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Abstract 
Note that this paper is intended to motivate the adoption of changes described in P1745R0 for C++20 to 
allow adding support for async RVO in a future version of C++. The changes described in this paper can 
be added incrementally post-C++20. 
 
The current design of the coroutines language feature defines the lowering of a co_await  expression 
such that the result of the expression is produced by a call to the await_resume()  method on the 
awaiter object. 
 
This design means that a producer that asynchronously produces a value needs to store the value 
somewhere before calling .resume()  so that the await_resume()  method can then return that 
value. The most common places the value is stored is either in the awaiter object itself or, if the value is 
being produced by a coroutine, then in the coroutine’s promise object. 
 
However, this means that the await_resume()  method will need to either return a reference to this 
stored value, and the consumer’s use of the result is then bound by the lifetime of the storage chosen by 
the awaitable, or await_resume()  will need to copy/move the object into a new prvalue result. 
 
This paper explores what a potential design for coroutines would look like that supported 
return-value-optimisation in such a way that this extra move was not necessary by allowing the async 
operation to construct the result of the co_await  expression directly in-place instead of having to return 
the result from the await_resume()  method. 
 
This paper then looks at how this capability can be used to address the larger challenge of piping 
return-value-optimisation through a number of nested calls to coroutines so that the final result is 
constructed in-place without incurring a move operation at every call. 
 
Finally, this paper proposes that changes to the design of coroutine_handle  are made for C++20 to 
enable adding return-value optimisation in a future version of the standard. The proposed changes 
described in detail in P1745R0 - "Coroutine changes for C++20 and beyond". 
 
The changes proposed in P1745R0 that would enable RVO to be added in a future version would also 
enable adding first-class support for async cancellation of a coroutine in a future version of the standard; 
this is important for supporting cancellation of an async_generator  coroutine in the presence of async 
RAII (see [P1662R0] for details). 

Background 
The current design of the coroutines language feature defines a co_await  expression to be translated 
as follows. 

 



 

co_await <expr> 

 
Is translated into something roughly equivalent to the following (some casts omitted for brevity) 
 

auto&& __operand = <expr>; 

auto&& __awaitable = maybe_await_transform( promise, __operand); 
auto&& __awaiter = maybe_operator_co_await(__awaitable); 

if (!__awaiter.await_ready()) { 

  < suspend-coroutine> 
  auto __h = coroutine_handle<promise_type>::from_promise( promise); 
  /*tail*/ return __awaiter.await_suspend(__h).resume(); 

  < resume-point> 
} 

__awaiter.await_resume(); 

 
When a coroutine is resumed by calling .resume() , either explicitly or implicitly by returning a 
coroutine_handle  from await_suspend() , this resumes the coroutine at <resume-point> . The 
coroutine then immediately calls __awaiter.await_resume()  which produces the result of the 
co_await  expression. 
 
This design means that a producer that asynchronously produces a value needs to store the value 
somewhere before calling .resume()  so that __awaiter.await_resume()  can return that value. 
The most common places the value is stored is either in the __awaiter object itself or, if the value is 
being produced by a coroutine, then in the coroutine’s promise object. 
 
However, this means that the await_resume()  method will need to either return a reference to this 
stored value, and the consumer’s use of the result is then bound by the lifetime of the storage chosen by 
the awaitable, or await_resume()  will need to copy/move the object into a new prvalue result so that 
the lifetime is then defined by the caller. 
 
Regardless of which approach is taken, this design means that the library will typically require an extra 
move operation when the user writes ‘auto x = co_await some_task(); ’ if that operation 
completes asynchronously. 

Motivation 
Consider a straight-forward implementation of a task<T>  type that stores the return-value in the 
promise object of the coroutine. The awaiting coroutine suspends before resuming the task's coroutine 
and then when the task completes it the awaiting coroutine is resumed which then calls the 
await_resume()  method which returns a copy of the return-value that is move-constructed from the 
value stored in the promise. 

 



 
Example: A simple case of one task awaiting another task. 

struct big_object { 

  explicit big_object(int value); 

  big_object(big_object&&); 

 

  // Assume it has lots of data-members 

  float data[100]; 

}; 

 

task<big_object> foo() { 

  co_return big_object{x}; 

} 

 

task<void> bar() { 

  big_object obj = co_await foo(); 

  std::cout << std::ranges::accumulate(obj.data); 

} 

 
In this code snippet the control flow from the co_return  statement proceeds as follows: 

- A temporary big_object  is constructed inside foo() . 
This should typically be placed on the stack, but compilers may allocate its storage in the 
coroutine frame (as Clang 8.0 does). 

- A reference to this temporary object is passed to foo() ’s promise.return_value()  method. 
- The return_value()  method move-constructs the value into a data-member of the promise. 
- After return_value()  returns the program executes ‘goto final_suspend; ’ which exits 

scopes within foo()  until foo() ’s final_suspend()  is reached. 
This destroys the temporary big_object . 

- At foo() ’s final_suspend()  it performs a symmetric transfer to resume the bar() 
coroutine. 

- The resumption of bar()  calls await_resume()  on the task’s awaiter. 
- The await_resume()  method move-constructs its return value from the value stored in the 

promise. This return value is a temporary object. 
- The return-value is stored in the variable ‘obj ’. 

We can rely on the copy of the return-value into the variable ‘obj ’ being elided by the compiler, 
so the ‘obj ’ variable is essentially move-constructed directly from the object stored in the 
promise. 

 
This chain of events means that the returned value ends up being move-constructed twice before it ends 
up in the resulting ‘obj ’ variable. Compare this to the equivalent synchronous code, which, under 
C++17, guarantees that the variable is constructed in-place from the return-value and that the 
move-constructor is not called. 
 
