
p0448r1 - A strstream replacement using span<charT> as buffer

Peter Sommerlad

2017-06-07

Document Number: p0448r1 (N2065 done right?)
Date: 2017-06-07
Project: Programming Language C++
Audience: LWG/LEWG

1 History

Streams have been the oldest part of the C++ standard library and especially strstreams that can
use pre-allocated buffers have been deprecated for a long time now, waiting for a replacement. p0407
and p0408 provide the efficient access to the underlying buffer for stringstreams that strstream
provided solving half of the problem that strstreams provide a solution for. The other half is using a
fixed size pre-allocated buffer, e.g., allocated on the stack, that is used as the stream buffers internal
storage.

A combination of external-fixed and internal-growing buffer allocation that strstreambuf provides is
IMHO a doomed approach and very hard to use right.

There had been a proposal for the pre-allocated external memory buffer streams in N2065 but
that went nowhere. Today, with span<T> we actually have a library type representing such buffers
views we can use for specifying (and implementing) such streams. They can be used in areas where
dynamic (re-)allocation of stringstreams is not acceptable but the burden of caring for a pre-existing
buffer during the lifetime of the stream is manageable.

1.1 Changes from p0448r0

— provide explanation why non-copy-ability, while technically feasible, is an OK thing.

— remove wrong Allocator template parameter (we never allocate anything).

— adhere to new section numbering of the standard.

— tried to clarify lifetime and threading issues.

1



2 p0448r1 2017-06-07

2 Introduction

This paper proposes a class template basic_spanbuf and the corresponding stream class templates
to enable the use of streams on externally provided memory buffers. No ownership or re-allocation
support is given. For those features we have string-based streams.

3 Acknowledgements

— Thanks to those ISO C++ meeting members attending the Oulu meeting encouring me to
write this proposal. I believe Neil and Pablo have been among them, but can’t remember who
else.

— Thanks go to Jonathan Wakely who pointed the problem of strstream out to me and to Neil
Macintosh to provide the span library type specification.

— Thanks to Felix Morgner for proofreading.

— Thanks to Kona LEWG small group discussion suggesting some clarifications and Thomas
Köppe for allowing me to use using type aliases instead of typedef.

4 Motivation

To finally get rid of the deprecated strstream in the C++ standard we need a replacement.
p0407/p0408 provide one for one half of the needs for strstream. This paper provides one for the
second half: fixed sized buffers.

[Example: reading input from a fixed pre-arranged character buffer:
char input[] = "10 20 30";
ispanstream is{span<char>{input}};
int i;
is >> i;
ASSERT_EQUAL(10,i);
is >> i ;
ASSERT_EQUAL(20,i);
is >> i;
ASSERT_EQUAL(30,i);
is >>i;
ASSERT(!is);

—end example ] [Example: writing to a fixed pre-arranged character buffer:
char output[30]{}; // zero-initialize array
ospanstream os{span<char>{output}};
os << 10 << 20 << 30 ;
auto const sp = os.span();
ASSERT_EQUAL(6,sp.size());
ASSERT_EQUAL("102030",std::string(sp.data(),sp.size()));
ASSERT_EQUAL(static_cast<void*>(output),sp.data()); // no copying of underlying data!
ASSERT_EQUAL("102030",output); // initialization guaranteed NUL termination



p0448r1 2017-06-07 3

—end example ]

5 Impact on the Standard

This is an extension to the standard library to enable deletion of the deprecated strstream classes
by providing basic_spanbuf, basic_spanstream, basic_ispanstream, and basic_ospanstream
class templates that take an object of type span<charT> which provides an external buffer to be
used by the stream.

It also proposes to remove the deprecated strstreams [depr.str.strstreams] assuming p0407 is also
included in the standard.

6 Design Decisions

6.1 General Principles
The design follows from the principles of the iostream library. If discussed a person knowledgable
about iostream’s implementation is favorable, because of its many legacy design decisions, that
would no longer be taken by modern C++ class designers. The behavior presented is part of what
"frozen" strstreams provide, namely relying on a pre-allocated buffer, without the idiosynchracy of
(o)strstream that automatically (re-)allocates a new buffer on the C-heap, when the original buffer
is insufficient for the output, which happens when such a buffer is not explicitly marked as "frozen".
This broken design is the reason it has long been deprecated, but its use with pre-allocated buffers
is one of the reasons it has not been banned completely, yet. Together with p0407 this paper gets
rid of it.

