

Zero-overhead deterministic exceptions: Throwing values

Document Number: P0709 R4 Date: 2019-08-04

Reply-to: Herb Sutter (hsutter@microsoft.com) Audience: EWG, LEWG

R4: All sections, but esp. the design in §4.3 (allocation failure), are updated with LEWG+EWG Cologne feedback.

Abstract
Divergent error handling has fractured the C++ community into incompatible dialects, because of long-standing

unresolved problems in C++ exception handling. This paper enumerates four interrelated problems in C++ error

handling. Although these could be four papers, I believe it is important to consider them together.

§4.1: “C++” projects commonly ban exceptions, because today’s dynamic exception types violate the zero-

overhead principle, and do not have statically boundable space and time costs. In particular, throw requires

dynamic allocation and catch of a type requires RTTI. — We must at minimum enable all C++ projects to ena-

ble exception handling and to use the standard language and library. This paper proposes extending C++’s ex-

ception handling to let functions declare that they throw a statically known type by value, so that the implemen-

tation can opt into an efficient implementation (a compatible ABI extension). Code that uses only this efficient

exception handling has zero space and time overhead compared to returning error codes.

§4.2: Programs bugs are not recoverable run-time errors and so should not be reported as exceptions or error

codes. — We must express preconditions, but using a tool other than exceptions. This paper supports the

change, already in progress, to migrate std:: away from throwing exceptions for precondition violations.

§4.3: Allocation failure is not like other recoverable run-time errors and should be treated separately. — We

must be able to write allocation failure-hardened code, but we cannot do it portably by trying to report all failed

memory requests. This paper proposes each allocator decides whether to fail-fast or to report an error/excep-

tion on allocation failure, in a way that is can be tested by conditional noexcept, and then apply conditional no-

except widely throughout the library for functions where allocation failure is the only thing that could throw.

§4.5: Some users don’t use exceptions because exceptional control flow is invisible. — We must have auto-

matic propagation, but also the ability to make it visible. This paper proposes allowing try-expressions to make

exceptional paths concisely explicit in calling code, without losing any of the benefits of automatic propagation.

Contents
1 Overview ..2

2 Why do something: Problem description, and root causes ..5

3 What we want: Ideal error handling characteristics .. 13

4 How to get there .. 15

5 Dangers, and “what to learn in a TS” ... 56

6 Bibliography .. 57

mailto:hsutter@microsoft.com

P0709 R4 – Zero-overhead deterministic exceptions: Throwing values – Sutter 2

1 Overview

1.1 Prelude: Success-with-info and bugs/corruption are not “errors”

error: “an act that … fails to achieve what should be done.” — [Merriam-Webster]

“throwing logic error type exceptions… is not recoverable…” — [Douglas 2018]

In this paper, “error” means exactly and only “a function couldn’t do what it advertised” — its preconditions

were met, but it could not achieve its successful-return postconditions, and the calling code can recover.

(1) An alternate result is never an “error” (it is success, so report it using return). This includes “partial suc-

cess” such as that a buffer was too small for the entire request but was filled to capacity so more can be read on

the next call. Consider opening a file: For a general disk_file class’s constructor that takes a filename, not be-

ing able to open the file is a normal outcome (due to file system race conditions) and the type should allow a

not-open state; failing to open the file is not an error, it does not violate the constructor’s postcondition (its

class invariant). For an open_file class whose invariant guarantees an object of that type represents an opened

file, or for a higher-level function like InitializeSubsystem that depends on a config.ini file, not being able

to open the file is an error because it prevents achieving that constructor’s postcondition (its class invariant).

Note I distinguish “error codes” from “status codes” that could contain non-error results. Conflating “rou-

tine” and “error” results in one object makes it harder to keep normal and error processing distinct.

(2) A programming bug or abstract machine corruption is never an “error” (both are not programmatically re-

coverable, so report them to a human, by default using fail-fast). Programming bugs (e.g., out-of-bounds ac-

cess, null dereference) and abstract machine corruption (e.g., stack overflow) cause a corrupted state that can-

not be recovered from programmatically, and so they should never be reported to the calling code as errors that

code could somehow handle. For example, these are not errors, even if a previous bug happened earlier:

• A precondition violation is always a bug in the caller (it shouldn’t make the call). Corollary:

std::logic_error and its derivatives should never be thrown to report precondition violations (§4.2),

that type’s existence is itself a historical “logic error”; use assertions, contracts, or similar tools instead.

• A postcondition violation on “success” return is always a bug in the callee (it shouldn’t return success).

Violating a noexcept declaration is also a form of postcondition violation.

• An assertion (e.g., [[assert...]]) failure is always a bug in the function (its code is incorrect).

• Stack exhaustion is always an abstract machine corruption (a function cannot guard against it).

Note For a discussion of allocation failure (including but not limited to heap exhaustion, OOM), see §4.3.

1.2 Background and motivation summary

“… error handling idioms and practices remain contentious and confusing within the
C++ community (as well as within the Boost community).” — [Bay 2018]

C++ is the only major language without a uniform error handling mechanism that is recommendable for all code:

(§2.1) Neither today’s exceptions nor error codes are it. Each meets requirements that the other does not.

(§2.2) We are proliferating dual-mode interfaces that try to support both models (e.g., std::filesystem).

(§2.3) Worse, for reasonably common classes of real-world examples, neither is acceptable.

(§2.4) So we keep trying to invent new alternatives (e.g., Expected, Outcome).

P0709 R4 – Zero-overhead deterministic exceptions: Throwing values – Sutter 3

One consequence is that “C++” projects commonly turn off exception handling support in all or part of their pro-

jects, and are therefore not actually using Standard C++, but using a divergent language dialect with different

idioms (e.g., two-phase construction) and either a nonconforming standard library dialect or none at all. This is a

deep fracture, and de facto a different language: For example, it is not possible to write generic code that works

with types written in both styles, or to correctly combine (in some cases, even link) code that uses std:: fea-

tures with code that assumes a nonthrowing dialect of the library.

We must make it possible for all C++ projects to at least turn on exception handling support so they can use the

standard language and library. So the question is not how to pick a winner from among the many error handling

mechanisms; it is how to improve throw/try/catch, the only alternative that supports basic features like con-

structors, to become a universally usable mechanism, given C++’s constraints of zero-overhead and determinism

(both of which today’s dynamic exception model violates) and backward source and binary compatibility.

Note Importantly, “zero overhead” is not claiming zero cost — of course using something always incurs

some cost. Rather, C++’s zero-overhead principle has always meant that (a) “if you don’t use it you

don’t pay for it” and (b) “if you do use it you can’t reasonably write it more efficiently by hand.”

1.3 Design principles
Note These principles apply to all design efforts and aren’t specific to this paper. Please steal and reuse.

The primary design goal is conceptual integrity [Brooks 1975], which means that the design is coherent and relia-

bly does what the user expects it to do. Conceptual integrity’s major supporting principles are:

• Be consistent: Don’t make similar things different, including in spelling, behavior, or capability. Don’t

make different things appear similar when they have different behavior or capability. — This proposal

preserves the clear distinction between normal code and error handling, both when raising an error

(throw instead of return) and handling an error (catch instead of normal control flow like if/co_await).

It aims to remove the incentive to resort to compromised designs such as having the same function in-

consistently report some errors using an error code and others by throwing an exception. It directly im-

proves consistency by providing a form of exception whose automatic propagation leaks much less type

information from otherwise-encapsulated implementation details.

• Be orthogonal: Avoid arbitrary coupling. Let features be used freely in combination. — This proposal ena-

bles better composition by making errors that are propagated across a boundary cleanly composable,

including supporting better automatic lossless propagation.

• Be general: Don’t restrict what is inherent. Don’t arbitrarily restrict a complete set of uses. Avoid special

cases and partial features. — This proposal retains the ability to report all kinds of errors using the same

mechanism (with the note that allocation failure may be worth treating specially; see §4.3). It aims to

evolve exception handling to be a single general way to report errors that is suitable for all C++ code.

These also help satisfy the principles of least surprise and of including only what is essential, and result in features

that are additive and so directly minimize concept count (and therefore also redundancy and clutter).

Additional design principles include: Make important things and differences visible. Make unimportant things and

differences less visible. — This proposal suggests considering making exceptional control flow visible in source

code.

https://en.wikipedia.org/wiki/The_Mythical_Man-Month

P0709 R4 – Zero-overhead deterministic exceptions: Throwing values – Sutter 4

1.4 Acknowledgments
Thank you especially to the Direction Group for publishing [P0939R0] as a call for a direction for C++ evolution

that explicitly calls out the need to address the ongoing practical problems with exceptions vs. error codes.

Thank you to SG14 and LEWG for their feedback and encouragement, and to the following for reviews and com-

ments on this material: JF Bastien, Charley Bay, Paul Bendixen, Bartosz Bielecki, Vicente Botet, Glenn Brown,

Josh Cannon, Jonathan Caves, Alex Christensen, Daniel Colascione, Ben Craig, Pavel Curtis, Guy Davidson, Gabriel

Dos Reis, Niall Douglas, Ryan Fairfax, Nat Goodspeed, Chris Guzak, Zachary Henkel, Howard Hinnant, Odin

Holmes, Andrew Hunter, Sergey Ignatchenko, Dan Jump, Tomasz Kamiński, Thomas Köppe, Andrzej Krzemienski,

Ben Kuhn, Stephan T. Lavavej, John McCall, Jason McKesson, Jason Merrill, Arun Muralidharan, Phil Nash, Gor

Nishanov, Michael Novak, Arthur O’Dwyer, Billy O’Neal, Roger Orr, Sean Parent, Andreas Pokorny, Geoffrey

Romer, Ryan Shepherd, Bjarne Stroustrup, Tony Tye, Tony Van Eerd, Ville Voutilainen, Titus Winters, and Mi-

chael Wong.

1.5 Revision history
R4: All sections, but especially the design in §4.3 (allocation failure), were updated with LEWG+EWG 2019-07

(Cologne) poll feedback.

R3: §4.3 (allocation failure) was significantly revised and expanded.

R1: §4.2 and §4.3 incorporated LEWG 2018-06 (Rapperswil) poll feedback.

R0: Initial revision. Incorporated SG14 telecon discussion and poll feedback.

https://wg21.link/p0939r0

P0709 R4 – Zero-overhead deterministic exceptions: Throwing values – Sutter 5

2 Why do something: Problem description, and root causes

2.1 Exceptions have not replaced error codes, and vice versa

“There are still people who argue against all use of exceptions and people who claim
that exceptions should be used consistently instead of error codes.” — [P0939R0]

Exceptions are the error handling model that is required by key parts of the language (for constructors and oper-

ators) and by the standard library, but are widely banned. This means that a large fraction of the C++ community

is not actually using ‘real’ C++, but are using a language dialect, and either a nonstandard library or none at all.

Even though exceptions are required, and have been available for some 25 years, they have not replaced error

codes for error handling in C++. Therefore, they never will unless they are changed in some way to address the

reasons they cannot be used universally (see §2.5, “Root causes”). The community are voting with their feet:

• Major coding guidelines ban exceptions, including common modern guidelines endorsed by the world’s

top advocates of C++ exceptions. For example, the Google C++ Style Guide [GSG] bans exceptions. The

Joint Strike Fighter Air Vehicle C++ Coding Standards (JSF++) [JSF++ 2005] was produced by a group that

included Bjarne Stroustrup and is published on Stroustrup’s personal website, and bans exceptions.

• Many projects ban exceptions. In [SC++F 2018], 52% of C++ developers reported that exceptions were

banned in part or all of their project code — i.e., most are not allowed to freely use C++’s primary recom-

mended error handling model that is required to use the C++ standard language and library.

• Committee papers such as [P0829R2] and [P0941R0] embrace standard support for disabling exceptions.

• The C++ Core Guidelines’ Guidelines Support Library [GSL] requires exceptions, and cannot be used in

such projects. We are already getting requests for a nonthrowing version of GSL, which changes some of

its interfaces (e.g., narrow reports errors by throwing narrowing_error and would have to change).

• Non-throwing dialects of the STL and the rest of the standard library proliferate, and C++ implementa-

tion vendors continue to receive requests to support those nonstandard dialects.

• Every C++ compiler supports a mode that disables exception handling (e.g., -fno-exceptions).

This is an intolerable rift: Large numbers of “C++” projects are not actually using standard C++.

But switching to error codes isn’t the answer either — error codes cannot be used in constructors and opera-

tors, are ignored by default, and make it difficult to separate error handling from normal control flow.

2.2 Instead, we’re actively proliferating dual interfaces that do both

“Filesystem library functions often provide two overloads, one that throws an excep-
tion to report file system errors, and another that sets an error_code.” — [N3239]

Because we cannot universally recommend either exceptions or error codes, the community and even the com-

mittee are proliferating dual error reporting interfaces that support both, by providing throwing and non-throw-

ing alternatives. Worse, the ‘non-throwing’ alternatives in the standard are only non-throwing for some kinds of

errors, and still also throw to report other errors from the same function.

For example, the C++17 std::filesystem library supports reporting file system errors (only) as either excep-

tions or as error codes, often providing a pair of functions, one for each style; both functions still report non-file

errors using exceptions. For example, consider std::filesystem::directory_iterator::operator++:

https://google.github.io/styleguide/cppguide.html
http://www.stroustrup.com/JSF-AV-rules.pdf
https://isocpp.org/blog/2018/03/results-summary-cpp-foundation-developer-survey-lite-2018-02
https://wg21.link/p0829r2
https://wg21.link/p0941r0
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#S-gsl

P0709 R4 – Zero-overhead deterministic exceptions: Throwing values – Sutter 6

directory_iterator& operator++();

directory_iterator& increment(std::error_code& ec); // note: NOT noexcept

Note noexcept was removed from the second function, and a number of similar ones, at the recent Jack-

sonville meeting. See [LWG 3013] and [LWG 3014]. Before that it was already absent for over a

dozen similar functions per the policy summarized in the next paragraph.

The current design policy for filesystem is that, for file system codes only (which can also be just status codes),

the first function of each such pair reports them using exceptions and the second reports them using error_-

code; both alternative functions can still throw exceptions for other non-file errors. This means that inside this

dual error reporting design (two alternative functions) is a second nested dual error reporting design (in the

same function, some errors are reported via exceptions and others via error_codes), and this is intentional.

Notes This has surprised a lot of people, including SG14 in [P0824R1] sections 4.2 and 4.9. I find that pro-

grammers who encounter the filesystem API make the assumption that the second alternative is

for programs that don’t want to throw exceptions or that don’t have exception handling turned on.

So it is important to teach all filesystem users that filesystem does not actually generally support

a non-throwing mode, despite the overloads that appear to do so. — Rather, the motivation to not

throw exceptions appears to be more because “routine” status is reported using the same code type

that also communicates true errors (see §1.1 point (1) and accompanying Note, in this paper), and

so callers that use exceptions exclusively were found to be often littered with local try/catch blocks

to handle “routine” events. A different design approach for libraries like filesystem would be to

distinguish “routine”/informational status codes as distinct (a separate object) from error codes, and

report only the latter as errors.

We are following this dual design policy even though we know it has serious drawbacks:

• (worst) Makes error handling harder. It’s hard enough to get call-site programmers to perform con-

sistent and correct error handling when given a single consistent method of error reporting. Now we’re

giving them two alternatives to choose from — and then in one of those alternatives additionally report-

ing errors in two ways from the same function, asking callers to write two error handling twice using dif-

ferent styles. This makes it difficult for callers to write reliable code.

• Interface bloat. It bloats the library’s interface, which includes both the library’s documentation (exter-

nal) and an implementation’s test burden (internal).

• Encourages dialects (I). It actively encourages C++ dialects, because some callers use exceptions and

some use error codes, and both are actively supported by the API.

• Inconsistency. It eliminates the ability to use a consistent function name at least for operators since

these cannot be overloaded in this way (e.g., operator++ vs. increment, above).

• Encourages dialects (II): Discourages other language features. It creates a broader ripple effect through

the language by adding a reason to avoid otherwise-recommended unrelated features (e.g., C++ over-

loaded operators).

Despite all these drawbacks, within the C++ committee we are now having active discussions, not about solving

the underlying problem so we can stop creating dual interfaces, but instead about applying this pattern to still

more parts of the standard library (e.g., networking). The above example of directory_iterator::operator++

also acknowledges implicitly that even the standards committee agrees that exceptions are not considered suffi-

cient even in the cases where they have the strongest possible language advantage over error codes, namely for

operators and constructors. No other language I know of has such a bifurcation problem.

https://wg21.link/lwg3013
https://wg21.link/lwg3014
https://wg21.link/p0824r1

P0709 R4 – Zero-overhead deterministic exceptions: Throwing values – Sutter 7

2.3 Worse, for some real-world code neither is acceptable

“Recent threads on the Boost email-list continue to highlight the ongoing confusion
and disagreement even over the proper or idiomatic use of std::error_code … One

might think such discussions should by now be resolved; but no…” — [Bay 2018]

“On table-based exception handling implementations… A throw...catch cycle is
always at least thousands of times more expensive than a return statement, and

always must be so, even when the throw...catch is inlined” — [Douglas 2018]

In some real-world code, neither an exception nor an error code is acceptable. A poster child example is a con-

structor or overloaded operator that can fail, and must be usable in memory-constrained and/or real-time code:

• It cannot use exceptions, because the space and time cost of today’s dynamic exception handling is

nondeterministic and so cannot be guaranteed to fit in bounded space or bounded time. This is why ex-

ceptions are banned in JSF++ [JSF++ 2005] and the Mars Rover flight software [Maimone 2014].

• It cannot use error codes. For constructors, using error codes means embracing a poor and incompati-

ble C++ dialect, either pervasively using two-phase construction and “is-constructed” tests on every type

with a fallible constructor (for example, see Outcome 2.0: Result returning constructors) or replacing

constructors with factory functions. For operators, using error codes means not using operators at all

but replacing them with named functions (for example, see the preceding std::filesystem example

which renames operator++ to increment).

Yet the standard library itself, including STL, specifies constructors and operators that can fail. So we cannot eas-

ily use a conforming standard library in memory-constrained and/or real-time code; that would require modify-

ing it to report errors in another way (and in an incompatible dialect of C++, per above), or leaving its design as-

is but applying the hammer of disabling exceptions and just ignoring errors (unacceptable in general).

2.4 And we’re proliferating new patches and alternatives

“Note that expected can also act as a bridge between an
exception-oriented code and a nothrow world.” — [P0323R3]

“Exception throwing is absolutely at the heart of Outcome.
That's why Outcome != Expected” — N. Douglas, quoted in [Bay 2018]

Proliferation of patches to make error codes better. We have ongoing active discussions, such as in SG14, about

“exception-less error handling” using C++11 std::error_code or an evolution thereof (see [P0824R1]). Also,

C++17 added the nodiscard attribute for “important” return values, motivated in part by returned status infor-

mation that should not be ignored (see [P0068R0] example 4). Note that nodiscard is broadly useful and desira-

ble; however, the specific use of relying on it to make sure callers don’t silently ignore errors is a “patch” in

terms of the error handling model.

Proliferation of new library-only solution attempts. The C++ committee and community continue to consider

new alternatives in new standardization. For example:

http://www.stroustrup.com/JSF-AV-rules.pdf
https://github.com/CppCon/CppCon2014/blob/master/Presentations/C%2B%2B%20on%20Mars%20-%20Incorporating%20C%2B%2B%20into%20Mars%20Rover%20Flight%20Software/C%2B%2B%20On%20Mars%20-%20Mark%20Maimone%20-%20CppCon%202014.pdf
https://ned14.github.io/outcome/tutorial/constructors/
https://wg21.link/p0824r1
https://wg21.link/p0068r0

P0709 R4 – Zero-overhead deterministic exceptions: Throwing values – Sutter 8

• In the committee, we are advancing the proposed std::experimental::expected<SuccessRe-

sult,ErrorResult> [P0323R3]. As noted in the paper: “C++ already supports exceptions and error

codes, expected would be a third kind of error handling.”

• Boost, while aware of this, continues to pursue evolving a distinct outcome::result<SuccessResult>

with different tradeoffs, notably lower run-time overhead than expected for expected. From the 2018

Boost acceptance report for Outcome v2 [Bay 2018], emphasis original: “The prime motivation for ac-

ceptance is: Reviewers have real-world use cases today for which they found Outcome to be an effective

and best available alternative; and which is consistent with current-need and expectations; and which is

consistent with ongoing C++ Standard evolution efforts. From the Library Author: ‘Outcome is really an

abstraction layer for setting per-namespace rules for when to throw exceptions. Exception throwing is

absolutely at the heart of Outcome. That's why Outcome != Expected, and why it ICEs older compilers,

and why C++ 14 is needed.’ ”

As library solutions without language support, these approaches have two major problems: First, they are funda-

mentally attempts to regain use of the return value for error reporting, and by fusing “success” and “error” re-

turns they force callers to perform error handling using only normal control flow constructs to inspect a merged

value. Second, they contribute to fracturing C++ error handling because they are adding a third or a fourth style;

for example, in their current form, it is not clear whether these would be universally adoptable throughout

std::filesystem to resolve its dual-mode problem, and [Bay 2018] includes the note that Outcome is not in-

tended to be usable for all error handling.

The good news is that these efforts are blazing trails, and converging, in a good direction: They are already very

close to expressing a library type that is suitable for universal C++ error reporting, with strong efficiency and fi-

delity characteristics. That’s important, because it means we may now be at a point where the library type is suf-

ficiently baked for the language to be able to embrace it and help them (this proposal).

Notes There are two families of use cases given for expected, and only one is about error handling: (1) ex-

pected<T1,T2> where both paths are normal “routine” control flow, and T2 is an alternate result

for a “routine” outcome; for this, the authors of expected acknowledge that variant<T1,T2> might

be a more natural choice. (2) expected<T,E> where E really represents an error; for this, I think

there is real benefit in this paper’s proposed language support to keep the error-handling paths dis-

tinct and automatically propagate the errors.

 I’m not actually against having ValueOrError types like expected and outcome; the problem is just

that it diverges the programming model for calling code, which always interferes with generic code

in particular; for example, I cannot write a template that can equally invokes two types or functions,

one of which reports errors using exceptions and the other using expected. Fortunately, and im-

portantly, it may be possible to unify these using try-expressions; see §4.5.1, particularly Jason

McKesson’s observation in the Note.

2.5 Root causes: Why we can’t just use exceptions everywhere today

“I can’t recommend exceptions for hard real time; doing so is a research problem,
which I expect to be solved within the decade” — [Stroustrup 2004]

Above, we enumerated the performance issues with today’s dynamic exception handling model: binary image

bloat, run-time cost, and deterministic run-time space and time cost (when throwing).

https://wg21.link/p0323r3
https://lists.boost.org/Archives/boost/2018/02/241066.php
https://lists.boost.org/Archives/boost/2018/02/241066.php

P0709 R4 – Zero-overhead deterministic exceptions: Throwing values – Sutter 9

The root cause of these problems is that today’s dynamic exception handling model violates two of C++’s core

principles, zero-overhead and determinism, because it requires:

• throwing objects of dynamic types, which requires dynamic allocation to throw and dynamic RTTI to

catch by type; and

• using non-local by-reference propagation and handling semantics, which requires non-local coordination

and overheads, and requires arbitrarily many exceptions with distinct addresses at the same time.

