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Introduction 
“C++ is a general-purpose programming language providing a direct and efficient 
model of hardware combined with facilities for defining lightweight and efficient 
abstractions. 
 
Or terser: 
 
C++ is a language for developing and using elegant and efficient abstractions.” 
 

— Bjarne Stroustrup, The C++ Programming Language (4th Edition) 
 
The Coroutines TS provides users with an elegant and efficient abstraction for writing 
asynchronous code. We mean that as both sincere praise, and as a critique: the Coroutines TS 
provides an abstraction, but it does not provide programmers with the facilities they need to 
define their own elegant and efficient abstractions. Furthermore, the TS’s abstraction prioritizes 
the asynchronous use case in a variety of ways that prevent it from being general-purpose. It 
gives programmers ways of extending and reusing the asynchrony abstraction, but they remain 
locked into many of the design tradeoffs motivated by the original use case. 
 
Fundamentally, the Coroutines TS does not provide a direct and efficient model of hardware : 1

the primitive objects and operations that are used to implement coroutines are hidden behind an 
abstraction boundary. 
 
Nearly all of the serious issues we identified in P0973R0 are reflections of this problem: 

● Programmers cannot reliably prevent coroutine-based code from allocating memory, 
even if they know the allocation is unnecessary, because the allocation takes place 
behind the abstraction boundary. 

● Programmers cannot control variable-capture semantics, and can all too easily overlook 
them entirely, because the capture is hidden behind an interface that presents itself as a 
function call. 

● The library bindings are extremely complex because different abstractions require the 
underlying primitives to be composed in different ways. The TS supports this by 
providing APIs for the programmer to configure how they are composed, rather than 
permitting the programmer to write code that composes them. 

● The co_await keyword is an overt manifestation of the TS’s preference for the 
asynchronous use case. 

 

1 We suggest as a friendly amendment that the quote should say “a direct and efficient model of the 
platform”. For example, C++ templates provide a direct and efficient map of the compiler’s code 
generation facilities, rather than of any hardware feature. 

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0973r0.pdf


In this paper, we propose exposing a minimal set of coroutine primitives that map directly to the 
underlying implementation. This results in a design for coroutines that is substantially simpler 
and yet can efficiently support a broader range of uses. 
 
We see no practical way of making our proposed revisions backwards-compatible with the 
Coroutines TS design, so they must be adopted before coroutines reach an IS (if at all). Straw 
polling in Jacksonville indicated a strong desire to ship coroutines in C++20, but we are 
uncertain as to whether our proposal can be implemented and sufficiently vetted in the time 
remaining.  As an alternative we also present a much more minimal set of changes to the TS, 
which we believe are feasible in the C++20 timeframe, to address some of the concerns from 
P0973. Unfortunately, these alternative changes necessarily avoid addressing the fundamental 
issue of hidden primitives, and instead focus on adding yet more configuration options to patch 
use cases already known to be problematic. 

Non-goals 
This proposal is solely concerned with “stackless” coroutines, and does not address the kinds of 
problems that are solved by “stackful” coroutines. We fully support the committee’s decision to 
pursue stackless and stackful coroutines independently. 
 
This proposal does not attempt to extend coroutines to be a fully general monad facility. For 
programmers who wish to adopt a monadic approach, both our proposal and the TS are limited 
to supporting linear monads, because they do not support copying a suspended coroutine 
frame, and consequently do not support nondeterministically resuming from the same state with 
multiple inputs.  

Proposed Design 

Unwrap operator syntax 
We propose replacing the co_await keyword with an operator-like token, which we tentatively 
suggest spelling [<-] (we are very open to committee feedback on the spelling): 

optional<string> f(); 
string s = [<-] f(); 

 

future<string> g(); 
string s = [<-] g(); 

 

expected<string> h(); 
string s = [<-] h(); 



 
Our proposed spelling is intended to suggest unwrapping, which we regard as the most central 
meaning of these expressions. Correspondingly, we propose to refer to them as unwrap 
expressions rather than “await expressions”, and we refer to the operand of an unwrap 
expression as a wrapper (and its type as a wrapper type). 
 
An operator-like token has two major advantages over an English-derived keyword: 

● An operator can more easily avoid tying itself to a particular use case, as co_await is 
tied to asynchrony. 

● An operator need not choose between colliding with existing identifiers in user code, or 
being so awkwardly spelled that no existing code uses it. It must avoid colliding with 
existing C++ syntax, but that’s a far more manageable problem.  

 
Option: We could also introduce a binary operator analogous to ->, such that x op y is 
equivalent to ([<-]x).y. This would make it easier to chain applications of the unwrap 
operator. 
 
Alternative: The unwrap token could be a suffix, rather than a prefix. This has the advantage of 
naturally supporting chaining: 

optional_struct[->].optional_sub_struct[->].field 

However, this would depart from C++ convention (unary operators are generally prefixes), and 
could reduce readability by making the token less prominent. 
 
Alternative: A different keyword spelling could be less use-case-specific than co_await. 
However, any keyword will still suffer from the need to avoid collisions with identifiers, and it is 
doubtful if any keyword can fully capture the breadth of possible use cases. Our best suggestion 
along these lines would be something like co_unwrap, but unwrapping is not the sole meaning 
of this operation; just the most central one. For example, it’s a poor fit for unidirectional 
generators: 

co_unwrap std::yield(foo);  // Huh? 

Unwrap operator semantics 
Consider how an expression co_await x is evaluated: the state of the enclosing coroutine is 
reified as an object, and passed to an algorithm that is controlled by the library associated with 
x. That algorithm may eventually do two things: 

1. return a value to the coroutine’s caller, and 
2. resume the coroutine, specifying the value of the co_await expression. 

The first is mandatory and synchronous, whereas the second is optional and may be 
synchronous or asynchronous. 
 



Notice that both suspension and resumption of the coroutine act as inversions of control; this is 
most obvious in the case of resumption, where control returns from an expression via a function 
call, rather than a return statement, but the initial transfer of control (from a stack frame to an 
algorithm that takes that frame as input) is also effectively an inversion of control. Thus, the 
coroutine and its caller act as dual control flow domains, separated by these complementary 
inversions of control. 
 
We propose to allow the library to implement almost that entire algorithm directly in C++ code. 
Specifically, the library will define a function which takes a coroutine object and returns the 
value that is returned to the coroutine’s caller, while arranging for the coroutine to be resumed in 
whatever manner is appropriate to the library. This change is motivated by the observation that 
C++ code is a far simpler and more general way to specify an algorithm than overloading the 
~15 extension points of a fixed algorithm specified by the standard. 
 
In the initial version of this proposal, that algorithm was expressed as a single function, 
operator[<-](). However, requiring the library to deal with both control flow domains in a 
single function body tended to make that function body fairly complex, and necessitated an 
awkward dual return type syntax to express the types returned to the coroutine caller and to the 
caller of the unwrap operator. To address those shortcomings, we propose instead for the 
library to express the algorithm using a pair of functions: 

● coroutine_suspend is invoked when execution of the coroutine is suspended. Its return 
value becomes the value returned to the caller (hence, it is expressed in the caller's 
control flow domain), and it typically makes some arrangement for the coroutine to be 
resumed. It corresponds closely to await_suspend in the Coroutines TS. 

● coroutine_resume is invoked when execution of the coroutine resumes. Its return value 
becomes the value of the unwrap expression (hence, it is expressed in the coroutine's 
control flow domain), and it typically has very little logic. It corresponds closely to 
await_resume in the Coroutines TS. 

These two are joined by a third function, coroutine_return, which determines the semantics 
of a return statement or implicit return from a coroutine. 
 
All three functions take as input an object we will refer to as the shared state. This an object 
associated with the coroutine's return type that lives as long as the coroutine , can store 2

long-lived state associated with the wrapper, and acts as a "hook" for name lookup to find the 
aforementioned functions. Thus, it corresponds closely to the concept of a "promise" from the 
Coroutines TS, but we have chosen not to adopt that term (or the names await_suspend and 
await_resume) in our proposal because they are too closely tied to the asynchronous use case. 
 
Here’s an example of how these functions might be used to define the semantics of a coroutine 
that returns expected<T,E>: 

2 In a subsequent revision of this paper, we intend to propose that the shared state be a sub-object of the 
coroutine, which will greatly simplify the library code that manages the shared state (among many other 
advantages). 

