
Doc. no.: P0922R0
Date: 2018-02-10
Reply to: Titus Winters
Audience: EWG

This paper is a follow-up on conversations from the ABQ meeting and reflector discussion in
late 2017 identifying areas that LEWG would like to see EWG focus on. I’ve attempted to keep
notes on those discussions and extract relevant/unresolved discussion points from the reflector
- any omissions are unintentional. I encourage other committee members and interested parties
to produce similar wishlists.

The following list is unstructured and ill-thought out: the fundamental problem of inviting
librarians to do the work of language-designers is that we are (or at least I am) outside of our
area of expertise. Attention should be paid to the problems presented - any suggestion of how
to resolve these is obviously half-baked at best. But as we all know - the best way to get a good
answer to a question is to provide a wrong one and wait for the outraged corrections.

ADL

Argument-dependent Lookup is currently very difficult for librarians. Anecdotally, Google C++
team investigations suggest that the number of functions (other than overloaded operators)
being called via ADL unintentionally, or outside the API design for that function, outweighs the
number of correct uses of ADL by at least a factor of 10x. ADL makes library maintenance
meaningfully harder - namespace changes cause build breaks when users are unexpectedly /
unintentionally relying on ADL.

As a straw-man: introduce some mechanism to say “this API is ADL-enabled” and tag standard
APIs (swap, non-member operators) in that fashion. Begin to warn on use of ADL to call
non-ADL APIs, and eventually turn off old-style/accidental ADL. We could conceivably do this in
10 years.

In private communication, Richard Smith suggested that it might be valuable to find an ADL
alternative that doesn’t globally reserve a name. I’m interested in that idea, but not convinced it
is an absolute necessity: the APIs I’ve seen that are designed with ADL in mind are pretty clear
(swap, operators, and similar non-member/supplemental APIs). Globally reserving things like
“swap” or “parseFlag” (a Google-internal API designed with ADL usage in mind) doesn’t seem
like an unreasonable thing - although it might be nice to avoid if possible.

Other ideas that have been kicked around: only consider friend functions. This would mean that
there is explicit opt-in somewhere, and the name does not wind up globally reserved.

Types, lifetimes, and side-effects
If it were possible to explicitly state whether a type does or does not have external side effects,
we could solve a couple related classes of user bugs. Consider two very different styles of type
design: RAII types, and regular types.

In the case of RAII types, like std::scoped_lock , there is a common class of user error
stemming from constructing these as a temporary.

std::scoped_lock{my_mutex};
vs.
std::scoped_lock l{my_mutex};

If we had a mechanism to express classes of side-effect (or appropriateness to operate on
temporaries), we could more fundamentally quash this class of (common, hard to spot) bugs.

On the flip side, identifying types that are regular/value types could help identify places where
temporaries are being used inappropriately. Consider

std::string GetString() { return {}; }
GetString() = "Hello";

int GetInt() { return 17; }
GetInt() = 42;

In the above example, assignment to GetInt() fails, but assignment to GetString() succeeds
- and is almost certainly indicative of a bug in the code or the mental model for the programmer.
There has been some recent discussion on the reflectors about reference-qualifying `operator=`
- this might be sufficient. If EWG believes that is sufficient, LEWG would like to know so that we
can investigate deployment of that as an idiom.

More Fun With Temporaries
With the introduction of std::string_view we have made object-lifetime bugs more common,
at least for some classes of user. Invariably, the suggestion becomes “Why don’t we disallow
construction from temporaries?”

class string_view {
 public:
 string_view(const string&);
 string_view(string&&) = delete;
 …

};

The problem is that this disallows a large and common class of usages:

void f(std::string_view);
std::string GetString();

void call() {
 f(GetString());
}

This is clearly safe and is in fact one of the primary purposes of `string_view` - provide a
vocabulary type for string-like things as (non-sink) parameters. That said, it is still clearly the
case that it is too easy to do the following:

void f() {
 std::string_view sv = GetString();
}

I think the ultimate example in this type of problem is FindWithDefault - a seemingly
innocuous helper for associative containers that takes a map, a key, and a default value and
returns a constant reference to the specified element or the default if the key does not exist. The
problem here is similar:

// dangerous - the temporary passed to FindWithDefault is destructed

// at the end of the statement, the reference dangles if the key is not found.

const std::string& val = FindWithDefault(my_map, key, "default value");

// perfectly safe

UseString(FindWithDefault(my_map, key, "default value"));

Passing a temporary as the default is dangerous when the result is stored, but perfectly safe
within the confines of a single statement. Users similarly suggest deleting the rvalue-ref
overload for FindWithDefault, losing a large class of valid use cases.

As it stands, the standard provides no way for the type system to identify these types of lifetime
concerns. Static analysis is being employed to identify unsafe uses and warn users, but there is
no overall solution without deeper language intervention.

User-defined conversions to standard types

User-defined conversions to standard types interact poorly with the standard (ever) changing its
idioms for parameter passing.

Consider string_view vs. const char* + const string& overloads - we would like to
have only string_view parameters for string-accepting APIs. This is especially important
because string_view works best when it’s used consistently at the lowest-levels of a
codebase (see http://abseil.io/tips/1). Consistent use of string_view by the standard would
also provide good examples to model. However, because of user-code that has implicit
conversion to std::string (only), we cannot do so without breaking such callers.

It would be nice if the standard were able to model the behavior we suggest for users.

ABI
At some point in the future it is likely that the language willforce another ABI break on the world.
What will it take for that to be the last one? Or should we focus instead on making ABI breaks
easier to handle?

Macros
What will it take for us to stop relying on macros in 10 years? Currently I encounter macros in
the following cases:

● Stamping out near-duplicate chunks of code, textually.
● Need to access the filename/linenumber of a “caller”
● Desire to affect control flow in new and exciting ways
● Need to access the name of a declaration
● stringifcation of arguments
● Deferred evaluation of parameters/parameter-like expressions

Much of this is handled by SG7 - are we sufficiently certain that we’ve covered all of the current
use-cases?

Acknowledgements
Thank you to everyone that participated in the reflector discussion in December 2017. Particular
thanks to Richard Smith and David Jones for insightful comments on early drafts of this paper.

http://abseil.io/tips/1