For additional details beyond what is covered below, see section 5.4 of the Performance TR, [ISO 18015:2004].

(1) Today’s exception handling is not zero-overhead (binary image size, run-time space and time). Exception

handling is one of two C++ language features that violates the zero-overhead principle, that “you don’t pay for

what you don’t use” and that “when you do use it you can’t reasonably write it more efficiently by hand.” For

example, just turning on exception handling support in a project previously compiled without exception support

— i.e., one that is not yet throwing any exceptions at all — commonly incurs significant binary space overhead; I

regularly hear +15% reported (Chris Guzak in personal communication regarding Windows internal examples,

and +16% reported by Ben Craig on the SG14 mailing list for a different code base and environment), and I have

recently seen other Windows internal examples with +38% bloat, down from +52% after recent additional back-

end optimization (Ryan Shepherd, personal communication). The overhead arises in various places: In the binary

image, we have to store jump tables or other data/logic. At run time, most implementations reserve additional

stack space per thread (e.g., a 1K reservation, to save a dynamic allocation) and require and use more-expensive

thread-local storage.

(2) Today’s dynamic exception handling is not deterministic (run-time space and time cannot be statically

bounded), because throw requires dynamic allocation and catch of a type requires RTTI. This is the primary

reason exceptions are banned in many real-time and/or safety-critical environments (for example, many games,

coding standards like JSF++ [JSF++ 2005], and environments like the Mars Rover flight software [Maimone

2014]). C++ allows there to be multiple active exception objects of arbitrary types, which must have unique ad-

dresses and cannot be folded; and it requires using RTTI to match handlers at run time, which has statically un-

predictable cost on all major implementations and can depend on what else is linked into the whole program.1

Therefore during stack unwinding the exception handling space and time cost is not predictable as it is with er-

ror codes. Adequate tools do not exist to statically calculate upper bounds on the actual costs of throwing an

exception.

 Examples of inherent overheads
Here are some specific examples of required overheads.

Note that all of the overhead examples in this subsection are inherent in the model of “throwing dynamic types

using non-local by-reference propagation” — the costs cannot in general be avoided simply by using a smarter

implementation strategy (they can only be moved around, such as by using table-based vs. frame-based imple-

mentations, or by using heap vs. pin-the-dead-stack allocation), and they cannot in general be optimized away

(even with heroic potential optimization efforts that implementations do not actually attempt today).

Note There have been extended arguments about whether the choice of table-based vs. frame-based ex-

ception handling implementation strategies might be the reason why exceptions have not been uni-

versally adoptable. It isn’t. For details, see section 5.4 of the Performance TR, [ISO 18015:2004]. —

1 Absent heroic optimizations, such as fully inlining all functions called from a catch block to prove there is no re-throw.

http://www.stroustrup.com/performanceTR.pdf
https://groups.google.com/a/isocpp.org/d/msg/sg14/rf7JOgJbsKk/5ESXXjEiBQAJ
http://www.stroustrup.com/JSF-AV-rules.pdf
https://github.com/CppCon/CppCon2014/blob/master/Presentations/C%2B%2B%20on%20Mars%20-%20Incorporating%20C%2B%2B%20into%20Mars%20Rover%20Flight%20Software/C%2B%2B%20On%20Mars%20-%20Mark%20Maimone%20-%20CppCon%202014.pdf
https://github.com/CppCon/CppCon2014/blob/master/Presentations/C%2B%2B%20on%20Mars%20-%20Incorporating%20C%2B%2B%20into%20Mars%20Rover%20Flight%20Software/C%2B%2B%20On%20Mars%20-%20Mark%20Maimone%20-%20CppCon%202014.pdf
http://www.stroustrup.com/performanceTR.pdf

P0709 R4 – Zero-overhead deterministic exceptions: Throwing values – Sutter 10

Briefly: Table-based implementations are better when failure almost never happens, and frame-

based shines when failure is common, but both still incur non-local costs just to enable exceptions

regardless of whether, or how often, they are thrown, and both incur some cost even on the success

path. Neither implementation style can achieve zero-overhead or determinism, because the costs

are inherent in exceptions’ demands for additional binary image code/data, run-time heap alloca-

tion, and dynamic run-time typing — table-based vs. frame-based is just moving those costs around,

not eliminating them.

(1) Today’s dynamic exceptions can require arbitrarily many exceptions in flight with unique addresses. Han-

dling an exception can cause additional exceptions (of potentially unrelated dynamic types) to be thrown from

the catch handler before the exception being handled can be destroyed. Multiple exceptions in flight cannot be

folded using normal optimizations for variable folding, and so because arbitrarily many exceptions can be in

flight, and their number is not in general statically predictable, throwing an exception requires arbitrary

amounts of memory.

(2) Today’s dynamic exception objects cannot be allocated normally in the local stack frame. This leads to un-

predictable time space and/or time costs in various ways. Here are two typical examples:

• On platforms that use the [Itanium ABI], exceptions are required to be allocated on the heap (modulo

potential optimizations that are not actually implemented today, such as the proposed LLVM optimiza-

tion in [Glisse 2013]). Heap allocation requires unpredictable time, even on allocators that avoid global

synchronization in the memory allocator.

• On Windows platforms, exceptions are technically allocated on the stack, but they are far from normal

stack allocations: When an exception is thrown, the stack contents are destroyed by unwinding back to

the catch handler, but the now-unused stack space itself is not yet deallocated until the handler ends —

in effect the stack storage is “pinned” until the original exception can be destroyed. This means that the

catch handler code must run at a stack location beyond the stack depth where the being-handled ex-

ception was thrown, skipping the dead space — and this repeats recursively for any additional excep-

tions thrown during handling, and C++ today allows arbitrarily many such exceptions to be created (see

previous point). For a simple example of just three such in-flight exceptions and how they multiply stack

usage, see the Appendix. In this implementation strategy, the stack memory usage is therefore a total of

the individual stack depths of each path that threw an exception while another exception was already

active, and I do not know of tools that compute a static memory use bound. (I have not tried to measure

whether this attempt at ‘in-stack-memory-but-not-really-stacklike’ allocation is typically better or worse

overall than just doing a real heap allocation; it will nearly always be worse in total memory consumed,

but it does avoid contention on the global allocator.)

(3) Therefore, today’s dynamic exceptions cannot share the return channel. When an exception is thrown, the

normal return channel is entirely wasted. That itself is an inherent architectural pessimization.

(4) Today’s dynamic exceptions require using some form of RTTI to match handlers. The cost of RTTI is gener-

ally nondeterministic in both space and time.

Note RTTI is the other C++ language feature that violates the zero-overhead principle; exceptions and

RTTI are so widely disabled that [P0941R0] proposes special feature test macros for testing the ab-

sence of only those C++98 language features. We need to fix RTTI too, but this is not that paper.

However, because exceptions rely on RTTI (by propagating and manipulating dynamically typed ex-

https://itanium-cxx-abi.github.io/cxx-abi/
https://bugs.llvm.org/show_bug.cgi?id=17467
https://wg21.link/p0941r0

P0709 R4 – Zero-overhead deterministic exceptions: Throwing values – Sutter 11

ceptions) so that the cost of RTTI is indirectly part of the exception handling cost, here is a brief sum-

mary of why RTTI violates zero-overhead and the two issues that most directly affect exception han-

dling: 2

 First, it requires support for typeid, including typeid.name(), which is effectively metadata.

Normally C++’s zero-overhead design rejects “pay for what you don’t use” overheads that add

space or time cost even when not used; the usual poster child examples are “always-on” or “de-

fault-on” (a) metadata (e.g., we have always rejected storing even the names of enumerators)

and (b) garbage collection (e.g., we support it via opt-in libraries but not as the global default).

The one place C++ adds required metadata is in typeid, especially typeid.name().

 Second, it does not distinguish dynamic casts that have different costs. For example, the follow-

ing have different power and different costs (and are already distinguished in the [Itanium ABI]:

(a) downcast to the statically unknown most-derived type (complete object); (b) downcast to a

statically known derived type (not necessarily most derived); (c) cross-cast to a statically known

sibling type; and (d) upcast from the statically unknown most-derived type to a public statically

known base type. Because dynamic_cast must perform all of the first three operations (a) (b)

and (c), it is necessarily at least as expensive as the most expensive of all three. (See [O’Dwyer

2017] for a lucid treatment.) Exception handling only needs (d).

 To fix the above two issues (in the context of enabling a more efficient dynamic exception han-

dling implementation), we could provide a version of RTTI for catch implementation use only

that is not disabled when RTTI is otherwise disabled, and that does not include typeid support

and includes support only for dynamic casting of type (d), with the caveat that (d) might still vio-

late either the zero-overhead principle (either by generating additional static data in the vtable

to enable constant-time casting as demonstrated in [O’Dwyer 2017] slides 40-42, or by avoiding

additional static data at the cost of non-constant-time casting which would leave it unsuitable

for real-time code).

 Third (and this might or might not be able to be mitigated by the approach in the previous para-

graph), the cost of RTTI can be effectively unpredictable because linking in unknown third-party

shared libraries can dramatically affect the performance of RTTI lookup, and thus the perfor-

mance of exception handling. In general we cannot predict whether some end user, or even cus-

tomer of that end user, will not combine our code with some other code in the same process;

Niall Douglas reports real-world cases where a user’s linking in other code caused the cost of

throw…catch to rise dramatically (e.g., 500ms on a heavily loaded machine) due to the environ-

ment-specific unpredictability of the RTTI cost.

 For the above reasons, major projects and guides (e.g., Firefox, Chrome, the Google C++ Style Guide

[GSG]) actively discourage or ban using RTTI and dynamic_cast. This usually means that these pro-

jects cannot use exceptions either, because today exceptions rely on RTTI.

 The projects work around their lack of dynamic_cast by using static_cast downcasts, using a visi-

tor pattern, or rolling their own homegrown dynamic casting method (e.g., storing a type tag for a

2 There are other issues less directly relevant to exception handling. For example, in addition to these overheads, some im-
plementations of dynamic_cast incur needless extra run-time inefficiencies, such as by performing textual string compari-
son as part of the cast operation. Those overheads can be fixed to incrementally improve RTTI performance, but those fixes
are not germane here because they don’t materially change the RTTI impact on exception handling.

https://itanium-cxx-abi.github.io/cxx-abi/
https://www.youtube.com/watch?v=QzJL-8WbpuU
https://www.youtube.com/watch?v=QzJL-8WbpuU
https://www.youtube.com/watch?v=QzJL-8WbpuU
https://google.github.io/styleguide/cppguide.html

P0709 R4 – Zero-overhead deterministic exceptions: Throwing values – Sutter 12

known class hierarchy, which does not scale universally). This continues to cause new C++ code se-

curity exploits due to type confusion vulnerabilities, where the root cause analysis of many recent

security incidents has observed that the code should have used dynamic_cast, but did not because

of its binary image space and/or run-time costs (for example, see [Lee 2015], paragraphs 2 and 3).

 It is an open research question whether C++’s currently specified RTTI is implementable in a way

that guarantees deterministic space and time cost. [Gibbs 2005] describes an approach to get con-

stant-time dynamic casting in constrained class hierarchies by having the linker assign type identifi-

ers, but it does not support dynamic libraries or hierarchies or arbitrary shape and size, and so is not

a general solution. The two known followup papers [Dechev 2008] and [Dechev 2008a] did not at-

tempt to address those issues, but focused on contributing incremental improvements to the heuris-

tic for generating type identifiers.

See also:

• §4.6.1: “Wouldn’t it be better to try to make today’s dynamic exception handling more efficient, instead

of pursuing a different model?”

• §4.6.2: “But isn’t it true that (a) dynamic exceptions are optimizable, and (b) there are known optimiza-

tions that just aren’t being implemented?”

Fortunately, having exception handling with automatic propagation does not require a model with these proper-

ties. We have existing counterexamples: For example, although today’s C++ dynamic exception handling is not

isomorphic to error codes, Midori’s [Duffy 2016] and CLU’s [Liskov 1979] exception handling models are isomor-

phic to error codes which enables more efficient implementations, and does not preclude automatic propaga-

tion.

http://wenke.gtisc.gatech.edu/papers/caver.pdf
https://na01.safelinks.protection.outlook.com/?url=http%3A%2F%2Fwww.stroustrup.com%2Ffast_dynamic_casting.pdf&data=04%7C01%7Chsutter%40microsoft.com%7C0dc563307d6f49d9d14c08d586fc49dc%7C72f988bf86f141af91ab2d7cd011db47%7C1%7C1%7C636563340974579409%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwifQ%3D%3D%7C-1&sdata=a%2BsVIk7LrefnA6IDbgQdZElDGdUd5KRjb%2FffcR6qE8s%3D&reserved=0
file:///D:/OneDrive/C++/known%20followup
http://www.stroustrup.com/isorc2008.pdf
http://www.stroustrup.com/fdc_jcse.pdf
http://joeduffyblog.com/2016/02/07/the-error-model/
http://csg.csail.mit.edu/pubs/memos/Memo-155/Memo-155-3.pdf

P0709 R4 – Zero-overhead deterministic exceptions: Throwing values – Sutter 13

3 What we want: Ideal error handling characteristics

3.1 Summary of the ideal: We need exceptions’ programming model

“Conflating error handling and control flow is a crime against readability and conciseness.”
— Michael Novak, personal communication

This section lays out what I believe are ideal error handling characteristics. They are not unique to C++; I believe

they apply to most modern languages.

Ideal Exceptions Error codes expected<T,E> outcome<T>

A. “Error” flow is distinct from “success”

 When raising (distinct from normal return)

 When handling (distinct from success code)

Yes (throw)

Yes (catch)

No

No

Partial (return
unexpected)

Partial (.value()
 throws)

Yes (return suc-
 cess vs. return
 failure)

Partial (policy
 determined)

B. Error propagation and handling

 Errors can only be ignored explicitly
 (not ignored silently by default)

 Unhandled error propagation is automated

 Unhandled error propagation is visible

 Writing an error-preserving error-neutral
 function is simple

Yes

Yes

No (Yes if §4.5)

Yes

Partial (nodiscard,
 warnings)

No

Yes

No

No (in current
proposal)

No

Yes

?

Partial (policy
 configurable)

No

Yes

Yes

C. Zero-overhead and determinism

 Stack allocated (no heap)

 Statically typed (no RTTI)

 Space/time cost equal to return

 Space/time cost fully deterministic

No (Yes if §4.1)

No (Yes if §4.1)

No (Yes if §4.1)

No (Yes if §4.1)

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Note This paper does not address other potential improvements that would require a source breaking

change, such as that function declarations should default to “does not fail.” In the future, I hope

to bring proposals to address those issues in the broader context of exploring how to take a

source breaking change that could change defaults and in other ways enable further C++ simpli-

fication, but they are beyond the scope of this paper.

Group A: “Normal” vs. “error” is a fundamental semantic distinction, and probably the most important distinc-

tion in any programming language even though this is commonly underappreciated. Therefore, the distinction

should be surfaced explicitly (though as elegantly as possible) in language syntax and program structure.

Group B: True errors (as opposed to partial-success or other success-with-info) are important and should be

handled even if by explicitly doing nothing. Any approach that allows them to be silently ignored will incur long-

term cost to program robustness and security, and to a language’s reputation. Further, they should be propa-

gated in a way that the programmer can reason about. — The one place that exception handling fails the ideals

shown here is that exception propagation between the throw site and the catch handler is invisible in source

P0709 R4 – Zero-overhead deterministic exceptions: Throwing values – Sutter 14

code, which makes exception-neutral code (which predominates) harder to reason about and is primarily ad-

dressed by widespread use of RAII stack-based variables (which are good for many reasons besides exception

safety).

Group C: This group is “because this is C++,” but it’s also where exception handling most falls short today. The

proposal in §4.1 is motivated by the observation that the costs are associated with being able to throw arbitrar-

ily typed exceptions.

3.2 Goals and non-goals
This paper aims at two essential goals, that we must achieve to keep C++ unified (whether via this proposal or in

some other way).

(1) We must remove all technical reasons for a C++ project to disable exception handling (e.g., by compiler

switch) or ban use of exceptions, in all or part of their project. This does not mean requiring a project to actu-

ally use exceptions for all their error reporting. It just means that every C++ project be able to use the standard

C++ language and a conforming standard library.

SG Poll The 2018-04-11 SG14 telecon took a poll on whether the above is a problem worth trying to solve:

Unanimous consent.

(2) We must reduce divergence among error reporting styles. This means converging as many of the divergent

error reporting styles as possible by providing a usable model that can subsume some of the others.

Non-goals (but we might effectively reach them anyway, at least in part):

• It is not a goal to make exceptions safe for propagation through C code. — However, because this pro-

posal defines a kind of exception that is implemented as an error return, I believe this proposal could

make it possible for C and other-language code to correctly invoke C++ functions that use the proposed

exception model to report errors and that otherwise are written in the C subset.

• It is not a goal to enable errors to be handled using normal control flow constructs. — However, §4.5

describes how this proposal puts us on a path where programmers can write code in exactly the same

style as using expected<T,U> today, but with the improvement of keeping the normal and error paths

as fully distinct (catch instead of using normal control constructs).

• It is not a goal to enable distantly-handled errors to contain arbitrary programmatically-usable infor-

mation. Distantly-handled error details primarily need to be human-usable (e.g., debugging and trace

logging), and a .what() string is sufficient.

P0709 R4 – Zero-overhead deterministic exceptions: Throwing values – Sutter 15

4 How to get there
… The [Outcome] Library Author can be congratulated (or scolded) for exploring work
or attempting Boost community review in such a contentious space.” — [Bay 2018]

This section proposes a solution — not without trepidation, because I understand this touches an electrified rail.

Error handling is perhaps the most fundamental design point of any programming language. It cannot be

changed lightly. However, if there are chronic unresolved issues with error handling, then addressing those suc-

cessfully can have outsized leverage to deliver broad improvement across all uses of the language — if we can

design for backward source and binary compatibility, so that new and old code can interoperate seamlessly.

4.1 Core proposal: throws values (addresses §3.1 groups C and D)
SG Poll The 2018-04-11 SG14 telecon took a poll on pursuing this direction: 12-2-0 (Favor-Neutral-Against).

EWG Poll Problem poll, EWG 2019-07 (Cologne): “1. ‘I can’t afford to enable exception handling.’ Just turning

on EH incurs space overhead. — Is #1 a problem worth investing EWG time to try to solve?” 22-20-5-

1-0 (SF-F-N-WA-SA)

EWG Poll Problem poll, EWG 2019-07 (Cologne): “#2. ‘I can’t afford to throw an exception.’ Throwing an ex-

ception incurs not-statically-boundable space and time overhead. Throwing an exception usually

less efficient than returning code/expected<> by hand. — Is #2 a problem worth investing EWG time

to try to solve?” 22-17-4-2-1 (SF-F-N-WA-SA)

EWG Poll Solution poll, EWG 2019-07 (Cologne): “Section 4.1 (throws specifier, bikesheddable): Encourage

further work in this general direction?” 15-16-6-6-3 (SF-F-N-WA-SA)

 Elevator pitch
This proposal aims to marry the best of exceptions and error codes: to allow a function to declare that it throws

values of a statically known type, which can then be implemented exactly as efficiently as a return value.

Throwing such values behaves as-if the function returned union{R;E;}+bool where on success the function re-

turns the normal return value R and on error the function returns the error value type E, both in the same return

channel including using the same registers. The discriminant can use an unused CPU flag or a register.

The entire implementation of throwing and propagating such exceptions is entirely local within a function and

its stack frame (no need for separate tables, no separate allocation outside the stack frame), is statically typed

(no need for RTTI), and is equally deterministic in space and time as returning an error code. It is at most zero

overhead compared to returning an error code, and can be negative overhead in practice compared to returning

an error via an error_code& out-parameter because an out-parameter cannot share the return channel.

Expanding the elevator pitch to specific audiences:

• If you love exceptions, including you wish you could use exceptions but can’t tolerate their cost: This is

exception handling, with error handling separated from normal control flow and automatic propagation

and never-silently-ignorable errors — plus the special sauce that if you agree to throw an error value

you get a more efficient implementation that is truly zero-overhead and fully deterministic in space and

time.

P0709 R4 – Zero-overhead deterministic exceptions: Throwing values – Sutter 16

• If you love expected/outcome: This is embracing expected/outcome and baking them into the lan-

guage, the function always returns exactly one of R or E — plus the special sauce that you get automatic

propagation so you don’t have to manually return-up the results, and with a distinct language-supported

error path so that callees can write throws (instead of return unexpected) and callers get to cleanly put

all their error handling code in distinct catch blocks (instead of if(!e) blocks) while still writing in the

same basic expected style (see §4.5).

• If you love error codes: This is just giving a function two return paths, one for success and one for failure

where the latter returns an error code as usual — plus the special sauce that the language lets you dis-

tinguish the two, the error code doesn’t monopolize your natural return value channel, you don’t have

to propagate the error by hand, and you can’t forget to check errors.

• If your project needs fail-fast on all allocation failure: See §4.3.

 std::error type

“By allowing multi-level propagation of exceptions, C++ loses one aspect of
static checking. One cannot simply look at a function to determine which

exceptions it may throw.” — [Stroustrup 1994] p. 395

Let relocatable mean movable with the semantics that the destructor of the moved-from object is never called.

Let trivially relocatable mean that the move step is trivial (but the destructor need not be trivial).

Notes “Trivially relocatable” implies that, given two objects src and dst of type T, performing a move from

src to dst followed by performing destruction src.~T() is functionally equivalent to just copying

the bytes from the source object to the destination object. A roughly-equivalent formulation is that

moving src to dst is functionally equivalent to just copying the bytes from src to dst and then cop-

ying the bytes from a default-constructed T{} to src.

 Any trivially copyable type is also trivially relocatable, but many types are trivially relocatable with-

out being trivially copyable, including (in most implementations) unique_ptr, exception_ptr, and

string.

 See also the directly related [[move_relocates]] proposal [P1029R0]. If that proposal is adopted,

std::error can be annotated using the general [[move_relocates]] mechanism. In the mean-

time, for this paper I define the term only in order to define error itself as a type having trivially

relocatable semantics, and to define the destructor treatment of a user-selectable error type E in

§4.6.5 if it is/isn’t relocatable.

 There have been suggestions for such a general language feature, under names such as “destructive

move,” but neither this proposal nor [P1029R0] proposes that.

