
Doc. no.: P0903R2 
Date: 2018-05-07 
Reply to: Ashley Hedberg (ahedberg@google.com), Titus Winters (titus@google.com),  

Jorg Brown (jorg.brown@gmail.com) 
Audience: LEWG/EWG/LWG 
 

Define basic_string_view(nullptr) 
Abstract 1 

Background 2 
What is a string_view? 2 
What does const char* mean? 2 
What is an empty string_view? 3 
Existing behavior of basic_string_view(null_char_ptr) 3 

Motivation 4 
Once we convert into the string_view domain, code is better 4 
Nul-terminated strings are not the design we'd choose today 5 
Nul-termination + null can match string_view’s existing design 5 

Discussion Points 6 
Can we we weaken preconditions? (Or: do we believe that string_view(null_char_ptr) is 
more likely to match programmer intent or to represent a bug?) 6 
How many functions are there today that accept const char* and (by contract or not) allow 
for null values? 7 
Which view of string_view design speaks to you: is it a lightweight string, or is it a 
pointer-and-length pair, or is it a mix of the two? 7 
Which provides more net value to the C++ community? 7 
Could we add a new type such as nullable_string_view? 7 
Will the proposed changes negatively affect performance? 8 

Proposed Wording 8 

Change History 9 

Acknowledgements 9 
 

Abstract 
This paper proposes modifying the requirements of basic_string_view(const charT* str) 
such that it becomes well-defined for null pointers, both at compile-time and at runtime. 

mailto:ahedberg@google.com
mailto:titus@google.com
mailto:jorg.brown@gmail.com


Background 

What is a string_view? 
The string_view type has shipped in C++17. Substantive redesign is likely out of the question 
without getting into P0684 territory and long-term refactoring plans.  
 
There are two primary viewpoints for understanding the design of string_view as it stands. 
Both are internally inconsistent to varying degrees. 

1. string_view is a lightweight non-owning string. This is upheld by looking at its 
operator==, which compares by examining the underlying string data--not pointer 
values. In this model, the fact that string_view() has post-conditions on .data() == 
null is questionable. Arguably, access to .data() at all is questionable in this view: it’s 
a non-null-terminated char*, and is a side-channel/leaky abstraction on the type akin to 
.capacity() on a vector. It isn’t part of the logical state as defined by operator==. 

2. string_view is a pointer and a length over a buffer of string data that it does not own. In 
this model, operator== is questionable: it’s generally the case that what an object is 
and what it compares should be the same. [That said, that rule was developed for 
Regular types, and string_view is decidedly not Regular (P0898).] The various 
constructors and assignment operations and accessors (.data(), .size()) are 
consistent in this model. 

 
Fundamentally, string_view has a troubled design when evaluated under our understanding of 
Regular types. There is a mismatch between what is copied and what is compared. Which 
pieces of API you regard as intrinsic and which you regard as questionable depend entirely on 
which model you use to describe the type. (We believe that this may be primarily indicative of us 
not having a shared understanding of how to discuss non-owning types.) 
 
One author of this paper has been running classes that touch on string_view for about six 
years. Part of that includes an attempt to give people a working mental model for string_view 
to avoid the (constant) issues of people messing up the relative lifetimes of string_view and 
the underlying buffer. As such, the terminology that the author uses (and requires the class to 
repeat out loud) is “a string_view is a pointer and a length to a buffer it does not own and 
cannot modify.” 

What does const char* mean? 
In almost all cases in the C and C++ standards today, a const char* indicates a non-null 
C-style (nul-terminated) string. string_view weakens this somewhat, even in the absence of 
this proposal: string_view::data() returns a not-necessarily nul-terminated const char*. 



 
Outside of the C and C++ standards, there are several commonly-used use cases on the Linux 
platform where a const char* can be null. For example: 

● getenv returns a const char* that might be null. Null indicates that there is no 
environment variable with that name; an empty const char* indicates that there is such 
an environment variable defined with the value "". 

