
Document number:
Revises:
Date: 2019-10-07
Project: ISO JTC1/SC22/WG21: Programming Language C++
Audience: LEWGI, SG6
Reply to: Vincent Reverdy

University of Illinois at Urbana-Champaign
vince.rev@gmail.com

Towards a standard unit systems library

Abstract

Time may �nally have come to design a standard library to handle units in C++. However, unit
systems are far more complex entities than one may �rst think. Designing a generic and robust
standard library to handle unit systems is likely to be a challenging task. Any mistake on the
fundamental underlying mathematical and physical concepts will inevitably blow up at some
point for some users. In this preliminary paper we list some of the requirements that should be
met by a standard unit systems library.

Contents
1 Requirements 2

2 A list of interesting cases to be handled 3

3 Acknowledgements 4

1

mailto:vince.rev@gmail.com


1 Requirements
• The mathematical and physical concepts should match the ones de�ned by the experts in

metrology from the Bureau International des Poids et Mesures (BIPM) which is in charge of the
de�nition of the International System of Units. The general C++ standardization policy is to
rely on existing practices, and the BIPM has been working for years to standardize de�nitions
of the mathematical and physical concepts involved in unit systems.

• Even if the standard library only provides one system of units, users should be able to de�ne
their own system of units using the same concepts and machinery. This is important to max-
imize interoperability and avoid conceptual mistakes being made in many user-de�ned units
libraries.

• The library should provide both compile-time and runtime units since manipulating units at
runtime is a very common task for many scienti�c and engineering softwares.

• Units should be de�ned outside of unit systems, but should be injected in unit systems before
any conversion can take place. As an example, the concept of a meter is independent from
the SI or the CGS system, but it only makes sense to use it in conversion within a given unit
systems. Unit systems should form closed universes independent from each other.

• The library should handle the fact that two di�erent kind of quantities, such as torque and
work, should be kept separate even if they have the same dimension. This is also true for
dimensionless quantities.

• As a result, for the most genericity, the association between a unit and a dimension should
be system-dependent. As surprising as it seems, kilograms model mass only if mass is a fun-
damental dimension of the underlying physics model of the unit system. Some authors may
consider that in geometrized unit systems length, time, and mass all correspond to the same
dimension.

• Dimensions should not necessarily be always simpli�ed. For example, in cosmology, the Hub-
ble parameter is commonly expressed in km s−1Mpc−1 which is homogeneous to the inverse
of a time. However, not simplifying kilometers and Megaparsecs may be important for users
in that context.

• The concept of basic and derived units should be system-dependent too. In the CGS system,
the gram is a basic unit, while in the SI system the corresponding basic unit is the kilogram.

• Relationships between units should at least include multiplicative pre�xes of di�erent bases
(e.g. kilo, mega. . . or kibi, mebi. . . ), linear functions (e.g. Fahrenheit/Celsius), and non-linear
scales (e.g. dB). The library should handle unit conversions in a truly generic way. For exam-
ple, it should be easy to de�ne currency conversion functions whose rate is updated in real
time.

• The implicit or explicit aspects of conversions should be used to avoid by all means implicit
loss of precision. Adding miles and kilometers should probably be prevented without explicit
conversions. Adding meters and kilometers can probably be implicit if it maximizes the pre-
cision. These rules should probably be handled by unit systems.

• Typing units and quantities should be easy and intuitive for users. The same is true for de�n-
ing new unit systems and displaying units. Error messages at compile-time should be clear.
This is not incompatible with a complex and rich concept and type system. Most of the in-
tricacies should be left for advanced users as customization points. An Embedded Domain
Speci�c Language (EDSL) for units relying on metaprogramming and re�ection may be at
least considered as a viable approach.

• The question of units for vectors and tensors should be kept in mind. An evolution path should

2



be available.
• The question of measurement uncertainties should also be kept in mind. The design of unit

systems should not prevent the integration of more advanced metrology concepts in later
revisions.

• Experts from a wide variety of application domains should be invited to share unusual units,
quantities, dimensions or unit systems used in their domains. This would help to better de-
�ne the limits in terms of genericity the standard library is aiming for. A preliminary list is
proposed hereafter.

2 A list of interesting cases to be handled
• The SI system evolved over time. In 2019, a signi�cant redesign of the base units took place.
• The value of physics constants such as the ones published by the NIST can evolve over time

thanks to better instruments and metrology techniques.
• Torque and work can be seen as two di�erent physics concepts even if they can be expressed

in the same unit.
• The concept of space and time in General Relativity are di�erent than in Newtonian physics.

Unit systems usually assume an underlying physics framework that can vary from one system
to another. Converting quantities expressed in the same unit but relying on incompatible
physics models should not be possible.

• In General Relativity, measured quantities depend on the observer. Converting measurements
from one observer to another requires to know the geometry of spacetime between the two
observers.

• Units may depend of time and space. For example, because of in�ation the value of US dollars
evolve over time.

• Fahrenheit and Celsius conversions are more complicated than just a multiplicative factor.
• Angles may be considered di�ently in di�erent unit systems.
• Currencies conversion rates evolve over time.
• Decibels do not correspond to a linear scale.
• In cosmology, the Hubble parameter is commonly expressed in km s−1Mpc−1 which is homo-

geneous to the inverse of a time, but the full unit convey extra information and should not be
implicitly simpli�ed.

• In optics, diopters are homogeneous to the inverse of a length. In spectroscopy, the wavenum-
ber is also homogeneous to the inverse of a length. However, the two refer to di�erent physics
concepts.

• In CGS the basic mass unit is the gram, while in SI the basic mass unit is the kilogram.
• There are multiple de�nitions of the year. Some include leap seconds, some do not, some

depend on astronomical variations. . .
• In the same way, in an astronomical sense, the duration of a day on Earth evolved over time.
• Metric ounces are an approximation of US dry ounces.
• SI has a unique pre�x system. Some other systems like the United States customary units have

di�erent conversion factors depending on the dimension considered: inch/foot/yard conver-
sions factors and ounce/pound conversion factor are not uni�ed.

Readers with unusual unit systems or complicated scenarios are welcomed to contact the author of
this paper who will keep this list updated in future revisions of this proposal.

3



3 Acknowledgements
This work has been made possible thanks to the National Science Foundation through the awards
CCF-1647432 and SI2-SSE-1642411.

4


	1 Requirements
	2 A list of interesting cases to be handled
	3 Acknowledgements

