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1 INTRODUCTION 
Networking has a long history of programs being written using event-driven and 
asynchronous programming designs. The use of asynchronous operations with continuations, 
in particular, offers a good model for abstraction and composition. Asynchronous operations 
may be chained, with each continuation initiating the next operation. The composed 
operations may then be abstracted away behind a single, higher level asynchronous operation 
with its own continuation. 

N3634 proposes an evolution of std::future with the addition of a then() member 
function, amongst other things. This function allows one to attach a continuation to a future, 
and is intended for use with asynchronous operations. With these extensions, std::future is 
proposed as a standard model for representing asynchronous operations. 

N3650 builds on these extensions to std::future with a new language facility, resumable 
functions. The new keywords, async and await, are intended to ease composition of 
asynchronous operations by enabling the use of imperative flow control primitives. 

In this paper, we will first examine how futures can be a poor choice as a fundamental 
building block of asynchronous operations in C++. The extended std::future brings 
inherent costs that penalise programs, particularly in domains where C++ use is prevalent 
due to its low overheads. An asynchronous model based on a pure callback approach, on the 
other hand, allows efficient composition of asynchronous operations. 

However, cognizant that some C++ programmers may have valid reasons for preferring a 
futures-based approach, this paper introduces a universal model for asynchronous 
operations. This model supports both lightweight callbacks and futures, allowing the 
application programmer to select an approach based on appropriate trade-offs. 

Finally, we will see how this universal model can be leveraged to support other models of 
composition. This paper presents implementation experience of the universal model, which 
includes several pure library implementations of resumable functions, or coroutines. 
Programmers have the opportunity to express asynchronous control flow in an imperative 
manner, without requiring the addition of new keywords to the language. 
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2 CALLBACKS VERSUS FUTURES 
This paper uses the terms callbacks and futures as shorthand for two asynchronous models. 

These two models have several concepts in common: 

• An initiating function that starts a given asynchronous operation. The arguments to 
this function, including an implicit this pointer, supply the information necessary to 
perform the asynchronous operation. 

• A continuation that specifies code to be executed once the operation completes. 

The callbacks model1 refers to a design where the continuation is passed, in the form of a 
function object, as an argument to the initiating function: 

socket.async_receive(args,	  continuation);	  

In this example, async_receive() is the initiating function. When the asynchronous receive 
operation completes, the result is passed as one or more arguments to the callback object 
continuation. In Boost.Asio, these continuations are called handlers. 

With the futures model, the initiating function returns a future object. The caller of the 
initiating function may then attach a continuation to this future: 

socket.async_receive(args).then(continuation);	  

Or, more explicitly: 

std::future<size_t>	  fut	  =	  socket.async_receive(args);	  
...	  
fut.then(continuation);	  

Alternatively, the caller may choose to do something else with the future, such as perform a 
blocking wait or hand it off to another part of the program. This separation of the 
asynchronous operation initiation from the attachment of the continuation can sometimes be 
a benefit of the futures model. However, as we will see below, this separation is also the 
source of the runtime costs associated with the model. 

To maximise the usefulness of a C++ asynchronous model, it is highly desirable that it 
support callbacks. Reasons for preferring a callbacks model include: 

• Better performance and lower abstraction penalty. 
• A fundamental building block. Futures, resumable functions, coroutines, etc. can be 

efficiently implemented in terms of callbacks. 
• Not tied to threading facilities. It is possible to implement efficient callback-based 

network programs on platforms that have no thread support. 

This paper aims to demonstrate that supporting callbacks need not be mutually exclusive to 
providing support for futures. 

  

                                                             
1 An implementation of the callbacks model in C++ can be found in the Boost.Asio library, in Boost versions up to 
and including 1.53. 
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3 PERFORMANCE MATTERS 
Long-time network programmers may have encountered the following misconception: that 
performance is not a primary concern, due to the high latencies involved in network I/O. 