These extra calls to move-constructors can potentially be expensive for some types (eg. types with a 
large number of data members) and it may be important for some use-cases to reduce the number of 
calls to the move-constructor to one or ideally to zero. 
 

 



The fact that the object must be move-constructed means that task<T>  types are limited to only 
working with movable return-types. It is not possible for such a coroutine to return a non-movable type 
that is constructed in-place, whereas this is something you can do with ordinary functions since C++17 
due to guaranteed copy-elision. 
 
Further, if we consider a call-chain where a coroutine calls another and immediately returns the 
return-value of the nested coroutine. Then the storage required for the coroutine grows by the size 
of the return-value for each nested coroutine that returns the value. As coroutine frames are typically 
heap-allocated, this can result in larger coroutine frame heap-allocations. 
 
For example: Nested calls to coroutines in tail-position. 

struct big_object { 

  big_object(int a, int b); 

  float data[1000]; 

}; 

 

task<big_object> get_big_object1(int a, int b) { 

  co_return big_object{a, b}; 

} 

 

task<big_object> get_big_object2(int a) { 

  co_return co_await get_big_object1(a, 42); 

} 

 

task<big_object> get_big_object3() { 

  co_return co_await get_big_object2(123); 

} 

 
Let’s analyse the coroutine frame sizes here: 

● The coroutine frame for get_big_object1()  contains the task’s promise object which holds 
storage for the return-value (size ~4000 bytes). 

● The coroutine frame for get_big_object2() , assuming the allocation of 
get_big_object1() ’s coroutine frame is inlined  into the frame of get_big_object2() , will 1

be the size of get_big_object1()  (~4000 bytes) + the size of the promise (~4000 bytes). 
This means that the resulting coroutine frame is ~8000 bytes. 

● Similarly, the coroutine frame for get_big_object3()  will be the size of 
get_big_object2()  frame plus the size of the promise for get_big_object3() . 
This results in a coroutine frame of ~12000 bytes. 

 
This growth of the coroutine frame size by the size of the return-type for each nested call means that 
factoring code out into smaller coroutine functions is often not zero overhead. 
 
If we were instead able to directly construct the return-value in its final place then we could reduce the 
storage required for return-values from O(call-depth) to O(1). This would also reduce the number of calls 
to the move-constructor from O(call-depth) to zero.  

1 See P0981R0 - "Halo: coroutine Heap Allocation eLision Optimization" 

 



 
There are multiple aspects to this problem and it will require multiple pieces of the puzzle to reach this 
goal. 
 
This can be roughly broken down into the following pieces: 

1. Constructing the result of a co_await  expression in-place. 
2. Avoiding the construction of the initial temporary object in the wrong place. 
3. Piping the return-address through nested calls. 

 
The first item requires language support and is the main focus of this paper. 
 
The second item can be addressed with a library solution if we require that the user explicitly opt-in to 
copy-elision when writing the co_return  statement. 
eg. 'co_return std::in_place_construct(args...); ' 
or 'co_return std::in_place_construct_type<T>(args...); ' 
 

However, we would require some additional language changes on top of those proposed in P1745R0 to 
allow eliminating the copy using the natural return-syntax. ie. 'co_return T{args...}; '. It is 
expected that these extensions could be added incrementally post-C++20. 
 
The third item should be solvable using a purely library solution, but may depend on some other 
enhancements to coroutines, such as P1713R0 which relaxes some restrictions on co_return , or 
support for making co_return  a suspend-point. 

RVO for coroutines and co_await expressions 

Return-Value Optimisation for normal functions 
Let’s first start with a recap of how ordinary functions implement return-value-optimisation. 
 
When a caller invokes a function that makes use of return-value-optimisation (ie. where the return-value 
is not trivially movable and destructible and cannot be returned in a register) then the caller typically 
reserves some storage for the return value in its local stack-frame and then passes a pointer to this 
storage as a hidden parameter to the function being called. 
 
The function being called can then construct the return-value directly in-place at the address provided in 
the hidden parameter. 
 
Since C++17, ordinary functions guarantee that a copy of the return-value can be elided if you return a 
prvalue. i.e. that the return value is constructed directly in-place. 
 
There are a few other variations on return-value optimisation: 

 



 
Transitive Return-Value Optimisation 
If a function is returning the result of another function call then the function can just pass the address of 
its return-value as the address of the called function’s return value so that the called function constructs 
the result in-place at the return-value address provided by the caller. 
 
 

T foo() { 

  // In-place constructs T{} at the address of ‘result’ 

  return T{}; 

} 

 

T bar() { 

  // Passes address of ‘result’ as return-value address to ‘foo()’ 

  return foo(); 

} 

 

void baz() { 

  // Passes address of ‘result’ as return-value address to bar() 

  T result = bar(); 

} 

 
 
Named Return-Value Optimisation 
 
If a function returns the same named local variable on all code-paths and the type of this variable 
matches the type of the return-value then the compiler is free to construct that named variable in-place at 
the return-value address and elide the copy of the local variable into the return-value. 
 
https://wandbox.org/permlink/xoRkOX6rtpHuBA2O 
 

T callee() { 

  T value; 

  printf(“&value == %p\n”, (void*)&value); 

  return value; 

} 

 

void caller() { 

  T result = callee(); 

  printf(“&result == %p\n”, (void*)&result); 

} 

 
This is allowed to output the following: 

&value == 0x7ffeef0cb350 

&result == 0x7ffeef0cb350 

 

 

https://wandbox.org/permlink/xoRkOX6rtpHuBA2O


Return-Value Optimisation for co_await expressions 

Status Quo 
With the current specification of coroutines, the result of a co_await  expression is produced by calling 
the await_resume()  function. This can either return a value or can throw an exception. 
 