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0323r6.html


template <typename T, typename E> 
struct expected_shared_state { 
  template <typename U, typename Continuation> 
  expected<T, E> coroutine_suspend( 
      const expected<U,E>& e, Continuation& continuation) { 
    if (e.has_value()) { 
      tail return continuation(); 
    } else { 
      return unexpected(e.error()); 
    } 
  } 
 

  template <typename U> 
  const U& coroutine_resume(const expected<U,E>& e) { 
    return *e; 
  } 
 

  expected<T, E> coroutine_return(const T& value) { 
    return value; 
  } 
} 

(See below for a discussion of tail return) 
 
As shown in this example, these functions can be members of the shared state (which in this 
case is stateless, and is being used only as a name lookup hook), but they can also be free 
functions that take the shared state as the first parameter. coroutine_suspend also takes the 
wrapper object (i.e. the operand of the unwrap expression), and the continuation , a 3

compiler-generated function object which, when called, resumes the coroutine (this plays a role 
akin to coroutine_handle, but without the mandatory type erasure). coroutine_resume takes 
the object being unwrapped, and coroutine_return takes the operand of the return 
statement. 
 
In many cases, the library code that resumes the coroutine is naturally in a position to determine 
the value of the unwrap expression that is being resumed, so it would be very convenient if the 
continuation took an argument specifying that value. However, we have no way to pass that 
value into coroutine_resume: we can't pass it as an additional parameter, because the 
compiler would have no way to determine the type of the corresponding argument when 
type-checking the coroutine body. Instead, the library must stash the value in either the wrapper 
or the shared state (see the appendix for examples, notably yield_result_ in the generators, 
and cached_result_ in the parser). 
 

3 We no longer propose a separate parameter representing the suspension point, because we no longer 
believe the performance benefits of that approach (if any) will be significant enough to justify the extra 
complexity. 



The return type of the continuation is called the suspension type, because its primary role is to 
convey information about the suspended state of the coroutine to the library code that invoked 
the continuation. The suspension type is determined by the return types of every 
coroutine_suspend and coroutine_return call generated for the coroutine, which must be 
identical other than cv-qualification in order to facilitate tail call elimination. Note that in this 
simple example, the suspension type happens to also be the return type of the coroutine, but 
that is not the case in general. 
 
Thus, the example above says that if e holds a T value, the coroutine is resumed, with *e as the 
value of the unwrap expression. This happens synchronously as part of the [<-] operation, so 
even though the coroutine returns when the [<-] operation returns, the effect is as if the [<-] 
operation simply returned control to the coroutine, which then returns normally. On the other 
hand, if e holds an error, that error is returned immediately to the coroutine’s caller, and 
consequently the coroutine returns immediately, and the remainder of the coroutine is never 
executed. 
 
Note that when evaluating an unwrap expression, control leaves the enclosing coroutine 
(without exiting any scopes) before coroutine_suspend overload is invoked. Consequently, if 
coroutine_suspend throws an exception, the coroutine will not be found during stack 
unwinding. An unwrap expression can only throw if its operand throws, or if coroutine_resume 
throws. 
 
Note that for simplicity, the example above glosses over the issue of qualifiers on the 
expected<T,E> object: like *e, [<-] e should be mutable if and only if e is mutable, and should 
be an rvalue if and only if e is an rvalue. This can be accomplished via a set of four overloads 
(with the unwrapped return type qualified to match the parameter), and/or perfect forwarding 
(with the unwrapped return type computed via a metafunction such as P0847R0’s like_t). 

Extension point spelling alternatives 
The names coroutine_suspend and coroutine_resume have the drawback that they do not 
immediately suggest a connection to the [<-] syntax that they implement, in the way that 
operator[<-] did. Furthermore, it is somewhat problematic for the core language to give 
special meaning to certain ordinary identifiers (our proposal shouldn't invalidate any existing 
code, but any pre-existing functions with these names may make it harder to adapt types in their 
namespace to work with coroutines). 
 
In principle, coroutine_suspend and coroutine_resume could both be named operator[<-], 
since they have different arities (drawing on the precedent of using arity to distinguish prefix 
from postfix overloads of ++ and --), but we think that would be unacceptably confusing. 
Introducing named tag parameters (e.g. operator[<-](suspend_t, …)) would be awkward at 
best. 
 

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0847r0.html


A better option might be to spell these functions operator[<-] suspend() and operator[<-] 
resume(). This would be a novel extension of the operator syntax, but a syntactically 
straightforward one (other than perhaps the case of taking the address of such a function, but 
that can easily be disallowed). 
 
Finally, we could introduce a new syntax for the operation of resuming a continuation, i.e. @ 
continuation or continuation@ rather than continuation() (where @ is a placeholder for a 
token to be determined). coroutine_resume could then be spelled operator@, leaving 
operator[<-] for the suspend operation. However, it may be surprising that neither of the 
arguments to operator@ is the operand of the @ expression. Furthermore, we haven't found a 
suitable spelling for @; [->] offers a tempting symmetry, but it fairly cries out to be interpreted as 
a binary operator x [->] continuation that resumes the coroutine with x as the value of the 
unwrap expression, and as discussed earlier, we can't pass that value as an argument to the 
resume operation. 
 
In any of the above cases, we expect that coroutine_return would be spelled operator 
return. 

Coroutine lambdas 
A fundamental distinction between a C++ coroutine and an ordinary function is that the state of 
a running coroutine (i.e. the coroutine frame) is effectively an object: it has storage and a 
lifetime, and provides operations that the program can invoke. However, the Coroutines TS 
does not expose coroutines as objects; instead, it creates them implicitly (via another 
core-language algorithm with its own extension points) and exposes only a type-erased handle. 
 
We propose instead to make coroutines fully-fledged objects, which can be created and 
managed in the same way as any other object. Lambda syntax has exactly the properties we 
need for this purpose: it lets us define a callable object from a function body, and allows us to 
explicitly specify capture semantics. A coroutine lambda is distinguished from an ordinary 
lambda by the fact that it specifies a wrapper type rather than a return type, using the [->] 
syntax: 

future<string> foo(); 
future<int> bar(); 
… 

auto my_coroutine = [] [->] future<int> { 
  int i = ([<-]foo()).size(); 
  return i + [<-]bar(); 
}; 

 
A coroutine lambda is much like an ordinary lambda, except that its state includes not only its 
captures, but also any local variables that must be preserved across suspensions. Similarly, it 
exposes not only a call operator for the initial invocation, but also one for resuming execution.  



The call operator that begins execution takes the shared state as a parameter (with a type 
determined by the shared_state_type member of the wrapper type, e.g. 
future<int>::shared_state_type in the example above), essentially as a workaround for 
the lack of a viable constructor syntax for lambdas. The resumption call operator takes no 
arguments. As discussed earlier, the return type of the call operators is the suspension type, 
which is determined from the coroutine_suspend and coroutine_return overloads invoked 
by the coroutine. 
 
The call operators are never const (in effect, coroutine lambdas are always implicitly mutable); 
in principle we could allow the user to specify or omit mutable as with ordinary lambdas, but in 
practice mutable would just be boilerplate, since it would only be correct and safe to omit it in 
cases where the coroutine has effectively no mutable stack variables, which we expect to be 
rare and marginal. 
 
Coroutine lambdas cannot take parameters. This is for reasons of safety: the code in a 
coroutine may continue executing after the initial function call has returned (from the caller’s 
point of view), so if any temporary values were passed to pointer or reference parameters of the 
coroutine, they would be left dangling. The inputs to a coroutine lambda are instead expressed 
via the capture group. See below for how coroutine lambdas can be used to define ordinary 
functions with parameters, etc. 
 
Modeling coroutines as lambdas rather than functions has two major benefits: first, it enables 
library code to control the creation, usage, and destruction of coroutine frames in exactly the 
same way as any other object (and in particular, allows the creation of coroutine libraries that 
are allocation-free by construction, rather than at the whim of the optimizer). Second, the 
capture syntax gives programmers explicit control over capture semantics (in the Coroutines TS, 
capture semantics are controlled by the parameter types, but parameter types are API-visible, 
and so API owners are not always at liberty to change them). Use of capture syntax also 
leverages programmers’ existing intuitions: reference and pointer inputs to a coroutine are 
potentially hazardous in the same way, and for the same reasons, as the reference and pointer 
captures of an ordinary lambda. 
 