As with all existing stream classes, using a stream object or a streambuf object from multiple threads
can result in a data race. Only the pre-defined global stream objects cin/cout/cerr are exempt from
this.

6.2 Open Issues (to be) Discussed by LEWG / LWG

— Should arbitrary types as template arguments to span be allowed to provide the underlying
buffer by using the byte sequence representation span provides. (I do not think so and some
people in LEWG inofficially agree with it). You can always get a span of characters from the
underlying byte sequence, so there is no need to put that functionality into spanbuf, it would
break orthogonality and could lead to undefined behavior, because the streambuf would be
aliasing with an arbitrary object.

— Should the basic_spanbuf be copy-able? It doesn’t own any resources, so copying like with
handles or span might be fine. Other concrete streambuf classes in the standard that own
their buffer (basic_stringbuf, basic_filebuf) naturally prohibit copying, where the base
class basic_streambuf provides a protected copy-ctor. I considered providing copyability for
basic_spanbuf, because the implementation is =default. Note, none of the stream classes in
the standard is copyable as are the stream classes provided here. Other streambuf subclasses are
not copyable, mainly because they either represent an external resource (fstreambuf), or because
one usually would not access it via its concrete type and only through its basic_streambuf



4 p0448r1 2017-06-07

abstraction, i.e., by using an associated stream’s rdbuf() member function. I speculate that
another reason, why basic_stringbuf is not copyable, is that copying its underlying string
and re-establishing a new stream with it is possible and copying a streambuf felt not natural.
Therefore, I stick with my decision to prohibit copying basic_spanbuf.

7 Technical Specifications

Remove section [depr.str.strstreams] from appendix D.

Insert a new section 30.x in chapter 30 [input.output] after section 30.8 [string.streams]

7.1 30.x Span-based Streams [span.streams]
This section introduces a stream interface for user-provided fixed-size buffers.

7.1.1 30.x.1 Overview [span.streams.overview]
The header <spanstream> defines four class templates and eight types that associate stream buffers
with objects of class span as described in [span]. [Note: A user of theses classes is responsible that
the character sequence represented by the given span outlives the use of the sequence by objects of
the classes in this chapter. Using multiple basic_spanbuf objects referring to overlapping underlying
sequences from different threads, where at least one spanbuf is used for writing to the sequence
results in a data race. —end note ]

Header <spanstream> synopsis
namespace std {
namespace experimental {

template <class charT, class traits = char_traits<charT> >
class basic_spanbuf;

using spanbuf = basic_spanbuf<char>;
using wspanbuf = basic_spanbuf<wchar_t>;
template <class charT, class traits = char_traits<charT> >

class basic_ispanstream;
using ispanstream = basic_ispanstream<char>;
using wispanstream = basic_ispanstream<wchar_t>;
template <class charT, class traits = char_traits<charT> >

class basic_ospanstream;
using ospanstream = basic_ospanstream<char>;
using wospanstream = basic_ospanstream<wchar_t>;
template <class charT, class traits = char_traits<charT> >

class basic_spanstream;
using spanstream = basic_spanstream<char>;
using wspanstream = basic_spanstream<wchar_t>;

}}

7.2 30.x.2 Class template basic_spanbuf [spanbuf]
namespace std {

template <class charT, class traits = char_traits<charT> >
class basic_spanbuf

: public basic_streambuf<charT, traits> {



p0448r1 2017-06-07 5

public:
using char_type = charT;
using int_type = typename traits::int_type;
using pos_type = typename traits::pos_type;
using off_type = typename traits::off_type;
using traits_type = traits;

// ??, constructors:
template <ptrdiff_t Extent>
explicit basic_spanbuf(

span<charT, Extent> span,
ios_base::openmode which = ios_base::in | ios_base::out);

basic_spanbuf(const basic_spanbuf& rhs) = delete;
basic_spanbuf(basic_spanbuf&& rhs) noexcept;

// ??, assign and swap:
basic_spanbuf& operator=(const basic_spanbuf& rhs) = delete;
basic_spanbuf& operator=(basic_spanbuf&& rhs) noexcept;
void swap(basic_spanbuf& rhs) noexcept;

