
Prohibit aggregates with user-declared constructors

Timur Doumler (papers@timur.audio)
Arthur O’Dwyer (arthur.j.odwyer@gmail.com)

Richard Smith (richardsmith@google.com)
Howard E. Hinnant (howard.hinnant@gmail.com)

Nicolai Josuttis (nico@josuttis.de)

Document #: P1008R1
Date: 2018-06-08
Project: Programming Language C++
Audience: Evolution Working Group, Core Working Group

Abstract

C++ currently allows some types with user-declared constructors to be initialized via aggregate
initialization, bypassing those constructors. The result is code that is surprising, confusing, and
buggy. This paper proposes a fix that makes initialization semantics in C++ safer, more uniform,
and easier to teach. We also discuss the breaking changes that this fix introduces.

1 Motivation
Today, the rules of initialization in C++ are frequently cited as one of the most confusing and hard-
to-learn aspects of the language. A particular problem occurs with aggregates with user-declared
constructors. The current rule says that an aggregate cannot have user-provided, inherited, or
explicit constructors, but explicitly deleted or defaulted constructors are allowed. This rule has
many surprising and unfortunate consequences.

1.1 Unintended instantiation

Consider:
struct X {

X() = delete;
};

int main() {
X x1; // ill-formed - default c’tor is deleted
X x2{}; // compiles!

}

Clearly, the intent of the deleted constructor is to prevent the user from initializing the class.
However, contrary to intuition, this does not work: the user can still initialize X via aggregate
initialization because this completely bypasses the constructors. The author could even explicitly
delete all of default, copy, and move constructor, and still fail to prevent the client code from
instantiating X via aggregate initialization as above. Most C++ developers are surprised by the
current behaviour when shown this code.

1

mailto:papers@timur.audio
mailto:arthur.j.odwyer@gmail.com
mailto:richardsmith@google.com
mailto:howard.hinnant@gmail.com
mailto:nico@josuttis.de


The author of class X could alternatively consider making the default constructor private. But if
this constructor is given a defaulted definition, this again does not prevent aggregate initialization
(and thus, instantiation) of the class:

struct X {
private:

X() = default;
};

int main() {
X x1; // ill-formed - default c’tor is private
X x2{}; // compiles!

}

Because of the current rules, aggregate initialization allows us to “default-construct” a class even if
it is not, in fact, default-constructible:

static_assert(!std::is_default_constructible_v<X>);

would pass for both definitions of X above.
The programmer has to know way too many details about both the class and about arcane
initialization rules to be able to understand this behaviour. X x1; doesn’t compile because the user-
declared constructor inhibits the compiler from supplying a default constructor. However, X x2{};
compiles because despite the rule that says the compiler doesn’t supply a default constructor, the
class has no user-provided, explicit, or inherited constructors, no private or protected non-static
data members, no virtual functions, and no virtual, private, or protected base classes, and so the
compiler allows the aggregate initialization syntax. The majority of C++ developers are unlikely to
ever master those rules. As a result, we end up with code that gets used in unexpected ways, even
after passing good unit tests such as the static_assert above. This leads to bugs and unintended
behaviour.

1.2 Unintended member initialization

Aggregate initialization creates even more surprises if the type in question has non-static data
members. Consider:

struct X {
int i{4};
X() = default;

};

int main() {
X x1(3); // ill-formed - no matching c’tor
X x2{3}; // compiles!

}

Here, X has a default constructor, and the member int i is given a default member initializer to
ensure that it will always hold the value 4 after default-construction. But surprisingly, aggregate
initialization allows the user to bypass this interface and initialize X with a different value for i,
potentially breaking class invariants. This can easily cause bugs and unintended behaviour.
It gets worse. We could try to make the intent even more clear by explicitly deleting the constructor
that takes an int. But, surprisingly, this still doesn’t make the class non-aggregate and therefore
accomplishes nothing:

struct X {
int i{4};
X(int) = delete;

};

2



int main() {
X x1(3); // ill-formed - using deleted c’tor
X x2{3}; // compiles!

}

This behaviour is confusing, not useful, and potentially dangerous.

1.3 explicit default constructor

Under the current rules, a workaround exists to prevent the user from intializing an aggregate:
adding explicit to the deleted default constructor causes the type to become non-aggregate.

struct X {
X() = delete;

};

struct Y {
explicit Y() = delete;

};

int main() {
X x{}; // compiles
Y y{}; // ill-formed because of explicit!

