
P1208R6Adopt source_location for C++20
Robert Douglas, Corentin Jabot, Daniel Krügler, Peter Sommerlad

2019-07-19

Document Number: P1208R6
Audience: LWG
Date: 2019-07-19
Project: Programming Language C++

1 Changes and Discussions made in Cologne 2019

A summary of changes made in Cologne to the Latex version (this) by Robert, Daniel, and Peter.
This is also based on feedback given by Casey Carter.

— Base the text on N4820.

— Introduce exposition-only member variables to be able to name the return values of the
functions.

— Reorder members and descriptions as in LFTS V3. But we got rid of the separate code
representation of the header and class synopsis.

— specify more properly the concepts/qualities of the type source_location.

— We internally discussed if source_location should be trivially copyable or nothrow_copyable,
but only specified the obvious Cpp17xxx and swappable requirements for the type, because we
do not want to close the design space for implementors.

— While preparing the update for the paper we discussed if the functions in source_location
are signal safe as with initializer_list, but did not dare to specify it at this point.

— For the default constructor of source_location we reduced the guarantees from "implementation-
defined" values to "unspecified but valid" values, because we want to keep the door open for a
possible future where these values could potentially be defined in a more concrete manner.

— provide explicit description of the intended represented values in the remarks section of
current().

2 Instructions to the Editor

Introduce a new header <source_location> in subclause ([headers]): Table 19 ([tab:headers.cpp]),
and subclause ([compliance]) Table 22 ([tab:headers.cpp.fs]) between 17.7 and 17.8 add a new line:

1



17.x Source Location <source_location>

Add the feature test macro __cpp_lib_source_location to Table 17
([tab:cpp.predefined.ft]) with the corresponding value for header <source_location>.

Create a new subclause 17.x ([reflection.src_loc]) in section 17 ([language.support]) before 17.8
([support.contract]) with the following content:

2.1 Class source_location [reflection.src_loc]
The header <source_location> defines the class source_location that provides a means to obtain
source location information.

2.1.1 Header <source_location> Synopsis [reflection.src_loc.synop]
namespace std {

struct source_location {
// source location construction
static consteval source_location current() noexcept;
constexpr source_location() noexcept;

// source location field access
constexpr uint_least32_t line() const noexcept;
constexpr uint_least32_t column() const noexcept;
constexpr const char* file_name() const noexcept;
constexpr const char* function_name() const noexcept;

private:
uint_least32_t line_; // exposition only
uint_least32_t column_; // exposition only
const char* file_name_; // exposition only
const char* function_name_; // exposition only

};
}

1 The type source_locationmeets the Cpp17DefaultConstructible, Cpp17CopyConstructible, Cpp17CopyAssignable,
and Cpp17Destructible requirements.

2 Lvalues of type source_location are swappable ([swappable.requirements]).
3 All of the following conditions are true:

—(3.1) is_nothrow_move_constructible_v<source_location>

—(3.2) is_nothrow_move_assignable_v<source_location>

—(3.3) is_nothrow_swappable_v<source_location>
4 [Note: The intent of source_location is to have a small size and efficient copying.– end note]
5 The data members file_name_ and function_name_ always each refer to an NTBS.
6 The copy/move constructors and the copy/move assignment operators of source_location meet

the following postconditions: Given two objects lhs and rhs of type source_location, where lhs

2



is a copy/move result of rhs, and where rhs_p is a value denoting the state of rhs before the
corresponding copy/move operation, then each of the following conditions is true:

—(6.1) strcmp(lhs.file_name(), rhs_p.file_name()) == 0

—(6.2) strcmp(lhs.function_name(), rhs_p.function_name()) == 0

—(6.3) lhs.line() == rhs_p.line()

—(6.4) lhs.column() == rhs_p.column()

2.1.2 source_location creation [reflection.src_loc.creation]

static consteval source_location current() noexcept;

1 Returns:

—(1.1) When invoked by a function call whose postfix-expression is a (possibly parenthesized) id-
expression naming current, returns a source_location with an implementation-defined
value. The value should be affected by #line ([cpp.line]) in the same manner as for
__LINE__ and __FILE__. The values of the exposition-only data members of the returned
source_location object denote the following information:

line_ a presumed line number ([cpp.predefined]). Line numbers are presumed to be
1-indexed; however, an implementation is encouraged to use 0 when the line number
is unknown.

column_ an implementation-defined value denoting some offset from the start of the line
denoted by line_. Column numbers are presumed to be 1-indexed; however, an
implementation is encouraged to use 0 when the column number is unknown.

file_name_ a presumed name of the current source file ([cpp.predefined]) as an NTBS.
function_name_ a name of the current function such as in __func__([dcl.fct.def.general])

if any, an empty string otherwise.

—(1.2) Otherwise, that is, when invoked in some other way, returns a source_location whose
data members are initialized with valid but unspecified values.

2 Remarks: When a brace-or-equal-initializer is used to initialize a non-static data member, any
calls to current should correspond to the location of the constructor or aggregate initialization
that initializes the member.

3 [Note: When used as a default argument ([dcl.fct.default]), the value of the source_location
will be the location of the call to current at the call site. —end note ]

4 [Example:
struct s {

source_location member = source_location::current();
int other_member;
s(source_location loc = source_location::current())

: member(loc) // values of member will be from call-site
{}
s(int blather) : // values of member should be hereabouts

other_member(blather)
{}

3



s(double) // values of member should be hereabouts
{}

};
void f(source_location a = source_location::current()) {

source_location b = source_location::current(); // values in b represent this line
}

void g() {
f(); // f’s first argument corresponds to this line of code

source_location c = source_location::current();
f(c); // f’s first argument gets the same values as c, above

}

—end example ]

constexpr source_location() noexcept;

5 Effects: The data members are initialized with valid but unspecified values.

2.1.3 source_location field access [reflection.src_loc.fields]

constexpr uint_least32_t line() const noexcept;

1 Returns: line_.

constexpr uint_least32_t column() const noexcept;

2 Returns: column_.

constexpr const char* file_name() const noexcept;

3 Returns: file_name_.

constexpr const char* function_name() const noexcept;

4 Returns: function_name_.

4


	1 Changes and Discussions made in Cologne 2019
	2 Instructions to the Editor
	2.1 Class source_location [reflection.src_loc]


