
P0052R2 - Generic Scope Guard and RAII Wrapper for the

Standard Library

Peter Sommerlad and Andrew L. Sandoval
with contributions by Eric Niebler and Daniel Krügler

2016-03-18

Document Number: P0052R2 (update of N4189, N3949, N3830, N3677)

Date: 2016-03-18

Project: Programming Language C++

Audience: LWG/LEWG

1 History

1.1 Changes from P0052R1

The Jacksonville LEWG, especially Eric Niebler gave splendid input in how to improve
the classes in this paper. I (Peter) follow Eric’s design in specifying scope exit as well
as unique resource in a more general way.

• Provide scope_fail and scope_success as classes. However, we may even hide
all of the scope guard types and just provide the factories.

• safe guard all classes against construction errors, i.e., failing to copy the deleter/exit-
function, by calling the passed argument in the case of an exception, except for
scope success.

• relax the requirements for the template arguments.

Special thanks go to Eric Niebler for providing several incarnations of an implementa-
tion that removed previous restrictions on template arguments in an exception-safe way
(Eric: ”This is HARD.”). To cite Eric again: ”Great care must be taken when move-
constructing or move-assigning unique resource objects to ensure that there is always
exactly one object that owns the resource and is in a valid, Destructible state.” Also
thanks to Axel Naumann for presenting in Jacksonville and to Axel, Eric, and Daniel
Krügler for their terrific work on wording improvements.

1

2 P0052R2 2016-03-18

1.2 Changes from P0052R0

In Kona LWG gave a lot of feedback and especially expressed the desire to simplify the
constructors and specification by only allowing nothrow-copyable RESOURCE and DELETER

types. If a reference is required, because they aren’t, users are encouraged to pass a
std::ref/std::cref wrapper to the factory function instead.

• Simplified constructor specifications by restricting on nothrow copyable types. Fa-
cility is intended for simple types anyway. It also avoids the problem of using a
type-erased std::function object as the deleter, because it could throw on copy.

• Add some motivation again, to ease review and provide reason for specific API
issues.

• Make ”Alexandrescu’s” ”declarative” scope exit variation employing uncaught_-

exceptions() counter optional factories to chose or not.

• propose to make it available for standalone implementations and add the header
<scope> to corresponding tables.

• editorial adjustments

• re-established operator* for unique_resource.

• overload of make_unique_resource to handle reference_wrapper for resources.
No overload for reference-wrapped deleter functions is required, because reference_-
wrapper provides the call forwarding.

1.3 Changes from N4189

• Attempt to address LWG specification issues from Cologne (only learned about
those in the week before the deadline from Ville, so not all might be covered).

– specify that the exit function must be either no-throw copy-constructible, or
no-throw move-constructible, or held by reference. Stole the wording and
implementation from unique ptr’s deleter ctors.

– put both classes in single header <scope>

– specify factory functions for Alexandrescu’s 3 scope exit cases for scope_exit.
Deliberately did’t provide similar things for unique_resource.

• remove lengthy motivation and example code, to make paper easier digestible.

• Corrections based on committee feedback in Urbana and Cologne.

P0052R2 2016-03-18 3

1.4 Changes from N3949

• renamed scope_guard to scope_exit and the factory to make_scope_exit. Rea-
son for make is to teach users to save the result in a local variable instead of just
have a temporary that gets destroyed immediately. Similarly for unique resources,
unique_resource, make_unique_resource and make_unique_resource_checked.

• renamed editorially scope_exit::deleter to scope_exit::exit_function.

• changed the factories to use forwarding for the deleter/exit_function but not
deduce a reference.

• get rid of invoke’s parameter and rename it to reset() and provide a noexcept

specification for it.

1.5 Changes from N3830

• rename to unique_resource_t and factory to unique_resource, resp. unique_-
resource_checked

• provide scope guard functionality through type scope_guard_t and scope_guard

factory

• remove multiple-argument case in favor of simpler interface, lambda can deal with
complicated release APIs requiring multiple arguments.

• make function/functor position the last argument of the factories for lambda-
friendliness.

1.6 Changes from N3677

• Replace all 4 proposed classes with a single class covering all use cases, using
variadic templates, as determined in the Fall 2013 LEWG meeting.

