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Abstract

This report presents a concept design for the algorithms part of the STL and outlines the
design of the supporting language mechanism. Both are radical simplifications of what was
proposed in the C++0x draft. In particular, this design consists of only 41 concepts (includ-
ing supporting concepts), does not require concept maps, and (perhaps most importantly)
does not resemble template metaprogramming.
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1 Introduction
The report is based on the result of a meeting August 4-9, 2011 hosted by A9.com in Palo Alto.
Initiative for the meeting came from Andrew Lumsdaine of Indiana University, and the goal of
the meeting was to produce a good conceptual definition of the STL and the language used to
describe it.

The design we present is based on an initial draft specification of the algorithm sections of
the STL and the concepts needed by that specification (written by Alex Stepanov, Dan Rose,
and Anil Gangolli). The draft is clearly based on the influential book, Elements of Programming
by Stepanov and McJones (2009), which describes the application of “the deductive method to
programming by affiliating programs with the abstract mathematical theories that enable them
to work.” The design applies these ideas to the STL using the C++11 programming language,
and addresses issues not dealt with in EoP: the rich C++ type system, move semantics, lambda
expressions, and heterogeneous algorithm argument types. This design is (eventually) intended
for ISO standardization.

In addition to the initial draft of the concepts and algorithms contained in this report that
was prepared by our A9.com hosts, Alex Stepanov mailed out two papers to the participants
ahead of the meeting:

1. “An Implementation of C++ Concepts in Clang” by Voufo et al. (2011). This paper presents
a branch of the Clang compiler that is designed to support language feature prototyping,
especially for concept-related features. The initial version of the compiler focused on
features related to the C++0x proposal.

2. “Design of Concept Libraries for C++” by Sutton and Stroustrup (2011). The paper dis-
cusses concept design for C++ libraries and lays out a set of fundamental concepts that
could be used as a basis for the STL. The design emphasizes the difference between purely
syntactic requirements, called constraints, and concepts, which include both syntax and
semantics.

These papers address some issues that were discussed during the meeting.

1.1 Motivation
The subject of this report are concepts for STL. Although concepts are familiar to much of our
audience, we give a brief background to make this report complete and readable for a person
that has not heard about concepts before.

A concept is a predicate that expresses a set of requirements on types. These requirements
consist of syntactic requirements, which what related types, literals, operations, and expressions
are available, and semantic requirements that give meaning to the required syntax and also
provide complexity guarantees. Concepts are the basis of generic programming in C++ and allow
us to write and reason about generic algorithms and data structures by constraining template
arguments.

Concepts are not new to C++; the idea of stating and enforcing type requirements on template
arguments has a long history (several methods are discussed in The Design and Evolution of C++

(Stroustrup, 1994, ch. 15.4). Concepts were a part of documentation of the STL and are used
to express requirements in the C++ standard (C++ Standards Committee, 2011). For example,
Table 1 shows the definition of the STL InputIterator concept; it describes the requirements
on types that would be used to iterate over and access (read) a sequence of elements. The first
column lists expressions that must be valid (usable) for every input iterator, and the second gives
their result types. The third and the fourth column describe the semantics of the expressions.
Additionally, any type that would be an InputIterator must also satisfy the requirements of the
Iterator and EqualityComparable concepts (not pictured).
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c� ISO/IEC N3291=11-0061

Table 106 — Iterator requirements

Expression Return type Operational Assertion/note
semantics pre-/post-condition

*r reference pre: r is dereferenceable.
++r X&

24.2.3 Input iterators [input.iterators]

1 A class or a built-in pointer type X satisfies the requirements of an input iterator for the value type T if
X satisfies the Iterator (24.2.2) and EqualityComparable (Table 17) requirements and the expressions in
Table 107 are valid and have the indicated semantics.

2 In Table 107, the term the domain of == is used in the ordinary mathematical sense to denote the set of
values over which == is (required to be) defined. This set can change over time. Each algorithm places
additional requirements on the domain of == for the iterator values it uses. These requirements can be
inferred from the uses that algorithm makes of == and !=. [Example: the call find(a,b,x) is defined only
if the value of a has the property p defined as follows: b has property p and a value i has property p if
(*i==x) or if (*i!=x and ++i has property p). —end example ]

Table 107 — Input iterator requirements (in addition to Iterator)

Expression Return type Operational Assertion/note
semantics pre-/post-condition

a != b contextually
convertible to
bool

!(a == b) pre: (a, b) is in the domain
of ==.

*a convertible to T pre: a is dereferenceable.
The expression
(void)*a, *a is equivalent
to *a.
If a == b and (a,b) is in
the domain of == then *a is
equivalent to *b.

a->m (*a).m pre: a is dereferenceable.
++r X& pre: r is dereferenceable.

post: r is dereferenceable or
r is past-the-end.
post: any copies of the
previous value of r are no
longer required either to be
dereferenceable or to be in
the domain of ==.

(void)r++ equivalent to (void)++r
*r++ convertible to T { T tmp = *r;

++r;
return tmp; }

3 [Note: For input iterators, a == b does not imply ++a == ++b. (Equality does not guarantee the substi-

§ 24.2.3 841

Table 1: The InputIterator concept from the C++ standard

Currently, it is conventional to name template arguments with their corresponding concepts.
For example, the standard specifies the find algorithm as:

template<typename InputIterator, typename T>
InputIterator find(InputIterator first, InputIterator last, const T& value);

Here, the InputIterator template argument should satisfy the requirements listed in Table 1.
Instantiating the algorithm over a type that does meet the stated requirements should fail to
compile. Unfortunately, instantiation failures can only be caught at the point of failure. For
example, if find is called as find(1, 5, 2), the compiler will emit the message, “ int does not provide
a unary operator*” (or something similar) and refer to the location in the program that triggered
the lookup error. This can lead to very long and indecipherable error messages. One of the main
reasons for including concepts as a part of the C++ language is to improve type checking for
templates and generate better error messages.

An initial draft of concepts was designed for C++0x that did address many of the problems
above. For example, the C++0x declaration of find is:

template<InputIterator Iter, typename T>
requires EqualtiyComparable<Iter::value_type, T>
Iter find(Iter first, Iter last, const T& value);

In this design, calling find(1, 5, 2) would result in an error message such as, “no concept map
found for InputIterator<int>,” indicating that int fails some of the requirements of the InputIterator
concept. These instantiation errors can be caught at the point of use rather than failure, making
error messages more readable.

The design has its flaws. For example, the C++0x specification of unique_copy is:

template<InputIterator InIter, class OutIter,
EquivalenceRelation<auto, InIter::value_type> Pred>

requires OutputIterator<OutIter, RvalueOf<InIter::value_type>::type>
&& HasAssign<InIter::value_type, InIter::reference>

6



&& Constructible<InIter::value_type, InIter::reference>
&& CopyConstructible<Pred>

OutIter unique_copy(InIter first, InIter last, OutIter result, Pred pred);

The requirements of the algorithm describe what syntax is used in the implementation more
than the abstractions required of the template parameters. In that sense, the design breaks
encapsulation. This is one of the major problems that we seek to fix in this work. We want
requirements to be terse and readable.

Furthermore, the C++0x made little use of axioms. Only four concepts (EqualityComparable,
LessThanComparable, EquivalenceRelation, and StrictWeakOrdering) had associated semantics.
Little if any meaning was attached to the syntax required by the concepts in the design. We feel
that this is antithetical to the ideas of generic programming. It isn’t possible to reason about
the behavior of a program when you don’t know what its symbols mean.

We have given only the briefest description of concepts and their role in C++. In order to help
understand the issues and choices made in this design, readers should have an understanding of
the designs provided in the C++0x draft:

1. Working Draft, Standard for Programming Language C++. WG21 N2914=09-0104 (C++

Standards Committee, 2009).

We also assume some acquaintance with the literature related to concepts, notably (and in
chronological order):

1. “Specifying C++ Concepts” by Dos Reis and Stroustrup (2006).

2. “Concepts: Linguistic Support for Generic Programming in C++” by Gregor et al. (2006).

3. “Axioms: Semantics Aspects of C++ Concepts” by Dos Reis et al. (2009).

4. “The C++0x "Remove Concepts" Decision” by Stroustrup (2009).

The concept design and the corresponding language are written using the C++11 program-
ming language, which is defined in ISO/IEC international C++ standard (C++ Standards Com-
mittee, 2011). We use features such as decltype, auto and type aliases freely. We do not think
that this design could be elegantly expressed in C++98.

1.2 Approach
The “meeting rules” were stated at the outset by Alex Stepanov:

Objective: Provide a good conceptual definition for the STL by the end of the week.
Approach: Specify only the concepts needed for the STL. A concept we will define should

either be used directly in an STL algorithm or be required to specify such a concept. To limit
our task we start only at the algorithms in Clause 25 (Algorithms library). This entailed:

1. Reviewing algorithm signatures going from more complex (sort) to simple (find).

2. Reviewing the list of concepts in the initial design, their names, and their semantics.

3. Reviewing the syntax of bodies of concept requirements.

4. Reviewing the syntax of algorithm declarations (preferably including the pre- and post-
conditions)

In a sense, we are designing concepts from scratch. We chose not to build on previous work
because we feel that the approach taken was backwards. In C++0x, concept design focused
on describing and designing language features, but not how they could be used to describe
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requirements in elegant and simple ways. We have approached the problem from the opposite
direction: write requirements first and designing the language to suit only our immediate needs.

The language for describing concepts will include only features needed to achieve the previ-
ously stated goals. This means:

• The design does not need concept maps so they do not appear as a language feature in
this report.

• The design does not require the disjunction of requirements.

• The design does not distinguish between concepts and constraints as in the paper by Sutton
and Stroustrup (2011).

These features and others can be added later, if needed.

1.3 Design Ideals
People arrived with a variety of ideals for the concepts and the language mechanisms. These
include:

1. The concepts for the STL must be mathematically and logically sound. By this, we mean
to emphasize the fact that we should be able to reason about properties of programs (e.g.,
correctness) with respect to the semantics of the language and the types used in those
programs.

2. The concepts used should express general ideas in the application domain (hence the name
“concepts”) rather than mere programming language artifacts. Thinking about concepts
as a yet another “contract” language can lead to partially formed ideas. Contracts force
programmers to think about requirements on individual functions or interfaces, whereas
concepts should represent fully formed abstractions.

3. The concepts should specify both syntactic and semantic requirements (“concepts are all
about semantics”—Alex Stepanov). A concept without semantics only partially specifies
an interface and cannot be reasoned about; the absence of semantics is the opposite of
soundness (“it is insanity”—Alex Stepanov).

4. Symbols and identifiers should be associated with their conventional meanings. Overloads
should have well defined semantics and not change the usual meaning of the symbol or
name.

5. The concepts as used to specify algorithms should be terse and readable. An algorithm’s
requirements must not restate the syntax of its implementation.

6. The number of concepts used should be low, in order to make them easier to understand
and remember.

7. An algorithm’s requirements must not inhibit the use of very common code patterns in its
implementation.

8. An algorithm should not contain requirements for syntax that it does not use, thereby
unnecessarily limiting its generality.

9. The STL with concepts should be compatible with C++11 except where that compatibility
would imply a serious violation of one of the first two aims.

8



Figure 1: Template requirements can be expressed in a range of ways, from exact syntactic
patterns to regular, abstract concepts.

Exact
Requirements

Abstract
Concepts

More concepts
Adaptable
Verbose

Under-specifies

Fewer concepts
Expressive

Terse
Over-constrains

These ideals were articulated by various people in the meeting, but not specifically enumerated,
and the design produced during the meeting attempts to satisfy these ideals.

Unfortunately, there are several conflicting goals that make it virtually impossible to meet
all of these expectations. In particular, the idea that requirements should allow common code
patterns but also be exact are at opposite ends of the spectrum shown in Fig. 1.

Every generic library design must choose the style in which it describes template requirements.
The ways in which requirements are specified has a direct impact on the design of the concepts
used to express them, and (as always) there are direct consequences of that choice.

For example, we could choose to state template requirements in terms of the exact syntax
requirements of the template. This leads to concept designs that have large numbers of small
syntactic predicates (e.g. HasPlus, HasComma, etc.). The benefit of this style of constraint is that
templates are more broadly adaptable: there are potentially more conforming types with which
the template will interoperate. On the downside, exact requirements tend to be more verbose,
decreasing the likelihood that the intended abstraction will be adequately communicated to the
library’s users. The C++0x design is, in many aspects, a product of this style.

On the other end of the spectrum, we could choose to express requirements in terms of
the required abstraction instead of the required syntax. This approach can lead to (far) fewer
concepts in the library design because related syntactic requirements are grouped to create
coherent, meaningful abstractions. Requirements can also be expressed more tersely, needing
fewer concepts to express a set of requirements that describe how types are used in an algorithm.
The use of abstract concepts also allows an algorithm to have more conforming implementations,
giving a library author an opportunity to modify (i.e. maintain) a template’s implementation
without impacting its requirements. The obvious downside to this style is that it over-constrains
templates; there may be types that conform to a minimal set of operations used by a template,
but not the full set of operations required by the concept. The concepts presented in Elements
of Programming approach this end of the spectrum.

The design presented in this report is somewhere in between. Clearly, we aim to emphasize
abstraction and clarity over exact requirements. However, we see this as a starting point from
which we might choose to strengthen template requirements. We know, for example, that there
are opportunities to better support interoperability with non-copyable types, and we present
this as an alternative design in Appendix D. However, that design also adheres to the goals and
ideals stated above; it just prioritizes them differently.

1.4 Organization
This report is organized roughly like the meeting that produced it:

1. The declarations of the algorithms of the STL, with requirements on template arguments
specified in terms of concepts. The concepts are informally described at their first use.
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2. The definition of the concepts used to specify the algorithms. The language features used
to define the concepts are informally described at their first use.

3. A set of appendices describing, in greater detail, the supporting language design and me-
chanics, preconditions and postconditions and alternative designs addressing issues and
defects discovered during this work.

This is a top-down approach emphasizing what we primarily want: good specifications of
algorithms. The concepts are defined to serve that end. The language features are defined
to provide good specifications of concepts, as needed by the STL. If you prefer a bottom-up
approach (e.g., language features before their uses), you can try to read the major sections of
this report in reverse order (starting with Appendix A), but we don’t recommend that.

The appendices of this report include:

1. A summary of the language features and mechanics defining and using concepts (Ap-
pendix A).

2. An index cross-referencing concepts and algorithms and concept diagrams showing depen-
dencies between concepts (Appendix C).

3. Preconditions and postconditions for the algorithms described in this report (Appendix B).

4. An alternative concept design emphasizing more exact requirements on STL algorithms
(Appendix D).

2 Algorithms
We start with algorithms because it is algorithms we want to specify cleanly, precisely, completely,
and readably. If we can specify algorithms well, our concepts and the language mechanisms
we use to specify the concepts are adequate. If not, no amount of sophistication in language
mechanisms will help us.

We begin by discussing some preliminary ideas about iterators and ranges that are common
to all algorithms. The algorithms in the STL, by and large, operate on iterator ranges. A
range, or more specifically a bounded range is written using interval notation: [first, last), for
example. This denotes a sequence of iterators that can be traversed, starting with first, and
reaching last through repeated increment operations (++). The last iterator in a bounded range
is sometimes called its limit (as in “up to but not including”). However, the name last is used
more conventionally in specifications of the STL; we follow suit.

More formally, a bounded range is described thus: for every iterator i in the range [first, last)
except last, the operation ++ is valid. Incrementing last is not guaranteed to result in a valid
iterator. Bounded ranges let us write loops like this:

while(first != last) {
// do something
++first;

}

We can, for example, write an algorithm to determine the distance between two iterators,
first and last.

template<typename Iter>
int distance(Iter first, Iter last)
{
int n = 0;
while(first != last) {
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++n;
++first;

}
return n;

}

This is roughly the same as the distance algorithm in the STL, although it is unconstrained
and returns int instead of an an associated distance type. For convenience, we often docu-
ment distances between iterators using subtraction. That is, writing last – first is equivalent to
distance(first, last).

Every algorithm in the STL that takes a pair of iterators first and last has an implied precon-
dition that [first, last) defines a valid bounded range. This ensures that ++ can be validly applied
to first at most last – first times. The precondition applies to algorithms with other argument
names, too:

• first1 and last1

• first2 and last2

Many algorithms in the STL do not specifically provide a second iterator as the limit of the
of the range, but they nonetheless require that the unpaired iterator can be incremented some
number of times. A range constructed from a starting iterator, say first, and an integral distance,
say n, is called a weak range. With weak ranges, we can write loops like this:

while(n > 0) {
// do something
++first;
––n;

}

This is essentially an implementation of the STL advance algorithm for input and forward iter-
ators:

template<typename Iter>
void advance(Iter& first, int n)
{
while(n > 0) {
++first;
––n;

}
}

The next function can be written in terms of advance.

template<typename Iter>
Iter next(Iter i, int n = 1)
{
advance(i, n);
return i;

}

We highlight these functions because they are important operations for iterators. They define
repeated applications (i.e. orbits) of an iterator’s increment operator. When documenting al-
gorithms, we often use addition to denote the repeated application of the increment operator,
even if the actual iterator type does not support the syntax. For example, writing first + n is
equivalent to writing next(first, n). The EoP book uses a special notation for differentiating weak
and bounded ranges. In this report, we adopt the notation used in the standard and write them
as bounded ranges: [first, first + n).
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EoP also differentiates between weak ranges and counted range. A counted range is a weak
range that has no cycles. A bounded range [first, last) is a counted range where first can be
incremented n times and last == first + n.

As with algorithms taking bounded ranges as arguments, every algorithm taking an unpaired
iterator has an implied precondition of a counted range. Algorithms ending with _n take a
range [first, first + n). Every algorithm with an unpaired iterator first2 (e.g. copy) has an implied
requirement on the range [first2, first2 + (last1 – first1)). Similar rules apply for arguments with
unpaired iterators with different names, in particular result arguments. This does not apply to
algorithms taking an unpaired iterator representing the midpoint of a sequence such as the rotate
algorithm.

Note that unlike the loop constructed with bounded ranges, loops on weak ranges do not
compare iterators using !=. Although a seemingly minor point, the fact that we don’t use
a particular operator (or set of operators) in the algorithm impacts its requirements. The
requirements for an algorithm are derived from the set of operations that it uses, no more
and no less. We don’t try to infer requirements about intended usage, either. An algorithm’s
requirements only reflect what is actually necessary for its implementation.

2.1 Non-modifying Sequence Operations
This family of algorithms evaluates properties of sequences of objects. In particular, these
algorithms test properties using equality and predicate functions. Testing a property of an
object requires reading from an iterator by dereferencing it. For example, for a unary predicate
function p, and iterators i and j, we could write:

p(*i) // testing using a predicate
*i == *j // testing two referenced objects for equality

Every algorithm in this section reads iterators in a similar way. We call iterators that can be
read input iterators. An algorithm taking a bounded range of input iterators is required to be
readable everywhere except at its limit. That is, for all iterators i in the range [first, last), the
expression *i is valid, except when i == last. This is a precondition of every algorithm taking a
range (bounded or weak) of input iterators.

2.1.1 All, Any, and None

The algorithms all_of, any_of, and none_of evaluate whether all, any, or no elements in a range
satisfy a given property, represented by a predicate function. The declaration of all_of is pretty
obvious:

template<InputIterator I, Predicate<ValueType<I>> P>
bool all_of(I first, I last, P pred);

Instead of a plain typename, we introduce template arguments with the concepts that de-
scribe their requirements. Here, the first argument I is required to be an InputIterator and the
second argument P is required to be a Predicate taking a single argument of type ValueType<I>.
InputIterator and Predicate are concepts.

All we have done here is to provide some syntax for precisely and tersely saying what the
standard requires for the all_of algorithm. The use of a concept as a “template argument type”
is a shorthand for mentioning the concept for the argument type as a requirements clause. We
could have equivalently declared all_of like this:

template<typename I, typename P>
requires InputIterator<I> && Predicate<P, ValueType<I>>
bool all_of(I first, I last, P pred);
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The template argument types that were used in the declaration above have been rewritten as a
requires clause: a conjunction of concept requirements. Each requirement is evaluated against
the template’s arguments and their associated types. When a concept is used as a template
argument type, the declared template argument is used as the first argument of the concept
when written as part of a requires clause.

• “InputIterator I” becomes InputIterator<I>.

• “Predicate<ValueType<I>> P” becomes Predicate<P, ValueType<I>>.

An InputIterator is a kind of iterator that supports forward traversal (++) and reading the
value by dereferencing (unary *). The reading of dereferenced values is required by all Readable
iterators, and every InputIterator is Readable.

P must be a Predicate function taking a ValueType<I>. By convention, all function objects
in the STL are required to be copy- and move-constructible. Copy and move assignment are not
required, nor is default construction.

ValueType<I> is a template alias that refers to the value type associated with a Readable iter-
ator. It replaces the use of typename iterator_traits<I>::value_type everywhere it would normally
appear in the STL. The use of template aliases as a replacement for type traits dramatically
simplifies the specification of requirements and algorithm signatures.