// ??, get and set:
span<charT> span() const noexcept;
void span(span<charT> s) noexcept;

protected:
// ??, overridden virtual functions:
int_type underflow() override;
int_type pbackfail(int_type c = traits::eof()) override;
int_type overflow (int_type c = traits::eof()) override;
basic_streambuf<charT, traits>* setbuf(charT*, streamsize) override;

pos_type seekoff(off_type off, ios_base::seekdir way,
ios_base::openmode which
= ios_base::in | ios_base::out) override;

pos_type seekpos(pos_type sp,
ios_base::openmode which
= ios_base::in | ios_base::out) override;

private:
ios_base::openmode mode; // exposition only

};

template <class charT, class traits>
void swap(basic_spanbuf<charT, traits>& x,

basic_spanbuf<charT, traits>& y) noexcept;
}

1 The class basic_spanbuf is derived from basic_streambuf to associate possibly the input sequence
and possibly the output sequence with a sequence of arbitrary characters . The sequence is provided
by an object of class span<charT>.



6 p0448r1 2017-06-07

2 For the sake of exposition, the maintained data is presented here as:

—(2.1) ios_base::openmode mode, has in set if the input sequence can be read, and out set if the
output sequence can be written.

7.3 30.x.2.1 basic_spanbuf constructors [spanbuf.cons]

template <ptrdiff_t Extent>
explicit basic_spanbuf(

basic_span<charT, Extent> s,
ios_base::openmode which = ios_base::in | ios_base::out);

1 Effects: Constructs an object of class basic_spanbuf, initializing the base class with basic_-
streambuf() (??), and initializing mode with which. Initializes the internal pointers as if
calling span(s).

basic_spanbuf(basic_spanbuf&& rhs) noexcept;

2 Effects: Move constructs from the rvalue rhs. Both basic_spanbuf objects share the same
underlying span. The sequence pointers in *this (eback(), gptr(), egptr(), pbase(),
pptr(), epptr()) obtain the values which rhs had. The openmode, locale and any other state
of rhs is also copied.

3 Postconditions: Let rhs_p refer to the state of rhs just prior to this construction.

—(3.1) span() == rhs_p.span()

—(3.2) eback() == rhs_p.eback()

—(3.3) gptr() == rhs_p.gptr()

—(3.4) egptr() == rhs_p.egptr()

—(3.5) pbase() == rhs_p.pbase()

—(3.6) pptr() == rhs_p.pptr()

—(3.7) epptr() == rhs_p.epptr()

7.3.1 30.x.2.2 Assign and swap [spanbuf.assign]

basic_spanbuf& operator=(basic_spanbuf&& rhs) noexcept;

1 Effects: After the move assignment *this has the observable state it would have had if it had
been move constructed from rhs (see ??).

2 Returns: *this.

void swap(basic_spanbuf& rhs) noexcept;

3 Effects: Exchanges the state of *this and rhs.

template <class charT, class traits>
void swap(basic_spanbuf<charT, traits>& x,

basic_spanbuf<charT, traits>& y) noexcept;

4 Effects: As if by x.swap(y).



p0448r1 2017-06-07 7

7.3.2 30.x.2.3 Member functions [spanbuf.members]

span<charT> span() const;

1 Returns: A span object representing the basic_spanbuf underlying character sequence. If the
basic_spanbuf was created only in output mode, the resultant span represents the character
sequence in the range [pbase(), pptr()), otherwise in the range [eback(), egptr()).
[Note: In constrast to basic_stringbuf the underlying sequence can never grow and will not
be owned. An owning copy can be obtained by converting the result to basic_string<charT>.
—end note ]

template<ptrdiff_t Extent>
void span(span<charT,Extent> s);

2 Effects: Initializes the basic_spanbuf underlying character sequence with s and initializes
the input and output sequences according to mode.

3 Postconditions: If mode & ios_base::out is true, pbase() points to the first underlying
character and epptr() == pbase() + s.size() holds; in addition, if mode & ios_base::ate
is true, pptr() == pbase() + s.size() holds, otherwise pptr() == pbase() is true. If mode
& ios_base::in is true, eback() points to the first underlying character, and both gptr()
== eback() and egptr() == eback() + s.size() hold.

[Note: Using append mode does not make sense for span-based streams. —end note ]

7.3.3 30.x.2.4 Overridden virtual functions [spanbuf.virtuals]
1 [Note: Since the underlying buffer is of fixed size, neither overflow, underflow or pbackfail can

provide useful behavior. —end note ]

int_type underflow() override;

2 Returns: traits::eof().

int_type pbackfail(int_type c = traits::eof()) override;

3 Returns: traits::eof().

int_type overflow(int_type c = traits::eof()) override;

4 Returns: traits::eof().

pos_type seekoff(off_type off, ios_base::seekdir way,
ios_base::openmode which

= ios_base::in | ios_base::out) override;

5 Effects: Alters the stream position within one of the controlled sequences, if possible, as
indicated in Table ??.

6 For a sequence to be positioned, if its next pointer (either gptr() or pptr()) is a null pointer
and the new offset newoff is nonzero, the positioning operation fails. Otherwise, the function
determines newoff as indicated in Table ??.