• The conscious decision was made to name the factory functions without ”make”,
because they actually do not allocate any resources, like std::make_unique or
std::make_shared do

2 Introduction

The Standard Template Library provides RAII (resource acquisition is initialization)
classes for managing pointer types, such as std::unique_ptr and std::shared_ptr.
This proposal seeks to add a two generic RAII wrappers classes which tie zero or one
resource to a clean-up/completion routine which is bound by scope, ensuring execution

4 P0052R2 2016-03-18

at scope exit (as the object is destroyed) unless released early or in the case of a single
resource: executed early or returned by moving its value.

3 Acknowledgements

• This proposal incorporates what Andrej Alexandrescu described as scope guard
long ago and explained again at C++ Now 2012 ().

• This proposal would not have been possible without the impressive work of Pe-
ter Sommerlad who produced the sample implementation during the Fall 2013
committee meetings in Chicago. Peter took what Andrew Sandoval produced for
N3677 and demonstrated the possibility of using C++14 features to make a single,
general purpose RAII wrapper capable of fulfilling all of the needs presented by
the original 4 classes (from N3677) with none of the compromises.

• Gratitude is also owed to members of the LEWG participating in the Fall 2015(Kona),Fall
2014(Urbana), February 2014 (Issaquah) and Fall 2013 (Chicago) meeting for their
support, encouragement, and suggestions that have led to this proposal.

• Special thanks and recognition goes to OpenSpan, Inc. (http://www.openspan.com)
for supporting the production of this proposal, and for sponsoring Andrew L. San-
doval’s first proposal (N3677) and the trip to Chicago for the Fall 2013 LEWG
meeting. Note: this version abandons the over-generic version from N3830 and
comes back to two classes with one or no resource to be managed.

• Thanks also to members of the mailing lists who gave feedback. Especially Zhihao
Yuan, and Ville Voutilainen.

• Special thanks to Daniel Krügler for his deliberate review of the draft version of
this paper (D3949).

P0052R2 2016-03-18 5

4 Motivation

While std::unique_ptr can be (mis-)used to keep track of general handle types with
a user-specified deleter it can become tedious and error prone. Further argumentation
can be found in previous papers. Here are two examples using <cstdio>’s FILE * and
POSIX<fcntl.h>’s and <unistd.h>’s int file handles.

void demonstrate_unique_resource_with_stdio() {

const std::string filename = "hello.txt";

{ auto file=make_unique_resource(::fopen(filename.c_str(),"w"),&::fclose);

::fputs("Hello World!\n", file.get());

ASSERT(file.get()!= NULL);

}

{ std::ifstream input { filename };

std::string line { };

getline(input, line);

ASSERT_EQUAL("Hello World!", line);

getline(input, line);

ASSERT(input.eof());

}

::unlink(filename.c_str());

{

auto file = make_unique_resource_checked(::fopen("nonexistingfile.txt", "r"),

(FILE*) NULL, &::fclose);

ASSERT_EQUAL((FILE*)NULL, file.get());

}

}

void demontrate_unique_resource_with_POSIX_IO() {

const std::string filename = "./hello1.txt";

{ auto file=make_unique_resource(::open(filename.c_str(),

O_CREAT|O_RDWR|O_TRUNC,0666), &::close);

::write(file.get(), "Hello World!\n", 12u);

ASSERT(file.get() != -1);

}

{ std::ifstream input { filename };

std::string line { };

getline(input, line);

ASSERT_EQUAL("Hello World!", line);

getline(input, line);

ASSERT(input.eof());

}

::unlink(filename.c_str());

{

auto file = make_unique_resource_checked(::open("nonexistingfile.txt",

O_RDONLY), -1, &::close);

ASSERT_EQUAL(-1, file.get());

}

}

6 P0052R2 2016-03-18

We refer to Andrej Alexandrescu’s well-known many presentations as a motivation
for scope_exit, scope_fail, and scope_success. Here is a brief example on how to
use the 3 proposed factories.

void demo_scope_exit_fail_success(){

std::ostringstream out{};

auto lam=[&]{out << "called ";};

try{

auto v=make_scope_exit([&]{out << "always ";});

auto w=make_scope_success([&]{out << "not ";}); // not called
auto x=make_scope_fail(lam); // called
throw 42;

}catch(...){

auto y=make_scope_fail([&]{out << "not ";}); // not called
auto z=make_scope_success([&]{out << "handled";}); // called

}

ASSERT_EQUAL("called always handled",out.str());

}

5 Impact on the Standard

This proposal is a pure library extension. A new header, <scope> is proposed, but it
does not require changes to any standard classes or functions. Since it proposes a new
header, no feature test macro seems required. It does not require any changes in the core
language, and it has been implemented in standard C++ conforming to C++14, resp.
draft C++17. Depending on the timing of the acceptance of this proposal, it might go
into a library fundamentals TS under the namespace std::experimental or directly in the
working paper of the standard.