Latency may be an acceptable justification for a high abstraction penalty in the context of 
HTTP clients on desktop operating systems. However, higher overheads mean lower 
throughput. For programs, such as servers, that handle network I/O events from multiple 
sources, the latency to the peer is often irrelevant; the program needs to be ready to handle 
the next event immediately. Furthermore, the deleterious effects of queuing and congestion 
are felt well before a system reaches 100% utilisation. 

And, while it is true that typical Internet latencies are high, often measured in tens or 
hundreds of milliseconds, high latency is not an inherent attribute of network I/O. By way of 
illustration, consider the following two data points: 

⇒ Transmit a 64-byte UDP packet from a user-space application 
on one host to a user-space application on another host (i.e. 
RTT/2), across a 10GbE network. 

2 microseconds 

⇒ On the same hardware and operating system, wake up and 
switch to a thread that is blocked on a std::future object. 

3 microseconds 

There are many real world use cases where C++ is used because it allows for high-level 
abstractions with a low abstraction penalty. For example, the author is familiar with systems 
in the financial markets domain where performance differences measured in microseconds 
have a significant impact on an application’s efficacy. 

It is for these use cases that the choice of asynchronous model matters most. If C++ were to 
adopt a restricted asynchronous model based only on futures, potential C++ standard library 
components such as networking would have their usefulness limited. To meet their 
application’s performance requirements, programmers of these systems would have to step 
outside the standard library. Put another way, C++ and its standard library would have less 
to differentiate it from other, higher-level languages. 

4 ANATOMY OF AN ASYNCHRONOUS OPERATION 
To see the inherent costs of a futures model, let us take code of the form: 

socket.async_receive(args).then(continuation);	  

and consider the underlying sequence of events2: 

                                                             
2 In reality, the implementation is more complicated than presented, as the then() member function itself returns an 
additional std::future object with another shared state. It is likely that this second shared state is where the 
continuation is ultimately stored. 
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The initiating function creates the future’s shared state and launches the asynchronous 
operation. The caller then attaches the continuation to the future. Some time later, the 
asynchronous operation completes and the continuation is invoked. 

However, after the asynchronous operation is initiated, it is logically executing in its own 
thread of control. It is executing in parallel to the caller, and so it is possible for the operation 
to complete before the continuation is attached, as shown in the following sequence of events: 

 

As a consequence, the shared state object has a non-deterministic lifetime, and requires some 
form of synchronisation to coordinate the attachment and invocation of the continuation. 

In contrast, when the callbacks model has code of the form: 

caller&

async&opera,on&

future’s&
shared&state&

«creates»&

«ini,ates»&

con,nua,on&

future.then(con,nua,on)&

promise.set_value(X)&

«creates»&

«invokes»&
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socket.async_receive(args,	  continuation);	  

we see the following, simpler sequence of events: 

 

The initiating function accepts the continuation object and launches the asynchronous 
operation. The caller’s flow of control ceases at this point3, and the asynchronous operation is 
not executing in parallel with it. Unlike the futures model, there are no shared objects with 
non-deterministic lifetime, and no additional synchronisation is required. 

5 COMPOSITION OF OPERATIONS 
Let us now consider what happens when asynchronous operations are composed. A typical 
scenario involves a network protocol with a fixed-length header and variable-length body. 
For this example, the tree of operations might be as follows: 

⇒ Read message 
⇒ Read header 

⇒ Read N bytes 
⇒ Read data off socket 

⇒ Read body 
⇒ Read N bytes 

⇒ Read data off socket 

Each operation represents a level of abstraction, and has its own set of post-conditions that 
must be satisfied before its continuation can be invoked. For example, the “Read N bytes” 
operation exists to manage the problem of partial reads (where a socket returns fewer bytes 
than requested), and cannot call its continuation until the requested number of bytes is read 
or an error occurs. 

With futures, as we go down the tree we see a sequence of events similar to the following: 

                                                             
3 Technically, the caller’s lifetime is not required to end at this time. It can continue to perform other computations or 
launch additional asynchronous operations. The important point is that it is not required to continue in parallel to 
the asynchronous operation in order to attach a continuation. 

caller&

async&opera,on&
«ini,ates,&passes&con,nua,on»&

con,nua,on&
«creates»&

«invokes»&
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When the operations complete, and assuming each post-condition is immediately satisfied, 
the sequence of events is: 

 

As you can see, each layer of the abstraction adds synchronisation overhead. On the systems 
available to the author, the cost of synchronisation mechanisms such as a mutex (when 
uncontended) or sequentially consistent atomic variable is some 10-15 nanoseconds per use. 

