
Document number: P0199R0

Date: 2016-02-11

Project: ISO/IEC JTC1 SC22 WG21 Programming Language C++

Audience: Evolution Working Group

Reply-to: Vicente J. Botet Escriba <vicente.botet@wanadoo.fr>

Abstract

Defining hash_value  or specializing is_uniquely_represented  as defined in P0029R0 for
simple classes is tedious, repetitive, slightly error-prone, and easily automated.

I propose to (implicitly) supply default version of this operation and trait, if needed. The meaning of
hash_value  is to combine the members using hash_combine .

1. Introduction
2. Motivation
3. Proposal
4. Design Rationale
5. Alternative solutions
6. Proposed wording
7. Implementability
8. Open points
9. Acknowledgements

10. References

Defining hash_value  or specializing is_uniquely_represented  as defined in P0029R0 for
simple classes is tedious, repetitive, slightly error-prone, and easily automated.

I propose to (implicitly) supply default version of this operation and trait, if needed. The meaning of
hash_value  is to combine the members using hash_combine .

Default Hash

Table of Contents

Introduction

mailto:vicente.botet@wanadoo.fr
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/p0029r0.html
file:///Users/viboes/github/std_make/doc/proposal/reflection/P0199R0.md#introduction
file:///Users/viboes/github/std_make/doc/proposal/reflection/P0199R0.md#motivation
file:///Users/viboes/github/std_make/doc/proposal/reflection/P0199R0.md#proposal
file:///Users/viboes/github/std_make/doc/proposal/reflection/P0199R0.md#design-rationale
file:///Users/viboes/github/std_make/doc/proposal/reflection/P0199R0.md#alternative-solutions
file:///Users/viboes/github/std_make/doc/proposal/reflection/P0199R0.md#proposed-wording
file:///Users/viboes/github/std_make/doc/proposal/reflection/P0199R0.md#implementability
file:///Users/viboes/github/std_make/doc/proposal/reflection/P0199R0.md#open-points
file:///Users/viboes/github/std_make/doc/proposal/reflection/P0199R0.md#acknowledgements
file:///Users/viboes/github/std_make/doc/proposal/reflection/P0199R0.md#references
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/p0029r0.html


If the simple defaults are unsuitable for a class, a programmer can, as ever, define more suitable ones or
suppress the defaults. The proposal is to add the operations as an integral part of C++ (like =), rather than
as a library feature.

The proposal follows the same approach as Default comparison as in N4475, that is, that having default
generated code for these basic operations only when needed and possible would make the language
simpler.

This paper contains no proposed wording. This is a discussion paper to determine EWG interest in the
feature, and if there is interest to get direction for a follow-up paper with wording.

Some standard algorithms require that an argument type supply a valid hash  instantiation. Writing such
types can be tedious (and all tedious tasks are error prone).

For example

class Foo {
  int i;
  string str;
  bool b;
  //...
  friend bool operator==(const Foo& lhs, const Foo& rhs) {
    return lhs.i == rhs.i && lhs.str == rhs.str && lhs.b == rhs.b;
  }

  template <class H>
  friend H hash_value(H h, const Foo& foo) {
    return hash_combine(std::move(h), foo.i, foo.str, foo.b);
  }
};

If Default comparison N4475 is adopted, the ==  operator will be not needed anymore as it could be
generated by default as =  operator is already.

I propose to generate default versions for hash_value  for simple classes when needed. If those
defaults are unsuitable for a type, =delete  them. If non-default of those operations are needed, define
them (as always). If an operation is already declared, a default is not generated for it. This is exactly the
way assignment and constructors work today and as comparison operators would work is N4475 is
adopted.

Motivation

Proposal

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4475.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4475.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4475.pdf


Note that if ==  operator is defined by the user, hash_value  default generation couldn't reflect the
user decisions, and so it seems reasonable to not provide such a generation.

The same rationale given in N4475 applies hash_value .