 [O’Dwyer 2018a] demonstrates is_trivially_relocatable as an opt-in library tag, where making

the libc++ implementation of vector<unique_ptr<int>> relocation-aware, and tagging

unique_ptr as relocatable, improved .reserve() reallocation performance by 3.

 See this Godbolt example provided by Niall Douglas which demonstrates that having either a trivial

move constructor or a trivial destructor is sufficient to return error in registers on the Itanium ABI.

Using the related new (2018-02) Clang extension [[clang::trivial_abi]] (see [O’Dwyer 2018b])

it is possible to get register-passing capability for a wider variety of RAII types; see this Godbolt ex-

ample provided by Arthur O’Dwyer.

https://wg21.link/p1029r0
https://wg21.link/p1029r0
https://docs.google.com/presentation/d/155Z414uxDfWiyoXIoIxjVRtfUtqByJibiNKrsewH61s
https://gcc.godbolt.org/#g:!((g:!((g:!((h:codeEditor,i:(j:1,lang:c%2B%2B,source:'//%23define+DISABLE_TRIVIAL_MOVE_CONSTRUCTOR%0A//%23define+DISABLE_TRIVIAL_DESTRUCTOR%0A%0A%23include+%3Ctype_traits%3E%0A%0Aclass+error%0A%7B%0A++++void+*_reg0%7Bnullptr%7D,+*_reg1%7Bnullptr%7D%3B%0
https://quuxplusone.github.io/blog/2018/05/02/trivial-abi-101/
https://gcc.godbolt.org/#g:!((g:!((g:!((h:codeEditor,i:(j:1,lang:c%2B%2B,source:'%23define+DISABLE_TRIVIAL_MOVE_CONSTRUCTOR%0A%23define+DISABLE_TRIVIAL_DESTRUCTOR%0A%23define+USE_TRIVIAL_ABI%0A%0A%23include+%3Ctype_traits%3E%0A%0Aclass%0A%23ifdef+USE_TRIVIAL_ABI%0A++++%5B%5Bclang
https://gcc.godbolt.org/#g:!((g:!((g:!((h:codeEditor,i:(j:1,lang:c%2B%2B,source:'%23define+DISABLE_TRIVIAL_MOVE_CONSTRUCTOR%0A%23define+DISABLE_TRIVIAL_DESTRUCTOR%0A%23define+USE_TRIVIAL_ABI%0A%0A%23include+%3Ctype_traits%3E%0A%0Aclass%0A%23ifdef+USE_TRIVIAL_ABI%0A++++%5B%5Bclang

P0709 R4 – Zero-overhead deterministic exceptions: Throwing values – Sutter 17

The single concrete type error is an evolution of std::error_code; see also related paper [P1028R0]. It has the

following ideal requirements, including the improvements suggested by SG14’s review in [P0824R1]:3

• It always represents a failure (there is no 0 success value). A default constructor would construct a gen-

eral or “other” nonspecific error value.

• Its size is no greater than two pointers, typically a “payload” (usually an integer) plus a constexpr “do-

main” (usually a pointer or hash value that is used only for its type to distinguish the domain).

• Its “domain” discriminant (similar to std::error_category but with the improvements suggested in

[P0824R1]) is able to represent all causes of failure in the C++ standard library, as well as POSIX system

codes, Windows NTSTATUSes, COM HRESULTs, and other popular error reporting systems.

• It is type-erased, allocation-free, trivially relocatable, constant-time in all operations, ABI-safe, and safe

to use in header-only libraries, while also non-lossy to preserve the original cause of failure.

• It provides weak_equality heterogeneous comparison that performs semantic equivalence comparison

across domains, which aids composability; for example, “host unreachable” errors from different do-

mains (e.g., Win32 and POSIX) compare equivalent to each other and to errc::host_unreachable

which can be queried in portable code without being dependent on the platform-specific source error.

Note This proposed std::error is a library type. As usual for a common standard low-level type it can

have implementation-defined/compiler-supported “gravy,” as we do with the std:: comparison

categories. In this case, that can include making it work even better with C implementations, as

there is a coordinated proposal going through the C committee at the same time as this proposal for

C++. All of this does not affect the library specification of the type, and is in addition to, not instead

of, working great for C++.

 throws static-exception-specification
This paper proposes that a function (including lambda function) may declare a static-exception-specification of

just throws to indicate that the function can fail. If the function fails, it throws an object of type std::error im-

plemented as-if returning it as an alternate return value (i.e., on the stack).

For example:

string f() throws {

 if (flip_a_coin()) throw arithmetic_error::something;
 return “xyzzy”s + “plover”; // any dynamic exception is translated to error

}

string g() throws { return f() + “plugh”; } // any dynamic exception is translated to error

int main() {

 try {

 auto result = g();
 cout << “success, result is: ” << result;

 }

 catch(error err) { // catch by value is fine

 cout << “failed, error is: ” << err.error();

3 See [Douglas 2018c] for a sample prototype implementation, which claims to meet all of the requirements stated in this
list. It is a refinement of system_code (an alias for status_code<erased<intptr_t>>) from [Douglas 2018a], which itself is
just starting to be brought to Boost and SG14.

https://wg21.link/p1028r0
https://wg21.link/p0824r1
https://wg21.link/p0824r1
https://ned14.github.io/status-code/doc_error.html
https://github.com/ned14/status-code

P0709 R4 – Zero-overhead deterministic exceptions: Throwing values – Sutter 18

 }

}

Note I considered using throw, but we also want a “does this throw static exceptions” operator analogous

to the noexcept operator (see §4.1.4), and we can’t use throw unambiguously for that operator. So

for consistency between this declaration and the operator, I am using the strawman syntax throws.

Using throws also helps to avoid any confusion with the mostly-removed dynamic exception specifi-

cation throw(/*...*/) syntax.

For a function f declared with a static-exception-specification throws:

• All declarations of f must be declared throws, including in base classes if f is a virtual override.

• f behaves as-if noexcept(false) when queried by the noexcept operator and the *noexcept* and

nothrow traits (e.g., move_if_noexcept, is_nothrow_move_constructible).

• Conceptually, in the case of failure f behaves as-if it were declared with a return type of error. The nor-

mal and error returns share the same data channel and exactly one is used.

Notes This includes being able to return error in registers. There are no functions declared with throws

today, so we have an opportunity to define the ABI for this new set of functions, as a new case that

extends existing calling conventions. For example, we can expand the number of registers (e.g., to 4

or 6 on x64, to 8 on AArch64), and use one of the unused CPU flag bits to indicate whether those

registers contain a value or an error.

 An alternative would be to formally specify this be implemented as an E* “out” parameter, so that if

the function is otherwise callable from C (or other languages that understand C as de facto lingua

franca) then the error handling is consistently available from calling code in those languages. An out-

parameter implementation strategy could generate more compact code for exception-neutral code,

and reduce total stack usage. — We will prototype and measure both alternative implementations.

• For any throw-expression in f’s body that has no argument (i.e., re-throw;): It must appear in a catch

block and behaves as-if throw e; where e is the catch block parameter.

Note Alternatively, for an error value only, we could disallow anonymous re-throw and require throw e;.

But then we would still want to support anonymous re-throw as a synonym in migration/compatibil-

ity mode (see §).

• For any throw-expression in f’s body that has argument, throw expr;, where expr is convertible to er-

ror:

o If f is in a block with a surrounding local catch(error) or catch(...) handler, control goes to

that handler as-if via a forward goto.

o Otherwise, it behaves as-if return expr;.

Notes The usual rules apply, such as that if expr’s or e’s type is not error or convertible to error then

throw-expression is ill-formed.

 This specification is deliberately in terms of forward-goto semantics (zero overhead by construc-

tion), not in terms of a notional try-catch where we then rely on optimizers to elide the overhead

(attempting to claw back zero overhead by optimization).

• When calling another function f2 that also has a static-exception-specification and that throws an ex-

ception e, the effect is as-if throw e;.

P0709 R4 – Zero-overhead deterministic exceptions: Throwing values – Sutter 19

• When one of today’s dynamic exceptions is unhandled in f’s body, regardless of whether it originated

from a nested function call or a throw statement throwing a dynamic exception, the exception is auto-

matically caught and propagated: If the caught exception is of type error, we just return it. Otherwise, it

is translated to an error with a meaningful value for all std:: exception types; for example, bad_alloc

would be translated to std::errc::ENOMEM. Otherwise, we can additionally store as payload a raw

pointer to an exception_ptr to the dynamic exception (see §4.6.4), without sacrificing trivial movabil-

ity.

Notes current_exception and exception_ptr (and their possible use of TLS) are not needed for error,

because an error exception has a static type and is used by value. current_exception and excep-

tion_ptr are intended to be used only for today’s dynamic exceptions, including to wrap them into

an error.

 The mapping from exception types and values to error values will need to be fully specified in the

standard.

 We should include a customization point to allow enabling automatic translation also for other ex-

ception types.

• If f is a virtual function, then: Every base function that f overrides must be declared throws. Every fur-

ther-derived override of f must be declared either throws or noexcept.

Note If a base function is declared noexcept, a derived override must also be declared noexcept.

For a function declared without a static-exception-specification:

• When calling another function f that has a static-exception-specification and that throws an exception

e: If the error is a wrapped exception_ptr, it rethrows the dynamic exception. Otherwise, if the error

value corresponds to one of the meaningful values for a std:: exception type, it throws an exception of

that type; for example, std::errc:ENOMEM would be translated to bad_alloc. Otherwise, the effect is

as-if throw e;, that is, it throws the error itself as a dynamic exception.

Notes Today, implementers are permitted, but not required, to make exception_ptr trivially relocatable.

If it is, error can hold an exception_ptr directly as its payload. If it is not, the exception_ptr can

be allocated on the heap and error can hold a raw pointer to it and destroy it when it’s done with it

(at the end of the catch handler that consumes it without rethrowing).

 Some reviewers have expressed the opinion that it might be better to require code to manually

translate between static and dynamic exceptions. The main motivation for automating this is two-

fold: (1) We want to make it as easy as possible to upgrade existing non-noexcept(true) functions

by just adding throws. If we don’t do this, then the programmer still has to write a try/catch by

hand. (2) The programmer can’t write better code than we could by automatically translating the

exception. So, since the try/catch is both always necessary and cannot be written more efficiently

by hand, it should be default and automatic. — That said, tools could warn when such implicit trans-

lation is happening, such as to find not-yet-upgraded places in an existing code base.

 Conditional throws and operator throws
A static-exception-specification of throws(cond) has the basic meaning noexcept(!cond) but additionally can

distinguish between static (default) and dynamic exception reporting. For example:

template<class T>

P0709 R4 – Zero-overhead deterministic exceptions: Throwing values – Sutter 20

struct X {

 void X(X&&) throws(!is_nothrow_move_constructible_v<T,T>);

 X&& operator=(X&&) throws(!is_nothrow_move_assignable_v<T,T>);
};

The condition cond evaluates to a value of type enum except_t { no_except=false/*0*/, static_ex-

cept=true/*1*/, dynamic_except/*=2*/ };.

The operator throws(expr) performs a compile-time computation returning the except_t used by expr, and

returns no_except if the expr is declared to be noexcept, otherwise static_except if expr is declared to be

throws, otherwise dynamic_except.

Note We can’t use throw unambiguously for the operator, hence throws. This is the primary motivation

for using throws, not throw, as the keyword for declaring that a function uses static exceptions.

This permits an algorithm such as std::transform to efficiently be noexcept, report errors using static excep-

tions, or report errors using dynamic exceptions exactly as the caller-provided operation does:

template< class In, class Out, class Op >

Out transform(In first, In last, Out out, Op op) throws(throws(op(*first)))

In this example, each instantiation of transform reports error however op does, using exactly one of static ex-

ceptions, dynamic exceptions, or noexcept.

Note A function that wants to adapt to multiple suboperations that could have different error modes

(e.g., some could be no_except, others static_except, and/or still others dynamic_except) can

compute how it wants to report errors. It is expected that a common preference will be to be dy-

namic_except if any of the suboperations are that, otherwise static_except if any of the suboper-

ations are that, else no_except. This is one reason why the enumerator values were chosen as

shown, so that for such a function the algorithm for combining the suboperation modes is just

std::max: std::max({no_except, static_except, dynamic_except}) does the right thing, and is

already constexpr.

I expect conditional throws to be used less frequently than conditional noexcept. Today, conditional noexcept

has three main uses:

• (rare, applies also to conditional throws) To enable callers to use a different algorithm. For example,

enabling move_if_noexcept can allow using a more efficient algorithm while still giving the strong guar-

antee. The most common use case is for annotating move operations of generic wrappers and contain-

ers.

• (medium, applies also to conditional throws) To enable generic intermediate code to preserve the no-

except-ness of its implementation. For example, a std::transform call could (but currently is not re-

quired to) declare itself noexcept if the caller-provided operation is noexcept.

• (very common, does not apply to conditional throws) To claw back performance lost to today’s dy-

namic exception handling overheads. That those overheads are so expensive that we are willing to fre-

quently do tedious programming in the function type system to avoid them (and thereby leak imple-

mentation details into the function type) is a strong statement about the unacceptability of today’s dy-

namic exception overheads. In this proposal, new code that otherwise would resort to conditional noex-

cept to avoid the dynamic exception overheads would instead throw statically typed values.

P0709 R4 – Zero-overhead deterministic exceptions: Throwing values – Sutter 21

Because conditional throws is only for the first two motivations, which are rarer and primarily motivated by ge-

neric code that (a) uses move functions or (b) is adaptive to report errors from callees that might use today’s

dynamic exceptions without converting them to std::error, I expect uses of conditional throws to be rarer

than uses of conditional noexcept.

For a function f declared with a static-exception-specification throws(cond), then in addition to the rules in

§4.1.2:

• f behaves as-if noexcept(!cond) when queried by the noexcept operator and the *noexcept* and

nothrow traits (e.g., move_if_noexcept, is_nothrow_move_constructible).

• f must not be virtual.

Note In general, trying to mix the always-static computation throws(cond) with the always-dynamic vir-

tual appears to be a mismatch. The primary known use cases for throws(cond) are generic move

operations and generic algorithms, which should not be virtual.

 However, if we do encounter real examples where this is needed, we can specify it by replacing the

foregoing bullet with the following:

 • If f is a virtual function, then: Every base function that f overrides must be declared either

throws or throws(cond) with the identical condition. Every further-derived override of f

must be declared either throws(cond) with the same condition or noexcept.

 Achieving zero-overhead and determinism

“A big appeal to Go using error codes is as a rebellion against the overly complex
languages in today’s landscape. We have lost a lot of what makes C so elegant –

that you can usually look at any line of code and guess what machine code it
translates into…. You’re in a statically typed programming language, and the

dynamic nature of exceptions is precisely the reason they suck.” — [Duffy 2016]

Recall from §2.5 that today’s dynamic exception handling model violates the zero-overhead and determinism

principles because it requires throwing objects of dynamic types and using non-local by-reference propagation

and handling semantics.

The primary benefits of this proposal accrue from avoiding overheads by design, by throwing values of statically

known types and uses local value propagation and handling semantics, which eliminate the inherent overheads

listed in §2.5 because the proposed exceptions are just local return values:

• Multiple exceptions in flight can be folded by routine optimizations (see Appendix for strawman).

• Exceptions are always allocated as an ordinary stack value.

• Exceptions share the return channel instead of wasting it, including being returnable in registers.

• Exceptions have a statically known type, so never need RTTI.

This let us achieve the zero-overhead and determinism objectives:

• Zero-overhead: No extra static overhead in the binary (e.g., no mandatory tables). No dynamic alloca-

tion. No need for RTTI.

• Determinism: Identical space and time cost as if returning an error code by hand.

P0709 R4 – Zero-overhead deterministic exceptions: Throwing values – Sutter 22

Furthermore, because the proposed mechanisms are much simpler than today’s, they are also more amenable

to optimization, including existing optimizations already commonly in use. For example:

• Because exception objects are always entirely local on the stack, and not required to have unique ad-

dresses, they are expected to be easy to fold using existing common optimizations.

• In this model, the count maintained by uncaught_exceptions is incremented on throws and decre-

mented on catch as usual, but compensating unread inc/dec pairs are expected to be easier to elide.

Note Whether uncaught_exceptions is or can be zero-overhead, including to not use thread local stor-

age, and if not whether to replace it with some other feature that does efficiently support scope

guards with zero overhead (e.g., passing an optional flag to a destructor), is a separable question

that does not affect the rest of this proposal.

At call sites (that propagate or handle an error), a potential downside of the if-error-goto-handler implementa-

tion model is that it injects branches that can interfere with optimizations. However, because this static excep-

tion model is isomorphic to error codes (which the dynamic exception model is not), implementations can also

choose whether to implement this exception model as error returns or using table-based handling as a pure op-

timization (no longer a required overhead). And this was tried out in practice in a large native code system on

the Midori project, which used a very similar exception design:

“A nice accident of our model [an the exception model that was isomorphic to error
codes] was that we could have compiled it with either return codes or [table-based]
exceptions. Thanks to this, we actually did the experiment, to see what the impact
was to our system’s size and speed. The exception[-table]s-based system ended up
being roughly 7% smaller and 4% faster on some key benchmarks.” — [Duffy 2015]

Again, this is a pure local optimization. Compilers could provide the option to prefer zero binary size overhead

(no tables) or fewer local branches in functions (tables), as with other space/time optimization options.

 Side by side examples
To illustrate, consider these examples from [P0323R3] and [Douglas 2018]. In each case, the right-hand side is

expected to have identical or better space and time cost compared to the left-hand side, and identical space and

time cost as returning an error code by value.

Note In some cases, such as divide-by-zero in the first example, normally it’s best to use a precondition

instead. However, I’m preserving the examples’ presented semantics for side-by-side comparison.

Checked integer division, showing a caller that does error propagation and a caller that does error handling.

Note that in the bottom row we change the switch to testing using == which performs semantic comparison

correctly if the errors come from different domains.

P0323R3 example This paper (proposed)

expected<int, errc> safe_divide(int i, int j) {
 if (j == 0)
 return unexpected(arithmetic_errc::divide_by_zero);
 if (i == INT_MIN && j == -1)
 return unexpected(arithmetic_errc::integer_divide_overflows);
 if (i % j != 0)
 return unexpected(arithmetic_errc::not_integer_division);

int safe_divide(int i, int j) throws {
 if (j == 0)
 throw arithmetic_errc::divide_by_zero;
 if (i == INT_MIN && j == -1)
 throw arithmetic_errc::integer_divide_overflows;
 if (i % j != 0)
 throw arithmetic_errc::not_integer_division;

https://wg21.link/p0323r3
https://ned14.github.io/outcome/tutorial/

P0709 R4 – Zero-overhead deterministic exceptions: Throwing values – Sutter 23

 else return i / j;
}

 else return i / j;
}

expected<double, errc> caller(double i, double j, double k) {
 auto q = safe_divide(j, k);
 if (q) return i + *q;
 else return q;
}

double caller(double i, double j, double k) throws {
 return i + safe_divide(j, k);
}

int caller2(int i, int j) noexcept {
 auto e = safe_divide(i, j);
 if (!e) {
 switch (e.error().value()) {
 case arithmetic_errc::divide_by_zero:
 return 0;
 case arithmetic_errc::not_integer_division:
 return i / j; // ignore
 case arithmetic_errc::integer_divide_overflows:
 return INT_MIN;
 // No default: Adding a new enum value causes a compiler
 // warning here, forcing an update of the code.
 }
 }
 return *e;
}

int caller2(int i, int j) noexcept {
 try {
 return safe_divide(i, j);
 } catch(error e) {
 if (e == arithmetic_errc::divide_by_zero)
 return 0;
 if (e == arithmetic_errc::not_integer_division)
 return i / j; // ignore
 if (e == arithmetic_errc::integer_divide_overflows)
 return INT_MIN;
 // Adding a new enum value “can” cause a compiler
 // warning here, forcing an update of the code (see Note).
 }
}

Notes Pattern matching would benefit both sides of the last row and remove most of the style delta.

 The reason to use if and == (not switch) on the right-hand side is to get semantic comparison. Even

so, compilers could warn on missing cases on the right-hand side because all the cases are simple

tests against arithmetic_errc values, and a simple heuristic can deter whether the code checks for

all but one or two of the values in a given domain. In the future, replacing the if-cascade with pat-

tern matching would restore the ability for the code to express by construction that it is testing e’s

values, which would make such diagnostics simpler again as with switch today.

[Douglas 2018] example This paper (proposed)

outcome::result<int> convert(const std::string& str) noexcept {
 if (str.empty())
 return ConversionErrc::EmptyString;

 if (!std::all_of(str.begin(), str.end(), ::isdigit))
 return ConversionErrc::IllegalChar;

 if (str.length() > 9)
 return ConversionErrc::TooLong;

 return atoi(str.c_str());
}

int convert(const std::string& str) throws {
 if (str.empty())
 throw ConversionErrc::EmptyString;

 if (!std::all_of(str.begin(), str.end(), ::isdigit))
 throw ConversionErrc::IllegalChar;

 if (str.length() > 9)
 throw ConversionErrc::TooLong;

 return atoi(str.c_str());
}

outcome::result<int> str_multiply(const string& s, int i) {
 auto result = convert(s);

int str_multiply(const string& s, int i) throws {
 auto result = convert(s);

P0709 R4 – Zero-overhead deterministic exceptions: Throwing values – Sutter 24

 if (result) return result.value() * i;
 else return result.as_failure();
}

 return result * i;
}

outcome::result<int> str_multiply2(const string& s, int i) {
 OUTCOME_TRY (result, convert(s));
 return result * i;
}

int str_multiply2(const string& s, int i) throws {
 auto result = convert(s);
 return result * i;
}

 What we teach
What we teach:

• Function authors: Prefer to write exactly one of unconditional noexcept or throws on every function.

Dynamic exceptions and conditional noexcept still work as well as ever but are discouraged in new/up-

graded code.

Note This is similar to how since C++11 the updated guidance for virtual functions is now to write exactly

one of virtual, override, or final on every virtual function (e.g., C.128 in the C++ Core Guide-

lines). We got the default “wrong,” but we can now provide a consistent and clear (and mechanically

enforceable) style in new code at the cost of writing one word compared to what we could achieve

with a time machine.

• Function callers: To catch a static exception, write catch(error) (note: by value is now fine). The object

can be rethrown, copied, stored, etc.

• Compatibility: Dynamic exceptions and conditional noexcept still work. You can call a function that

throws a dynamic exception from one that throws a static exception (and vice versa); each is translated

to the other automatically by default or you can do it explicitly if you prefer.

 How to migrate, and toolability
To migrate/upgrade, you can adopt throws on function declarations incrementally, and the more you use it the

more you eliminate overheads:

• To upgrade an existing function that is not noexcept(true), write throws on all of its declarations (in

place of a conditional noexcept-specifier if there was one).