A coroutine reserves storage for the result of a co_await  expression either on the stack or in the 
coroutine frame based on whether or not the result spans a suspend-point. The address of the storage is 
logically passed into the call to the await_resume()  method as the return-value address, assuming 
the compiler applies return-value optimisation to this call. 
 
However, for cases where a value is produced asynchronously, an Awaiter object will typically need to 
construct the result somewhere in a temporary location, often within the Awaiter object itself, before then 
resuming the coroutine with a call to h.resume()  on the coroutine handle. The resumed coroutine will 
then immediately call await_resume()  and use the result of that call as the result of the co_await 
expression. As the address of the result of the co_await  expression cannot be known until the 
await_resume()  method is called and await_resume()  is only called after the coroutine is resumed 
this essentially forces this copy to be made. 
 
There are some tricks that can be performed to eliminate this copy in some limited cases by storing the 
arguments to the return-value constructor in the awaiter and deferring the call to the return-value 
constructor until await_suspend(), but this is not a general solution and can quickly get 
complicated/expensive if the result can potentially be constructed via different constructor overloads. 

Passing a handle to the return-value slot 
To be able to implement return-value optimisation for a co_await  expression we need instead to have 
the compiler somehow pass knowledge of the address of the result of the co_await  expression into the 
Awaiter, rather than implicitly to await_resume() , so that it can directly construct the result in the 
correct location before resuming the coroutine. 
 
The obvious approach here would be to incorporate the address of the return-value into the 
coroutine_handle  passed to await_suspend()  and allow constructing the return-value in-place by 
calling a method on the handle. 
Instead of calling handle.resume()  to resume the coroutine we could call 
handle.set_value<T>(ctorArgs...)  to construct the result of the co_await  expression in-place 
and then resume it. 
 
Once we do this, however, it no longer becomes necessary to call await_resume()  when the 
coroutine resumes to produce the result of the co_await  expression as the result will have already 

 



been constructed. Thus we can remove the await_resume()  method from the revised Awaiter 
concept. 
 
Once we remove the await_resume()  method it is no longer possible for the coroutine to “pull” the 
result from the awaitable synchronously in the case that await_ready()  returns true . We now need 
to always call await_suspend()  to pass it the handle containing the return-value address so that it 
can construct the result. This means we can now also remove the await_ready() method from the 
revised Awaiter concept, leaving it with just the await_suspend() method. 
 
Similarly, we can now remove the variant of await_suspend()  that returns a bool  as it no longer 
makes sense to resume the coroutine by returning false without first constructing the return value. 
 
Finally, the void -returning await_suspend()  method can now potentially be replaced by having it 
return std::noop_coroutine()  instead of returning void . 
 
This leaves us with a revised Awaiter concept that just has a single await_suspend()  method that 
accepts and returns a coroutine_handle . 
 
Example: Simple Awaitable that is always ready and returns the stored value. 

Current Design With support for RVO 

template<typename T> 

struct just { 

  T value; 

 

  bool await_ready() { 

    return true; 

  } 

 

  void await_suspend(coroutine_handle<>) { 

    assert(false); 

  } 

  

  T await_resume() { 

    return value; 

  } 

}; 

template<typename T> 

struct just { 

  T value; 

 

  template<typename Handle> 

  auto await_suspend(Handle h) { 

    h.set_value<T>(value); 

    return std::noop_coroutine(); 

  } 

}; 

 

Resuming with an exception 
One implication of the elimination of the await_resume()  method is that we no longer have code that 
runs inside the context of the coroutine after it resumes that is under the control of the awaitable. When 
we call set_value()  to construct the result of the co_await  expression and then subsequently 
resume the coroutine it will resume without throwing an exception. 
 
This means there is nowhere to place a throw  statement to allow throwing an exception from the 
co_await  expression. 

 



 
To support throwing an exception from a co_await  expression, we would need to add another method 
to the coroutine_handle , say set_exception(std::exception_ptr)  that would store the 
exception_ptr  in the coroutine frame as a temporary and, when the coroutine is resumed, 
immediately rethrow the exception by calling std::rethrow_exception()  with that stored 
exception. 
 

Multiple Resumption Paths and Symmetric Transfer 
Now that we've added a set_exception()  method that resumes the coroutine along a code-path that 
throws an exception in addition to a set_value()  method that resumes the coroutine along the 
normal-control flow path it raises the question of how we tell the compiler which of these paths to resume 
on when we return the coroutine_handle  from the await_suspend()  method. 
 
Previously, when there was only a single path that the coroutine could be resumed on we could just 
return the coroutine_handle  from await_suspend()  and let the compiler tail-call the resume() 
method on the handle. However, now that there are two possible methods to resume the coroutine we 
need some other way to communicate which path the coroutine should be resumed on. Also, as these 
methods may require arguments to be passed we would need some way to tell the compiler which 
arguments to invoke the method with. 
 
The paper P1662R0 also runs into the same issue with multiple resumption paths (in that case a choice 
between set_done()  and resume() ) and discusses some possible options for this that were 
ultimately discarded in the section titled "Challenges with this design" which I will refer the reader to and 
avoid duplicating here. 
 
The approach that P1745R0 proposes to solve this problem is to separate the responsibilities of the 
coroutine_handle  type into a "suspend-point handle", which represents a coroutine suspended at 
a particular suspend-point that could have multiple possible resumption paths, and a "continuation 
handle", which represents the selected resumption path. 
 
With this design, the coroutine would pass a suspend-point handle as the parameter to the 
await_suspend()  method and the await_suspend()  method would return a continuation handle to 
symmetrically-transfer to. 
 
