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P0904 - A strawman Future API 

Motivation 
In P0783 we discussed the abstract idea of separating continuable futures from those that are 
not continuable. The basic idea is that a future returned from an API should not expose that 
API’s execution context to the caller without care, and that the standard means for returning a 
future from an asynchronous API should lean towards not exposing the execution context. Any 
continuations chained on a future returned from such an API should explicitly be associated with 
some execution context owned by the caller, and that this control should be colocated with the 
future in code. 
 
At Facebook we have implemented this concept in the open source folly library as 
folly::SemiFuture, which does not support continuations, and the earlier existing future type 
folly::Future, which does. We’ve had good feedback from across the company on this basic 
design and numerous libraries are in the process of converting their Future-returning code to 
return SemiFuture to add this layer of safety. Note that in folly, for consistency with earlier 
executor modifications, the via  customization point is implemented as a method on 
SemiFuture and Future. 
 

Summary 
This paper aims to strengthen some of these ideas, and to start to tie futures together with 
executors as proposed in P0443, to understand how synchronization can work and to look at 
the interaction with bulk execution. 
 
Executors add bulk execution and greedy continuation capabilities - the ability to use 
then_execute to have the executor wait directly on the future. In both cases we wish to be able 
to expose this functionality such that we can benefit from it on the interfaces of futures, but 
without loss of efficiency. This paper aims to make the link to those executor interfaces clear, to 
help us better understand what interfaces we really need in the executors to implement futures. 
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Finally this paper aims to start to solidify the forward progress delegation requirements for the 
future APIs, to make sure we expose appropriate interfaces for executors and to be confident 
that we can deal with execution agents that offer different forward progress guarantees in a safe 
manner. 
 

Existing Executor Concepts 
We rely on a set of type requirements from P0443, which we loosely describe here as concepts, 
without using correct concept syntax, to emphasise that they describe sets of types satisfying 
some basic set of requirements. In each case we simply note the set of functions on the type 
that matter for our purposes and any other information that we see as important to 
communicate. 
 
Executor is a simplified version of the concept taken from the executors paper. In practice we 
have a set of these types exposing different capabilities and some can be converted to others. 
The necessary operations are summarised here. 
 
The fundamental primitive we need to implement futures efficiently is a one-way execute. This is 
fundamental because in the absence of more information, futures will dispatch work to the 
executor lazily when the dependencies are satisfied. The executor in this case will support the 
OneWayExecutor requirements: 
concept OneWayExecutor { 

template<class F> void execute(F&& f); 

}; 

 

An executor may also follow the TwoWayExecutor requirement: 
concept TwoWayExecutor { 

template<...>  

ReturnFutureType<T> twoway_execute(F&& f); 

}; 

 
Where the returned future is satisfied by the return value of F. We can convert a one-way 
execution into a two-way execution trivially. We can convert a two-way execution trivially into a 
one-way if the returned future is Continuable (described below). 
 
An executor may support continuations directly such that it has a then_execute operation that 
creates a dependency between function f and some future fut: 
concept ThenExecutor { 

template<...>  

ReturnFutureType<T> then_execute(F&& f, InputFutureType<T2>&& fut); 

}; 



 
We can use an executor that supports this operation as its basic operation if InputFutureType 
matches our source future. 
 
An executor may support bulk operations such that one call to the execute function launches 
some amount of work, optionally greater than one instance. Bulk operations come in the three 
variants above and can be used to emulate the single launch forms of the operations by 
dispatching only one instance. As an example, the BulkOneWayExecutor: 
 
concept BulkOneWayExecutor { 

template<...>  

void bulk_execute( 

F&& f, executor_shape_t<ExecutorType> s, Synchronizer); 

}; 

 
The shape defines the set of instances dispatched. The synchronizer type is an 
executor-specific type that enables synchronization of the set of instances. 
 
We note the above because the Future concepts below depend on them. Please read P0443 for 
more details. 
 
Finally, we require the expected type defined in P0323R2. Although this is exemplary, and could 
be replaced with some other type that satisfies similar requirements such as folly::Try as 
necessary. 

Future concepts 
We split futures into two new concepts: SemiFuture and ContinuableFuture.  
 

