N4420 - Defining Test Code

Robert Douglas and Michael Price
April 8th, 2015

Introduction

Testing has gone beyond the purview of the responsible programmer, and become an integral
part of the development process.

Tests are a means to aid in design, discovery of functionality, documentation of intent,
explanation of behavior, protection from regressions, and easing maintenance burdens. The
standard, however, provides no means by which a developer can define their test code and
share it in a manner that does not pollute their production binaries.

As of this time, the state-of-the-art for writing tests in C++ comes down to the authors choice
in a third party tool, almost certainly built entirely on macros, and most often forcing the most
basic tests to be located distant to the code to which they refer. From some anecdotes, build
systems may even introduce additional dedicated libraries to just facilitate testing, so as to
prevent pollution of the production binary.

Existing Practice

Each language has varying levels of support for testing, and highly varied designs for writing
and executing tests. The following is a small sampling from a variety of languages, in the
means they employ to enable testing. For links to these, please see the references section at
the end of this paper.

C++

C++ sports many available libraries, including Boost Test, CppUnit, CUTE, Google Test, and
Qt Test. None of these are standardized or shipping with the language, and each diverges in
features and usage patterns. The large open field of frameworks and libraries also leads to
many proprietary solutions.

Python
Doctest and unittest modules provide ability to write tests in comments and/or in test classes.

Java

The JUnit and TestNG libraries provide annotations (roughly equivalent to C++ attributes) and
support various conventions that allow test code to be identified and which can be used by
tools to execute and report results.

D

For D, the tests can be defined with the code-under-test. This is accomplished by the keyword
‘unittest.” Given the proper switch, the D Compiler will compile test code into the executable.



The binary that is produced will execute the tests after static initialization and before entry into
the “main” function.

Proposal

To distinguish ‘test code’ from ‘non-test code’, we propose to add a new qualifier or attribute.
For the purpose of this paper, we use the placeholder, ‘test’:

void foo() test

{
struct Inner {}; // implied test
}
struct MyFixture test
{
void memberFn(); // implied test
struct Inner {}; // implied test
s

template<typename T>
struct MyTemplate test {};

template<typename T>
void templateFn() test {}

int main() test {}

Code marked "test" (test-code) can only be referenced by other test-code. 'Test' is a qualifier
of a function or class. Only a 'test' function can create an instance of a test class, directly call
a test function, take reference to a test function, or make reference of a test class as a type
passed to a template. A test-class implicitly has all member functions and sub-classes marked
'test’, and likewise for non-member functions.

struct TestClass test {};
struct NonTestClass {};
void nonTestFn();

void testFn() test {
TestClass tc; // Ok
NonTestClass ntc; // Ok
nonTestFn(); // Ok
testFn(); // Ok
std: :function<void()> ntf(&nonTestFn); // 0Ok
std: :function<void()> tf(&testFn); // Ok
}

void nonTestFn() {
nonTestFn(); // Illegal. testFn is not visible to non-test code
std: :function<void()> fn(&testFn); // Illegal. testFn is not visible to non-test code
TestClass tc; // Illegal. TestClass is not visible to non-test code




The relationship between test-code and non-test code, is similar to the relationship between
mutable and const. That is, test-code can be given by test-code to non-test code. Notice,
above, the passing of nonTestFn to std: : function<void () >.

With this distinction of test-code and non-test code, it becomes possible to define an
additional version of main, qualified by ‘test.” The upshot of this feature, allows us to define an
entry-point to the program, to run the tests. By separating out the tests from the non-tests, the
production binary can benefit from omitting the test code, generating a smaller footprint, while
still benefiting from the compile-time checks the test-code performs. It is expected, then, that
a well built compiler can then emit a second binary with the test-main as the entry point,
allowing the application developer to define how they exercise their test code.

Example: (to compile this example, simply add #define test, to the top of the file)

#include <algorithm>

template<typename BiDirectionalIterator>
bool isPalindrome(BiDirectionalIterator first, BiDirectionalIterator last)

if (std::distance(first, last) > 1)

{
for (; first < last; ++first, --last)
{
if (*first != *last) return false;
}
}

return true;

}

#include <string>
#include <stdexcept>

void isPalindrome_assertTrue_ForEmpty() test

{
std::string emptyStr;
if (!isPalindrome(emptyStr.begin(), emptyStr.end()))
throw std::runtime_error("empty string should be palindrome");
}
void isPalindrome_assertTrue_ForlElem() test
{
std::string str("1");
if (!isPalindrome(str.begin(), str.end() - 1))
throw std::runtime_error("1l element string should be palindrome");
}
void isPalindrome_assertTrue_ForManyElems_evenCount() test
{
std: :string str("123321");
if (!isPalindrome(str.begin(), str.end() - 1))
throw std::runtime_error("Even number of elements failed");
}
void isPalindrome_assertTrue_ForManyEems_oddCount() test
{

std::string str("12321");
if (!isPalindrome(str.begin(), str.end() - 1))




throw std::runtime_error("0dd number of elements failed");