Note that exceptions have no special semantics inside a coroutine: any exception that isn’t 
caught in the body of the coroutine will propagate to the caller that resumed the coroutine 
(which will typically be library code associated with the coroutine, so this shouldn’t have any 
major functional effects). 
 
Alternative: we could specify that exceptions that escape the coroutine are caught and 
forwarded to an extension point comparable to coroutine_return. This would provide some 
minor benefits (primarily, greater consistency in how exceptions and ordinary returns are 
propagated), but also some minor drawbacks: it complicates the API, and we would not be able 
to handle exceptions thrown from tail calls (i.e. unwrap expressions and return statements), 
which may be surprising, and may limit the consistency benefits. 



Expository implementation 
The following example illustrates how a compiler might generate equivalent C++17 code for a 
given coroutine. Of course, this is not how we expect coroutine compilation to actually work, but 
it can serve as a “reference implementation” to understand the API and behavior of coroutine 
objects. 
 
Consider the following code: 

expected<string, Err> foo(const string& s); 
expected<int, Err> bar(); 
 

void f(const string& s) { 
  auto coroutine = [&s] [->] expected<int, Err> { 
        int i = ([<-]foo(s)).size(); 
        return i + [<-]bar(); 
      }; 
} 

 
The compiler could implement that by generating the following code: 

// Convenience helper shared by all coroutine implementations 

template <typename T> 
class __manual_lifetime { 
  std::aligned_storage_t<sizeof(T), alignof(T)> storage_; 
 

 public: 
  template <typename... Args> 
  void emplace(Args&&... args) { 
    new (&storage_) (std::forward<Args>(args)...); 
  } 
 

  T& get() { return *reinterpret_cast<T*>(&storage_); } 
 

  void destroy() { 
    get().~T(); 
  } 
}; 

 

// The generated type of the coroutine lambda 

class _f_1 { 
  using wrapped_return_type = expected<int, Err>; 
  using suspension_type = expected<int, Err>; 
  using shared_state_type = typename wrapped_return_type::shared_state_type; 
 public: 
  _f_1(const _f_1&) = delete; 



  _f_1(_f_1&&) = delete; 
  _f_1& operator=(const _f_1&) = delete; 
  _f_1& operator=(_f_1&&) = delete; 
 

  // Beginning of execution 
  suspension_type operator()(shared_state_type shared_state) { 
    __shared_state.emplace(std::move(shared_state)); 
    __tmp_1.emplace(foo(s)); 
    __suspend_point = 1; 
    tail return __shared_state.get().coroutine_suspend(__tmp_1.get(), *this); 
  } 
 

  suspension_type operator()() { 
    switch (__suspend_point) { 
      case 1: 
        i.emplace(__shared_state.get().coroutine_resume(__tmp_1.get()).size()); 
        __tmp_1.destroy(); 
        __tmp_2.emplace(bar()); 
        __suspend_point = 2; 
        tail return __shared_state.get().coroutine_suspend(__tmp_2.get(), *this); 
 

      case 2: 
        int __result = i.get() +  
            __shared_state.get().coroutine_resume(__tmp_2.get()); 
        __tmp_2.destroy(); 
        __suspend_point = 3; 
        i.destroy(); 
        return __shared_state.get().coroutine_return(__result); 
    } 
  } 
 

  ~_f_1() { 
    switch(__suspend_point) { 
      case 1: 
        __tmp_1.destroy(); 
        break; 
      case 2: 
        __tmp_2.destroy(); 
        i.destroy(); 
        break; 
      case 0: 
      case 3: 
        break; 
    } 
    __shared_state.destroy(); 
  } 
 



 private: 
  // Implicitly invoked via lambda capture syntax 
  _f_1(const string& s) : s(s), __suspend_point(0) {} 
 

  __manual_lifetime<shared_state_type> __shared_state; 
 

  size_t __suspend_point; 
 

  // Captures 
  const string& s; 
 

  // Stack variables 
  // 
  // The layout of these members is purely illustrative; in practice we expect 
  // the compiler to lay out this class using the same algorithms it uses to 
  // lay out ordinary stack frames. 
  __manual_lifetime<int> i; 
 

  union { 
    __manual_lifetime<expected<string, Err>> __tmp_1; 
    __manual_lifetime<expected<int, Err>> __tmp_2; 
  }; 
}; 

 

void f(const string& s) { 
  auto coroutine = _f_1(s); 
} 

 
Some notes on how we present this implementation: 

● The generated code must also ensure that the local-variable members are suitably 
destroyed, and the object is left in a destructible state, if an exception escapes the 
coroutine body. This logic is omitted from the above code for clarity and simplicity. 

● See below for a discussion of tail return, and note in particular that the example 
code above presumes that the functions being invoked are defined in the current 
translation unit; otherwise ordinary return would be used. 

 
Note that the coroutine transformation does not affect the existing rules for the 
sequenced-before relation; if an unwrap expression and some other operation are 
unsequenced, the latter operation may be evaluated before the unwrap expression, or it may 
not be evaluated until the continuation is resumed (which, of course, may never happen). 

Coroutine functions 
We expect that in most use cases, coroutine lambdas will not be part of public APIs; instead, 
they will be hidden implementation details of ordinary functions, which wrap the coroutine 

https://docs.google.com/document/d/1hntr14MqSozljVk7mMPbFkmi2MkoGit7k8lqg-Jm03I/edit?disco=AAAABzfS3tI&ts=5b610a50#heading=h.p0adl5mu4m45


lambdas to handle issues such as parameter passing/capture, lifetime management, and 
whether to defer initial invocation of the lambda. We propose a sugar syntax for defining such 
functions, In order to mitigate the associated boilerplate. 
 
As a motivating example, consider this asynchronous function: 

// Consumes all bytes from `connection`, and returns the number 

// of bytes consumed. `connection` must remain live until the returned 

// future is ready. 

auto count_bytes(Connection& connection) { 
  return future<int>([&] { 
    return [&connection] [->] future<int> { 
      int bytes_read = 0; 
      vector<char> buffer(1024); 
      while(!connection.done())  { 
        bytes_read += [<-]connection.Read(buffer.data(), buffer.size()); 
      } 
      return bytes_read; 
    } 
  })); 
} 

 
The intent here is for count_bytes to construct and return a future<int> representing the 
result of executing the coroutine lambda's body. We expect this to be a very general pattern for 
all or nearly all coroutine functions (notice that one consequence of this design is that the 
suspension type becomes purely an implementation detail of the library). 
 
However, the meaning of this code is obscured by some troublesome boilerplate: 

● The coroutine lambda must be wrapped in an ordinary lambda, so that the constructor 
can control how the coroutine lambda object is allocated. (This problem could instead be 
addressed by having future's constructor take a lazy parameter as proposed by P0927. 
Note that this solution cannot be adopted after coroutines have shipped in an IS: once 
we establish the convention that the argument expression must be a callback, we're 
stuck with it.) 

● The wrapper type future<int> must be named in two places, the explicit constructor 
invocation and the wrapper type of the coroutine. Neither can realistically be deduced 
from the other (although the explicit constructor invocation might be able to omit the 
template argument, if future provides suitable deduction guides). 

● The coroutine body proper is nested inside three levels of braces. 
 
We propose a sugar syntax for defining such a coroutine function, in which the function body 
(including braces) is replaced by a coroutine lambda expression: 

auto count_bytes(Connection& connection) [&connection] [->] future<int> { 
  int bytes_read = 0; 

http://wg21.link/P0927


  vector<char> buffer(1024); 
  while(!connection.done())  { 
    bytes_read += [<-]connection.Read(buffer.data(), buffer.size()); 
  } 
  return bytes_read; 
} 

 
This syntax can be specified as a pure rewrite to the form shown above: if a coroutine lambda 
expression L with wrapper type R appears in place of a function body, it behaves as if the 
function body were { return R([&] { return L; }; }. 
 