This paper uses the last hash proposal P0029R0 as it pretends to unify previous proposals as N3980. This
paper should be adapted to the final proposal. For the time being, we will use P0029R0.

It could also be great if the hash_value  function could be generated by the compiler following the
philosophy and criteria as defined in N4475.

When ==  operator is generated by the compiler, it is not difficult to specialize
is_uniquely_represented  when the type of the concerned members (those used to define
== operator), let call them Ti  satisfy is_uniquely_represented<Ti>  and there are no other

data members nor padding.

Here it is how it could be specialized for std::pair .

template <class T, class U>
struct is_uniquely_represented<std::pair<T, U>>
    : public std::bool_constant<is_uniquely_represented<T>::value &&
                                is_uniquely_represented<U>::value &&
                                sizeof(T) + sizeof(U) == sizeof(std::pair<T, U>)>
{
};

If is_uniquely_represented<C>{}==true , there is no need to overload hash_value  as
hash_value  is already defined for those types.

There would be no need to specialize it when the result will be false. However we must do it for templates
as we don't know at compile time the result. So the specialization will be always generated.

In addition to the common restrictions defined above, the following restricts the generation of
is_uniquely_represented  specialization

is_uniquely_represented  has been already specialized before the first need for
is_uniquely_represented , or

the ==  operator is user defined or cannot be generated,

What about is_uniquely_represented ?

When is_uniquely_represented  could specialized?

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4475.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/p0029r0.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n3980.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/p0029r0.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4475.pdf


[Note: If the there is a specialization of is_uniquely_represented  after its first need or in another
translation unit, the program would be already ill-formed as there is a violation of the ODR. -- end]

The natural definition which combines, using hash_combine , each one of the data members seem to
be a good candidate for the default.

The following restricts the generation of hash_value  for a class C

has that operation defined or deleted before the first need for hash_value  or
the ==  operator is user defined or cannot be generated, or
is_uniquely_represented<C>{}==true , or

has a user-defined or deleted copy or move operation, or
has a virtual base, or
has a virtual function, or
has a pointer member.

The generated implementation for hash_value  is not considered a function so it cannot have its
address taken [Note: like the default =  operator].

Mutable members are ignored for the generated implementations.

[Note: If the overload of hash_value  appears after its first need or in another translation unit, the
program would be already ill-formed as there is a violation of the ODR. -- end]

[Note: Identifying this violation would require link-time checking. -- end].

The members use in the default generation for hash_value  or the specialization of
is_uniquely_represented  must be the same than the ones that are taken in account for the

definition of the ==  operator. When the user defines the ==  operator, there is no evident way to ensure
this constrain. This is why the default generation for hash_value  and is_uniquely_represented

is applied only when the default generation of ==  is also applied.

What is the definition of hash_value ?

When hash_value  could be applied?

Design Rationale

Why require that the default generation of operator==
is applied?



We could let the user the responsibility to specialize, however the author suspect that the user could forget
to do it and the proposed specialization is to the author knowledge always safe.

This wording is very "drafty" and has not gone through expert review. It is intended to reflect the design
decisions described above.

The author was not aware of the new wording for Default comparison in N4532. There are a lot of there that
should inspire the wording for this function.

The wording that follows is based on the wording of the current standard in particular N4527 and in initial
wording in N4475.

Add a "Hash expression" section in 5

A hash expression is a particular case of a function call expression when the function name is
hash_value .

If an operand is of class type and no suitable function is found in the class namespace, the implicitly-
declared hash_value  non-member operation as described in over.generatehashvalue is used.

Add a "Special non-member hash_value operation" section after 13.6

If no user-defined hash_value  operation is provided for a class type T  ( struct , class  but not
union ), and all of the following is true:

there are no user-declared operator== ;
is_uniquely_represented<C>{}==false ;

then the compiler will declare a friend  hash_value  operation with the signature

is_uniquely_represented  specialization

Working paper wording

Hash expression [expr.hash_value]

Special non-member hash_value  operation
[over.generatehashvalue]

Implicitly-declared hash_value  non-member operation

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4532.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4527.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4475.pdf
file:///Users/viboes/github/std_make/doc/proposal/reflection/if%20any


template <class H>
friend void hash_value(H, T&) noexcept(see below);

The generated implementation is not considered a function so it cannot have its address taken [Note: like
the = operator.].