Note that we might have declared the function as:

template<typename I, typename P>
requires Predicate<P, ValueType<I>> && InputIterator<I>
bool all_of(I first, I last, P pred);

However, this may yield unexpected compiler errors. The evaluation of requirements is exactly
the same as the evaluation of Boolean conjunctions: left to right. In this last example, the
alias ValueType<I> is referenced before the concept that requires it: InputIterator. If we try to
instantiate the algorithm with a non-conforming type, say int, we may not get the graceful error
message we want. Instead of an error informing us that, “ int is not an InputIterator”, we might
get the less obvious error, “ValueType<int> does not name a valid type”.

The order in which requirements are evaluated is important. Requirements listed as the type
of template arguments are also evaluated from left to right and before the requires clause. A
concept should be checked before any of its associated types or functions are referenced in the
constrained template.

We are of the opinion that the first form (using concepts as template argument types) is
by far most readable for users (those mythical “ordinary programmers”), if not necessarily for
experienced type theorists. By convention, we use the most specific unary (single argument)
concept describing the template argument as its “type”. In the first declaration of all_of, the
template argument I is most specifically described as an InputIterator, and P as a Predicate
taking ValueType<I> as an argument. As matter of style, we prefer not to have “naked” type
names introducing template parameters when we can state their actual requirements.

We use an algorithm, such as all_of, exactly as in C++11. The only difference is that errors
are caught immediately at the call point. For example:

bool is_all_clear(vector<int>& v)
{
return all_of(v.begin(), v.end(), is_zero);

}

The vector iterators are InputIterators, so the first two arguments to all_of are acceptable. They
are, of course RandomAccessIterators, but as usual a RandomAccessIterator can be used where
an InputIterator is required (§3.5). If is_zero is a function (or a function object) that takes an
argument of a type to which int can be converted, and it returns something that can be converted
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to bool, the instantiation of the call to all_of succeeds; if not, we get an immediate compile-time
error because of the requirements on the algorithm.

Note that this definition of all_of does not require homogeneous types; the Predicate require-
ment accommodates conversion of argument types (§3.4). For example:

bool is_zero(long long x)
{
return x==0;

}

This is an acceptable function argument for the all_of declared above.
The type requirements and preconditions of any_of and none_of are identical to those of all_of.

template<InputIterator I, Predicate<ValueType<I>> P>
bool any_of(I first, I last, P pred);

template<InputIterator I, Predicate<ValueType<I>> P>
bool none_of(I first, I last, P pred);

Note that Elements of Programming calls the any_of algorithm, some Stepanov and McJones
(2009). This more closely aligns with conventional vocabulary of quantified expressions; “for
some x... ” is usually preferred over “for any x...” We think some_of would be a better name for
the algorithm. This is reflected in the quantifier notation presented in Appendix B.

The Predicate concept doesn’t just require that we can call pred with the value read from an
iterator *i; it requires that the function is equality preserving . That is, calling pred with equal
values will always yield equal results. For any objects x and y, if x==y, then pred(x)==pred(y),
regardless of the state of the program.

This doesn’t mean that pred has to be a functionally pure operation; side effects are allowed
as long as they don’t affect the computation in such a way that pred(x)==pred(x) can be false.
For example, the function object non_null satisfies the requirements of the Predicate concept in
the following program.

int tests = 0;

template<typename T>
struct non_null
{
bool operator(T const* p) const
{
++tests;
return p != nullptr;

}
};

However, a function that returns true or false based on a randomized coin flip is not a Predicate.
The equality preserving property supports our ability to reason equationally about programs.
We can’t expect concepts to be mathematically sound if we can’t support equational reasoning.
There are many useful cases, however, where equality preservation is not required.

2.1.2 For Each

The for_each algorithm applies a function to each element of a bounded range. Its declaration
is:

template<InputIterator I, Function<F, ValueType<I>> F>
F for_each(I first, I last, F f);

14



As with the all_of, any_of and none_of algorithms, this algorithm requires I to be an InputIterator
and a F to be a unary Function taking a ValueType<I> argument. Unlike the previous algorithms,
this one does not require F to be a predicate because the result of f is not used in a Boolean
context; in fact, the result is not used at all. F could have void as the result type, and it often
is in practice.

This algorithm is an example where a function is not required to preserve equality. The
Function concept, allows (and in fact expects) the expression f(*i) to have some side effects. The
result of f’s application is also ignored by the algorithm so there are no explicit dependencies
on its results. A perfectly reasonable template argument substitution for F would be a function
object that assigns a random value to each iterated object in the range (although generate might
be a better choice of algorithm for that application).

2.1.3 The Find Family

The following algorithms search for values in a range of iterators. These algorithms rely on (and
generalize) the equality comparison of values.

template<InputIterator I, EqualityComparable<ValueType<I>> T>
I find(I first, I last, const T& value);
// not fully compatible

The find algorithm searches for a value in the range [first, last) by comparing each iterator i in
that range to value using the expression *i == value. Obviously, I is required to be an InputIterator,
and T is required to be EqualityComparable with ValueType<I>.

The EqualityComparable concept is overloaded to describe requirements on a single type
(e.g. EqualityComparable<T>) or two types (e.g. EqualityComparable<T, ValueType<I>> (§3.3).
We use the latter version here since T and ValueType<I> are not required to be the same.

Note that this two-argument overload of EqualityComparable §3.3 does not simply mean that
an overload of == is available for the two types; this is not the same as HasEqual in the C++0x
proposal (C++ Standards Committee, 2009). The two-argument version of this concept gener-
alizes the one-argument version for use with different types and formally defines the meaning of
the required syntax. The EqualityComparable requires

• that T and ValueType<I> are both EqualityComparable,

• that T and ValueType<I> share a CommonType C §3.2,

• that C is EqualityComparable, and

• that (semantically) any equality comparison between values of those different types can be
replaced by an equivalent equality comparison on values of the common type.

This last requirement preserves the mathematical axioms of equality for types sharing a com-
mon type. The requirements of cross-type equality comparison are far stricter than might be
expected. However, we justify the stronger requirements by providing a definition of the expres-
sion’s meaning.

What kinds of different types can be compared for equality? For starters, every pair of built-
in arithmetic types share a common type. For example, char and int have the common type int.
int and double have the common type double. This means that programs like that below will
continue to be valid using this design.

vector<double> v = {1.0, 2.0, 3.0};
find(v.begin(), v.end(), 3);

Equality comparisons between an int and a double requires that the int value be promoted to
double, and the comparison carried out on the double values. The cross-type EqualityComparable
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concept states that the equality comparison of different types (sharing a common type) is equiv-
alent to converting to that common type and then performing the comparison. Not only is the
program valid, it can now be shown to be mathematically sound because we can reason about
the semantics of these cross-type comparisons in terms of the corresponding comparison on the
common type.

There are, of course, limitations. What happens when the comparison is lossy? What if
we want to compare a long long and a float? There’s no guarantee that the value of a 64-bit
long long integer can be faithfully represented by a 32-bit float. The short answer is that the C++

language describes the behavior of these comparisons (C++ Standard, conv). Unfortunately, this
doesn’t match the mathematical ideal, but at least the issue is well known and understood. We
discuss this further in §3.2.

The requirements given here are not fully compatible with those in the C++11 standard. The
standard allows the algorithm to be instantiated for any type arguments where *i==value is a
valid expression. We have strengthened the requirements of the algorithm in accordance with
our design ideals, namely that of mathematical soundness.

The strengthening of this requirement has the potential to break existing code. This is
especially the case where programmers have overloaded == as a shorthand for testing equivalence
of identity instead of true equality. For example, an employee object might be compared with
a name (a string). It could easily be the case that two employees share the same name, which
means that this is not the same as testing equality.

In the STL, the symbol == means equality. The use of == to compare objects of unrelated
type assigns unusual meaning to that symbol. Generic programming is rooted in the idea that
we can associate semantics with operations on objects whose types are not yet specified. This
gives us the ability to say, with confidence, that an operation has the desired effect even though
we don’t know the concrete types of the operands. Mathematically speaking, equivalence is
defined for objects of a single type and must be reflexive, symmetric, and transitive. How can
a predicate on two unrelated types be shown to satisfy the reflexive property, which is defined
in terms of a single object? That is, how can we assign, to a single object, two different type
arguments that would make an instantiation of the reflexive property true? How could we do
the same for the transitive property, which is quantified over three objects?

Operations whose semantics cannot be mapped onto mathematical equations do not readily
support equational reasoning. Our use of common types allows us to extend the semantics of
equality comparison to related types. Cross-type relations and operations are used heavily in
this design because they preserve some of the latitudes of the C type system, but base them in
mathematical equations.

Although the semantics of the comparison are described in terms of conversion to the common
type, no conversion is actually required within the algorithm. If the data type provides the correct
overloads for the cross-type comparison, then those are used.

The correct way to implement comparisons on unrelated types is to use the right function; if
you want to find an employee by name, use find_if and provide a function to compare the names.
find_if generalizes the find algorithm and takes an arbitrary predicate as an argument.

template<InputIterator I, Predicate<ValueType<I>> P>
I find_if(I first, I last, P pred);

template<InputIterator I, Predicate<ValueType<I>> P>
I find_if_not(I first, I last, P pred);

Both algorithms are parameterized over an InputIterator and a unary Predicate function, P,
that takes an argument of ValueType<I>. find_if returns the first iterator for which the predicate
is true; find_if_not returns the first iterator for which it is not.

Finding employees by name can be achieved using find_if and an appropriate lambda expres-
sion, for example:
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string name = "Smith";
list<employee> emps = { ... };
auto i = find_if(emps.begin(), emps.end(),

[&name](const employee& emp) { return emp.name() == name; });

The find_first_of algorithm searches the range [first1, last1) for a value that is, in some way,
equivalent to one in the range [first2, last2). There are two overloads of this algorithm:

template<InputIterator I1, ForwardIterator I2>
requires EqualityComparable<ValueType<I1>, ValueType<I2>>
I1 find_first_of(I1 first1, I1 last1, I2 first2, I2 last2);

template<InputIterator I1, ForwardIterator I2, Predicate<ValueType<I1>, ValueType<I2>> P>
I1 find_first_of(I1 first1, I1 last1, I2 first2, I2 last2, P pred);

The first overload searches for a value in [first1, last1) that is equal to one of the values
in [first2, last2). The test for equality is written using the operator,==, and in particular, this
algorithm compares an iterator i from the first range and an iterator j from the second using *i =
= *j. The second overload generalizes the use of == to any binary predicate. Instead of using ==,
it compares pred(*i, *j). This pattern of overloading and generalization is repeated throughout
the STL.

• An algorithm is initially defined in terms of the syntax of a particular operator. Here, the
first overload is implemented in terms of ==.

• A generalized overload replaces the concrete syntax with function parameters. The second
overload replaces == with pred, which could have any conceivable meaning.

In essence, this is the same pattern as find and find_if. We have to use two names in that case
since the overloads couldn’t otherwise be reliably distinguished.

Both find_first_of algorithms requires I2 to be a ForwardIterator. A ForwardIterator is an
InputIterator that supports multiple passes over a range (§3.5.3). This is required by the algorithm
since the range [first2, last2) is traversed for every iterator in [first1, last1).

In the first algorithm, cross-type equality of the value types of I1 and I2 is required by the
EqualityComparable concept. Again, this specification is not fully compatible with the standard.

The second overload requires a binary Predicate taking arguments types ValueType<I1> and
ValueType<I2> in that order. We do not require that pred can be called symmetrically. This is,
for any objects a and b of different types, the fact that pred(a, b) is a valid expression does not
imply that pred(b, a) is also valid.

Although the initial algorithm is specified in terms of equality, the generalized version does
not require pred to be an equivalence relation (§3.3). The second overload could easily be used,
for example, to compare objects of different type: find the first employee whose benefits include
one of the following perks, {12 weeks vacation, company car, obscene pension}.

Note that concept names can be overloaded. Between the find_if and find_first_of algorithms,
the Predicate concept is used in two different ways: find_if algorithm requires a unary Predicate,
while find_first_of requires a binary Predicate. This style of overloading is based on the number
of arguments passed to the concept.

The adjacent_find algorithm searches the range [first, last) for a pair of iterators. As with
find_first_of, there are two overloads.

template<ForwardIterator I>
requires EqualityComparable<ValueType<I>>
I adjacent_find(I first, I last);

template<ForwardIterator I, Relation<ValueType<I>> R>
I adjacent_find(I first, I last, R comp);
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The first overload finds the first consecutive pair of iterators with equal (==) values. The
second overload generalizes equality to an arbitrary Relation on the value type. A Relation is a
binary Predicate traditionally having homogeneous argument types. Our design also includes a
cross-type Relation that accepts heterogeneous (but related) argument types (see §2.3.4 for an
example of usage).

By convention we always choose to write binary Predicate requirements as Relation require-
ments when the argument types are the same. Writing, e.g. , Predicate<R, ValueType<I>,
ValueType<I>> is unnecessarily verbose. Again, comp is not required to be an equivalence
relation.

2.1.4 The Count Family

The count algorithms are logical extensions of the find algorithms. They count the number of
iterators satisfying a condition, returning the number of instances.

template<InputIterator I, EqualityComparable<ValueType<I>> T>
DistanceType<I> count(I first, I last, const T& value);

template<InputIterator I, Predicate<ValueType<I>> P>
DistanceType<I> count_if(I first, I last, P pred);

Both functions have the result type DistanceType<I>, which is an alias for the iterator’s associ-
ated distance type. The use of DistanceType<I> replaces the less terse typename iterator_traits<I>::difference_type.
We use the name “distance” rather than “difference” because the type is more closely associated
with the distance algorithm, rather than the subtraction of values.

Again, the first overload is not fully compatible with the standard. The use of cross-type
equality limits viable instantiations to those where T and ValueType<I> share a common type in
addition to being EqualityComparable.

2.1.5 Mismatch and Equal

The mismatch and equal algorithms compare the elements in two ranges, pairwise.

template<InputIterator I1, WeakInputIterator I2>
requires EqualityComparable<ValueType<I1>, ValueType<I2>>
pair<I1, I2> mismatch(I1 first1, I1 last1, I2 first2);

template<InputIterator I1, WeakInputIterator I2, Predicate<ValueType<I1>, ValueType<I2>> P>
pair<I1, I2> mismatch(I1 first1, I1 last1, I2 first2, P pred);

The first2 function parameter is the first iterator in a weak range, [first2, first2 + (last1 –
first1)). The algorithm does not compare iterators in this range using == or !=; they are only in-
cremented. Because of this, the type requirement of I2 is WeakInputIterator. A WeakInputIterator
is a generalization of InputIterators. They can be incremented and dereferenced, but they are not
required to support equality comparison. The prefix “weak” in the concept names is specifically
meant to associate them with weak ranges.

The equal algorithm has identical requirements and preconditions to mismatch.

template<InputIterator I1, WeakInputIterator I2>
requires EqualityComparable<ValueType<I1>, ValueType<I2>>
bool equal(I1 first1, I1 last1, I2 first2);

template<InputIterator I1, WeakInputIterator I2, Predicate<ValueType<I1>, ValueType<I2>> P>
bool equal(I1 first1, I1 last1, I2 first2, P pred);
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2.1.6 Permutations

The is_permutation algorithm determines if one sequence is a permutation of another.

template<ForwardIterator I1, ForwardIterator I2>
requires EqualityComparable<ValueType<I1>, ValueType<I2>>
bool is_permutation(I1 first1, I1 last1, I2 first2);

template<ForwardIterator I1, ForwardIterator I2, Relation<ValueType<I1>, ValueType<I2>> R>
bool is_permutation(I1 first1, I1 last1, I2 first2, R comp);
// precondition: comp is an equivalence relation

The first overload is not fully compatible with the standard because of its requirement on
cross-type equality. In this case, however, the requirement stated here is actually weaker than
that stated in the standard. The use of common types to define a mathematically sound cross-
type equality lets us generalize the algorithm for sequences of differently-typed values.

The second overload generalizes the equality comparison of the first overload as an equivalence
relation (§3.3). Like EqualityComparable, the Relation concept is overloaded to accept arguments
of different types. The semantics of the “cross-type” Relation are defined in terms of the common
types of the arguments. This is also more general than required by the C++ standard (C++

Standard, alg.is_permutation).
As in the standard, this algorithm has quadratic complexity. A more efficient (i.e., O(n log n))

version of this algorithm relies on sorting. A trivial implementation is:

template<ForwardIterator I1, InputIterator I2>
requires Sortable<I1> && EqualityComparable<ValueType<I1>, ValueType<I2>>
bool is_permutation(I1 first1, I1 last1, I2 first2)
{
vector<ValueType<I2>> tmp(first1, last1);
sort(tmp.begin(), tmp.end());
return equal(tmp.begin(), tmp.end(), first2);

}

The Sortable describes requirements on sortable iterator ranges (it effectively allows the use of
the sort algorithm) and is defined in §3.6. In addition to the sorting requirements, this also
requires copyability (through Sortable) but relaxes the ForwardIterator requirement on the I2.
This implementation requires exactly n copies, at most n applications of ==, and is sorted in
O(n log n) time (where n is last – first).

The Relation overload would be:

template<ForwardIterator I1, InputIterator I2, Relation<ValueType<I1>, ValueType<I2>> R>
requires Sortable<I1, R>
bool is_permutation(I1 first1, I1 last1, I2 first2, R comp)
{
vector<ValueType<I2>> tmp(first1, last1);
sort(tmp.begin(), tmp.end(), comp);
return equal(tmp.begin(), tmp.end(), first2,

[](const ValueType<I1>& a, const ValueType<I2>& b) {
return !comp(a, b) && !comp(b, a);

});
}

Here, equality is checked using the symmetric complement of the strict weak ordering R. The
performance is on par with the previous overload except that it requires at most 2n applications
of comp in order to compute equality.

Note that we could provide both the quadratic and quasilinear non-Relation versions of the
algorithm within the same library. Concept-overloading will choose the more efficient version
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for totally ordered, regular types, and fail back to the quadratic version for unordered types.
Unfortunately, we cannot provide both versions of the Relation overloads. There is insufficient
type information to distinguish an equivalence relation from a strict weak ordering.

Note that adding these overloads would also let us re-categorize the algorithm and place them
with the permutation generators (§2.3.8) in the sorting algorithms. That seems to us to be a
more natural categorization of the algorithm.

2.1.7 Search

The search algorithms include search, search_n, and find_end. We include find_end in the search
family because it is more closely associated (by behavior and requirements) with these algorithms
than with those in the find family.

template<ForwardIterator I1, ForwardIterator I2>
requires EqualityComparable<ValueType<I1>, ValueType<I2>>
I1 search(I1 first1, I1 last1, I2 first2, I2 last2);
// not fully compatible

template<ForwardIterator I1, ForwardIterator I2,
Predicate<ValueType<I1>, ValueType<I2>> P>

I1 search(I1 first1, I1 last1, I2 first2, I2 last2, P pred);

The first overload of search is not fully compatible with the standard because of the require-
ment on cross-type equality. In the second overload, we require pred to be a binary Predicate
accepting arguments of type ValueType<I1> and ValueType<I2> (in that order). The require-
ments for the find_end algorithm are identical to those of search:

template<ForwardIterator I1, ForwardIterator I2>
requires EqualityComparable<ValueType<I1>, ValueType<I2>>
I1 find_end(I1 first1, I1 last1, I2 first2, I2 last2);
// not fully compatible

template<ForwardIterator I1, ForwardIterator I2,
Predicate<ValueType<I1>, ValueType<I2>> P>

I1 find_end(I1 first1, I1 last1, I2 first2, I2 last2, P pred);

The search_n algorithm is related to search except that it finds a subsequence of count equal
values in the range [first, last).

template<ForwardIterator I, EqualityComparable<ValueType<I>> T>
I search_n(I first, I last, DistanceType<I> count, const T& value);
// different from standard

template<ForwardIterator I, typename T, Predicate<ValueType<I>, T> P>
I search_n(I first, I last, DistanceType<I> count, const T& value, P pred);
// different from standard

The search_n algorithm differs from the standard in two ways. First, the use of cross-type
equality is a stronger requirement. Second, we have removed the usual Size template parameter
and replaced it with DistanceType<I>. We do this to be more precise about the requirements
of the algorithm. By replacing the template parameter Size with the associated DistanceType,
we force callers of the function to promote argument types to an integer with the appropriate
width.

What we really want to say is that the algorithm should not accept integer values whose
types are wider than DistanceType<I>. As an extreme example, consider what’s being asked for
in this program:
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vector<int> v = { /* ... */ };
auto i = search_n(v.begin(), v.end(), numeric_limits<long long>::max(), 0);

How could a vector, which can theoretically have at most 232 objects, contain a subsequence of
263− 1 consecutive 0’s? Obviously, a correct implementation guards against such extreme cases,
but we could do better by forcing a conversion at the call site using the declaration above. When
compiling with conversion warnings enabled, we effectively warn users about mathematically
unsound code. A recent version of Clang says:

warning: implicit conversion loses integer precision:
’long long’ to ’int’ [-Wshorten-64-to-32]

In every algorithm taking a weak range that is explicitly bounded by a integral distance
(i.e., the *_n algorithms), we replace the template Size parameter with the distance type of the
range’s iterator type. Realistically, the danger of allowing unsound instantiations of the search_n
algorithm is minimal. However, algorithms like copy_n could potentially overflow their maximum
representable distance if given large enough values for count.