The suspend-point handle passed to the await_suspend()  method for an async-RVO awaitable 
would have a set_value<T>()  method, which constructs the result in-place in the associated 
coroutine-frame, and a set_exception()  method, which stores the exception_ptr  in the 
associated coroutine-frame. 
 

 



Both methods return a continuation handle that represents that particular chosen resumption path. The 
continuation handle can be invoked asymmetrically by calling operator()  or symmetrically by returning 
it from an await_suspend()  method. 
 

Simplifying the Awaiter concept 
Since there is now just a single method on the Awaiter, we can also consider merging the Awaiter 
concept together with the Awaitable concept. This would involve merging await_suspend()  with 
operator co_await()  by having the compiler pass the handle to operator co_await()  instead. 
 
Aside: There are some other benefits to doing this when combined with deferred coroutine frame 
creation (see [P1342R0]) as it gives access to the promise type of the caller prior to creating the 
coroutine frame and deciding on the promise_type  for the callee. This would allow context to be 
propagated transparently from caller to callee. 
 
Note that we still need to support operator co_await()  being able to return temporary objects that 
are placed in the coroutine frame as this allows implementations to avoid heap allocations. So 
operator co_await()  would be defined such that it either must return a continuation_handle 
or return an object with an operator co_await()  defined, in which case the compiler would generate 
a chained call to its operator co_await(). 
 
So to implement the Awaitable concept a type would now only need to implement the operator 
co_await()  method. This method would return either a continuation handle or return an object that 
itself had an operator co_await()  method that returns an Awaitable. 
 
 
class schedule_op { 

public: 

  auto operator co_await() const { 

    class awaiter : schedule_base { 

    public: 

      using schedule_base::schedule_base; 

 

      bool await_ready() { return false; } 

 

      void await_suspend(coroutine_handle<> h) { 

        coro_ = h; 

        this->tp_->enqueue(this); 

      } 

 

      void await_resume() {} 

 

    private: 

      void execute() noexcept override { 

        coro_.resume(); 

      } 

 

      coroutine_handle<> coro_; 

    }; 

 

class schedule_op { 

public: 

  template<typename Handle> 

  auto operator co_await(Handle) { 

    class awaiter : schedule_base { 

    public: 

      using schedule_base::schedule_base; 

 

      auto operator co_await(Handle h) { 

        sp_ = h; 

        this->tp_->enqueue(this); 

        return std::noop_continuation(); 

      } 

 

    private: 

      void execute() noexcept override { 

        sp_.set_value<void>()(); 

      } 

 

      // Store non-type-erased handle. 

      Handle sp_;  

    }; 

 

    return awaiter{tp_}; 

 



    return awaiter{tp_}; 

  } 

 

private: 

  thread_pool* tp_; 

}; 

  } 

 

private; 

  thread_pool* tp_; 

}; 

 
 
 

Specifying the return-type of an awaitable 
One of the implications of removing the await_resume()  method is that we no longer have any way to 
deduce what the result-type of a co_await  expression will be as we won't know what type will be 
specified in the call to handle.set_value<T>()  until operator co_await()  is called. 
 
This is similar to the problem faced by Senders in the Sender/Receiver design [P1341R0] where the 
base Sender concept does not report the set of types it is going to send but instead just constrains the 
receiver passed to submit() by checking that it is invocable with the types it is going to send. 
 
The solution there was to introduce a refinement of the Sender concept, called a TypedSender, that 
contains a nested type-alias that can be queried to determine the type(s) with which the Receiver would 
be invoked. 
 
We can do something similar for Awaitable types and require that you provide a nested 
Awaitable::await_result_type  typedef which the compiler can inspect to determine what the 
type of the expression will be. 
 
The compiler can then pass a suspend-point handle that has an overload of set_value<T>()  where T 
is constrained to be the same as await_result_type . 
 

Calculating the address of the return-value 
The suspend-point handle that the compiler ends up passing to the operator co_await()  method 
needs to be able to obtain the address of the return-value if it is to be able to construct the result of the 
co_await  expression in-place. 
 
To do this it needs to be able to obtain the offset of the result within the coroutine frame, however the 
offset of the result will not be known until much later in the compilation phase once the coroutine frame 
layout has been calculated. 
 
However, as the compiler has complete control over generation of the suspend-point handle type it can 
insert some intrinsics into the body of the set_value()  method that act as placeholders for the 
address calculation. 

 



 
For example: 

// This handle is instantiated with a reference to the coroutine function 

// and the index of the suspend-point within this coroutine. 

template<auto Coroutine, int SuspendPoint> 
struct __suspend_point_handle { 
  template<typename T> 
  struct value_continuation_handle { 
    // Allocate a unique integer within the specified Coroutine 
    // This effectively becomes the index into a big switch that jumps to the 

    // resumption point of the coroutine. 

    static constexpr int __continuation_index = __builtin_unique_integer(&Coroutine); 
 

    void* framePtr; 
 

    // Invoke the continuation 
    void operator()() { 
      __builtin_coro_resume(&Coroutine, __continuation_index, framePtr); 

    } 

  }; 

 

  void* framePtr; 
 

  template<typename T, typename... Args> 
  value_continuation_handle<T> set_value(Args&&... args) { 

    constexpr auto index = value_continuation_handle<T>::__continuation_index; 
    void* address = __builtin_coro_return_address(&Coroutine, index, framePtr); 
    new (address) T(static_cast<Args&&>(args)...); 
    return value_continuation_handle<T>{framePtr}; 
  } 

 

  // ... etc. for other members 
}; 

 
e.g. An intrinsic __builtin_coro_offset(&foo, index, framePtr)  could be used to represent 
the address of the return-value for the continuation with specified index  in coroutine foo . 
A similar intrinsic could be inserted within the body of the coroutine that keeps track of the final address 
of the local memory allocated for the return-value slot within the coroutine frame. 
 
