

P1415R0: SG19 Machine Learning
Layered List

Date: 2019-01-21 (Pre-KONA mailing): 10 AM ET

Project: ISO JTC1/SC22/WG21: Programming Language C++

Audience: SG19, WG21

Authors: Michael Wong (Codeplay),
Vincent Reverdy (University of Illinois at Urbana-Champaign, Paris
Observatory),
Ritwik Dubey (Exegy)
Richard Dosselmann (University of Regina)
Eugenio Bargiacchi (Vrije Universiteit Brussel)

Contributors
Jordi Inglada (CNES, French Space Agency)

Emails: michael@codeplay.com
vreverdy@illinois.edu
ritwik.exe@gmail.com
dosselmr@cs.uregina.ca
svalorzen@gmail.com

Reply to: michael@codeplay.com

Introduction 2

Motivation 2

Layered Feature list 2

Conclusion 4

Acknowledgements 4

References 5

mailto:michael@codeplay.com
mailto:vreverdy@illinois.edu
mailto:ritwik.exe@gmail.com
mailto:dosselmr@cs.uregina.ca
mailto:svalorzen@gmail.com
mailto:michael@codeplay.com

Introduction
P1360 [P1360] establishes the initial charter for the formation of a Machine Learning SG for
C++. This paper proposes a list of Machine Learning (ML) and Data Science (DS) topics for 1

C++, in a layered format that shows dependency rather than prioritization. It nonetheless
indicates a possible order in which SG19 will tackle these issues.

Motivation

Since SG19’s inception in SAN, introduced in P1360, SG19 has had 2 monthly telecon
meetings on the 2nd Friday of each month. During that time, we have discussed various topics
suitable for C++ (See SG19 meeting minutes).

This paper will start the discussion on a layered list of features. We do not call it a priority list
because our various priorities may be different. This is more of a dependency list.

Layered Feature list
We will separate this list into features of Layers 0, 1, 2, 3, etc. The aim is to focus the group’s
effort, but it does not preclude features that are a particular favourite of the members from
moving ahead. The understanding here is that some features are dependent on other features
that have not yet been resolved.

Layer 0

● Fundamental arrays, matrices, vectors, tensors, linear algebra
○ There is already a design proposed for Linear Algebra from SG14 [Pxxxx], as

well as a history document [Pxxx]. That design is based on a confluence of ideas
from games and high-performance computing. They are also using a layered
approach. There are requirements that Machine Learning would need to build on
top of that and the group has been discussing ideas that would add to the Linear
Algebra proposal, such as how to add convolutions or eigenvectors/eigenvalues
for principal component analysis (PCA).

○ In addition to multidimensional numeric arrays, arrays with named columns (i.e.
data frames) are also needed for building data science tools. Existing examples
in C++ are Root’s DataFrame class [root] and xframe [xframe].

1 We use the ML and DS terms in order to cover a wide range of algorithms and statistical models used to
extract knowledge from data, generates inferences, and make predictions. The scope of this paper is not
limited to Deep Learning (DL) techniques for which linear algebra and automatic differentiation cover most
of the needs. Other ML and statistical approaches have different needs in terms of data structures and
algorithms.

● Graph and tree data structures
○ Adjacency matrix (static) and list (dynamic) implementations, property graph,

bipartite graphs (graphs are used in artificial neural networks, game maps/worlds,
mathematical combinatorics problems, graph search problems, representing
networks and communications).

○ Depth- and breadth- first searches, directed, undirected, and bidirectional edges,
weighted edges, insert/delete edges, insert/delete nodes, edge iterators, node
iterators, get num nodes, get num edges, get node indegree, get node
outdegree, are nodes adjacent.

○ The BGL [Boost Graph Library] is an excellent example of the features necessary
for graph data structures and cbbowen/graph [cbbowen/graph] is a solid port of
this that is STL-like.

○ General k-ary trees (trees are used in artificial neural networks, decision trees,
expressing hierarchical relationships between concepts, operating system
directory structures, compiler parsing, binary space partitioning).

○ Pre-, in-, and post-order traversals, node iterators, get num nodes, weighted
edges, insert/delete children/parents, compute depth, merge trees.

○ Tree.hh is an example of a generic tree
● Probability utilities

○ Add moments to distributions (i.e. pdf, mean, var, stdev, etc.). Discrete probability
sampling with no copying from existing vector distributions. Simple statistics
generation from data.