● inet_ntop returns null to indicate an error. 
● system accepts a const char* parameter. If the parameter is null, system returns 

whether or not a shell is available. 
It is not unusual in the face of such interfaces for programmers to work with const char*s that 
are null. 

What is an empty string_view? 
A string_view will report empty() == true so long as .size() == 0. That is, there are 
empty string_views that have non-null .data(). 
 
Put another way: a null string_view is a certain sub-configuration of the set of empty 
string_views. 
 
Code that operates on string_view which relies on those differences has been seen in the 
wild, but almost universally is difficult to work with. It isn’t a recommended design, but it is a 
direct side-effect of the current design of the type.  Such usage is generally leaning on the view 
of “string_view is a pointer and length” rather than “string_view is a lightweight non-owning 
string” (or at best is relying on known side-channels for .data() in the non-owning string 
conceptualization).  The standard library is not the place to enforce good taste, and this is 
existing behavior that we can't fix, even if we don't like it. 

Existing behavior of basic_string_view(null_char_ptr) 
Throughout this paper, null_char_ptr is a null pointer of type const char* (e.g. nullptr, 
NULL, 0). 
 
basic_string_view(null_char_ptr) is currently undefined behavior. Such code invokes the 
basic_string_view(const charT* str) constructor, which requires that [str, str + 
traits::length(str)) is a valid range [string.view.cons]. The current wording on 
requirements for char_traits<T>::length is as follows [char.traits.require]: 

Returns: the smallest i such that X::eq(p[i], charT()) is true. 
 
There is no such i when p is null. Thus, basic_string_view(null_char_ptr) is undefined.  
 
Conversely, basic_string_view() and basic_string_view(null_char_ptr, 0) are both 
defined to construct an object with size_ == 0 and data_ == nullptr [string.view.cons]. 

http://wg21.link/string.view.cons
http://wg21.link/char.traits.require
http://wg21.link/string.view.cons


Motivation 

Once we convert into the string_view domain, code is better 
Having a well-defined basic_string_view(null_char_ptr) makes migrating char* APIs to 
string_view APIs easier. Here's an example API which we may wish to migrate to 
string_view: 
 

void foo(const char* p) { 
  if (p == nullptr) return; 
  // Process p 
} 

 
Callers of foo can pass null or non-null pointers without worry. However, this function cannot be 
safely migrated to accept string_view unless one can statically determine that no null char* 
is ever passed to it: 
 

void foo(std::string_view sv) { 
  if (sv.empty()) return;  // Too late - constructing sv from null is undefined! 
  // Process sv 
} 

 
If basic_string_view(null_char_ptr) becomes well-defined, APIs currently accepting 
char* or const string& can all move to std::string_view without worrying about whether 
parameters could ever be null. In legacy codebases with long chains of function calls, that 
question may not be easily determined. 
 
This change also makes instantiating empty string_view objects more consistent across 
constructors. basic_string_view(), basic_string_view(null_char_ptr), and 
basic_string_view(null_char_ptr, 0) will all construct an object with size_ == 0 and 
data_ == nullptr. Furthermore, it increases consistency across library versions without 
penalty. libstdc++, the proposed std::span, absl::string_view, and gsl::string_span 
already support constructing a string_view-like object from a null pointer with no size; libc++ 
and MSVC do not. 
 
Barring unsafe conversions (calling string_view::data() to get a C-style string), once a 
function is written in terms of string_view, it tends to be higher quality than the equivalent with 
const char*. For example: 
 
Copies into string are explicit: 

http://wg21.link/p0122
http://wg21.link/p0122


void AlreadyHasCharStar(const char* s) {  
  TakesString(s);  // compiler will make a non-obvious copy 
} 

 

void AlreadyHasStringView(std::string_view sv) { 
  TakesString(string(sv));  // copy is explicit 
} 

 

Operations on string_view use higher-level APIs such as find: 

bool CharStarContains( 
    const char* s, const char* sub) { 
  return strstr(s, sub) != nullptr; 
} 

 

bool StringViewContains( 
    std::string_view sv, std::string_view sub) { 
  return sv.find(sub); 
} 

 

More generally: it’s harder to misuse string_view than const char*. Encouraging broader 
and more consistent use of the higher-level type nudges us toward better code quality. 