We contend that this syntax contains almost no boilerplate other than a smattering of 
punctuation. The additional syntactic elements not present in the Coroutines TS all have 
important, user-facing functional roles: 

● The capture group specifies the capture semantics of the coroutine object. 
● [->] acts as an introducer, specifying that the following block is a coroutine. 
● future<int> specifies what kind of coroutine function this is, including its return type. 

 
In all three cases, making these properties syntactically explicit has important advantages: 

● The programmer has explicit control over capture behavior, so that for example an 
argument can be captured by value (for safety) even if the API is obliged to pass by 
reference. Symmetrically, the capture behavior is explicitly visible in the code, cueing the 
reader (and programmer) to possible safety or performance concerns. 

● The explicit introducer enables both the reader and the compiler to immediately and 
reliably recognize coroutine code. This eliminates the need for a separate co_return 
syntax to cue the compiler that it’s processing a coroutine. 

● The programmer has explicit, local control over what kind of coroutine is being defined, 
even if they do not control the function signature, e.g. because they must match an 
existing API (In the Coroutines TS, this can be controlled only via a trait parameterized 
by the parameter and return types). Symmetrically, the reader can easily tell what kind of 
coroutine they are reading. 

 
In order to support this pattern, most wrapper types will need a constructor taking a single 
generic argument, which is interpreted as a callback that returns a coroutine. It will often be 
important to constrain such a constructor to avoid matching arbitrary single arguments, so we 
propose introducing a type trait std::is_coroutine, which is true only for coroutine lambda 
types, to facilitate such constraints. 
 
Although we do not propose it here, this design could plausibly be extended to support 
deduction of the explicit template argument int from the coroutine body. This is somewhat 
non-trivial because the semantics of the coroutine body technically depend on the concrete 
wrapper type of the coroutine, which would make ordinary return type deduction circular. 
However, we believe that for non-pathological wrapper types, the deduced return type will not 



have a logical dependency on the template argument, and so we can perform ordinary return 
type deduction using an arbitrarily-chosen type argument as a placeholder, and then replace it 
with the result of the deduction. 
 
It is less clear whether we can deduce the entire wrapper type (not just the template argument 
int, but the template future). We will not go into that issue here except to say that the 
Coroutines TS currently does not support such deduction either, and the proposed solutions that 
we are aware of can be applied equally well to either proposal. 

Tail calls 
Consider a coroutine like the following: 

[&connection] [->] expected<int, Err> { 
  int bytes_read = 0; 
  vector<char> buffer(1024); 
  while(!connection.done())  { 
    bytes_read += [<-]connection.Read(buffer.data(), buffer.size()); 
  } 
  return bytes_read; 
} 

With the design described above, the unbounded iteration in this code will be transformed into 
an unbounded recursion, raising obvious concerns about stack size. However, the mutual 
recursion between coroutine_suspend and the generated coroutine code is actually all tail 
recursion, because every mutually recursive call is actually the final operation before the 
enclosing function returns. Consequently, the compiler should be able to apply tail call 
elimination (hereinafter “TCE”) to avoid growing the stack. 
 
For this approach to be viable, programmers will need to have complete confidence that TCE 
will in fact be applied (even in non-optimizing build modes). Consequently, we propose to 
standardize TCE as a C++ feature. Although obviously motivated by the coroutines use case, 
this proposal is completely independent of coroutines. 
 
There are two reasons TCE is difficult to achieve in C++: 

● There is currently no way to specify that TCE will take place, because the C++ standard 
has no explicit concept of stack storage as a finite resource.  

● It’s not as easy as it seems to determine whether a call is eligible for TCE in the first 
place. For example, a statement of the form return f(...); is nevertheless ineligible if 
there are any local variables with nontrivial destructors still live at that point (because 
then the function call is not actually the last operation before the return), or if the f() call 
takes a pointer or reference to any local variable. This is not an issue for 
coroutine_suspend calls inside the coroutine generated code (because the compiler 
can ensure that it’s able to apply TCE to the code it generates), but it is an issue when 
coroutine_suspend invokes the continuation synchronously. 



 
To address the first issue, we propose adding standard wording such as the following: 
 

“If this International Standard specifies that a function invocation is a tail call, then before 
entering that invocation, the implementation must disregard the invoking function call for 
purposes of enforcing any implementation-defined limits concerning the number of 
simultaneously active function calls, or the number or size of simultaneously-live 
variables with automatic storage duration. [Note: The effect of this requirement is that on 
implementations with a bounded stack, a tail call must reuse the stack frame of the 
calling function. — end note] 

 
To address the second issue, we propose introducing a new syntax tail return, which 
requires its operand to be a tail call (tail is a contextual keyword, with a special meaning only 
when followed by return, so this should not break any existing code). This would be both a 
constraint on the operand (to make it eligible for TCE) and a requirement on the implementation 
(to apply TCE). The standard wording would be something like the following: 
 

If a return statement is preceded by tail, then evaluation of its operand will be a tail 
call, and the program is ill-formed if: 

● the statement is within a try-block or function-try-block, 
● any live object with automatic storage duration within the scope of the enclosing 

function has a non-trivial destructor, or its address is taken or it is bound to a 
reference (including the implicit object parameter of a member function) 
anywhere within the function body, 

● the operand is not a function call expression, 
● the operand is a function call expression whose postfix-expression has a function 

pointer type, 
● the operand is a call to a virtual function that is not named by a qualified-id, or 
● the function designated by the function call expression is not defined in the 

current translation unit, or has a return type that is not the same as the return 
type of the calling function (ignoring cv-qualifiers), or has a 
parameter-declaration-clause that terminates with an ellipsis. 

 
We believe that the above conditions are minimally sufficient to permit TCE in Clang, and 
probably in any other reasonable C++ implementation (of course, we particularly welcome 
implementer feedback on this point). Note that the generated code for a coroutine lambda can 
easily ensure that all these conditions hold for its invocations of coroutine_suspend, except 
that it cannot guarantee that the operator is defined in the current translation unit. We will 
therefore specify that invocation of coroutine_suspend by a coroutine lambda is always a tail 
call if the selected overload is defined in the current translation unit. 
 
Note that the above rules do not permit a function invoked via operator syntax (other than an 
operator() overload) to be a tail call. This is for reasons of readability: a statement like tail 



return *foo(); is apt to mislead the reader into thinking that foo() is the tail call, rather than 
operator*(). 
 
Possible extension: we could loosen the above rules somewhat to permit taking addresses of 
and forming references to local variables, but specify that the lifetime of local variables ends 
when the tail call begins (since we forbid nontrivial destructors, the effect of this is just that it’s 
UB to access them after that point). However, that would make this construct less safe, since 
changing return to tail return could break code in ways that can’t be detected at compile 
time. 
 
Alternative: we could achieve the same behavior via an attribute, e.g. [[tail_call]]. This 
would be more conceptually lightweight than a new contextual keyword, correctly signalling to 
programmers that they can disregard this feature unless they have a specific need for it. 
However, an attribute might not allow us to normatively mandate TCE, which we believe is 
necessary. 
 
Alternative: rather than allow users to force TCE, we could make it inherent in the API for 
unwrap expressions. Specifically, we could allow coroutine_suspend to return either the 
suspension type of the coroutine, or a nullary callback returning the same type as 
coroutine_suspend. The generated code would then apply a "trampoline" technique, 
repeatedly checking if the result is a callback, and if so invoking it to obtain a new result, until it 
obtains an instance of the suspension type. However, this would substantially complicate the 
coroutine_suspend API (notice for example that it makes the return type of 
coroutine_suspend self-referential), and would not have the benefit of allowing TCE in 
non-coroutine contexts. Note also that the library may be able to implement this technique under 
our existing proposal. 

constexpr 
We have not worked through this issue in detail, but we see no obstacles to allowing coroutines 
to be constexpr (and uses of them to be core constant expressions) on the same terms as 
ordinary functions. The sample implementation given above cannot be constexpr because of 
its use of reinterpret_cast, but that is only as an expository way of depicting the compiler’s 
management of the stack frame, which we know it can do in constexpr code because it already 
does. 

Alternative: Patching the TS 
We believe the design presented above addresses all of our major concerns with the Coroutines 
TS. However, we expect that many committee members will consider this change too extensive 
to make in the C++20 timeframe (and we don’t necessarily disagree). If WG21 is committed to 



shipping Coroutines as part of C++20, it should still be possible to address some of our 
concerns. 
 
