
Range constructor for std::string_view
Document #: P1391R3
Date: 2019-08-02
Project: Programming Language C++
Audience: LEWG, LWG
Reply-to: Corentin Jabot <corentin.jabot@gmail.com>

1 Abstract

This paper proposes that string_view be constructible from any contiguous range of characters.
The idea was extracted from P1206.

2 Tony tables

Before After
void foo(string_view);
vector<char8_t> vec = get_some_unicode();
foo(string_view{vec.data(), vec.size()});

void foo(string_view);
vector<char8_t> vec = get_some_unicode();
foo(vec);

3 Motivation

While P1206 gives a general motivation for range constructors, it’s especially important for string_-
view because there exist in a lot of codebases string types that would benefit from being con-
vertible to string_view string_view. For example, llvm::StringRef, QByteArray, fbstring,
boost::container::string ...

Manipulating the content of a vector as a string is also useful.

Finally, this makes contiguous views operating on characters easier to use with string_view.

4 Design considerations

• instantiations of basic_string are specifically excluded because std::basic_string already
provides a conversion operator and more importantly, strings with different char_traits should
not be implicitly convertible

• Because basic_string_view doesn’t mutate the underlying data, there is no reason to accept
a range by something other than const lvalue reference.

1

mailto:corentin.jabot@gmail.com


• The construction is implicit because it is cheap and a contiguous range of character is the
same platonic thing as a string_view.

5 Arrays and null terminated strings

During review by LWG, it was noticed that the proposed change introduces this arguably surprising
behavior:

char const t[] = "text";
std::string_view s(t); // s.size() == 4;

std::span<char> tv(t);
std::string_view s(tv); // s.size() == 5;

This is not an ambiguity of the overload set but rather a consequences of both null-terminated
terminated strings and array of characters being both sequence of characters with array of characters
implicitly convertible to pointers.

To be consistent with C++17 and not introduce a behavior change, we make sure arrays of characters
decay to const charT*. We think this proposed design is consistent with existing practices of having
to be explicit about the size in the presence of embedded nulls as well as the general behavior of C
functions, and does not introduce a new problem - how unfortunate that problem might be. It is
also worth noting that while embedded nulls have a lot of known usages they are not the common
case.

Finding a better solution to that problem is not possible at the level of this proposal and would
require major breaking language changes.

6 Proposed wording

Change in [string.view] 20.4.2:

template<class charT, class traits = char_traits<charT>>
class basic_string_view {
public:

[...]

// construction and assignment
constexpr basic_string_view() noexcept;
constexpr basic_string_view(const basic_string_view&) noexcept = default;
constexpr basic_string_view& operator=(const basic_string_view&) noexcept = default;
constexpr basic_string_view(const charT* str);
constexpr basic_string_view(const charT* str, size_type len);

2



template <class R>
constexpr basic_string_view(const R& r);

template <class It, class End>
constexpr basic_string_view(It begin, End end);

[...]
};
template<class R>
basic_string_view(const R&)
-> basic_string_view<ranges::range_value_t<R>>;

template<class It, class End>
basic_string_view(It, End) -> basic_string_view<remove_reference_t<iter_reference_t<It>>>;

Change in [string.view.cons] 20.4.2.1:

Add after 7

template <class R>
constexpr basic_string_view(const R& r);

Constraints:

• const R satisfies ranges::ContiguousRange,

• const R satisfies ranges::SizedRange,

• is_same_v<ranges::range_value_t<const R>, charT> is true,

• is_convertible_v<const R&, const charT*> is false,

• If the qualified-id R::traits_type is valid and denotes a type, is_same_-
v<R::traits_type,traits> is true.

Expects:

• const R models ranges::ContiguousRange,

• const R models ranges::SizedRange.

Effects: Initializes data_ with ranges::data(r) and size_ with ranges::size(r).

Throws: What and when ranges::data(r) and ranges::size(r) throw.

template <class It, class End>
constexpr basic_string_view(It first, End last);

Constraints:

• It satisfies ContiguousIterator,

• End satisfies SizedSentinel<It>,

• is_same_v<iter_value_t<It>, charT> is true,

• is_convertible_v<End, size_type> is false.

3



Expects:

• [first, last) is a valid range,

• It models ContiguousIterator,

• End models SizedSentinel<It>.

Effects: Initializes

• data_ with to_address(first),

• size_ with last - first.

Add a new section [string.view.deduction] to describe the following deduction guides:

template <class It, class End>
basic_string_view(It, End) -> basic_string_view<remove_reference_t<iter_reference_t<It>>>;

Constraints:

• It satisfies ContiguousIterator,

• End satisfies SizedSentinel<It>.

template<class R>
basic_string_view(const R&)
-> basic_string_view<ranges::range_value_t<R>>;

Constraints: const R satisfies ranges::ContiguousRange.

4


	1 Abstract
	2 Tony tables
	3 Motivation
	4 Design considerations
	5 Arrays and null terminated strings
	6 Proposed wording