6 Design Decisions

6.1 General Principles

The following general principles are formulated for unique_resource, and are valid for
scope_exit correspondingly.

• Transparency - It should be obvious from a glance what each instance of a unique_-

resource object does. By binding the resource to it’s clean-up routine, the decla-
ration of unique_resource makes its intention clear.

• Resource Conservation and Lifetime Management - Using unique_resource makes
it possible to ”allocate it and forget about it” in the sense that deallocation is
always accounted for after the unique_resource has been initialized.

• Exception Safety - Exception unwinding is one of the primary reasons that unique_-
resource and scope_exit/scope_fail are needed. Therefore, the specification

P0052R2 2016-03-18 7

asks for strong safety guarantee when creating and moving the defined types, mak-
ing sure to call the deleter/exit function if such attempts fail.

• Flexibility - unique_resource is designed to be flexible, allowing the use of lamb-
das or existing functions for clean-up of resources.

6.2 Prior Implementations

Please see N3677 from the May 2013 mailing (or http://www.andrewlsandoval.com/scope -
exit/) for the previously proposed solution and implementation. Discussion of N3677 in
the (Chicago) Fall 2013 LEWG meeting led to the creation of unique_resource and
scope_exit with the general agreement that such an implementation would be vastly
superior to N3677 and would find favor with the LEWG. Professor Sommerlad produced
the implementation backing this proposal during the days following that discussion.

N3677 has a more complete list of other prior implementations.
N3830 provided an alternative approach to allow an arbitrary number of resources

which was abandoned due to LEWG feedback
The following issues have been discussed by LEWG already:

• Should there be a companion class for sharing the resource shared_resource ?
(Peter thinks no. Ville thinks it could be provided later anyway.) LEWG: NO.

• Should scope_exit() and unique_resource::invoke() guard against deleter
functions that throw with try deleter(); catch(...) (as now) or not? LEWG:
NO, but provide noexcept in detail.

• Does scope_exit need to be move-assignable? LEWG: NO.

The following issues have been recommended by LWG already:

• Make it a facility available for free-standing implementations in a new header
<scope> (<utility> doesn’t work, because it is not available for free-standing
implementations)

8 P0052R2 2016-03-18

6.3 Open Issues to be Discussed by LEWG / LWG

Since a lot of the design changed due to Eric Niebler’s implementation taking great effort
to provide strong exception guarantee, another round through LEWG and LWG seems
to be required.

• Should we make the regular constructor of the scope guard templates private and
friend the factory function only? This could prohibit the use as class members,
which might sneakily be used to create ”destructor” functionality by not writing
a destructor by adding a scope_exit member variable.

• Should the scope guard classes be move-assignable? Doing so, would enable/ease
using them as class members. I do not think this use is good, but may be someone
can come up with a use case for that. LEWG already answered that once with
NO, but you never know if people change their mind again.

• which ”callable” definition in the standard should be applied (call expression (as
it is now) or via INVOKE (is_callable_v<EF&>).

• Should we provide a non-explicit conversion operator to R in unique_resource<R,D>

? Last time people seem to have been strongly against, however, it would make
the use of unique resource much easier in contexts envisioned by author Andrew
Sandoval. Please re-visit, since it is omitted here.

P0052R2 2016-03-18 9

7 Technical Specifications

The following formulation is based on inclusion to the draft of the C++ standard.
However, if it is decided to go into the Library Fundamentals TS, the position of the
texts and the namespaces will have to be adapted accordingly, i.e., instead of namespace
std:: we suppose namespace std::experimental::.

7.1 Adjust 17.6.4.8 Other functions [res.on.functions]

Since scope_success() might throw an exception and we can not specify that in a
required behavior clause, we need to allow doing so for the standard library’s normative
remarks section as well.

In section 17.6.4.8 Other functions [res.on.functions] modify p2 item (2.4) as follows
by adding ”or Remarks: ”

(2.4) — if any replacement function or handler function or destructor operation exits
via an exception, unless specifically allowed in the applicable Required behavior:
or Remarks: paragraph.