SemiFuture represents a future value, but only has the potential to provide access to that value. 
It is defined defined as a type that has a via operation exposed as a customization point that 
itself takes an r-value of the SemiFuture type and an executor and that returns a 
ContinuableFuture of that executor. The return concept of ContinuableFuture will be 
described next.  
 
SemiFuture has no associated executor, and there is therefore no .then operation on it. 
SemiFuture does not directly permit continuations. Rather, a SemiFuture may be converted to a 
ContinuableFuture by attaching an executor, and that ContinuableFuture  will permit 
continuations. 
 
template<class T> 

concept SemiFuture { 

explicit SemiFuture(/* implementation-defined ContinuableFuture */&&); 

 



// Move constructible 

SemiFuture(/*self type*/&&); 

 

// get and get_expected are both destructive. 

// get will throw on exception. get_expected will return either a value 

// or an exception. 

T get() &&; 

ExpectedType<T> get_expected() noexcept &&; 

 

// Wait is not destructive. 

SemiFuture<T>& wait() noexcept &; 

SemiFuture<T>&& wait() noexcept &&; 

 

bool is_ready() noexcept; 

}; 

 

A SemiFuture can be constructed from some matching ContinuableFuture as a means of type 
erasing the executor for safe return from APIs. This is important because it means a full chained 
set of futures can be used and then the executor erased for returning from a library. For 
example something along the lines of: 
SemiFuture<int> doThings() { 

   auto f = doWork(); 

   Future<int> f2 = f.then(sometask); 

   return SemiFuture<int>{std::move(f)}; 

} 
 
The via customization point of SemiFuture will return a ContinuableFuture: 
template< 

OneWayExecutor Ex,  

SemiFuture<T> ConcreteSemiFuture,  

ContinuableFuture<Ex> CF> 

CF via(ConcreteSemiFuture&&, Ex); 

 

The precise type of the returned ContinuableFuture from via depends on the exeuctor. It may be 
a custom future type. The executor type that is part of the future returned by a call to the via 
customization point need not match that passed. A valid extension of this interface would be to 
require that the Executor passed to via be non-blocking, or be convertible to one that is 
non-blocking using require operations. This would preclude use of an inline executor but would 
increase the safety of the API overall. 
 
Calls to get, get_expected and to wait are blocking and support forward progress delegation. 
If present, an executor associated with the SemiFuture (which may have been constructed from 
a ContinuableFuture) may delegate its forward progress to the next executor in the future 
chain attached with via(std::move(sf), ex). It should not be assumed to be safe to call a 



blocking future operation from a weaker-than-concurrent agent on an unknown future type. See 
section on Synchronization below. 
 
get will throw if the SemiFuture holds an exception, get_expected will return an expected type 
that wraps either the value or an exception_ptr. 
 
We add the ability to enqueue continuations on a future using the ContinuableFuture concept. 
ContinuableFuture has .then and .bulk_then methods and is always associated with an 
executor, which we propose exposing explicitly in the type.  
template<class T, Executor Ex> 

concept ContinuableFuture : SemiFuture  { 

using executor_type = Ex; 

using semi_future_type = /* implementation-defined */ 

 

// Move constructor 

ContinuableFuture(/*self type*/&&); 

 

template<class ReturnT, class F, Executor Ex2> 

ContinuableFuture<ReturnT, Ex> then(F&&); 

 

template< 

class ReturnT,  

class F,  

Executor Ex2,  

class SharedFactory,  

class ResultFactory> 

ContinuableFuture<ReturnT, Ex2> bulk_then( 

F&& f,  

executor_shape_t<Ex> shape,  

SharedFactory&& s, 

ResultFactory&& r); 

 

Ex get_executor() noexcept; 

semi_future_type semi() &&; 

}; 

  

A call to via(std::move(cf), ex) is allowed to return std::move(cf) if the passed executor 
instance, ex, matches the executor attached to the ContinuableFuture. 
 
The matching SemiFuture type that can collapse the ContinuableFuture is exposed 
through the semi_future_type type export. A ContinuableFuture can be converted directly to 
that type using the semi() method for convenience. 
 
get, get_expected and wait are equally applicable to ContinuableFuture and should be 
supported for any ContinuableFuture type with the same semantics as for SemiFuture. 