Once the coroutine frame layout has been calculated, a subsequent pass can lower 
__builtin_coro_offset()  intrinsics to a constant offset calculation relative to the framePtr. 
 

Benefits and Implications of RVO-style awaitables 
The primary goal of async RVO is eliminating a copy when producing the result of the co_await 
expression. However, there are a number of other advantages and some potential implications of this 
design with regards to performance. 
 
It can reduce the number of branches needed to extract the value 
With the current design of awaitables with await_resume() , if an operation can potentially complete 
with either a value or an exception then the await_resume()  method will typically need to read some 

 



state which indicates whether it is a value or error and then branch either to the value-returning path or to 
the exception-throwing path. 
 
For example: An awaitable that can either return a T or throw an exception. 

struct my_awaitable { 

  std::variant<std::monostate, T, std::exception_ptr> result_; 

  std::coroutine_handle<> coro_; 

 

  bool await_ready() { return false; } 

 

  void await_suspend(coroutine_handle<> h); 

 

  T await_resume() { 

    if (result_.index() == 2) { 

      std::rethrow_exception(std::get<2>(std::move(result_))); 

    } 

    return std::get<2>(std::move(result_)); 

  } 

}; 

 
With the async RVO model the producer selects which resumption path to take and can directly jump to 
that resumption path, avoiding the need for an additional branch after the coroutine is resumed. 
 
We can no longer run any awaitable-specific logic after the coroutine resumes 
With this model, once the coroutine is resumed from a suspend-point the co_await  expression is over 
and the awaitable can no longer affect the result of the coroutine. The only way to process the result of a 
co_await  expression is to place that logic in the continuation of the coroutine. 
 
Logic that a given awaitable previously placed inside await_resume() now just needs to be executed by 
the awaitable prior to resuming the coroutine. eg. restoring thread-local sate, transforming results, etc. 
 
However, this means that algorithms that previously adapted other awaitables by implementing 
await_resume()  to call the inner awaitable's await_resume()  method to obtain the result and then 
transform result will now need to be implemented as a coroutine. 
 
For example: We can explicitly adapt the existing Coroutines TS Awaitable state-machine to avoid 
allocations. With the async RVO-style Awaitables we would need to use a coroutine.  

template<typename Inner, typename Func> 

struct transform_awaitable { 

  Inner inner; 

  Func func; 

 

  bool await_ready() { 

    return inner.await_ready(); 

  } 

 

  template<typename Handle> 

  auto await_suspend(Handle h) { 

    return inner.await_suspend(h); 

  } 

template<typename Inner, typename Func> 

auto transform(Inner inner, Func func) 

  -> task<std::invoke_result_t< 

       Func, std::await_result_t<Inner>>> { 

  co_return func(co_await inner); 

} 

 



 

  decltype(auto) await_resume() { 

    return func(inner.await_resume()); 

  } 

}; 

 

template<typename Inner, typename Func> 

auto transform(Inner inner, Func func) { 

  return transform_awaitable<Inner, Func>{ 

    std::move(inner), std::move(func)}; 

} 

 
Note that we can also write the same code as the RHS under the Coroutines TS. The main rationale for 
for hand-writing this algorithm as an Awaitable instead of as a coroutine is to avoid the potential for 
introducing an extra implicit heap allocation for the allocation of a new coroutine frame. Although, the 
coroutine-based code is arguably much simpler and is also much more flexible. A coroutine can be 
extended easily to composing multiple child async operations whereas the manual approach can only 
adapt the logic for a single suspend-point. 
 
It is possible that this concern about implicit heap allocation can be mitigated through additional changes 
to coroutines described in P1342R0 which discusses adding support for deferring the creation of the 
coroutine frame and representing coroutine frames as types that can be deterministically stack-allocated. 
 
Also, the addition of non-type-erased coroutine handles proposed in P1745R0 in combination with 
non-type-erased coroutines described in P1342R0 should be able to achieve the equivalent level of 
optimisation available with the current Awaitable design. 
 
 
No more built-in short-circuiting behaviour 
The existing Awaitable design has a built-in short-circuiting behaviour that allows the coroutine to avoid 
suspending in the case that the result is available synchronously - in which case the result is then 
immediately pulled by calling await_resume(). 
 
With the Coroutines TS design, there is some overhead to suspending a coroutine - it needs to spill any 
values currently stored in registers into the coroutine frame and store the resumption state into the 
coroutine frame which indicates where the coroutine is to be resumed. So avoiding doing these 
operations can be a performance win. 
 
With the async RVO model we no longer have this built-in short-circuiting behaviour. The coroutine will 
always suspend and call the operator co_await()  method. However, with strongly-typed 
suspend-point handles which encode knowledge of the suspend-point in the type we can avoid the need 
to store the resumption state in the coroutine frame. 
 