}
void isPalindrome_assertFalse_ForManyElems_evenCount() test
{
std::string str("123456");
if (isPalindrome(str.begin(), str.end() - 1))
throw std::runtime_error("Even number of elements failed");
}
void isPalindrome_assertFalse_ForManyEems_oddCount() test
{
std: :string str("12345");
if (isPalindrome(str.begin(), str.end() - 1))
throw std::runtime_error("0dd number of elements failed");
}

#include <iostream>
#tinclude <vector>
#include <functional>

int main() test

{

std: :vector<std: :function<void()>> tests {
&isPalindrome_assertTrue_ForEmpty,
&isPalindrome_assertTrue_ForlElem,
&isPalindrome_assertTrue_ForManyElems_evenCount,
&isPalindrome_assertTrue_ForManyEems_oddCount,
&isPalindrome_assertFalse_ForManyElems_evenCount,
&isPalindrome_assertFalse_ForManyEems_oddCount

¥

std::for_each(tests.begin(), tests.end(), [](std::function<void()> const& fn){
try
{

n();
std::cout << "Test Passed" << std::endl;
catch (std::runtime_error e)
{
std::cerr << "Failed: " << e.what() << std::endl;

}

1

}

When the tests can accompany the code, the behavior is defined and proven.

Not Included in this Proposal

1. Bikeshedding of keyword/attribute

Assertion library

Explicit way to reflect over all the defined test functions

Prescribed means for running all the tests

Distinction between types of tests: unit/acceptance/integration/examples/etc

A

Requested Straw Polls

e \We like the distinction between test and non-test code
o We like the ability to define a test-main



We like the direction of keyword-based qualification

We like the direction of an attribute-base qualification

We want to be able to define a separate test-main

We want this, even without accompanying assertion library

We want this, even without reflection-like test-discovery

We would like to see an exploration of namespace test-attribution

o O O O O O

Acknowledgements

Thanks to Alex Kondratskiy for his help in this domain. Also, thanks to KCG for their continued
support in this endeavour.

References
"25.2. Doctest — Test Interactive Python Examples." 25.2. Doctest. Web. 08 Apr. 2015.

<https://docs.python.org/2/library/doctest.html>.

"25.3. Unittest — Unit Testing Framework." 25.3. Unittest. Web. 08 Apr. 2015.

<https://docs.python.org/2/library/unittest.html>.

"Boost Test Library." Boost Test Library. Web. 08 Apr. 2015.

<http://www.boost.org/doc/libs/1 57 0/libs/test/doc/html/index.html>.

"CUTE." Writing and Running Unit Test Suites. Web. 08 Apr. 2015.

<http://cute-test.com/projects/cute/wiki/Writing and Running CUTE Unit Test Suites>

"CppUnit Cookbook." CppUnit. Web. 08 Apr. 2015.

<http://cppunit.sourceforge.net/doc/cvs/cppunit _cookbook.html>.

"JUnit - About." JUnit - About. Web. 08 Apr. 2015. <http://junit.org/>.

"Qt Test 5.4." Qt Test 5.4. Web. 08 Apr. 2015. <http://doc.qt.io/qt-5/attest-index.html>.

"TestNG - Welcome." TestNG - Welcome. Web. 08 Apr. 2015.

<http://testng.org/doc/index.html>.

"Unit Tests." - D Programming Language. Web. 08 Apr. 2015. <http://dlang.org/unittest.html>.



https://docs.python.org/2/library/doctest.html
https://docs.python.org/2/library/unittest.html
http://www.boost.org/doc/libs/1_57_0/libs/test/doc/html/index.html
http://cute-test.com/projects/cute/wiki/Writing_and_Running_CUTE_Unit_Test_Suites
http://cppunit.sourceforge.net/doc/cvs/cppunit_cookbook.html
http://junit.org/
http://doc.qt.io/qt-5/qttest-index.html
http://testng.org/doc/index.html
http://dlang.org/unittest.html

"Googletest - Google C Testing Framework - Google Project Hosting." Googletest - Google C
Testing Framework - Google Project Hosting. Web. 08 Apr. 2015.

<https://code.google.com/p/googletest/>.



https://code.google.com/p/googletest/