 
The factory parameters of bulk_then are equivalent to those of bulk_two_way_execute in 
P0443. 
  
bulk_then may be delegated to the executor for efficient execution: 

● If Ex is a BulkExecutor and SharedFactory and ResultFactory are supported by that 
executor’s bulk_execute operation, then that may be called to implement bulk_then 
lazily. 

● If Ex does not satisfy BulkExecutor but is convertible to a BulkExecutor using require, 
and the parameters of the result match as above, then Ex::bulk_execute may be used 
to implement bulk_then lazily. Note that in this case Ex and Ex2 may be different types. 

  
then may be delegated to the executor for greedy evaluation and task-graph creation: 

● If Ex is a ThenExecutor and its then_execute accepts *this as its source future, 
then_execute may be called to implement then greedily. 

● If Ex does not satisfy ThenExecutor but is convertible to a ThenExecutor using require, 
and the resulting executor accepts *this as a source type, Ex::then_execute may be 
called to implement then greedily. Note that in this case Ex and Ex2 may be different 
types. 

 
bulk_then may be delegated to the executor for greedy evaluation and task-graph creation: 

● If Ex is a BulkThenExecutor and its Ex::bulk_then_execute accepts *this as its 
source future and the SharedFactory and ResultFactory parameters are valid, 
bulk_then_execute may be called to implement bulk_then greedily. 

● If Ex does not satisfy BulkThenExecutor but is convertible to a BulkThenExecutor using 
require, the resulting executor’s bulk_then_execute accepts *this as its source future 
and the SharedFactory and ResultFactory parameters are valid, bulk_then_execute 
may be called to implement bulk_then greedily.. Note that in this case Ex and Ex2 may 
be different types. 

 
It is implementation-defined for a given Future whether, if bulk_execute and then_execute are 
both available, how bulk_then will be delegated. Otherwise the execute method will be called 
on the executor lazily when the future is satisfied. 
  
Valid signatures for continuation function F passed to then are: 

expected<ReturnT, exception_ptr> (expected<T, exception_ptr>&&); 
expected<ReturnT, exception_ptr> (Ex&, expected<T, exception_ptr>&&); 

SemiFuture<ReturnT> (expected<T, exception_ptr>&&); 
SemiFuture<ReturnT> (Ex&, expected<T, exception_ptr>&&); 

 
Valid signatures for continuation function F passed to bulk_then are: 

expected<ReturnT, exception_ptr> ( 

expected<T, exception_ptr>&&, ResultFactory&, SharedFactory&); 



expected<ReturnT, exception_ptr> ( 

Ex&,  

expected<T, exception_ptr>&&,  

ResultFactory&,  

SharedFactory&); 

SemiFuture<ReturnT> ( 

expected<T, exception_ptr>&&,  

ResultFactory&,  

SharedFactory&); 

SemiFuture<ReturnT> ( 

Ex&,  

expected<T, exception_ptr>&&,  

ResultFactory&,  

SharedFactory&); 

 
Where ResultFactory, SharedFactory are constructed and used according to the rules of 
bulk_then_execute in P0443.  
 
A continuation that returns ReturnT, ContinuableFuture<ReturnT> or some other type 
convertible to either of the known return types would also be supported with the obvious 
conversions. 
 
Optionally providing the executor to the continuation offers the opportunity to query the executor 
for information about the system. 
 
Continuations that return futures, that is those of the form: 

f.then([](T&& t){ 

return FutureType<T>(doSomethingTo(std::forward<T>(t)));}); 

 
are supported. A ContinuableFuture will be returned in these cases, such that the resulting 
expression is semantically equivalent to: 

f.then([](Ex& ex, T&& t){ 

return via(ConcreteSemiFuture<T>( 

doSomethingTo(std::forward<T>(t))), ex);}); 
 

The future returned by the continuation will if necessary be wrapped into a future that completes 
on the original future’s executor, such that the future returned by the call to f.then always 
completes on f’s executor to avoid leaking executors. 
 

Defer 
When working with folly we have found specific cases where we do want some sort of 
continuation on a SemiFuture, but with very specific and strongly-defined semantics. As an 



example, take a networking library that receives data from the network and wants to deserialize 
it. 
 