For example: A simple awaitable that conditionally suspends only 

class async_event { class async_event { 

 



  std::atomic<bool> ready_ = false; 
  std::coroutine_handle<> continuation_; 

public: 
  void set() { 
    if (ready_.exchange(true)) { 
      continuation_.resume(); 

    } 

  } 

 

  bool await_ready() { 
    return ready_.load(); 
  } 

 

  bool await_suspend( 
      std::coroutine_handle<> h) { 

    continuation_ = h; 

    return !ready_.exchange(true); 
  } 

 

  void await_resume() {} 
}; 

  std::atomic<bool> ready_ = false; 
  std::continuation_handle continuation_; 

public: 
  void set() { 
    if (!ready_.exchange(true)) { 
      continuation_.resume(); 

    } 

  } 

 

  template<typename Handle> 
  continuation_handle 

  operator co_await(Handle sp) { 
    auto continuation = sp.set_value<void>(); 
    if (!ready_.load()) { 
      // Store type-erased resumption state 
      continuation_ = continuation; 

      if (!ready_.exchange(true)) { 
        // Return to resumer 
        return noop_continuation(); 
      } 

    } 

    // Otherwise return the continuation to 

    // immediately resume it. 

    return continuation; 
  } 

}; 

 
With this example, the state-machine that is built-in to the co_await  expression for short-circuiting is 
manually implemented in the operator co_await()  under the async-RVO model. Resumption state 
for the resumption of the coroutine is only written to memory if the short-circuit path is not taken. In the 
case the short-circuit path is taken, the continuation handle returned from operator can be returned in 
registers and immediately invoked by the coroutine machinery without needing to store the resumption 
state in the coroutine frame. 
 
If the compiler is able to inline the operator co_await()  body into the coroutine body then the 
performance and overhead is expected to be equivalent between the two approaches. 

Generalising set_exception() to set_error<E>() 
One of the possible extensions to the async RVO model is to allow the caller to specify the type of the 
exception to throw, rather than having to pass an exception_ptr which requires type-erasing the 
exception. 
 
For example, a call to handle.set_error<E>(ctorArgs...)  would construct in the coroutine 
frame a temporary object, error , of type E , and return a continuation-handle that when invoked will 
resume the continuation and immediately execute 'throw error; '. 
 
This can potentially allow the coroutine body to optimise the exception-handling more efficiently. eg. it 
may be possible to optimise the 'throw error; ' into the equivalent of a 'goto handler ;' in some 
cases. 

 



See P1676R0 for the results of some experiments optimising exceptions. 
 
Note that there may be several possible overloads of set_error<E>()  called and the compiler would 
need to instantiate a different 'throw error; ' continuation for each invocation. This requires solving 
similar challenges to that of supporting multiple set_value<T>()  overloads, as the compiler needs to 
be able to determine the set of types that it needs to instantiate the set_error<E>()  continuation with. 
However, the challenges with set_error<E>()  are reduced compared to set_value<T>()  as it is 
not possible to have any subsequent expressions in the coroutine dependent on the concrete type of the 
exception thrown. 
 
A transition path could be provided that exposed the set_error<E>()  method on suspend-point 
handles but that initially had an implementation that called set_exception()  with the result of a call to 
std::make_exception_ptr(E(args...)) . 

Avoiding copies when returning a temporary 
The above changes avoid needing to store a copy of the value in the promise, reducing the number of 
move/copy operations from 2 to 1. 
 
However, if we are returning a temporary object we still need to construct that value in the callee and 
then copy it to the caller by calling set_value()  on the handle. 
 
For example, a task implementation that uses async RVO would have a promise_type::return_value() 
method that looks like the following (using syntax from P1745R0): 

template<typename T> 

class task { 

public: 

  class promise_type { 

    std::suspend_point_handle<std::with_value<T>, std::with_exception> consumer_; 

    std::continuation_handle continuation_; 

 

    template<ConvertibleTo<T> U> 

    void return_value(U&& value) { 

      continuation_ = consumer_.set_value<T>((U&&)value); 

    } 

 

    void unhandled_exception() { 

      continuation_ = consumer_.set_exception(std::current_exception()); 

    } 

 

    auto done() { return continuation_; } 

 

    // ... rest of the definition omitted for brevity. 

  }; 

 

  using handle_t = std::suspend_point_handle< 

    std::with_resume, std::with_destroy, std::with_promise<promise_type>>; 

 

  handle_t coro_; 

 

 



  explicit task(handle_t coro) : coro_(coro) {} 

  

  // ... other members omitted for brevity 

 

  template<typename Handle> 

  auto operator co_await(Handle handle) { 

    coro_.promise().consumer_ = handle; 

    return coro_.resume(); 

  } 

}; 

 
Then when we write the following coroutine: 

task<some_type> example() { 

  int x = co_await something(); 

  co_return some_type{x}; 

} 

 
The co_return  statement is lowered as follows: 

promise.return_value(some_type{x}); 

goto done; 

 
A temporary instance of some_type is created as a local variable and a reference to this is passed into 
the return_value() method. This then calls sp_.set_value<T>() which move-constructs the result of the 
co_await  expression. 
 
What we would like to be able to do is avoid allocating this temporary as a local variable and elide the 
copy. 

A library solution to avoiding construction of temporaries 
To be able to avoid the construction of the temporary we need to be able to in-place construct the result 
at the return-value address. This requires deferring construction of the object until the call to set_value() 
so that the call to set_value() can directly construct the result. 
 
To do this we can create a helper type that captures the arguments to the constructor and pass this into 
return_value() which can then pass this onto a new set_value_from()  call which accepts this helper 
type. 
 
 

template<typename... Args> 

class in_place_construct { 

public: 

  in_place_construct(Args&&... args) noexcept : args(args...) {} 

 

  template<typename T> 

    requires Constructible<T, Args...> 

  T* construct(void* ptr) { 

 



    return std::apply([ptr](Args&&... args) { 

      return ::new (ptr) T((Args&&)args...); 

    }, args); 

  } 

 

private: 

  std::tuple<Args&&...> args; 

}; 

 

template<typename... Args> 

in_place_construct(Args&&...) -> in_place_construct<Args...>; 

 
Then we can define the new set_value_from() method on the suspend-point handle to call the construct() 
method on the inplace_construct object.. 
 

struct suspend_point_handle 

{ 

  template<typename T, typename... Args> 

    requires Constructible<T, Args...> 

  value_continuation_handle<T> 

  set_value_from(in_place_construct<Args...> inplace) { 

    void* returnValueAddress = /* builtin magic here */; 

 

    // Directly construct the result at the return-value address. 

    inplace.construct<T>(returnValueAddress); 

 

    return value_continuation_handle<value_type>{...}; 

  } 

  ... 