• If your function is on an ABI boundary and currently throws dynamic exceptions, and you have to keep it

ABI-stable, then just leave it as-is; you can still start using static-exception-specifications internally

within the modules, and they will be translated across the boundary.

• If you have a boundary where you couldn’t use exceptions today because of their cost, and can change

the boundary, you can now consider reporting errors using exceptions even on that boundary and still

freely call any existing internal functions that still throw the old way.

This proposal is amenable to tool support. To facilitate adoption and migration of a code base:

• Compilers can optionally provide a convenience mode that automatically treats every non-noex-

cept(true) function as though it were declared throws.

• “Modernizing” tools can mechanically update every non-noexcept(true) function to decorate it with

throws.

http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#c128-virtual-functions-should-specify-exactly-one-of-virtual-override-or-final

P0709 R4 – Zero-overhead deterministic exceptions: Throwing values – Sutter 25

Notes Any transformation to reinterpret or rewrite existing code is an ABI change for that code, so it

should be explicitly opted-in to remain under user control.

 The standard library can use this proposal in four main stages:

 (with no change to the stdlib) Users can use the above transformation to make the standard li-

brary available in the new mode.

 The standard library could consider specifying that, in freestanding implementations, the stand-

ard library is available in the above mode.

 Update dual filesystem APIs to change from:

 directory_iterator& operator++();
 directory_iterator& increment(std::error_code& ec);
to:
 directory_iterator& operator++() throws;

 Adopt it in other places, such as new library functions whose efficiency is paramount.

Projects that ban today’s dynamic exceptions for the efficiency and determinism reasons summarized in §2.5

can continue doing so as long as those reasons continue to apply, but now would be able to enable these light-

weight exceptions:

• In their own code’s error handling, they can now adopt throw/try/catch with all its benefits. Today’s

compilers provide modes to turn off today’s dynamic exception handling; they would continue to do

that, but provide a mode that enables static-exception-specifications only.

• When using STL and the rest of the standard library, my hope is that this proposals lets them adopt

“near-normal” STL with all its benefits even without any change to the standard library specification or

implementation. For example, because today the standard library reports error using dynamic excep-

tions, companies (such as Electronic Arts [N2271] and Windows) have resorted to specifying and main-

taining a divergent STL that reports errors in different ways (or fails fast), which changes the interface

and design of the library. Instead, with this proposal, the aim is to enable a project to use the compiler

mode mentioned above (that automatically treats every non-noexcept(true) function as through de-

clared throws) and just recompile their existing standard libraries in that mode. The standard library

compiled in that mode is not strictly conforming, but it is also nowhere near as divergent as today’s “no-

exception STLs” because the delta is much smaller, all errors that were reported by throwing exceptions

are still reported by throwing exceptions (just using the error type for exceptions), and the transfor-

mation from the conforming standard library is purely mechanical.

 Discussion: Throwing extensible values vs. arbitrary types

“[In CLU] We rejected this approach [propagating dynamic exceptions] because it did
not fit our ideas about modular program construction. We wanted to be able to call a

procedure knowing just its specification, not its implementation.” — [Liskov 1992]

“[In Midori,] Exceptions thrown by a function became part of its signature…
all ‘checking’ has to happen statically… those performance problems mentioned

in the WG21 paper [N3051] were not problems for us.” — [Duffy 2016]

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2007/n2271.html

P0709 R4 – Zero-overhead deterministic exceptions: Throwing values – Sutter 26

I believe that exceptions of statically known types thrown by value, instead of arbitrary dynamic types thrown by

reference, is a natural evolution and an improvement. It follows modern existing practice in C++ (e.g., std::er-

ror_code, Expected [P0323R3], Outcome [Douglas 2018]) and other languages (e.g., Midori [Duffy 2016]). And,

just as when we added move semantics as C++11’s marquee feature, it doubles down on C++’s core strength of

efficient value semantics.

We’ve already been learning that it’s problematic to propagate arbitrarily typed exceptions, through experience

over the past 25 years not only in C++ but also in other mainstream languages. Consider the following overlap-

ping reasons, in no particular order.

error_code values are more composable than types, easier to translate (when propagating) and compare

(when handling). std::error_code (especially evolved as described in [P0824R1]) is able to represent and com-

pare equivalent codes from different domains, including all errors reported from the C++ standard library,

POSIX, and Windows (with some support for translation between them), plus non-lossy automatic propagation.

Propagating arbitrarily typed exceptions breaks encapsulation by leaking implementation detail types from

lower levels. (“Huh? What’s a bsafe::invalid_key? All I did was call PrintText!”) As a direct result…

The most valuable catches routinely ignore the type information they do have: Distant catches are fre-

quently untyped in practice. It has been observed that the value of exception handling increases with the dis-

tance between the throw and catch (Sergey Zubkov and Bjarne Stroustrup, private communication). But be-

cause of the previous bullet, the leaked lower-level types are not useful in practice in higher-level code that does

not expect or understand them,4 and higher-level code that writes catch often resorts to writing catch(...)

rather than mentioning specific types from lower levels. — Because the most valuable catches (the distant

ones) commonly don’t understand the exception’s details and ignore their types, throwing arbitrary types has

less value in practice in exactly the cases where automatically propagated exceptions are the more effective.5

Propagating arbitrarily typed exceptions is not composable, and is often lossy. It is already true that intermedi-

ate code should translate lower-level exception types to higher-level types as the exception moves across a se-

mantic boundary where the error reporting type changes, so as to preserve correct semantic meaning at each

level. In practice, however, programmers almost never do that consistently, and this has been observed in every

language with typed propagated exceptions that I know of, including Java, C#, and Objective-C (see [Squires

2017] for entertaining discussion). This proposal actively supports and automates this existing best practice by

embracing throwing values that can be propagated with less loss of specific information.

A catch(type) cascade is type-switching. We have learned to avoid switching on types, and now actively dis-

courage that in our coding guidelines, yet a catch(type) cascade is often a form of type switch with all the

4 That is, “understand” to handle programmatically, more than just present them to a human such as by logging.
5 Michael Novak comments on how this aligns well with existing practices using dynamic exceptions: “I agree with this. One
‘patch’ for this problem that I find frequently employed (we do it ourselves in WIL [Windows Internal Libraries]) is simply
normalization of the exception type. WIL strongly discourages creation of any custom exception types of your own. It nor-
malizes on exactly one exception type and then provides helpers and macros to facilitate making it easy for everyone to
throw that one type. This has worked very well for us as it allows us to bring along a set of relevant debugging information
and normalize how errors are handled. I see this proposal overall being very similar (normalize on a single failure ‘excep-
tion’ type) and quite compatible with what we’ve been doing for a while now.”

https://wg21.link/p0323r3
https://ned14.github.io/outcome/tutorial/
http://joeduffyblog.com/2016/02/07/the-error-model/
https://wg21.link/p0824r1
https://itunes.apple.com/us/podcast/swift-unwrapped/id1209817203
https://itunes.apple.com/us/podcast/swift-unwrapped/id1209817203

P0709 R4 – Zero-overhead deterministic exceptions: Throwing values – Sutter 27

problems of type switching.6 — In some cases, especially at lower levels, the code may intend to handle all er-

rors. In that case, when the set of catchable errors can be statically known, automatic tools can often deter-

mine that we tested “all but one or two” of the possible values of a given error subtype, and so likely meant to

test them all; and so when we add a new error value, we can get compile-time errors in code that tries to handle

all errors but was not updated to handle the new error value (this will get even better when we get pattern

matching). When throwing arbitrary types, the set of potential errors is open-ended (absent whole program

analysis, which we can’t count on), and so it is much harder for tools to automatically detect a failure of intent to

check all errors.

We’ve already actively been removing attempts to statically enumerate the types of arbitrarily-typed dynamic

exceptions, in C++ and other modern languages. For example, C++ has already removed trying to enumerate

the types of dynamically typed exceptions in function signatures by removing throw(type1,type2,type3), and

instead made noexcept be untyped (just “can fail or can’t fail”). Similarly in Java, real-world uses of checked ex-

ception specifications quickly devolve to throws Exception. Learning from the variety of error handling meth-

ods in Objective-C (described in a nutshell in the first 10 minutes of [Squires 2017]), Swift decided to pursue a

paper very similar to this paper’s model, throwing a type-erased trivially-relocatable Error that always repre-

sents an error value (i.e., is not default constructible).

We’ve already standardized std::error_code and are moving to a world that is at least partly std::error_-

code-based. [P0824R1] makes this clear, pointing out for example that the actively-progressing std::experi-

mental::expected<T,E> and Boost.Outcome are error_code-based and are expected to more aggressively

embrace error_code (or an incremental evolution thereof) as their de-facto standard default code type. Our

current status-quo path is to standardize these as library-only solutions, but if we continue down that path we

will end up with a result that is still inferior because it’s missing language support for automatic propagation and

to separate the normal and error paths cleanly.

Existing practice with error codes already tries to emulate the distinction between normal and error handling

logic (using macros) to make the “normal” path clean. For example, the Windows Internal Libraries (WIL) de-

signed its error-macro-handling system to enable error-code based code to emulate exception-based code by

hiding all the branches that are about error handling. For example, real code commonly followed this structure:

// “Before” WIL error handling macros

HRESULT InitializeFromStorageFile(IStorageItem *pFile) {

 ComPtr<IStorageItem> spFileInternal;

 HRESULT hr = pFile->QueryInterface(IID_PPV_ARGS(&spFileInternal));
 if (SUCCEEDED(hr)) {

 hr = spFileInternal->GetShellItem(IID_PPV_ARGS(&m_spsi));

 if (SUCCEEDED(hr)) {

 hr = spFileInternal->get_CreationFlags(&m_sicf);

 if (SUCCEEDED(hr)) {

 hr = spFileInternal->get_FamilyName(&m_spszPackageFamilyName);
 }

 }

 }

 return hr;

6 And not avoidable in general because exception types can be arbitrarily unrelated. The usual advice to avoid a type switch
is to replace it with a virtual function, which requires a tightly coupled class hierarchy that can be extended or modified.

https://itunes.apple.com/us/podcast/swift-unwrapped/id1209817203
https://wg21.link/p0824r1

P0709 R4 – Zero-overhead deterministic exceptions: Throwing values – Sutter 28

}

So they “hid the error handling behind a wall of macros” as follows:

// “After,” using WIL error handling macros

HRESULT InitializeFromStorageFile(IStorageItem *pFile) {

 ComPtr<IStorageItem> spFileInternal;

 RETURN_IF_FAILED(pFile->QueryInterface(IID_PPV_ARGS(&spFileInternal)));

 RETURN_IF_FAILED(spFileInternal->GetShellItem(IID_PPV_ARGS(&m_spsi)));
 RETURN_IF_FAILED(spFileInternal->get_CreationFlags(&m_sicf));

 RETURN_IF_FAILED(spFileInternal->get_FamilyName(&m_spszPackageFamilyName));

 return S_OK;

}

This attempts to emulate (poorly, by hand and using macros) exception handling’s ability to distinguish the clean

“success” path and propagate failures.

We want C++ programs to propagate errors automatically, and we want them to write distinct normal and error

handling logic. It’s time to embrace this in the language, and effectively “throw error_codes” so that the lan-

guage can (a) solve the performance problems with exceptions by throwing zero-overhead and deterministic

exceptions, and also (b) make these new facilities easier to use robustly and correctly via language support for

automatic propagation and throw/catch error paths that are distinct from normal control flow. — Then we can

write future filesystem-like APIs naturally as

directory_iterator& operator++() throws; // operator + 1 function + 1 way to report errors

and the world will be a better place for everyone.

P0709 R4 – Zero-overhead deterministic exceptions: Throwing values – Sutter 29

4.2 Proposed cleanup: Don’t report logic errors using exceptions
SG Poll The 2018-04-11 SG14 telecon took a poll on pursuing this direction: 12-1-1 (Favor-Neutral-Against).

The one Against was because a previous draft proposed removing the existing throwing behavior,

which would be a breaking change; that was demoted to “Future” below to address the concern.

LEWG Poll The 2018-06 Rapperswil LEWG session unanimously supported this direction: 26-4-0-0-0 (SF-F-N-

WA-SA). They noted [P0788R2] has already been approved unanimously in LEWG (2017-11 Albu-

querque) and LWG (2018-06 Rapperswil) as the initial step.

“[With contracts,] 90-something% of the typical uses of exceptions in .NET and Java became
preconditions. All of the ArgumentNullException, ArgumentOutOfRangeException, and re-

lated types and, more importantly, the manual checks and throws were gone.” — [Duffy 2016]

Even without this proposed extension, there is cleanup that we should do anyway in the standard library that

would immediately benefit users. Work on the following direction is already in progress via [P0380R1] and

[P0788R1] which in part systematically distinguishes between actual preconditions and recoverable errors, and

[P0132R0] which aims to deal with bad_alloc (including derivatives like bad_array_new_length) in the

standard library.

As noted in §1.1, preconditions, postconditions, and assertions are for identifying program bugs, they are never

recoverable errors; violating them is always corruption, undefined behavior. Therefore they should never be re-

ported via error reporting channels (regardless of whether exceptions, error codes, or another style is used). In-

stead, once we have contracts, users should be taught to prefer expressing these as contracts (or assertions or

similar tools, not error results or exceptions), and we should consider using those also in the standard library.

The standard library should identify these cases, and aim to eventually replace all uses of exceptions and error

codes for such bugs. [P0788R1] is already moving in this direction, by moving toward systematically distinguish-

ing preconditions (et al.) from recoverable errors throughout the standard library.

Then, except for exceptions from user-defined types, the vast majority of standard library operations can be ei-

ther noexcept or throw only bad_alloc (see also §4.3). [P0132R0] aims to offer suitable alternatives for code

that aims to be hardened against allocation failure; with these in place we could consider reporting allocation

failure differently from recoverable errors (but that is not proposed in this paper).

The following types are used (in part) for preconditions:

logic_error domain_error invalid_argument length_error out_of_range future_error

Note there are non-precondition uses, such as future_error being used to report normal errors, and vec-

tor<T>::at to throw an exception on a failed range check. We may want to keep those behaviors.

For each of the above types:

• Add a non-normative note in the standard that we are maintaining the types’ names for historical rea-

sons, but that these types should not be thrown to report precondition failures.

• In every place where the standard library is currently specified to throw one of the above types and that

upon review is or should be a precondition, add an equivalent [P0788R2] Expects: element.

o Future (to avoid a breaking change now): Someday, remove the corresponding Requires/Throws

clause (breaking change). If that eliminates the possibility of throwing, then additionally mark the

function noexcept. ((And if §4.1 is adopted: Otherwise, mark the function throws.))

https://wg21.link/p0788r2
https://wg21.link/p0380r1
https://p0788r1/
https://wg21.link/p0132r0
https://p0788r1/
https://wg21.link/p0132r0
https://wg21.link/p0788r2

P0709 R4 – Zero-overhead deterministic exceptions: Throwing values – Sutter 30

4.3 Proposed cleanup: Treat allocation failure specially

 SG14/LEWG/EWG guidance history
SG14 Poll The 2018-05-02 SG14 telecon took a poll whether to pursue the approach of treating allocation fail-

ure distinctly from other errors. The poll result was: 2-6-3-2-0 (SF-F-N-WA-SA).

LEWG Poll The 2018-06 (Rapperswil) LEWG session unanimously supported the direction of changing bad_al-

loc to terminate by default: 20-11-0-0-0 (SF-F-N-WA-SA).

LEWG 2019-07 (Cologne) guidance was:

LEWG Polls Add (OOM reporting vs. fail-fast) as an allocator property. (Ideally this should be usable in a constant

expression / in a noexcept operator.): 19-12-3-0-0 (SF-F-N-WA-SA)

 Recommend conditional noexcept in the library based on the OOM-reporting of the relevant alloca-

tor: Unanimous consent

 The default std::allocator and non-placement global operator new shall advertise fail-fast-on-

OOM: 19-11-4-1-0 (SF-F-N-WA-SA)

EWG 2019-07 (Cologne) only polled the narrow question of whether to make default/global allocator terminate

with no discussion of an opt-out mechanism:

EWG Poll The default std::allocator and non-placement global operator new should terminate on failure.

No effect on new(nothrow) which will continue to report null on failure: 0-17-6-10-5 (SF-F-N-WA-SA)

 Proposal: Per-allocator opt-in
As a result of the above direction, this paper now proposes that:

• Each allocator decides whether to fail-fast vs. report an error/exception on allocation failure, in a way

that can be tested by conditional noexcept.

• For every standard library function where allocation failure is the only thing that could throw, apply con-

ditional noexcept to make the function noexcept if the relevant allocator advertises fail-fast.

• For std::allocator and non-placement global operator new, leave the default alone, but provide a

noexcept-queryable way for a user program to opt into terminating behavior (e.g., by specializing a

standard trait). If a program opts into terminating behavior, the standard library functions that use the

standard/global allocators and are conditionally noexcept will be actually noexcept.

 Discussion

“… if STL switched to making bugs [logic errors, domain errors] be contracts… and we could
make bad_alloc fail fast, we could use the standard STL unmodified throughout Windows.”

— Pavel Curtis, private communication

“Reducing number of potential exception points is of paramount importance IF we
want app-level developers to aim for exception safety.” — [Ignatchenko 2018a]

“I prefer fail fast securely over an untestable set of failure combinations that might
result in us slow failing insecurely.” — Fergal Burke, private communication

P0709 R4 – Zero-overhead deterministic exceptions: Throwing values – Sutter 31

Note Allocation failure does not necessarily mean no memory is available; a smaller request could succeed.

“C++ aspires to making out-of-memory a recoverable condition, and so allocation can throw.
Therefore, it is essentially compulsory for the language to assume that constructors might

throw. Since constructors are called pervasively and implicitly, it makes sense for the default
rule to be that all functions can throw… This all adds up to a significant code-size penalty for

exceptions, even in projects which don't directly use them and which have no interest in
recovering from out-of-memory conditions. For this reason, many C++ projects explicitly
disable exceptions and rely on other error propagation mechanisms, on which there is

no widespread consensus.” — [McCall 2016]

Some code is correct today for allocation failure even without coding for it specially and should continue to

work. For example, in a large call tree when the millionth vector::push_back fails, we can generally unwind

and recover just fine today with just a catch(...) at the top. This appears to be particularly in cases that are

larger requests, like vector::push_back. This proposal does not propose any change to reporting these via

bad_alloc.

Testing allocation failure handling is much more difficult because allocation is pervasive, and lots of code that

thinks it handles allocation failure is wrong. It is extraordinarily more difficult to test every failure point for allo-

cation failure than to test every failure point for most other kinds of errors. Real-world code can be assumed to

be not properly testing those failure points, unless it is tested pervasively using technologies like fuzzer-based

fault injection combined with long-haul stress testing. Most code that thinks it handles allocation failure is prob-

ably incorrect; there is some truth to the mantra “if you haven’t tested it, it doesn’t work.” Across many years

and organizations, hand inspection of allocation failure-recovery code (code that exists specifically and only to

recover from allocation failure) commonly finds it to have never been correct. In released commercial products

that are known to be robust and stable in broad use, simulating allocation failure by making a single random al-

location request fail commonly (>90%) crashes the application (unpublished research, but see next section for

more recent citable experience).

bad_alloc hypothesis test framework. The previous paragraph mentions a hypothesis we can test. Restating:

Hypothesis: Existing C++ code that is believed to be correct for allocation failure is often not actually correct.

To gather more information about this, in April 2019 Marshall Clow and I created the [babb] library (“bad_alloc

Behaving Badly”), which randomly injects allocation failures into a C++ application via both nullptr and

bad_alloc. Here are my main initial results and learnings so far.

The first thing I learned is that I had trouble finding candidates to test, namely code bases that were thought to

be allocation failure-resilient on at least some paths. Many teams, including the Visual C++ compiler team and

most Office applications, responded that they make no attempt to be allocation failure-resilient and just termi-

nate (usually after some last-ditch handling appropriate for a new_handler), so there was nothing interesting for

the failure injector to test for the purpose of this paper (it would only test the correctness of last-ditch handling

code, which is not interesting for this paper).

We did successfully run experiments with two code bases:

• Visual C++ standard library. C++ standard library implementations are the world’s most widely-used C++

libraries, and are generally the most expertly- and carefully-written for exception safety. The library

https://github.com/hsutter/babb

P0709 R4 – Zero-overhead deterministic exceptions: Throwing values – Sutter 32

team responded that the VC++ library is carefully written for general exception safety, but not neces-

sarily for allocation failure-resiliency. I decided to try it out, and the very first test experiment I tried

was:

 try { vector<string> v; for(int i=0; i<N; ++i) v.push_back(alphabet); }

 catch(...) { cout << “caught something”; }

When I injected allocation failures with moderate values of N, this program consistently aborted (with-

out unwinding or reaching the catch block) in VC++’s STL in default debug build, which includes iterator

debugging. This is because vector and string move operations are now noexcept, but the existing im-

plementation still allocates proxies in iterator debug mode.7 Although this crash is due to a conformance

bug, it still yielded useful data: Upon further investigation, the bug has been in the product since at least

2015, and we found only six bug reports we received about it during 2015-2019, even though we esti-

mate that ~90% of customers do not override the default and leave STL iterator debugging mode ena-

bled in their debug builds. — The fact that a common STL operation like vector<string>::push_back

crashes consistently in our shipping product in the presence of bad_alloc in default debug builds, yet

this appears to be reported as a bug only twice per year, is initial data leaning against the common exist-

ence of bad_alloc-hardened customer code:

o Very few customers who use our STL appear to be encountering bad_alloc at all during testing,

otherwise common operations would crash and reports would not be so rare.

o Very few customers who use our STL appear to be writing bad_alloc-safe code, otherwise it

would have crashed when they allocation failure-tested it. If they tried to write bad_alloc-safe

code but did not allocation failure-test it, it should be presumed incorrect and not actually

bad_alloc-safe. (Note: An alternate explanation would be that they encountered the problem

but routinely reacted by just not using our library in allocation failure-safe code paths, without

complaining about the limitation, which is possible but unlikely.)

• Microsoft PowerPoint. Although most Office code and applications are designed to terminate on alloca-

tion failure, PowerPoint was considered to be allocation failure-resilient for certain operations including

File > Open. The initial pre-experiment comment from the PowerPoint team was: “if a scenario is excep-

tion safe, like opening a document or running a command, we’ll fail the command gracefully and con-

tinue regardless of exception. So, OOM would actually recover gracefully there, implicitly.” — Then the

team did the experiment of trying the [babb] library with PowerPoint to test File > Open. The team re-

ported: “The file simply failed to open but the application was stable. Most of the time. The problem

lies with noexcept… [example function] is noexcept and yet [directly] calls a throwing new… This is

obviously going to crash. There are a quite few other places like this.” — The result of the experiment

was that the code paths in PowerPoint that were thought to be allocation failure-safe “are not actu-

ally OOM-safe, at least because of the noexcepts.” (We did not do further investigation to see if there

were any other failure modes besides tripping over noexcept, such as termination due to multiple ex-

ceptions when babb injected multiple consecutive failed allocation attempts.)