When composing operations with callbacks, these costs are not incurred on the way down the 
tree of operations: 

caller&

read&hdr&

fss1&

cont1& fss2&

read&N&

fss3&

read&

cont2&

cont3&

Synchronised&

Synchronised&

Synchronised&

fss1$

cont1$

fss2$ fss3$ read$

cont2$ cont3$

Synchronised$

Synchronised$

Synchronised$
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Nor are they present on the way back up: 

 

In addition to avoiding synchronisation costs at each layer, when written as templates the 
compiler is given the opportunity to further optimise, such as inlining continuations. This 
means that it is possible to create layers of abstraction that have little or no runtime 
abstraction penalty. 

  

caller&

read&hdr&

cont1&

read&N&

read&

cont2&

cont3&

cont1& read&cont2& cont3&
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6 A PLETHORA OF FUTURES 
Let us limit ourselves, for a moment, to considering only a futures model. All asynchronous 
operations would take the following form: 

class	  socket	  {	  
	  	  ...	  	  
	  	  std::future<size_t>	  async_receive(buffer_type	  buffer);	  
	  	  ...	  
};	  

This approach raises the following questions: 

• How do we specify a custom allocator? 
• How do we support alternate future types? For example: 

⎯ A future that waits / does not wait on destruction. 
⎯ A future with no blocking operations at all. 
⎯ A future for use only in single-threaded programs. 
⎯ A future that works with 3rd party coroutines. 
⎯ A future that works with a 3rd party executor. 

In acknowledging that there are use cases where there are valid reasons for preferring a 
futures model to a callbacks model, the question is: can we have a single model that supports 
callbacks and futures (in all their incarnations)? 

7 A UNIVERSAL MODEL 
In Boost 1.54, the Boost.Asio library introduced a universal asynchronous model that 
supports callbacks, futures, and resumable functions or coroutines. The model is also user 
extensible to allow the inclusion of other facilities. Before we look at how the model works, in 
this section we will review some of the ways in which the model can be used. 

7.1 CALLBACKS 
Callbacks continue to work as before. As they are simply function objects, they can be 
specified using function pointers: 

void	  handle_receive(error_code	  ec,	  size_t	  n)	  {	  ...	  }	  
...	  
socket.async_receive(buffer,	  handle_receive);	  

or lambdas: 

socket.async_receive(buffer,	  
	  	  [](error_code	  ec,	  size_t	  n)	  
	  	  {	  
	  	  	  	  ...	  
	  	  });	  

or with function object binders: 
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socket.async_receive(buffer,	  
	  	  std::bind(handle_receive,	  _1,	  _2));	  

With some suitable macro magic4, we can even have callbacks that are implemented as 
“stackless” coroutines: 

struct	  handler	  :	  coroutine	  
{	  
	  	  ...	  
	  	  void	  operator()(error_code	  ec,	  size_t	  n)	  
	  	  {	  
	  	  	  	  reenter	  (this)	  
	  	  	  	  {	  
	  	  	  	  	  	  ...	  
	  	  	  	  	  	  while	  (!ec)	  
	  	  	  	  	  	  {	  
	  	  	  	  	  	  	  	  yield	  socket.async_receive(buffer,	  *this);	  
	  	  	  	  	  	  	  	  ...	  
	  	  	  	  	  	  }	  
	  	  	  	  	  	  ...	  
	  	  	  	  }	  
	  	  }	  
	  	  ...	  
};	  

Here we can make use of imperative control flow structures to implement complex 
asynchronous logic in a synchronous manner.  Runtime overhead is minimal: the coroutine 
state is stored in an integer, and re-entering a coroutine is equivalent to resuming a switch-
based state machine. 