SomeComplexType getFromNetwork() { 

SemiFuture<string> data = getData(); 

return deserialize(data.get()); 

} 

 
In this case blocking is clearly not what we want. Facebook libraries currently tend to accept an 
executor on construction and use that to return the data. However, the usual case is that we 
actually want to deserialize the data in some execution context associated with the caller. That 
gives us the following: 
SemiFuture<SomeComplexType> getFromNetwork() { 

SemiFuture<string> data = getData(); 

return data.defer([](string&& data){return deserialize(data)}; 

} 

 
This looks like a standard call to then, but note that we do not attach an executor. Instead we 
can call get on the return value: 
auto v = get(DrivableExecutor{}, getFromNetwork()); 

Where DrivableExecutor is an exemplary executor that provides only delegated forward 
progress. 
In this case, deserialize is going to run during the call to get. Defer adds a callback to the 
SemiFuture that delegates its forward progress guarantee to either the caller of get, as above, 
or to the next executor in the chain, as in: 
auto f = via(getFromNetwork(), e); 

 
Note that we have tightly coupled the executor we set with the operation, rather than with the 
entire network library. 
 
We therefore extend the SemiFuture concept with a defer method: 
template<class T> 

concept SemiFuture { 

explicit SemiFuture(/* implementation-defined ContinuableFuture */&&); 

 

// Move constructor 

SemiFuture(/* implementation-defined */&&); 

 

template<class ReturnT> 

SemiFuture<ReturnT> defer(F&&); 

 

// get and get_expected are both destructive. 

// get will throw on exception. get_expected will return either a value 

// or an exception. 

T get() &&; 



ExpectedType<T> get_expected() noexcept &&; 

 

// Wait is not destructive. 

SemiFuture<T>& wait() noexcept &; 

SemiFuture<T>&& wait() noexcept &&; 

 

bool is_ready() noexcept; 

}; 
 
Valid signatures for continuation function F passed to defer are: 

expected<ReturnT, exception_ptr> (expected<T, exception_ptr>&&); 

SemiFuture<ReturnT> (expected<T, exception_ptr>&&); 

 
With conversion rules defined as for .then. 
 
Callbacks added using calls to defer are chained as callbacks added with then, as if through a 
chain of futures, and hence are satisfied after any previous callbacks and in order of addition. 
Delegation of forward progress guarantees is transitive such that in code like: 
 
{ 

auto s = promise.getSemiFuture(); 

auto f1 = via(std::move(s), e); 

auto f2 = std::move(f1).then(task1); 

auto f3 = std::move(f2).then(task2); 

auto s2 = ConcreteSemiFuture{f3}; 

auto s3 = s2.defer(task3); 

auto result = get(DeferredExecutor{}, std::move(s3)); 

} 

 
Executor e may delegate its forward progress to the caller of get and all intermediate calls to 
defer will run inline with the caller of get. 

Standardised Future type 
We propose that we do include a basic future type, that std::async and other core APIs can 
evolve to return, and that is efficient enough to use as a standard type-erasing wrapper for any 
types that implement the Future or SemiFuture concepts. 
  
While other future types may be created through library-specific means, to use the standard 
future for purposes other than standard APIs (such as std::async) the promise provides the 
means both of creation, and of setting the value. We therefore require a promise type with a 
void specialization. The promise type can have a value set on it, and will return a 
StandardSemiFuture. This is important because no continuation may be attached to that future, 
so we will not get direct call-through on the promise setter without explicit control. 



 
template<class T> 

class StandardPromise { 

public: 

StandardSemiFuture<T> get_future(); 

void set_value(T&&); 

}; 

  

template<> 

class StandardPromise<void> { 

public: 

StandardSemiFuture<void> get_future(); 

void set_value(); 

}; 

 

We have a standard implementation of the SemiFuture concept. This may share state with 
StandardPromise and StandardContinuableFuture. 
 
It is safe to construct a StandardSemiFuture directly from a value and calling get on such a 
future should always be expected to be ready.  
template<class T> 

class StandardSemiFuture { 

public: 

// StandardSemiFuture may be constructed already complete 

StandardSemiFuture(T); 

StandardSemiFuture(StandardSemiFuture&&); 

  

// StandardSemiFuture may type erase any ContinuableFuture 

template<Executor Ex, ContinuableFuture<T, Ex> CF> 

StandardSemiFuture(CF&&); 

  

// Similar to .then but with very specific semantics. 