}

Unfortunately, this particular use of the explicit keyword is a workaround that fails to address
the core of the problem, and yet another rule that is not well-known and can cause confusion.

1.4 Out-of-line default

There are more bear traps that emerge from the current rules. Because a type with a user-declared
defaulted constructor can be an aggregate, but a type with a user-provided defaulted constructor
cannot, it depends on the position of the = default whether aggregate initialization is ill-formed
or not:

struct X {
int i;
X() = default;

};

struct Y {
int i;
Y();

};
Y::Y() = default;

int main() {
X x{4}; // compiles
Y y{4}; // ill-formed - not an aggregate!

}

1.5 P0960: Initializing aggregates from a parenthesized list of values

The proposal [P0960] allows to perform aggregate initialization from a parenthesized list of values.
This new feature, if adopted, would make the issues described in section 1 even more urgent: the
user would now run into unintended aggregate initialization not only with the {...} syntax, but
also with the (...) syntax. Specifically, X x1(3); from the examples in 1.2 would actually compile,
and explicitly deleting constructors of aggregates would no longer have any effect at all. These
semantics are broken and need to be fixed.

3



2 Proposed solution
The solution to all of the above is to modify the definition of aggregate as follows:

An aggregate is an array or a class with no user-provided, explicit,user-declared or
inherited constructors, no private or protected non-static data members, no virtual
functions, and no virtual, private, or protected base classes.

This makes aggregate initialization ill-formed for any class that has an explicitly defaulted or deleted
constructor.

2.1 Simpler and more uniform model for initialization semantics

The proposed change removes all cases in which aggregate initialization could bypass the declared
initialization interface of a class. Not only does this make all the code from section 1 behave
according to most people’s expectations, but it also simplifies the rules, making initialization
semantics in C++ more uniform and easier to teach.
The underlying mental model is as follows. A class, by default, gets a set of constructors: a
default constructor, and aggregate “constructors” that initialize the fields. If the user declares any
constructors themselves, they are taking ownership of the initialization semantics for the class, and
the compiler no longer provides these defaults.
This mental model matches most users’ expectations. The proposed change would align C++
initialization semantics with this model and remove the currently existing harmful exceptions. We
won’t have to teach unintuitive rules like “a =deleted or not-out-of-line-=defaulted constructor, if
not marked explicit, does not suppress aggregate initialization, but a constructor without these
properties does.” Instead, we will be able to teach a simple and intuitive rule: “if a class declares
any constructors, it will always be initialized through one of those constructors”.
Copy and move semantics are notionally distinct from initialization semantics as described above,
and we do not propose any changes for the generation of default copy and move constructors.

2.2 Eliminating “accidental aggregates”

The proposed change addresses a particular family of bugs. It often happens that the author of a
library type intends to control its instantiation by declaring a constructor, but is not aware of the
fact that this does not actually prevent aggregate initialization. This, in turn, allows clients of this
type to use it in unintended ways and invoke unintended behaviour. This proposal eliminates such
“accidental aggregates”.
We found that in real-world codebases, occurrences of “accidental aggregates” that our proposal
would fix typically occur more often than cases of code that our proposal would break (see section
3). Aggregates are sometimes useful and have their place in C++. However we believe that they
are useful much less often than they are an unwanted mechanism that provides “constructors” that
the programmer did not intend.
We found one particularly insidious case of an “accidental aggregate” in the LLVM/Clang codebase.
Consider:

struct X {
X() {}
// some data members...

};

This class was initially not an aggregate, because it had a user-provided constructor. Later, someone
decided to “modernize” the code base by changing X() {} to X() = default;. Unbeknownst to
them, this silently turned the class into an aggregate, changing its initialization semantics.

4



3 Breaking changes
We implemented our proposed change in Clang and ran it on the Google codebase. We observed
code breakage whenever a type was aggregate-initialized that ceases to be an aggregate with the
change proposed here. We found that there is about one such type per 3 MLoC. We believe that
this amount of breakage is well justified by the achieved simplification and improvement over the
existing language rules.
In this breakage study, we found some relevant use cases that our proposal breaks and that are not
already covered by section 1. We discuss those use cases below. They are rare and either contain
redundant declarations or exploit the existing language rules to achieve goals that the rules were
never meant to support in the first place.
The proposed changes are fully compatible with C++98/03, which states that aggregates cannot
have user-declared constructors. All breakage only affects post-C++11 code, which changed this
rule to user-provided (see Appendix). It is this change that we propose to revert.

