
Document number: P1772R0
Revises:
Date: 2019-06-17
Project: ISO JTC1/SC22/WG21: Programming Language C++
Audience: EWGI, LEWGI
Reply to: Vincent Reverdy

University of Illinois at Urbana-Champaign
vince.rev@gmail.com

Variadic overload sets and
overload sequences

Abstract

This document constitutes a short remark to P1170: Overload sets as
function parameters and P0051: C++ generic overload function. From a li-
brary design standpoint we argue that the functionality provided by these
papers should be considered together, and not independently. In particu-
lar, we feel that the current form of P1170 will not solve the problem of
variadic overload sets built from non-inheritable classes that P0051 is fac-
ing. Making std::overload_set a variadic template class would allow to
solve this problem.

1

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p1170r0.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p1170r0.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/p0051r1.pdf

Proposal

Before
1 // From P1170
2 template <typename T>
3 class overload_set;
4
5 // From P0051
6 template <class ... Fs>
7 auto overload(Fs &&... fcts);
8
9 // From P0051

10 template <class ... Fs>
11 auto first_overload(Fs&&... fcts);

After
1 // A variadic overload set: calls the best callable
2 template <class ... F>
3 class overload_set;
4
5 // A variadic overload set: calls the first callable that works
6 template <class ... F>
7 class overload_sequence;

First, instead of one class, we introduce two: one that calls the best callable ac-
cording to overload rules, and the other one that calls the �rst callable that works.
We think that the symmetry of names overload_set/overload_sequence pro-
vides clarity for the user. Second, the suggested implementation of the non-
variadic overload_set in P1170 is:

Suggested implementation of non-variadic overload_set in P1170
1 template <typename T>
2 class overload_set {
3 T f;
4 public:
5 overload_set(/∗ unspecified ∗/);
6
7 overload_set(overload_set const &) = default;
8 overload_set(overload_set &&) = default;
9 overload_set& operator =(overload_set const&) = default;

10 overload_set& operator =(overload_set &&) = default;
11 ∼overload_set () = default;
12
13 template <typename ... Us >
14 invoke_result_t <F&, Us...> operator ()(Us&&... us) &
15 noexcept(is_nothrow_invocable_v <F&, Us...>);
16
17 template <typename ... Us >
18 invoke_result_t <F const&, Us...> operator ()(Us&&... us) const&
19 noexcept(is_nothrow_invocable_v <F const&, Us...>);
20
21 template <typename ... Us >
22 invoke_result_t <F, Us...> operator ()(Us &&... us) &&
23 noexcept(is_nothrow_invocable_v <F, Us...>);
24
25 template <typename ... Us >
26 invoke_result_t <F const , Us...> operator ()(Us&&... us) const&&
27 noexcept(is_nothrow_invocable_v <F const , Us...>);
28 };

With this de�nition, a template class inheriting from two overload_set to
combine two overload sets with di�erent names may not work properly. Intro-
ducing an overload_set which does not provide a solution to this problem is

2

very likely to be a dealbreaker for users. If overload_set is meant to be a “com-
piler magic” class anyway, it should be variadic and correctly handle the union
of several overload sets.

At this point, we do not suggest a speci�c solution. Our goal was to highlight
this potential problem to foster interest. This paper will be updated (potentially
with a solution) before the Cologne 2019 Standards Committee Meeting.

References

• P1170: Overload sets as function parameters, Barry Revzin and Andrew
Sutton, ISO/IEC JTC1/SC22/WG21 (October 2018)

• P0051: C++ generic overload function, Vicente J. Botet Escriba, ISO/IEC
JTC1/SC22/WG21 (November 2015)

• Custom Overload Sets and Inline SFINAE for Truly Generic Interfaces, Vin-
cent Reverdy, CppCon 2018 (September 2018)

3

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p1170r0.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/p0051r1.pdf
https://www.youtube.com/watch?v=WBTNCYT20f0

