
P0591r2 | Utility functions to implement uses-allocator construction

Pablo Halpern phalpern@halpernwightsoftware.com

2017-06-12 | Target audience: LEWG

1 Abstract

The phrase “Uses-allocator construction with allocator Alloc” is defined in section [allocator.uses.construction]
of the standard (23.10.7.2 of the 2017 DIS). Although the definition is reasonably concise, it fails to
handle the case of constructing a std::pair where one or both members can use Alloc. This omission
manifests in significant text describing the construct members of polymorphic_allocator [mem-
ory.polymorphic.allocator.class] and scoped_allocator_adaptor [allocator.adaptor]. Additionally neither
polymorphic_allocator nor scoped_allocator_adaptor recursively pass the allocator to a std::pair in
which one or both members is a std::pair.

Though we could add the pair special case to the definition of Uses-allocator construction, the definition would
no longer be concise. Moreover, any library implementing features that rely on Uses-allocator construction
would necessarily centralize the logic into a function template. This paper, therefore, proposes a set of
templates that do exactly this centralization, in the standard. The current uses of Uses-allocator construction
could then simply defer to these templates, making those features simpler to describe and future-proof against
other changes.

Because this proposal modifies wording in the standard, it is targeted at C++20 (aka, C++Next) rather
than at a technical specification.

2 Changes from R1

• Fix bugs in formal wording. Everything in this paper has been implemented and tested (and a link to
the implementation added).

• Explicitly called out recursive handling for a std::pair containing a std::pair. (No change to actual
functionality from R0.)

• Update section references to match C++17 DIS.

• Minor editorial changes.

3 Changes from R0

• Fixed function template prototypes, which incorrectly depended on partial specialization of functions.

1

mailto:phalpern@halpernwightsoftware.com


4 Choosing a direction

Originally, I considered proposing a pair of function templates, make_using_allocator<T>(allocator,
args...) and uninitialized_construct_using_allocator(ptrToT, allocator, args...). However,
implementation experience with the feature being proposed showed that, given a type T, an allocator A, and
an argument list Args..., it was convenient to generate a tuple of the final argument list for T’s constructor,
then use make_from_tuple or apply to implement the above function templates. It occurred to me that
exposing this tuple-building function may be desirable, as it opens the door to an entire category of functions
that use tuples to manipulate argument lists in a composable fashion.

If the basics of this proposal are accepted by LEWG, there would need to be a discussion of exactly what
should be standardized. The options are:

1. Standardize the function template that generates a tuple of arguments.
2. Standardize the function templates that actually construct a T from an allocator and list of arguments.
3. Both.

This proposal chooses option 3, but I am open to the other options.

5 Implementation experience

A working implementation of this proposal can be found on GitHub at https://github.com/phalpern/
uses-allocator.git.

6 Proposed wording

Wording is relative to the March 2017 DIS, N4660.

6.1 Header <memory> synopsis [memory.syn]

Add the following new function templates to the to the <memory> synopsis:

template <class T, class Alloc, class... Args>
auto uses_allocator_construction_args(const Alloc& a, Args&&... args) -> see below;

template <class T, class Alloc, class... Args>
T* uninitialized_construct_using_allocator(T* p,

const Alloc& a,
Args&&... args);

template <class T, class Alloc, class... Args>
T make_using_allocator(const Alloc& a, Args&&... args);

6.2 Uses-allocator construction [allocator.uses.construction]

Add the following descriptions to uses-allocator-construction.

Guidance needed: The wording below expresses uses_allocator_construction_args as a bunch of
overloads using “does not participate in overload-resolution” wording. It could also be expressed as a single

P0591r2 2 Pablo Halpern

https://github.com/phalpern/uses-allocator.git
https://github.com/phalpern/uses-allocator.git


(variadic) function with a bunch of special cases called out, or it could be described with less code and more
descriptive English. Which is better for comprehending the standard?

Guidance needed: The wording uses forward_as_tuple, which prevents copies, and doesn’t require
copy- or move-constructibility, but can result in dangling references if the resulting tuple outlives the full
expression in which it was created. Should I repeat the cautionary words already found in the description of
forward_as_tuple?

template <class T, class Alloc, class... Args>
auto uses_allocator_construction_args(const Alloc& a, Args&&... args) -> see below;

Remark: T is not deduced and must therefore be specified explicitly by the caller. This template
does not participate in overload resolution if T is a specialization of std::pair.

Returns: A tuple value determined as follows:

• if uses_allocator_v<T, Alloc> is false and is_constructible_v<T, Args...> is true,
return forward_as_tuple(std::forward<Args>(args)...).

• otherwise, if uses_allocator_v<T, Alloc> is true and is_constructible_v<T,
allocator_arg_t, Alloc, Args...> is true, return forward_as_tuple(allocator_arg,
alloc, std::forward<Args>(args)...).

• otherwise, if uses_allocator_v<T, Alloc> is true and is_constructible_v<T, Args...,
Alloc> is true, return forward_as_tuple(std::forward<Args>(args)..., alloc).