Nul-terminated strings are not the design we'd choose today 
Why do we use nul-terminated strings? Where did that convention come from? Upon 
consideration, embedding the terminator is clearly a bit of a hack to avoid passing (pointer + 
length) pairs everywhere. This may have been a sensible choice when memory dereference 
mattered less and CPU and register pressure mattered more, but it’s clearly not ideal. We’re 
modifying the underlying buffer to encode the length, preventing string_view-like operations 
over arbitrary sub-ranges of text. 
 
Types with a sentinel “invalid value” are annoying and hard to work with. Consider floating-point: 
we call float and double “regular” with big footnotes saying “ignoring NaN”. Worse: it’s a little 
difficult to get a float into a NaN state, but const char*’s most common state / 
zero-initialization state is its “invalid value” sentinel.  This isn’t the design we would produce 
today if we were thinking of how to represent string data. The design and semantics of const 
char* APIs are what we’re stuck with, but they are not inherently good. If we have opportunity 
to mitigate that design or help the community get off of them en masse, it may be wise to do so. 

Nul-termination + null can match string_view’s existing design 
There’s a direct parallel to be drawn between const char* empty/null behavior and 
string_view. In const char*, the empty string is "", and a null is null. In string_view, the 



empty string_view (as reported by .empty()) is anything with size() == 0, and a null 
string_view is the subset of those where .data() also points to null (such as when default 
constructing). Again, we might not like code which relies on these distinctions--but such code 
already exists, and we can't easily undo either design decision at this point. 

Discussion Points 
After sifting through hundreds of mailing list messages on this topic, we believe that the major 
questions that inform one opinion or another are roughly as follows: 

Can we we weaken preconditions? (Or: do we believe that 
string_view(null_char_ptr) is more likely to match 
programmer intent or to represent a bug?) 
There is an often-quoted maxim when discussing refactoring: we can weaken the preconditions 
or strengthen the postconditions for a function safely. However, this is somewhat misleading: 
those changes are “safe” in the sense that for existing correct code, the code will continue to be 
correct. What is missing from that formulation is the creation of new code, and the 
understanding that newly-created code is often not correct from the start. 
 
For instance, we could strengthen the postconditions for signed integer overflow: all instances of 
overflow produce the value 42. In existing correct code, this has no impact: there is no existing 
correct code that relies on overflow, by definition. However, in newly created code (or freshly 
modified code), the fact that overflow is no longer undefined doesn’t mean that triggering this 
behavior is not a bug: it is unlikely that a programmer writing int a = x + y; intends for that 
to be “give me the sum of x and y unless it cannot be expressed in the range of an int, at which 
point give me the value 42.” 
 
With this example and model in hand we can see that undefined behavior is valuable at 
minimum in cases where we cannot correctly match the intent of the programmer. We can also 
see that there is a distinction to be made between UB and “bug” - some things may be defined 
but still buggy. 
 
This leads us to the question: do we believe that the proposed behavior for 
string_view(null_char_ptr) is more likely to match programmer intent or to represent a 
bug? This question depends on many inputs, including (but not limited to): 

● Whether you view string_view as a nullable type. 
● Whether it is inherently bad for any const char* API to allow null. 
● Whether you believe it is reasonable shorthand for a user to conflate any of the 

properties of "" and nullptr.  
 



Similarly, is string_view(vector.data(), vector.size()) a real or theoretical 
counter-argument to the existence of a null/not-a-string string_view? Even if it’s a construction 
that is found in the wild, is that actually indicative of an issue in string_view, or in vector’s 
design? Or just user-error?  The authors have been using string_view for many years and 
have never seen such a construction, much less a complaint about the confusing semantics as 
a result. 

How many functions are there today that accept const char* 
and (by contract or not) allow for null values? 
If there are many such functions: are they appropriate to migrate to string_view?  If they tend 
to call OS or C-library APIs that require nul-terminators, migration is likely counter-productive. 