// Defers work to be boost-blocked on a 

// to-be-attached executor, or at get time. 

template<Callable F, class ReturnT> 

StandardSemiFuture<ReturnT> defer(F&&); 

 

// get and get_expected are both destructive. 

// get will throw on exception. get_expected will return either a value 

// or an exception. 

T get() &&; 

expected<T, exception_ptr> get_expected() noexcept &&; 

 

// Wait is not destructive. 

StandardSemiFuture<T>& wait() noexcept &; 

StandardSemiFuture<T>&& wait() noexcept &&; 

 



bool is_ready() noexcept; 

}; 

 

Of course, we need a specialization of the via customization point for StandardSemiFuture: 
  

template<class T, Executor Ex> 

/* implementation-defined */ via(StandardSemiFuture<T>&&, Ex); 

 

Note that while StandardContinuableFuture is the obvious choice here, the actual future type is 
dependent on the executor. The executor type may be modified with require operations, and the 
future type will depend on the combination of the executor type and value type. 
 

The standard version of ContinuableFuture is typed on the Executor. A polymorphic executor 
is a valid option here and could be used as the means to pass a future around libraries that 
want the continuable future but are happy with type erasing the executor. 
template<class T, Executor Ex> 

class StandardContinuableFuture { 

public: 

using executor_type = Ex; 

using semi_future_type = StandardSemiFuture<T>; 

 

// Move constructor 

StandardContinuableFuture(StandardContinuableFuture&&); 

 

template<class ReturnT, class F, Executor Ex2> 

ContinuableFuture<ReturnT, Ex> then(F&&); 

  

// Will be implemented as: 

// return executor_.then_execute(std::move(*this), std::forward<F>(f)) 

// if E has a then_execute method that takes ContinuableFuture <T, E> 

// as a future parameter. 

template<Callable F> 

StandardContinuableFuture <invoke_result_t<F, Args...>, Ex> then(F&& f); 
  

// Will be implemented as: 

// return executor_.bulk_then_execute(std::move(*this), 

// std::forward<F>(f)) if Ex has a bulk_then_execute method that takes 

// StandardContinuableFuture <T, E> as a future parameter. 

template<Callable F> 

StandardContinuableFuture <invoke_result_t<F>, Ex> bulk_then(F&&); 

 

// get and get_expected are both destructive. 

// get will throw on exception. get_expected will return either a value 

// or an exception. 

T get() &&; 

expected<T, exception_ptr> get_expected() noexcept &&; 

 



// Wait is not destructive. 

StandardContinuableFuture<T, Ex>& wait() noexcept &; 

StandardContinuableFuture<T, Ex>&& wait() noexcept &&; 

 

bool is_ready() noexcept; 

 

Ex get_executor() noexcept; 

 

semi_future_type semi() &&; 

}; 

 

The extension point is valid here too. Note that the type of the executor and future may change 
based on how the way the executor is defined. 
 

template<class T, Executor Ex> 

/* implementation-defined */ via(StandardContinuableFuture<T>&&, Ex); 

 
A StandardContinuableFuture is constructible from any other future type that implements the 
ContinuableFuture concept and shares the same executor. 
  

Synchronization 
Synchronization between futures on potentially different agents is dealt with in two ways: 

1. It is always safe to add a callback to a future - any state shared between execution 
agents must allow calls to via, and calls to .then and .bulk_then to be executed 
irrespective of where any promise associated with the future is located. 

2. The executor implements synchronization on call to execute (work enqueue) when the 
dependencies are satisfied, or earlier during a call to then_execute if we are greedily 
enqueuing. The type of agent on which this is safe is defined by the blocking properties 
of the execute operation. 

3. A custom future type can chain by internal magic, or by implementing then_execute on 
an associated Executor type and customising it for the future type. 

 
It is therefore not safe to call .get(), .get_expected() or .wait()  from a 
weaker-than-concurrent execution agent on an unknown future type. Synchronization is made 
safe by transforming the future using via with a known executor type that is aware of the 
execution agent and only calling .get() on the resulting future. 
 