7.2 Header

In section 17.6.1.1 Library contents [contents] add an entry to table 14 for the new header
<scope>. Because of the new header, there is no need for a feature test macro.

In section 17.6.1.3 Freestanding implementations [compliance] add an extra row to
table 16 and in section [utilities.general] add the same extra row to table 44

Table 1: table 16 and table 44

Subclause Header

20.nn Scope Guard Support <scope>

7.3 Additional sections

Add a a new section to chapter 20 introducing the contents of the header <scope>.

7.4 Scope guard support [scope]

This subclause contains infrastructure for a generic scope guard and RAII (resource ac-
quisition is initialization) resource wrapper.

Header <scope> synopsis

10 P0052R2 2016-03-18

namespace std {

template <class EF>

class scope_exit;

template <class EF>

class scope_fail;

template <class EF>

class scope_success;

template <class EF>

scope_exit<decay_t<EF>> make_scope_exit(EF&& exit_function) ;

template <class EF>

scope_fail<decay_t<EF>> make_scope_fail(EF&& exit_function) ;

template <class EF>

scope_success<decay_t<EF>> make_scope_success(EF&& exit_function) ;

template<class R,class D>

class unique_resource;

template<class R,class D>

unique_resource<decay_t<R>, decay_t<D>>

make_unique_resource(R&& r, D&& d)

noexcept(is_nothrow_constructible_v<decay_t<R>, R> &&

is_nothrow_constructible_v<decay_t<D>, D>);

template<class R,class D>

unique_resource<R&, decay_t<D>>

make_unique_resource(reference_wrapper<R> r, D&& d)

noexcept(is_nothrow_constructible_v<decay_t<D>, D>);

template<class R,class D, class S=R>

unique_resource<decay_t<R>, decay_t<D>>

make_unique_resource_checked(R&& r, S const& invalid, D&& d)

noexcept(is_nothrow_constructible_v<decay_t<R>, R> &&

is_nothrow_constructible_v<decay_t<D>, D>);

}

1 The header <scope> defines the class templates scope_exit, scope_fail, scope_-

success, unique_resource and the factory function templates make_scope_exit(),
make_scope_success(), make_scope_fail(), make_unique_resource(), and make_-

unique_resource_checked() to create their instances.
2 The class templates scope_exit, scope_fail, and scope_success define scope guards

that wrap a function object to be called on their destruction.
3 The following clauses describe the class templates scope_exit, scope_fail, and scope_-

success. In each clause, the name scope_guard denotes either of these class templates.
In description of class members scope_guard refers to the enclosing class.

P0052R2 2016-03-18 11

7.4.1 Scope guard class templates [scope.scope guard]

template <class EF>

class scope_guard {

public:

template<class EFP>

explicit scope_guard (EFP&& f) ;

scope_guard (scope_guard && rhs) ;

~scope_guard () noexcept(see below);

void release() noexcept;

scope_guard (const scope_guard &)=delete;

scope_guard & operator=(const scope_guard &)=delete;

scope_guard & operator=(scope_guard &&)=delete;

private:

EF exit_function; // exposition only
bool execute_on_destruction{true}; //exposition only
int uncaught_on_creation{uncaught_exceptions()}; // exposition only

};

1 [Note: scope_exit is meant to be a general-purpose scope guard that calls its exit
function when a scope is exited. The class templates scope_fail and scope_success

share the scope_exit’s interface, only the situation when the exit function is called
differs. These latter two class templates memorize the value of uncaught_exceptions()
on construction and in the case of scope_fail call the exit function on destruction, when
uncaught_exceptions() at that time returns a greater value, in the case of scope_-

success when uncaught_exceptions() on destruction returns the same or a lesser
value.
[Example:

void grow(vector<int>&v){

auto guard = make_scope_success([]{ cout << "Good!" << endl; });

v.resize(1024);

}

— end example] — end note]
2 Requires: Template argument EF shall be a function object type ([function.objects]),

lvalue reference to function, or lvalue reference to function object type. If EF is an
object type, it shall satisfy the requirements of Destructible (Table 24). Given an
lvalue f of type EF, the expression f() shall be well formed and shall have well-defined
behavior. The constructor arguments f in the following constructors shall be a func-
tion object (20.9)[function.objects], lvalue reference to function, or lvalue reference to
function object.

template<class EFP>

explicit

scope_exit(EFP&& f) ;
3 Remark: This constructor shall not participate in overload resolution unless is_-

constructible_v<EF,EFP> is true.

