
Extended locale-specific presentation
specifiers for std::format

Document No. P1892 R1 Date 2019-11-07
Reply To Peter Brett pbrett@cadence.com Audience: LWG

Revisions
R1 Change locale-specific form modifier character from ‘ ’ to ‘ ’. Add before/after

comparison tables. Add Belfast straw poll results. Revise wording based on LWG
feedback.

Introduction
 provides a safe and extensible alternative to the family of functions for

formatted output. By default, it does not use locale-aware numeric formatting. It provides a ‘ ’

format specifier so that users can request locale-aware formatting if required [1].

 has overloads that allow specifying a particular locale; it is not limited to using the current

global locale [2]. This makes the best approach to locale-aware formatted output.

This paper arises from national body comment GB226 [3]. If this paper was applied to the C++20

Committee Draft, then it would resolve the NB comment.

The ‘ ’ specifier currently only allows for a restrictive subset of locale-aware presentations. This

particularly precludes access to useful floating-point formats.

This paper proposes to replace the ‘ ’ specifier with a ‘ ’ modifier which requests locale-aware

formatting with any other specifier. For example:

This would ensure that all locale-specific presentations that are provided by can be obtained

using .

Design

Easy to explain as an extension of existing syntax
Currently, using the ‘ ’ specifier for formatting numeric values gives the same result as using no

specifier at all, but with locale-specific digit group and decimal radix separator characters. For

example:

This behaviour can be explained in terms ‘ ’ as a modifier: here, it is modifying the default

formatting in a locale-specific way.

The use model proposed in this paper is to start with a basic conversion specifier and then use ‘ ’ to

modify it to be locale-aware. This fits with the “opt-in to locale” design of .

mailto:pbrett@cadence.com?subject=Re:%20P1892R0%20Extended%20locale-specific%20presentation%20specifiers%20for%20std::format
mailto:pbrett@cadence.com?subject=Re:%20P1892R0%20Extended%20locale-specific%20presentation%20specifiers%20for%20std::format

P1892 R0

2

Locale-specific modifier is placed before the format specifier
In the current formatting mini-language, all modifiers occur before the type specifier, and the type

specifier is optional. Placing the ‘ ’ modifier immediately before the type specifier preserves this

ordering, without affecting existing code.

Presentation of numbers with non-decimal radix
When formatting numbers for reading with a non-decimal radix, it can still be useful to use the

locale to group the digits. Locale-specific binary, octal and hexadecimal presentation is therefore

deliberately included. For example:

Presentation of Boolean values
The current default presentation for when no specifier is provided is one of the English words

“true” and “false”. When modified with ‘ ’, congruence can be achieved if the presentation uses the

locale’s facet. For example:

Impact on existing code
All previously well-formed format strings continue to work unchanged. Some format strings that

were previously ill-formed become well-formed.

Replacement of ‘n’ with ‘L’
SG16 expressed a strong consensus that, if a modifier was used to provide locale-specific

presentation with , then that modifier should not be spelled ‘ ’.

• ‘ ’ does not obviously have a semantic connection with ‘locale’.

• ‘ ’ can easily be mistaken for ‘ ’ in many fixed-width fonts, and programmers do not always

have control over the fonts used to display the code that they write

• ‘ ’ is big and shouty about the fact that locale information is being used, and hard to

overlook

Alternatives
If C++20 is not revised to make the ‘ ’ format specifier congruent with default formatting, then this

paper will be updated to propose an optional ‘ ’ modifier and the deprecation of ‘ ’ in C++23.

This would be inferior to generalizing ‘ ’ in two respects:

P1892 R0

3

• Many pieces of wording would need to be duplicated to describe the effects of ‘ ’ and ‘ ’

and their subtle differences.

• Teachability would be impaired by needing to explain the differences between ‘ ’ and ‘ ’

and when (not to) use them

Before/after comparison tables
Integer conversions

Non-locale Unchanged de_DE GB226 de_DE P1892 de_DE

Floating-point conversions

Non-locale Unchanged de_DE GB226 de_DE P1892 de_DE

Boolean conversions

Non-locale Unchanged de_DE GB226 de_DE P1892 de_DE

Ill-formed

Null byte Null byte

Etc.

Straw polls

SG16, Belfast
Poll For Neutral Against

Accept GB226 as proposed for C++20 4 6 1

Accept GB226 for C++20 modified to removing the ‘ ’ specifier? 3 5 2

Accept P1892 to resolve GB226 for C++20 (‘ ’ is used as a locale
specifier)?

6 2 2

Accept P1892 to resolve GB226 for C++20 modified to use ‘ ’
specifier?

4 1 6

Accept P1892 to resolve GB226 for C++20 modified to use ‘ ’
specifier?

8 2 1

P1892 R0

4

Proposed wording

Editing notes
All wording is relative to the post-Cologne C++ committee draft [4].