}; 

 
Then we can update the promise_type to provide an overload of return_value() that accepts an instance 
of inplace_construct. 
 

template<typename T> 

class task<T>::promise_type { 

  std::suspend_point_handle<std::with_value<T>, std::with_exception> consumer_; 

  std::continuation_handle continuation_; 

 

  template<ConvertibleTo<T> U> 

  void return_value(U&& value) { 

    continuation_ = consumer_.set_value<T>((U&&)value); 

  } 

 

  template<typename... Args> 

    requires Constructible<T, Args...> 

  void return_value(in_place_construct<Args...> inplace) { 

    continuation_ = consumer_.set_value_from<T>(inplace); 

  } 

 

  void unhandled_exception() { 

    continuation_ = consumer_.set_exception(std::current_exception()); 

  } 

 

 



  auto done() { return continuation_; } 

 

  // ... rest of the definition omitted for brevity. 

}; 

 
Then, finally, we can rewrite the co_return  statement in the coroutine to return an instance of 
in_place_construct  instead of constructing the return-value itself. e.g. 

task<some_type> example() { 

  int x = co_await something(); 

  co_return in_place_construct{x}; // Equivalent to 'return {x};' 

} 
 
We could also provide an additional in_place_construct_type<T> factory that would allow annotating the 
co_return statement with the return-type: 

task<some_type> example() { 

  int x = co_await something(); 

  co_return in_place_construct_type<some_type>{x}; 

} 

 
The former might require that the type is implicitly constructible, whereas the latter would allow calling 
both implicit and explicit constructors. 
 
Another variation of in_place_construct that accepts a callable and that constructs the return-value using 
the result of invoking a callable would also be required to achieve return-value optimisation for cases 
where the return value was obtained from a normal function call. 
e.g. 

some_type create(int i); 

 

task<some_type> without_rvo() { 

  int x = co_await something(); 

  co_return create(x); 

} 

 

task<some_type> with_rvo() { 

  int x = co_await something(); 

  co_return in_place_construct_call{[&] { return create(x); }}; 

} 

 
Another case to be considered is where the return value-expression is the result of a co_await 
expression. e.g. 

task<some_type> other_function(int i); 

 

task<some_type> example() { 

  int x = co_await something(); 

  co_return co_await other_function(x); 

} 

 

 



It is not yet clear whether the same approach can be taken to achieve this kind of RVO for general 
co_await expressions. More investigation is required. 
 
 
Note that the same approaches used for co_return  could also be applied to co_yield  statements. 
This would allow yielding values from a generator that are constructed in-place in the consumer's frame. 
 

Language support for avoiding construction of temporaries 
While the library solution to avoiding construction of temporaries in co_return  statements is functional, 
it requires unnatural and verbose syntax for returning the result. 
 
Ideally, the programmer could just write 'co_return T{args...}; ' instead of having to write 
'co_return in_place_construct_type<T>{args...}; '. 
 
However, now that we have a library solution we can consider adding language syntax that is simply 
syntactic sugar for the library solution, in the same way that uniform initialization syntax can be syntactic 
sugar for a call to the std::initializer_list  overload of a constructor. 
 
We could add a rule for co_return  and co_yield  expressions that requires the compiler to check if 
the promise.yield_value() /return_value()  methods are callable with an instance of the 
corresponding std::in_place_construct_*  type and if so then invokes the method with an 
instance of that type rather than with the result of the expression. 
 
 

User Syntax Potential RVO Lowering (if the expression is valid) 

co_return T{args...}; promise.return_value( 

  std::in_place_construct_type<T>{args...}); 

co_return {args...}; promise.return_value( 

  std::in_place_construct{args...}); 

co_return some_function(args...); promise.return_value( 

  std::in_place_construct_from{ 

    [&](auto&&... args) { 

      return [&] { 

        return some_function( 

          (decltype(args)&&)args...); 

      }; 

    }(args...)}); 

 
 
Note that there are parallels between this approach and that of P0927R0 - "Towards A (Lazy) Forwarding 
Mechanism for C++". More investigation is required to determine whether the approaches can be 
combined. 

 



 

Avoiding copies for nested calls 
In the previous section we identified a challenge with trying to implement support for in-place 
construction of the return-value when the operand to co_return  was itself a co_await  expression. 
 
This means that use-cases where an async coroutine is returning the result from another async coroutine 
can still involve an extra copy/move when returning the result. e.g 

task<some_type> foo(int x); 

 

task<some_type> bar() { 

  int x = co_await something(); 

  co_return co_await foo(x); 

} 

 

task<void> baz() { 

  some_type result = co_await bar(); 

} 

 
In this case, while the foo() coroutine may be able to directly emplace the result of the co_await 
foo(x)  expression without needing to make a copy, that result is still a temporary and we would need to 
move that temporary into the return-value of the co_await bar()  expression. 
 
The preferred solution would be to have compiler magic that somehow constructs the suspend-point 
handle for co_await foo(x)  so that it's result is constructed in-place at the address of the 'result' 
variable, as this would be the most general solution. More investigation is required to determine if this will 
be feasible, however. 
 
In the mean-time we can pursue creating a library solution by defining a task<T> type that implements 
the ability to hook up RVO for nested calls to other task<T>-returning coroutines that are called in the 
tail-position. 
 
The idea would be to allow the programmer to write 'co_return foo(x); ' instead of 'co_return 
co_await foo(x); ' and have this pass the suspend-point handle of bar() 's caller into foo() 's task 
so that foo()  can directly construct its result in the final location. 
 
