

Document number: P1382R1
Date: 20190310 (pre-Kona)
Project: Programming Language C++, WG21, SG1
Authors: JF Bastien, Paul McKenney, Jeffrey Yasskin, and the indefatigable TBD
Email: jfbastien@apple.com, paulmck@linux.ibm.com, jyasskin@google.com
Reply to: paulmck@linux.ibm.com

volatile_load<T> and volatile_store<T>

1. Introduction 2

2. History/Changes from Previous Release 2
2019-02-21 [D1382R1] Kona meeting 2
2018-12-16 [D1382R0] pre-Kona meeting 2

3. Guidance to Editor 2

4. Design Rationale, Goals, and Constraints 3

5. Proposed wording 5

6. Acknowledgements 7

7. References 8

1

mailto:jfbastien@apple.com
mailto:paulmck@linux.ibm.com
mailto:jyasskin@google.com
mailto:paulmck@linux.ibm.com

1. Introduction

This paper is an offshoot of P1152: Deprecating volatile, addressing the suggestion in
Section 4 of that paper. It also draws upon Linux-kernel experience with READ_ONCE() and
WRITE_ONCE(), as documented in P0124R6: Linux-Kernel Memory Model and in Section 4.3.4
(“Accessing Shared Variables”) of Is Parallel Programming Hard, And, If So, What Can You Do
About It?. This paper also owes its genesis to the realization of one of the authors (Paul) that a
surprisingly large number of C++ Standards Committee members did not realize that correct
operation of their credit cards depended on C and C++ compilers doing the right thing with
volatile, as opposed to said compilers mindlessly complying with the relevant standards.

2. History/Changes from Previous Release

2019-02-21 [D1382R1] Kona meeting
● Reworked requirements based on discussions at Kona.
● Heavily revamped wording

2018-12-16 [D1382R0] pre-Kona meeting
● Started.

--

3. Guidance to Editor
[This section will be filled out once wording has been debated to the point of rough consensus.]

2

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p1152r0.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p1152r0.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0124r6.html#Variable%20Access
https://mirrors.edge.kernel.org/pub/linux/kernel/people/paulmck/perfbook/perfbook.html
https://mirrors.edge.kernel.org/pub/linux/kernel/people/paulmck/perfbook/perfbook.html

4. Design Rationale, Goals, and Constraints
The volatile keyword has served the computing field well (if rather controversially) for many
decades. So why change?

One reason was called out in the introduction: This keyword has done its job in spite of the
standard. It would clearly be a great improvement if for the standard were to help rather than
hinder dissemination of volatile knowledge.

Another reason is changes in hardware design of input/output (I/O) devices. The volatile
keyword was conceived in a time when I/O devices were controlled either by special machine
instructions or memory-mapped I/O (MMIO) locations. Use of special machine instructions to
control I/O devices is declining, in part due to portability concerns. Such instructions were and
should remain outside of the scope of the standard, but MMIO locations are and will likely
remain a key motivator for volatile. What has changed is the partitioning of computing
systems into different clock domains, with the core CPU running at much faster speeds than
peripherals, and the consequent use of multiple levels of cache memory to accommodate this
different in speed. This means that MMIO accesses, which must interact directly with peripheral
devices, are quite slow, in particular, much slower than cache-mediated access to main
memory.

Many modern device therefore use MMIO sparingly. One common approach is to make the I/O
device participate in the main-memory cache-coherence protocol, and then to place arrays of
control blocks (CBs) in main memory. Each element of such an array describes one I/O
request, including the address and length of the block of memory to be output from or input to,
along with any required control information (for example, a bit indicating that the array element
is ready for device processing, another bit indicating that the corresponding I/O has completed,
and a third bit indicating the last element of the array). A single MMIO operation informs the
device of the location of this array, and the overhead of this single operation is then amortized
over all the I/O operations specified by the full array, reducing per-I/O MMIO overhead to a
value arbitrarily close to zero.

Device drivers need not use the volatile keyword when initializing a new array of CBs
because the device is not yet aware of its existence. This allows both the compiler and the
cache/store-buffer hardware to fully optimize these initialization accesses. Once initialization is
complete, these accesses must be finalized. Such finalization is not always portable, but might
be as straightforward as a full memory-fence instruction. Then the MMIO instruction informs the
device of the newly initialized array, and causing that device to commence I/O operations.
However, when polling array entries for completion, the driver absolutely must use volatile
reads because the compiler is unaware of the device’s memory writes. Therefore, use of the
volatile keyword on the array object is not consistent with maximal performance. This
provides motivation for the volatile_load<T> facility described in this document.