○ Maybe have a look at BOOST Accumulators [BOOSTACC]

Layer 1

● Facilitate better support for interchange of in memory information/data between
packages, as for example the Apache Arrow project [Arrow]

● Basic graphing (in terms of drawing)
○ There is already a group SG13 which is designing incidental, not professional

level graphics for C++, partly based on the now defunct graphics proposal.
● Optimization, quantization, parallelism, batching computations of vector, matrix, tensors
● Lazy evaluation execution graphs/workflows
● Support for kernel fusion on training and inference
● Support of accelerator dispatch to inference engines, GPUs, FPGAs, MPSoC, Tensor

Processing Units, Coarse Grain Reconfigurable Arrays, many of the newer ML boards
from Xilinx, Google, ARM, Wave Computing, Nvidia

● Abstraction layer to hide underlying accelerator platform (e.g. CUDA vs RocM for
NVIDIA vs AMD GPUs). This will help ML application in C++ decouple from underlying
accelerator platform

○ This is already an ongoing effort in SG1 to support some form of heterogeneous
computing. Current effort include using affinity, and executors. Existing

implementations of HPX[hpx], SYCL[Expression] can already use modern C++ to
dispatch to offnode.

● Do we need a graph extraction pass on top of C++?
● Support interoperability with data formats from Python and R packages (on this matter,

having a look to Apache Arrow as a memory layout for tabular data may be useful)

Layer 2

● Packaging to allow adding computation/data manipulation/scaling packages +
dependency

● Support portability to various hardware embedded inference engines, and up down
convert of different FP sizes between training and inference

● Support of exchange formats (ONNX, NNEF)
● Although not specific to ML, C++ is lacking a (de facto) standard scientific library similar

to GNU Scientific Library (GSL), which, being C, can’t use templates or any other form of
type system features. Standard C++ provides the Special Math library, but it is limited to
special functions. Differentiation, integration, interpolation, minimization, statistics (mean,
var, stdev, median, etc.), etc. are needed for data science, with basic statistics being
common in many projects.

● Other C++ ML/Data Analysis libs: Shark-ML [shark], MLpack, dlib, root [root]
○ Although there exist several high quality C++ ML libs, the equivalent for statistical

modelling and inference is lacking.
● Integration Xla, tvm, tensor-rt, glow

Layer 3

● <tentative, open for discussion> Data visualization tool to aid developers in visualizing
datasets, rapid prototyping, and debug ML algorithms.

● Tool to experiment with reinforcement learning (RL), with OpenAI Gym as inspiration.
Few C++ libraries are out there for RL. Mlpack, AI-Toolbox are a few examples of RL
frameworks in C++, while others haven’t gained much popularity yet. RL finds great
usability in robotics and embedded systems. A C++ RL framework would find utility
among robotics and embedded system software developers, many of whom still program
in C/C++.

● Support for artificial neural networks (ANN) and DL (both a major focus of modern AI)

Conclusion
This paper proposes a layered approach to developing Machine Learning facilities, establishing
focus and expanding on that in [P1360] for further refinement and discussion.

Acknowledgements
Vincent Reverdy’s work has been made possible thanks to NSF Awards CCF-1647432 and SI2-

http://www.shark-ml.org/
https://root.cern.ch/

SSE-1642411.

Michael Wong’s work is thanks to Codeplay Software Ltd, ISOCPP Foundation, Khronos, and
Standards Council of Canada.

References

[AI-Toolbox] https://github.com/Svalorzen/AI-Toolbox

[AMD] https://gpuopen.com/rocm-tensorflow-1-8-release/

[Armadillo] http://arma.sourceforge.net/

[Arrow] https://arrow.apache.org/

[cbbowen/graph] https://github.com/cbbowen/graph/

[BOOSTACC] https://www.boost.org/doc/libs/1_55_0/doc/html/accumulators.html

[Boost Graph Library] https://www.boost.org/doc/libs/1_69_0/libs/graph/doc/index.html

[Catapult]
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/CNN20Whitepaper.pdf

