
Source-Code Information Capture

Robert Douglas

2014-10-10

Document Number: N4129 followup to N3972

Date: 2014-10-10

Project: Programming Language C++

1 Introduction

Unchanged from N3972 Logging, testing, and invariant checking each produce messages
containing information such as file names, line numbers, and function names. Currently,
the only way to get at this information, while avoiding code duplication at each invo-
cation, is through the use of function macros. Function macros expand to the location
of use, thus allowing LINE , FILE , and func to be interpreted in the context
of the callers site. If this is where the issue ended, it may not be such a big deal. Un-
fortunately, for each of these domains, we end up with hundreds of macros, used widely
across most code bases.

1.1 Changes from N3972

Removed Section on wording to support operators and specifying behavior for std::source_-
context as a member of class. Included column_offset_from_start_of_file(). In-
cluded a variety of other changes, given the feedback from Rapperswil.

1.2 Straw Poll Results

For reference, straw poll results can be found here: http://wiki.edg.com/twiki/bin/view/Wg21rapperswil2014/N3972

• Straw poll: do we want this feature? 17/4/1/2/0

• Straw poll: Remove special rules for non-static data member of type source -
context? Yes (unanimous)

• Straw poll: adding ”offset from beginning of file” to v1? 2/8/12/3/0 ”meh, yes”

1



2

• Straw poll: adding a pretty function name member function to v1? 1/8/8/3/2
”meh, no”

• Straw poll: add comparison operators (or equivalent) to v1? 2/4/6/8/3

• Straw poll: do we require a reference implementation of this proposal before it
goes to LEWG? 0/4/6/9/1

• Straw poll: if so, do we want to see a revision of v1 before sending to LEWG? No
(unanimous)

• Straw poll: Should we do the type’s name bike shed here or leave it to LEWG?
No (unanimous)

• Straw poll: Should we leave the delivery vehicle to LEWG? Yes (unanimous)

2 Design Examples

The following examples illustrate some of the expected usage of source information being
passed to library functions.

2.1 Test-Assertions/Invariant-Checks

Unchanged from N3972

template<typename T>

void assert_equal(T const& l, T const& r, source_context sc = source_context()) {

if (!(l == r)) {

std::ostringstream os;

os << sc.file_name() << ":" << sc.line_number()

<< ":" << sc.column()

<< ":" << sc.function_name()

<< " Error: " << l << " != " << r;

throw std::runtime_error(os.str());

}

}

template<template<class, class> class C, typename T, typename Allocator>

void assert_equal(

C<T, Allocator> const& l,

C<T, Allocator> const& r,

source_context sc = source_context()) {

if (l.size() != r.size()) {

std::ostringstream os;

os << sc.file_name() << ":" << sc.line_number()

<< ":" << sc.column()

<< ":" << sc.function_name()

<< " Error: container sizes mismatch: ("



3

<< l.size() << ", " << r.size() << ")";

throw std::runtime_error(os.str());

}

for (typename C<T, Allocator>::const_iterator

lit = begin(l), lEndIt = end(l), rit = begin(r);

lit != lEndIt; ++lit, ++rit) {

// Explicit about source information, so that
// the information of the caller of this site is used
assert_equal(*lit, *rit, sc);

}

}

2.2 Logging

Unchanged from N3972

template<typename LoggerT, typename MessageT>

void log(

Logger & l,

LogLevel level,

MessageT const& message,

source_context sc = source_context()) {

if (logger.level() >= level) {

l << sc.file_name() << ":" << sc.line_number()

<< ":" << sc.column()

<< ":" << sc.function_name()

<< ":" << message << std::endl;

}

}

template<typename LoggerT, typename MessageT>

void log_debug(

Logger & l,

MessageT const& message,

source_context sc = source_context()) {

log(l, LogLevel::Debug, message, sc);

}

2.3 Column Offset from Beginning of File

New in N4129

#include <iostream>

#define PI 3.1415926535898

void foo(source_context sc = source_context())

{



4

cout << sc.column_offset_from_start_of_file() << std::endl;

}

void bar()

{

foo(); // prints 178, I believe. directives need to be included, so do new lines.
May thus be different result on Windows where build tools convert line endings automtically.
counting tabs as 1 character
}

3 Proposal

3.1 Library Additions

3.1.1 Create an object std::source_context

namespace std {

struct source_context {

constexpr source_context() noexcept;

constexpr size_t line_number() const noexcept;

constexpr size_t column() const noexcept;

constexpr size_t column_from_start_of_file() const noexcept;

constexpr char const* file_name() const noexcept;

constexpr char const* function_name() const noexcept;

};

}

constexpr source_context::source_context() noexcept;
1 Effects: Constructed with values corresponding to its source location.

Values shall show parity with corresponding macros __FILE__, __LINE_-

_, __func__. When used as a default-variable expression, (dcl.fct.default)

the resulting values shall be as-if it were instantiated at the call-site.

[Examples:

void f(std::source_context a = std::source_context()) {

std::source_context b; // values for ”b” represent this line of code
}

void g() {

f(); // f’s ”a” represents this line of code

std::source_context c;

f(c); // f’s ”a” gets the same values as ”c”, above
}

– end example ]



5

constexpr int source_context::line_number() const noexcept;

2 Returns: Integer representing the line number of the declaration.

constexpr int source_context::column() const noexcept;

3 Returns: Integer representing the character offset of the declaration,

from the start of the line. It is implmentation-defined, how this value

is generated.

constexpr int source_context::column_offset_from_start_of_file() const noexcept;

4 Returns: Integer representing the character offset of the declaration.

constexpr char const* source_context::file_name() const noexcept;

5 Returns: NTBS representing the name of the file in which it was instantiated.

constexpr char const* source_context::function_name() const noexcept;

6 Returns: NTBS representing the name of the function in which it was instantiated,

if applicable.