12 P0052R2 2016-03-18

4 Requires: Given an lvalue f of type EFP, the expression f() shall be well formed
and shall have well-defined behavior.

5 Effects: If EFP is not a lvalue-reference type and is_nothrow_constructible_-

v<EF,EFP> is true, initialize exit_function with move(f) otherwise initialize
exit_function with f. If the copying throws an exception, calls f().

6 Throws: Any exception thrown during the copying of f.

template<class EFP>

explicit

scope_fail(EFP&& f) ;

7 Remark: This constructor shall not participate in overload resolution unless is_-
constructible_v<EF,EFP> is true.

8 Requires: Given an lvalue f of type EFP, the expression f() shall be well formed
and shall have well-defined behavior.

9 Effects: If EFP is not a lvalue-reference type and is_nothrow_constructible_-

v<EF,EFP> is true, initialize exit_function with move(f) otherwise initialize
exit_function with f. If the copying throws an exception, calls f().

10 Throws: Any exception thrown during the copying of f.

template<class EFP>

explicit

scope_success(EFP&& f) ;

11 Remark: This constructor shall not participate in overload resolution unless is_-
constructible_v<EF,EFP> is true.

12 Effects: If EFP is not a lvalue-reference type and is_nothrow_constructible_-

v<EF,EFP> is true, initialize exit_function with move(f) otherwise initialize
exit_function with f.
[Note: If copying fails, f() won’t be called. — end note]

13 Throws: Any exception thrown during the copying of f.

scope_guard (scope_guard && rhs) ;

14 Effects: execute_on_destruction yields the value rhs.execute_on_destruction
yielded before the construction. If is_nothrow_move_constructible_v<EF> move
constructs otherwise copy constructs exit_function from rhs.exit_function. If
construction succeeds, call rhs.release().

15 Throws: Any exception thrown during the copying of rhs.exit_function.

P0052R2 2016-03-18 13

~scope_exit() noexcept(true);

16 Effects:

if (execute_on_destruction)

exit_function();

~scope_fail() noexcept(true);

17 Effects:

if (execute_on_destruction

&& uncaught_exceptions() > uncaught_on_creation)

exit_function();

~scope_success() noexcept(noexcept(exit_function()));

18 Effects:

if (execute_on_destruction

&& uncaught_exceptions() <= uncaught_on_creation)

exit_function();

19 Remarks: If noexcept(exit_function()) is false, exit_function() may throw
an exception, notwithstanding the restrictions of [res.on.exception.handling].

20 Throws: If noexcept(exit_function()) is false, throws any exception thrown
by exit_function().

void release() noexcept;

21 execute_on_destruction=false;

14 P0052R2 2016-03-18

7.4.2 Scope guard factory functions [scope.make scope exit]

1 The scope guard factory functions create scope_exit, scope_fail, and scope_success

objects that for the function object exit_function evaluate exit_function() at their
destruction unless release() was called.

template <class EF>

scope_exit<decay_t<EF>> make_scope_exit(EF&& exit_function) ;

2 Returns: scope_exit<decay_t<EF>>(forward<EF>(exit_function));

template <class EF>

scope_fail<decay_t<EF>> make_scope_fail(EF&& exit_function) ;

34 Returns: scope_fail<decay_t<EF>>(forward<EF>(exit_function));

template <class EF>

scope_success<decay_t<EF>> make_scope_success(EF&& exit_function) ;

56 Returns: scope_success<decay_t<EF>>(forward<EF>(exit_function));

P0052R2 2016-03-18 15

7.4.3 Unique resource wrapper [scope.unique resource]

7.4.4 Class template unique_resource [scope.unique resource.class]

template<class R,class D>

class unique_resource {

public:

template<class RR, class DD>

explicit unique_resource(RR&& r, DD&& d)

noexcept(is_nothrow_constructible_v<R, RR>&&

is_nothrow_constructible_v<D, DD>)

unique_resource(unique_resource&& rhs)

noexcept(is_nothrow_move_constructible_v<R> &&

is_nothrow_move_constructible_v<D>);

unique_resource(const unique_resource&)=delete;

~unique_resource();

unique_resource& operator=(unique_resource&& rhs) ;

unique_resource& operator=(const unique_resource&)=delete;

void swap(unique_resource& other);

void reset();

template<class RR>

void reset(RR&& r);

void release() noexcept;

const R& get() const noexcept;