We could add first-class syntactic support for non-asynchronous use cases by replacing the 
co_await keyword with an operator token such as [<-]. After C++20, we could still introduce 
such a token as a synonym for co_await, although of course we could no longer remove 
co_await. 
 
We could make the coroutine kind locally explicit via some form of introducer syntax. As a straw 
man example: 

auto OpenFile(const string& filename) using future_coroutine<File> { 
  … 

This would enable us to eliminate coroutine_traits (and hence eliminate the need for a 
shared global namespace of coroutine signatures), and also allow ordinary return in 
coroutines, although co_return would still be necessary in cases where e.g. the return value is 
not implicitly convertible to the return type. We could also add a capture group to the introducer 
syntax, to give explicit control of capture semantics: 

auto OpenFile(const string& filename) using future_coroutine<File> [filename] { 
  … 

Allocation and performance 
We believe the following is a consensus description of the Coroutines TS status quo: 

● A conforming implementation is permitted to allocate every coroutine frame via 
operator new; neither HALO nor “suspend point simplification and elimination” is ever 
guaranteed to occur. 

● No existing implementation reliably elides unnecessary allocations. 
● Making allocation elision reliable will require ABI extensions that have not yet even been 

prototyped. 
● It is not yet clear whether coroutine frame allocation elision will be reliable in the 

no-optimization modes of major compilers (after all, it is very explicitly an "optimization"). 
● User code can unwittingly disable HALO, e.g. by allowing the coroutine object’s address 

to escape the coroutine, and it’s not yet clear how we’d teach users to avoid those 
hazards. 

● RVO currently cannot be applied to coroutine returns. 
 
Consequently, as one example, it is impossible to write a generator function that is guaranteed 
not to allocate, unless you can modify the function signature in order to trigger a custom 
operator new overload. We contend that in order for coroutines to be legitimately “zero 
overhead” for the generator use case, it must be possible to write a generator that is guaranteed 
not to allocate, if the corresponding non-generator-based code is guaranteed not to allocate 
(and uses only a bounded amount of stack). 

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0981r0.html


 
Similarly, it is impossible to write a function that returns expected<T,E> and uses co_await for 
error propagation, but is guaranteed not to allocate. 
 
We could address these problems through the following extensions: 

● Extend the coroutine promise API with a static member is_resumable, which specifies 
whether coroutines that use that promise can be resumed. This will permit types such as 
expected<T,E> to opt out of support for resumption. 

● Add wording to normatively require allocation elision when is_resumable is false, or 
when the conditions for HALO apply (e.g. the relevant operations are inlineable, and the 
coroutine object satisfies some specified set of conditions that imply that it does not 
escape). 

● Permit coroutines to be constexpr, and specify that when is_resumable is true, 
violations of the HALO conditions cause an expression to fail to be a core constant 
expression. 

● Extend the coroutine promise API to expose the storage location where a return value 
should be constructed, in order to enable RVO in coroutines (we understand that Gor 
Nishanov is working on a specific proposal for this). 

These all appear to be pure extensions, so they could be done post-C++20 if need be. 

API Complexity 
We see no viable way to address the API complexity of the Coroutines TS via such incremental 
changes. Indeed, the changes we discuss will add yet more extension points, and we think it is 
likely that there will be a more or less perpetual drip of new extension points and new 
complexity, if we proceed with the TS design. The only way we see to fundamentally simplify 
coroutines is to give user code direct access to the primitive objects and operations that 
constitute the feature. So long as the primitives are hidden behind an abstraction boundary, it 
will remain necessary to poke holes in that abstraction in order to meet the needs of our diverse 
and highly performance-sensitive user community. 

Comparison 
The following chart summarizes what we see as the key functional differences between the 
Coroutines TS status quo, the TS with incremental fixes, and our proposal: 
 

 Coroutines TS Incremental 
alternative 

Core coroutines 

Library 
customization 
points 

15: 
 
await_transform 
operator co_await 

17: 
 
await_transform 
operator co_await 

4: 
 
coroutine_suspend 



await_ready 
await_suspend 
await_resume 
yield_value 
return_value 
return_void 
promise_type 
get_return_object 
get_return_object_on
_allocation_failure 
coroutine_traits 
initial_suspend 
final_suspend 
unhandled_exception 

await_ready 
await_suspend 
await_resume 
yield_value 
return_value 
return_void 
promise_type 
get_return_object 
get_return_object_on
_allocation_failure 
coroutine_traits 
initial_suspend 
final_suspend 
unhandled_exception 
is_resumable 
return_value_slot 

coroutine_resume 
coroutine_return 
shared_state_type 

Coroutine object 
representation 

Type-erased as 
coroutine_handle 

Type-erased as 
coroutine_handle 

Concrete object with 
anonymous type 

Coroutine 
allocation 
(normative) 

All coroutine objects 
are heap-allocated by 
default. This can be 
disabled by explicit 
collaboration between 
library and user code. 

All coroutine objects 
are heap-allocated by 
default, but libraries 
can opt out. This 
constrains their usage 
to certain optimizable 
patterns, which seem 
to cover known 
common cases where 
allocation is 
unnecessary. 
 
Implementations are 
normatively required 
to implement the 
necessary 
optimizations. 

Coroutine objects 
are allocated by 
explicit code, just like 
all other objects. 
Allocation will 
normally be a hidden 
detail of the library. 

Coroutine 
allocation (QoI) 

Optimizers have 
demonstrated ability 
to elide coroutine 
allocations in many 
common cases. 
Techniques sufficient 
to reliably elide 
allocation for specific 
types are on the 
drawing board. 
Unclear whether 

Same as Coroutines 
TS. 

Allocation elision 
applies equally to all 
kinds of objects, 
including coroutines. 



optimizations will 
apply in all build 
modes. 

(N)RVO in 
coroutines 

No Yes No NRVO if there’s a 
suspend point 
between 
construction and 
return. 

Programmer 
control of capture 

No Yes Yes 

return in 
coroutines 

Forbidden Allowed, but 
co_return is still 
needed in some 
cases. 

Allowed without 
restriction 
(co_return is 
unnecessary) 

User-facing syntax Keyword, 
concurrency-specific 

Operator token, 
general-purpose 

Operator token, 
general-purpose 

Conclusion 
C++ is a language that enables programmers to build powerful and efficient abstractions by 
composing simple primitives that are efficiently supported by the platform. This is a defining 
property of C++, and a cornerstone of its success, so we should not abandon it (or even 
postpone it) without extremely compelling reasons. 
 
The current design of the Coroutines TS is not consistent with that principle, because it does not 
provide simple, composable primitives, but only a complex abstraction that is tuned for a 
particular kind of use case. Shipping the current design as part of a C++ IS would be either an 
outright rejection of that principle or, at best, a wholly unjustified gamble that we’ll be able to add 
the necessary primitives as a non-breaking extension, and still end up with a coherent design. 
 
We believe that C++ can still be a vital language 50 years from now, and the language should 
be designed with that goal in mind. In 50 years nobody will even remember whether coroutines 
shipped in C++20 or C++23, but if we lock ourselves into a coroutines design that lacks such an 
essential ingredient of C++’s success, the consequences could easily last that long. 
 
We have shown that a revised design that accords with that principle is well within reach, and 
that the resulting facility will be simpler, more general, and more efficient. We therefore urge the 
committee not to merge the Coroutines TS into the IS in its current form, and instead to allow 
sufficient time for this design to be fleshed out and validated. 
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Revision History 
Changes since P1063R0: 

● Replaced operator[<-] with coroutine_suspend and coroutine_resume, thereby 
eliminating the novel return-type syntax, and correspondingly revised the coroutine 
lambda to not take the unwrapped value as an argument on resumption. 

● Eliminated explicit passing of the suspend point; the coroutine generated code now 
tracks it internally. 

● Renamed the "final return functor" to "shared state", replaced its call operator with a 
named function coroutine_return, dropped the requirement to pass it into the 
coroutine on every resumption, and required the wrapper to specify the shared state type 
rather than vice-versa. 

● Revised the coroutine lambda syntax, dropping the do keyword and adding a mandatory 
syntax for specifying the wrapper type. 

