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For Loop Exit Strategies (Revision 3) 

Abstract 

This proposal describes an enhancement to the iteration statements that allows the specification 
of two optional blocks of code, one that executes on normal completion of the loop (when the 
loop condition is no longer met), and one that executes on early termination (when the loop is 
exited with a break). 

Changes in Revision 3 since P0082R1 

This version has been revised to reflect feedback from the EWG discussion in Jacksonville (March 
2016). The use of existing keywords has been dropped in favor of using new keywords to identify 
the blocks. I have also pointed out the relationship between this proposal and P0305R1. 

Changes in Revision 2 since P0082R0 

This version has again been considerably rewritten to reflect feedback from the EWG discussion 
in Kona (October 2015). In particular, the if for construct has been dropped in favor of a cleaner 
solution using existing keywords to identify the blocks. I have also removed all the alternative 
approaches that were considered; they may be found in P0082R0. 

The Problem 

On a fairly regular basis I find myself writing code that looks something like this: 
 
auto it = get_begin(. . .);  // Unfortunate that ‘it’ has to be out here. 
auto end = get_end(. . .);  // Unfortunate that ‘end’ has to be out here. 
for (; it != end; ++it) 
{ 
 if (some_condition(*it)) break; 
 do_something(*it); 
} 
if (it == end)    // Extra test here. 
 do_stuff(); 
else 
 do_something_else(*it); 

This is rather annoying, involves an unnecessary test, and hoists the loop iterator and (some-
times) the terminator out into the surrounding scope. One could of course avoid the scope prob-
lem by putting an extra set of braces around the code, but this makes the code even harder to 
read and is too easy to forget or simply neglect in the interests of readability. 
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If you have a situation where you can’t evaluate the loop condition twice, then you have to 
introduce a flag to keep track of how the loop exited. For example: 

bool early = false; 
while (some_condition()) 
{ 
 . . . 
 if (test1()) { early = true; break; } 
 . . . 
 if (test2()) { early = true; break; } 
 . . . 
 if (test3()) { early = true; break; } 
 . . . 
} 
if (early) 
{ . . . } 
else 
{ . . . } 

Assuming that some_condition and the tests cannot be called again outside the loop, either 
for performance or logical reasons, you need a flag in the outer scope and must remember to set 
it every time you break. This simple example could be written as a function with returns instead 
of breaks, but there are often reasons why doing so would be difficult or less clear. 

The problem gets even worse with range-based for loops. Because the loop variable cannot be 
hoisted out of the loop, it is not possible to test for normal completion as you can with most 
iterator-based loops, so again you need a flag, or you have to resort to goto hopscotch. And if 
you want to know the value of the loop variable when you exit prematurely (as you almost always 
do) you will have to make a copy of it (if possible): 

something_t last;   // Extra construction here. 
bool early = false; 
for (auto&& element : container) 
{ 
 if (some_condition(element)) 
 { 
  last = element;   // Extra copy here 

 early = true; 
 break; 
} 

 do_something(element); 
} 
if (early) 
 do_something_else(last); 
else 
 do_stuff(); 

The extra construction in the outer scope requires stating a type which might be hard to state, 
or might not be copyable or movable (or even default constructible). Regardless, this is clearly 
not an improvement over a conventional for statement, so the advantage of range-based for has 
been lost. (In this example, the need for last could be eliminated by calling 
do_something_else from inside the loop, but that can become impractical if there are a 
number of early exit points and the early termination code is not a simple function call. 

The solution is for the language to provide a way to catch either normal or early termination. This 
is especially important now that C++ has range-based for loops. 
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The Solution 

Overview 

The proposed solution is a pure extension to the language requiring two new keywords. The 
iteration statements (for, while and do) will have an optional on_complete block to catch the 
normal termination case and an optional on_break block to catch the early termination case. 

Here are the three earlier examples with the benefit of this feature: 
 

 

for (auto it(get_begin(. . .)), end(get_end(. . .)); it != end; ++it) 
{ 
 if (some_condition(*it)) break; 
 do_something(*it); 
} 
on_complete 
 do_stuff(); 
on_break 
 do_something_else(*it); 

 

 

while (some_condition()) 
{ 
 . . . 
 if (test1()) break; 
 . . . 
 if (test2()) break; 
 . . . 
 if (test3()) break; 
 . . . 
} 
on_break 
{ . . . } 
on_complete 
{ . . . } 

 

 

for (auto&& element : container) 
{ 
 if (some_condition(element)) break; 
 do_something(element); 
} 
on_complete 
 do_stuff(); 
on_break 
 do_something_else(element); 

 

 

Any declared variables remain in scope in both the normal termination and early termination 
blocks, and only one of the blocks is executed. Control transfers to the normal termination block 
if and when the loop condition is no longer met (even if the loop body is never entered), and to 
the early termination block if and only if the loop exits with a break. Neither block is ever 
required, and the blocks may appear in either order. 
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Multiple breaks 

The early termination block also provides for graceful multiple breaks. Suppose you want to iter-
ate over a three-dimensional table and choose a particular cell. Today you might write something 
like this: 

 
vector<vector<vector<. . .>>> table = . . .; 
for (auto& x : table) 
 for (auto& y : x) 
  for (auto& z : y) 
   if (some_condition(z)) 
   { 
    do_something(z); 
    goto DONE; 
   } 
DONE: 

This isn’t too bad, but it gets worse if you have different exit situations. This particular problem 
could be solved by putting the loops in a function, then returning from the innermost loop, but 
not all algorithms are so easily encapsulated. With early termination blocks, you can do this: 

 
for (auto& x : table) 
 for (auto& y : x) 
  for (auto& z : y) 
   if (some_condition(z)) 
   { 
    do_something(z); 
    break; 
   } 
  on_break break; 
 on_break break; 

This scales well to more complicated cases since you can either continue or break on either 
termination condition. I would expect that the compiler could collapse the repeated breaks into 
a single jump, so the efficiency of the goto solution would be preserved. 