R operator->() const noexcept;

see below operator*() const noexcept;

const D& get_deleter() const noexcept;

private:

R resource; // exposition only
D deleter; // exposition only
bool execute_on_destruction{true}; // exposition only

};

1 [Note: unique_resource is meant to be a universal RAII wrapper for resource handles
provided by an operating system or platform. Typically, such resource handles are of
trivial type and come with a factory function and a clean-up or deleter function that
do not throw exceptions. The clean-up function together with the result of the factory
function is used to create a unique_resource variable, that on destruction will call the
clean-up function. Access to the underlying resource handle is achieved through get()

and in case of a pointer type resource through a set of convenience pointer operator
functions. — end note]

2 The template argument D shall be a Destructible (Table 24) function object type (20.9
), for which, given a value d of type D and a value r of type R, the expression d(r) shall
be well formed, shall have well-defined behavior, and shall not throw an exception.

3 R shall be a Destructible (Table 24) object type or a lvalue reference type.
4 [Note: In case of R being a lvalue reference, an implementation should chose reference_-

wrapper<R> as type for resource and adjust functionality accordingly by delegating to
resource.get() in appropriate places. In case of D being a reference_wrapper instan-

16 P0052R2 2016-03-18

tiation no special delegation is required, since reference_wrapper already delegates the
call operator ([refwrap.invoke]). — end note]

5 Requires: (is_copy_constructible_v<R> || is_nothrow_move_constructible_v<R>)

&& (is_copy_constructible_v<D> || is_nothrow_move_constructible_v<D>)

template<class RR, class DD>

explicit unique_resource(RR&& r, DD&& d)

noexcept(is_nothrow_constructible_v<R, RR>

&& is_nothrow_constructible_v<D, DD>)
6 Remarks: given

template<class T, class TT>

using is_ntmocp_constructible =

conditional_t<

is_reference_v<TT> || !is_nothrow_move_constructible_v<TT>,

is_constructible<T, TT const &>,

is_constructible<T, TT>>;

template<class T, class TT>

constexpr auto is_nothrow_move_or_copy_constructible_from_v =

is_ntmocp_constructible <T,TT>::value;

this constructor shall not participate in overload resolution unless
is_nothrow_move_or_copy_constructible_from_v <R, RR> is true

and
is_nothrow_move_or_copy_constructible_from_v <D, DD> is true.

7 Effects: If RR is not a lvalue-reference and is_nothrow_constructible<R,RR>

is true, initializes resource with move(r), otherwise initializes resource with
r. Then, if DD is not an lvalue reference and is_nothrow_constructible<D,DD>

is true, initializes deleter with move(d), otherwise initializes deleter with d.
If construction of resource throws an exception, calls d(r). If construction of
deleter throws an exception, calls d(resource). [Note: The explained mecha-
nism should ensure no leaking resources. — end note]

8 Throws: any exception thrown during construction.

unique_resource(unique_resource&& rhs)

noexcept(is_nothrow_move_constructible_v<R> &&

is_nothrow_move_constructible_v<D>);

9 Effects: If is_nothrow_move_constructible_v<R> is true, initialize resource

from forward<R>(rhs.resource), otherwise initialize resource from rhs.resource.
[Note: If construction of resource throws an exception rhs is left owning the
resource and will free it in due time. — end note] Then if is_nothrow_move_-

constructible_v<D> is true initialize deleter from forward<D>(rhs.deleter),
otherwise initialize deleter from rhs.deleter. If construction of deleter throws
an exception: if !is_nothrow_move_constructible_v<R>, then rhs.deleter(resource)

P0052R2 2016-03-18 17

; rhs.release(); otherwise rhs.resource and rhs.deleter are unmodified and
rhs can be left owning the resource. Finally, execute_on_destruction is ini-
tialized with exchange(rhs.execute_on_destruction,false). [Note: The ex-
plained mechanism should ensure no leaking resources. — end note]

unique_resource& operator=(unique_resource&& rhs) ;

10 Requires:
(is_nothrow_move_assignable_v<R> || is_copy_assignable_v<R>) and
(is_nothrow_move_assignable_v<D> || is_copy_assignable_v<D>)

11 Effects: If this == &rhs no effect. Otherwise reset(); followed by Given the
members resource and deleter If nothrow_move_assignable_v<R>, try to copy
or move assign deleter from rhs.deleter first then resource=forward<R>(rhs.resource),
if nothrow_move_assignable_v<D>, try to copy or move resource from rhs.resource

first then deleter=forward<D>(rhs.deleter), otherwise try to copy the two
members. Then execute_on_destruction = exchange(rhs.execute_on_destruction,

false);. [Note: If a copy of a member throws an exception this mechanism leaves
rhs intact and *this in the released state. — end note]

12 Throws: Any exception thrown during a copy-assignment of a member that can
not be moved without an exception.

13 [Note: The move semantics differ from pair [pairs.pair] and tuple[tuple.tuple], because
it is important that unique_resource will not leak its held resource. — end note].