● Proposed a coroutine-specific sugar syntax rather than one built out of general-purpose 
extensions. 

● Dropped dependencies on P0927R0. 
● Dropped raise() operation on coroutine lambdas, which is superseded by 

coroutine_resume 
● Fleshed out the specification of tail return based on implementation experience. 
● Removed no_alloc member from alternative proposal; programmers can force 

allocation to be a build failure by deleting operator new. 
● Added a parser combinator example. 
● Miscellaneous copyediting, clarification, and improved exposition. 

  

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0927r0.pdf


Appendix: Examples 
Caveat: unless otherwise indicated, these examples are completely untested. 

Futures 
The following is a (very) rough implementation of a future library that supports coroutines. All 
types other than promise and future are hidden implementation details. This implementation 
leaks all shared states, in order to avoid a lot of distracting reference-counting machinery: 
 

// Interface of all future shared states. This API should be sufficient 

// to implement future<T>. 

template <typename T> 
class future_shared_state { 
 public: 
  virtual bool is_ready() const = 0; 
  virtual T& get() const = 0; 
 

  virtual concrete_shared_state<T>& get_concrete() = 0; 
 

  virtual ~future_shared_state() = 0; 
}; 

 

// Interface of all promises. 

template <typename T> 
class promise_interface { 
 public: 
  virtual void set_value(const T& value) = 0; 
  virtual void set_exception(std::exception_ptr ptr) = 0; 
  virtual ~promise_interface() = 0; 
}; 

 

// Tag type representing a shared state that is not yet ready. 

struct not_ready{}; 
 

// A shared state implementation for ordinary promise/future patterns. 

template <typename T> 
class concrete_shared_state 
    : public promise_interface<T>, future_shared_state<T> { 
 

  std::variant<not_ready, T, std::exception_ptr> state_{not_ready{}}; 
 

  std::function<void(void)> continuation_ = nullptr; 
 



  mutable std::mutex mu_; 
  mutable std::condition_variable done_; 
 

 public: 
  concrete_shared_state() = default; 
 

  bool is_ready() const override { 
    std::lock_guard guard(mu_); 
    return !std::holds_alternative<not_ready>(state_); 
  } 
 

  T& get() const override { 
    std::lock_guard guard(mu_); 
    done_.wait(guard, [&] { 
                        return !std::holds_alternative<not_ready>(state_); 
                      }); 
    return std::visit(overloaded( 
        [] (not_ready) -> T& { std::abort(); }, 
        [] (T& t) -> T& { return t; }, 
        [] (std::exception_ptr ptr) -> T& { std::rethrow_exception(ptr); }), 
                      state_); 
  } 
 

  concrete_shared_state<T>& get_concrete() override { 
    return *this; 
  } 
 

  template <typename U, typename Coroutine> 
  void fuse_to(concrete_shared_state<U>& continuation_shared_state, 
               Coroutine& continuation) { 
    { 
      std::lock_guard guard(mu_); 
      assert(continuation_ == nullptr); 
      if (std::holds_alternative<not_ready>(state_)) { 
        continuation_ = [&coroutine, this] { 
          try { 
            continuation(); 
          } catch (...) { 
            continuation_shared_state.set_exception(std::current_exception()); 
          } 
        }; 
        return; 
      } 
    } 
 

    // FIXME Fix compiler to re-check tail call when instantiating 
    /*tail*/ return coroutine(); 



  } 
 

  void set_value(const T& value) override { 
    std::function<void(void)> continuation = nullptr; 
    { 
      std::lock_guard guard(mu_); 
      if (continuation_ == nullptr) { 
        state_.template emplace<T>(value); 
        done_.notify_all(); 
        return; 
      } 
      std::swap(continuation_, continuation); 
    } 
    continuation(); 
  } 
 

  void set_exception(std::exception_ptr ptr) override { 
    std::function<void(void)> continuation = nullptr; 
    { 
      std::lock_guard guard(mu_); 
      if (!continuation_) { 
        state_.template emplace<std::exception_ptr>(ptr); 
        done_.notify_all(); 
        return; 
      } 
      std::swap(continuation_, continuation); 
    } 
    continuation(); 
  } 
}; 

 

template <typename T> 
class coroutine_shared_state_base : public future_shared_state<T> { 
  concrete_shared_state<T> shared_state_; 
 public: 
  coroutine_shared_state_base() = default; 
 

  template <typename U, typename Coroutine> 
  void coroutine_suspend(future<U>& f, Coroutine& continuation) { 
    auto& concrete = state_->get_concrete(); 
    // FIXME Fix compiler to re-check tail call when instantiating 
    /*tail*/ return concrete.fuse_to(*this, continuation); 
  } 
 

  template <typename U> 
  U& coroutine_resume(future<U>& f) { 
    return f.get(); 



  } 
 

  void coroutine_return(const T& value) { 
    shared_state_.set_value(value); 
  } 
 

  bool is_ready() const override { return shared_state_.is_ready(); } 
  T& get() const override { return shared_state_.get(); } 
  concrete_shared_state<T>& get_concrete() override { 
    return shared_state_; 
  } 
 

 private: 
  void set_exception(std::exception_ptr e) { shared_state_.set_exception(e); } 
}; 

 

// A shared state co-allocated with a coroutine. Does not implement 

// promise_interface, because the value is determined by running the coroutine. 

// 

// We catch all exceptions when starting the coroutine, and when resuming it 

// asynchronously. We do not catch exceptions when resuming synchronously, 

// because that would prevent tail call elimination; instead the exception 

// propagates back to the start, and/or asynchronous resumption. 

// FIXME What if we synchronously resume the callee, return to here, then throw? 

template <typename T, typename Coroutine> 
class coroutine_shared_state : public coroutine_shared_state_base<T> { 
  Coroutine coroutine_; 
 public: 
  template <typename F> 
  coroutine_shared_state(F&& coroutine_callback) 
      : coroutine_(coroutine_callback()) {} 
 

  void run() { 
    // Begin execution of the coroutine, and return the first time it 
    // blocks. 
    try { 
      coroutine_(*this); 
    } catch (...) { 
      this->set_exception(std::current_exception()); 
    } 
  } 
}; 

 

template <typename T> 
class promise { 
  // Invariant: if two promise objects have equal shared_state_ values, they are 
  // both null. 



  promise_interface<T>* shared_state_; 
 

 public: 
  promise() 
      : shared_state_(nullptr) {} 
 

  promise(promise_interface<T>* shared_state) 
      : shared_state_(shared_state) {} 
 

  promise(promise&& other) 
      : shared_state_(other.shared_state_) { 
    other.shared_state_ = nullptr; 
  } 
  promise& operator=(promise&& rhs) { 
    shared_state_ = rhs.shared_state_; 
    rhs.shared_state_ = nullptr; 
    return *this; 
  } 
 

  explicit operator bool() { return shared_state_ != nullptr; } 
 

  void set_value(const T& value) { 
    shared_state_->set_value(value); 
  } 
 

  void set_exception(std::exception_ptr ptr) { 
    shared_state_->set_exception(ptr); 
  } 
}; 

 

template <typename T> 
class future { 
  // Invariant: if two future objects have equal state_ values, they are both null 
  future_shared_state<T>* state_; 
 public: 
  using shared_state_type = coroutine_shared_state_base<T>&; 
 

  future(const future&) = delete; 
  future& operator=(const future&) = delete; 
 

  template <typename F> 
  future(F&& coroutine_callback) { 
    auto state = new coroutine_shared_state< 
      T, std::decay_t<decltype(coroutine_callback())>>(coroutine_callback); 
    state->run(); 
    state_ = state; 
  } 



 

  // Public API left as exercise for reader 
}; 

 
A typical usage, as shown earlier, could look like: 

auto count_bytes(Connection& connection) [&connection] [->] future<int> { 
  int bytes_read = 0; 
  vector<char> buffer(1024); 
  while (!connection.done())  { 
    bytes_read += [<-]connection.Read(buffer.data(), buffer.size()); 
  } 
  return bytes_read; 
} 

Simple generator 
This example prints the contents of a binary tree in order, using a generator: 

struct BstNode { 
  BstNode* left, right; 
  string value; 
}; 