Are braces required? 

An interesting question is whether the termination blocks should require braces like try/catch 
blocks, or be consistent with the rest of the language and not require them. Personally I am not 
fond of the brace requirement for try/catch, and I propose that braces not be required for 
termination blocks. Given their similarity to else blocks, I think this provides the greatest 
consistency. 

Is the early termination block necessary? 

I feel that the early termination case is very important. In an informal look at my current code 
base, I found that the number of cases where I needed the early termination block was about 
equal to the number of cases where I didn't. 

Similarity to Python 

Python has half of this feature. It uses else for the normal termination block, but lacks the early 
termination block. Unfortunately we can’t use else in C++ because it would change the meaning 
of existing code, and I am convinced that the early termination block is important. 



P0082R2 

5 

Importance 

It is quite reasonable to ask if this feature is worth it. Are the instances where it improves read-
ability, encapsulation and performance sufficiently common and compelling to motivate a 
language change? The reaction to the first version of this paper tells me that the answer is 
resoundingly yes. People really seem to like this idea. 

This feature also fits very well with the new C++17 selection statement initializers (P0305R1). The 
motivation for selection statement initializers is that they limit the scope of variables without 
requiring extra blocks, which degrade readability and are easy to forget. Termination blocks offer 
the same advantages. 

I did an informal survey of the code I work on and found a number of cases that match the first 
example above, and found that the cases requiring only normal termination were about as 
numerous as those requiring early termination. My search looked only at for statements with no 
loop variable declaration. I did not look for while or do cases, nor did I look for places where the 
logic could be reorganized and simplified by this feature. I suspect that if the feature were avail-
able, I would find a use for it in many more places. 

Syntax 

The syntax of this proposal has changed several times as a result of input from EWG. There were 
significant objections to approaches that avoided keywords or used existing keywords in new 
ways. There was strong agreement that new keywords made for a cleaner and clearer solution. 
There was a discussion about two-word (whitespace) keywords, but this approach also raised 
some objections. 

Another quite different approach that was suggested by several people was making the iteration 
statements in effect return a value. This is a very different and more complicated design that 
does not in my opinion add enough value to be worth the complication, and is harder to under-
stand. There were considerable objections to this as well. 

The spelling of the keywords is a matter that I believe worthy of some consideration. Choosing 
terms is often referred to as “bike shedding”, but that term was coined to refer to Parkinson's 
law of triviality, and I do not believe terminology in programming is a trivial issue. I feel choosing 
the correct terms for things is an important aspect of software engineering. 

I have proposed a pair of keywords that I believe will work well, but I welcome a discussion on 
the matter and would be glad to change them. For example, the underscores could be removed 
(oncomplete and onbreak), and on_default (or ondefault) has been proposed instead of 
on_complete. 
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Specifics 

I will provide formal wording in a future revision of this proposal. Meanwhile here are the basics. 
Note that this is just for exposition and not meant to be a draft of the final version of the grammar 
or wording. 

iteration-statement: 

while ( condition ) statement termination-blockopt termination-blockopt 

do statement while ( expression ) ; termination-blockopt termination-blockopt 

for ( for-init-statement conditionopt; expressionopt) statement termination-blockopt termination-blockopt 

for ( for-range-declaration : for-range-initializer ) statement termination-blockopt termination-blockopt 

termination-block: 

on_complete statement 

on_break statement 

Both the normal (on_complete) termination block and the early (on_break) termination block 
are optional. There may be at most one of each type of termination block. The termination blocks 
may appear in either order. 

If a loop exits normally because the loop condition fails, the normal termination block will be 
executed and the early termination block will not be executed. If a loop exits prematurely 
because of a break statement, the early termination block will be executed and the normal 
termination block will not be executed. 

If a for or while statement declares a loop variable or variables, the scope of the name(s) declared 
includes the termination blocks. In the case of a range-based for loop, the value of the loop 
variable is undefined in the normal termination block. In all other cases the value of the loop 
variable(s) will be the terminating value when entering the normal termination block, and the 
value at the time of the break when entering the early termination block. 

Acknowledgements  

Beman Dawes reviewed an early draft of this proposal and suggested several excellent clarifica-
tions. Clark Nelson reviewed the final draft of the first version and caught several mistakes. 
Thanks again for your help. 

A number of people made insightful comments about the first version of this proposal. Thanks to 
Niels Dekker, Niall Douglas, Folkert van Heusden, Nick Maclaren, Sarfaraz Nawaz, Dwayne 
Robinson, Sam Saariste, Diego Sánchez, Mike Spertus, and Daveed Vandevoorde for their contri-
butions. P0082R0 has more details of their contributions. 

Many people in Kona (October 2015) made helpful comments and suggestions. Chandler Carruth 
pointed out the case where the condition cannot be evaluated twice. Chandler and James Touton 
made very compelling arguments for following the Python design of else as the normal termina-
tion block. I’m sure I will miss someone if I try to list everyone else who commented, but the rest 
of you know who you are and have my thanks. 

Thanks very much to JC van Winkel, Walter Brown and Paul Sepe for reviewing Revision 2 and 
providing many helpful suggestions. 