3.2 Language Changes

This proposal should be implementable without any changes to the core language.

4 Design Notes

4.1 General Notes

Previous discussions considered a language feature to indicate whether the default-
variable expression should be evaluated at the call-site. Upon further reflection, I believe
that we can specify this feature without need to extend or amend the grammar. Rather,
this proposal simply defines how source_context (a new feature) should be handled in
terms of default-variables. It may be of worth to note that __func__ is undefined when
used as a default variable.

It is expected that source_context can be implemented as a pointer to an entry
in a table in memory. Thus, copying should be a constant cost, regardless of the data
referenced by the source_context object.



6

For both performance and correctness concerns, the data referenced by source_-

context is immutable.
Constructor overloads were omitted due to the lack of any convincing use-case for

them, and the potential complexity they might otherwise impose on the class. Nothing
in this proposal should forbid such extensions in the future. For instance, one might
want to create a source_context object from a reference to a callstack and an index,
should such objects be defined at some point.

All function and class names should be considered purely placeholders until such
time as bike-shedding is done within the committee. Some additional names suggested
through the reflector:

• std::source info (original draft proposal name, changed, given feedback from reflec-
tor)

• std::source location

• std::source

• std::source loc

• std::src loc

• std::caller

• std::caller location

• std::caller loc

• std::call location

• std::call loc

• std::called from

• std::called by

Author’s Note: This class should not be interpreted as purely location-centric informa-
tion for now and forever. Nor is it solely a means to gather information on who called
you. These are both problems this class means to address, but neither are the totality of
it. It is intended to be a means to capture information, of whatever form, of the actual
source code at the point of instantiation of the object, and to aggregate that information
into a single object which can be passed through memory inexpensively.

This class must be copyable and assignable, so that it may be moved between threads,
or stored for later consumption, with minimal cost. Discussion has centered around what
functions can be made constexpr. Being admittedly ignorant of the nuances of literal-
types, I have taken a stab at adding these identifiers. It is my opinion that optimizing for
compile-time operations is far less critical than run-time copying. Logging, in particular
for real-time systems, is typically done in parallel tasks. As such, copying the data to



7

log is an extremely time-sensitive operation, in contrast to the subsequent formatting.
Thus, if contention between the two appears evident, this proposal should be interpreted
to favor the run-time performance of copying and assignment.

4.2 Known Limitations and Future Directions

Use of default-parameters alongside a parameter-pack cannot be represented by the fea-
tures in this proposal. This proposal’s focus is to introduce the source_context object,
and define its behavior when initializing a default-variable, and as a class-member. This
proposal does not preclude a future feature to allow some form of call-stack introspection,
or other means of gathering call-site information off the runtime-stack. Thus, the lan-
guage should not be hindered, either now or in the future, to getting call-site information
on a function taking a parameter-pack.

A request was made for multiple versions of function_name(). One for the compiler
preferred, one for the developer-preferred*. My lack of inclusion of this feature is purely
based on my need to appeal to the more experienced in standardese, for input on how
to specify such a thing, considering that this proposal seeks to avoid mandating the
contents of any strings. I would love to see such a feature, but the means to specify it,
elude me. *paraphrased

4.3 Notes Regarding Operators

Unchanged from N3972 A discussion on the reflector ensued regarding adding logical-
comparisons, equality-comparison, and a hash-function to source_context. The moti-
vation for the feature request was to allow for the object’s usage within a sorted container,
such as std::map or in an unsorted-container such as std::unordered_map. This re-
quest was driven by a desire to develop analytics, such as tracking the number of times
a function is called from one site or another.

It is my strong opinion that there is no natural ordering for std::source_context.
It was observed that within related discussions, opinions varied as to what it would mean
to compare two lines of code as ”equal.” Also, to give a definition for sorting behavior,
would necessitate defining how the component strings should be formatted. With no
such guarantees, there can be no guarantee that two implementations will agree on how
many times a single call-site actually calls a particular function. Considering also, that
there is no known implementation of sorting aggregated source-code information, the
feature has been intentionally omitted from this proposal.

It should be noted that this proposal does not prohibit such a feature from being
added later. If such a proposal would be offered, I strongly suggest that it be driven by
some implementation experience.

It is the author’s opinion that, should these operators be considered, then future
designs should prefer solutions which provide standalone comparators and hash-functors,
supporting at least:



8

• Comparison based on just file name, to facilitate grouping by calls from anywhere
in a file

• Comparison based on file name first and line number second to facilitate what
some may consider a ”natural ordering”

• Comparison based on file name first, line number second, and column third, a
clause stating new standards may extend it with information like ”compile time/-
date”, for the finest-grained groupings

• Comparison based on just function name to facilitate grouping by calls from a
particular function

• Comparison based on function name first, and line number second, as a means to
accomplish the same as file name-then-line number, above, except where file paths
or changed header names create problems with identification of equivalent call-sites

4.4 Open Questions

• What would a feature-testing name look like?

5 Acknowledgements

I want to thank all the members of SG7 and the reflector community, who have provided
feedback on the direction and wording of this proposal.

A special thanks to Nevin Liber, Faisal Vali, Jay Miller, Jason Smith, Richard Berlint,
the rest of my coworkers at KCG, and the Informal C++ Chicago Group, for their
support and input on this topic.

And especially, a I want to acknowledge and thank KCG for their support in my
involvement with PL22.16.