 



Open Questions 

Continuations and exceptions 
Should we support pattern-matching continuations or only an expected parameter.  
 
This would mean only supporting: 

auto f2 = f.then( 

[](expected<T, exception_ptr>&& a){ 

/* Do success and exception */}); 

 

Which could be expanded with more general pattern matching capabilities on the expected type, 
or on all types, for example: 

auto f2 = f.then([](Expected<T>&& a){ 

  a.match( 

    [](T&& value){ 

      // Do success 

    }, 

    [](exception_ptr exception){ 

      // Do exception 

    }); 

  }); 

 

Instead of embedding the support in the future model directly with: 
auto f2 = f.then([](T&& a){  

// Do success 

}).error([](exception_ptr exception) { 

// Do exception 

}); 

 

or 

auto f2 = f.then([](T&& a){  

// Do success 

}, 

[](exception_ptr exception) { 

// Do exception 

}); 

 

Our experience at Facebook makes us lean very strongly towards the expected version of error 
handling, although adding then_value and then_error chaining that are bypassed by the 
non-matching result state is an extension we considered and defer for later. The big problem 
with a double-closure approach to error handling is that developers have to deal with two 
closures that will often share state. This is clumsy and a single expected type makes for a much 
cleaner model. 



Exception pass-through 
In the absence of exception handling, and a function that takes a value not an ExpectedType, 
do we abort, or do we pass the exception past that function and into the next in the chain, not 
running that particular continuation at all? 
 

Delegation of forward progress and executors 
If we chain futures: 

f.then(thing).then(thing).then(thing); 

 
and that work is added to the executor lazily when each future in turn completes, then it isn't 
really obvious how the forward progress delegation works. It is likely that we need some sort of 
drive functionality on the executors here, to expose an API from which we can provide the 
execution context that forward progress is delegated to. This could be through a drive 
customization point overloaded for each executor that provides such functionality. 
 
In that case, a call to get on the result of the above chain would call drive(Ex&) on the 
executor. Executors would have to be able to drive each other in turn to make this propagate. 
The best way to do that might be for each stage in the future chain to reference the previous 
future’s executor as well as its own, and then allow a blocking operation to propagate through 
that chain as far as drive customization points allow. 
 
As one example, work deferral can be implemented as an executor that does nothing until 
drive is called. In folly we do this using a custom executor for work chaining that knows about 
the previous executor and the callback, then implements the chaining using a state machine. A 
static thread pool could delegate in that it has a set of threads that tries to perform work, but if 
the threads are all blocked at the point get is called, then work in the queue could be run inline 
with the caller of drive (and in turn of get) allowing the total thread set to scale with the number 
of waiters. 
 

Removing defer 
Most importantly, with a clean definition for forward progress delegation, we can be confident in 
dropping .defer() and relying on a deferred executor type that only executes work delegated 
to the next executor in the chain. 
 

Blocking get 
There is an inherent problem with any solution that requires that either the future be transformed 
by an executor to be safe on a given agent, or that a given locally safe synchronization primitive 



is provided. There is no guarantee that the executor/synchronization primitive is safe for the 
current agent in the general case. 
 
It may then be that what we actually want to do is define, for every executing agent some 
executor that provides the appropriate functionality and that, when necessary, will be driven by 
that agent to make progress. In that situation we can make it safe to call wait methods on 
arbitrary futures, as the underlying implementation would do something like: 

Future Future::wait() { 

this->via(get_local_executor()).wait(); 

} 

 
and the future customised by via would be safe to wait on directly (and not transform itself again 
by comparison of executors). 
 
This depends on a good definition of agent-local storage. 
 

Removing get completely 
A final option I’d like to consider is making SemiFuture purely a potential future with no get or 
then functionality. Any blocking or continuation behaviour would then require an executor which 
would handle synchronization problems because get() could always be handled using then. 
That would make SemiFuture a set of types that may wrap future values and are convertible to 
ContinuableFutures, which would remove some misuse cases of using a blocking get on a 
device without support - but calling get against a future with the wrong executor (or wrong 
synchronization primitive) would still be a failure case so it is unclear how much it really helps. 


