying 
increased value derived from clients choosing to readily pass existing allocators into 
our new AASI compared to willfully choosing not to do so at almost the same client 

                                       
75 Note that the relative heights of the cost and value curves shown in the graph are irrelevant 
because they are measured on separate vertical axes (having distinct units that are not even directly 
comparable). Moreover, this graph is not to scale (the vertical axes are not even labeled) because 
value and cost can be evaluated and traded off in myriad ways. What’s more, the actual client 
development costs will vary substantially, depending on which allocator model is chosen (C++11 or 
BDE/PMR). 
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development costs.76 (Compare this case to the increased value of choosing Premium 
Economy over Economy). 

With the new AASI in place, client components naturally group into three distinct 
categories characterized by the solid, step-shaped gray line (increasing left-to-right) 
depicting (1) making do without flexible memory allocation (Economy class), (2) 
economically exploiting AASI (Business and Premium Economy classes), and (3) 
writing very expensive custom data structures (First Class). Category (1) is smaller 
than Classic Economy because the incremental cost of achieving near first-class 
value is sufficiently reduced by our new AASI such that a non-negligible proportion 
of Classic-Economy clients will appreciate the value proposition and opt into 
category (2). We assert that category (3) is tiny compared to Classic First Class 
because only those components having truly extreme performance requirements or 
those in need of special memory addressing (e.g., shared memory, proxies) would 
remain. Ideally, all client components that would naturally fall into category (2) 
would actively exploit AASI by providing (typically) pre-existing custom allocators as 
appropriate. 

 
Appendix Summary 

We assert that virtually all reasonable clients who, absent an AASI, would have 
chosen to write their own data structures would now instead opt for a readily 
available AASI (or at least use it for initial prototyping). On the other hand, we 
cannot know just how many Classic-Economy clients would voluntarily choose to 
exploit an AASI if they themselves did not perceive the need for the added efficiency. 
For this latter type of client, the benefit of passing in custom allocators becomes 
defuse (“It saves the company money on hardware with slightly more effort on my 
part”) rather than immediate (“I need a high level of performance, flexibility of 
placement, instrumentation, and so on for my project to succeed!”). Hence, any 
active use of an AASI becomes altruistic. We suspect that the extent of such use of 
local allocators by otherwise Classic-Economy clients would be heavily influenced by 
(1) the client’s ease-of-use of the particular allocator model employed and (2) the 
sophistication and training of clients, where training might need to involve 
inculcating a certain culture of altruism. 

So far, we have discussed cost/benefit entirely from the application clients’ 
perspective. To support this new class of AA service, significant additional (albeit 
comparatively fixed) per-library-component development and maintenance costs 
would be borne by SI developers (analogous to that for an airline) but, unlike the 
airline industry, a large-scale software company (such as Bloomberg) comprises 

                                       
76 Also note that the cost of developing the AASI itself is not pictured in the graph. This image is 
intended to suggest qualitatively the enormous potential value and relatively small incremental cost 
for application clients’ using a company-provided AA infrastructure once those fixed costs have been 
paid compared to ongoing (marginal) client costs associated with developing custom data structures 
ad hoc. 
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both SI along with its own application clients; hence, the company as a whole 
benefits directly whenever its SI customers are more productive. To reduce per-
component costs for SI and clients alike, we need to invest heavily in new compiler 
technology that might someday automate the task of creating AA components.77 
Bloomberg’s bde_verify tool already supports an approximation of what will 
eventually become an ultra-efficient, language-supported model for realizing AA 
software at essentially no additional cost over a (classical) allocator-unaware SI, 
thereby eliminating any plausible argument against supporting ubiquitous control 
over fine-grained memory management throughout any library software from which 
clients might eventually benefit.	  

                                       
77 Cars (like C++20 compilers in our analogy) enable a licensed driver (experienced programmer) to 
get to a desired destination (efficient application-specific custom memory management). Yet, with 
each new journey, the car’s owner (company comprising application and library developers) must 
bear a substantial ongoing and recurring opportunity cost: Either the owner (an application 
developer) must personally drive the car (write bespoke data structures) or pay a chauffeur (a library 
developer) to drive the car (make each SI component AA). Though still unproven, self-driving-car 
technology is almost universally considered to soon be widely available. When that happens, the cost 
of designing, making, and deploying self-driving cars will be scarcely noticeable over that of its non-
self-driving predecessor. Moreover, any human opportunity costs associated with creating or using 
these modern cars will essentially disappear, rendering conventional (human-driven) cars of today 
entirely obsolete. What's more, as this burgeoning technology continues to improve over time, so too 
will the risk — i.e., the accident (defect and/or crash) rate due to the unchanging inevitability of 
human driver (programmer) error. tl;dr: Compiler support for AA software in C++ is a game changer. 
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