• Microsoft Word. Word also had been intentionally written to handle allocation failure gracefully. Re-

cently (summer 2019), the Word team conducted similar allocation fault injection test using their own

low-memory test environment. It discovered that the code they believed was allocation failure-resilient

7 This bug will be fixed in the next version that takes an ABI break. Both libstdc++ and libc++ handle this initial test fine even
with bad_alloc injection; they correctly unwind and deliver the bad_alloc safely to the catch block. Still, even though I
expected that regular code was allocation failure-unsafe and would be likely to fail, I was still surprised that that my very
first test using a common std:: function crashed one major implementation.

https://github.com/hsutter/babb

P0709 R4 – Zero-overhead deterministic exceptions: Throwing values – Sutter 33

actually failed pervasively when allocation failure was actually encountered; for example, 98% of execu-

tions crashed if <5MB memory was available. Examination showed that the code was doing a consist-

ently good job of checking for failures, but was consistently unable to meaningfully handle them. As an

experiment, the team built Word to unconditionally terminate on allocation failure, gradually rolled it

out to larger and larger subsets of users, and then made it universal in for the production release; there

was no statistically significant change in crash rates on Windows, Mac, iOS, or Android. The net result

was that Word now has fewer untested (and security-exploitable) error code paths, clearer code, and

improvements to execution performance and binary size because of elimination of “dead code” logging

and recovery logic (without loss of functionality because that code was already unused and nonworking

in practice).

noexcept is one repeated cause (but not the only one). Note that in the cases of observed-but-unexpected fail-

ure (VC++ STL vector and string move operations, and PowerPoint File > Open), the cause was the addition of

noexcept to functions that nevertheless needed to perform allocation under the covers, either directly or transi-

tively. This is a pattern I expected to see as we adopt noexcept, because the long-term pressure is (rightly) to

make more functions noexcept, with is fundamentally in tension with the fact that allocation is pervasive.

Portable code cannot rely on accurate failure reporting for system heap allocation failure (due to exhaus-

tion/OOM or to fragmentation) because the allocation failure reporting as required by Standard C++

(nullptr, bad_alloc) is not reliably implementable on all platforms. As I wrote in [Sutter 2001]: (a) Reporting

heap allocation failure is useless on systems that don’t commit memory until the memory is accessed,

which is the default on Linux with vm/overcommit_memory mode 0 (see [LKA 2018], [Landley] Linux Memory

FAQ, and [Gorman 2007] Chapter 13 and page 686’s annotated source for vm_emough_memory()), because

on such systems new never actually fails (it might as well be noexcept) and exhaustion actually manifests

later as a hard fault on an ordinary operation that attempts to access the apparently-successfully-allocated

memory (if the OOM killer selects this process); this is nonconforming, but it’s actual real -world behavior

on such systems.8 Now that macOS and iOS are 64-bit, it is no longer reasonably possible to get bad_alloc

on those systems. (b) Allocation failure might never manifest in practice on virtual memory systems, because

the actual symptom of nearing heap exhaustion is often increased thrashing that slows the system more and

more so that the program never reaches actual heap exhaustion at all. — If we re-specified allocation failures to

result in terminate or be undefined behavior, that would appear to be an impossibly large breaking change on

paper, yet such programs and environments would never notice the difference.

8 This is enabled by default in Linux (e.g., Ubuntu, Red Hat Enterprise Linux, macOS, iOS, and Android), and these overcom-
mit semantics are used in real-world production systems, such as at Google. Android has explored disabling it. Even so, in
these systems there is no strict commit charge accounting as there is in Windows.

Even with ulimit, users report that bad_alloc is not reported reliably. For example, see [StackOverflow 2010], “Why does
my program occasionally segfault when out of memory rather than throwing bad_alloc?” It says in part: “I use bash's
ulimit command to limit the amount of virtual memory the process can use… Certain algorithm/test instance combina-
tions hit the memory limit I have defined. Most of the time, the program throws an std::bad_alloc exception, which is
printed by the default handler, at which point the program terminates. Occasionally, rather than this happening, the pro-
gram simply segfaults.”

It is possible for a program on an overcommit system to observe bad_alloc by exhausting its address space, such as a 32-
bit process on a 64-bit system or on a 32-bit system that does give access to the whole address space, if the address space
exhaustion or fragmentation is reported as allocation failure.

http://www.gotw.ca/publications/mill16.htm
https://www.kernel.org/doc/Documentation/vm/overcommit-accounting
https://landley.net/writing/memory-faq.txt
https://www.kernel.org/doc/gorman/pdf/understand.pdf
https://lwn.net/Articles/317814/
https://stackoverflow.com/questions/2567683/why-does-my-program-occasionally-segfault-when-out-of-memory-rather-than-throwin

P0709 R4 – Zero-overhead deterministic exceptions: Throwing values – Sutter 34

Recovery requires special care. Recovery from allocation failure is strictly more difficult than from other kinds of

errors, because code that is correctly resilient to allocation failure can only use a restricted set of functions and

language features. In particular, recovery code typically cannot ask for more memory, and so must avoid calling

functions that could allocate memory, including functions that could fail by throwing another of today’s dynamic

exceptions which would require increased allocation. Real-world systems that do handle allocation failure cor-

rectly are typically written to explicitly use new(nothrow) to opt into testing the result, which is not changed by

this proposal; and in some cases they already use functions such as those proposed by Ville Voutilainen in

[P0132R0] that report allocation failures distinctly (e.g., try_reserve instead of just reserve).

Reporting preference is often different. For example, in [Koenig 1996] Andrew Koenig argued why halting pro-

grams on allocation failure is the best option in most situations, citing examples like the one in the previous bul-

let above.9 Treating allocation failure distinctly is also one of the two major motivations for §4.3.4 (see second

bullet for a real-world example) which is an approach that could incur small but nonzero overheads on all code

and might be more readily rejected if we treated allocation failure distinctly from other errors.

We have some precedent in the C++ standard for treating allocation failure differently from other errors. See

[syserr.syserr.overview]: “[Note: If an error represents an out-of-memory condition, implementations are encour-

aged to throw an exception object of type bad_alloc (21.6.3.1) rather than system_error. — end note.”

Preconditions/asserts/postconditions and allocation failure combined outnumber all other failure conditions

by ~10:1. For example, see [Duffy 2015]. Therefore, not reporting them as errors can greatly reduce the number

of functions that can fail (emit exceptions or error codes at all). Corollaries:

• ~90% of functions could be noexcept, including in std::. Once we ignore exceptions that should be

preconditions, bad_alloc is the only exception that many standard library operations throw. The combi-

nation of changing standard library preconditions to some method other than throwing (e.g., assertions)

and treating allocation failure separately means that a large number of standard library and user func-

tions could be made noexcept. In existing practice today, we have “exception-free” STL dialects that fail

fast on bad_alloc as the basis for claiming they do not throw exceptions (unless thrown by user-defined

functions types passed to that STL implementation). Based on experience in languages like Go [Alper

2019] and Rust, when allocation failure and preconditions are not reporting using exceptions, slightly

over 90% of all functions do not report errors (are no-fail).

• Enabling broad noexcept would improve efficiency and correctness (and remove most try-expres-

sions, see §4.5.1). Being able to mark many standard library and user functions as noexcept has two

major benefits: (a) Better code generation, because the compiler does not have to generate any error

handling data or logic, whether the heavier-weight overhead of today’s dynamic exceptions or the light-

weight if-error-goto-handler of this proposal. (b) More robust and testable user code, because instead of

examples like GotW #20 [Sutter 1997] where today a 4-line function has 3 normal execution paths and

20 invisible exceptional execution paths, if we reduce the number of functions that can throw by 90%

we directly remove 90% of the invisible possible execution paths in all calling code, which is an im-

portant correctness improvement: All that calling code is more robust and understandable,10 and also

9 Another example is that there may not be enough memory to even report a bad_alloc, such as if on the [Itanium ABI] the
fallback buffer gets exhausted, or if on Windows there is insufficient pinnable stack space to store the exception (see Ap-
pendix). However, this paper’s static exceptions can resolve this particular issue on all platforms.
10 This also makes it more feasible to adopt §4.5.1 to make those exceptional paths visible, because it will remove 90% of
the places to write a “this expression can fail” try-annotation.

https://wg21.link/p0132r0
http://joeduffyblog.com/2015/12/19/safe-native-code/
https://blog.boramalper.org/how-many-values-are-errors-in-go/
https://blog.boramalper.org/how-many-values-are-errors-in-go/
http://gotw.ca/gotw/020.htm
https://itanium-cxx-abi.github.io/cxx-abi/

P0709 R4 – Zero-overhead deterministic exceptions: Throwing values – Sutter 35

more testable because its authors have fewer execution paths to cover. (Using noexcept more perva-

sively today also opens the door wider to entertaining a future C++ where noexcept is the default,

which would enable broad improvements to optimization and code reliability.11)

• Treating allocation failure the same as all other errors violates the zero-overhead principle by impos-

ing overheads on all C++ programs. As noted above, it’s common to have platforms and programs

where recovering from allocation failure is either not possible or not needed, but programs and pro-

grammers in that camp are paying for the current specification in performance across their programs.

For example, using noexcept less often on functions that can only report bad_alloc incurs overheads

on all programs as described in the previous bullet. As a specific example, resizing vector<op-

tional<T>> is potentially slow only because of possible allocation failures. Titus Winters reports that

one of the subtle things [Abseil] does that they are most happy with is to provide an explicit build flag

for “does my default allocator throw” and to rely on “move constructors are assumed not to throw for

anything other than allocation;” the result of that combination is that many move constructors can be

made unambiguously noexcept and they measure better performance as a direct result (example: ab-

seil::optional).

• Trying to report and handle dynamic allocation failure by throwing a dynamically-allocated exception

is inherently problematic. To make it work, libgcc’s C++ support allocates 32KB of emergency heap to

always be able to allocate a bad_alloc object in heap exhaustion scenarios. On Azure Sphere (cloud

IoT), which uses libgcc, device applications can have 64KB to 256KB of available RAM; using unmodified

libgcc would mean that customers’ applications would be forced to reduce their available RAM by 12%

to 50% just to be able to try to handle allocation failure gracefully, even in applications that never actu-

ally try to catch or handle that failure. Therefore, Sphere had to remove that emergency reserve from

their version of libgcc, which means reporting allocation failure is in practice not supported at all. The

Sphere team reports that with the model proposed in the following subsection they would be able to

support allocation failure handling efficiently in their environment.

bad_array_new_length derives from bad_alloc but does not invoke the new_handler. This paper’s position is

that it’s fine for bad_array_new_length to be viewed as a refinement of bad_alloc, and not as a precondition.

But not invoking the new_handler, if present, is inconsistent and there are several related issues:

• Mathias Gehre noted on lib-ext@ that this “means that applications that try to convert allocation failure

into termination [by installing a terminating new_handler] can still get bad_alloc exceptions thrown

through unsuspecting code.”

• Stephan T. Lavavej noted on lib-ext@ that [LWG 3038]’s current proposed resolution for polymor-

phic_allocator::allocate nonsense-sized requests is to throw length_error, but he is reporting this

as incorrect and instead proposes “throwing bad_array_new_length, and [changing] many other parts

of the STL to throw bad_array_new_length for arithmetic overflow (upgraded from bad_alloc).” This

paper proposes that throwing bad_array_new_length makes sense for LWG 3038 specifically which in-

volves an allocator. However, this paper proposes any arithmetic overflow that is effectively a precondi-

tion should not be an exception, see §4.2.

11 Of course, changing the default would be a broad language breaking change and would need to be done on some back-
ward-compatibility boundary. The point is just that it’s potentially desirable but probably not worth doing unless we could
get to a place where most functions are noexcept, and exceptions thrown for preconditions and bad_alloc are the two
major things that stand in the way of that today for the standard library.

https://github.com/abseil/abseil-cpp
file:///D:/OneDrive/C++/•%09https:/github.com/abseil/abseil-cpp/blob/master/absl/types/optional.h%23L122
file:///D:/OneDrive/C++/•%09https:/github.com/abseil/abseil-cpp/blob/master/absl/types/optional.h%23L122
https://azure.microsoft.com/en-us/blog/introducing-microsoft-azure-sphere-secure-and-power-the-intelligent-edge/
http://lists.isocpp.org/lib-ext/2019/06/11803.php
http://lists.isocpp.org/lib-ext/2019/06/11804.php
https://wg21.link/lwg3038

P0709 R4 – Zero-overhead deterministic exceptions: Throwing values – Sutter 36

Essentially nobody seems to use bad_array_new_length as anything but a synonym for bad_alloc. That is

consistent with this paper, which proposes that the default allocator only report bad_alloc on variable-length

(array) allocations including the case of sizes that may be unsanitized which is a primary case for this exception.

Doing a code search using codesearch.isocpp.org (with thanks to Andrew Tomazos), a codesearch for bad_ar-

ray_new_length of ~2.5 million source files gets 33 hits:

• 21 hits in bad_array_new_length implementations themselves

• 10 hits in “test” code of those implementations

• 2 hits in the libstdc++ function to actually throw one (__cxa_throw_bad_array_new_length)

And that’s all. In that code corpus, there are zero (0) uses in real world code. Any code that catches bad_ar-

ray_new_length must be doing it via the bad_alloc base class.

Then, as a next step, I looked for implementations and uses of the function that actually throws one…

… All implementations of __cxa_bad_array_new_length in the codesearch.isocpp.org corpus already termi-

nate conditionally or unconditionally. Interestingly, when I did a codesearch for that function

(__cxa_throw_bad_array_new_length), I got 9 hits:

• 4 hits are just declarations of that function

• 2 hits are implementations of that function to conditionally throw or terminate() depending on a mode

• 2 hits are implementations of that function to make it unconditionally MOZ_CRASH()

• 1 hit in “test” code

So, all of the implementations in that corpus already terminate either conditionally or unconditionally.

Finally, a GitHub search for bad_array_new_length finds hits in only 13 repositories (as of June 2019).

Programs don’t run forever; the highest reliability comes from embracing termination, not applying increas-

ingly heroic measures to prevent it. I sometimes hear that there are programs for which termination is unac-

ceptable; I strongly agree with that premise, except suggest s/termination/unavailability/. The reality is

that applications can be terminated all the time – by power outage, by hardware crash, by slow memory leaks,

by gradual memory fragmentation, by the OS for arbitrary reasons including <drum roll> the Linux OOM killer

itself because if some other process you have no control over hits OOM it may be your process that gets killed at

an arbitrary point in order to recover memory (i.e., even if your code really is perfectly allocation failure-resili-

ent, it can be terminated arbitrarily by allocation failure… in someone else’s process). — I agree that C++ must

support writing high-availability programs. However, my understanding is that the most robust high-availability

services do not achieve that availability by trying to eliminate sources of failure (which works to a point, after

which increasingly heroic measures result in diminishing returns), but rather by embracing failure/termination

as normal and engineering for routine restart of loosely coupled components/processes. This seems to be the

consistent experience in fields ranging from cloud datacenters (success is lots of machines that routinely fail and

failover as needed, not trying to make ‘failure-proof’ monster machines), to interplanetary spacecraft, to com-

ponent-based software design (e.g., see [Duffy 2016], search for “processes” to see the quick highlights, 11 hits).

Existing practice. In early discussions, I have found that this proposal fits actual existing practice much more per-

vasively than I expected, and in fact has been repeatedly reinvented:

https://codesearch.isocpp.org/cgi-bin/cgi_ppsearch?q=bad_array_new_length&search=Search
https://codesearch.isocpp.org/cgi-bin/cgi_ppsearch?q=bad_array_new_length&search=Search
https://codesearch.isocpp.org/cgi-bin/cgi_ppsearch?q=__cxa_throw_bad_array_new_length&search=Search
https://codesearch.isocpp.org/cgi-bin/cgi_ppsearch?q=__cxa_throw_bad_array_new_length&search=Search
https://github.com/search?q=bad_array_new_length
http://joeduffyblog.com/2016/02/07/the-error-model/

P0709 R4 – Zero-overhead deterministic exceptions: Throwing values – Sutter 37

• Code bases that use “exception-free STLs” already often terminate on allocation failure. (Example:

Google’s production code uses compiler configuration that behaves as if every new were annotated no-

except, including the ones in std::allocator, as part of the strategy to enable using STL in an -fno-

exceptions environment.)

• It aligns with existing practice on systems like Linux where virtual memory overcommit means that our

current C++ standard allocation failure design is fundamentally unimplementable and already ignored in

practice by default, where bad_alloc can never happen and new is already de facto noexcept.

 Survey of other modern languages
Here is my understanding of what some other modern languages currently do. (Corrections are welcome.)

Language Allocation failure considered recovera-
ble (can report), or catastrophic (must
terminate)?

Allocation failure reported as an error/ex-
ception?

Go [Go Alloc] Terminate (panic) No

Rust [Rust Alloc] Terminate (panic)

[Contemplated: Report via opt-in to a fail-
ure-reporting allocator] 12

No

[Contemplated: Yes (Result) via opt-in to a
failure-reporting allocator]

C# [C# Alloc] Terminate (FailFast) Yes “but not really” – users are told that if
they do catch OutOfMemoryException, the
catch handler should explicitly call Envi-
ronment.FailFast

System C# (Midori)
[Duffy 2016]

Terminate by default

Report by opt-in

No by default

Yes by opt-in to failure-reporting allocator

Swift [Swift Alloc] Terminate for fixed-sized allocations

Report for variable-sized allocations

No for fixed-size allocations

Yes for variable-sized allocations

C Report always Yes (null)

C++ Report always Yes (null, bad_alloc)

This proposal Terminate vs. report is selected per-allo-
cator, in a way that is testable in condi-
tional noexcept

No if the allocator advertises terminate-on-
failure semantics

Yes if the allocator advertises report-on-
failure semantics

The good news is that there appears to be a convergence among modern languages, many of which are for sys-

tems languages that independently have arrived (or are arriving) at the same basic opt-in distinction.

12 There is active discussion in Rust about adding an unsafe allocator that would return a Result. See discussion threads
like this one, and this working group that is considering such an allocator (the working group appears to be still ongoing).
I have also corresponded privately with other Rust experts who are actively working on such allocators in parallel/com-
plementary efforts. However, all such work is aimed at providing an extension, i.e., to add an opt -in allocation failure-
reporting alternative to the status quo; the Rust default, and the only option for safe code, would continue to be termi-
nation (panic).

https://github.com/golang/go/issues/14162
https://internals.rust-lang.org/t/allocation-failure-should-panic/4965
https://docs.microsoft.com/en-us/dotnet/api/system.outofmemoryexception?view=netframework-4.8
http://joeduffyblog.com/2016/02/07/the-error-model/
https://forums.swift.org/t/nsmutabledatas-init-length-length-int-initializer/2208/2
https://nam06.safelinks.protection.outlook.com/?url=https%3A%2F%2Finternals.rust-lang.org%2Ft%2Fallocation-failure-should-panic%2F4965&data=02%7C01%7Chsutter%40microsoft.com%7C5f4c4db5efe84ad4392f08d6eea0776b%7C72f988bf86f141af91ab2d7cd011db47%7C1%7C0%7C636958770297714986&sdata=T65fw9Vlm60alg0crURNYM60CCCgKHlBDsW0uBgkJW4%3D&reserved=0
https://nam06.safelinks.protection.outlook.com/?url=https%3A%2F%2Fgithub.com%2Frust-lang%2Fwg-allocators&data=02%7C01%7Chsutter%40microsoft.com%7C5f4c4db5efe84ad4392f08d6eea0776b%7C72f988bf86f141af91ab2d7cd011db47%7C1%7C0%7C636958770297714986&sdata=C5rXU%2BT1jtr8HSSOyCFYTJoOXSsNnPI6Ok8CU02ozUQ%3D&reserved=0

P0709 R4 – Zero-overhead deterministic exceptions: Throwing values – Sutter 38

4.4 Optional extensibility hook: set_error_propagation()
Note This subsection is included because some users have requested the following functionality, espe-

cially if we do not adopt §4.3 to treat allocation failure separately. If this is needed (e.g., because we

didn’t adopt §4.3) and if it cannot be implemented in a totally zero-overhead way, then it could be a

conditionally-supported feature.

We can additionally allow the program to register a global function to allow customizing what happens when

exiting each function body with an error, intended to be used only by the owner of the whole program. This is

useful for several purposes:

• To integrate with an existing system’s error handling or logging policy. Niall Douglas reports regarding

a similar hook in his implementation: “I’ve already had some big multinationals who are thrilled with this

feature because they can encode the bespoke failure handling system they are already using into a cus-

tom policy, specifically custom logging and diagnostics capture.”

• To enable fail-fast throughout a system, even when invoking the standard library or third-party code.

For example, the layout engine for Microsoft’s [Edge] web browser (EdgeHTML) is designed to termi-

nate if memory is ever exhausted. Today, EdgeHTML depends on a nonstandard fork of the standard

library that does not throw exceptions and that terminates on bad_alloc. This is undesirable not only

because it means the Visual C++ team receives requests to support an incompatible nonstandard variant

of the standard library at least in-house, but because there is pressure to deliver the same products in-

ternally and externally and so there is pressure to document and ship this nonstandard mode which is

undesirable for the community. Instead, with this hook EdgeHTML can accomplish its goal by using the

standard STL, built in the mode described in § where all non-noexcept(true) functions are treated as

throws, and installing a callback that calls std::terminate() on ENOMEM specifically and does nothing

for all other errors. (But see also §4.3.)

Following the model of terminate handlers, we provide the ability register a callback, which is expected to in-

voke the previously installed callback:

using on_error_propagation = void (*)(std::error) noexcept;

atomic<on_error_propagation> __on_error_propagation = nullptr; // global variable

on_error_propagation set_on_error_propagation(on_error_propagation f) {

 return __on_error_propagation.exchange(f); // atomically set new hook
}

When exiting a throws function, the function epilog performs a jump to this common code, where error e, the

unwinding flag, and the return_address are assumed to be already in registers:

// pseudocode

if (unwinding)

 [[unlikely]] if (auto x = __on_error_propagation.load(memory_order::relaxed)) x(e);

jmp return_address

Notes Overhead is expected to be minimal, but (importantly) non-zero. The expected code size cost is one

unconditional jmp instruction in the epilog of a function declared throws: The return address will

already be in a register, so just jump to the above common hook code (which will be hot in L1$)

which when finished jumps to the return address. The expected L1I$ overhead will be a constant 8-

https://docs.microsoft.com/en-us/microsoft-edge/
https://en.wikipedia.org/wiki/EdgeHTML

P0709 R4 – Zero-overhead deterministic exceptions: Throwing values – Sutter 39

16 bytes for the hook code above + 1 instruction per throws function. The expected L1D$ overhead

will be one pointer (the hook target).