• otherwise, the program is ill-formed. [Note: An error will result if uses_allocator_v<T,
Alloc> is true but the specific constructor does not take an allocator. This definition prevents
a silent failure to pass the allocator to a constructor. — end note]

template <class T, class Alloc, class Tuple1, class Tuple2>
auto uses_allocator_construction_args(const Alloc& a, piecewise_construct_t,

Tuple1&& x, Tuple2&& y) -> see below;

Remark: T is not deduced and must therefore be specified explicitly by the caller. This template
does not participate in overload resolution unless T is a specialization of std::pair.

Returns: For T specified as pair<T1, T2>, equivalent to

return make_tuple(piecewise_construct,
apply([&a](auto&&... args1) -> auto {

return uses_allocator_construction_args<T1>(a,
std::forward<decltype(args1)>(args1)...);

}, std::forward<Tuple1>(x)),
apply([&a](auto&&... args2) -> auto {

return uses_allocator_construction_args<T2>(a,
std::forward<decltype(args2)>(args2)...);

}, std::forward<Tuple2>(y)));

template <class T>
auto uses_allocator_construction_args(const Alloc& a) -> see below;

P0591r2 3 Pablo Halpern



Remark: T is not deduced and must therefore be specified explicitly by the caller. This template
does not participate in overload resolution unless T is a specialization of std::pair.

Returns: For T specified as pair<T1, T2>, equivalent to uses_allocator_construction_args<pair<T1,T2>>(a,
piecewise_construct, tuple<>{}, tuple<>{})

template <class T, class Alloc, class U, class V>
auto uses_allocator_construction_args(const Alloc& a, U&& u, V&& v) -> see below;

Remark: T is not deduced and must therefore be specified explicitly by the caller. This template
does not participate in overload resolution unless T is a specialization of std::pair.

Returns: For T specified as pair<T1, T2>, equivalent to uses_allocator_construction_args<pair<T1,T2>>(a,
piecewise_construct, forward_as_tuple(std::forward<U>(u)), forward_as_tuple(std::forward<V>(v))).

template <class T, class Alloc, class U, class V>
auto uses_allocator_construction_args(const Alloc& a, const pair<U,V>& pr) -> see below;

Remark: T is not deduced and must therefore be specified explicitly by the caller. This template
does not participate in overload resolution unless T is a specialization of std::pair.

Returns: For T specified as pair<T1, T2>, equivalent to uses_allocator_construction_args<pair<T1,T2>>(a,
piecewise_construct, forward_as_tuple(pr.first), forward_as_tuple(pr.second)).

template <class T, class Alloc, class U, class V>
auto uses_allocator_construction_args(const Alloc& a, pair<U,V>&& pr) -> see below;

Remark: T is not deduced and must therefore be specified explicitly by the caller. This template
does not participate in overload resolution unless T is a specialization of std::pair.

Returns: For T specified as pair<T1, T2>, equivalent to uses_allocator_construction_args<pair<T1,T2>>(a,
piecewise_construct, forward_as_tuple(std::forward<U>(pr.first)), forward_as_tuple(std::forward<V>(pr.second))).

template <class T, class Alloc, class... Args>
T make_using_allocator(const Alloc& a, Args&&... args);

Remark: T is not deduced and must therefore be specified explicitly by the caller.

Returns: For T specified as pair<T1, T2>, equivalent to

make_from_tuple<T>(
uses_allocator_construction_args<T>(a, forward<Args>(args)...));

template <class T, class Alloc, class... Args>
T* uninitialized_construct_using_allocator(T* p,

const Alloc& a,
Args&&... args);

Remark: T is not deduced and must therefore be specified explicitly by the caller.

P0591r2 4 Pablo Halpern



Returns: For T specified as pair<T1, T2>, equivalent to:

return apply([p](auto&&... args2){
return ::new(static_cast<void*>(p))

T(forward<decltype(args2)>(args2)...);
}, uses_allocator_construction_args<T>(a, forward<Args>(args)...));

Guidance Needed: Should we consider adding uninitialized_construct_from_tuple as a separate
(non-exposition) function, since it appears to be useful and would simplify (or perhaps eliminate the need for)
uninitialized_construct_using_allocator.

6.3 Changes to polymorphic_allocator and scoped_allocator_adaptor

Rewrite the construct methods of polymorphic_allocator [mem.poly.allocator.mem] and scoped_allocator_adaptor
[allocator.adaptor.members] to simply call uninitialized_construct_from_tuple.

Consider replacing all uses of uses allocator construction with references to these functions and removing
uses allocator construction from the standard.

P0591r2 5 Pablo Halpern


	Abstract
	Changes from R1
	Changes from R0
	Choosing a direction
	Implementation experience
	Proposed wording
	Header <memory> synopsis [memory.syn]
	Uses-allocator construction [allocator.uses.construction]
	Changes to polymorphic_allocator and scoped_allocator_adaptor