3

This same scenario also provides motivation for volatile_store<T>. To see this, consider
the C++ code that implements the device firmware in the above example.

Size matters to devices, for example, the effect of a series of four one-byte stores to a series of
addresses is typically completely different than that of a single four-byte store, even if that
four-byte store deposits the same byte values to the same addresses as did the series of
one-byte stores. MMIO reads and writes must therefore not be torn, but this requires that the
user restrict volatile_load<T> and volatile_load<T> types T to those whose sizes
correspond to those of the load and store instructions provided by the underlying hardware.
This provides the motivation for volatile_non_tearing<T>, which returns true if such
instructions are available for T. This static member function is constexpr, which can be used to
issue compile-time diagnostics in cases where the required instructions are not available.

Given that shared-memory communication with an I/O device motivates both
volatile_load<T> and volatile_store<T>, it should not be too great a leap to see how they
can be used for shared-memory concurrent programming, as READ_ONCE() and WRITE_ONCE()
in fact are used within the Linux kernel. Many might prefer use of C++11 atomics, but
experiences thus far have been mixed, optimizations can prevent their use in low-level code,
some recent proposals for changes to relaxed atomics might be even less consistent with such
use, and much concurrent code written before the advent of C++11 atomics will continue to use
volatile for some time to come. In addition, initialization/cleanup scenarios similar to that
described above for the device driver also exist in concurrent code, which motivates some way
of providing lower-overhead access for single-threaded access during initialization and cleanup
operations.

Access to untrusted “sandboxes” such as those used by browsers can also benefit from
volatile_load<T>, but can tolerate weaker semantics that permit tearing. However, the
at-most-once semantics are critically important to this use case.

What must volatile_load<T> and volatile_store<T> do?

volatile_load<T> might produce any object representation of the underlying type, as
expected given that some code unknown to the compiler might be storing to the object in
question. In particular, that unknown-to-the-compiler code might have repurposed padding, as
often happens with later revisions of I/O devices. Additionally, volatile_load<T> can result in
side effects, again as expected given that some code unknown to the compiler might be
activated as a result of a hardware response to an MMIO load. Finally, the semantics of
volatile_load<T> depend on access size, meaning that tearing must be avoided where
possible given the available “pure” load instructions. For its part, volatile_store<T> can
result in side effects over and above that of the store itself, again as expected given that some
code unknown to the compiler might be polling the stored-to object. And as with
volatile_load<T>, the semantics of volatile_store<T> depend on access size, again

4

https://lwn.net/Articles/691128/
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4455.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p1217r0.html

meaning that tearing must be avoided where possible given the available “pure” store
instructions. Both volatile_load<T> and volatile_store<T> may be used to control order
of accesses with respect to signals and special C functions that affect control flow.

5. Proposed wording
Modify [intro.races] as follows:

p3: The library defines a number of atomic operations …
New p: <ins>Loads and stores via a glvalue of type volatile T and uses of
volatile_load<T>() and volatile_store<T>() , where
volatile_non_tearing<T>() is true , are considered relaxed atomic operations.</ins>

p21: … The execution of a program contains a data race if it contains two potentially concurrent
conflicting actions, <ins>neither of which is a volatile load, </ins>at least one of which is not
atomic<ins> or volatile</ins>, and neither happens before the other, except for the special case
for signal handlers described below. Any such data race results in undefined behavior. …

p22: Two accesses to the same object of type volatile std :: sig_ atomic_ t do
not result in a data race if both occur in the same thread, even if one or more occurs in a signal
handler. For each signal handler invocation, evaluations performed by the thread invoking
a signal handler can be divided into two groups A and B, such that no evaluations in B happen
before evaluations in A, and the evaluations of such volatile

 std :: sig_ atomic_ t <ins> T </ins> objects<ins> and calls to
volatile_load<T>() , where volatile_non_tearing<T>() is true ,</ins> take
values as though all evaluations in A happened before the execution of the signal handler and the
execution of the signal handler happened before all evaluations in B.