2.2 Modifying Sequence Operations
In this section, we discuss requirements for algorithms that modify sequences of objects by
writing to an iterator. Writing to an iterator typically means that we are copying a value into
the object referenced by an iterator, but it could also mean that we are moving the value into
the referenced object. Unless we explicitly describe a write as a move operation, we intend for
it to mean a copy.

Every algorithm in this family takes an iterator range through which values are copied or
moved. That is, for any iterator i in that range (except the limit), we can potentially write either
or both of the following:

• *i = x; i is writable: copies the value of x to the object referenced by i.

• *i = move(x); i is move-writable; moves the value of x into the object referenced by i using
the std::move function.

The kind of operation depends on the requirements of the algorithm and the type of x. In
general, we refer to iterators that support this kind of use as output iterators.

An algorithm taking a bounded range of output iterators [first, last) has an implied pre-
condition that *i = x is a valid operation for every i in [first, last) except when i == last. This
precondition applies to algorithms taking weak ranges as well; [first, first + n) is writable every-
where except the iterator first + n. Similar preconditions are implied for algorithms that move
values into a range of output iterators.

Note that unlike InputIterators, our design does not include a corresponding OutputIterator.
We further discuss this in §3.7.

2.2.1 Copy

This family of algorithms copy the values in one (bounded) range [first, last) into another (weak)
range [result, result + (last – first)).

template<InputIterator I, WeaklyIncrementable Out>
requires IndirectlyCopyable<I, Out>
Out copy(I first, I last, Out result);

The algorithm imposes two requirements on Out: WeaklyIncrementable and IndirectlyCopyable.
We require WeaklyIncrementable because result is in a weak range, so a weak concept is sufficient.

As with input iterators, weakly incrementable types may “consume” any previous state when
incremented. In fact, all InputIterators are actually WeaklyIncrementable (§3.5.2).

21



The IndirectlyCopyable concept requires that we can copy the value of an I iterator to an Out
iterator. The concept is an alias for Writable<ValueType<I>, Out> (§3.5.1). The Writable concept
is central to many algorithms in this section.

Note that we don’t require WeakInputIterator<Out> because the algorithm doesn’t actually
read from any of the iterators in the output range. Dereferencing an iterator to read from it is
entirely different than dereferencing an iterator in order to write to it. The concepts required by
the algorithm reflect the use of types within the algorithm.

Unlike the STL and the C++ standard, this report does not include an explicit OutputIterator
concept. Those requirements are subsumed by the Writable concept. Writability is a binary
concept (a concept with two parameters) that expresses a relationship between an iterator type
and a value type. It is not a property of the iterator itself, and the value type being written may
be unrelated to the value type of the iterator if one exists at all. In copy, for example, Out is
not required to be Readable and has no associated value type. In fact, writing ValueType<Out>
in the declaration or body of copy should result in a compiler error. All we can say about Out
is that we can indirectly copy the values in the range [first, last) into the output range.

The impact of this design on iterator implementations is positive. One concrete benefit of
this design is that we do not need to associate a value type with iterators that do not actually
have one. For example, ValueType<ostream_iterator<T>> is undefined in our design, not void as
it is in the STL implementation and the standard specification.

template<WeakInputIterator I, WeaklyIncrementable Out>
requires IndirectlyCopyable<I, Out>
Out copy_n(I first, DistanceType<I> n, Out result);
// different from standard

The requirements for copy_n are similar to those of copy except that it takes a weak range
[first, n). As with search_n in the previous section, we have replaced the free type parameter,
Size, with DistanceType<I>. In this case, the change makes the algorithm more correct. By
requiring conversion at the call site, we allow compilers to catch errors where the conversion to
DistanceType<I> is lossy, assuming of course, that the proper warning flags are enabled during
compilation.

The requirements of copy_if are a combination of the requirements for find_if and copy. Its
declaration is:

template<InputIterator I, WeaklyIncrementable Out, Predicate<ValueType<I>> P>
requires IndirectlyCopyable<I, Out>
Out copy_if(I first, I last, Out result, P pred);

The copy_backward algorithm copies the elements of [first, last) into [result – (last – first),
result) in reverse order. We declare it as:

template<BidirectionalIterator I, BidirectionalIterator Out>
requires IndirectlyCopyable<I, Out>
Out copy_backward(I first, I last, Out result);

The copy_backward algorithm requires both I and Out to be BidirectionalIterators. A BidirectionalIterator
is a ForwardIterator that also supports decrement operations (––).

We generally assume that the result of a copy operation is that a) the original remains
unmodified, and that b) the copy is equal to the original range of values. The input and output
ranges may overlap so long as no values are read after they have been written.

Note that these algorithms can be instantiated in such a way that the input sequence is
invalidated by the operation. Passing move_iterators as the input range will cause the algorithm
to move (not copy!) the values into the output range. This will invalidate the original iterators;
their referenced objects are left partially formed. Because we can do this, and because it is
sometimes useful to do so, we do not require that copy preserves the original input.
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2.2.2 Move

The move and move_backward algorithms are similar to copy and copy_backward, except in the
requirement of Writability.

template<InputIterator I, WeaklyIncrementable Out>
requires IndirectlyMovable<I, Out>
Out move(I first, I last, Out result);

template<BidirectionalIterator I, BidirectionalIterator Out>
requires IndirectlyMovable<I, Out>
Out move_backward(I first, I last, Out result);

These algorithms require IndirectlyMovable, which is an alias forMoveWritable<ValueType<I>,
Out>. The MoveWritable concept is analogous to the Writable concept, but replacing a copy
assignment with a move assignment. That is, for any valid iterator i, the MoveWritable concept
requires the syntax *i = move(x) to be well formed. Assuming that i is not the limit of a range,
the expression moves the value of x into the object referenced by i, and leaves the object x
partially formed.

2.2.3 Swap

The iter_swap and swap_ranges algorithms exchange the values in objects referenced by iterators
and ranges of iterators, respectively.

template<Readable I1, Readable I2>
requires IndirectlyMovable<I2, I1> && IndirectlyMovable<I1, I2>

&& Semiregular<ValueType<I1>> && Semiregular<ValueType<I2>>
void iter_swap(I1 i, I2 j);
// different than standard

template<InputIterator I1, WeakInputIterator I2>
requires IndirectlyMovable<I2, I1> && IndirectlyMovable<I1, I2>

&& Semiregular<ValueType<I1>> && Semiregular<ValueType<I2>>
I2 swap_ranges(I1 first1, I1 last1, I2 first2);
// different than standard

The IndirectlyMovable concept (§3.5.1) describes the requirements of exchanging elements
pointed to by different iterators. The Semiregular concept is required to create the temporary
used to implement the swap as:

auto x = move(*i);
*i = move(*j);
*j = move(x);

Both value types are required to be Semiregular since an implementation could choose to construct
a temporary from either *i (as above) or *j with equivalent behaviors. Note that if the value
types of I1 and I2 are the same, then the these requirements also guarantee that the expression
swap(*i, *j) is valid.

The use of Semiregular over-constrains these algorithms by requiring copies. We describe an
alternative design that relaxes those requirements (bringing them into line with the standard)
in Appendix D.

2.2.4 Transform

The transform algorithm applies a unary or binary function to the elements in a range. The
term “operation” is used incorrectly in the standard. Operations generally refer to mathematical
operations and have different syntactic and semantic requirements (§3.4).
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template<InputIterator I, WeaklyIncrementable Out, Function<ValueType<I>> F>
requires Writable<ResultType<F, ValueType<I>>, Out>
Out transform(I first, I last, Out result, F f);

template<InputIterator I1, InputIterator I2, WeaklyIncrementable Out,
Function<ValueType<I1>, ValueType<I2>> F>

requires Writable<ResultType<F, ValueType<I1>, ValueType<I2>>, Out>
Out transform(I1 first1, I1 last1, I2 first2, Out result, F f);

As with for_each (§2.1.2), the transform algorithms accept Function arguments. The arity
required by the function is given by the number of arguments passed to the concept; the first
overload requires a unary Function, the second, a binary Function.

Both algorithms require that the result of the function be assigned through an iterator in the
writable weak range [result, result + (last1 – first1)). This requirement is stated by the Writable
requirement. In order to know the result type of F, we use the ResultType type function. This
type function is defined for all Function types, and takes as arguments, the function type and its
argument types.

The ResultType type function is semantically equivalent to the result_of type trait. For exam-
ple, ResultType<F, ValueType<I>>means the same as typename result_of<F(ValueType<I>)>::type.

2.2.5 Replace

The replace algorithms replace one value in a sequence with another.

template<InputIterator I, EqualityComparable<ValueType<I>> T>
requires Writable<T, I>
void replace(I first, I last, const T& old_value, const T& new_value);

template<InputIterator I, Predicate<ValueType<I>> P, typename T>
requires Writable<T, I>
void replace_if(I first, I last, P pred, const T& new_value);

template<InputIterator I, WeaklyIncrementable Out, EqualityComparable<ValueType<I>> T>
requires IndirectlyCopyable<I, Out> && Writable<T, Out>
Out replace_copy(I first, I last, Out result, const T& old_value, const T& new_value);

template<InputIterator I, WeaklyIncrementable Out, Predicate<ValueType<I>> P, typename T>
requires IndirectlyCopyable<I, Out> && Writable<T, Out>
Out replace_copy_if(I first, I last, Out result, P pred, const T& new_value);

Each of these algorithms imposes two writability requirements on the Out parameter. This is
due to the fact that T is allowed to be different than ValueType<I>; the algorithm writes values
of both types through Out.

An alternative design substitutes the free template parameter T with the ValueType<I>,
resulting in a slightly stronger requirement. This would also let us remove the IndirectlyCopyable
requirement since it would then become redundant with Writable<T, Out>. Again, stronger
requirements allow for more succinct algorithm specifications.

2.2.6 Fill

The fill and fill_n algorithms copy a value into each element in a specified range. The declarations
and requirements of these algorithms vary from those found in the standard.

template<WeaklyIncrementable Out, typename T>
requires EqualityComparable<Out> && Writable<T, Out>
void fill(Out first, Out last, const T& value);
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Unlike in the standard, fill does not require the template argument Out to be a ForwardIterator.
The reason we relax this requirement is that we allow output iterators with equality comparison.
We allow these iterators because they are a direct reflection of the actual requirements of the
algorithm. This concept (output iterators with equality comparison) was missing from STL and
subsequently the C++ standard. We should be able to use, for example, a back insertion iterator
to fill a bounded queue.

There are exactly three algorithms in the STL with exactly these type requirements: fill,
generate (§2.2.7), and iota in the numeric library. Over the course of this project, we had
considered creating new concepts to express the combined requirements of these algorithms. In
the end, it wasn’t immediately obvious that the new concepts substantially improved the design
or requirements, so we leave further investigation of these concepts as future work.

The requirements of fill_n are similar to copy_n.

template<WeaklyIncrementable Out, typename T>
requires Writable<T, Out>
Out fill_n(Out first, DistanceType<Out> n, const T& value);

2.2.7 Generate

The generate algorithm is closely related to the fill algorithm in terms of behavior and require-
ments.

template<WeaklyIncrementable Out, Function F>
requires EqualityComparable<Out> && Writable<ResultType<F>, Out>
F generate(Out first, Out last, F gen);

template<WeaklyIncrementable Out, Function F>
requires Writable<ResultType<F>, Out>
pair<Out, F> generate_n(Out first, DistanceType<Out> n, F gen);

The first overload has the many of the same requirements as fill (§2.2.6), except that the
result of f is written to each iterator in the range [first, last). Because F is a nullary function
(taking no arguments), we are allowed to write Function as the template argument type of F.
Note that Function is a variadic concept; we can use it to write requirements for functions of any
arity.

The signature of these functions varies from that found in the standard; we return the function
f. Because F is allowed to modify non-local variables or its own internal state, we should allow
the user to observe the state of the function after generating values, which we do by returning the
function. In general, any algorithm taking a non-regular function should return that function.

2.2.8 Remove

The remove family of algorithms remove elements from a range in two ways. The in-place versions
permute the elements of the range, dividing it into two parts: elements that have been retained
and the remainder. The *_copy algorithms traverse the range, only copying those elements into
the output that will be retained. The in-place declarations are:

template<ForwardIterator I, EqualityComparable<ValueType<I>> T>
requires Permutable<I>
I remove(I first, I last, const T& value);

template<ForwardIterator I, Predicate<ValueType<I>> P>
requires Permutable<I>
I remove_if(I first, I last, P pred);
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The Permutable concept, which requires IndirectlyMovable<I, I>, allows the algorithm to ex-
change elements in a range using move. Permuting the elements of a range means that one
element may be moved into the address of another. In the remove and unique algorithms, the
move is “one-sided”; the moved-from object is left partially formed. In other algorithms such as
shuffle, permutations are achieved by swapping elements.

The Permutable concept also requires its iterator argument to be a ForwardIterator. This
means that the requirements given for the algorithm are redundant. Our convention is to state
the strongest requirement on a template argument as its “type”. We feel that better communicates
the abstractions to the user.

Note that, for any result iterator i, the elements in the range [i, last) may be partially formed.
The remove_copy and remove_copy_if algorithms remove elements from a range by simply not

copying the removed elements into the output.

template<InputIterator I, WeaklyIncrementable Out, EqualityComparable<ValueType<I>> T>
requires IndirectlyCopyable<I, Out>
Out remove_copy(I first, I last, Out result, const T& value);

template<InputIterator I, WeaklyIncrementable Out, Predicate<ValueType<I>> P>
requires IndirectlyCopyable<I, Out>
Out remove_copy_if(I first, I last, Out result, P pred);

Here, IndirectlyCopyable is required instead of Permutable because the original range is pre-
served by the operation.

2.2.9 Unique

The unique family of algorithms are virtually identical in their requirements to the remove family
of algorithms. Both versions of unique rearrange the sequence so that no adjacent elements are
equal (or equivalent). The unique_copy algorithms copy the elements of the original range into
an output range so that the same property is satisfied. Their declarations are:

template<ForwardIterator I>
requires EqualityComparable<ValueType<I>> && Permutable<I>
I unique(I first, I last);

template<ForwardIterator I, Relation<ValueType<I>> R>
requires Permutable<I>
I unique(I first, I last, R comp);
// precondition: comp is an equivalence relation

template<InputIterator I, WeaklyIncrementable Out>
requires EqualityComparable<ValueType<I>> && IndirectlyCopyable<I, Out>
Out unique_copy(I first, I last, Out result);

template<InputIterator I, WeaklyIncrementable Out, Relation<ValueType<I>> R>
requires IndirectlyCopyable<I, Out>
Out unique_copy(I first, I last, Out result, R comp);
// precondition: comp is an equivalence relation

In addition to requiring R to be a Relation, these algorithms have a precondition that comp
defines an equivalence relation.

The C++ standard phrases the requirements slightly differently, requiring copy assignment
only if neither I nor Out is a ForwardIterator. The effect is to mandate additional specializations
that would have the following signatures:
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template<ForwardIterator I, WeaklyIncrementable Out>
requires EqualityComparable<ValueType<I>>

&& IndirectlyCopyable<I, Out>
Out unique_copy(I first, I last, Out result);

template<InputIterator I, ForwardIterator Out>
requires EqualityComparable<ValueType<I>>

&& IndirectlyCopyable<I, Out>
Out unique_copy(I first, I last, Out result);

The first specialization uses a second iterator instead of a temporary value, thus avoiding an
extra copy. The second specialization reads the current value from the Out range instead of
using a temporary or second iterator. Similar specializations are needed for the generalized
unique_copy that is parameterized over a Relation argument.

The compiler will choose the most specialized overload based on the properties of the deduced
type arguments.

2.2.10 Reverse and Rotate

The reverse and rotate algorithms also permute the sequence of elements in their given range.

template<BidirectionalIterator I>
requires Permutable<I>
void reverse(I first, I last);

template<ForwardIterator I>
requires Permutable<I>
I rotate(I first, I middle, I last);

Reversing the elements of a sequence requires a BidirectionalIterator while rotating the ele-
ments around a midpoint only requires a ForwardIterator.

The *_copy variants of these algorithms copy the results to an output range rather than
modifying the sequence in-place.

template<BidirectionalIterator I, Incrementable Out>
requires IndirectlyCopyable<I, Out>
Out reverse_copy(I first, I last, Out result);

template<ForwardIterator I, Incrementable Out>
requires IndirectlyCopyable<I, Out>
Out rotate_copy(I first, I middle, I last, Out result);

2.2.11 Random Shuffle

There are three algorithms for shuffling a sequence of objects. The random_shuffle algorithms
predate the more advanced C++11 random number facilities, which are used by shuffle. All of
these algorithms randomly permute the given range.

template<RandomAccessIterator I>
requires Permutable<I>
void random_shuffle(I first, I last);

template<RandomAccessIterator I, RandomNumberGenerator<DistanceType<I>> Gen>
requires Permutable<I>
void random_shuffle(I first, I last, Gen&& rand);
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A RandomNumberGenerator (§3.8) is a unary, non-regular Function defined over an Integral
type. That is, it accepts an Integral argument, n, and returns a randomly selected value (of the
same type) m where 0 <= m < n. All choices for m are equally likely.

template<RandomAccessIterator I, UniformRandomNumberGenerator Gen>
requires Permutable<I>
void shuffle(I first, I last, Gen&& rand);

A UniformRandomNumberGenerator (§3.8) is a nullary, non-regular Function that computes a
pseudo-random sequence of uniformly distributed random UnsignedIntegral values in the interval
[0, numeric_limits<ResultType<Gen>>::max()).

2.2.12 Partitions

The partition family of algorithms deals with ranges that are partitioned respect to some pred-
icate. That is, there is a subrange of elements that all satisfy the predicate followed by a
subrange of elements that does not. The is_partitioned returns true if the range is partitioned,
and partition_point returns the iterator that divides elements satisfying the predicate from those
that do not.

template<InputIterator I, Predicate<ValueType<I>> P>
bool is_partitioned(I first, I last, P pred);

template<ForwardIterator I, Predicate<ValueType<I>> P>
I partition_point(I first, I last, P pred);

The partition and stable_partition algorithms permute a range of elements with respect to a
predicate so that they are partitioned.

template<ForwardIterator I, Predicate<ValueType<I>> P>
requires Permutable<I>
I partition(I first, I last, P pred);

template<ForwardIterator I, Predicate<ValueType<I>> P>
requires Permutable<I>
I stable_partition(I first, I last, P pred);

The stable_partition algorithm requires ForwardIterator whereas the standard requires BidirectionalIterator.
A range can be partitioned, preserving the initial order of its elements, using ForwardIterators.

The partition_copy algorithm “splits” the input range by copying elements into one of two
output ranges.

template<InputIterator I, Incrementable Out1, Incrementable Out2, Predicate<ValueType<I>> P>
requires IndirectlyCopyable<I, Out1>

&& IndirectlyCopyable<I, Out2>
pair<Out1, Out2> partition_copy(I first, I last,

Out1 out_true, Out2 out_false,
P pred);

2.3 Sorting Algorithms
The sorting algorithms are concerned with orderings. Every algorithm in this family either
requires a total ordering of value types, or is parameterized over a strict weak ordering as a
generalization of a total order. In this section, every Relation template parameter is required to
be a strict weak ordering (§3.4.1).
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2.3.1 The Sort Family

The sorting algorithms are concerned with the ordering of elements in a range with respect to
an order. The is_sorted and is_sorted_until algorithms determine if a range is in sorted order, or
the point at which a range is not sorted, respectively.

template<ForwardIterator I>
requires TotallyOrdered<ValueType<I>>
bool is_sorted(I first, I last);

template<ForwardIterator I, Relation<ValueType<I>> R>
bool is_sorted(I first, I last, R comp);

template<ForwardIterator I>
requires TotallyOrdered<ValueType<I>>
I is_sorted_until(I first, I last);

template<ForwardIterator I, Relation<ValueType<I>> R>
I is_sorted_until(I first, I last, R comp);

The TotallyOrdered concept requires its template argument to supply the inequality operators
(<, >, <=. and >=), and that its encoded values are totally ordered with respect to those operators
(§3.3). Technically, this is a stronger requirement than the standard. The standard phrases these
requirements in terms of LessThanComparable, which only needs < and semantically relaxes its
meaning to that of a strict weak ordering.

A specialization of these algorithms could be written using InputIterators instead of ForwardIterators,
but only if ValueType<I> is Semiregular (i.e. it must be copyable). An implementation might look
like this:

template<InputIterator I>
requires Semiregular<ValueType<I>> && TotallyOrdered<ValueType<I>>
I is_sorted_until(I first, I last)
{
if (first != last) {
ValueType<I> prev = *first;
++first;
while (first != last) {
if (*first < prev)
return false;

prev = *first;
++first;

}
}
return first;

}

The algorithm differs in performance from that above by a constant factor related to the cost
of O(n) copies. This is similar to the specializations mandated by the C++ standard for the
unique_copy algorithms (C++ Standard, alg.unique).