For example, here is how to install a callback that will cause all allocation failure failures to fail-fast:

g_next_handler = set_on_error_propagation([](error e){

 if (e == std::errc::ENOMEM) terminate();

 if (g_next_handler) g_next_handler(e);

 // else return == no-op, continue propagating
 });

P0709 R4 – Zero-overhead deterministic exceptions: Throwing values – Sutter 40

4.5 Proposed extension: try and catch (addresses §3.1 group B)
SG Poll The 2018-04-11 SG14 telecon took a poll on pursuing these particular sugars: 5-1-8 (Favor-Neutral-

Against). Some of the Against votes would like different sugars; I requested suggestions by email but

have not received any yet as of this writing.

EWG Poll Problem poll, EWG 2019-07 (Cologne): “#3 ‘I can’t throw through this code.’ Lack of control: Auto-

matic propagation is great, but invisible control flow makes writing exception-safe code harder. — Is

#3 a problem worth investing EWG time to try to solve?” 14-13-10-3-4 (SF-F-N-WA-SA)

EWG Poll Solution poll, EWG 2019-07 (Cologne): “Section 4.5 (try-expressions, syntax etc. bikesheddable):

Encourage further work in this general direction?” 5-5-6-15-16 (SF-F-N-WA-SA)

“The try keyword is completely redundant and so are the { } brackets except where
multiple statements are actually used in a try-block or a handler.” — [Stroustrup 1994]

“Failure to standardise this [operator try] means people
may abuse co_await to achieve the same thing” — [P0779R0]

Notes Several reviewers felt strongly that this should be in the core proposal. For now and unless SG14 or

EWG directs otherwise, I’m keeping it distinct; nothing in the core proposal depends on this.

 try expressions and statements
Today, exceptional error handling flow is invisible by default; between the throw and the catch, all propagation

is via whitespace. This makes it more difficult to reason about exceptional control flow and to write exception-

safe code. One of the biggest strengths of expected<T,E> and Boost.Outcome is that they make intermediate

error-handling control flow visible rather than invisible; but at the same time, they make it manual rather than

automated. This section aims to make it both visible and automated, to help reduce today’s programmer mis-

takes and so that I don’t have to write articles like GotW #20 [Sutter 1997]. — See also related proposal

[P0779R0].

This section proposes a try-expression and try-statement, where the keyword try can precede any full-expres-

sion or statement of which some subexpression could throw. 13 When applied to an expression, it applies to the

maximal expression that follows (in an expression, try has the same precedence as throw). When applied to a

statement, it is primarily useful for variable declarations that invoke fallible constructors.

For example:

string f() throws {
 if (flip_a_coin()) throw arithmetic_error::something;

 return try “xyzzy”s + “plover”; // can grep for exception paths

 try string s(“xyzzy”); // equivalent to above, just showing

 try return s + “plover”; // the statement form as well

}

13 Swift, and the Microsoft-internal Midori project [Duffy 2016], also created a similar try. Go [Cox 2018] is currently con-
sidering it. Unlike Swift, my interest is currently in plain try on an expression or statement, and not in Swift’s additional
try? (monadic “auto-optional”) and try! (“auto-die”) variations.

http://gotw.ca/gotw/020.htm
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0779r0.pdf
http://joeduffyblog.com/2016/02/07/the-error-model/
https://www.youtube.com/watch?v=6wIP3rO6On8&feature=youtu.be&t=131

P0709 R4 – Zero-overhead deterministic exceptions: Throwing values – Sutter 41

string g() throws { return try f() + “plugh”; } // can grep for exception paths

Notes This becomes even more attractive if §4.3 is adopted to dramatically reduce the number of poten-

tially-throwing expressions and therefore the number of places one would write try.

 [D0973R0] and other papers have proposed using co_await here instead of try, and with explicit

support for expected<T,E> as an endorsed return type to be widely used.

 In general I agree with the overall direction, namely: Just as the expected<T,E> proposal motivates

this paper’s proposal to bring such a concept into the language as throws, I think that [D0973R0]’s

suggestion to have an expression-level way to test the error result as co_await motivates this sec-

tion’s proposal to bring such a feature into the language as try on expressions and statements. I

think that is better than trying to shoehorn the feature into co_await which is not about error han-

dling, and would leave error-handling code interspersed with normal code — in fact, trying to reuse

co_await for this really is another example of trying to use normal control flow constructs for error

handling, whereas error-handling paths should be distinct from normal control flow. See [P0779R0]

section 1.2 for additional reasons why co_await is not a good idea here.

 Jason McKesson notes that having try-expressions “opens up the possibility of employing operator

try over ValueOrError types, thus allowing them to be mostly isomorphic with static exceptions. So

if you have template code, where the user-provided code could be using static exceptions or out-

come (or similar types), you can do try expression on that code. If it used outcome, then that types T

operator try() throws; function will return the value or throw the static exception. If expression

instead directly used static exceptions, then it just passes them through, and we can see the excep-

tion flow pathway. So if people start putting try expression into their code to mark exception path-

ways, then we have another reason to allow people to “unpack” ValueOrError types. The two fea-

tures complement each other.” — While I would personally prefer not proliferating such error han-

dling types (see §2), if it turns out they are useful then this would be another point of convergence

to allow their use without diverging the programming model, which is the essential thing to con-

verge.

4.5.1.1 try-expressions and function arguments
When try appears on an expression used to initialize an argument, it applies also to implicit construction of the

argument. This is a great aid to code readability in existing problem cases we know are hard to teach. Consider

this canonical example:

// existing C++ guru meditation question: is this “noexcept” a lie?

auto f(string s) noexcept { return s.length(); }

On the one hand, f’s noexcept is perfectly legitimate because nothing in f’s definition can throw, and the lan-

guage enforces that no exception can be emitted by this function (else we terminate). Nevertheless, arbitrary

call sites can indeed observe exceptions being thrown (without termination):

// both of these call the noexcept function, but the call can throw

f({“xyzzy”, 5});

f(mystring);

Even though these callers knows that f is noexcept, and that the language enforces no exception can be

thrown, these calls nevertheless can throw because argument evaluation happens before the call. This is nonob-

http://wiki.edg.com/pub/Wg21jacksonville2018/EvolutionWorkingGroup/D0973R0.pdf
http://wiki.edg.com/pub/Wg21jacksonville2018/EvolutionWorkingGroup/D0973R0.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0779r0.pdf

P0709 R4 – Zero-overhead deterministic exceptions: Throwing values – Sutter 42

vious from the source code, and today this is difficult to teach and remember, and is sometimes a source of ridi-

cule (“look, here’s another C++ weird example… noexcept function calls can throw anytime, C++ noexcept is {

useless | broken | designed by committee | <alternative pejorative> }”). Today, if we want to make the code

clear, our only option is to write the type construction explicitly:

// both of these are clearer that there’s a step that can throw, but repeat the type

f(string{“xyzzy”, 5});

f(string{mystring});

Using a try-expression, and using the rule that try can appear on the initializer of an argument and cover the

implicit construction without repeating the type, we can write just the original code plus try:

// (proposed)

f(try {“xyzzy”, 5});

f(try mystring);

With the minimum possible ceremony, this takes the code example that today is opaque and difficult to teach,

and makes it totally clear: Yes, f is a noexcept function and won’t throw an exception, but yes, you are also per-

forming another call that could throw as you are calling f, so now if you get the exception there is no surprise

about where it came from.

4.5.1.2 try-expressions and data member construction
Consider a type with a fallible constructor that is declared as a data member of class with an in-class initializer,

for example:

class C {

 string s = “xyzzy”;

 // ...

};

The initialization that is used in a particular construction is either the one in the mem-init-list (if the data mem-

ber is mentioned there) or else the one initialization declared with the member. The principle is that try goes on

the initialization that can fail, which means both on the in-class initializer and on any explicit initialization:

class C {

 try string s = “xyzzy”; // (1)

public:

 C() { } // 1: s initialized via in-class init ‘try’ above

 C(int) : try string{“plugh”} { } // 2: s initialized via mem-init-list ‘try’ here

 C(int) : s{} { } // 3: string{} is noexcept no ‘try’

};

 Compile-time enforcement, static guarantees

“Compile and link time enforcement of such rules is ideal in the sense that important
classes of nasty run-time errors are completely eliminated (turned into compile time

errors). Such enforcement does not carry any run-time costs – one would expect a

P0709 R4 – Zero-overhead deterministic exceptions: Throwing values – Sutter 43

program using such techniques to be smaller and run faster than the less safe tradi-
tional alternative of relying on run-time checking.” — [Koenig 1989]

It is likely that §4.5.1 try expressions and statements should be just an opt-in feature, available if users want to

use it (like override). If we have them, some teams may elect, in their own code bases, to require try on

throwing expressions (possibly on exceptions throwing static exceptions), with the help of automated enforce-

ment via a compiler switch or static analysis tool.

For completeness, however, note that we do have an opportunity now (that we will not have later) to consider

making try required in new code without backward compatibility or noisiness issues. We could require that:

• For a function call where both the caller and callee are declared with a static-exception-specification,

the call (or an enclosing) expression must be covered by a try if the callee is not throws(false).

For example:

int f1() throws;

int f2() throws;

int main() {
 return f1() + f2(); // error, f1() and f2() could throw

 try return f1() + f2(); // ok, covers both f1() and f2()

 return try f1() + f2(); // same

 return try ((try f1()) + (try f2())); // ok, but redundant

}

Notes If we had a time machine, we could require try to precede every call to an expression that could

throw. We cannot do that today without breaking backward compatibility, and because functions

that can throw dynamic exceptions are too pervasive (annotating them would be too noisy because

it would require annotating the majority of statements).

 For functions with static-exception-specifications we don’t need the time machine, because no such

functions (or callers thereto) exist yet. This gives us an opportunity to require try to precede every

expression some subexpression of which could throw a static exception, if we so desire.

 Some languages, such as Midori, made it a static error to be able to leave function by throwing if it

was marked as nonthrowing. We cannot do that with noexcept due to backward compatibility; but

we can with the proposed throws(false) (which is otherwise a synonym for noexcept) and apply

these rules to give the static compile-time guarantee that such a function cannot exit by throwing. In

such a function, the compiler never needs to generate the noexcept termination check.

 In unconstrained generic code, when the concrete types are not known, it can be unknowable

whether an expression throws. In that case, writing try can be permitted but not required, and if it

is not written and in a given instantiation the expression can throw, the result is a compile-time di-

agnostic in the function template definition showing the offending type(s) and operations. Concepts

can help with this, by stating what functions can throw.

 catch sugars
We can also provide the following syntactic sugars for cleaner and clearer code that reduces ceremonial boiler-

plate without making the code too obscure or losing information:

P0709 R4 – Zero-overhead deterministic exceptions: Throwing values – Sutter 44

• “catch{}”: To reduce ceremony and encourage efficient exception handling, we could consider letting

catch{/*...*/} with no parameter be a convenience shorthand for catch(error err){/*...*/}.

• “Standalone catch” / “less try where it’s unnecessary boilerplate (blocks)”: To reduce the ceremony

and nesting of try{} blocks, we could consider allowing standalone catch (not following an explicit try)

as-if everything between the previous { scope brace and the catch were enclosed in a try{} block.14

After all, a major point of exception handling is to keep the normal path clean and direct, and today’s

ceremony of try{} blocks and required extra nesting makes the normal path less clean and direct.

For example:

int main() {

 auto result = try g(); // can grep for exception paths

 cout << “success, result is: ” << result;

 catch { // clean syntax for the efficient catch

 cout << “failed, error is: ” << err.error();

 }

}

In my opinion, the combination of try-expressions/try-statements with this catch sugar is doubly desirable, be-

cause it lets us write clean, readable code that simultaneously avoids needless ceremony (e.g., the artificial

scopes of try{} blocks) while adding back actually desirable information that was missing before (try to make

the exceptional paths visible).

Finally, we could consider helping the common pattern where code wants to handle just one kind of error and

propagate the rest. For example:

catch (error e) {

 if (e == codespace::something) {
 // do something different, else allow to propagate

 }

 else throw;

}

If we allowed naming an error value in the catch-handler, it would make this common scenario cleaner:

catch (codespace::something) {

 // do something different, else allow to propagate

}

14 Note a potential danger: Anytime we consider omitting an explicit scope we run the risk of making the code feel (or actu-
ally be) unstructured and undisciplined. In this case, the preceding scope is already explicit in source code (everything from
the scope-{ to the catch); it’s certainly clear to the compiler, and in my opinion likely also clear to the programmer, and if
that bears out with some usability testing then it would confirm that the try{} boilerplate really is only adding ceremony
and nesting, not any actual information or clarity.

P0709 R4 – Zero-overhead deterministic exceptions: Throwing values – Sutter 45

 Discussion
The “expression try” aligns well with hand-coded conventions already being adopted in the community, and

brings them into the language. For example, it directly replaces the OUTCOME_TRY macro and enables writing the

same naturally in the language in normal code:

[Douglas 2018] example Possible future extension (not proposed)

outcome::result<int> str_multiply2(const string& s, int i) {
 OUTCOME_TRY (result, convert(s));
 return result * i;
}

int str_multiply2(const string& s, int i) throws {
 auto result = try convert(s);
 return result * i;
}

This feature would help address the concern of some programmers (including the authors of expected<T,E>)

who have expressed the desire to interleave normal and exceptional control flow in a way that today’s exception

handling does not support well. Consider again the example from [P0323R3],

// P0323R3 expected<int,errc> style: as preferred by some

int caller2(int i, int j) {

 auto e = safe_divide(i, j);

 if (!e)
 switch (e.error().value()) {

 case arithmetic_errc::divide_by_zero: return 0;

 case arithmetic_errc::not_integer_division: return i / j; // ignore

 case arithmetic_errc::integer_divide_overflows: return INT_MIN;

 // Adding a new enum value causes a compiler warning here, forcing code to update.

 }

 return *e;

}

Using dynamic exceptions, the code can put the normal control flow together, but it creates a needless extra

try scope in the normal path, and throwing types is brittle under maintenance if new failure modes are added:

// Today’s C++ exception style: cleaner, but also more brittle (and more expensive)

int caller2(int i, int j) {

 try {

 return safe_divide(i, j);

 }
 catch(divide_by_zero) { return 0; }

 catch(not_integer_division) { return i / j; } // ignore

 catch(integer_divide_overflows) { return INT_MIN; }

 // Adding a new exception does not cause a compiler warning here, silently incorrect.

}

Using this section’s proposal, we could write a combination that arguably combines the benefits of both — note

that the return value of safe_divide is now always a success result in the normal path and always a failure re-

sult in the catch path, never a conflated success-or-error result that must then separate its own code paths, yet

the handling code’s structure is still essentially identical to the expected<double,errc> style:

https://wg21.link/p0323r3

P0709 R4 – Zero-overhead deterministic exceptions: Throwing values – Sutter 46

P0323R3 example Possible future extensions (not proposed)

expected<double, errc> caller(double i, double j, double k) {
 auto q = safe_divide(j, k);
 if (q) return i + *q;
 else return q;
}

double caller(double i, double j, double k) throws {
 return i + try safe_divide(j, k);
}

int caller2(int i, int j) {
 auto e = safe_divide(i, j);
 if (!e) {
 switch (e.error().value()) {
 case arithmetic_errc::divide_by_zero:
 return 0;
 case arithmetic_errc::not_integer_division:
 return i / j; // ignore
 case arithmetic_errc::integer_divide_overflows:
 return INT_MIN;
 }
 }
 return *e;
}

int caller2(int i, int j) {
 try return safe_divide(i, j);
 catch {
 if (err == arithmetic_errc::divide_by_zero)
 return 0;
 if (err == arithmetic_errc::not_integer_division)
 return i / j; // ignore
 if (err == arithmetic_errc::integer_divide_overflows)
 return INT_MIN;
 }
}

P0709 R4 – Zero-overhead deterministic exceptions: Throwing values – Sutter 47

4.6 Q&A

 Wouldn’t it be better to try to make today’s dynamic exception han-

dling more efficient, instead of pursuing a different model?

“The unavoidable price of reliability is simplicity.” – C. A. R. Hoare

We can keep trying that too and continue hoping for a fundamental breakthrough, but we should not use that as

a reason to delay investigating a zero-overhead-by-construction model.

We know that today’s dynamic exception model has inherent overheads with no known solution for common

and important cases such as memory-constrained and/or real-time systems, which require statically boundable

space and/or time cost of throwing an exception. For space determinism (memory-constrained systems), I am

not aware of any research progress in the past decade. For time determinism (real-time systems), proponents of

today’s dynamic exceptions expected suitability for real-time systems to be achieved before 2010; but, as noted

in §2.3, there have been only a handful of research results (all over a decade old), notably [Gibbs 2005] which

unfortunately is not suitable for general use because of its restrictions on the sizes of class hierarchies and reli-

ance on static linking.

We cannot accept that “Standard C++ is not applicable for real-time systems” — that would be an admission of

defeat in C++’s core mission as an efficient systems programming language. Therefore we know we cannot live

with today’s model unchanged.

The overheads described in §2.5 appear to be inherent in the dynamic and non-local design of today’s dynamic

exception model: It is fundamental that today’s model requires nonlocal properties (notably, that throw must

perform dynamic allocation and that catch by type must perform RTTI), and so there has to be nonlocal over-

head in some form (implementations can compete creatively only on where to put it), and there is no known

way to achieve space/time determinism for throwing. Therefore, even if we pour millions of dollars more into

optimizing today’s dynamic exception handling model, we know already that the best-case result would be that

the overheads will still be present but somewhat lower (e.g., smaller static tables for less binary size bloat), and

throwing will still not be deterministic in either space or time and so exceptions will still be unusable in real-time

systems and/or systems without virtual memory.

 But isn’t it true that (a) dynamic exceptions are optimizable, and (b)

there are known optimizations that just aren’t being implemented?

“Almost anything is easier to get into than out of.” — Agnes Allen

Yes, but part (a) exposes a fundamental problem just in the way it’s phrased, and part (b) could be telling.

The reason (a)’s phrasing exposes a fundamental problem is that it underscores that today’s dynamic model

relies on such optimizations, which is already a sign it fails to be true to C++’s zero-overhead spirit. Contrast:

• “Pound of cure” [not C++’s ethos]. Today’s “out-of-band dynamic exceptions” model is modeled as a

dynamic feature, specified in a way that assumes dynamic overheads, then relies on optimization to op-

timize them away. Relying on the optimizer is a giveaway that we’re talking about a “pound of cure”

strategy, which is normally avoided by C++ and is a major reason why non-zero-overhead proposals like

https://na01.safelinks.protection.outlook.com/?url=http%3A%2F%2Fwww.stroustrup.com%2Ffast_dynamic_casting.pdf&data=04%7C01%7Chsutter%40microsoft.com%7C0dc563307d6f49d9d14c08d586fc49dc%7C72f988bf86f141af91ab2d7cd011db47%7C1%7C1%7C636563340974579409%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwifQ%3D%3D%7C-1&sdata=a%2BsVIk7LrefnA6IDbgQdZElDGdUd5KRjb%2FffcR6qE8s%3D&reserved=0

P0709 R4 – Zero-overhead deterministic exceptions: Throwing values – Sutter 48

C++0x concepts have failed (they were defined in terms of concept maps, and relied on those being opti-

mized away). That strategy is not appropriate for C++; it is the strategy of languages like Java and C# that

place other priorities first, and it is precisely because those languages rely on optimization to claw back

performance losses that they can never be as efficient as C++ overall, not just in fact but also in princi-

ple.

• “Ounce of prevention” [C++’s ethos]. This paper’s proposed “in-band alternate return value” model is

modeled as a static (stack) feature, specified in a way that assumes strictly local stack/register use (de-

signed to share the return channel under the covers), and so does not rely on optimizations to optimize

overheads away. This kind of strategy is exactly why and how C++ has been uniquely successful as a

zero-overhead language: because it (nearly always) avoids incurring overheads in the first place, by con-

struction. Furthermore, it doubles down on C++’s core strength of efficient value semantics.

Could we try to add requirements to today’s dynamic exception model, to say things like “local cases must be as

efficient as a forward goto"? Possibly, but: We have never specified such a thing in the standard, and in this case

it would address the problem only in degree, not in kind — it would be a “mandatory optimization” (“required

poundage of cure”) rather than a correction to fundamentally fix the specification of the operation as a static

and local feature, instead of as a dynamic and non-local feature.

For an example of (b), see [Glisse 2013]. The intention is to short-circuit throw and catch when that is visible to

the optimizer (possibly across inlining boundaries), and it could result in performance gains. That it has been

mostly ignored and not viewed as a priority is arguably telling. Granted, there could be many reasons why it’s

not fixed, such as Clang being maintained in part by organizations that themselves ban exceptions and who

therefore are disincentivized to optimize them; but if so then the maintainers’ being uninterested because they

already abandoned exceptions outright is data too.

Note Gor Nishanov mentions a specific potential optimization of today’s dynamic exception handling

model that could alleviate at least the need to have filesystem-like dual APIs. Gor writes:

 Consider the case where catch and throw are in the same function and handler does not call any

functions that compiler cannot see the bodies of (to make sure there is no sneaky calls to cur-

rent_exception or throw; hiding inside) and the handler does not rethrow. In that case, throw

<expr>; can place the exception object on a stack and then does a “normal” goto into the handler.

 With that rather straightforward optimization we no longer need to have duplicate APIs as in

<filesystem>. In our implementation, all the dual APIs are implemented as:

 fs_xxx(bla, ec) { ec = fs_xxx_impl(bla); }

 fs_xxx(bla) { if (auto ec = fs_xxx_impl(bla)) throw ec; }

 with the exception that we don’t throw ec, but a fatter object.

 If [a caller] does local catching and only uses ‘throwing’ version of the API, with that simple optimi-

zation we will have the codegen identical to a version that request the ec and then does handing of

the ec with an if statement. True, the [caller’s] catch syntax would be more verbose, but, that is

something that can be addressed in either exception model.

https://bugs.llvm.org/show_bug.cgi?id=17467

P0709 R4 – Zero-overhead deterministic exceptions: Throwing values – Sutter 49

 Can I catch error values and dynamic exceptions?
Yes, just write catch(...) to catch both or write multiple catch blocks for different thrown types as today.