20.20.2.2 Standard format specifiers [format.string.std]

Update ¶1:
Each formatter specializations described in 20.20.4.2 for fundamental and string types

interprets format-spec as a std-format-spec. [Note: The format specification can be used to

specify such details as field width, alignment, padding, and decimal precision. Some of the

formatting options are only supported for arithmetic types. —end note] The syntax of

format specifications is as follows:

std-format-spec:

fill-and-alignopt signopt opt opt widthopt precisionopt opt typeopt

fill-and-align:
fillopt align

fill:
any character other than or

align: one of

sign: one of
 space

width:
positive-integer

 arg-id
precision:

 nonnegative-integer
 arg-id

type: one of

Insert after ¶9:

The option causes the locale-specific form to be used for the conversion. This option is

only valid for arithmetic types. For integral types, the locale-specific form causes the

context’s locale to be used to insert the appropriate digit group separator characters. For

floating-point types, the locale-specific form causes the context’s locale to be used to insert

the appropriate digit group and decimal radix separator characters. For the textual

representation of , the locale-specific form causes the context’s locale to be used to

insert the appropriate string as if obtained with or

.

Update ¶13:

The available integer presentation types for integral types other than and are

specified in [tab:format.type.int]. [Example:

P1892 R0

5

—end example]

Update [tab:format.type.int]:

Type Meaning

; the base prefix is .

The same as , except that the base prefix is .

Copies the character to the output. Throws
 if value is not in the range of representable values for .

.

; the base prefix is if value is
nonzero and is empty otherwise.

; the base prefix is .

The same as , except that it uses uppercase letters for digits above 9 and the
base prefix is .

The same as , except that it uses the context’s locale to insert the appropriate
digit group separator characters.

none The same as . [Note: If the formatting argument type is or , the
default is instead or , respectively. —end note]

Update [tab:format.type.char]:

Type Meaning

none, Copies the character to the output

, , , , , , , As specified in [tab:format.type.int].

Update [tab:format.type.bool]:

Type Meaning

none, Copies textual representation, either or , to the
output.

, , , , , , , As specified in [tab:format.type.int] for the value
.

Update [tab:format.type.float]
Type Meaning

If precision is specified, equivalent to

where is the specified formatting precision; equivalent to

otherwise.

The same as , except that it uses uppercase letters for digits above 9 and to
indicate the exponent.

Equivalent to

where is the specified formatting precision, or 6 if precision is not
specified.

The same as , except that it uses to indicate exponent.

, Equivalent to

where is the specified formatting precision, or 6 if precision is not
specified.

Equivalent to

where is the specified formatting precision, or 6 if precision is not
specified.

P1892 R0

6

The same as , except that it uses to indicate exponent.

The same as , except that it uses the context’s locale to insert the appropriate
digit group and decimal radix separator characters.

none If precision is specified, equivalent to

where is the specified formatting precision; equivalent to

otherwise.

References

[1] V. Zverovich, “P0645R10 Text Formatting,” [Online]. Available: http://www.open-

std.org/jtc1/sc22/wg21/docs/papers/2019/p0645r10.html.

[2] V. Zverovich, D. Engert and H. E. Hinnant, “P1361R2 Integration of chrono with text formatting,”

17 July 2019. [Online]. Available: http://www.open-

std.org/jtc1/sc22/wg21/docs/papers/2019/p1361r2.pdf.

[3] “GB226 20.20.02.2 Make locale-dependent formats for std::format() congruent with default

formatting,” 24 October 2019. [Online]. Available:

https://github.com/cplusplus/nbballot/issues/223.

[4] R. Smith, “N4830 Committee Draft, Standard for Programming Language C++,” 15 August 2019.

[Online]. Available: http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/n4830.pdf.

	Revisions
	Revisions
	Introduction
	Introduction
	Design
	Design
	Easy to explain as an extension of existing syntax
	Easy to explain as an extension of existing syntax
	Locale-specific modifier is placed before the format specifier
	Locale-specific modifier is placed before the format specifier
	Locale-specific modifier is placed before the format specifier
	Presentation of numbers with non-decimal radix
	Presentation of numbers with non-decimal radix
	struct group2 : numpunct<int> { char do_thousands_sep() const { return '_'; } string do_grouping() const { return '\2'; } }; locale grouped(locale("C"), new group2); format(grouped, "{:Lx}", 12345678); // => "BC_61_4E"
	struct group2 : numpunct<int> { char do_thousands_sep() const { return '_'; } string do_grouping() const { return '\2'; } }; locale grouped(locale("C"), new group2); format(grouped, "{:Lx}", 12345678); // => "BC_61_4E"
	Presentation of Boolean values
	Presentation of Boolean values
	Impact on existing code
	Impact on existing code
	Replacement of ‘n’ with ‘L’
	Replacement of ‘n’ with ‘L’
	Alternatives
	Alternatives

	Before/after comparison tables
	Before/after comparison tables
	Integer conversions
	Integer conversions
	Floating-point conversions
	Floating-point conversions
	Boolean conversions
	Boolean conversions

	Straw polls
	Straw polls
	SG16, Belfast
	SG16, Belfast

	Proposed wording
	Proposed wording
	Proposed wording
	Editing notes
	Editing notes
	20.20.2.2 Standard format specifiers [format.string.std]
	20.20.2.2 Standard format specifiers [format.string.std]
	Update 1:
	Update 1:
	Insert after 9:
	Insert after 9:
	Update 13:
	Update 13:
	Update [tab:format.type.int]:
	Update [tab:format.type.int]:
	Update [tab:format.type.char]:
	Update [tab:format.type.char]:
	Update [tab:format.type.bool]:
	Update [tab:format.type.bool]:

	Update [tab:format.type.float]
	Update [tab:format.type.float]

	References
	References

