Respect vector::reserve(request)
Relative to Reallocation

Document number: N4524
Date: 2015-05-22
Project: Programming Language C++, Library Evolution Working Group

Reply-to: Nevin “®@” Liber, nliber@drw.com

Table of Contents

0000 301 L1 ot o) T, 1
Motivation and SCOPE ...uciiimmmremsmmsmsmmsmisssssnsssssss s ——————————— 1
Impact On the Standard ... ———————————— 2
DeSign DECISIONS ... nan 2
Technical SPecifiCations ... ——————————_——_———— 2

[VECEOT.CAPACIEY | coueererreerseesreessressessseessesssesssesseessesssesssesssesssesssessse s bR bbb 2

010} oYY ) | 0P TEPTT 2
ACKNOWIEdZEMENLS ..o s 3
2S5 (2] (=) 1 o 3
Introduction

If vector: :reserve () reallocates, respect the user’s capacity request.

Motivation and Scope

As part of the discussion around N4416, a question about vector: :reserve ()
arose. If vector::reserve () has to reallocate, it may ask for more space than
requested by the user. Because vector tracks its capacity independent of the
allocator, there is no mechanism for vector to communicate with its allocator to
take advantage of this freedom (such as to negotiate an optimal allocation size). Itis
also a non-expert user expectation that vector won’'t waste memory when a
specific capacity is requested.

libstdc++ (gcc 5.1.0), libc++ (Apple clang 3.4) and Visual Studio 2013 all currently
just pass the requested size down to the allocator, so this is just standardizing
existing practice.


mailto:nliber@drw.com
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4416.pdf

Impact On the Standard
A two word deletion in the wording for vector::reserve() as well as

introducing a section describing the current behavior for
vector<bool>::reserve ().

Design Decisions
Because vector<bool> would have to do additional bookkeeping to accomplish
this, so no behavior change to vector<bool> is being proposed.

While std::basic string also has a reserve () member function, it has
sufficiently different semantics that such changes are beyond the scope of this
proposal.

If there are other implementations of vector that somehow know what allocator
they are expected to be used with, they would no longer have the freedom to adjust
the size requested from the user to their tightly coupled allocator.

Technical Specifications
Changes are relative to N4431:

[vector.capacity]

void reserve(size_type n);
Requires: T shall be Movelnsertable into *this.

Effects: A directive that informs a vector of a planned change in size, so that it can manage the storage
allocation accordingly. After reserve(), capacity() is ERCOISEESE cqual to the argument of reserve if
reallocation happens; and equal to the previous value of capacity() otherwise. Reallocation happens at this
point if and only if the current capacity is less than the argument of reserve(). If an exception is thrown
other than by the move constructor of a non-Copylnsertable type, there are no effects.

Complexity: It does not change the size of the sequence and takes at most linear time in the size of the
sequence.

Throws: length_error if n > max_size().

Remarks: Reallocation invalidates all the references, pointers, and iterators referring to the elements in the
sequence. No reallocation shall take place during insertions that happen after a call to reserve() until the
time when an insertion would make the size of the vector greater than the value of capacity().

[vector.bool]
void flip() noexcept;

Effects: Replaces each element in the container with its complement.

i size_ Y


http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4431.pdf

Throws: length_error if n > max_size().
Acknowledgements

Thanks to Howard Hinnant for testing out the various production standard libraries,
Rob Douglas for looking over the wording as well as Marshall Clow for helping with
the title.

References

N4416 - Don't Move: Vector Can Have Your Non-Moveable Types Covered
N4431 - Working Draft, Standard for Programming Language C++


http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4416.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4431.pdf