 

auto Traverse(BstNode<int>* node) [node] [->] generator<string> { 
  if (node == nullptr) { 
    return; 
  } 
  [<-] Traverse(node->left); 
  [<-] std::yield(node->value); 
  [<-] Traverse(node->right); 
} 

 

void PrintBst(BstNode* root) { 
  generator<string> g = Traverse(root); 
  while (g) { 
    cout << *g << endl; 
    g.next(); 
  }; 
} 

 
And here’s the implementation that supports it: 

namespace std { 
// yield_handle represents the result of a `yield` call. It has no semantics 

// of its own; semantics are provided by the overloads for specific 



// generators. Thus, all generators can use the same `yield` function. 

template <typename T> 
struct yield_handle { 
  T& value; 
}; 

 

template <typename T> 
yield_handle<T> yield(T& value) { 
  return {value}; 
} 

 

template <typename T> 
yield_handle<const T> yield(const T& value) { 
  return {value}; 
} 

}  // namespace std 
 

// The current state of a generator<T,P>. This is a hidden implementation 

// detail, but it must be a namespace-scope template in order to facilitate 

// deduction of T and P. 

template <typename T, typename P> 
struct generator_state { 
  // The code to execute to resume this generator. Null if this generator 
  // is done. 
  std::function<generator_state()> continuation = nullptr; 
 

  // Pointer to the currently yielded value. Null if this generator is done. 
  T* value = nullptr; 
} 

 

// generator<T, P> represents a bidirectional generator, i.e. that not only 
// yields values of type T, but takes arguments of type P (which become values 

// of the yield expression). Yielded values are accessed by dereferencing, 

// and the generator is advanced to the next yielded value by calling next(). 

// Like an iterator, a generator has a special past-the-end state, signifying 

// the end of the generated sequence, which cannot be dereferenced or advanced. 

// 

// The generator<T, void> specialization (which represents a traditional 

// unidirectional generator) is omitted for brevity; the differences are 

// mostly obvious, but note that it could easily implement MoveIterator 

// (see P0902R0). 
template <typename T, typename P = void> 
class generator { 
  generator_state<T,P> state_; 
 

  // Manages lifetime of the coroutine lambda. Is not accessed otherwise. 
  std::unique_ptr<void, void(*)(void*)> coroutine_; 

http://www.scipy-lectures.org/advanced/advanced_python/index.html#bidirectional-communication
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0902r0.html


 

  class shared_state_type; 
  std::unique_ptr<shared_state_type> shared_state_; 
 

 public: 
  struct shared_state_type { 
    P* yield_result_; 
 

    // This overload defines the semantics of yielding from a generator<T,P> 
    generator_state<T,P> coroutine_suspend( 
        yield_handle<T>& handle, Coroutine& continuation) { 
      tail return {continuation, &handle.value}; 
    } 
 

    P& coroutine_resume(yield_handle<T>&) { 
      return *yield_result_; 
    } 
 

    // Unwrapping a generator object behaves like python's `yield from`: next() 
    // operations on the outer generator are delegated to the inner generator 
    // until it is done, and then the outer generator's coroutine is resumed. 
    // Consequently, it does not return a value, even for bidirectional generators. 
    template <typename U, typename Q, typename Coroutine> 
    generator_state<T, P> coroutine_suspend( 
        generator<U, Q>&& inner_generator, Coroutine& continuation) { 
      if (inner_generator) { 
        return {[&] () { 
            inner_generator.next(*yield_result_); 
            tail return coroutine_suspend( 
                std::move(inner_generator), continuation); 
        }, 
        &*inner_generator}; 
      } else { 
        tail return continuation(); 
      } 
    } 
 

    template <typename U, typename Q> 
    void coroutine_resume(generator<U, Q>&& inner_generator) {} 
 

    generator_state<T,P> coroutine_return() { return {}; } 
  }; 
 

  friend void swap(generator& lhs, generator& rhs) { 
    using std::swap; 
    swap(lhs.state_, rhs.state_); 
    swap(lhs.coroutine_, rhs.coroutine_); 



  } 
 

  // Move only 
  generator(generator&& rhs) { swap(*this, rhs); } 
  generator& operator=(generator&& rhs) { swap(*this, rhs); } 
 

  // Constructs a generator which exposes the values yielded by 
  // coroutine_callback(). 
  template <typename F> 
  generator(F& coroutine_callback)  
      : shared_state_(std::make_unique<shared_state_type>()) { 
    using Coroutine = decltype(coroutine_callback()); 
    unique_ptr<Coroutine, void(*)(void*)> coroutine( 
        new Coroutine(coroutine_callback()), 
        +[] (void* ptr) { delete static_cast<Coroutine*>(ptr); }); 
    state_ = (*coroutine)(*shared_state_); 
    coroutine_ = std::move(coroutine); 
  } 
 

  // Returns whether the generator is dereferenceable. False indicates 
  // the end of the generated sequence. 
  explicit operator bool() const { return state_.continuation != nullptr; } 
 

  // Accessors for the currently yielded value. static_cast<bool>(*this) must 
  // be true. Valid only until the following `next()` call. 
  T& operator*() { return *state_.value; } 
  T* operator->() { return state_.value; } 
 

  // Advance to the next yielded value. static_cast<bool>(*this) must be true. 
  void next(P& p) { 
    auto continuation = std::move(state_.continuation); 
    state_.continuation = nullptr; 
    shared_state_->yield_result_ = &p; 
    state_ = continuation(); 
    shared_state_->yield_result_ = nullptr; 
  } 
}; 

Zero-allocation generator 
The above generator is comparable to generators as proposed by the Coroutines TS; in 
particular, it allocates every coroutine frame on the heap, which is extremely inefficient in many 
cases. The following example shows a generator that always stores its state on the stack, which 
isn’t possible with the Coroutines TS (without changing the signatures of generator functions). 
As a consequence of storing its state on the stack, generator functions defined this way cannot 
recurse (i.e. the maximum generator stack depth must be statically known). 



 
It should be possible to use similar techniques to define a generator library that supports 
recursion by using a side stack (i.e. at most one more allocation than the corresponding 
non-generator-based recursive code), but the API design of the side stack abstraction raises 
issues beyond the scope of this paper. 
 
First, a usage example: 

// Returns a generator whose output consists of the concatenated 

// outputs of each generator produced by `generators`. 

template <typename T, typename P> 
auto flatten(stack_generator_base<stack_generator_base<T,P>>&& generators) 
    [&] [->] stack_generator<T,P> { 
  while (generators) { 
    [<-]*generators; 
    generators.next(); 
  } 
} 

 

// Returns a generator that iterates over the given range. 

template <typename Range> 
auto traverser(const Range& range) 
    [&] [->] stack_generator<decltype(*begin(range)), void> { 
  for (auto& element: range) { 
    [<-] std::yield(element); 
  } 
} 

 

// Returns a generator that yields `f(x)`, for each `x` yielded by `g`. 

template <typename T, typename F> 
auto transform_generator(stack_generator_base<T>&& g, F f) 
    [&g, f] [->] stack_generator<decltype(f(*g)), void> { 
  while (g) { 
    [<-] std::yield(f(*g)); 
    g.next(); 
  } 
} 

 

// Toy example: turn a nested vector into nested generators, and then 

// flatten them. 

// 

// Caveat: this code contains a dangling-reference bug that we did not have 

// time to fix before publication. 

void f(const std::vector<std::vector<int>>& vectors) { 
  stack_generator<int> gen = flatten(transform_generator( 
      traverser(vectors), 
      [] (const std::vector<int>& vec) { return traverser(vec); })); 



  

  while (gen) { 
    // Do stuff with *gen 
    gen.next(); 
  } 
} 

 
And the underlying implementation: 

// The internal state of a stack_generator<T,P,Coroutine> 

template <typename T, typename P> 
struct stack_generator_state { 
  // Pointer to the currently yielded value 
  T* value = nullptr; 
 

  // The generator we have recursed into, if any 
  stack_generator_base<T, P>* nested_generator = nullptr; 
}; 

 

// Base class of all stack_generators that take P and yield T. 