3.1 Forcing aggregate initialization by deleting the default constructor

Consider an aggregate with data members of built-in type. A programmer might choose to delete
the default constructor of such a type to force aggregate initialization, which ensures that data
members will always be initialized to prevent indeterminate values:

struct X {
int i, j;
X() = delete;

};

int main() {
X x1; // ill-formed
X x2{}; // zero-initializes i and j. OK in C++17, ill-formed with this proposal
X x3{0, 0}; // value-initializes i and j. OK in C++17, ill-formed with this proposal

}

This proposal would make both x2 and x3 ill-formed, because X would no longer be an aggregate.
There are better ways to express the intent of forcing initialization of members. One such way are
default member initializers:

struct X {
int i = 0, j = 0;

};

int main() {
X x1; // zero-initializes i and j. OK in C++17 and with this proposal
X x2{} ; // zero-initializes i and j. OK in C++17 and with this proposal
X x3{0, 0}; // value-initializes i and j. OK in C++17 and with this proposal

}

3.2 Redundant constructor declarations

Consider an aggregate with an implicitly deleted default constructor (for example, because of a
reference member). The programmer may choose to explicitly declare this property for ”code
documentation purposes”, although this is redundant.
Consider:

struct X {
int& i;
X() = delete; // redundant declaration; default c’tor would be implicitly deleted

};

5



With the changes proposed here, X would cease to be an aggregate, because it has a user-declared
constructor:

int main() {
int val = 4;
X x{val}; // OK in C++17, ill-formed with this proposal

}

It is possible to get back the old behaviour by simply removing the redundant constructor declaration:
struct X {

int& i;
};

int main() {
int val = 4;
X x{val}; // OK in C++17 and with this proposal

}

It is important to note that, conceptually, an implicitly deleted constructor is actually not the same
as an explicitly deleted one. By using the latter, the programmer takes ownership of the type’s
initialization semantics. Consider:

struct Foo; // not default-constructible

struct Bar {
Foo foo;

};

Here, the compiler generates an implicitly deleted constructor for Bar because Foo is not default-
constructible. If Foo is later changed to be default-constructible, the compiler will make Bar
default-constructible as well — the initialization semantics are implicit. On the other hand, if
you declare Bar() = delete;, then changing Foo to be default-constructible will not make Bar
default-constructible as well — the initialization semantics are user-defined. Due to this conceptual
difference we believe that adding redundant constructor declarations for “code documentation
purposes” is not a very strong use case.

3.3 Non-copyable aggregates

A rare, but interesting use of the current rules are types like this:
struct X {

std::string s;
std::vector<Foo> v;

// make noncopyable:
X() = default;
X(const X&) = delete;
X(X&&) = default;

};

This class is an aggregate in C++17. It contains data members that are potentially expensive to
copy. The author explicitly deleted the copy constructor and defaulted the move constructor to
prevent such copies.
Our proposal makes aggregate initialization of this class ill-formed. In the mental model that our
proposal follows, conceptually an aggregate should only be a “bag of members” with simple, implicit
initialization semantics. Therefore, it should only be non-copyable if it has an implicitly deleted
copy constructor, such as through a non-copyable data member. By overriding this default, the
user is also opting out of the other default (the member-wise aggregate initialization).

6



It is still possible to manually make an aggregate non-copyable without declaring constructors, for
example by adding a non-copyable empty member at the end:

struct NonCopyable {
NonCopyable() = default;
NonCopyable(const NonCopyable&) = delete;
NonCopyable(NonCopyable&&) = default;

};

struct X {
std::string s;
std::vector<Foo> v;

[[no_unique_address]] NonCopyable nc;
};

In our code breakage study, this particular case accounted for about half of the observed breakages.

3.4 Aggregate initialization becoming value-initialization

For classes with =defaulted default constructors, this proposal may silently turn aggregate initial-
ization from an empty braced-init-list into value initialization.

struct X {
int i, j;
X() = default;

};

int main() {
X x{}; // aggregate initialization in C++17; value-initialization with this proposal

}

While this is notionally different, there is no change in behaviour: the data members i and j are
zero-initialized in both cases.