7.2 FUTURES 

By passing a special value use_future (similar in concept to how the global object 
std::nothrow is used to tag overloaded functions), initiating functions return a 
std::future that can be used to wait for the asynchronous operation to complete: 

try	  
{	  
	  	  future<size_t>	  n	  =	  
	  	  	  	  socket.async_receive(	  
	  	  	  	  	  	  buffer,	  use_future);	  
	  	  //	  Use	  n.get()	  to	  obtain	  result	  
}	  
catch	  (exception&	  e)	  
{	  
	  	  ...	  
}	  

The correct return type is automatically deduced based on the asynchronous operation being 
used. For example, this code calls async_receive, and the result is a future<size_t> to 
represent the number of bytes transferred. In section 8 we will see how this type is obtained. 

                                                             
4 Implemented in terms of a switch statement using a technique similar to Duff’s Device. 
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If the asynchronous operation fails, the error_code is converted into a system_error 
exception and passed back to the caller through the future. 

The use_future special value also allows a custom allocator to be specified: 

try	  
{	  
	  	  future<size_t>	  n	  =	  
	  	  	  	  socket.async_receive(	  
	  	  	  	  	  	  buffer,	  use_future[my_allocator]);	  
	  	  //	  Use	  n.get()	  to	  obtain	  result	  
}	  
catch	  (exception&	  e)	  
{	  
	  	  ...	  
}	  

The use_future object may likewise be passed to asynchronous operations that are 
themselves compositions. If these compositions are built using callbacks, the intermediate 
operations and their continuations are executed efficiently as in the callbacks model. Only at 
the final step is the future made ready with the result. However, should any intermediate 
step result in an exception, that exception is caught and stored on the future, where it will be 
re-thrown when the caller performs get(). 

7.3 COROUTINES / RESUMABLE FUNCTIONS 
Support for “stackful” coroutines has been implemented on top of the Boost.Coroutine and 
Boost.Context libraries. This is a pure library solution of resumable functions that does not 
require the addition of any new keywords. 

A yield_context object is used to represent the current coroutine. By passing this object to 
an initiating function, we indicate that the caller should be suspended until the operation is 
complete: 

void	  receive_message(yield_context	  yield)	  
{	  
	  	  try	  
	  	  {	  
	  	  	  	  size_t	  n	  =	  socket.async_receive(buffer,	  yield);	  
	  	  	  	  ...	  
	  	  }	  
	  	  catch	  (exception&	  e)	  
	  	  {	  
	  	  	  	  ...	  
	  	  }	  
}	  

The return type of the initiating function is deduced based on the operation being called. If 
the operation fails, the error_code is converted into a system_error exception and passed 
back to the caller through the future. In many use cases, an error is not exceptional, and it is 
preferable that it be handled using other control flow mechanisms. With these coroutines, the 
error can be captured into a local variable: 
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void	  receive_message(yield_context	  yield)	  
{	  
	  	  ...	  
	  	  error_code	  ec;	  
	  	  size_t	  n	  =	  socket.async_receive(buffer,	  yield[ec]);	  
	  	  if	  (ec)	  ...	  
}	  

As each coroutine has its own stack, local variables and complex control flow structures are 
available, exactly as they would be in a synchronous implementation of the algorithm: 

void	  do_echo(yield_context	  yield)	  
{	  
	  	  try	  
	  	  {	  
	  	  	  	  char	  data[128];	  
	  	  	  	  for	  (;;)	  
	  	  	  	  {	  
	  	  	  	  	  	  size_t	  n	  =	  socket.async_read_some(buffer(data),	  yield);	  
	  	  	  	  	  	  async_write(socket,	  buffer(data,	  n),	  yield);	  
	  	  	  	  }	  
	  	  }	  
	  	  catch	  (std::exception&	  e)	  
	  	  {	  
	  	  	  	  //	  ...	  
	  	  }	  
}	  

A yield_context object may be passed to composed operations that are built only using 
callbacks. The coroutine functions themselves also compose easily through direct function 
calls. These functions share a stack, and the bottommost function suspends the coroutine 
until an asynchronous operation completes. Unlike futures, returning a result from a lower 
abstraction layer has minimal cost; it is the same as returning a result from a normal function. 