We have opted not to replace the original specification of the algorithm with this seem-
ingly more general version. It isn’t actually more general; although the iterator requirement
is relaxed, the Semiregular<ValueType<I>> requirement limits the algorithm to cases where the
iterator’s value type is copyable. You couldn’t use this, for example, to determine if a sequence
of unique_ptrs are sorted (indirectly) by their values.

The rest of the sorting algorithms order the elements in a sequence by permuting the sequence.
The sort algorithm has two overloads, declared as:
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template<ForwardIterator I>
requires Sortable<I>
void sort(I first, I last);

template<ForwardIterator I, Relation<ValueType<I>> R>
requires Sortable<I, R>
void sort(I first, I last, R comp);

A sequence can be efficiently sorted in O(n log n) time using ForwardIterators. A conforming
algorithm is given in Elements of Programming (Stepanov and McJones, 2009). This is weaker
than the BidirectionalIterator requirement given in the standard.

The Sortable concept is related to the Permutable concept discussed in §3.6. It’s also over-
loaded. The single-parameter concept is parameterized over a ForwardIterator I and requires:

• that I is Permutable, and

• that ValueType<I> is Semiregular and TotallyOrdered

The two-parameter version has similar requirements except that it is parameterized over a
Relation, which generalizes the total ordering requirement.

Sortable requires the value type to be Semiregular because quicksort makes a copy of the
pivot element to compare against other elements (Hoare, 1969). The algorithm requiring only
ForwardIterators in EoP uses a temporary buffer. Although there are some algorithms that do not
require data elements to be copied—insertion sort is one such algorithm—we enable a greater
degree of freedom for implementations by allowing data to be copied.

Note that we could also have chosen to declare the first sort overload as:

template<Sortable I>
void sort(I first, I last);

replacing the template argument type of I with Sortable. We chose not to do this for a purely
stylistic reason: the overloads of sort would not appear to have the same requirements.

The stable_sort and partial_sort algorithms have similar requirements.

template<ForwardIterator I>
requires Sortable<I>
void stable_sort(I first, I last);

template<ForwardIterator I, Relation<ValueType<I>> R>
requires Sortable<I, R>
void stable_sort(I first, I last, R comp);

template<RandomAccessIterator I>
requires Sortable<I>
void partial_sort(I first, I middle, I last);

template<RandomAccessIterator I, Relation<ValueType<I>> R>
requires Sortable<I, R>
void partial_sort(I first, I middle, I last, R comp);

The partial_sort algorithm requires I to model RandomAccessIterator (§3.5.3). Efficient execu-
tion of the algorithm requires the iterator to advance arbitrary steps in constant time.

The partial_sort_copy algorithm is somewhat more complex. It copies the n smallest elements
in [first, last) into an output range. Most of the sorting is done on the output range, but the
algorithm also compares values between the two ranges.
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template<InputIterator I1, RandomAccessIterator I2>
requires TotallyOrdered<ValueType<I1>, ValueType<I2>>

&& IndirectlyCopyable<I1, I2>
&& Sortable<I2>

I2 partial_sort_copy(I1 first, I1 last, I2 result_first, I2 result_last);

template<InputIterator I1, RandomAccessIterator I2, Relation<ValueType<I>> R>
requires TotallyOrdered<ValueType<I1>, ValueType<I2>>

&& IndirectlyCopyable<I1, I2>
&& Sortable<I2, R>

I2 partial_sort_copy(I1 first, I1 last, I2 result_first, I2 result_last, R comp);

The TotallyOrdered requirement is a cross-type ordering (§3.3). Much like the cross-type
EqualityComparable concept, it generalizes the requirements of a total ordering over two different,
but related types. The IndirectlyCopyable concept is needed because values are copied from the
input range into the output range. The Sortable requirement reflects the fact that all of the
actual sorting occurs in the output range.

The nth_element algorithm is also in the sorting family. It partitions the input range in such
a way that the first + nth element will be the nth element in the total order, and all elements up
to the nth position will not be greater than those after.

template<RandomAccessIterator I>
requires Sortable<I>
void nth_element(I first, I nth, I last);

template<RandomAccessIterator I, Relation<ValueType<I>> R>
requires Sortable<I, R>
void nth_element(I first, I nth, I last, R comp);

The requirements of nth_element should be familiar.

2.3.2 Binary Search

The binary search algorithms define a family of related operations on sorted data. All of these
algorithms in this section have an implied precondition that their input ranges [first, last) are
sorted either by the total ordering of their value types or with respect to the given (strict) weak
ordering.

The fact the input sequence is sorted admits two operations: lower_bound and upper_bound.
For any value of the iterator’s value type, say x, these operations return iterators into the input
range that partition it into a lower range where all values are less than x and an upper range
where all values are greater than x. The declaration of these algorithms are:

template<ForwardIterator I, TotallyOrdered<ValueType<I>> T>
I lower_bound(I first, I last, const T& value);

template<ForwardIterator I, TotallyOrdered<ValueType<I>> T>
I upper_bound(I first, I last, const T& value);

These algorithms operate on ForwardIterators whose ValueTypes are totally ordered. Because
the value type T is allowed to be different than the value type, we use the cross-type TotallyOrdered
concept to ensure proper semantics for the comparison. As with most algorithms in the STL,
lower_bound and upper_bound have overloads that generalize the operation over a weak order
parameter.

template<ForwardIterator I, Relation<ValueType<I>> R>
I lower_bound(I first, I last, const ValueType<I>& value, R comp);
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template<ForwardIterator I, Relation<ValueType<I>> R>
I upper_bound(I first, I last, const ValueType<I>& value, R comp);

In these algorithms, we have replaced the type of value with the ValueType<I>; it is no longer
a template parameter. The motivation for this change is improved specificity. The lower and
upper bound of a sorted sequence are defined with respect to a value of the same type. It should
not be possible, for example, to find for the lower bound in a sequence of employee objects, the
string "Pat Riley". Note that the declaration allows values to be converted to the ValueType so
a Same type constraint is not needed.

There is an alternative declaration for these overloads that we could consider:

template<ForwardIterator I, TotallyOrdered T, Relation<ValueType<I>, T> R>
I lower_bound(I first, I last, const T& value, R comp);

Here, we are allow the type of value to vary as a template parameter, but we constrain it using a
cross-type relation concept (§3.4.1). Among other things, this requires that T and ValueType<I>
share a common type. The difference between this declaration and that given above is subtle.

In the first declaration, any needed conversions happen at the call site. If ValueType<I> is
string, and the user calls the algorithm using a const char*, a conversion is required. In the
second overload, no conversion is applied. Instead, the function relies on the fact that T and
the ValueType share a common type and that the appropriate overloads are defined. It doesn’t
actually matter what the common type is.

template<ForwardIterator I, TotallyOrdered<ValueType<I>> T>
pair<I, I> equal_range(I first, I last, const T& value);

template<ForwardIterator I, Relation<ValueType<I>> R>
pair<I, I> equal_range(I first, I last, const ValueType<I>& value, R comp);

template<ForwardIterator I, TotallyOrdered<ValueType<I>> T>
bool binary_search(I first, I last, const T& value);

template<ForwardIterator I, Relation<ValueType<I>> R>
bool binary_search(I first, I last, const ValueType<I>& value, R comp);

The standard gives a different precondition for all binary search algorithms. The standard
requires their input ranges to be partitioned with respect an inequality. For example, the stan-
dard gives precondition on lower_bound as, “the elements e of [first, last) are partitioned with
respect to the expression: e < value.” This guarantees that a lower bound can be found for the
stated property. However, this precondition is not sufficient to admit an upper bound on the
same data set. Consider the following program:

int a[] = {1, 0, 2, 3, 2, 4};
auto l = lower_bound(a, a + 6, 2); // returns a + 2;
auto u = upper_bound(a, a + 6, 2); // error: not partitioned

We can can find the lower bound of the set of values because the data is properly partitioned
with respect to the expression *i < 2, for each *i in [a, a + n). Trying to find the upper bound
results in an assertion, assuming that preconditions are asserted. The input is not partitioned
with respect to the requirement given in the standard for upper_bound: !(2 < *i).

We see this as a generalization error in the standard. Lower and upper bounds are properties
of a sorted sequence of elements. In fact, all of these algorithms are in the same family precisely
because they share the precondition that the input is sorted. If a programmer needs to find where
a sequence is partitioned with respect to some inequality, they should use the partition_point
algorithm.
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2.3.3 Merge

The merge algorithms combine two sorted ranges into a sorted output range. That the input
ranges are sorted is a precondition to the algorithms.

template<InputIterator I1, InputIterator I2, Incrementable Out>
requires Mergeable<I1, I2, Out>Out merge(I1 first1, I1 last1, I2 first2, I2 last2, Out result);

template<InputIterator I1,
InputIterator I2,
Incrementable Out,
Relation<ValueType<I1>, ValueType<I2>> R>

requires Mergeable<I1, I2, Out, R>Out merge(I1 first1, I1 last1, I2 first2, I2 last2, Out result, R comp);

The Mergeable concept states the requirements needed to implement these algorithms (§3.6).
The iterators I1 and I2 must be IndirectlyCopyable to Out, and their value type must be cross-type
TotallyOrdered. The second overload uses a version of Mergeable that defines these requirements
with respect to a cross-type Relation instead of the total ordering of the iterator’s value types.

The in-place version of the merge algorithm combines two sorted sub-ranges so that the entire
range is sorted after completion.

template<ForwardIterator I>
requires Sortable<I>
void inplace_merge(I first, I middle, I last);

template<ForwardIterator I, Relation<ValueType<I>> R>
requires Sortable<I, R>
void inplace_merge(I first, I middle, I last, R comp);

Because the operation is applied in place, we require Sortable instead of Mergeable. Note
that the standard incorrectly requires BidirectionalIterators for the inplace_merge algorithm. An
equivalent algorithm exists for merging ranges in place using only ForwardIterators.

2.3.4 Set Operations

The set algorithms implement common set-theoretic algorithms over sorted sequences of ele-
ments. As with the merge and inplace_merge algorithms, the general precondition of all set
algorithms is that their input ranges are sorted, either by the total ordering of their value types
or with respect to a given (strict) weak order.

The includes algorithm is the only query in this family. It determines if one range is a subset
of the other. Again, there are two overloads: one relying on the total ordering of the value type,
the other generalized over a weak order.

template<InputIterator I1, InputIterator I2>
requires TotallyOrdered<ValueType<I1>, ValueType<I2>>
bool includes(I1 first1, I1 last1, I2 first2, I2 last2);

template<InputIterator I1,
InputIterator I2,
Relation<ValueType<I1>, ValueType<I2>> R>

bool includes(I1 first1, I1 last1, I2 first2, I2 last2, R comp);

The only requirements on the first overload (besides the implied preconditions) are that the
iterator’s value type is totally ordered (by the cross-type ordering concept). The second overload
generalizes the ordering of a strict weak ordering, R, which is required to be a cross-type Relation.

The set_union, set_intersection, set_difference, and set_symmetric_difference algorithms define
basic algebraic operations on set abstractions. Their declarations are:
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template<InputIterator I1, InputIterator I2, WeaklyIncrementable Out>
requires Mergeable<I1, I2, Out>
Out set_union(I1 first1, I1 last1, I2 first2, I2 last2, Out result);

template<InputIterator I1, InputIterator I2, WeaklyIncrementable Out>
requires Mergeable<I1, I2, Out>
Out set_intersection(I1 first1, I1 last1, I2 first2, I2 last2, Out result);

template<InputIterator I1, InputIterator I2, WeaklyIncrementable Out>
requires Mergeable<I1, I2, Out>
Out set_difference(I1 first1, I1 last1, I2 first2, I2 last2, Out result);

template<InputIterator I1, InputIterator I2, WeaklyIncrementable Out>
requires Mergeable<I1, I2, Out>
Out set_symmetric_difference(I1 first1, I1 last1, I2 first2, I2 last2, Out result);

Each of these algorithms requires Mergeable<I1>I2Out. Not surprisingly, the same set of
operations used to merge sorted sequences can be applied to compute the union, intersection,
difference and symmetric difference of sets.

For each of the algorithms above, there is a corresponding generalization over a weak order.
As with the previous set of algorithms, these simply require the generalized Mergeable concept.
They are:

template<InputIterator I1,
InputIterator I2,
WeaklyIncrementable Out,
Relation<ValueType<I1>, ValueType<I2>> R>

requires Mergeable<I1, I2, Out, R>
Out set_union(I1 first1, I1 last1, I2 first2, I2 last2, Out result, R comp);

template<InputIterator I1,
InputIterator I2,
WeaklyIncrementable Out,
Relation<ValueType<I1>, ValueType<I2>> R>

requires Mergeable<I1, I2, Out, R>
Out set_intersection(I1 first1, I1 last1, I2 first2, I2 last2, Out result, R comp);

template<InputIterator I1,
InputIterator I2,
WeaklyIncrementable Out,
Relation<ValueType<I1>, ValueType<I2>> R>

requires Mergeable<I1, I2, Out, R>
Out set_difference(I1 first1, I1 last1, I2 first2, I2 last2, Out result, R comp);

template<InputIterator I1,
InputIterator I2,
WeaklyIncrementable Out,
Relation<ValueType<I1>, ValueType<I2>> R>

requires Mergeable<I1, I2, Out, R>
Out set_symmetric_difference(I1 first1, I1 last1, I2 first2, I2 last2, Out result, R comp);

2.3.5 Heap Operations

A heap is a tree with the property (called the heap property or heap-order property) that the
value at every node is not less than the values of its children. More specifically, this is called
a max-heap; a min-heap has the property that a node is not greater than its children. The
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algorithms in this family describe operations on binary heaps, which are defined over complete
binary trees. A complete binary tree can be implemented using a random-access sequence.

The is_heap and is_heap_until algorithms query the heap property of a range of values. They
ensure that every element is not less than its children. The algorithms are also generalized for
any weak order. The declarations of these functions are:

template<ForwardIterator I>
requires TotallyOrdered<ValueType<I>>
bool is_heap(I first, I last);

template<ForwardIterator I, Relation<ValueType<I>> R>
bool is_heap(I first, I last, R comp);

template<ForwardIterator I>
requires TotallyOrdered<ValueType<I>>
I is_heap_until(I first, I last);

template<ForwardIterator I, Relation<ValueType<I>> R>
I is_heap_until(I first, I last, R comp);

The requirements are straightforward. Checking the heap property of a sequence requires a
ForwardIterator and that its value type is TotallyOrdered. The push_heap and pop_heap algorithms
are used to update a heap-ordered sequence after an object has been inserted or removed.

template<RandomAccessIterator I>
requires Sortable<I>
void push_heap(I first, I last);

template<RandomAccessIterator I, Relation<ValueType<I>> R>
requires Sortable<I, R>
void push_heap(I first, I last, R comp);

template<RandomAccessIterator I>
requires Sortable<I>
void pop_heap(I first, I last);

template<RandomAccessIterator I, Relation<ValueType<I>> R>
requires Sortable<I, R>
void pop_heap(I first, I last, R comp);

These algorithms require RandomAccessIterators. During insertion or removal, parts of the
sequence are compared and swapped (i.e., sorted), which leads to the Sortable requirement.

The make_heap algorithm has similar requirements because it performs many of the same
operations found in push_heap and pop_heap.

template<RandomAccessIterator I>
requires Sortable<I>
void make_heap(I first, I last);

template<RandomAccessIterator I, Relation<ValueType<I>> R>
requires Sortable<I, R>
void make_heap(I first, I last, R comp);

Finally, sort_heap takes a heap-ordered sequence and produces a sorted sequence using either
the total ordering of the value type or the weak order comp.

template<RandomAccessIterator I>
requires Sortable<I>
void sort_heap(I first, I last);
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template<RandomAccessIterator I, Relation<ValueType<I>> R>
requires Sortable<I, R>
void sort_heap(I first, I last, R comp);

Technically, the arity of the tree used in these algorithms is unspecified. We can just as easily
implement these algorithms for complete ternary or quaternary trees. The requirements would
be the same in any case.

2.3.6 Minimum and Maximum

There are 20 algorithms for finding the min and max. Arguably, the most commonly used
overloads of min are:

template<TotallyOrdered T>
const T& min(const T& a, const T& b);

template<typename T, Relation<T> R>
const T& min(const T& a, const T& b, R comp);

The algorithm returns the least of the two values, either according to their total ordering or
with respect to the weak order comp. Note that T is unconstrained in the second overload. Since
a and b are passed by reference and the comparison is encapsulated by the comp parameter, we
cannot assign any stronger requirements to T.

Another two overloads of min take an initializer_list containing a sequence of values.

template<TotallyOrdered T>
const T& min(initializer_list<T> t);
// different than standard

template<typename T, Relation<T> R>
const T& min(initializer_list<T> t, R comp);
// different than standard

The type requirements are identical to those in the previously described versions of min.
However, the declarations differ from the standard. We return a const reference to the minimum
value. The reason for this (and also the reason why we don’t require T to be Semiregular), is
that the initializer list already refers to non-local data. The values in t are not copied into the
stack frame of the function.

There are four corresponding overloads of max with requirements identical to those of min.

template<TotallyOrdered T>
const T& max(const T& a, const T& b);

template<typename T, Relation<T> R>
const T& max(const T& a, const T& b, R comp);

template<TotallyOrdered T>
const T& max(initializer_list<T> t);

template<typename T, Relation<T> R>
const T& max(initializer_list<T> t, R comp);

Again, we have changed the result of the initializer_list algorithms to return a const reference.
There are also four corresponding overloads of minmax, which find the min and max simulta-

neously. Again the requirements of these algorithms are identical to those of min and max.

template<TotallyOrdered T>
pair<const T&, const T&> minmax(const T& a, const T& b);
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template<typename T, Relation<T> R>
pair<const T&, const T&> minmax(const T& a, const T& b, R comp);

template<TotallyOrdered T>
pair<const T&, const T&> minmax(initializer_list<T> t);

template<typename T, Relation<T> R>
pair<const T&, const T&> minmax(initializer_list<T> t, R comp);

Curiously, there are no overloads of min, max, or minmax that take and return non-const
references. This seems to be an omission from the standard.

The min_element, max_element, and minmax_element extend the computation of min, max,
and minmax to iterator ranges.

template<ForwardIterator I>
requires TotallyOrdered<ValueType<I>>
I min_element(I first, I last);

template<ForwardIterator I, Relation<ValueType<I>> R>
I min_element(I first, I last, R comp);

template<ForwardIterator I>
requires TotallyOrdered<ValueType<I>>
I max_element(I first, I last);

template<ForwardIterator I, Relation<ValueType<I>> R>
I max_element(I first, I last, R comp);

template<ForwardIterator I>
requires TotallyOrdered<ValueType<I>>
pair<I, I> minmax_element(I first, I last);

template<ForwardIterator I, Relation<ValueType<I>> R>
pair<I, I> minmax_element(I first, I last, R comp);

These algorithms all operate on ForwardIterators. As with is_sorted, and is_sorted_until, we
could conceivably relax the requirements to InputIterator, at the expense of extra copies and an
additional requirement that ValueType<I> is Semiregular.

2.3.7 Lexicographical Comparison

Two sequences can be lexicographically compared either by the total ordering of their value types
or with respect to a weak order. These features are implemented by the two overloads of the
lexicographical_compare algorithm.

template<InputIterator I1, InputIterator I2>
requires TotallyOrdered<ValueType<I1>, ValueType<I2>>
bool lexicographical_compare(I1 first1, I1 last1, I2 first2, I2 last2);

template<InputIterator I1,
InputIterator I2,
Relation<ValueType<I1>, ValueType<I2>> R>

bool lexicographical_compare(I1 first1, I1 last1, I2 first2, I2 last2, R comp);

The first overload requires only that the value types of the iterators are TotallyOrdered as
specified by the cross-type ordering concept. The second overload is defined in terms of a cross-
type Relation defined over the value types of I1 and I2.
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2.3.8 Permutation Generators

The permutation generators permute a sequence according to a total or weak order to generate
all permutations of the original input. The next_permutation and prev_permutation generate the
next or, respectively, the previous permutation according to the order imposed on permutations
by the corresponding lexicographical orderings. These are essentially sorting algorithms that
operate on BidirectionalIterators. Their type requirements are fairly straightforward.

template<BidirectionalIterator I>
requires Sortable<I>
bool next_permutation(I first, I last);

template<BidirectionalIterator I, Relation<ValueType<I>> R>
requires Sortable<I, R>
bool next_permutation(I first, I last, R comp)

template<BidirectionalIterator I>
requires Sortable<I>
bool prev_permutation(I first, I last);

template<BidirectionalIterator I, Relation<ValueType<I>> R>
requires Sortable<I, R>
bool prev_permutation(I first, I last, R comp)

3 Concepts
In this section, we detail the definition of concepts used to constrain the algorithms described in
§2, and we describe the syntax used to construct those concepts. We begin by introducing some
fundamental ideas.