3.5 Aggregate initialization becoming a copy constructor call

There is one corner case where the proposed change may silently turn aggregate initialization into a
copy constructor call. This can happen if the type has a data member of another type convertible
to its own type, and simultaneously a =defaulted or =deleted copy constructor:

struct Y;

struct X {
operator Y();

};

struct Y {
X x;
Y(const Y&) = default;

};

int main() {
Y y{X{}}; // aggregate initialization in C++17; copy constructor call with this proposal

}

This introduces a change in behaviour. If the copy constructor is inaccessible or deleted, the
initialization will now become ill-formed. Otherwise, it will now call the conversion operator and
the copy constructor. We believe that this is actually a fix, since the presence of a user-declared
copy constructor suggests that it should have been selected in the first place. The new behaviour is

7



consistent with the design goal of regularizing initialization semantics and removing all cases where
aggregate initialization is applied notwithstanding declared constructors that match the provided
arguments.

4 Proposed wording
The proposed changes are relative to the C++ working paper [Smith2018].

Modify [dcl.init.aggr] paragraph 1 as follows:

An aggregate is an array or a class (Clause 12) with

— no user-provided, explicit,user-declared or inherited constructors (15.1),
— no private or protected non-static data members (Clause 14),
— no virtual functions (13.3), and
— no virtual, private, or protected base classes (13.1).

Modify [dcl.init.aggr] paragraph 17 as follows:

[Note: An aggregate array or an aggregate class may contain elements of a class type
with a user-provideduser-declared constructor (15.1). Initialization of these aggregate
objects is described in 15.6.1. — end note ]

Add the following to [diff.cpp17] in Annex C, section C.5 C++ and ISO C++ 2017:

C.5.6 Clause 11: declarators [diff.cpp17.dcl.decl]
Affected subclause: [dcl.init.aggr]
Change: A class that has user-declared constructors is never an aggregate.
Rationale: Remove potentially error-prone aggregate initialization which may apply
notwithstanding the declared constructors of a class.
Effect on original feature: Valid C++ 2017 code that aggregate-initializes a type
with a user-declared constructor may be ill-formed or have different semantics in this
International Standard.

struct A { // Not an aggregate; previously an aggregate
A() = delete;

};

struct B { // Not an aggregate; previously an aggregate
B() = default;
int i = 0;

};

struct C { // Not an aggregate; previously an aggregate
C(C&&) = default;
int a, b;

};

A a{}; // ill-formed; previously well-formed
B b = {1}; // ill-formed; previously well-formed
auto* c = new C{2, 3}; // ill-formed; previously well-formed

8



struct Y;

struct X {
operator Y();

};

struct Y { // Not an aggregate; previously an aggregate
Y(const Y&) = default;
X x;

};

Y y{X{}}; // copy constructor call; previously aggregate-initialization

9



Appendix: History of the definition of aggregate in C++
For reference, this appendix summarises the evolution of the definition of aggregate throughout the
different versions of the C++ language.

Original C++98/03 wording:

An aggregate is an array or a class with no user-declared constructors, no private or
protected non-static data members, no base classes, and no virtual functions.

Changes in C++11:

An aggregate is an array or a class with no user-declareduser-provided constructors,
no brace-or-equal-initializers for non-static data members, no private or protected non-
static data members, no base classes, and no virtual functions.

The one problematic change that we propose to revert here is the change from user-declared
to user-provided introduced by [N2346]. The original motivation of this change was to allow
aggregate initialization for std::atomic despite having a =defaulted constructor for purposes of C
compatibility. This motivation became obsolete after C11 introduced its atomic operations library.
Thus, all the problems with aggregate initialization that we propose to fix here are essentially the
result of a historic accident.
The second change was made through the resolution of core defect [CWG886], which was then
reverted in C++14. The resolution of the following core defects also indirectly changed what
types can be considered an aggregate: [CWG1355] and [CWG1578], which, in turn, was caused by
[CWG1301].

Changes in C++14:

An aggregate is an array or a class with no user-provided constructors, no brace-or-equal-
initializers for non-static data members, no private or protected non-static data mem-
bers, no base classes, and no virtual functions.

The restriction introduced in C++11 by the resolution of [CWG886] was found to be problematic
and was reverted by [N3653]. The rationale is explained in [N3605].