// Allows us to type-erase the coroutine. 

template <typename T, typename P> 
class stack_generator_base { 
  stack_generator_state<T,P> state_; 
  P* yield_result_; 
 public: 
  stack_generator_base(stack_generator_base&&) = delete; 
  stack_generator_base& operator=(stack_generator_base&&) = delete; 
 

  void next(P& p) { 
    yield_result_ = &p; 
    (void) next_impl(p); 
    yield_result_ = nullptr; 
  } 
 

  operator bool() const { 
    return state_.value != nullptr; 
  } 
  T& operator*() { return *state_.value; } 
  T* operator->() { return state_.value; } 
 

  stack_generator_state<T,P> coroutine_suspend( 
      std::yield_handle<T>& handle, Coroutine&) { 
    return {handle.value, nullptr}; 
  } 
 

  P& coroutine_resume(std::yield_handle<T>&) { 



    return *yield_result_; 
  } 
 

  template <typename U, typename Q> 
  stack_generator_state<T,P> coroutine_suspend( 
      stack_generator_base<U,Q>&& inner_generator, Coroutine&) { 
    return {&*inner_generator, &inner_generator}; 
  } 
 

  template <typename U, typename Q> 
  void coroutine_resume(stack_generator_base<U,Q>&&) {} 
 

  stack_generator_state<T,P> coroutine_return() { 
    return {}; 
  } 
 

 private: 
  template <typename T2, typename P2> 
  friend class stack_generator_base<T2, P2>; 
 

  // Resumes execution of the generator, and returns the new state 
  virtual stack_generator_state<T,P> resume(P& p, size_t suspend_point) = 0; 
 

  T* next_impl() { 
    if (state_.nested_generator != nullptr) { 
      T* value = state_.nested_generator.next_impl(p); 
      if (value != nullptr) { 
        return value; 
      } else { 
        state_.nested_generator = nullptr; 
      } 
    } 
    assert(state_.nested_generator == nullptr); 
 

    state_ = resume(p, suspend_point); 
    return state_.value; 
  } 
}; 

 

template <typename T, typename P = void, typename Coroutine> 
class stack_generator : public stack_generator_base<T,P> { 
 public: 
  using suspension_type = stack_generator_state<T,P>; 
 

  template <typename F> 
  stack_generator(F& coroutine_callback) 
      : coroutine_(coroutine_callback()) {} 



 

 private: 
  Coroutine coroutine_; 
 

  stack_generator_state<T,P> resume(P& p, size_t suspend_point) override { 
    return coroutine_(); 
  } 
}; 

Parser Combinators 
Coroutine syntax can be used to produce clear and elegant recursive-descent parsers. Here’s 
an example usage, which parses a toy arithmetic expression language, computing the 
expression value on the fly: 
 

// expr ::= expr addop factor | factor 

// addop ::= '+' | '-' 

// factor ::= number | '(' expr ')' 

 

enum class Sign { Plus, Minus }; 
 

Parser<Sign> AddOp() { 
  return FirstMatch<Sign>( 
      Map(Consume("+"), Sign::Plus), 
      Map(Consume("-"), Sign::Minus)); 
} 

 

auto Number() [] [->] Parser<int> { 
  string_view input = [<-] Peek(); 
  int value; 
  auto result = std::from_chars(input.begin(), input.end(), value); 
  if (result.ec != std::errc{}) { 
    [<-] Fail(result.ec); 
  } 
  [<-] AdvanceInput(result.ptr - input.begin()); 
  return value; 
} 

 

Parser<int> Factor() { 
  return FirstMatch<int>( 
      Number(), 
      [] [->] Parser<int> { 
        [<-] Consume("("); 
        int result = [<-] Expression(); 
        [<-] Consume(")"); 



        return result; 
      }); 
} 

 

auto Expression() [] [->] Parser<int> { 
  int result = [<-] Factor(); 
  while (!([<-] Peek()).empty()) { 
    Sign sign = [<-] AddOp(); 
    int next = [<-] Factor(); 
    switch (sign) { 
      case Sign::Plus: 
        result += next; 
        break; 
      case Sign::Minus: 
        result -= next; 
        break; 
    } 
  } 
  return result; 
} 

 
Here’s the underlying Parser type (note that for exposition purposes, we err on the side of 
simplicity rather than efficiency): 
 

// An intermediate state of a Parser. `value` represents the value just parsed 

// (nullopt if the parse failed), and `tail` represents the unparsed suffix of 

// the input. 

template <typename T> 
struct ParseState { 
  optional<T> value; 
  string_view tail; 
}; 

 

template <typename T> 
struct ParserReturnCallback { 
  Parser<T> operator()(const T& val) { return Return(val); } 
}; 

 

// A Parser<T> is essentially a function that takes a string_view, parses 

// it to produce a T, and returns the result. 

template <typename T> 
class Parser { 
  std::function<ParseState<T>(string_view)> parse_; 
  std::optional<T> cached_result_; 
 



 public: 
  class shared_state_type { 
    template <typename U, typename Coroutine> 
    Parser<T> coroutine_suspend(Parser<U>& parser, Coroutine& continuation) { 
      return [&] (string_view input) -> ParseState<T> { 
        ParseState<U> state = parser.parse(input); 
        if (!state.value) { 
          return {nullopt, state.tail}; 
        } 
        return continuation().parse(state.tail); 
      } 
    } 
 

    template <typename U> 
    U coroutine_resume(Parser<U>& parser) { 
      return *cached_result_; 
    } 
 

    Parser<T> coroutine_return(const T& value) { 
      return Return(value); 
    } 
  }; 
 

  template <typename F> 
  Parser(F& coroutine_callback) 
      requires std::is_coroutine_v<decltype(coroutine_callback())> 
      : parse_([coroutine = coroutine_callback()] (string_view input) 
              -> ParseState<T> { 
          return coroutine({}); 
        }) {} 
 

  template <typename F> 
  Parser(F& parse)  
      requires std::is_convertible_v< 
                   decltype(parse(std::declval<string_view>)), ParseState<T>> 
      : parse_(parse) {} 
 

  ParseState<T> parse(string_view str) const { 
    ParseState<T> result = parse_(str); 
    cached_result_ = result.value; 
    return result; 
  } 
}; 

 
And here are the reusable low-level parsing operations used in the above example: 
 



// Parser which returns the given value, without consuming any input 

template <typename T> 
Parser<T> Return(const T& val) { 
  return [=] (string_view input) { return val; }; 
} 

 

// Parser which produces the entire remaining input as a string_view, 

// without consuming any of it. 

Parser<string_view> Peek() { 
  return [] (string_view input) { 
    return ParseState<string_view>{ input, input } 
  }; 
} 

 

// Parser which consumes n characters of input. 

Parser<void> AdvanceInput(size_t n) { 
  return [] (string_view input) { 
    input.remove_prefix(n); 
    return ParseState<void>{input}; 
  } 
} 

 

// Parser which fails without consuming any input. 

Parser<void> Fail() { 
  return [] (string_view input) { 
    return {nullopt, input}; 
  } 
} 

 

namespace internal { 
ParseState<T> FirstMatchImpl(string_view input) { 
  return {nullopt, input}; 
} 

 

template <typename T, typename... Parser_Ts> 
ParseState<T> FirstMatchImpl(string_view input, Parser<T> parser, 
                             Parser_Ts... parsers) { 
  ParseState<T> result = parser.parse(input); 
  if (result.value) { 
    return result; 
  } else { 
    return FirstMatchImpl(input, std::move(parsers)...); 
  } 
} 

}  // namespace internal 
 

// Parser which parses a T value from the first of parsers... which 



// succeeds. parsers... must all be Parser<T> objects. 

template <typename T, typename... Parser_Ts> 
Parser<T> FirstMatch(Parser_Ts... parsers) { 
  return [=] (string_view input) { 
    return internal::FirstMatchImpl(input, std::move(parsers)...); 
  } 
} 

 

// Parser which consumes the given string value from the beginning of 

// the input, or fails if it is not present. 

Parser<void> Consume(string expected) { 
  return [=] (string_view input) { 
    if (input.starts_with(expected)) { 
      input.remove_prefix(expected.size()); 
      return ParseState<void>{input}; 
    } else { 
      return Fail(); 
    } 
  }; 
} 

 

// Parser which parses the same inputs as `parser`, and produces `value`. 

template <typename T> 
Parser<T> Map(Parser<void> parser, T value) [=] [->] Parser<T> { 
  [<-] parser; 
  return std::move(value); 
} 

 