Which view of string_view design speaks to you: is it a 
lightweight string, or is it a pointer-and-length pair, or is it a mix of 
the two? 
If it’s nullable or pointer-ish, it is less distasteful to assume 0 for length when handed null as the 
pointer. If it’s a lightweight string with some leaky abstraction problems, the const char* really 
must be interpreted with standard C-string semantics. 

Which provides more net value to the C++ community? 
● The ability to change an API that accepts const char* to string_view with only local 

changes (header and implementation, with no modifications at the call site) AND with 
only standard types? Note that this does not imply that all such changes are mechanical 
or wise: if later functions in that call chain require nul-termination, it’s often 
counter-productive to make such a change. 

● The ability to diagnose (dynamically) future incorrect code more easily/consistently. Also, 
more complete consistency in the C++ and C standards with respect to the semantics of 
const char*-accepting APIs. 

Could we add a new type such as nullable_string_view? 
One could imagine implementing the following: 
 

struct nullable_string_view : public std::string_view { 
  using std::string_view::string_view; 
 

  constexpr nullable_string_view(const std::string_view& sv) 
    : std::string_view(sv) {} 



  constexpr nullable_string_view(const char* p) 
      : std::string_view(p ? std::string_view(p) : std::string_view()) {} 
}; 

 
Adding this type to the standard library is likely to confuse users and very likely a non-starter. 
Even adding it locally as a non-standard type raises a host of questions: When should one use 
nullable_string_view over string_view? Should a new API accept 
nullable_string_view to indicate that null string_view's are tolerated, or should it accept 
string_view for wider interoperability? How would one handle a switch to a standard library 
that chooses to define this UB? (The two types must continue to exist and be distinct if they 
appear in any overload sets or template specializations.) 
 
There's also the (not-specific to string_view) cost of introducing new overlapping vocabulary 
types. Which ones are taught? Which ones are included in overloads or template 
customizations? How do we provide best practices on the conversions between them and 
(perhaps more importantly) between them and other types?  
 
Vocabulary types are conceptually expensive and can use up a lot of the available technical 
debt in any project. This approach is technically feasible, but not recommended. The perceived 
value from either approach to this constructor is less than the long-term cost of dealing with two 
overlapping types like this. 

Will the proposed changes negatively affect performance? 
The paper authors think not. This paper proposes adding a single check in an O(n) function that 
is already making more expensive checks. Deref-and-compare-to-zero is at least as expensive 
as compare-ptr-to-null. Furthermore, implementers stated in Jacksonville that the compiler 
should be able to elide the null pointer check when null_char_ptr is known to be nullptr at 
compile-time. 

Proposed Wording 
Change the requirements and effects for basic_string_view(const charT* str) as follows 
[string.view.cons]: 
Requires: if str != nullptr, [str, str + traits::length(str)) is a valid range. 
Effects: Constructs a basic_string_view, with the postconditions in Table 56: 
 

Table 56 -- basic_string_view(const charT* str) effects 

Element Value 

data_ str 

http://wg21.link/string.view.cons


size_ 0 if str == nullptr; else traits::length(str) 

Change History 
R2 makes the following changes as a result of reflector discussion: 

● Adds wording to the background section 
● Adds wording to the motivation section 
● Adds a "discussion points" section containing responses to arguments raised in reflector 

discussion 
 
R1 makes the following changes as a result of LEWG feedback in Jacksonville: 

● Removes suggested changes to basic_string. 
● Makes the previous "alternate wording" the "proposed wording". 
● Adds clarifying wording that the proposed change affects dynamically null pointers as 

well as statically null pointers. 

Acknowledgements 
● Titus Winters for proposing that I write this proposal. 
● Matt Calabrese for assistance in navigating existing committee papers, notes. etc. 
● Titus Winters, Matt Calabrese, John Olson, Jorg Brown for providing feedback on drafts 

of this proposal. 

http://wiki.edg.com/bin/view/Wg21jacksonville2018/P0903