3.1 Preliminaries
The concepts in this report reinforce the ideas about computer programming presented in the
book, Elements of Programming (Stepanov and McJones, 2009). At the heart of these ideas is
the notion that we should be able to reason about computer programs (e.g. behavior, correctness,
performance, etc.). To do so, we require a basic set of guarantees that the elements of a computer
program behave in expected and regular ways. In this section, we describe the basis of these
guarantees, which are rooted in the notions of values, objects, equality, and regularity.

All computer programs represent abstract entities (e.g., numbers, colors, books, etc.) in
memory as sequences of 1’s and 0’s called data. Obviously, writing programs as manipulations
of binary data is tedious, error-prone, and does not scale. Programming languages use types
to correlate data with abstract entities. A value type specifies an interpretation of data as
an abstract entity. In C++, a value type is an unqualified (i.e. neither const nor volatile), non-
reference type such as int or string; value types describe the properties and behaviors of an entity.
A value (of a type) is a particular instance of a datum and its interpretation. For example:

• The C++ type int specifies the computer encoding of, say, 32-bit, two’s complement integer
data in big-endian format. A sequence of 32 bits, all 0, is interpreted as the int value 0.

• A template specialization rgb_color<4> represents 4-bit RGB colors in a 12-bit string with
4 bits for each of three color components (red, green, and blue). The color or value red is
represented by the sequence of bits, 1111 0000 0000.
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Not all representations can be interpreted as values. A datum is well formed if its repre-
sentation can be interpreted as an entity. For example, all sequences of 32 bits are well formed
integers, as are all 12-bit sequences of rgb_color. On the other hand, the sequence of bits en-
coding a floating point NaN is not well formed since it does not represent any real number (it
is literally “Not a Number”). Data that are not well formed are ill-formed . Similarly, a rational
number with 0 in the denominator is ill-formed.

An object represents a value in memory. That is, an object holds a value or set of values
called its state. An object type describes how a value type is stored and modified within computer
memory. An object type adapts the properties of a single object’s value type in different ways:

• An object’s representation may be padded to align it with an address boundary; rgb_color<4>
is almost certainly padded to 16 bits from its original 12, possibly more.

• An object’s state may be made immutable. A constant object is constructed by declaring
const-qualified variable. A constexpr object further restricts the declared object by ensuring
that it only exists at compile time.

• An object’s state may be changed by an external process, thread, or device. A volatile
object is constructed using the volatile qualifier.

A reference type defines an alias to an object. Aliases can refer to objects in memory (lvalue
references) or temporaries and literals (rvalue references). Like objects, references may also be
qualified. A const locally restricts write access to the referenced object although the object itself
may not be a constant. Reference types are generally indistinguishable from object types, unless
a program cares to differentiate. For example, overload resolution and template specialization
can distinguish between reference and non-reference types, and the is_reference (C++ Standard,
meta.unary.comp) type trait can be used to distinguish programmatically.

3.1.1 Equality

Reasoning about computer programs is facilitated by equational reasoning , which allows us to
substitute equals for equals. As such, equational reasoning depends on a meaningful definition
of the equality of values and the expressions that compute them.

If two values represent the same entity, then they are equal . If two values have the same
representation, then they are representationally equal . Note that there may be multiple repre-
sentations for the same entity. For example, a rational type may multiple representations for the
entity 1/2, such as 4/8 and 3/6.

Two objects are equal if they have equal values and are said to be copies. Values are copied
between objects using a copy constructor or a copy assignment operator—the prerequisites of any
type implementing copy semantics. These are special member functions that may be overloaded
to propagate the properties of a representation that are interpreted as its value. For example,
copying a vector will copy the contained elements, but not necessarily all of the allocated memory
(its capacity). If no user-defined copy constructor or assignment operator is defined (or deleted),
the compiler will generate an implicit default copy constructor and assignment operator which
copy objects member-wise. Regardless of whether the copy constructor is user-defined or implicit,
the value resulting from a copy must be equal to the original, and the original object is unmodified
by the operation. We take this as the basis for describing equality.

Actual specifications of equality fall into one of three categories:

1. The class has a user-defined equality operator.

2. The class has a user-defined copy constructor but no equality operator.

3. The class has an implicit copy constructor, and no equality operator.
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In the first case, the onus of guaranteeing the equality of copies is entirely that of the user.
In other words, it would be appropriate to annotate the copy constructor such types with the
postcondition that the newly constructed value is equal (==) to its argument. In the second
case, equality can only be assumed. There is no == operator to verify that copies are equal. We
expect this to be an uncommon case. In the last case, copied objects are guaranteed to have
equal members because each member variable is a copy of an original member value. ‘ User-
defined == operators are used throughout the language and standard library to determine if two
values represent the same entity. That is, the operator is used to compare for “true” equality,
not simply representational or member-wise equality. For example, the floating point values –0.0
and 0.0 have different representations, but –0.0 == 0.0 is true because they both represent the
same abstract entity: zero. Similar abstractions of equality are derived for every type in the
C++ standard library. Some examples include:

• Two tuples are equal if and only if they have the same number of sub-objects and all of
their sub-objects compare equal using ==.

• Two vectors are equal if and only if they have the same size and contain the same elements
as if compared using the equal algorithm (which compares using ==).

• Two complex numbers are equal if and only if they have equal real and imaginary compo-
nents.

Each of these definitions of equality is associated with some specification. This is closely related
to the description of value semantics described by Lakos (2007). There, the meaning of equality
is based on a specification of salient attributes: a subset of properties that describe the value of
a user-defined type.

Note that the interpretation of equality for implicitly copied types having no user-defined
equality operator is not guaranteed to compare for “true” equality. It is, however, sufficient to
guarantee that we can reason about programs when such copies are used.

Copy semantics are not the only means by which values are transferred between objects.
A move transfers a value from one object to another, leaving the original object in a partially
formed state. The value of the “receiving” object is equal to the original before it was moved.
The syntax for move construction and assignment is similar to that of copy construction and
assignment, except that the move function is used to indicate the different behavior.

T a = b; // Copy construction
T a = move(b); // Move construction

a = b; // Copy assignment
a = move(b); // Move assignment

A type that supports move construction and assignment is said to implement move semantics.
Curiously, the move function does not actually do anything. It only helps select the most

efficient method of transferring the value of b into a. For a large set of types the most efficient
method of moving values may actually be to copy them. This is certainly true for all built-
in scalar types (C++ Standard, basic.types/9) and probably also all trivial class types (C++

Standard, class/6).
All copyable types inherently implement move semantics. Unless otherwise specified, the

“default” behavior of move operations is actually copying. However, a user-defined type may
define a move constructor and move assignment operator to optimize the transfer. For example,
the value of a vector can (very) efficiently moved by simply swapping its underlying pointers with
that the receiving object. Additionally, the compiler can implicitly generate member-wise move
operations in some cases. The behavior of these operations preserve the semantics described
above.
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There are many useful types that implement move semantics but not copy semantics. These
non-copyable types often represent resources. For example, a non-nullptr value of a unique_ptr
cannot be shared by another unique_ptr. However, it is often convenient to define equality for
such types, even though they do not compare for “true” equality. Without this feature, we would
not be able to use unique_ptrs with, say, unordered_maps.

To help write axioms involving language-defined, user-defined, or assumed equality, we intro-
duce a built-in equivalence relation, eq. It has the following definition:
template<typename T>
bool eq(const T& a, const T& b)
{
// Returns true if and only if a and b are equal according to the
// strongest available interpretation of equality for type T.

}

The purpose of this predicate is to provide a kind of universal mechanism for equating objects
when no == operator is available and without specifying the mechanism by which equality is
defined. In essence, the comparison invokes the strongest definition of equality available for T.
The eq predicate is not intended to be evaluated in programs; it is only useful in the specification
of axioms.

3.1.2 Expressions

An expression is a sequence of operators and operands that specifies a computation. Expressions
may result in a value and may have side effects. Exactly how the value is returned depends on
the definitions of the operators applied. A value may be returned in an object (either copied
or moved, or even a constexpr object), or as a reference (lvalue, rvalue, possibly const-qualified).
Note that void expressions do not result in values.

An expression is equality preserving if, given equal inputs, the expression results in equal
outputs. The EoP book uses the term regular function to describe functions that satisfy this
property. Using the eq predicate, we might write this for some unary function f as follows. For
any object x, the expression f(x) is equality preserving if, for any a and b with the same type as
x:
eq(a, b) => eq(f(a), f(b))

In other words, if equal arguments always yield equal results, then f is equality preserving.
An expression that is generally equality preserving may not be for some specific representa-

tions. For example, the expression a / b is equality preserving for floating point types, except
when b is –0.0 or 0.0. That is: 0.0 == –0.0 => 1/0.0 == 1/–0.0 is false. This does not contra-
dict the general claim that division is an equality preserving expression; there is a general and
well-known prohibition on dividing by 0. Any generic algorithm that divides by 0 invites un-
defined behavior, unless it is specifically designed to operate on IEEE 754 floating point types.
Traditionally, exceptional cases like this are guarded by preconditions, signals, or exceptions.

In concepts, equality preserving expressions are the norm; writing this specification for ev-
ery required syntactic expression would be tedious and repetitive. As such, we assume that all
required expressions are equality preserving unless otherwise stated. To indicate that an expres-
sion is not equality preserving, we use the not_equality_preserving predicate. For example, in
Function, we have the following axiom:
not_equality_preserving(f(args...));

This means that the results of applications of f may be different when evaluated over equal
arguments. This does not say that f must not preserve equality, only that it is not required to.

We can strengthen not_equality_preserving requirements in subsequent concepts if needed by
using the corresponding equality_preserving predicate. For example, in RegularFunction (which is
a semantic refinement of Function), we have:
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equality_preserving(f(args...));

This indicates that, for any equal sequence of arguments, the results of calling f will be the same.
By default, we assume that all required expressions are equality preserving unless stated

otherwise. There are only a few required operations used in the STL that are not required to be
equality preserving.

3.1.3 Type Functions

A type function is a compile-time function where at least one argument or the result is a type.
For example, the following are built-in type functions:

sizeof(T) // takes a type argument, returns a constexpr size_t value
alignof(T) // takes a type argument, returns a constexpr size_t value
typeid(T) // takes a type argument, returns an RTTI object
decltype(x) // takes an expression argument, returns a type

A template alias is another kind of type function. Template aliases return types. For example,
we can create a type function that returns the target type of a pointer:

template<typename T>
using PointeeType = remove_pointer<T>::type;

PointeeType<int*> // aliases int
PointeeType<int**> // aliases int*

The fact that we can encapsulate a template metaprogram using a template alias promotes
abstraction and dramatically improves the ways in which we refer to types in generic algorithms.
We have used this principle to completely bury the iterator_traits class; it is not used in the
declaration of any algorithm in the previous sections. Not only that, we have, in template
aliases, a mechanism for avoiding a profusion of ::’s in algorithm specifications. None of the
algorithms described in Sections §2 contain a single instance of the scope resolution operator.
We think this is a big improvement over the requirements written for C++0x (C++ Standards
Committee, 2009).

Type functions can also take integral constants as values. For example, we can simplify the
access of tuple element types using the following alias:

template<int N, typename... Args>
using Tuple_element = tuple_element<N, Args...>::type;

using First_type = Tuple_element<0, char, short, int, long>; // aliases char

This alias is purely for exposition; it is not used in this specification of the STL or its concepts.
Concepts are a kind of type predicate that determine whether their type (or non-type) argu-

ments satisfy a set of requirements. A concept is true if its arguments satisfy its requirements
and false otherwise. For example, the concept Same is true if its arguments are exactly the same
type. Same<int, int> is true, and Same<int, char> is false.

As with the algorithms presented in the previous sections, concepts are also grouped into
related families. These are:

• Language concepts (§3.2)

• Foundational concepts (§3.3)

• Functions (§3.4)

• Iterators (§3.5)

• Rearrangements (§3.6)
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• Random numbers (§3.8)

The following sections describe these families and their concepts in detail.

3.2 Language Concepts
We define seven concepts relating directly to language features: four that describe relationships
between types and three that classify fundamental types. We imagine that these concepts will
be intrinsic (i.e. , built into the compiler), although their truth values can be evaluated in C++0x
using type traits. The STL requires the following language concepts:

// Type relations:
concept Same<typename T, typename U>
concept Derived<typename T, typename U>
concept Convertible<typename T, typename U>
concept Common<typename T, typename U>

// Type classifications:
concept Integral<typename T>
concept SignedIntegral<typename T>
concept UnsignedIntegral<typename T>

3.2.1 Type Relations

A concept definition introduces the name of a concept and its parameters. To define a concept,
we specify the requirements for it to be true (valid):

concept Same<typename T, typename U> = // could be defined variadically
is_same<T, U>::value;

The concept Same is described in terms of the standard-library type predicate is_same. The
value of a concept (true or false) is equal to the predicate on the right-hand side of the =. We
give the definition in terms of a type trait for exposition only. This concept will most likely be
built in.

By “could be defined variadically,” we mean that we could define concept Same<typename...
Args>. However, we did not need that generalization for the STL algorithms, so we postponed
the decision to define it more generally. We don’t generalize beyond the need of the STL. That
is—without prejudice—left as future work.

For types X and Y, Same<X,Y> is true if X and Y denote exactly the same type after elimi-
nation of aliases. For example:

using Pi = int*;
using I = int;
Same<Pi,I*> // is true

The Derived concept returns true if the first template argument is derived from the second.

concept Derived<typename T, typename U> =
is_base_of<U, T>::value;

This concept expresses the requirement that T is derived from U; that is, that U is a base class
of T. For example:

class B { };
class D : B { };

Derived<D, B> // is true: D is derived from B
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Derived<B, D> // is false: B is base class of D
Derived<B, B> // is true: a class is derived from itself

The last case is true because Derived defines a (non-strict) subtype relation on inheritance hier-
archies.

The implicit conversion between one type and another is tested using the Convertible concept,
which is defined as:

concept Convertible<typename T, typename U> = is_convertible<T, U>::value;

This concept expresses the requirement that a type T can be implicitly converted to a U. T is
converted to U if an expression of type T can be returned from a function with a result type U
(C++ Standard, meta.rel). Some examples are:

Convertible<double,int> // is true: int i = 2.7; (ok)
Convertible<double,complex<double>> // is true: complex<double> d = 3.14; (ok)
Convertible<complex<double>,double> // is false: double d = complex<double>2,3 (error)
Convertible<int,int> // is true: a type is convertible to itself
Convertible<Derived, Base> // is true: derived types can be converted to base types

Note that the meaning of Convertible is completely defined in terms of C++0x standard constructs.
We say that two types T and U are unambiguously convertible if there exists a unique, explicit

conversion from T to U, or from U to T, but not both. This is trivially true when T and U are
the same type since no conversion would be required.

If T and U can both be unambiguously converted to a third type, C, we say that T and U
share a common type, C. Note that C could be the same as T, or U, or it could be a different
type. This notion is encapsulated by the CommonType alias and the Common concept.

template<typename T, typename U>
using CommonType = common_type<T, U>::type;

concept Common<typename T, typename U> =
requires {
CommonType<T, U>;

axiom (T t1, T t2, U u1, U u2) {
using C = CommonType<T, U>;
eq(t1, t2) <=> eq(C{t1}, C{t2});
eq(u1, u2) <=> eq(C{u1}, C{u2});

}
}

Common and CommonType are essential for preserving the mathematical soundness of relations
and operations on heterogeneous arguments (see §2.1.3). The CommonType alias refers to the
common type of its template arguments, if it exists (in this report, CamelCase identifiers ending
with “Type” denote type functions). We define the alias in terms of the standard common_type
trait (C++ Standard, meta.trans.other/3), which is conventionally implemented in terms of the
conditional operator, ?: (C++ Standard, expr.cond). The Common concept is true if its template
arguments share a common type.

The Common concept introduces requirements differently than those above. A set of require-
ments are introduced by the identifier requires. We distinguish between

• requirements, which must be checked by the compiler, and

• axioms, which express semantics and must not be checked by the compiler.

The non-axiom parts of a requirement express the syntax required by a concept. They are
statically checked by the compiler. The only syntactic requirement of the Common concept is:

44



CommonType<T, U>;

This requires the CommonType alias to be well-formed for the template arguments T and U.
This is, in some respects, similar to the associated type requirements in C++0x, except that we
do not allow default types to be assigned C++ Standards Committee (2009).

In order for the requirement to be satisfied, the alias must not result in a lookup failure. If
the alias does result in a lookup failure, then requirement is not satisfied and the concept check
will fail. For example, if T and U are string and int respectively, the requirement will fail: there
is no explicit conversion from a string to an int or int to a string. This means that the concept
Common<string, int> will be false. However, if T and U are int and double, the concept will be
true since CommonType<int, double> will result in a valid type name (double).

Axioms express the semantics of a concept’s required syntax; they are assumed to be true and
must not be checked by the compiler beyond conformance to the C++ syntax. Any additional
checking is beyond the scope of the compiler’s translation requirements. The compiler must not
generate code that evaluates axioms as preconditions, either. This could lead to program errors
if the evaluated assertions have side effects. For example, asserting that distance(first, last) > 1
when the type of those iterators is istream_iterator will consume the first element of the range,
causing the assertion to pass, but the algorithm to have undefined behavior.

An axiom block is introduced by the axiom identifier and may be followed by a list of objects
used to express the meaning of required operations. Here, we introduce a number of objects of
type T and U. The first line of the axiom is type alias; creating an alias for the common type of
T and U makes the remaining axioms easier to write. The following statements:
eq(t1, t2) <=> eq(C{t1}, C{t2});
eq(u1, u2) <=> eq(C{u1}, C{u2});

State equations describing the properties of common types. The <=> operator is the biconditional
operator. It states the logical equivalence of its arguments. We give a more thorough description
of the operator in Appendix A. The Common concept guarantees that, if T and U share a
common type C then

• equal values of type T will be converted to equal values of type C, and

• constructing equal values of type C implies that their original arguments (t1 and t2) are
equal,

• and the same properties hold for U and C as well.

In total, these properties guarantee that values are preserved by conversion to the common
type. This property is important when describing the semantics of cross-type relations such as
EqualityComparable (§3.3), TotallyOrdered (secrefsec:foundation), Relation (§3.4.1), and BinaryOperation
(§3.4.2). Note that we use the eq operation since there are no syntactic requirements for the ==
operator.

Both the Common concept and the CommonType alias could be defined variadically. After all,
the common_type trait is defined that way (C++ Standard, meta.trans.other/3). However, this
specification of the STL did not require evaluating the common type of more than two types. If
a variadic CommonType alias is needed, then its definition could be easily amended.

As a relation on types, the Common concept is both reflexive (Common<T, T>) is true) and
symmetric (Common<T, U> is the same as Common<U, T>). It is not transitive, so it is not an
equivalence relation.

From a mathematical perspective, Common<T, U> is true if the values represented by the
types T and U can be embedded in the same theoretical mathematical universe. For example,
the values of int and double can be embedded in the extended real line, R (or the extended
real number line R if inf and –inf are considered), and so they share a common type. The
Common concept determines the type that appropriately represents that abstract universe. For
example:
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Common<int, double> // is true
CommonType<int, double> // aliases double

Some other embeddings leading to common types are:

CommonType<char, long> // aliases long
CommonType<int, unsigned int> // aliases unsigned int
CommonType<float, long double> // aliases long double
CommonType<int, float> // aliases float
CommonType<const char*, string> // aliases string
CommonType<int, int> // aliases int

// But...
Common<employee, string> // is probably false

The common type of built-in numeric types follows the C++ promotion rules. These rules
promote built-in types to those capable of representing values with greater precision. There are
obvious limitations. For example, adding a 64-bit long long and a 32-bit float will “promote”
the long long type to the smaller float even though there are many possible long long values that
cannot be represented by a float. The conversion is lossy.

Promotion rules for signed and unsigned integral types are also defined. For example, adding
signed char and unsigned short will promote both values to int. This process is obviously limited
by the largest integral type supported. Adding –1ll and 1ull results in overflow because there
is no larger integer type that can accommodate the additional information. Unfortunately, we
have inherited these conversion features from the C typing rules (C++ Standard, conv) and seem
to be stuck with them for the time being.

C-strings and std::strings of the same character type can be embedded in a universe of char-
acter sequences. However, an employee class probably does not share a common type with string
because there is no mathematical universe that embeds the values of both employees (people)
and strings (not people). For the purpose of examples throughout this report, we assume that
the stereotypical employee class does not share a common type with string.

This is an important observation because it may be common practice for programmers to
overload comparison operators for non-interoperable types (e.g. employees and strings). For
example, the following program might be used to find a name in a list of employees:

vector<employee> v;
// ...
auto r = find(v.begin(),v.end(),"Alice Smith");

In our design, the program will be invalid because const char* does not share a common type
with employee. There is no unique sequence of conversions that can be applied to const char*
that results in an employee object. This is the case even when there is an overloaded == operator
taking an employee and a const char* arguments. The reason for this is that we cannot express a
precise, mathematically sound meaning of equality for unrelated types. In fact the semantics of
equality for different types (that share a common type) is defined in terms of the common type
(see the cross-type EqualityComparable concept §3.3 for a more detailed explanation).