Finally, as a comparison, here is an example of an async/await-based resumable function 
shown side-by-side with its equivalent using Boost.Asio’s coroutines: 

Example using Microsoft’s PPL5 Equivalent using library-based coroutines 

task<string>	  
read(string	  file,	  string	  suffix)	  
	  	  	  	  __async	  {	  
	  	  istream	  fi	  =	  __await	  open(file);	  
	  	  string	  ret,	  chunk;	  
	  	  while((chunk	  =	  __await	  fi.read()).size())	  
	  	  	  	  ret	  +=	  chunk	  +	  suffix;	  
	  	  return	  ret;	  
}	  
	  

string	  
read(string	  file,	  string	  suffix,	  
	  	  	  	  	  yield_context	  yield)	  {	  
	  	  istream	  fi	  =	  open(file,	  yield);	  
	  	  string	  ret,	  chunk;	  
	  	  while((chunk	  =	  fi.read(yield)).size())	  
	  	  	  	  ret	  +=	  chunk	  +	  suffix;	  
	  	  return	  ret;	  
}	  

7.4 PROPOSED BOOST.FIBER LIBRARY 

Boost.Fiber6, a library that is being developed and proposed for inclusion in Boost, provides a 
framework for cooperatively scheduled threads. As with “stackful” coroutines, each fiber has 
                                                             
5 Copied from http://video.ch9.ms/sessions/build/2013/2-‐306.pptx 
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its own stack and is able to suspend its execution state. The Boost.Fiber library supplies many 
concurrency primitives that mirror those in the standard library, including mutexes, 
condition variables and futures. 

The proposed Boost.Fiber library has been extended to support the universal asynchronous 
model. This has been achieved without requiring any Boost.Fiber-specific extensions to 
Boost.Asio. 

Firstly, we can use Boost.Fiber’s future class in the same way as std::future, except that 
waiting on the future suspends the current fiber: 

try	  
{	  
	  	  boost::fibers::future<size_t>	  n	  =	  
	  	  	  	  socket.async_receive(buffer,	  
	  	  	  	  	  	  boost::fibers::asio::use_future);	  
	  	  //	  Use	  n.get()	  to	  obtain	  result	  
}	  
catch	  (exception&	  e)	  
{	  
	  	  ...	  
}	  

Secondly, we can suspend the current fiber automatically when performing an asynchronous 
operation, in a similar fashion to the integration with Boost.Coroutine shown above: 

try	  
{	  
	  	  size_t	  n	  =	  socket.async_receive(buffer,	  
	  	  	  	  	  	  boost::fibers::asio::yield);	  
	  	  ...	  
}	  
catch	  (exception&	  e)	  
{	  
	  	  ...	  
}	  

In both cases, the use_future and yield names refer to special values, similar to 
std::nothrow. When passed, the appropriate return type is deduced based on the 
asynchronous operation that is being called. 

8 HOW THE UNIVERSAL MODEL WORKS 
To understand the universal asynchronous model, let us first consider the callbacks model 
from Boost.Asio (used in Boost version 1.53 and earlier). We will then examine the 
incremental changes that have been applied to create the universal model. 

In a callbacks model, a typical initiating function will look something like this: 

                                                                                                                                                                              
6 https://github.com/olk/boost-‐fiber 
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template	  <class	  Buffers,	  class	  Handler>	  
void	  socket::async_receive(Buffers	  b,	  Handler&&	  handler)	  
{	  
	  	  ...	  
}	  

To convert to the universal model, we need to determine the return type and how to obtain 
the return value: 

template	  <class	  Buffers,	  class	  Handler>	  
????	  socket::async_receive(Buffers	  b,	  Handler&&	  handler)	  
{	  
	  	  ...	  
	  	  return	  ????;	  
}	  

This is achieved by introducing two customisation points into the implementation. 

8.1 CUSTOMISATION POINT 1: CONVERT TO THE “REAL” HANDLER TYPE 
In the callbacks model, the type Handler was the function object type to be invoked on 
completion of the operation. In the universal model, it may actually be a placeholder type, 
such as yield_context or the type of the use_future object. 