7 If (newoff + off) < 0, or if newoff + off refers to an uninitialized character outside the
span (as defined in ?? paragraph 1), the positioning operation fails. Otherwise, the function



8 p0448r1 2017-06-07

assigns xbeg + newoff + off to the next pointer xnext.
8 Returns: pos_type(newoff), constructed from the resultant offset newoff (of type off_type),

that stores the resultant stream position, if possible. If the positioning operation fails, or
if the constructed object cannot represent the resultant stream position, the return value is
pos_type(off_type(-1)).

pos_type seekpos(pos_type sp,
ios_base::openmode which

= ios_base::in | ios_base::out) override;

9 Effects: Equivalent to seekoff(off_type(sp), ios_base::beg, which).
10 Returns: sp to indicate success, or pos_type(off_type(-1)) to indicate failure.

basic_streambuf<charT, traits>* setbuf(charT* s, streamsize n);

11 Effects: If s and n denote a non-empty span this->span(span<charT>(s,n));
12 Returns: this.

7.4 30.x.3 Class template basic_ispanstream [ispanstream]
namespace std {

template <class charT, class traits = char_traits<charT>>
class basic_ispanstream

: public basic_istream<charT, traits> {
public:

using char_type = charT;
using int_type = typename traits::int_type;
using pos_type = typename traits::pos_type;
using off_type = typename traits::off_type;
using traits_type = traits;

// 7.4.1, constructors:
template <ptrdiff_t Extent>
explicit basic_ispanstream(

span<charT, Extent> span,
ios_base::openmode which = ios_base::in);

basic_ispanstream(const basic_ispanstream& rhs) = delete;
basic_ispanstream(basic_ispanstream&& rhs) noexcept;

// 7.4.2, assign and swap:
basic_ispanstream& operator=(const basic_ispanstream& rhs) = delete;
basic_ispanstream& operator=(basic_ispanstream&& rhs) noexcept;
void swap(basic_ispanstream& rhs) noexcept;

// 7.4.3, members:
basic_spanbuf<charT, traits>* rdbuf() const noexcept;

span<charT> span() const noexcept;
template<ptrdiff_t Extent>

void span(span<charT> s) noexcept;
private:



p0448r1 2017-06-07 9

basic_spanbuf<charT, traits> sb; // exposition only
};

template <class charT, class traits>
void swap(basic_ispanstream<charT, traits>& x,

basic_ispanstream<charT, traits>& y) noexcept;
}

1 The class basic_ispanstream<charT, traits> supports reading objects of class span<charT,
traits>. It uses a basic_spanbuf<charT, traits> object to control the associated span. For the
sake of exposition, the maintained data is presented here as:

—(1.1) sb, the spanbuf object.

7.4.1 30.x.3.1 basic_ispanstream constructors [ispanstream.cons]

template <ptrdiff_t Extent>
explicit basic_ispanstream(

span<charT, Extent> span,
ios_base::openmode which = ios_base::in);

1 Effects: Constructs an object of class basic_ispanstream<charT, traits>, initializing
the base class with basic_istream(&sb) and initializing sb with basic_spanbuf<charT,
traits>span, which | ios_base::in) (??).

basic_ispanstream(basic_ispanstream&& rhs);

2 Effects: Move constructs from the rvalue rhs. This is accomplished by move constructing the
base class, and the contained basic_spanbuf. Next basic_istream<charT, traits>::set_-
rdbuf(&sb) is called to install the contained basic_spanbuf.