The solution to this would depend on two other extensions to the co_return  statement, however. 
 
The relaxation of the co_return  restrictions as described in P1713R0 would be necessary to allow a 
generic implementation to support this syntax uniformly for both task<void>  and task<non-void> . 
  
This would also require extending the co_return statement to itself be a suspend-point so that the 
coroutine could suspend at the co_return expression until the nested coroutine had run to completion. 
This extension is described in P1745R0 in the section "Add support for co_return as a suspend-point". 
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In the mean-time, one workaround could be to use co_yield  instead of co_return , which is already a 
suspend-point and, with the addition of the set_done()  method described in P1662R0, can be made to 
behave as if it is a co_return  statement by resuming with the 'goto done; ' continuation. 
 
However, the compiler would not be able to make the same assumptions about control flow and 
dead-code with a co_yield  expression as it could with a co_return  statement. 
 

Adding support for this incrementally 
The ability to support return-value optimisations for coroutines is not something that can be added to 
C++20 at this stage. It has not been implemented and the impacts that this design would have on 
libraries is not yet fully understood. 
 
If this is something we decide is important to add to the C++ language in the future then we can look at 
adding it incrementally on top of the version of coroutines that ships in C++20. 
 
Adding support for async RVO later would introduce a second Awaitable concept to the language but this 
would be able to be used side-by-side with awaitable objects implemented using the C++20 Awaitable 
concept. 
 
This needs to be viewed in combination with the changes proposed in [P1745R0] as the path and 
end-result will differ based on whether the changes in that paper are adopted for C++20. 
 

Conclusion 
This paper shows a potential path to incrementally add support for async RVO in a future release of C++ 
after C++20. 
 
However, the viability of this approach depends on the adoption of changes in P1745R0 that split the 
coroutine_handle  interface into separate SuspendPointHandle and ContinuationHandle concepts. 
 
This paper recommends adoption of the changes in P1745R0 to enable this future evolution path for 
coroutines post-C++20.  
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Appendix - Examples 
Example A: An async I/O operation that completes either with a value or an error. 

using os_callback_t = void(std::error_code, size_t, void*); 

void os_async_read(os_handle_t handle, void* buffer, size_t count, 

                   os_callback_t* cb, void* userData); 

 

struct async_read_op { 

  os_handle_t handle; 

  void* buffer; 

  size_t count; 

  coroutine_handle<> coro; 

 

  template<typename Handle> 

  auto operator co_await(Handle h) { 

    coro = h; 

    os_async_read(handle, buffer, count, 

                  &async_read_op::on_complete, static_cast<void*>(this)); 

    return std::noop_coroutine(); 

  } 

 

private: 

  static void on_complete(std::error_code error, size_t bytesRead, void* userData) { 

    auto* op = static_cast<async_read_op*>(userData); 

    if (error) { 

      // Operation failed - resume with exception  

      auto continuation = op->coro.set_exception( 

        std::make_exception_ptr(std::system_error{error})); 

      continuation(); 

    } else { 

      // Operation succeeded - resume with value 

       auto continuation = op->coro.set_value<size_t>(bytesRead); 

       continuation(); 

    } 

  } 

}; 

 
 
 
 
  

 



Example B: Implementation of task<T> for existing coroutines design and with support for RVO 
template<typename T> 

struct task { 

  struct promise_type { 

    std::coroutine_handle<> continuation_; 

    std::variant<std::monostate, T, 

                 std::exception_ptr> result_; 

 

    ... 

 

    template<typename U> 

    void return_value(U&& value) { 

      result_.emplace<1>((U&&)value); 

    } 

 

    void unhandled_exception() { 

      result_.emplace<2>( 

        std::current_exception()); 

    } 

 

    auto final_suspend() { 

      struct awaiter { 

        bool await_ready() { return false; } 

        auto await_suspend( 

          coroutine_handle<promise_type> h) { 

          return h.promise().continuation_; 

        } 

        void await_resume() {} 

      }; 

      return awaiter{}; 

    } 

  }; 

 

  struct awaiter { 

    coroutine_handle<promise_type> coro_; 

    bool await_ready() { 

      return false; 

    } 

 

    auto await_suspend(coroutine_handle<> h) { 

      coro_.promise().continuation_ = h; 

      return coro_; 

    } 

 

    T await_resume() { 

      auto& result = coro_.promise().result_; 

      if (result.index() == 2) { 

        std::rethrow_exception( 

          std::get<2>(std::move(result))); 

      } 

      return std::get<1>(std::move(result)); 

    } 

  }; 

 

  awaiter operator co_await() && { 

    return awaiter{coro_}; 

  } 

 

  ... 

 

private: 

  coroutine_handle<promise_type> coro_; 

}; 

template<typename T> 

struct task { 

  struct promise_type { 

    std::suspend_point_handle< 

        std::with_set_value<T>, 

        std::with_set_exception> sp_; 

    continuation_handle cont_; 

 

    ... 

 

    template<typename U> 

    void return_value(U&& value) { 

      cont_ = sp_.set_value<T>((U&&)value); 

    } 

 

    void unhandled_exception() { 

      cont_ = sp_.set_exception( 

        std::current_exception()); 

    } 

 

    auto done() { 

      return cont_; 

    } 

  }; 

 

  template<typename Handle> 

  auto operator co_await(Handle sp) && { 

    coro_.promise().sp_ = sp; 

    return coro_.resume(); 

  } 

 

  ... 

 

private: 

  using handle_t = std::suspend_point_handle< 

    std::with_promise<promise_type>, 

    std::with_resume, std::with_destroy>; 

 

  handle_t coro_; 

}; 

 

 