The CommonType facility is not “closed”. Although it is initially defined only for built-in
types, it is possible to extend the CommonType facility in two ways:

1. define an unambiguous, implicit conversion from one type to another, or

2. explicitly specialize the common_type trait.

The standard string class uses the first method. It defines a non-explicit constructor taking a
C-string (const char*). This defines an unambiguous conversion. This happens to be the exact
requirement for extending the domain of the conditional operator to the different types. However,
simply providing the implicit conversion may not be sufficient for interoperability. The string
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class provides overloads of its relational and concatenation operators for C-strings. That means
that this program:

vector<string> v;
// ...
auto r = find(v.begin(),v.end(),"Alice Smith");

is valid. string and const char* share a common type (by virtue of an unambiguous, implicit
conversion). If the string class only provided the conversion, the algorithm could convert the C-
string "Alice Smith" to a string for each comparison; this is probably not efficient. Fortunately,
the string class overloads operators for C-strings, which means that no conversions are actually
used within the algorithm. In other words, the usual lookup rules for overloads are applied.

The other method of extending the CommonType facility is to specialize the common_type
trait. The duration class in the chrono library (C++ Standard, chrono.duration) does this. All
durations types, regardless of their underlying value type and ratio (e.g. millisecond, microsec-
ond), are embedded in a universe of duration values. For any two duration types, there is a third
that can represent both values. Suppose, for example, we have an application that (for some
reason) accumulates time in 3/5ths and 2/7ths second increments. We can still compare these
values.

using D1 = duration<int, ratio<3, 5>>;
using D2 = duration<long, ratio<2, 7>>;

D1 a{3};
D2 b{2};
assert(a > b); // it’s valid!

The values of a and b can be compared because D1 and D2 share a common type, duration<long,
ratio<1, 35>). As with implicit conversions, specializing CommonType is not sufficient to guar-
antee interoperability. The equality, inequality, and arithmetic operations of the duration class
template are provided for specializations with different arguments in order to ensure the inter-
operability of all duration types.

Note that duration only defines an implicit conversion for a subset of compatible types. You
can’t assign, for example, a = b using the values from the previous listing. That’s an error. This
means that the expression true ? a : b will also result in an error, which is why specialization is
needed to extend the CommonType function.

3.2.2 Type Classifications

Type classifications describe sets of fundamental C++ types.

concept Integral<typename T> = is_integral<T>::value;
concept SignedIntegral<typename T> = is_signed<T>::value;
concept UnsignedIntegral<typename T> = is_unsigned<T>::value;

These concepts express requirements that a concept parameter T is of integral type, signed
integral type, or unsigned integral type (as defined in the C++11 standard (C++ Standards
Committee, 2011). These concepts are fully defined by the predicates on the right of the =.

These concepts are not “open” in the sense that users cannot construct new models. They
describe a closed set of types whose properties are formalized in the language standard. It is
certainly possible, even reasonable, to define concepts describing classifications of other kinds
of fundamental types, e.g. floating point types, pointers, references, etc. However, because we
didn’t need these concepts to constrain the STL algorithms, we did not define them. We leave
this as future work.

We can define concepts as simple (constant) Boolean expressions. This is useful when building
constraints predicated on non-syntactic and non-semantics properties of types. For example:
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concept Small<typename T> = sizeof(T) <= CACHE_LINE_SIZE;

Such a concept might be useful when optimizing generic data structures for improved cache
performance.

Note that writing Integral<const int> is equivalent to writing Integral<int>. Similarly, Integral<T&>
== Integral<T>. These concepts evaluate the value type of their arguments—not the object type.
This property is actually encoded as a requirement in the C++11 standard (C++ Standard,
meta.unary.cat). In general, we design concepts to query properties of value types, not object
types. This is not true of all concepts. In particular Same, Common, and Convertible are sensitive
to differences in object type.

3.3 Foundational Concepts
A concept is foundational if it forms the basis of a style of programming or is needed to write
programs in that style. Our design includes four foundational concepts (and two overloads) that
describe the basis of the value-oriented programming style on which the STL is based. The
purpose of these concepts is to establish a foundation for equational reasoning in programs. The
foundational concepts are:

concept EqualityComparable<typename T>
concept EqualityComparable<EqualityComparable T1, EqualityComparable T2>

concept Semiregular<typename T>
concept Regular<Semiregular T>

concept TotallyOrdered<EqualityComparable T>
concept TotallyOrdered<TotallyOrdered T1, TotallyOrdered T2>

We consider these concepts so fundamental that they should be intrinsics (i.e., built-in con-
cepts). We don’t see any gain in letting a programmer define different versions of them. This
is a decision aimed at keeping the conceptional framework sane, rather than a performance
consideration (though it will help with compiler performance, also).

The ability to compare objects for equality is described by the EqualityComparable concept.

concept EqualityComparable<typename T> =
requires (T a, T b, T c)
bool { a == b };
bool { a != b };
axiom { a == b <=> eq(a, b); }
axiom {
a == a;
a == b => b == a;
a == b && b == c => a == c;

}
axiom { a != b <=> !(a == b); }

};

The meaning of EqualityComparable is straightforward, but the way we state it involves notation
that is novel in this context. Consider:

requires (T a, T b) {
// ...

};

Like the axiom in Common, arguments to the requires clause allow us to introduce variables
needed to express those requirements. In this way, the requirements are quantified over all
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values a and b of type T. For example, the following requirement states that we can compare
two T values using ==, and that the result can be used to initialize a bool:

bool { a == b };

The curly braces are the C++11 uniform initialization syntax. We say that the requirement is
“checkable” because a C++11 compiler can perform template argument substitution and deter-
mine if the expression results in a substitution failure or not. The check can be implemented as
a type trait.

We require “convertible to bool” for the result of == rather than exactly bool to cater for
conversions of all sorts. One reason for this degree of freedom is that many legacy libraries
include classes whose relational operators return int. Examples in production code can be easily
found. One such example is an early version of the QChar class (1.5 and earlier, at least) (Nokia
Corporation, 2011).

class QChar
{
friend int operator==(QChar c1, QChar c2);
friend int operator!=(QChar c1, QChar c2);

};

We should be able to use this class in our standard algorithms, despite the fact that the operator
does not return a bool. Incidentally, this class ships with the current release of Doxygen (van
Heesch, 2011), so it is not just an example of forgotten and unused legacy code.

The notation for syntactic requirements is similar, but not identical, to the use-pattern
approach discussed in Dos Reis and Stroustrup (2006). That paper demonstrates that such a
notation can be mathematically sound. We use it because we feel that it most directly expresses
requirements and axioms. However, the meaning of the requirements is our primary concern. If
there is a better (terser, more comprehensible) notation, we can use that instead.

We have divided the semantics of the EqualityComparable concept into three axiom blocks.
The states the meaning of ==. It says that the expression a == b is true if and only if the
expression eq(a, b). In other words, the == operator must implement the specification of equality
for the type T.

Axioms in concepts often state equations between two expressions. Here, the <=> operator
equates the expression on the left with that on the right. Because the expressions are logically
equivalent, one can be substituted for the other (although eq has no meaning outside of axioms
because it can’t be evaluated). This directly supports equational reasoning.

The second axiom specification states the relational semantics of the == operator; it must
behave as an equivalence relation:

axiom {
a == a;
a == b => b == a;
a == b && b == c => a == c;

}

These are the reflexive, symmetric, and transitive properties, respectively. The => operator is
the implication operator. If the left-hand side is true, the right-hand side must also be true, or
if the left-hand side is false, then the entire expression is vacuously true.

The purpose of axioms is to specify the semantic properties of expressions required by a
concept. They describe the behavior of those expressions when evaluated with well formed
arguments. We assume that any variables introduced in a requires or axiom declaration are well
formed.

Obviously, not all arguments will be well formed for any given type. For example NaN is
not well-formed data and does not satisfy any of the axioms of the equivalence relation above.
Similarly, the expression *p is not well formed when p == nullptr. Because it results in undefined
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behavior, it would be inappropriate to consider that value when describing the general semantics
of equality. Note that these exceptional cases do not contradict the axioms of the concept. This
is not proof, for example, that IEEE 754 floating point types are not EqualityComparable. The
fact that some representations of the format can be interpreted as non-values, does not imply
any properties of valid interpretations.

Programmers should be aware that any program that casually relies on the results of opera-
tions on ill-formed data (such as NaN) inherently invoke undefined behavior. Preconditions are
a traditional method for guarding against undefined behavior. Exceptions can also be thrown
to terminate an operation that cannot compute a result that satisfies its postconditions. For
example, an exception might be thrown if there is insufficient memory to concatenate two strings
(e.g. bad_alloc). As with NaN, this is not proof that string concatenation is not an associative
operation.

The last axiom of the EqualityComparable concept is:

axiom { a != b <=> !(a == b); }

It defines the meaning != in terms of ==: a != b if and only !(a == b). Because the two are equal,
we are free to substitute one for the other when reasoning about a program. Note that the
interpretation of the operator ! on the right-hand side is the built-in operator for bool types.
The logical basis of axiomatic specifications is the built-in Boolean algebra.

So, EqualityComparable<T> is true if T

1. has == and != with result types that can be converted to bool

2. == compares for true equality

3. == is reflexive, symmetric, and transitive

4. != is the complement of ==

However, the compiler can only check the first of these conditions. The rest must be verified
through other means (i.e. manually).

Concepts, like functions, can be overloaded. We use this feature to build mathematically
meaningful descriptions of “cross-type” equality and order.

concept EqualityComparable<EqualityComparable T1, EqualityComparable T2> =
Common<T1, T2> &&
EqualityComparable<CommonType<T1, T2>> &&
requires(T1 a, T2 b) {
bool { a == b };
bool { b == a };
bool { a != b };
bool { b != a };
axiom {
using C = CommonType<T1, T2>;
a == b <=> C{a} == C{b};
a != b <=> C{a} != C{b};
b == a <=> C{b} == C{a};
b != a <=> C{b} != C{a};

}
};

We use && to combine requirements; A && B is true if both A and B are true.
This concept extends the notion of equality comparison for a single type to equality compar-

isons involving different different types. In order for two different types to be equality comparable,
the following conditions must hold:

• EqualityComparable<T1>
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• EqualityComparable<T2>

• Common<T1, T2>

• EqualityComparable<CommonType<T1, T2>>

• the requires clause and associated semantics

The semantics of equality comparison are defined in terms of equivalences. Any combination of
comparisons involving objects of types T1 and T2 are equivalent to comparisons involving the
common type.

Recall that the Common concept requires conversions to the common type to preserve the
original values. Without this guarantee, we would not be able to assert the correspondence
between the heterogeneously typed operations with their homogeneously typed equivalents.

It is important to note that, while convertibility is a principal requirement of CommonTypes,
conversions are not required in contexts where related types are compared. Consider the following
function:

template<typename T, typename U>
requires EqualityComparable<T, U>
void f(const T& a, const U& b)
{
assert(a == b);

}

During instantiation, the resolution of == can entail two possible outcomes:

• If there is an overload of == for T and U, then that will be chosen.

• If there is no overload for T or U, but a conversion sequence exists that allows an overload
to be selected, then the conversion sequence will be applied.

In actuality, the lookup is resolved before the expression is analyzed. The same overload used
in the function body must be the same as that resolved when the EqualityComparable concept
is checked, including any conversion sequences, if needed. However, no conversion overhead is
required if the appropriate overloads are defined. That is, comparing a string and const char*
does not invoke a conversion.

The value-oriented style of the STL is predicated on the notion of regularity : that objects
behave in the expected and consistent ways, and that they behave similarly to built-in value
types like int or float. These kinds of types support familiar forms of object construction and
destruction; they can be default initialized, moved, and copied, and dynamically allocated and
deleted.

Intuitively, the Semiregular concept describes types that behave in regular ways except that
they might not be comparable using ==. Examples of Semiregular types include: all built-in C++

integral and floating point types, all trivial classess (trivial in the sense of the C++ standard (C++

Standard, class)), std::string, and standard containers of copyable types (e.g., vector<string>).
The Semiregular concept is defined as:

concept Semiregular<typename T> =
requires object (T a) {
// Address-of
T* == {&a};
axiom { &a == addressof(a); }

// Non-volatility
axiom { eq(a, a); }

} &&
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requires destructible (T a) {
// Destruction
a.~T();
noexcept(a.~T());

} &&
requires initialization (T a, T b, T c) {
T{}; // Default construction
T{a}; // Copy construction
T& == {a = b}; // Copy assignment

axiom copy_semantics {
eq(T{a}, a);
eq(a = b, b);

}

axiom move_semantics {
eq(a, b) => eq(T{move(a)}, b);
eq(b, c) => eq(a = move(b), c);

}
} &&
requires allocation (size_t n) {
T* == { new T };
delete new T;

T* == { new T[n] };
delete[] new T[n];

};

The definition of this concept is similar to those above, except that we have named some of the
requirements:

requires object (T a) { ... }
requires destructible (T a) { ... }
requires initialization (T a, T b, T c)
requires allocatable () { ... }

axiom copy_semantics { ... }
axiom move_semantics { ... }

It is often useful, especially for larger concepts, to break their syntactic and semantic require-
ments into smaller, more readily digested components. The names themselves have no actual
meaning within the program. They are simply labels that can be used to document sets of
related requirements. We could equivalently leave out the requires keyword and just write:

object (T a) { ... } &&
destructible (T a) { ... } &&
initialization (T a, T b, T c) &&
allocatable () { ... };

We know that the requirements in those blocks are syntactic and must be validated because
they are not prefixed with the axiom keyword. We could also have just written requires without
names, just like we did with the EqualityComparable concepts. Note, however, that you cannot
omit the axiom identifier for the copy_semantics and move_semantics axioms.

The “object” requirements of the Semiregular types are that:

• on object of this type can have its address can be taken, and

• the result of &a is a pointer to T, and
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• the meaning of &a is equivalent to addressof(a).

Overloading the address-of operator to do something other than return this makes a type irregu-
lar. Overloading the comma operator also makes a type irregular, but we don’t have a convenient
notation for expressing that particular prohibition.

The the non-volatility axiom in this set of requirements ensures that volatile types are not
considered to be Semiregular. Objects whose states are modified by external processes do not
describe regular types and cannot be reasoned about using conventional logics.

The destructible requirements state objects of type T must be destructible (stated using a
pseudo-destructor call (C++ Standard, expr.pseudo)) and that the destructor must not propagate
exceptions. The second requirement is enforced using the noexcept operator (C++ Standard,
expr.unary.noexcept). In a requires block, the noexcept operator acts like a concept. If the
computed result of the operator is false, then the requirement is not satisfied.

The initialization requirements describe how objects of type T can be construction and as-
signed. The syntax T == {&a} constrains the result type of an expression. It is related to the
usual initializer syntax used to declare variables (C++ Standard, decl.init). We can express
constraints on result types in three ways:

T{expr} // expr is explicitly convertible to T
T = {expr} // expr is implicitly convertible to T
T == {expr} // expr has the same type as T

The explicit and implicit conversion requirements re-use the initialization syntax. For example,
a variable declaration T x{expr} declares a variable x whose value is explicitly converted from
expr. Like explicit conversions, a declaration T x = {expr} will implicitly convert the result of
expr into T. The == initialization is equivalent to the following requirements:

T{expr};
Same<decltype(expr), T>;

We think T == {expr} is a more uniform approach to writing the requirement than enumerating
Same constraints.

The axioms of copy semantics are straightforward: copies compare equal to their originals.
The move semantic axioms guarantee state the semantics of move construction and assignment.
The constructed or assigned object is equal to the value of the original prior to the move opera-
tion. The moved-from object is partially formed after the move construction or assignment.

Note that copy semantics do not preclude shallow copies. If they did, we might not be able to
conclude that pointers are copyable. Shallow-copied types may be regular with respect to copy
and move semantics, but they probably have some operations that are not equality preserving.
This is definitely the case with some InputIterators such as istream_iterator.

The equations in the copy- and move- semantics blocks are written using the eq predicate
because the Semiregular concept does not require T to be EqualityComparable. A concept cannot
use syntax that it has not required. In general, we prefer to write semantics in terms of ==
when possible and only use eq when the operation is not available. For example, the comparison
of pointers (&a == addressof(a)) is perfectly fine because the syntax and semantics of pointers
are established by the C++ programming language; we know for a fact that they are equality
comparable (i.e., for all types T, EqualityComparable<T*> is true).

Semiregular types can be used to declare variables and temporaries. The Allocatable require-
ments also give us the ability to dynamically allocate (and delete) objects and temporary buffers.
The requirement is parameterized over a size_t value (n), which is used as an argument to the
array allocation syntax. Note that this does not guarantee that allocation will succeed for ex-
tremely large values of n, only that it is syntactically possible. The actual limits of dynamic
allocation are determined by the host system, as described by the standard (C++ Standard,
expr.new/7).
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These basic facilities are used in many, many algorithms and are so fundamental that we
include them as a single concept. Unfortunately, this over-constrains a number of algorithms by
requiring default construction and copy semantics when the algorithm does not rely on them.
We describe an alternative design that avoids these issues in Appendix D.

The Semiregular concept demonstrates an important distinction between the notions of value
type and object type. Here, we clearly expect the template argument T to represent a value type:
non-reference and unqualified. Constants (const T) and constexpr objects do not have Semiregular
types since they cannot be assigned to. Volatile types (volatile T) are not Semiregular since their
objects’ states may by changed externally. Reference types types are not Semiregular because
the syntax used for copy construction does not actually create a copy; it binds a reference to an
object. Proper use of the Semiregular concept requires that it is evaluated over value types, not
object types. This is true of every concept from this point forward in the report.

The Regular concept unifies the Semiregular and EqualityComparable concepts. Regularity is
defined as:

concept Regular<Semiregular T> = EqualityComparable<T>;

We could also have chosen to write it this way:

concept Regular<typename T> = Semiregular<T> && EqualityComparable<T>;

The two definitions are equivalent. By convention, we write the “strongest“ requirement as the
template argument type, so we tend to prefer the first definition in this report.

Note that because EqualityComparable is required, we could conceivably rewrite the axioms
of the Semiregular concept for Regular using == instead of eq. For example, the axioms of copy
semantics become:

T{a} == a;
(a = b) == b;

The meaning is, of course, the same since EqualityComparable requires == and eq to be logically
equivalent.

A TotallyOrdered type is an EqualityComparable type equipped with inequality operators <,
>, <=, and >= and whose values are totally ordered.

concept TotallyOrdered<EqualityComparable T> =
requires (T a, T b, T c) {
bool { a < b };
bool { a > b };
bool { a <= b };
bool { a >= b };
axiom {
!(a < a);
a < b => !(b < a);
a < b && b < c => a < c;
a < b || b < a || a == b;

}
axiom {
a > b <=> b < a;
a <= b <=> !(b < a);
a >= b <=> !(b > a);

}
};

As with EqualityComparable, the TotallyOrdered concept requires a number of relational opera-
tors whose results are convertible to bool. The semantics of TotallyOrdered are written in two
axiom blocks. Within the body of a requires clause, axiom blocks can be written as consecutive
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compound statements. We could write the axioms defining the properties of < in a more stylized
way by naming them.

requires (T a, T b, T c) {
// ...
axiom irreflexive { !(a < a); }
axiom asymmetric { a < b => !(b < a); }
axiom transitive { a < b && b < c => a < c; }
axiom total { a < b || b < a || a == b; }

}

This has a nice property of stating exactly what properties are being described. The second
axiom block connects the meaning of < to the other inequality operators >, <=, and >=.

A general requirement for total ordering seems like it might be overly strict. Why not
allow the operator < to define partially ordered types? Our aim is to align the specifications
with programmer’s intuitions about the meaning of operations. The connection between the
relational operator < and total orders is taught in grade school. We think it is important to
retain, if not emphasize, these expectations (while still being mathematically precise, of course).

Just like the EqualityComparable concept, we can overload TotallyOrdered to support a math-
ematically sound extension for different types.

concept TotallyOrdered<TotallyOrdered T1, TotallyOrdered T2> =
TotallyOrdered<CommonType<T1, T2>> &&
EqualityComparable<T1, T2> &&
requires (T1 a, T2 b) {
bool { a < b };
bool { a > b };
bool { a <= b };
bool { a >= b };
bool { b < a };
bool { b > a };
bool { b <= a };
bool { b >= a };
axiom {
using C = Common<T1, T2>;
a < b <=> C{a} < C{b};
a > b <=> C{a} > C{b};
a <= b <=> C{a} <= C{b};
a >= b <=> C{a} >= C{b};
b < a <=> C{b} < C{a};
b > a <=> C{b} > C{a};
b <= a <=> C{b} <= C{a};
b >= a <=> C{b} >= C{a};

}
};

Two types are TotallyOrdered if they are

• both TotallyOrdered and EqualityComparable,

• they share an EqualityComparable, TotallyOrdered common type, and

• any inequality involving arguments of type T1 or T2 is equal to the same expression
involving the common type.