[CuBLAS] https://developer.nvidia.com/cublas

[CuDNN] https://developer.nvidia.com/cudnn

[Eigen] http://eigen.tuxfamily.org

[Expression]
https://www.codeplay.com/portal/05-22-17-implementing-opencl-support-for-eigen-using-sycl-an
d-computecpp

[GSL] https://www.gnu.org/software/gsl/

[hpx] http://stellar.cct.lsu.edu/projects/hpx/

[Inference] https://developer.arm.com/products/processors/machine-learning/arm-nn

https://github.com/Svalorzen/AI-Toolbox
https://gpuopen.com/rocm-tensorflow-1-8-release/
http://arma.sourceforge.net/
https://arrow.apache.org/
https://github.com/cbbowen/graph/
https://www.boost.org/doc/libs/1_55_0/doc/html/accumulators.html
https://www.boost.org/doc/libs/1_69_0/libs/graph/doc/index.html
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/CNN20Whitepaper.pdf
https://developer.nvidia.com/cublas
https://developer.nvidia.com/cudnn
http://eigen.tuxfamily.org/
https://www.codeplay.com/portal/05-22-17-implementing-opencl-support-for-eigen-using-sycl-and-computecpp
https://www.codeplay.com/portal/05-22-17-implementing-opencl-support-for-eigen-using-sycl-and-computecpp
https://www.gnu.org/software/gsl/
https://developer.arm.com/products/processors/machine-learning/arm-nn

[Maili]
https://developer.arm.com/technologies/machine-learning-on-arm/developer-material/software-f
or-machine-learning-on-arm

[Mlpack] https://www.mlpack.org/

[Nervana]
https://spectrum.ieee.org/tech-talk/computing/software/nervana-systems-puts-deep-learning-ai-i
n-the-cloud

[P1360] Towards Machine Learning for C++: Study Group 19:
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p1360r0.pdf

[Pixel]
https://www.blog.google/products/pixel/pixel-visual-core-image-processing-and-machine-learnin
g-pixel-2/

[Rasperry]https://medium.com/tensorflow/tensorflow-1-9-officially-supports-the-raspberry-pi-b91
669b0aa0

[ROCm] https://rocm.github.io/ROCmInstall.html

[root] https://root.cern.ch

[Shark] http://image.diku.dk/shark/

[SYCL-DNN] https://github.com/codeplaysoftware/SYCL-DNN

[SYCL-ML] https://github.com/codeplaysoftware/SYCL-ML

[syclBLAS] https://github.com/codeplaysoftware/sycl-blas

[TensorFlow] https://www.tensorflow.org/

[TPU]
https://cloud.google.com/blog/products/gcp/google-supercharges-machine-learning-tasks-with-c
ustom-chip

[Tree.hh] http://tree.phi-sci.com/

[xframe] https://github.com/QuantStack/xframe

https://developer.arm.com/technologies/machine-learning-on-arm/developer-material/software-for-machine-learning-on-arm
https://developer.arm.com/technologies/machine-learning-on-arm/developer-material/software-for-machine-learning-on-arm
https://www.mlpack.org/
https://spectrum.ieee.org/tech-talk/computing/software/nervana-systems-puts-deep-learning-ai-in-the-cloud
https://spectrum.ieee.org/tech-talk/computing/software/nervana-systems-puts-deep-learning-ai-in-the-cloud
https://www.blog.google/products/pixel/pixel-visual-core-image-processing-and-machine-learning-pixel-2/
https://www.blog.google/products/pixel/pixel-visual-core-image-processing-and-machine-learning-pixel-2/
https://medium.com/tensorflow/tensorflow-1-9-officially-supports-the-raspberry-pi-b91669b0aa0
https://medium.com/tensorflow/tensorflow-1-9-officially-supports-the-raspberry-pi-b91669b0aa0
https://rocm.github.io/ROCmInstall.html
https://root.cern.ch/
http://image.diku.dk/shark/
https://github.com/codeplaysoftware/SYCL-DNN
https://github.com/codeplaysoftware/SYCL-ML
https://github.com/codeplaysoftware/sycl-blas
https://www.tensorflow.org/
https://cloud.google.com/blog/products/gcp/google-supercharges-machine-learning-tasks-with-custom-chip
https://cloud.google.com/blog/products/gcp/google-supercharges-machine-learning-tasks-with-custom-chip
http://tree.phi-sci.com/
https://github.com/QuantStack/xframe