The user may still force the generation of the implicitly declared hash_value  operation declaring it aa a
friend operation with the keyword default .

The generated implementation is not considered a function so it cannot have its address taken [Note: like
the = operator.].

The implicitly-declared or defaulted hash_value  operation for class T  is defined as deleted in any of
the following is true:

T  has non-static data members that don't supports hash_value ;
T  has direct or virtual base class that don't supports hash_value ;
T  implicit-generated operator==  is deleted;

The deleted implicitly-declared hash_value  operation is ignored by overload resolution.

If the implicitly-declared hash_value  operation is not deleted, it is defined (that is, a function's body is
generated and compiled) by the compiler if odr-used. The hash_value  non-member operation
hash_combine  each concerned non-static data member of the object, in their initialization order.

Based on a future reflection library e.g. N4428 or N4451, we could define the hash_value  function
instead of generating it. However, to the author knowledge, this would need to declare a friend function,
which is much more intrusive than the compiler generated solution.

Next follows un incomplete implementation

Explicitly defaulted hash_value  non-member operation

Deleted implicitly-declared hash_value  non-member operation

Implicitly-defined hash_value  non-member operation

Alternative solutions

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4428.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4451.pdf


namespace std {
namespace experimental {namespace reflect { inline namespace v1 {

    template <class C>
    struct is_hash_value_generation_enabled;

}}}

template <class H, class C>
enable_if<reflect::is_hash_value_generation_enabled_t<C>{}, H> 
hash_value(H h, C & x) 
{
    // std::hash_combine the non-static non-mutable data-member
    return std::hash_combine(h, ...)
}

} // namespace std

Note that the hash_value  overload would need to be declared as friend on the class.

namespace MyNS {

class MyC {
    
    template <class H, class C>
        friend 
        enable_if<
            std::experimental::reflect::is_hash_value_generation_enabled_t<C>{}, H> 
        hash_value(H h, C & x);
    // ...
};

} //namespace

This would be almost a showstopper and one of the reasons, that even with reflection, a compiler
generated version is a better and less intrusive choice.

This proposal needs some compiler magic, either by generating directly the hash_value  function or by
providing the reflection traits as e.g. in N4428 or N4451.

Implementability

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4428.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4451.pdf


The authors would like to have an answer to the following points if there is any interest at all in this
proposal:

Do we want a default or a reflection solution?

Do we want implicit instantiation by the compiler of is_uniquely_represented<C> ?

Defaulting hash_value  operation is simple, removes a common annoyance. It is completely compatible.
In particular, the existing facilities for defining and suppressing those operations are untouched.

Thanks to Bjarne Strustrup for its clear identification of the types that are subject to this kind of default
generation in N4475. Many thanks to Howard Hinnant, his comments in the ML, that allowed me to better
understand how the user customization must be used and think about adding
is_uniquely_represented  specialization by the compiler.

Thanks to all those that have commented the idea on the std-proposals ML helping to better identify the
constraints and improve the proposal in general.

N3980 Types Don't Know #

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n3980.html

N4428 Type Property Queries (rev 4)

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4428.pdf

N4451 Static reflection

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4451.pdf

N4475 Default comparisons (R2)

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4475.pdf

N4527 Working Draft, Standard for Programming Language C++

Open Questions

Summary

Acknowledgments

References

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4475.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n3980.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4428.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4451.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4475.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4527.pdf


http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4527.pdf

N4532 Proposed wording for default comparisons

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4532.html

P0017R0 Extension to aggregate initialization

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/p0017r0.html

P0029R0 A Unified Proposal for Composable Hashing

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/p0029r0.html

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4532.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/p0017r0.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/p0029r0.html