For example:

int f() throws { throw std::errc::ENOMEM; } // report failure as ENOMEM

int g() { throw std::bad_alloc; } // report failure as bad_alloc

int main() {

 try {

 auto result = f() + g();

 } catch(error err) { // catch ‘error’
 /*...*/

 } catch(std::exception const& err) { // catch ‘std::exception’

 /*...*/

 }

 try {

 auto result = f() + g();

 } catch(...) {

 /*...*/

 }

}

To invoke the translation to a common error type, use a function (possibly a lambda):

int h() throws { // bad_alloc → ENOMEM

 return f() + g();

}

int main() {

 try {

 auto result = h();
 } catch(error err) { // catch ‘error’, incl. translated ‘std::bad_alloc’

 /*...*/

 }

 try { []() throws { // bad_alloc → ENOMEM

 auto result = f() + g();

 }(); }

 catch(error err) { // catch ‘error’, incl. translated ‘std::bad_alloc’

 /*...*/

 }

}

P0709 R4 – Zero-overhead deterministic exceptions: Throwing values – Sutter 50

 Can error carry all the information we want and still be trivially relo-

catable? For example, filesystem_error contains more information,

such as source and destination paths
Yes, you can have a filesystem_error type that includes additional information and pass it losslessly via error.

Note that “trivially relocatable” is a surprisingly loose requirement; it is satisfied by many std:: types, including

containers and smart pointers.

 What about allowing the function to specify the type is throws (e.g.,

throws{E})?
SG Poll The 2018-04-11 SG14 telecon took a poll on pursuing this direction: 4-2-5 (Favor-Neutral-Against).

 “We want to be able to pass arbitrary, user-defined information … to the point where it is
caught. Two suggestions have been made for C++: [1] that an exception be a class, and

[2] that an exception be an object. We propose a combination of both.” — [Koenig 1989]

“[In Midori] Exceptions thrown by a function became part of its signature,
just as parameters and return values are.” — [Duffy 2016]

Yes, we can add that extension later if experience shows the need. This paper currently does not propose this

because it was more controversial in SG14, but this subsection captures its motivation and design. If we were to

adopt this feature, we would reconcile the syntax with conditional throws(cond) (see §4.1.4) so that they do

not collide.

A possible extension is to allow optionally specifying a custom error code type that can carry additional infor-

mation until it converts to error or another thrown type. There are two main motivations:

• To return a bigger or richer error type, for example, one that directly carries additional information

without type erasure. Because std::error can already represent arbitrarily rich information by wrap-

ping an exception_ptr, and any performance advantage to doing something different would be ex-

pected to be in exceptional (throwing) cases only where optimization is rarely useful, justifying this moti-

vation would require providing examples that demonstrate that throwing an alternative type gives bet-

ter usability (at catch sites) and/or performance by avoiding type erasure.

• To return a smaller error type. For example, to return an error type that is smaller than two pointers.

Because empirical testing shows that on common platforms there is little measurable performance dif-

ference in return-by-value of trivially copyable values of size from 1 to 32 bytes, justifying this motiva-

tion would require providing examples of platforms that benefit from throwing a smaller type.

The idea would be additionally permit a function to declare a type-specific static-exception-specification of

throws{E} (or other syntax, just using {} for now for convenient discussion without collision with

throws(cond)) which uses the type E instead of error and otherwise behaves the same as in the previous sec-

tion. In this model, a specification of throws is syntactic sugar for throws{error}. For example:

string f() throws{arithmetic_error} {

 if (flip_a_coin()) throw arithmetic_error::something;

 return “xyzzy”s + “plover”; // any dynamic exception is translated to arithmetic_error

}

P0709 R4 – Zero-overhead deterministic exceptions: Throwing values – Sutter 51

string g() throws { return f() + “plugh”; }

 // any dynamic exception or arithmetic_error is translated to error

Or, std::filesystem might want to say:

directory_iterator& operator++() throws{filesystem_error};

For a function declared with a static-exception-specification, if it is declared throws{E} then additionally:

• E must be a single type name and must be default-constructible, noexcept-movable,15 and convertible to

and from error. If E is not relocatable, then the implementation needs to call destructors of moved-

from E objects when returning.

• All the rules in §0 apply as written, except replacing each mention of error with E. — Corollary: When a

function declared throws{E1} calls another declared throws{E2} which throws an exception that is not

handled, the E2 object is converted to E1; if there is no conversion, then the E2 object is converted first

to error and then to E1.

The potential benefits of this extension include:

• It enables reporting rich errors while also encouraging handling them locally within a subsystem.

• Experience with Expected [P0323R3] and Midori [Duffy 2016] indicates that being able to handle rich

errors locally is desirable and useful, while still propagating more generic errors distantly.

Note Some reviewers asked whether we would be able to evolve the error type over time. I believe this

would enable that, by allowing more than a single well-known type which could be used for future

evolutions of (or alternatives to) error itself. But I don’t think that’s sufficient motivation in itself to

allow throws{E}, as we believe we have enough experience with error_code and its evolutions to

specify error well to be future-proof for decades. The main reasons to allow throws{E} is to satisfy

the requirements of code that uses Expected today with an error type other than std::error_code.

If we pursue this optional generalization, we should address the following concerns:

• Show use cases that demand specifying a custom type E: error as described herein is efficient, and suffi-

ciently flexible to represent all errors in STL, POSIX, Windows, etc., and can wrap arbitrary richer types

and transport them with trivial operations. What uses cases are not covered? Simple beats complex, un-

less the complexity is essential (to expose an important semantic or performance distinction so that the

programmer can control it).

• Address how to discourage large error types: These objects should remain small and avoid heap alloca-

tion. One AVX512 register or one cache line is ideal.

• Demonstrate actual benefits from a smaller error type: A smaller type would unlikely give measurable

savings over returning a two-pointer-sized error. The [Itanium ABI] already optimizes that use case.

Niall Douglas reports that when benchmarking options for Boost.Outcome, he found no statistically sig-

nificant difference for returning up to 32 bytes of data as compared to anything less for an Ivy Bridge

CPU, although the answer may be different on other architectures.

15 Trivially relocatable is encouraged, for efficiency so that it is easier for platform ABIs to return in registers. However, this
mechanism does not rely on it, and because the choice of E is exposed and left to the function author, it meets the zero-
overhead principle of getting only the overheads the author opts into.

https://wg21.link/p0323r3
http://joeduffyblog.com/2016/02/07/the-error-model/
https://itanium-cxx-abi.github.io/cxx-abi/

P0709 R4 – Zero-overhead deterministic exceptions: Throwing values – Sutter 52

 How will vector<throwing_type> work?
The existing std::vector works the same as today. If std::vector is instantiated with a type that declares a

function with a static-exception-specification, then any conditional noexcept or *noexcept*/*nothrow* trait

behaves as if the function were declared noexcept(false).

Looking forward, if there is a std2 where we can change existing entities, then personally I would recommend

that vector simply mark any function that might throw as throws:

• It’s simple to teach and learn: A user of vector would just write error handling code without worrying

about whether for a particular vector specialization error might actually happen or not (as such code has

to do today anyway if it is generic code that uses a vector<T> for arbitrary T).

• It’s also efficient: Because throws is efficient, there is no longer a performance incentive to perform a

conditional calculation to see if for a given specialization it might be able to guarantee it doesn’t throw,

in order to suppress the exception handling machinery overhead.

 What about move_if_noexcept()? conditional noexcept? traits?
They all work the same as today and react as if the function were declared noexcept(false). This proposal is

not a breaking change.

 Will we want more type_traits to inspect dynamic vs. static excep-

tions?
I don’t think so. The existing ones, and the noexcept operator, continue to work as designed. If anything, I think

this proposal’s effect on the exception-related type traits will be just to use them less often, not to add new

ones, since many uses of the traits are motivated by wanting to elide the overhead of today’s exception handling

(notably to write conditional noexcept tests).

 But people who can’t use exceptions typically can’t use dynamic

memory anyway, right? So there’s no benefit in trying to help them use

exceptions on their own.
No. That may be true of some environments, but not of most. For example, the Windows kernel allows dynamic

memory allocation (after all, it owns and manages the heap) but currently bans exceptions.

 How does the try-expression in §4.5 compose with co_await?
§4.5 suggests allowing try on any statement or expression (including subexpressions) that could throw. In

[O’Dwyer 2018], Arthur O’Dwyer makes the excellent point that “coloring” like try and co_await should be

composable, and used only for essential qualities. His example is:

auto result = try (co_await bar()).value();

Recall this similar example from §4.5, which proposes allowing try on an expression or statement any subex-

pression of which can throw, and indicates that mental model implies the following two lines are equivalent:

try return “xyzzy”s + “plover”; // ok, covers both “”s and +

return try “xyzzy”s + “plover”; // same

For the same reasons, the following are also equivalent ways to call an asynchronous function that can fail:

https://quuxplusone.github.io/blog/2018/03/16/async-roundup/

P0709 R4 – Zero-overhead deterministic exceptions: Throwing values – Sutter 53

int result = co_await try foo();

int result = try co_await foo();

Incidentally, this is a counterexample that argues against the suggestion in [D0973R0] to co-opt co_await to

mean what §4.5 suggests be a try-expression: If co_await can only mean one thing at a time, and one abuses it

so that sometimes that thing is error handling, then how do you express invoking an operation that both can

report an error and is asynchronous? (There are many other reasons co_await should not be co-opted for this

meaning, including that error handling should be distinct from all normal control flow.)

 Wouldn’t it be good to coordinate this ABI extension with C (WG14)?
Yes, and that is in progress.

This paper proposes extending the C++ ABI with essentially an extended calling convention. Review feedback has

pointed out that we have an even broader opportunity here to do something that helps C callers of C++ code,

and helps C/C++ compatibility, if C were to pursue a compatible extension. One result would be the ability to

throw exceptions from C++→C→C++ while being type-accurate (the exception’s type is preserved) and correct

(C code can respond correctly because it understands it is an error, even if it may not understand the error’s

type).

It could simplify our C++ implementation engineering if C functions could gain the ability to return A-or-B values,

so for example:

_Either(int, std_error) somefunc(int a) {

 return a > 5 ? _Expected(a) : _Unexpected(a);

}

// ...

_Either(int, std_error) ret = somefunc(a);

if(ret)
 printf("%d\n", ret.expected);

else

 printf("%f\n", ret.unexpected);

Here _Either would be pure compiler magic, like va_list, not a type. Under the hood, functions would return

with some CPU flag (e.g., carry) set if it were a right value, clear if it were a left value. An alternative is setting a

bit in the thread environment block which probably is much better, as it avoids a calling convention break,

though potentially at the cost of using thread local storage. It would be up to the platform vendor what to

choose (this is an ABI extension), but the key is that C and platforms’ C-level calling conventions would be ex-

tended to understand the proposed union-like return of values from functions to use the same return channel

storage, with a bit to say what the storage means.

In C++, functions marked throws would, in C terms, return _Either(T, std::error) and this is how the excep-

tion throw would be unwound up the stack, by the C++ compiler testing after every throws function call if an

unexpected std::error value was returned, and if so returning that std::error up to caller.

Thus, these C++ functions:

extern "C++" int do_something(double) throws;

extern "C++" double do_something_else(int) noexcept;

http://wiki.edg.com/pub/Wg21jacksonville2018/EvolutionWorkingGroup/D0973R0.pdf

P0709 R4 – Zero-overhead deterministic exceptions: Throwing values – Sutter 54

would in C become:

extern _Either(int, std_error) _Z3do_somethingd(double);

extern double _Z3do_something_elsei(int);

A major benefit of (also) doing it at the C level is that C is the lingua franca portable platform language that all

other languages bind to. Therefore this facility would help integrate C not only with C++ error handling, but also

with Rust, Swift, and many other languages that can speak C and also return A-or-B from functions as their main

error handling implementation. The carrot for WG14 would be that C facility would benefit all C speaking lan-

guages, and help C be more useful in its key role as a glue language. A notable gain is that C could now receive

exception throws from C++, and propagate them, perhaps even convert them for other languages.

Further, there are benefits for embedded use of C:

• On many common microcontrollers, this allows a more efficient implementation of any function that

currently produces/propagates errors using return plus an out parameter for the return value. Adding

parameters to a function is expensive, more expensive than using a flag.

• This provides a usable replacement for errno which is not an option in interrupt service routines or

preemptive run-to-completion kernels (either adds ISR latency or potentially yields false results).

In C++, I would like to see group discussion of this question and get direction of SG14 and EWG regarding their

interest in this proposal if C does, or does not, also make a coordinated ABI call convention extension with C++.

Is coordination with C necessary for this proposal to be interesting for C++, or should this proposal be explored

as of potential interest for a future C++ regardless of what C does?

 Would language level variants and pattern matching lead to a different

error handling style and change the design and goal of this proposal?
This proposal is agnostic to a language variant, and would benefit from pattern matching in catch clauses.

A variant type has the same effect on this proposal whether it’s language-level or a library. For example, as de-

scribed in the §2.4 Note, we have a “return a variant for error reporting” idiom before us already in one of ex-

pected<T,U>’s two major use cases:

• expected<T,U> where T and U are alternate success results: Both types are naturally dealt with using

normal control flow, we should prefer using variant<T,U> today, and we can use a language-level vari-

ant too if we get one. But this case is not about error handling, so it doesn’t affect this proposal.

• expected<T,E> where E really represents an error: This proposal already blesses that with language in-

tegration into the return channel (as efficient as a language-level variant could do) plus language sup-

port for keeping the error-handling paths distinct and automatically propagating the errors, which is

equally an improvement whether the returned variant is a language or library feature.

Pattern matching will be useful to categorize errors within catch clauses (see §4.1.6 Notes) just as it’s useful an-

ywhere else. What is essential, however, is to keep normal and error handling control paths separate, with the

latter entirely in catch{} blocks. We want to get away from the idiom of using normal control flow constructs

for error handling which interleaves the normal and error code paths — and “normal control flow constructs”

means pattern match just as much as it means if and switch. Just as we don’t want to use if and switch to

select error handling blocks (e.g., if(result.is_error(){}, or switch(result){ /*some cases are error cases,

or cases are successes and default is the error case*/ }), the same is true for future pattern matching (e.g.,

match(result){ /*some cases are error cases, or cases are successes and default is the error case*/ }).

P0709 R4 – Zero-overhead deterministic exceptions: Throwing values – Sutter 55

 What about projects that assume that all exceptions inherit from

std::exception?
Some projects have made the assumption that all exceptions inherit from std::exception, and that anything

else is an obvious developer mistake enforced by catch(...){assert(false);} guards. However, because C++

dynamic exceptions allow throwing any type, such projects still have to be aware of, and work with, called code

that does not follow it. That code already does not work with arbitrary third-party libraries without adding some

awareness of non-std::exception-derived exception objects. Some C++ libraries provide their own competing

exception base class types; for example, Boost provides boost::exception that is “designed to be used as a

universal base for user-defined exception types”[Dotchevski 2009]. Also, C++ books have long thrown other

types (such as integers) in their examples.

 Should we consider overloading on throws?
Probably not. That would need strong justification, and address the problems raised when we considered pro-

posals to allow overloading on noexcept.

Some reviewers have suggested that we could allow overloading on “undecorated” and throws (e.g., void f();

and void f() throws;) with the meaning that, as a final tie-break, a function with/without a static-exception-

specification will prefer invoking another one with/without a static-exception-specification. This means throws

would also become part of the function’s type as with noexcept, but stronger because we do not allow over-

loading on noexcept(see [P0012R1]). This would be primarily useful to optimize the translation of dynamic ex-

ceptions to errors in common functions. For example, in this proposal (and if some form of §4.3 is not

adopted), a function with a static-exception-specification that invokes today’s existing operator new and

doesn’t handle a bad_alloc would get it automatically translated to std::errc::ENOMEM. A quality implemen-

tation that inlines the call to operator new could elide the dynamic exception, but that relies on an optimization.

If we supported overloading on throws, then we could additionally provide a (non-placement) overload of oper-

ator new that is decorated with throws, and it will be used by throws functions to guarantee no dynamic excep-

tion ever happens (whether the call is inlined or not) while leaving all existing uses unchanged (all existing code

still uses the existing operator new).

My current view is that overloading on throws adds complexity that would need a strong set of compelling ex-

amples to justify, and it would need to address the good reasons why we do not overload on noexcept today

and have not pursued proposals that suggested allowing it.

 What if this function is calling others that could throw different things?
That situation already exists today: This function might call a variety of other functions, each of which may

throw different things. This function just separately decides what errors it will communicate (that types it may

throw, or opt into throws), and internally it catches whatever the functions it calls may throw, as today:

• If it calls something that can emit a filesystem_error, it should catch(filesystem_error&) (or a

base thereof) if it wants to handle that.

• If it calls something that can emit a bad_cast, it should catch(bad_cast&) if it wants to handle that.

• ...

• (new) The new thing is that if it calls something that can emit a std::error, it should catch(std::er-

ror) if it wants to handle it. There’s nothing new except that now you can catch a std::error, and you

can (and should prefer to) catch that one by value.

• catch(…) continues to catch anything.

https://www.boost.org/doc/libs/1_67_0/libs/exception/doc/exception.html
https://wg21.link/p0012r1

P0709 R4 – Zero-overhead deterministic exceptions: Throwing values – Sutter 56

5 Dangers, and “what to learn in a TS”
 “Adding a mechanism to ‘solve the error-signaling problem’ is more likely to add yet-

another-alternative to this mess, than to solve it.” — [P0976]

Here are two major groups of dangers we must address (e.g., in a TS) before considering adopting this proposal

into a draft standard, with sample hypotheses that if validated would address them.

(1) Ending up with N+1 alternatives. To avoid

xkcd 927 (see right), we must validate that

this proposal is unlikely to increase the num-

ber of alternative C++ error handling meth-

ods. One way to do that is to demonstrate it

can replace at least one of the existing alter-

natives already in development and use (e.g.,

Outcome, Expected), for example if the pro-

posers of one of those documents that this

proposal can be viewed as a direct generali-

zation that can subsume the existing alterna-

tive. That would demonstrate that this pro-

posal at least does not increase the number of alternatives.

(2) Replacing known problems with something having unknown problems. We must create an experimental

implementation and try it against real projects to validate its efficiency and usability, and to identify its cur-

rently-unknown problems. Also, we reduce this risk by documenting how the proposal directly relates to existing

practice with known qualities in C++ and other languages. Note two specific cases of the latter problem:

• The danger that this proposal might encourage excessive local propagation (e.g., a pattern of writing

otherwise-unnecessary code to catch from a throws{E} before E is converted to error). We must vali-

date that projects using an experimental implementation still throw and catch exceptions at whatever

distance is normal, without resorting to otherwise-undesirable local catches before a more specific error

type is translated to error.

• The danger that we cause users to reinvent a form of RTTI. We must validate that projects do not use

these facilities to catch errors at higher code levels in a way where they then perform run-time

type/categorization efforts that are tantamount to duplicating RTTI in a way that falls into today’s prob-

lems of RTTI (see Note in §2.5).

Finally, we must not mimic other languages’ choices just because

things appeared to have worked out well for them. Languages are dif-

ferent, even languages as similar as C and C++, and what works well

in one language does not necessarily work well or at all in another.

So, although the rationale and core design of this proposal arrives at

similar conclusions and basic designs as existing practice in C++ (e.g.,

std::error_code, Expected, Outcome) and other modern languages

(e.g., Midori, and in parts CLU, Haskell, Rust, and Swift), and so benefits from experience in those languages, it is

not motivated by mimicry and we cannot rely only on experience in those languages. This is a proposed feature

for C++, and it has to be prototyped and tested in a C++ compiler and with C++ code to get relevant data about

its actual performance and usability.

“Haskell does something even
cooler and gives the illusion of
exception handling while still
using error values and local

control flow” — [Duffy 2016]

https://xkcd.com/927

P0709 R4 – Zero-overhead deterministic exceptions: Throwing values – Sutter 57

6 Bibliography
Note Many of these references were published in the past year. C++ error handling continues to consume

copious committee and community time wrestling with unresolved issues, over a quarter of a cen-

tury after C++ exceptions were designed and implemented.

[Abseil] Abseil Common Libraries. (Google, 2018).

[Alper 2019] “How many values are errors in Go?”

(2019-06-11).

[babb] H. Sutter and M. Clow. “babb: bad_alloc Be-

having Badly” (GitHub, 2019).

[Bay 2018] C. Bay. “Boost.Outcome.v2 Review Re-

port” (Boost, 2018-02-05).

[Brooks 1975] F. Brooks. The Mythical Man-Month

(Addison-Wesley, 1975).

[Cox 2018] R. Cox. “Go 2 Drafts announcement”

(YouTube, 2018-08-28).

[C# Alloc] “OutOfMemoryException Class” (Mi-

crosoft).

[Dechev 2008] D. Dechev, R. Mahapatra, B. Strou-

strup, D. Wagner. “C++ Dynamic Cast in Autono-

mous Space Systems” (IEEE ISORC 2008, 2008-05).

[Dechev 2008a] D. Dechev, R. Mahapatra, B. Strou-

strup. “Practical and Verifiable C++ Dynamic Cast

for Hard Real-Time Systems” (Journal of Compu-

ting Science and Engineering (JCSE), 2:4, 2008-12).

[Dotchevski 2009] E. Dotchevski. “Boost Exception”

(boost.org, 2009).

[Douglas 2018] N. Douglas. “Outcome 2.0 Tutorial”

(2018).

[Douglas 2018a] N. Douglas. “Reference imple-

mentation for proposed SG14 status_code

(<system_error2>) in C++ 11” (2018).

[Douglas 2018b] N. Douglas. “Header file er-

ror.hpp” — A prototype implementation of this

paper’s error (2018-03-03).

[Duffy 2015] J. Duffy. “Safe native code” (Joe

Duffy’s Blog, 2015-12-19).

[Duffy 2016] J. Duffy. “The error model” (Joe

Duffy’s Blog, 2016-12-07). Describes Midori’s error

handling model.

[Embedded C++] “Rationale for the Embedded C++

specification” (Embedded C++ Technical Commit-

tee, 1998-11-20).

[Edge] Microsoft Edge developer documentation.

[Filesystem v3] B. Dawes. “Filesystem Library Ver-

sion 3” (Boost, 2015-10-25).

[Gibbs 2005] M. Gibbs, B. Stroustrup. “Fast dy-

namic casting” (Lockheed Martin & Texas A&M

University collaboration; Software—Practice and

Experience 2006; 36:139–156). Published online

2005-09-15 in Wiley InterScience (www.inter-

science.wiley.com).

[Glisse 2013] M. Glisse. “Remove throw when we

can see the catch” (LLVM bug 17467, 2013-10-03).

[Go Alloc] R. Gooch. “Proposal: Make it possible to

catch failed memory allocations” (Golang repo,

2016-01-30).

[Goodenough 1975] J. B. Goodenough. “Exception

handling: Issues and a proposed notation” (CACM,

18(12), 1975-12).

[Gorman 2007] M. Gorman. “Understanding the

Linux virtual memory manager” (2007-07-09).

[GSG] Google C++ Style Guide (Google).

[GSL] C++ Core Guidelines’ Guidelines Support Li-

brary.