?.1 Volatile Accessor [vol-acc]

1. The volatile_load<T> and volatile_store<T> templated free functions allow
specific accesses to given object to be carried out with volatile semantics. Specifically,
actors outside of the abstract machine may be concurrently reading and writing the
addresses accessed by these operations, and may be able to observe the operations
themselves:

a. [Note: That calls to volatile_load<T> and volatile_store<T> are
observable behavior implies that implementations must not remove calls even if
they are unused or redundant and must not fuse operations on adjacent memory
into a single wider operation.] [Note: This also implies that implementations
must not speculate volatile_store<T> or insert instances of either
volatile_load<T> or volatile_store<T> into a program. -- End note.]

b. [Note: The implementation cannot assume that global analysis can result in valid
constraints of the objects produced, including the values of any padding. The

5

http://eel.is/c++draft/intro.races#def:data_race
http://eel.is/c++draft/intro.races#21.sentence-2
http://eel.is/c++draft/intro.races#21.sentence-3
http://eel.is/c++draft/intro.races#21.sentence-3
http://eel.is/c++draft/intro.races#22.sentence-1
http://eel.is/c++draft/intro.races#22.sentence-1
http://eel.is/c++draft/intro.races#22.sentence-2

volatile_load<T> is after all telling the implementation that it lacks the
information required to derive such constraints. -- End note.]

c. [Note: Implementations should avoid implementing volatile_load<T> and
volatile_store<T> lin terms of atomic operations (for example, atomic swap or
compare-and-swap instructions, which often do not work correctly with MMIO). --
End note.]

2. An object that is accessed with either volatile_load<T> or volatile_store<T> may
also be accessed using normal C++ loads and stores. Code emitted for any normal load
or store must follow that for any volatile_load<T> or volatile_store<T> to that
same object that is sequenced before that normal load or store. Similarly, code emitted
for any normal load or store must precede that for any volatile_load<T> or
volatile_store<T> to that same object when that normal load or store is sequenced
before that volatile_load<T> or volatile_store<T>. Question: Should the
standard require atomic_signal_fence() or stronger separating plain and volatile
accesses?

Header <vol_access> synopsis

namespace std {

namespace experimental {

// ?.1.1 function template volatile_load

template<typename T>

T volatile_load(const T* p);

// ?.1.2 function template volatile_store

template<typename T>

void volatile_store(T* p, T v);

// ?.1.3 function volatile_non_tearing

template<typename T>

constexpr bool volatile_non_tearing();

} // namespace experimental

} // namespace std

?.1.1, function template volatile_load [vol-acc.load]

template<typename T>

constexpr T volatile_load(const T* p);

1. Constraints: is_trivially_copyable_v<T>.
2. Expects: p is suitably aligned to hold an object of type T.

6

3. Effects: Reads a value representation of an object of type T from the memory at *p. If
there is no value of type T corresponding to the value representation produced, the
behavior is undefined. This operation is a side effect ([intro.execution]) and observable
behavior ([intro.abstract]).

?.1.2, function template volatile_store [vol-acc.store]

template<typename T>

constexpr void volatile_store(T* p, T v);

1. Constraints: is_trivially_copyable_v<T>.
2. Expects: p is suitably aligned to hold an object of type T.
3. Effects: Causes the value of *p to be overwritten with v. This operation is observable

behavior ([intro.abstract]).

?.1.3, function template volatile_non_tearing [vol-acc.nontear]

template<typename T>

constexpr bool volatile_non_tearing();

1. Constraints: is_trivially_copyable_v<T>.
2. Returns: true if load and store machine instructions for sizeof(T) are available. [Note:

It is possible for volatile_non_tearing<char>() to be false while
volatile_non_tearing<int>() is true.]

3. Remarks: volatile_non_tearing<sig_atomic_t>() is true.

[Note: Alternatively, returns true if volatile_load<T> and volatile_store<T> will not result
in load or store tearing or merging, respectively, for properly aligned instances of T.]

Add to [atomics.fences]:

For the purpose of this section, volatile reads and calls to volatile_load() ([vol-acc]) are
considered relaxed atomic reads, and volatile stores and calls to volatile_store() are
considered relaxed atomic modifications.

6. Acknowledgements

The authors thank TBD people for TBD.

7

7. References
[P0098R0] Towards Implementation and Use of memory_order_consume

[P0124R6] Linux-Kernel Memory Model

[P1152R0] Deprecating volatile

[P1217R0] Out-of-thin-air, revisited, again

Time to move to C11 atomics? Jonathan Corbet, Linux Weekly News.

Is Parallel Programming Hard, And, If So, What Can You Do About It? Paul E. McKenney,
editor.

8

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/p0098r0.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0124r6.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p1152r0.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p1217r0.html
https://lwn.net/Articles/691128/
https://mirrors.edge.kernel.org/pub/linux/kernel/people/paulmck/perfbook/perfbook.html