7.4.2 30.x.3.2 Assign and swap [ispanstream.assign]

basic_ispanstream& operator=(basic_ispanstream&& rhs);

1 Effects: Move assigns the base and members of *this from the base and corresponding
members of rhs.

2 Returns: *this.

void swap(basic_ispanstream& rhs);

3 Effects: Exchanges the state of *this and rhs by calling basic_istream<charT, traits>::swap(rhs)
and sb.swap(rhs.sb).

template <class charT, class traits>
void swap(basic_ispanstream<charT, traits>& x,

basic_ispanstream<charT, traits>& y);

4 Effects: As if by x.swap(y).

7.4.3 30.x.3.3 Member functions [ispanstream.members]

basic_spanbuf<charT>* rdbuf() const noexcept;



10 p0448r1 2017-06-07

1 Returns: const_cast<basic_spanbuf<charT>*>(&sb).

span<charT> span() const noexcept;

2 Returns: rdbuf()->span().

template<ptrdiff_t Extent>
void span(span<charT, Extent> s) noexcept;

3 Effects: Calls rdbuf()->span(s).

7.5 30.x.4 Class template basic_ospanstream [ospanstream]
namespace std {

template <class charT, class traits = char_traits<charT>>
class basic_ospanstream

: public basic_ostream<charT, traits> {
public:

using char_type = charT;
using int_type = typename traits::int_type;
using pos_type = typename traits::pos_type;
using off_type = typename traits::off_type;
using traits_type = traits;

// 7.5.1, constructors:
template <ptrdiff_t Extent>
explicit basic_ospanstream(

span<charT, Extent> span,
ios_base::openmode which = ios_base::out);

basic_ospanstream(const basic_ospanstream& rhs) = delete;
basic_ospanstream(basic_ospanstream&& rhs) noexcept;

// 7.5.2, assign and swap:
basic_ospanstream& operator=(const basic_ospanstream& rhs) = delete;
basic_ospanstream& operator=(basic_ospanstream&& rhs) noexcept;
void swap(basic_ospanstream& rhs) noexcept;

// 7.5.3, members:
basic_spanbuf<charT, traits>* rdbuf() const noexcept;

span<charT> span() const noexcept;
template<ptrdiff_t Extent>

void span(span<charT> s) noexcept;
private:

basic_spanbuf<charT, traits> sb; // exposition only
};

template <class charT, class traits>
void swap(basic_ospanstream<charT, traits>& x,

basic_ospanstream<charT, traits>& y) noexcept;
}

1 The class basic_ospanstream<charT, traits> supports writing to objects of class span<charT,



p0448r1 2017-06-07 11

traits>. It uses a basic_spanbuf<charT, traits> object to control the associated span. For the
sake of exposition, the maintained data is presented here as:

—(1.1) sb, the spanbuf object.

7.5.1 30.x.4.1 basic_ospanstream constructors [ospanstream.cons]

template <ptrdiff_t Extent>
explicit basic_ospanstream(

span<charT, Extent> span,
ios_base::openmode which = ios_base::out);

1 Effects: Constructs an object of class basic_ospanstream<charT, traits>, initializing
the base class with basic_ostream(&sb) and initializing sb with basic_spanbuf<charT,
traits>span, which | ios_base::out) (??).

basic_ospanstream(basic_ospanstream&& rhs) noexcept;

2 Effects: Move constructs from the rvalue rhs. This is accomplished by move constructing the
base class, and the contained basic_spanbuf. Next basic_ostream<charT, traits>::set_-
rdbuf(&sb) is called to install the contained basic_spanbuf.

7.5.2 30.x.4.2 Assign and swap [ospanstream.assign]

basic_ospanstream& operator=(basic_ospanstream&& rhs) noexcept;

1 Effects: Move assigns the base and members of *this from the base and corresponding
members of rhs.

2 Returns: *this.

void swap(basic_ospanstream& rhs) noexcept;

3 Effects: Exchanges the state of *this and rhs by calling basic_ostream<charT, traits>::swap(rhs)
and sb.swap(rhs.sb).

template <class charT, class traits>
void swap(basic_ospanstream<charT, traits>& x,

basic_ospanstream<charT, traits>& y) noexcept;

4 Effects: As if by x.swap(y).

7.5.3 30.x.4.3 Member functions [ospanstream.members]

basic_spanbuf<charT>* rdbuf() const noexcept;

1 Returns: const_cast<basic_spanbuf<charT>*>(&sb).

span<charT> span() const noexcept;

2 Returns: rdbuf()->span().

template<ptrdiff_t Extent>
void span(span<charT, Extent> s) noexcept;

3 Effects: Calls rdbuf()->span(s).



12 p0448r1 2017-06-07

7.6 30.x.5 Class template basic_spanstream [spanstream]
namespace std {

template <class charT, class traits = char_traits<charT>>
class basic_spanstream

: public basic_iostream<charT, traits> {
public:

using char_type = charT;
using int_type = typename traits::int_type;
using pos_type = typename traits::pos_type;
using off_type = typename traits::off_type;
using traits_type = traits;