[Haskell 2009] (user “Lemming”) “Error vs. Excep-

tion [in Haskell]” (wiki.haskell.org, 2009-12-07).

https://github.com/abseil/abseil-cpp
https://blog.boramalper.org/how-many-values-are-errors-in-go/
https://github.com/hsutter/babb
https://lists.boost.org/Archives/boost/2018/02/241066.php
https://en.wikipedia.org/wiki/The_Mythical_Man-Month
https://www.youtube.com/watch?v=6wIP3rO6On8&feature=youtu.be&t=131
https://docs.microsoft.com/en-us/dotnet/api/system.outofmemoryexception?view=netframework-4.8
http://www.stroustrup.com/isorc2008.pdf
http://www.stroustrup.com/fdc_jcse.pdf
https://www.boost.org/doc/libs/1_67_0/libs/exception/doc/exception.html
https://ned14.github.io/outcome/tutorial/
https://ned14.github.io/status-code/
https://ned14.github.io/status-code/doc_error.html
http://joeduffyblog.com/2015/12/19/safe-native-code/
http://joeduffyblog.com/2016/02/07/the-error-model/
http://www.caravan.net/ec2plus/rationale.html
https://docs.microsoft.com/en-us/microsoft-edge/
http://www.boost.org/doc/libs/1_66_0/libs/filesystem/doc/index.htm
https://na01.safelinks.protection.outlook.com/?url=http%3A%2F%2Fwww.stroustrup.com%2Ffast_dynamic_casting.pdf&data=04%7C01%7Chsutter%40microsoft.com%7C0dc563307d6f49d9d14c08d586fc49dc%7C72f988bf86f141af91ab2d7cd011db47%7C1%7C1%7C636563340974579409%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwifQ%3D%3D%7C-1&sdata=a%2BsVIk7LrefnA6IDbgQdZElDGdUd5KRjb%2FffcR6qE8s%3D&reserved=0
http://www.interscience.wiley.com/
http://www.interscience.wiley.com/
https://bugs.llvm.org/show_bug.cgi?id=17467
https://github.com/golang/go/issues/14162
http://web.eecs.umich.edu/~weimerw/2006-615/reading/goodenough-exceptions.pdf
https://www.kernel.org/doc/gorman/pdf/understand.pdf
https://google.github.io/styleguide/cppguide.html
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#S-gsl
https://wiki.haskell.org/Error_vs._Exception

P0709 R4 – Zero-overhead deterministic exceptions: Throwing values – Sutter 58

[Ignatchenko 2018] S. Ignatchenko. “App-level De-

veloper on std::error Exceptions Proposal for C++.

Part I. The Good” (blog post, 2018-05-23).

[Ignatchenko 2018a] S. Ignatchenko. “App-level

Developer on std::error Exceptions Proposal for

C++. Part II. The Discussion” (blog post, 2018-05-

30).

[ISO 18015:2004] Technical Report on C++ Perfor-

mance (ISO/IEC TR 18015:2004(E), 20015-06-15).

Also available at http://www.open-

std.org/jtc1/sc22/wg21/docs/TR18015.pdf.

[Itanium ABI] Itanium C++ ABI (GitHub, 2017-03-

14).

[JSF++ 2005] Joint Strike Fighter Air Vehicle C++

Coding Standards (Lockheed Martin, 2005).

[Klabnik 2017] S. Klabnik, C. Nichols. “Recoverable

errors with Result” (The Rust Programming Lan-

guage, 2nd ed., 2017-10-28)

[Koenig 1989] A. Koenig, B. Stroustrup. “Exception

Handling for C++” (Proc. C++ at Work conference,

1989-11. Revision published in Proc. USENIX C++

Conference , 1990-04, and Journal of Object Ori-

ented Programming, 1990-07).

[Koenig 1996] A. Koenig. “When memory runs low”

(C++ Report, 8(6), June 1996). Scanned and repro-

duced by Michael Marcin (thank you Michael!).

[Landley] R. Landley. “Linux Memory FAQ” (date

unknown)

[Lee 2015] B. Lee, C. Song, T. Kim, W. Lee. “Type

Casting Verification: Stopping an Emerging Attack

Vector” (24th USENIX Security Symposium, 2016-

08-12). Video.

[Lippincott 2016] L. Lippincott. “What is the basic

interface?” (CppCon 2016, 2016-09-19). Video.

[Liskov 1979] B. Liskov, A. Snyder. “Exception han-

dling in CLU” (IEEE Transactions in Software Engi-

neering, 1979).

[Liskov 1992] B. Liskov. “A history of CLU” (1992).

[LKA 2018] “Overcommit accounting” (The Linux

Kernel Archives, 2018-05-02).

[LWG 3013] T. Song et al. “(recursive_)direc-

tory_iterator construction and traversal

should not be noexcept” (WG21 LWG Issues List,

retrieved 2018-03-24).

[LWG 3014] T. Song et al. “More noexcept issues

with filesystem operations” (WG21 LWG Issues

List, retrieved 2018-03-24).

[LWG 3038] B. O’Neal III. “polymorphic_alloca-

tor::allocate should not allow integer overflow

to create vulnerabilities.” (WG21 LWG Issues List,

retrieved 2019-06-11).

[Maimone 2014] M. Maimone. “C++ on Mars: In-

corporating C++ into Mars Rover Flight Software”

(CppCon, 2014-09-10).

[McCall 2016] J. McCall et al. “Error handling ra-

tionale and proposal” for Swift. (Swift GitHub repo,

2016).

[Müller 2017] J. Müller. “Exceptions vs. expected:

Let’s find a compromise” (Jonathan Müller’s blog,

2017-12-04).

[N2271] P. Pedriana. “EASTL: Electronic Arts Stand-

ard Template Library” (WG21 paper, 2007-04-27).

[N3051] D. Gregor. “Deprecating exception specifi-

cations” (WG21 paper, 2010-03-12).

[N3239] B. Dawes. “Filesystem Library Update for

TR2 (Preliminary)” (WG21 paper, 2011-02-25).

[O’Dwyer 2017] A. O’Dwyer. “dynamic_cast

From Scratch” (CppCon 2017, 2017-09-26). Talk

slides. Source code.

[O’Dwyer 2018] A. O’Dwyer. “Async/await, and col-

oring schemes in general” (Blog post, 2018-03-16).

The example in “Coloring schemes don’t stack,”

which uses a try-expression, was motivated in

part by a draft of this paper.

[O’Dwyer 2018a] A. O’Dwyer. “The best type

traits… that C++ doesn’t have (yet)” (C++ Now

2018, 2018-05-08).

http://ithare.com/app-level-developer-on-std-error-exceptions-proposal-for-c-part-i-the-good/
http://ithare.com/app-level-developer-on-stderror-exceptions-proposal-for-c-part-ii-the-discussion/
http://www.stroustrup.com/performanceTR.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/TR18015.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/TR18015.pdf
https://itanium-cxx-abi.github.io/cxx-abi/
http://www.stroustrup.com/JSF-AV-rules.pdf
https://doc.rust-lang.org/book/second-edition/ch09-02-recoverable-errors-with-result.html
http://www.stroustrup.com/except89.pdf
https://pastebin.com/4XV3jGPe
https://landley.net/writing/memory-faq.txt
http://wenke.gtisc.gatech.edu/papers/caver.pdf
https://www.usenix.org/node/190956
https://github.com/CppCon/CppCon2016/blob/master/Presentations/What%20is%20the%20basic%20interface/What%20is%20the%20basic%20interface%20-%20Lisa%20Lippincott%20-%20CppCon%202016.pdf
https://www.youtube.com/watch?v=s70b2P3A3lg
http://csg.csail.mit.edu/pubs/memos/Memo-155/Memo-155-3.pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.127.8460&rep=rep1&type=pdf
https://www.kernel.org/doc/Documentation/vm/overcommit-accounting
https://wg21.link/lwg3013
https://wg21.link/lwg3014
https://wg21.link/lwg3038
https://github.com/CppCon/CppCon2014/blob/master/Presentations/C%2B%2B%20on%20Mars%20-%20Incorporating%20C%2B%2B%20into%20Mars%20Rover%20Flight%20Software/C%2B%2B%20On%20Mars%20-%20Mark%20Maimone%20-%20CppCon%202014.pdf
https://github.com/apple/swift/blob/master/docs/ErrorHandlingRationale.rst
https://foonathan.net/blog/2017/12/04/exceptions-vs-expected.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2007/n2271.html
https://wg21.link/n3051
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2011/n3239.html
https://www.youtube.com/watch?v=QzJL-8WbpuU
https://github.com/CppCon/CppCon2017/blob/master/Presentations/dynamic_cast%20From%20Scratch/dynamic_cast%20From%20Scratch%20-%20Arthur%20O'Dwyer%20-%20CppCon%202017.pdf
https://github.com/CppCon/CppCon2017/blob/master/Presentations/dynamic_cast%20From%20Scratch/dynamic_cast%20From%20Scratch%20-%20Arthur%20O'Dwyer%20-%20CppCon%202017.pdf
https://github.com/quuxplusone/from-scratch
https://quuxplusone.github.io/blog/2018/03/16/async-roundup/
https://docs.google.com/presentation/d/155Z414uxDfWiyoXIoIxjVRtfUtqByJibiNKrsewH61s

P0709 R4 – Zero-overhead deterministic exceptions: Throwing values – Sutter 59

[O’Dwyer 2018b] A. O’Dwyer. “[[trivial_abi]]

101” (Blog post, 2018-05-02).

[P0012R1] J. Maurer. “Make exception specifica-

tions be part of the type system, version 5” (WG21

paper, 2015-10-22).

[P0068R0] A. Tomazos. “Proposal of [[unused]],

[[nodiscard]] and [[fallthrough]] attributes”

(WG21 paper, 2015-09-03).

[P0132R0] V. Voutilainen. “Non-throwing con-

tainer operations” (WG21 paper, 2015-09-27).

[P0323R3] V. Botet, JF Bastien. “Utility class to rep-

resent expected object” (WG21 paper, 2017-10-

15). (Current design paper for expected<T,E>.)

[P0323R5] V. Botet, JF Bastien. “std::expected”

(WG21 paper, 2018-02-08). (Current wording paper

for expected<T,E>.)

[P0364R0] M. Wong, S. Srivastava, S. Middleditch,

P. Roy. “Report on Exception Handling Lite (Disap-

pointment) from SG14… or, How I learned to stop

worrying and love the Exception Handling” (WG21

paper, 2016-05-23).

[P0380R1] G. Dos Reis, J. D. Garcia, J. Lakos, A.

Meredith, N. Myers, B. Stroustrup. “A Contract De-

sign” (WG21 paper, 2016-07-11).

[P0542R3] G. Dos Reis, J. D. Garcia, J. Lakos, A.

Meredith, N. Myers, B. Stroustrup. “Support for

contract based programming in C++” (WG21 paper,

2018-02-12).

[P0762R0] N. Douglas. “Concerns about ex-

pected<T, E> from the Boost.Outcome peer re-

view” (WG21 paper, 2017-10-15).

[P0779R0] N. Douglas. “Proposing operator

try()” (WG21 paper, 2017-10-15).

[P0788R2] W. Brown. “Standard library specifica-

tion in a concepts and contracts world” (WG21 pa-

per, 2018-02-03).

[P0824R1] A. O’Dwyer, C. Bay, O. Holmes, M.

Wong, N. Douglas. “Summary of SG14 discussion

on <system_error>” (WG21 paper, 2018-02-05).

[P0829R2] B. Craig. “Freestanding proposal”

(WG21 paper, 2018-05-07).

[P0939R0] B. Dawes, H. Hinnant, B. Stroustrup, D.

Vandevoorde, M. Wong. “Direction for ISO C++”

(WG21 paper, 2018-02-10).

[P0941R0] V. Voutilainen. “Integrating feature-test

macros into the C++ WD” (WG21 paper, 2018-05-

04).

[P0973R0] G. Romer, J. Dennett. “Coroutines TS

Use Cases and Design Issues” (WG21 paper, 2018-

03-23).

[P0976R0] B. Stroustrup. “The evils of paradigms,

or Beware of one-solution-fits-all thinking” (WG21

paper, 2018-03-06).

[P1028R0] N. Douglas. “SG14 status_code and

standard error object for P0709 Zero-overhead

deterministic exceptions” (WG21 paper, 2018-04-

28).

[P1029R0] N. Douglas. “SG14 [[move_relo-

cates]]” (WG21 paper, 2018-05-01)

[Rust Alloc] “Allocation failure should panic” (Rust-

lang.org, 2017-03-01). Discusses allocation failure

panic behavior, and points to a working group that

is considering allocators that can return Result

(these appear to all be unsafe at the moment, and

the working group appears to be still ongoing).

[SC++F 2018] “Results summary: C++ Foundation

Developer Survey ‘Lite’, 2018-02” (Standard C++

Foundation, 2018-03-07).

[Schilling 1998] J. Schilling. “Optimizing away C++

exception handling” (ACM SIGPLAN Notices, 33(8),

1998-08).

[StackOverflow 2010] B. Larsen. “Why does my

program occasionally segfault when out of

memory rather than throwing bad_alloc?”

(StackOverflow, 2010-04-02). Even when using

ulimit.

[Stroustrup 1994] B. Stroustrup. The Design and

Evolution of C++ (Addison-Wesley, 1994).

https://quuxplusone.github.io/blog/2018/05/02/trivial-abi-101/
https://wg21.link/p0012r1
https://wg21.link/p0068r0
https://wg21.link/p0132r0
https://wg21.link/p0323r3
https://wg21.link/p0323r5
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0364r0.pdf
https://wg21.link/p0380r1
https://wg21.link/p0542r3
https://wg21.link/p0762r0
https://wg21.link/p0779r0
https://wg21.link/p0788r2
https://wg21.link/p0824r1
https://wg21.link/p0829r2
https://wg21.link/p0939r0
https://wg21.link/p0941r0
https://wg21.link/p0973r0
https://wg21.link/p0976r0
https://wg21.link/p1028r0
https://wg21.link/p1029r0
https://internals.rust-lang.org/t/allocation-failure-should-panic/4965
https://isocpp.org/blog/2018/03/results-summary-cpp-foundation-developer-survey-lite-2018-02
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.116.8337&rep=rep1&type=pdf
https://stackoverflow.com/questions/2567683/why-does-my-program-occasionally-segfault-when-out-of-memory-rather-than-throwin

P0709 R4 – Zero-overhead deterministic exceptions: Throwing values – Sutter 60

[Stroustrup 2004] B. Stroustrup. “Abstraction and

the C++ machine model” (ICESS ’04, 2004).

[Sutter 1997] H. Sutter. “Code Complexity, Part I”

(Blog post, 1997-09-14). An updated version ap-

peared as Item 18 of Exceptional C++ (Addison-

Wesley, 2000).

[Sutter 2001] H. Sutter “To new, perchance to

throw” (C/C++ Users Journal, 19(5), May 2001).

[Sutter 2002] H. Sutter. “A pragmatic look at ex-

ception specifications.” (C/C++ Users Journal,

20(7), 2002-07.)

[Squires 2017] J. Squires, JP Simard. “Error han-

dling in Swift: A history” (Swift Unwrapped pod-

cast, 2017-06-19).

[Swift Alloc] Discussion thread (2016-04-14). Com-

ment by Chris Lattner: “Swift’s policy on memory

allocation failure is that fixed-size object allocation

is considered to be a runtime failure if it cannot be

handled. OTOH, APIs that can take a variable and

arbitrarily large amount to allocate should be faila-

ble.”

http://www.stroustrup.com/abstraction-and-machine.pdf
http://gotw.ca/gotw/020.htm
http://www.gotw.ca/publications/mill16.htm
http://www.gotw.ca/publications/mill22.htm
https://itunes.apple.com/us/podcast/swift-unwrapped/id1209817203
https://forums.swift.org/t/nsmutabledatas-init-length-length-int-initializer/2208/2

P0709 R4 – Zero-overhead deterministic exceptions: Throwing values – Sutter 61

Appendix: Illustrating “stack” exception allocation (Windows)
Below is a simple test program to measure the stack overhead of exception handling using the Windows model.

Recall from §2.5.1, point (2), that the Windows exception handling model attempts to avoid having to heap-allo-

cate exception objects by optimizing them to be physically on the stack, but not with usual stack semantics.

This test program has only two short functions, one of which calls the other three times. The test measures the

stack impact of:

• “Current” vs. “Proposed”: reporting errors via exceptions (“Current”) vs. a union{result; error;} +

bool (“Proposed”, a naïve implementation of this proposal written by hand; if this proposal were imple-

mented, the source code for both tests would be the same, try/catch).

• Frame-based vs. table-based: in release builds for x86 (no tables) and x64 (table-based).

The code follows at the end. The following prints the memory offsets of various local and exception/error ob-

jects relative to a local stack variable in the topmost caller. The runs were on Release x86 and Release x64 builds

using Visual Studio 2017 15.7, which use frame-based and table-based implementations, respectively, of today’s

dynamic exception handling.

Release x86 (frame-based)

 ---- Stack offsets ----
 Current Proposed

 test.c: -56 1

 test2.c: -120 2

 test2.exception: -139 -51

 test.exception: -139 -67

 test2.c: -2,280 3

 test2.exception: -2,299 -35

 test.exception2: -2,299 -67

 test2.c: -4,424 4

 test2.exception: -4,443 -19

 test.exception3: -4,443 -67

 main.exception: -139 5

Release x64 (table-based)

 ---- Stack offsets ----
 Current Proposed

 test.c: -96 1

 test2.c: -216 2

 test2.exception: -240 -72

 test.exception: -240 -96

 test2.c: -19,000 3

 test2.exception: -19,024 -48

 test.exception2: -19,024 -96

 test2.c: -37,704 4

 test2.exception: -37,728 -24

 test.exception3: -37,728 -96

 main.exception: -240 8

The offsets show how in the “Current” (today’s exception handling) case, not only are the stacks fattened up by

the try/catch machinery in both x86 and x64, but the effect mentioned in §2.5.1 indeed ‘pins’ the already-de-

stroyed-and-otherwise-ready-to-reclaim stack while each exception is handled. The mockup of this proposal flat-

tens the stack, including showing reuse of the same storage for test.exception, test.exception2, and

test.exception3 (here by hand coding, but I expect existing optimizers to routinely do it if the two lines

marked // can reuse result were preceded with auto to declare new nested variables, and we weren’t taking

their addresses to print them).

Note On non-Windows platforms, using gcc (Wandbox) and Clang (Wandbox), the three exceptions simi-

larly create three distinct allocations, but on the heap with addresses far from the stack. Still, they

are required by the current model to be three distinct addresses there too, and three distinct heap

allocations modulo heroic optimizations.

Finally, note that this measures only stack space savings on Windows platforms, and does not attempt to meas-

ure the other primary savings this proposal aims to achieve (e.g., elimination of global state such as tables).

https://wandbox.org/permlink/khYWxyv0oFzlHsRb
https://wandbox.org/permlink/0TQqxi8eZMrjyn6E

P0709 R4 – Zero-overhead deterministic exceptions: Throwing values – Sutter 62

Sample code
#include <vector>
#include <string>
#include <iostream>
#include <iomanip>
using namespace std;

//===
// Helpers and instrumentation

// Quick-and-dirty GSL (avoiding assert because I'm testing only release builds)
namespace gsl {
 void Expects(bool b) { if (!b) abort(); }
 using index = ptrdiff_t;
}

// Counters
vector<string> labels;
vector<int> run1, run2;
vector<int>* prun = nullptr;
char* pbase = nullptr;

// Record the address of a given object relative to the current test stack base
template <class T>
void addr(T& p, const char* msg) {
 gsl::Expects(prun != nullptr && (prun == &run1 || prun == &run2));
 if (prun == &run1) labels.push_back(msg);
 else gsl::Expects(labels[run2.size()] == msg);
 prun->push_back(&(char&)p - pbase);
}

// Print results
void print_results() {
 gsl::Expects(labels.size() == run1.size());
 gsl::Expects(run1.size() == run2.size());

 cout.imbue(std::locale(""));
 cout << setw(45) << "---- Stack offsets ----" << endl;
 cout << setw(34) << "Current";
 cout << setw(11) << "Proposed" << endl;

 for (gsl::index i = 0; i < (gsl::index)labels.size(); ++i) {
 cout << setw(20) << labels[i] << ": ";
 cout << setw(11) << run1[i];
 cout << setw(11) << run2[i] << endl;
 }
}

//===
// Test types

struct success { int* _; int32_t __; };
struct error { int* _; int32_t __; };
struct folded { union { success s; error e; } u; bool b; };

P0709 R4 – Zero-overhead deterministic exceptions: Throwing values – Sutter 63

//===
// Test for today's EH

namespace Current {

 success test2() {
 char c;
 addr(c, "test2.c");

 try {
 throw exception();
 }
 catch (exception& e)
 {
 addr(e, "test2.exception");
 throw;
 }

 return success();
 }

 success test() {
 char c;
 addr(c, "test.c");
 success result;
 try {
 result = test2();
 }
 catch (exception& e)
 {
 addr(e, "test.exception");
 try {
 result = test2();
 }
 catch (exception& e)
 {
 addr(e, "test.exception2");
 try {
 result = test2();
 }
 catch (exception& e)
 {
 addr(e, "test.exception3");
 }
 }
 throw;
 }

 return result;
 }

 int main()
 {
 prun = &run1;

 char base;
 pbase = &base;

 try {

P0709 R4 – Zero-overhead deterministic exceptions: Throwing values – Sutter 64

 auto result = test();
 return result._ != nullptr;
 }
 catch (exception& e)
 {
 addr(e, "main.exception");
 return 0;
 }
 }

}

//===
// Test for proposed EH

namespace Proposed {

 folded test2() {
 char c;
 addr(c, "test2.c");
 folded result;

 //try {
 result.u.e = error();
 result.b = false;
 //}
 //catch (exception& e)
 //{
 addr(result.u.e, "test2.exception");
 return result;
 //}

 result.u.s = success();
 result.b = true;
 return result;
 }

 folded test() {
 char c;
 addr(c, "test.c");
 folded result;
 //try {
 result = test2();
 //}
 //catch (exception& e)
 if (!result.b)
 {
 addr(result.u.e, "test.exception");
 //try {
 result = test2(); // can reuse 'result'
 //}
 //catch (exception& e)
 if (!result.b)
 {
 addr(result.u.e, "test.exception2");
 //try {
 result = test2(); // can reuse 'result'
 //}
 //catch (exception& e)
 if (!result.b)

P0709 R4 – Zero-overhead deterministic exceptions: Throwing values – Sutter 65

 {
 addr(result.u.e, "test.exception3");
 }
 }
 }

 return result;
 }

 int main()
 {
 prun = &run2;

 char base;
 pbase = &base;

 //try {
 auto result = test();
 if (result.b) return result.b == true;
 //}
 //catch (exception& e)
 if (!result.b)
 {
 addr(result.u.e, "main.exception");
 return 0;
 }
 }

}

//===

int main() {
 Current::main();
 Proposed::main();
 print_results();
}