For example, TotallyOrdered<int, long> is true because the language gives rules for comparing
them in terms of their common type (which happens to be long). TotallyOrdered<long, double>
is true for the same reason.
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Unfortunately, the inheritance of C typing rules implies that signed int and unsigned int are
TotallyOrdered, despite the fact that comparing signed and unsigned values is a known source of
bugs. Fortunately, C++ compilers will warn you when comparing these values, assuming that
the appropriate warnings are enabled.

3.4 Function Concepts
Function concepts describe requirements on function types. There are eight in total (six and two
overloads):

concept Function<typename F, typename... Args>
concept RegularFunction<typename F, typename... Args>

concept Predicate<typename P, typename... Args>
concept Relation<typename R, typename T>
concept Relation<typename R, typename T, typename U>

concept UnaryOperation<typename Op, typename T>
concept BinaryOperation<typename Op, typename T>
concept BinaryOperation<typename Op, typename T, typename U>

A Function is a type whose objects can be called over a (possibly empty) sequence of argu-
ments. Functions are not Semiregular types; they may not exhibit the full range of capabilities as
built-in value types. Minimally, we can expect to copy- and move-construct Function types, but
not default construct or copy- and move-assign them. The Function concept is defined as:

concept Function<typename F, typename... Args> =
requires object (T a) {

T* == {&a};
axiom { &a == addressof(a); }
axiom { eq(a, a); }

} &&
requires destructible (T a) {

a.~T();
noexcept(a.~T());

} &&
requires initialization (T a, T b, T c) {
T{a};
axiom {
eq(T{a}, a);
eq(a, b) => eq(T{move(a)}, b);

}
} &&
requires allocation () {
T* == { new T{a} };
delete new T{a};

} &&
requires callable(F f, Args args...) {

ResultType<F, Args...> == { f(args...) };
axiom {
not_equality_preserving(f(args...));

}
};

This is a variadic concept ; the template parameter pack Args denotes a sequence of argument
types: the domain of the function. We read this as F must be callable with the argument types,
Args.... The concept places no constraints on the argument types.
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The object requirements are the same as those in the Semiregular concept, but the initialization
requirements have changed. Function objects are not required to be copy (or move) assignable.
In fact, lambda closure types explicitly deletes the default constructor and copy assignment
operator (C++ Standard, expr.lambda/19). Because Functions are not default constructible or
assignable, they are not Semiregular.

We could have refactored the concept design to define individual concepts for features like
Destructible, CopyConstructible, and MoveConstructible. However, this moves away from our
design ideals: concepts that represent abstractions in the application domain. These concepts
describe individual features, not abstractions. It is possible that these concepts may be required
by future designs, but we did not need them to express the requirements of the STL algorithms.

The syntactic requirements of Functions can be expressed in a single statement:

requires(F f, Args args...) {
ResultType<F, Args...> == { f(args...) };

}

The requirement is quantified over a function, function object, or lambda expression f having
type F, and a function parameter pack args whose types are given by the type sequence Args.
There are three syntactic requirements in this clause.

• The type function ResultType<F, Args...> must be defined for all Function types that are
callable with argument types Args....

• The expression f(args...) is valid; we can call f with the arguments given in the args param-
eter pack.

• The call f(args...) has the Same type as ResultType.

Taken as a whole, the requirement says that f can be called with the specified arguments and
the type resulting from the invocation is called F’s ResultType. Note that a void result type is
perfectly acceptable for Function types.

Semantically, a Function is not required to preserve equality. This is clearly stated by the not_
equality_preserving predicate. Recall that we assume required expressions are equality preserving
by default. Here, we have to explicitly indicate that the call expression for Function types does
not require this property.

A RegularFunction is a Function that is equality preserving:

concept RegularFunction<typename F, typename... Args> =
Function<F, Args ...> &&
axiom (F f, Args... args) {
equality_preserving(f(args...));

};

Regular functions—those having predictable and reasonable side effects—provide the semantic
foundation for the specification of Predicates, Relations (§3.4.1), and operations (§3.4.2).

3.4.1 Predicates

A Predicate is a RegularFunction whose result type is convertible to bool.

concept Predicate<typename P, typename... Args> =
RegularFunction<P, Args...> &&
Convertible<ResultType<P, Args...>, bool>;

Because P is required to be a Function (by way of RegularFunction), we are guaranteed that
ResultType<P, Args...> is defined.

Despite the fact that RegularFunctions have regular semantics, we do not constrain the argu-
ment types in its specification. Trying to do so may have unintended consequences. It makes it
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impossible, for example, to call any algorithm taking a Predicate on a sequence of non-Semiregular
types such as the resource-like unique_ptr. It seems unreasonable to disallow programs like this:

vector<unique_ptr<employee>> v = { ... };
auto i = find(v.begin(), v.end(),

[](const unique_ptr<employee>& p) {
return !p || p–>name() == "";

});

Care must be taken when specifying requirements not to accidentally preclude a set of oth-
erwise valid template arguments. We have found that constraining the argument types of
RegularFunctions is an easy way to achieve that undesirable goal.

A Relation is a binary Predicate.

concept Relation<typename P, typename T> = Predicate<P, T, T>;

The STL is concerned with two kinds of relations: equivalence relations which generalize equal-
ity, and strict weak orderings which generalize total orderings. Although the C++0x proposals
included concepts describing these properties, we do not. In C++, these properties can only be
defined for particular objects, not types. This is because there are many functions with type
bool(T, T) that are neither equivalence relations nor strict weak orderings. The precise semantics
of these kinds of Relations is defined in §B.1.2.

As with the EqualityComparable and TotallyOrdered concepts, we can extend its definition to
different types:

concept Relation<typename R, typename T1, typename T2> =
Relation<R, T1> &&
Relation<R, T2> &&
Common<T1, T2> &&
Relation<R, CommonType<T1, T2>> &&
requires(R r, T1 a, T2 b) {
bool { r(a, b) };
bool { r(b, a) };
axiom {
using C = CommonType<T1, T2>;
r(a, b) <=> r(C{a}, C{b});
r(b, a) <=> r(C{b}, C{a});

}
};

A Relation can be defined on different types if

• T1 and T2 share a CommonType C,

• the Relation R is defined for all combinations of those types, and

• any invocation of r on any combinations of types T1, T2, and C is equivalent to an invocation
r(C{a}, C{b}).

These are strong requirements, but we feel that they are justified. The additional requirements
make it possible to reason about the semantics of cross-type relations; they make it possible to
describe such relations as equivalence relations or strict weak orderings.

3.4.2 Operations

We provide three concepts for describing function concepts related to numeric operations. An
operation is a RegularFunction with a homogeneous domain whose result type is convertible to
its domain type.
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concept UnaryOperation<typename Op, typename T> =
RegularFunction<Op, T> &&
Convertible<ResultType<Op, T>, T>;

concept BinaryOperation<typename Op, typename T> =
RegularFunction<Op, T, T> &&
Convertible<ResultType<Op, T, T>, T>;

concept BinaryOperation<typename Op, typename T1, typename T2> =
BinaryOperation<Op, T1> &&
BinaryOperation<Op, T2> &&
Common<T1, T2> &&
BinaryOperation<Op, CommonType<T1, T2>> &&
requires(Op op, T1 a, T2 b) {
using C = CommonType<T1, T2>;
C = {op(a, b)};
C = {op(b, a)};
axiom {
eq(op(a, b), op(C{a}, C{b}));
eq(op(b, a), op(C{b}, C{a}));

}
};

The UnaryOperation concept defines requirements for operations on a single value; it is a RegularFunction
that takes a single argument of type T and whose result type is convertible to T. The BinaryOperation
defines requirements for operations on two arguments. The actual requirements are similar to
UnaryOperation.

We also extend BinaryOperation to the case where the argument types differ. This is done by
requiring the operation to be defined on the common type and that invocations of op over all
combinations of argument types T1 and T2 are equivalent to invocations on the common type.

These concepts are not used directly by the STL algorithms in the STL. We include them
because they will (in the future) be useful when defining requirements for the standard numeric
algorithms (C++ Standard, numeric.ops).

3.5 Iterator Concepts
Iterators are one of the fundamental abstractions of the STL. They generalize the notion of
pointers. There are 12 concepts related to iterators. The first five concepts are properties of
iterators, while the last 7 describe iterator abstractions.
// Iterator properties:
concept Readable<Semiregular I>
concept MoveWritable<typename T, Semiregular Out>
concept Writable<typename T, Semiregular Out>
concept IndirectlyMovable<Readable I, Semiregular Out>
concept IndirectlyCopyable<Readable I, Semiregular Out>

// Incrementable types:
concept WeaklyIncrementable<Semiregular I>
concept Incrementable<Semiregular I>

// Iterator abstractions:
concept WeakInputIterator<Incrementable I>
concept InputIterator<WeakInputIterator I>
concept ForwardIterator<InputIterator I>
concept BidirectionalIterator<ForwardIterator I>
concept RandomAccessIterator<BidirectionalIterator I>
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This iterator design is different than that found in the C++ standard. It has (many) more
concepts and does not include an explicit notion of output iterators. In part, some of the added
complexity comes from the fact that we differentiate between iterators that require equality
comparison (those in bounded ranges) and those that do not (those in weak ranges). The
addition of move semantics also introduces a new concept (MoveWritable).

3.5.1 Iterator Properties

Iterator properties deal with reading values from and writing values to iterators. The Readable
concept defines the basic properties of input iterators; it states what it means for a type to be
readable.

concept Readable<Semiregular I> =
requires(I i) {
ValueType<I>;
const ValueType<I>& = { *i };

};

A Readable type has an associated value type, which can be accessed using ValueType<T>. The
actual property that makes the type Readable is the fact that it can be dereferenced, and we can
refer to that value using a const reference.

The reason that we require convertibility to a reference type instead of to the ValueType is
that the latter can imply a copy requirement on the destination type. Suppose we have the
following:

vector<unique_ptr<T>> v = { ... };
auto i = v.begin();
unique_ptr<T> p = { *i }; // error: not copyable

This results in a compiler error because unique_ptrs are not copyable. Unfortunately, this is the
exact requirement that we would have stated for Readable if we required convertibility to the
ValueType instead of a reference.

This has a serious implication on the way that we write algorithms and their requirements.
If an algorithm uses a temporary buffer to store intermediate results, then it must explicitly
require that the iterator’s ValueType is Semiregular. An example of this is the relaxed version of
is_sorted_until described in §2.3.1.

Unlike the C++ standard’s InputIterator concept, the Readable concept does not require the
–> operator for iterators. Using the –> syntax requires in an algorithm requires that you know

1. that the iterator’s value type is a class or union type, and

2. the name of the member on the right hand side.

Although, we could test for the first property within the concept, there is no way to evaluate
the second without additional information. Furthermore, we know of no uses of the –> operator
in any STL implementations. As such, we omit the requirement from the concept.

Writable and MoveWritable describe the fundamental properties of output iterators. The
MoveWritable concept describes a requirement for moving a value into an iterator’s referenced
object.

concept MoveWritable<typename T, Semiregular Out> =
requires (T value, Out o) {
*o = move(value);
axiom (T other) {
Readable<Out> && Same<ValueType<Out>, T> =>
is_valid(*o = move(value)) => eq(value, other) =>
(*o = move(value), eq(*o, other)));
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}
};

The concept describes a relation between an iterator and the type whose value is being moved.
This is, in some respects, similar to the OutputIterator described in the C++0x proposals (C++

Standards Committee, 2009), except that it does not include any requirements for increment.
The axiom, like the requires clause is parameterized. This is convenient notation for quan-

tifying an axiom over variables that have not been previously introduced. Within the axiom,
the is_valid predicate is a compiler intrinsic that returns true if the expression is defined for its
given operands. This guarantees that writing *o will not result in undefined behavior; it won’t
accidentally power down your workstation or melt your CPU. is_valid is a kind of universal
precondition that lets us exclude unnamed values from the definition space of the expression.
Dereferencing an iterator is only valid if an iterator is in a range but not equal to its limit. We
use this predicate extensively when describing the semantics of iterators. Note that real validity
can be derived from the preconditions of an algorithm.

The meaning of the required expression are defined conditionally; we can only state the
meaning if the Out iterator is Readable and ValueType<Out> and T are the same type. The
axiom is (unsurprisingly) similar to that describing move assignment in the Semiregular concept
(§3.3). After evaluating *o = move(value), the value referred to by *o is equal to other. The
moved-from object value is left partially formed. Note that the result of the entire expression is
unconstrained.

The Writable concept describes a requirement for writing a value to a dereferenced iterator.
It is defined as:

concept Writable<typename T, Semiregular Out> =
MoveWritable<T, Out> &&
requires(T value, Out o) {
*o = value;
axiom {
Readable<Out> && Same<ValueType<Out>, T> =>
(is_valid(*o = value) => (*o = value, eq(*o, value)));

}
};

The Writable concept extends the requirements of MoveWritable to also include copy assignment
through an iterator. Recall that copy and move semantics are related. If you can copy value
through *o, then you can also move it. The semantics of Writable are analogous to those of copy
assignment.

Unlike Readable, the MoveWritable and Writable concepts do not have a built-in notion of
ValueType. It is perfectly reasonable for an algorithm to have multiple Writable requirements
taking different value types. The Mergeable concept (§3.6) and its related algorithms (§2.3.3 and
§2.3.4) do exactly this.

We introduce several “indirect” concepts to describe relationship between iterator types.
These are:

concept IndirectMovable<Readable I, Semiregular Out> =
MoveWritable<ValueType<I>, Out>;

concept IndirectlyCopyable<Readable I, Semiregular Out> =
Writable<ValueType<I>, Out>;

The IndirectlyMovable and IndirectlyCopyable concepts describe copy and move relationships be-
tween the values of an input iterator, I, and an output iterator Out. For an output iterator out
and an input iterator in, their syntactic requirements expand to:

• IndirectlyMovable requires *out = move(*in)
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• IndirectlyCopyable requires *out = *in

3.5.2 Incrementable Types

The concepts in this section describe incrementable types. All iterators have, as a basic trait,
the property that they can be incremented. A weakly incrementable type, represented by the
WeaklyIncrementable concept, represents a kind of type that can be pre- and post-incremented.
It describes the behavior of pre- and post-increment for both input and output iterators that are
not also forward iterators. WeaklyIncrementable types are used in weak input and output ranges
where equality comparison and equality preservation are not required.

concept WeaklyIncrementable<Semiregular I> =
requires {
// Associated types:
DistanceType<I>;
Integral<DistanceType<I>>;

} &&
requires (I i) {
// Pre-increment:
I& == {++i};
axiom {
// if valid, ++i moves i to the next element
not_equality_preserving(++i);
is_valid(++i) => &++i == &i;

}

// Post-increment:
i++;
axiom {
// if valid, i++ moves i to the next element
not_equality_preserving(i++);
is_valid(++i) <=> is_valid(i++);

}
};

Here, we divide the requirements into two groups. The first grouping specifies an associated
type: DistanceType. This is required to be an Integral type; no judgment is made as to whether
this should be signed or unsigned in this context. Note that we could have omitted the statement
DistanceType<I>. This statement:

Integral<DistanceType<I>>;

is sufficient to induce a requirement on the definition of DistanceType<I>..
The DistanceType is a numeric type that can represent the largest possible number of ap-

plications of the increment operator for the iterator type I. This is the same as the “difference
type” in the C++11 design. We prefer “distance” over “difference” since the type is more generally
associated with the distance operation, not subtraction.

WeaklyIncrementable types allow both pre- and post-increment, and both operations move
the operand to the next element. However, neither increment operation is required to preserve
equality, and the result type of the post-increment operation is unspecified. This makes de-
scribing the relationship between the two operators somewhat difficult. At best, we can say two
things:

1. they have equivalent effects because they have the same documented behavior, and

2. if one operation is valid, so is the other.
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It is debatable whether WeaklyIncrementable should actually require a post-increment opera-
tion. The semantics of the post-increment operator are vague, and the operator is not frequently
used in STL implementations.

The Incrementable concept matches our more common understanding of incrementable types.
They are Regular types where both pre- and post-increment are equality preserving operations,
and the syntax and semantics of the post-increment operation are given stronger meanings. The
regularity of pre- and post-increment allows multiple passes over a range of Incrementable objects.
This is traditionally referred to as the “multi-pass” property of iterators. The concept’s definition
is:

concept Incrementable<Regular I> =
WeaklyIncrementable<I> &&
requires (I i) {
// Pre-increment:
axiom {
equality_preserving(++i);

}

// Post-increment:
I == {i++};
axiom (I j) {
equality_preserving(i++);
is_valid(i++) => (i == j => i++ == j);
is_valid(i++) => (i == j => (i++, i) == ++j);

}
};

Whereas the result of post-incrementing aWeaklyIncrementable type is unspecified, the Incrementable
concept requires it to be exactly I. The axioms state the equality-preserving nature of the pre-
and post-increment operators and properties of the result of post-increment. The result of post-
increment is the previous iterator, and the effect of post-incrementing an iterator is the same as
pre-incrementing it.

3.5.3 Iterator Types

Iterators are incrementable and readable types. For example, aWeakInputIterator is aWeaklyIncrementable
and Readable type. WeakInputIterators are used in weak ranges so they are not required to be
EqualityComparable; the concept’s definition follows:

concept WeakInputIterator<WeaklyIncrementable I> =
Readable<I> &&
requires (I i) {
IteratorCategory<I>;
Derived<IteratorCategory<I>, weak_input_iterator_tag>;
Readable<decltype(i++)>;

};

The concept adds two additional static requirements: the type function IteratorCategory must be
defined for I, and the aliased type must be derived from the tag class weak_input_iterator_tag. The
iterator category is an artifact of the original STL iterator design. Historically, iterator categories
were used to differentiate different specializations based on iterator kind. While C++11 makes it
possible to evaluate all static requirements (using type trait hackery), we still need to differentiate
some concepts based on their semantic requirements. The iterator category solves that problem
for us.

The requirement Readable<decltype(i++)> guarantees that we can dereference the result of
the post-increment operator, but it does not say what that type actually is. Some iterators have
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post-increment operators that return proxies: objects used to provide access to the previous
state but are not actually iterators.

An InputIterator is an EqualityComparable WeakInputIterator. Every readable bounded range
requires, at least, an InputIterator.

concept InputIterator<WeakInputIterator I> =
EqualityComparable<I> &&
Derived<IteratorCategory<I>, input_iterator_tag>;

The definition is straightforward. Like the WeakInputIterator, it includes a derivation require-
ment for its iterator category. While the concept indirectly requires WeaklyIncrementable and
EqualityComparable, it does not require that increment is an equality preserving operation. This
means that a range of InputIterators can only be traversed once.

A ForwardIterator is an Incrementable InputIterator. Because its increment operation is equality-
preserving, ForwardIterators permit multiple passes over the data being traversed. ForwardIterator
types abstract the notion of traversal of singly-linked lists. They also tend to refer to data that
persists beyond the lifetime of the iterator’s current position. Incrementing a ForwardIterator
does not have any side effects that impact the regularity of its operations. Its definition is:

concept ForwardIterator<InputIterator I> =
Incrementable<I> &&
Derived<IteratorCategory<I>, forward_iterator_tag>;

A BidirectionalIterator is a ForwardIterator that supports the decrement operation; BidirectionalIterators
abstract the traversal of doubly-linked lists. The defining concept includes the two decrement
operators, which are defined analogously to the increment operators.

concept BidirectionalIterator<ForwardIterator I> =
Derived<IteratorCategory<I>, bidirectional_iterator_tag> &&
requires decrement (I i, I j) {
// Pre-decrement:
I& == { ––i };
axiom { is_valid(––i) => &––i == &i; }

// Post-decrement:
I == { i–– };
axiom {
is_valid(––i) <=> is_valid(i––);
is_valid(i––) => (i == j => i–– == j);
is_valid(i––) => (i == j => (i––, i) == ––j);

}
} &&
axiom increment_decrement (I i, I j) {
is_valid(++i) => (is_valid(––(++i)) && (i == j => ––(++i) == j));
is_valid(––i) => (is_valid(++(––i)) && (i == j => ++(––i) == j));

};

In this concept, we have split its definition into two parts: a named Decrement requirement that
states the syntax and semantics of pre- and post-decrement, and a named axiom (Increment_decrement)
that describes the relationship between the increment and decrement operators. Axioms can be
named in the same way that requirements are named, except that the identifier axiom must still
be used to introduce the clause.

The syntactic and semantic requirements in the Decrement clause can be paired, one-to-one
with the increment axioms in ForwardIterator. Note that we don’t have to explicitly state the
equality-preserving nature of the operator because we assume that all required operations are
equality preserving unless otherwise stated.
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The Increment_decrement axiom clause relates the increment and decrement operation through
a pair of mutual equations. These equations say that if we reach an iterator by incrementing
then we can reach its predecessor by decrementing and vice versa.