// 7.6.1, constructors:
template <ptrdiff_t Extent>
explicit basic_spanstream(

span<charT, Extent> span,
ios_base::openmode which = ios_base::out);

basic_spanstream(const basic_spanstream& rhs) = delete;
basic_spanstream(basic_spanstream&& rhs) noexcept;

// 7.6.2, assign and swap:
basic_spanstream& operator=(const basic_spanstream& rhs) = delete;
basic_spanstream& operator=(basic_spanstream&& rhs) noexcept;
void swap(basic_spanstream& rhs) noexcept;

// 7.6.3, members:
basic_spanbuf<charT, traits>* rdbuf() const noexcept;

span<charT> span() const noexcept;
template<ptrdiff_t Extent>

void span(span<charT> s) noexcept;
private:

basic_spanbuf<charT, traits> sb; // exposition only
};

template <class charT, class traits>
void swap(basic_spanstream<charT, traits>& x,

basic_spanstream<charT, traits>& y) noexcept;
}

1 The class basic_spanstream<charT, traits> supports reading from and writing to objects of class
span<charT, traits>. It uses a basic_spanbuf<charT, traits> object to control the associated
span. For the sake of exposition, the maintained data is presented here as:

—(1.1) sb, the spanbuf object.

7.6.1 30.x.5.1 basic_spanstream constructors [spanstream.cons]

template <ptrdiff_t Extent>
explicit basic_spanstream(

span<charT, Extent> span,



p0448r1 2017-06-07 13

ios_base::openmode which = ios_base::out | ios_bas::in);

1 Effects: Constructs an object of class basic_spanstream<charT, traits>, initializing the
base class with basic_iostream(&sb) and initializing sb with basic_spanbuf<charT, traits>span,
which) (??).

basic_spanstream(basic_spanstream&& rhs) noexcept;

2 Effects: Move constructs from the rvalue rhs. This is accomplished by move constructing the
base class, and the contained basic_spanbuf. Next basic_istream<charT, traits>::set_-
rdbuf(&sb) is called to install the contained basic_spanbuf.

7.6.2 30.x.5.2 Assign and swap [spanstream.assign]

basic_spanstream& operator=(basic_spanstream&& rhs) noexcept;

1 Effects: Move assigns the base and members of *this from the base and corresponding
members of rhs.

2 Returns: *this.

void swap(basic_spanstream& rhs) noexcept;

3 Effects: Exchanges the state of *this and rhs by calling basic_iostream<charT, traits>::swap(rhs)
and sb.swap(rhs.sb).

template <class charT, class traits>
void swap(basic_spanstream<charT, traits>& x,

basic_spanstream<charT, traits>& y) noexcept;

4 Effects: As if by x.swap(y).

7.6.3 30.x.5.3 Member functions [spanstream.members]

basic_spanbuf<charT>* rdbuf() const noexcept;

1 Returns: const_cast<basic_spanbuf<charT>*>(&sb).

span<charT> span() const noexcept;

2 Returns: rdbuf()->span().

template<ptrdiff_t Extent>
void span(span<charT, Extent> s) noexcept;

3 Effects: Calls rdbuf()->span(s).

8 Appendix: Example Implementations

An example implementation is available under the author’s github account at: https://github.
com/PeterSommerlad/SC22WG21_Papers/tree/master/workspace/p0448

https://github.com/PeterSommerlad/SC22WG21_Papers/tree/master/workspace/p0448
https://github.com/PeterSommerlad/SC22WG21_Papers/tree/master/workspace/p0448

	1 History
	1.1 Changes from p0448r0

	2 Introduction
	3 Acknowledgements
	4 Motivation
	5 Impact on the Standard
	6 Design Decisions
	6.1 General Principles
	6.2 Open Issues (to be) Discussed by LEWG / LWG

	7 Technical Specifications
	7.1 30.x Span-based Streams [span.streams]
	7.2 30.x.2 Class template basic_spanbuf [spanbuf]
	7.3 30.x.2.1 basic_spanbuf constructors [spanbuf.cons]
	7.4 30.x.3 Class template basic_ispanstream [ispanstream] 
	7.5 30.x.4 Class template basic_ospanstream [ospanstream] 
	7.6 30.x.5 Class template basic_spanstream [spanstream] 

	8 Appendix: Example Implementations