~unique_resource();

14 Effects: reset().

void reset();

15 Effects: Equivalent to

if (execute_on_destruction) {

execute_on_destruction=false;

get_deleter()(resource);

}

template <class RR>

void reset(RR && r) ;

16 Given

18 P0052R2 2016-03-18

template<class T>

constexpr conditional_t<

(!is_nothrow_move_assignable_v<T> &&

is_copy_assignable_v<T>),

T const &,

T &&>

move_assign_if_noexcept (T &x) noexcept

{

return std::move(x);

}

17 Remarks: This function shall not participate in overload resolution if resource =

move_assign_if_noexcept (r) is ill-formed.

18 Effects: Equivalent to

reset();

resource = move_assign_if_noexcept (r);

execute_on_destruction = true;

If copy-assignment of resource throws an exception, get_deleter()(r).

void release() noexcept;

19 Effects: execute_on_destruction = false.

const R& get() const noexcept ;

R operator->() const noexcept ;

20 Remarks: Member operator-> shall not participate in overload resolution unless
is_pointer_v<R> && is_nothrow_copy_constructible_v<R>

&&(is_class_v<remove_pointer_t<R>> || is_union_v<remove_pointer_t<R>>)

is true.

21 Returns: resource.

see below operator*() const noexcept ;

22 Remarks: Member operator* shall not participate in overload resolution unless
is_pointer_v<R> is true.

23 Returns: *resource. The return type is equivalent to add_lvalue_reference_-

t<remove_pointer_t<R>>.

const D & get_deleter() const noexcept;

24 Returns: deleter

P0052R2 2016-03-18 19

7.4.5 Factories for unique_resource [scope.make unique resource]

template<class R,class D>

unique_resource<decay_t<R>, decay_t<D>>

make_unique_resource(R && r, D && d)

noexcept(is_nothrow_constructible_v<decay_t<R>, R> &&

is_nothrow_constructible_v<decay_t<D>, D>);
1 Returns:

unique_resource<decay_t<R>, decay_t<D>>(forward<R>(r), forward<D>(d))

template<class R,class D>

unique_resource<R&,decay_t<D>>

make_unique_resource(reference_wrapper<R> r, D d)

noexcept(is_nothrow_constructible_v<decay_t<D>, D>);

2 Returns: unique_resource<R&,decay_t<D>>(r.get(),forward<D>(d))

3 [Note: There is no need to overload on reference_wrapper<D> for the deleter.
— end note]

template<class R,class D, class S=R>

unique_resource<decay_t<R>,decay_t<D>>

make_unique_resource_checked(R&& r, S const & invalid, D && d)

noexcept(is_nothrow_constructible_v<decay_t<R>, R> &&

is_nothrow_constructible_v<decay_t<D>, D>);

4 Requires: If s denotes a (possibly const) value of type S and r denotes a (possibly
const) value of type R, the expressions s == r and r == s are both valid, both
have the same domain, both have a type that is convertible to bool, and bool(s

== r) == bool(r == s) for every r and s. If S is the same type as R, R shall be
EqualityComparable(Table 17).

5 Effects: As if

bool mustrelease = bool(r == invalid);

auto ur= make_unique_resource(forward<R>(r), forward<D>(d));

if(mustrelease) ur.release();

return ur;

6 [Note: This factory function exists to avoid calling a deleter function with an
invalid argument. The following example shows its use to avoid calling fclose

when fopen failed and returned NULL. — end note]

7 [Example:

auto file = make_unique_resource_checked(

::fopen("potentially_nonexisting_file.txt", "r"),

(FILE*) NULL, &::fclose);

— end example]

20 P0052R2 2016-03-18

8 Appendix: Example Implementations

removed, see
https://github.com/PeterSommerlad/SC22WG21 Papers/tree/master/workspace/P0052 -
scope exit/src