Therefore it is first necessary to determine the real type of the handler. This is achieved by the 
following type trait: 

template	  <typename	  Handler,	  typename	  Signature>	  
struct	  handler_type	  {	  
	  	  typedef	  ...	  type;	  
};	  

The Signature template parameter is based on the callback arguments for the given 
asynchronous operation. For a socket receive operation the Signature is void(error_code,	  
size_t), and the real handler type may be deduced as follows: 

typename	  handler_type<Handler,	  void(error_code,	  size_t)>::type	  

The real handler type must support construction from the placeholder type, as the initiating 
function will attempt to construct a real handler as follows: 

typename	  handler_type<	  
	  	  Handler,	  void(error_code,	  size_t)>::type	  
	  	  	  	  real_handler(std::forward<Handler>(handler));	  

The handler_type template would be specialised for any type that must participate in the 
universal asynchronous model. For example, when we write: 

auto	  fut	  =	  socket.async_receive(buffers,	  use_future);	  

the initiating function performs the equivalent of: 
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typename	  handler_type<	  
	  	  use_future_t,	  void(error_code,	  size_t)>::type	  
	  	  	  	  real_handler(handler);	  

which yields a real_handler object of type promise_handler<size_t>. The 
promise_handler<> template is an implementation detail of Boost.Asio, and it simply sets a 
std::promise<> object’s value when an asynchronous operation completes. 

8.2 CUSTOMISATION POINT 2: CREATE THE INITIATING FUNCTION’S RESULT 
With the callbacks model, initiating functions always have a void return type. In the 
universal model, the return type must be deduced and the return value determined. This is 
performed through the async_result type: 

template	  <typename	  Handler>	  
class	  async_result	  {	  
public:	  
	  	  //	  The	  return	  type	  of	  the	  initiating	  function.	  
	  	  typedef	  ...	  type;	  
	  
	  	  //	  Construct	  an	  async	  result	  from	  a	  given	  handler.	  
	  	  explicit	  async_result(Handler&	  handler)	  {	  ...	  }	  
	  
	  	  //	  Obtain	  initiating	  function’s	  return	  type.	  
	  	  type	  get()	  {	  return	  ...;	  }	  
};	  

The async_result template is specialised for real handler types, and acts as the link between 
the handler (i.e. the continuation) and the initiating function’s return value. For example, to 
support std::future support the template is specialised for the promise_handler<> 
template: 

template	  <typename	  T>	  
class	  async_result<promise_handler<T>>	  {	  
public:	  
	  	  //	  The	  return	  type	  of	  the	  initiating	  function.	  
	  	  typedef	  future<T>	  type;	  
	  
	  	  //	  Construct	  an	  async	  result	  from	  a	  given	  handler.	  
	  	  explicit	  async_result(promise_handler<T>&	  h)	  {	  f_	  =	  h.p_.get_future();	  }	  
	  
	  	  //	  Obtain	  initiating	  function’s	  return	  value.	  
	  	  type	  get()	  {	  return	  std::move(f_);	  }	  
	  
private:	  
	  	  future<T>	  f_;	  
};	  

8.3 PUTTING IT TOGETHER 
Thus, to implement an initiating function that supports the universal model, the following 
modifications are required: 
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template	  <class	  Buffers,	  class	  Handler>	  
typename	  async_result<	  
	  	  typename	  handler_type<Handler,	  
	  	  	  	  void(error_code,	  size_t)>::type>::type	  
socket::async_receive(Buffers	  b,	  Handler&&	  handler)	  
{	  
	  	  typename	  handler_type<Handler,	  
	  	  	  	  void(error_code,	  size_t)>::type	  
	  	  	  	  	  	  real_handler(std::forward<Handler>(handler));	  
	  
	  	  async_result<decltype(real_handler)>	  
	  	  	  	  result(real_handler);	  
	  
	  	  ...	  
	  
	  	  return	  result.get();	  
}	  

To illustrate how this operates in practice, let us manually work through the steps that the 
compiler performs for us when we write: 

auto	  fut	  =	  socket.async_receive(buffers,	  use_future);	  