Changes in C++17:

An aggregate is an array or a class with no user-provided, explicit, or inherited con-
structors, no private or protected non-static data members, no virtual functions, and
no virtual, private, or protected base classes, and no virtual functions.

The restriction of making classes with explicit constructors non-aggregate was introduced by
[P0017]. It is a workaround for one of the problems introduced by the C++11 user-provided change.
Tag types such as std::piecewise_construct should not be user-constructible from empty braces,
and marking the deleted default constructor explicit was introduced as a way to make that
possible. This workaround is no longer necessary with our proposed change.
The other changes come from [P0398] and implement an extension that is not impacted by our
proposed change.

10



Document history

— R0, 2018-05-07: Initial version

— R1, 2018-06-08: Revised wording; added code breakage study; removed discussion of alterna-
tive proposal P1090; added appendix.

Acknowledgements
Many thanks to Igor Akhmetov, Dmitry Kozhevnikov, Ville Voutilainen, Nicole Mazzuca, Peter
Dimov, Ben Craig, Kévin Alexandre Boissonneault, Michał Dominiak, Mark Zeren, Kate Gregory,
Barry Revzin, Agustín Bergé, Tony Van Eerd, Jens Maurer, Gabriel Dos Reis, and Daveed
Vandevoorde for their helpful comments and code examples. Many thanks to Alisdair Meredith,
Thomas Köppe, Hubert Tong, and Tim Song for their help with the Annex C wording.

References

[CWG1301] Jason Merrill. Core Defect 1301: Value initialization of union. http://www.open-std.
org/jtc1/sc22/wg21/docs/cwg_defects.html#1301, 2011 (accessed 2018-06-08).

[CWG1355] Sean Hunt. Core Defect 1355: Aggregates and “user-provided” constructors. http:
//www.open-std.org/jtc1/sc22/wg21/docs/cwg_defects.html#1355, 2011 (accessed
2018-06-08).

[CWG1578] Alisdair Meredith. Core Defect 1578: Value-initialization of aggregates. http://www.
open-std.org/jtc1/sc22/wg21/docs/cwg_closed.html#1578, 2012 (accessed 2018-06-
08).

[CWG886] Daniel Krügler. Core Defect 886: Member initializers and aggregates. http://www.
open-std.org/jtc1/sc22/wg21/docs/cwg_defects.html#886, 2009 (accessed 2018-06-
08).

[N2346] Lawrence Crowl. Defaulted and Deleted Functions. http://www.open-std.org/jtc1/
sc22/wg21/docs/papers/2007/n2346.htm, 2007 (accessed 2018-06-08).

[N3605] Ville Voutilainen. Member initializers and aggregates. http://www.open-std.org/jtc1/
sc22/wg21/docs/papers/2013/n3605.html, 2013 (accessed 2018-06-08).

[N3653] Ville Voutilainen and Richard Smith. Member initializers and aggregates. http://www.
open-std.org/jtc1/sc22/wg21/docs/papers/2013/n3653.html, 2013 (accessed 2018-
06-08).

[P0017] Oleg Smolsky. Extension to aggregate initialization. http://www.open-std.org/jtc1/
sc22/wg21/docs/papers/2015/p0017r1.html, 2015 (accessed 2018-06-08).

[P0398] Jens Maurer. Core issue 1518: Explicit default constructors and copy-list-initialization.
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0398r0.html, 2016
(accessed 2018-06-08).

[P0960] Ville Voutilainen. Allow initializing aggregates from a parenthesized list of values. http://
www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0960r0.html, 2018 (accessed
2018-06-08).

[Smith2018] Richard Smith. Working Draft, Standard for Programming Language C++. https:
//github.com/cplusplus/draft, 2018 (accessed 2018-06-08).

11

http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_defects.html#1301
http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_defects.html#1301
http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_defects.html#1355
http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_defects.html#1355
http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_closed.html#1578
http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_closed.html#1578
http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_defects.html#886
http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_defects.html#886
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2007/n2346.htm
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2007/n2346.htm
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2013/n3605.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2013/n3605.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2013/n3653.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2013/n3653.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/p0017r1.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/p0017r1.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0398r0.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0960r0.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0960r0.html
https://github.com/cplusplus/draft
https://github.com/cplusplus/draft

	1 Motivation
	2 Proposed solution
	3 Breaking changes
	4 Proposed wording
	Appendix: History of the definition of aggregate in C++