First, after expanding uses of the handler_type trait to be the “real” handler type, we get: 

template	  <class	  Buffers>	  
typename	  async_result<promise_handler<size_t>>::type	  
socket::async_receive(Buffers	  b,	  use_future_t&&	  handler)	  
{	  
	  	  promise_handler<size_t>	  
	  	  	  	  real_handler(std::forward<Handler>(handler));	  
	  
	  	  async_result<decltype(real_handler)>	  
	  	  	  	  result(real_handler);	  
	  
	  	  ...	  
	  
	  	  return	  result.get();	  
}	  

Second, we expand the uses of the async_result template to get: 

Deduce the initiating function’s return type 

Construct real handler object 

Link initiating function’s return value to handler 

Return the initiation function’s result 
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template	  <class	  Buffers>	  
std::future<size_t>	  
socket::async_receive(Buffers	  b,	  use_future_t&&	  handler)	  
{	  
	  	  promise_handler<size_t>	  
	  	  	  	  real_handler(std::forward<Handler>(handler));	  
	  
	  	  future<size_t>	  f	  =	  real_handler.p_.get_future();	  
	  
	  	  ...	  
	  
	  	  return	  std::move(f);	  
}	  

8.4 WHAT HAPPENS WITH PLAIN OL’ CALLBACKS 
The default implementations of the handler_type and async_result templates is as 
follows: 

template	  <typename	  Handler,	  typename	  Signature>	  
struct	  handler_type	  {	  
	  	  typedef	  Handler	  type;	  
};	  
	  
template	  <typename	  Handler>	  
class	  async_result	  {	  
public:	  
	  	  typedef	  void	  type;	  
	  	  explicit	  async_result(Handler&	  h)	  {	  /*	  No-‐op	  */	  }	  
	  	  type	  get()	  {	  /*	  No-‐op	  */	  }	  
};	  

These defaults are used when passing a simple callback (i.e. function object) as a handler. In 
this case the compiler expands the templates such that the code is effectively: 

template	  <class	  Buffers,	  typename	  Handler>	  
void	  
socket::async_receive(Buffers	  b,	  Handler&&	  handler)	  
{	  
	  	  Handler	  real_handler(std::forward<Handler>(handler));	  
	  
	  	  /*	  No-‐op	  */	  
	  
	  	  ...	  
	  
	  	  /*	  No-‐op	  */	  
}	  

This is equivalent to the code in Boost versions 1.53 and earlier. This means that the universal 
model does not introduce any additional runtime overhead for programs that use callbacks. 
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9 IMPACT ON THE STANDARD 
Support for a universal model of asynchronous operations is based entirely on library 
extensions and does not require any language features beyond those that are already 
available in C++11. 

Adding support for a universal model would involve the addition of two new type traits: 
handler_type and async_result. Furthermore, the standard may provide guidance on the 
use of these type traits in the implementation of asynchronous operations. 

The standard library may also be extended to provide seamless support for std::future 
under the universal model. This support is orthogonal to other proposed modifications to 
std::future, such as the addition of the then() member function. 

If the universal model is adopted then other facilities, such as library-based coroutines, may 
be considered as separate proposals. 

10 CONCLUSION 
Asynchronous operations have gained widespread use and acceptance in domains such as 
network programming. In many of these use cases, performance is important and the 
inherent runtime penalties of std::future make it an inappropriate choice for a 
fundamental building block. 

With the universal asynchronous model presented in this paper, we have the ability to select 
an asynchronous approach that is appropriate to each use case. The universal model 
supports: 

• Callbacks, where minimal runtime penalty is desirable. 
• Futures, and not just std::future but also future classes supplied by other libraries. 
• Coroutines or resumable functions, without adding new keywords to the language. 

Perhaps most importantly, with the customisation points that the universal model provides, 
it can be extended to support other tools for managing asynchronous operations, including 
ones that we have not thought of yet. The universal model broadens the vocabulary that is 
available for managing asynchronous control flow, but with a relatively small impact on the 
standard. 
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