A RandomAccessIterator is a TotallyOrdered BidirectionalIterator that can advance some number
of steps, in either direction, in constant time, leading to a number of new syntaxes. The distance
between RandomAccessIterators can also be computed in constant time by subtracting two values.
The concept, while extensive, has straightforward requirements:

concept RandomAccessIterator<BidirectionalIterator I> =
TotallyOrdered<I> &&
Derived<IteratorCategory<I>, random_access_iterator_tag> &&
SignedIntegral<DistanceType<I>> &&
difference (I i, I j) {
DifferenceType<I> == { i – j };
SignedIntegral<DifferenceType>;
Convertible<DistanceType, DifferenceType>;
axiom {
is_valid(distance(i, j)) <=> is_valid(i – j) && is_valid(j – i);
is_valid(i – j) => (i – j) >= 0 => i – j == distance(i, j);
is_valid(i – j) => (i – j) < 0 => i – j == –distance(i, j);

}
} &&
advance (I i, I j, DifferenceType<I> n) {
// Addition:
I& == { i += n };
I == { i + n };
I == { n + i };
axiom {
is_valid(advance(i, n) <=> is_valid(i += n);
is_valid(i += n) => i += n == (advance(i, n), i);
is_valid(i += n) => &(i += n) == &i;
is_valid(i += n) => i + n == (i += n);

// Commutativity of pointer addition
is_valid(i + n) => i + n == n + i;

// Associativity of pointer addition
is_valid(i + (n + n)) => i + (n + n) == (i + n) + n;

// Peano-like pointer addition:
i + 0 == i;
is_valid(i + n) => i + n == ++(i + (n – 1));
is_valid(++i) => (i == j => ++i != j);

}

// Subtraction:
I& == { i –= n };
I == { i – n };
axiom {
is_valid(i += –n) <=> is_valid(i –= n);
is_valid(i –= n) => (i –= n) == (i += –n);
is_valid(i –= n) => &(i –= n) == &i;
is_valid(i –= n) => (i – n) == (i –= n);

}
} &&
subscript (I i, DifferenceType<I> n) {
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ValueType<I> = { i[n] };
axiom {
is_valid(i + n) && is_valid(*(i + n)) => i[n] == *(i + n);

}
};

The difference requirements vary from what is required by the C++ standard. There, an iterator’s
difference type describes both the result of the distance algorithm and arithmetic subtraction of
random access iterators. The distance algorithm requires a bounded range, [first, last), which
should imply that its result is non-negative (last must be reachable from first by a series of
increment operations). The standard mandates a different definition for random access iterators:
distance(i, j) == j – i. We see this as a specification error; the guarantees of the distance operation
have been weakened for an iterator specialization.

In our design, we consider the two operations to be distinct. The result type of iterator
subtraction is called the DifferenceType. It must encode the largest possible DistanceType and
their additive inverses (hence the SignedIntegral requirement). In other words, if n is the distance
between i and j, then the difference type must be able to represent both n and −n. This is
supported by the requirement that the DistanceType be convertible to the DifferenceType. More
often than not, we expect the two types to be the same, although, it is certainly possible to
define iterators that have different distance and difference types.

The remainder of the concept defines the semantics of addition and subtraction of random
access iterators and pointers—essentially pointer arithmetic—in terms of the DifferenceType. The
+= operator, for example, is equal to the application of advance and it returns a reference to the
advanced iterator. The precondition is_valid(advance(i, n)) implies that [i, i + n) is, minimally, a
weak range. Remember that is_valid guarantees the preconditions of the expression are met.

Two axioms state the commutativity and associativity of expressions involving random access
iterators and distance values. The next three axioms give a Peano-like formulation of the meaning
of this arithmetic. That is:

• 0 is the additive identity. Adding 0 to an iterator does not advance the iterator.

• Addition can be defined recursively as a sequence of increments.

• The successor of a random access iterator is distinct from its predecessor.

This differs from Peano arithmetic in one key notion: RandomAccessIterators do not have a fixed
zero element. This means that one cannot inductively reason about an arbitrary iterator without
stating the bounds of the range to which it belongs. This is why all STL algorithms take bounded
and weak iterator ranges.

3.6 Rearrangements
There are several additional iterator concepts that are commonly applied to families of algo-
rithms. These are the so-called rearrangement concepts. They group together iterator require-
ments of algorithm families. There are 6 relational concepts for rearrangements:

concept Permutable<ForwardIterator I>
concept Mergeable<InputIterator I1, InputIterator I2, Incrementable Out>
concept Mergeable<InputIterator I1, InputIterator I2, Incrementable Out, typename R>
concept Sortable<ForwardIterator I>
concept Sortable<ForwardIterator I, typename R>

The Permutable concept describes a requirement for permuting or rearranging the elements
of an iterator range.
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concept Permutable<ForwardIterator I> =
Semiregular<ValueType<I>> &&
IndirectlyMovable<I, I>;

Rearrangement is achieved simply by exchanging underlying values. The IndirectlyMovable re-
quirement allows Permutable iterators to directly exchange values within a range. We also require
the ValueType to be Semiregular. This guarantees that permutation algorithms can declare and
use temporaries as needed.

Admittedly, the requirement on Semiregular is too strong; it unnecessarily over-constrains
permutation algorithms by requiring copy semantics. For example, this should be a valid pro-
gram:

vector<unique_ptr<T>> v = { ... };
reverse(v.begin(), v.end());

The program will not compile using the current concept design because we require Semiregular
for Permutable iterators. We have opted to present this stricter design because the alternative
would require additional concepts specifically for copy and move semantics. We present that
design in Appendix D.

The Mergeable concepts describe the requirements of algorithms that merge sorted sequences
into an output sequence. The first overload requires that the underlying value types are TotallyOrdered,
and the second is defined in terms of a generalized Relation (actually a strict weak order).

concept Mergeable<InputIterator I1,
InputIterator I2,
WeaklyIncrementable Out> =

TotallyOrdered<ValueType<I1>, ValueType<I2>> &&
IndirectlyCopyable<I1, Out> &&
IndirectlyCopyable<I2, Out>;

concept Mergeable<InputIterator I1,
InputIterator I2,
WeaklyIncrementable2 Out,
Relation<ValueType<I1>, ValueType<I2>> R> =

IndirectlyCopyable<I1, Out>;

The Sortable concepts describe the common requirements of algorithms that permute se-
quences of iterators into an ordered sequence (e.g., sort). The first overload requires the under-
lying value type to be TotallyOrdered, and the second is generalized over a (strict weak order)
Relation.

concept Sortable<ForwardIterator I> =
TotallyOrdered<ValueType<I>> && Permutable<I>;

concept Sortable<ForwardIterator I, Relation<ValueType<I>> R> =
Permutable<I>;

Grouping the common requirements of an algorithmic family produces much cleaner require-
ments than if we tried to constrain each algorithm individually. An added benefit of this is that
it allows us to conceptually group algorithms by their requirements; this will help programmers
understand the inherent relationships between different kinds of algorithms that have similar
requirements.

3.7 Standard Iterators
This iterator design differs from standard iterators primarily in two ways:

1. there are more iterator concepts, and
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2. There is no explicit output iterator concept.

We consider the larger number of concepts an artifact of three design requirements. First, we have
iterator properties like Readable, MoveWritable, and Writable that capture common requirements
for more advanced concepts and algorithms. Second, we defined concepts to represent actual
use in algorithms. There are a large number of algorithms where iterators are not compared
for equality. This observation led to the creation of WeaklyIncrementable and WeakInputIterator.
Third, we encapsulated common iterator requirements for families of algorithms. Rearrangement
concepts like Permutable and Sortable are useful for expressing requirements very succinctly and
are a vast improvement over the C++0x proposals (C++ Standards Committee, 2009).

concept WeakOutputIterator<WeaklyIncrementable Out, typename T> =
Writable<Out, T>;

concept OutputIterator<WeaklyIncrementable Out, typename T> =
EqualityComparable<Out> && Writable<Out, T>;

This specification of output iterators parallels input iterators. WeakOutputIterator is used in a
large number of algorithms. OutputIterator is used in exactly three: fill, generate, and iota. The
requirement for fill would look like this if we used OutputIterator in the design:

template<WeaklyIncrementable Out, typename T>
requires OutputIterator<Out, T>

void fill(Out first, Out last, const T& value);

On one hand, this could be seen as a simpler specification of requirements. On the other hand,
there are a number of redundant requirements stated between the template argument type
(WeaklyIncrementable<I>) and the requires clause OutputIterator<Out, T>.

Finally, we would also have to create similar output iterator concepts for move-based algo-
rithms such as move and move_backward. Obviously, the conclusion we reached was that no
OutputIterator concept was needed at this time. In the future, we may find ways to express
output iterator requirements more succinctly and re-introduce the concept as needed.

3.8 Random Number Generators
There are three algorithms in the STL that require random number generators: two overloads of
random_shuffle, and shuffle. These algorithms contain two designs for random number generators.
The first, the RandomNumberGenerator, is a holdover from the original STL. The second is part
of the larger C++11 random number library (C++ Standard, rand).

A RandomNumberGenerator is a unary Function that takes a positive integral value, n, and
returns a uniformly distributed random number in the range [0, n).

concept RandomNumberGenerator<typename Gen, Integral N> =
Function<Gen, N> &&
Convertible<ResultType<Gen, N>, N> &&
axiom (Gen gen, N n) {
m = gen(n), 0 >= m && m < n;

};

Unfortunately, our ability to make axiomatic statements about the probability distribution of
Gen is limited by the fact that we don’t have sufficient syntax to say, “for an unlimited number
of trials, the frequency with which the value m is observed approaches 1.0/n.”

A UniformRandomNumberGenerator is a nullary Function that generates uniformly distributed
values of some unsigned integer type.

concept UniformRandomNumberGenerator<Function Gen> =
UnsignedIntegral<ResultType<Gen>>;
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As with the previous concept, the syntax required to state properties of the generators’ uniformity
and periodicity is currently beyond our abilities. C++11 establishes a more comprehensive set of
requirements for random number generators including seed sequences and random distributions.
The requirements of STL algorithms did not necessitate the specification of concepts for these
requirements. Doing so should be a straightforward task.

4 Conclusions
The purpose of this report is to describe the requirements of the STL algorithms, the concepts
used to state those requirements, and the language features used to do both. The concept
design was subject to a number of requirements. In particular, we wanted to state template
requirements tersely and clearly so that it would be obvious what was required. We also wanted
a design with few, semantically meaningful concepts. Finally, we wanted the requirements to be
compatible with those in C++11.

While we think we have achieved the first two goals, this design is not fully compatible
with C++11. We deviate from the standard requirements in a number of algorithms by “fixing”
some template parameters as an iterator’s associated type. In other algorithms, our stricter
interpretation of cross-type relations and operations excludes instantiations where the semantics
of the operation have not been formally described. Finally, all Permutable algorithms are over-
constrained by a Semiregular requirement. This means that many algorithms that would be
compatible for non-copyable types (e.g. reverse) are not in this design. We address this in
Appendix D.

The language used to express these concepts is conservatively designed and fairly minimal in
its specification. In particular, we did not want the language to impose any programming model
that would dramatically alter the way that people write and use libraries. The language features
presented in this work emphasize template argument checking. There is still much work to be
done extending these features to address e.g. separate type checking.

4.1 Outstanding Issues
This work is clearly a starting point. There are a number of issues remaining to be addressed
in this report. In particular, we think we can further simplify the specification of template
constraints, and we would like to support preconditions and postconditions.

4.1.1 Simplifying Algorithm Requirements

One outstanding problem is the redundancy of parameter declarations for families of generic
algorithms. For example, consider the family of set operations described in §2.3.4. Each algo-
rithm has three template parameters (or four if you provide a Relation) that have the exact same
requirements. We could dramatically simplify the declaration of these algorithms if we could use
the Mergeable concept to introduce the algorithm’s parameters. One speculative solution is:

template<Mergeable M>
M::Out set_union(M::I1 first1, M::I1 last1, M::I2 first2, M::I2 last2, M::Out result);

M acts as an alias to the template parameters of the Mergeable concept and the type names
are qualified by that alias. Obviously, this syntax doesn’t distinguish between the two overloads
of M, and may have some ambiguity (does M refer to the parameters of Mergeable or is M a
Mergeable type?)

We think that this is an important problem to address. Failing to provide syntax to ade-
quately address these issues will result in the use of macros to solve the problem. This is, in many
ways, directly analogous to the use of macros to simplify the declaration of template parameter
lists for out-of-line member functions.
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4.1.2 Preconditions and Postconditions

The axioms presented in this report are not sufficient to fully reason about the behavior of a
program. While they do help describe the meaning of an expression, they need to be combined
with preconditions and postconditions to support a broader range of static checking applications.

The exact form that preconditions and postconditions should take will be, we are sure, a
matter of great debate. However, we know from experience that they must not be simple
runtime assertions that can be turned off with a compiler flag. This model is simplistic and
does not account, for properties that cannot be evaluated at runtime (e.g. universally quantified
properties).

Appendix B speculates on some aspects of preconditions and postconditions, particularly
the definition of properties which can be used to state un-evaluable requirements on function
arguments.

4.2 Future Work
We plan to continue developing conceptual descriptions of the generic libraries to help refine
our concept design and the language used to describe those concepts. In particular, we plan
to develop requirements and concepts for other components of the C++ Standard Library: nu-
meric algorithms (an early draft of that work was actually removed from this report) and data
structures, containers, I/O streams, strings, random number generators, etc.

At the same time, we plan to build a compiler (based on Clang) for the emerging language.
This prototype will support the full range features described in this report. We hope to have an
initial version ready by early February, 2012.
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Appendices
Appendix A Summary of the Language
In this appendix, we give a summary of the language features used to define the concepts for
and constrain the algorithms of the STL. A more formal specification of the language and
implementation issues currently under investigation.

A.1 Language Description
The grammar defined here is based on the C++11 Standard (C++ Standards Committee, 2011).
Grammarical productions and descriptions thereof that are not defined in this appendix can be
found in there.

A.1.1 Concept Definitions

A concept definition is a declaration (C++ Standard, dcl.dcl):

declaration:
block-declaration
function-definition
template-declaration
...
concept-definition

A concept definition starts with the concept keywrd and is followed by its name, a template pa-
rameter list, and its body (a conjunction of requirements and Boolean expressions).

concept-definition:
concept concept-name < template-parameter-list > = concept-body ;

We had debated whether or not concepts could be forward-declared: introducing the concept
name without providing a complete definition of the concept. Since we did not need that feature
to describe the concepts for the STL, we did design the grammar to support the feature.

A.1.2 Concept Names

A concept name is a simple identifier (C++ Standard, lex.name), and a concept id refers to a
concept specialiazation (similar to a template-id (C++ Standard, temp.names)).

concept-name:
identifier

concept-id:
concept-name < template-argument-list >

A concept-id denotes the evaluation of concept’s requirements on the given arguments.
A concept-id can be used as a primary expression in C++ (it is an unqualified-id). When

appearing in an expression, it is evaluated as the booolean constant true of false, depending
on whether its template arguments satisfy its stated requirements. Technically, that makes the
following a legal program:

if(Regular<T>) {
// do something

}

This does not define a “static if”. The compiler will still parse and analyze the nested statements
in the if block, regardless of whether Regular<T> is true or false.
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A.1.3 Constrained Template Parameters

A concept’s template parameter specification is the same as that of a template declaration. How-
ever, we have extended the usual template parameter production (C++ Standard, temp.param)
with constrained template parameters:

template-parameter:
...
constrained-template-parameter

constrained-template-parameter:
concept-id ...opt identifier constrained-default-argumentopt concept-name ...opt identifier
constrained-default-argumentopt

constrained-default-argument:
= type-id
= assignment-expression
= id-expression

A constrained template parameter uses a concept name or id (described before) as the “type” of
the declared template parameter, a shorthand for writing a requirement involving the concept
and the parameter. For example:

concept A<typename T> = ...;
concept B<typename T> = ...;

concept C1<A T, B U> = X<T>;
concept C2<typename T, typename U> = A<T> && B<U> && X<T>;

C1 and C2 have equivalent requirements.
A concept-id can be used if the referenced concept takes multiple template arguments. The

declared template parameter is substituted as the first argument of the concept. For example:

concept A<typename T, typename U> = ...;

concept C1<typename T, A<T> U> = X<T>;
concept C2<typename T, typename U> = A<U, T> && X<T>;

Again, C1 and C2 have equivalent requirements.
The kind of constrained template parameter (type parameter, non-type parameter, or tem-

plate template parameter) is deduced from the kind of first template parameter of the constrain-
ing template. For example:

concept True<bool B> = b;

concept C<True B> = ...;

C<true> // okay
C<bool> // error: bool is a type

The first argument of C has the constraint True, and its first template parameter is the non-type
parameter with type bool.

Template parameters can be assigned a default type or value. Example:

concept C1<Regular T, Regular U = T>;

A constrained template parameter may also indicate a template parameter pack. For exam-
ple:

concept NumberList<Integral... Args> = ...;

This has the same meaning as:
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concept NumberList<typename... Args> = Integral<Args>...;

Again, the type of parameter pack (type, non-type, template) is derived from the first tem-
plate parameter of the constraining concept (Integral). The precise meaning of this expansion is
described below.

A.1.4 Concept Bodies

A concept’s body consists of a conjunction of one or more concept clauses. The conjunction of
clauses is represented with the usual &&:

concept-body:
concept-requirement-seq

concept-requirement-seq:
concept-requirement && concept-requirement-seq
concept-requirement

concept-requirement:
constant-expression
concept-id
requires-block
axiom-block

1. a constant expression whose result is convertible to bool,

2. a concept-id, representing the use of another concept,

3. a requires block expressing syntactic requirements, or

4. an axiom block representing semantic requirements.

Constant expressions can include the evaluation of type traits, such as is_same<T, U>::value from
the definition of Same in §3.2.1).

A concept is true when all of its requirements evaluate to true.

A.1.5 Syntactic Requirements

A requires block can contain one or more of syntactic and semantic requirements and can be
optionally given a descriptive name:

requires-block:
requires identifieropt(opt parameter-declaration-listopt)opt{ requirement-seq }

Examples of three different in which requirement blocks can be written are:

concept C1<typename T> = requires { ... };
concept C2<typename T> = requires (T a, T b) { ... };
concept C3<typename T> = requires my_requirement(T a, T b) { ... };

A requires block can be parameterized to introduce objects for writing requirements, and they
can be optionally named to help break up long lists of requirements. Note that the name of a
requirement has no meaning within the program; it does not denote a declaration.

A requires block consists of a sequence of requirement statements.

requirement-stmt-seq:
requirement-stmt
requirement-stmt-seq requirement-stmt
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The requirements are specified in a sequential fashion, although their ordering has no effect on
the overall meaning. A requirement eiter specifies a valid expression, an associated type, or an
axiom describing the semantics of those required expressions and types.

requirement-stmt:
valid-expr-requirement ;
assoc-type-requirement ;
axiom-block

A valid expression describes syntax representing the set of valid operations on the concept’s
template arguments. They are specified in one of four ways:

valid-expr-requirement:
expression
type-id { expression }
type-id = { expression }
type-id == { expression }

The first form describes syntax with an unconstrained result type. For example, the required
syntax *o = value in Writable is unconstrained. The three remaining productions describe re-
quirements on the result type of a required expression. Note that the syntax for stating result
type constraints is a slightly modified version of declaration and initializer syntax (C++ Standard,
dcl.decl, dcl.init). Examples of the actual requirements corresponding to the different syntaxes
are:

bool { a < b }; // Explicit conversion
C = { op(a, b) }; // Implicit conversion
T* == { &a }; // Same type requirement

For the first two conversion requirements, the corresponding we could check the the validity of
the following declarations:

bool b{ a < b };
C c = { op(a, b) };

Simply inserting a variable name after the type causes the syntax to be a (possibly) valid dec-
laration. This is exactly how these requirements are checked. Note that we could equivalently
have written Convertible<decltype(op(a, b)), C> as the type constraint on the second expression.
The same-type requirement is interpreted in exactly this manner:

T* p = { &a };
Same<decltype(&a), T*>;

The result of the expression must be the same as the type of the declarator.
An associated type requirement declares a requirement for a type function or template

alias:

associated-type-requirement:
simple-template-id ;

For example:

concept Iterator<typename I> =
requires {
IteratorCategory<I>; // must refer to a valid type

} && ...
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A.1.6 Semantic Requirements

An axiom is a block of statements describing the properties of a required expression. Like
syntactic requirements, axioms can be optionally named and may introduce formal parame-
ters.

axiom-block:
axiom identifieropt( parameter-declaration-listopt) { axiom-seq }

axiom-seq:
axiom-seq axiom
axiom

Note that the syntax presented here is restricted to the uses in the report. We have not tried to
defined a more general specification language.

Axioms consist of sequences of Boolean expressions of the following forms:

axiom:
expression-statement
alias-declaration

The set of statements that can be written in an axiom block is a restricted set of what might
be written in a function body. In particular, we restrict this to expression statements and alias
declarations. We have not found any need to write if or while statements in axioms.

In general, axioms are comprised of C++ expressions written as equations. A common use is
to define equations over equal values, as in:

axiom commutative(T a, T b) {
a + b == b + a;

}

Many axioms presented in this report rely on two additional operators: => and <=>. We
introduce these as extensions of the standard set of C++ operators. Note that while axioms
are not evaluated as part of a program’s execution, we do describe how these operators are be
evaluated (they may be useful for test cases).

The implication operator (=>) has the following syntax:

implication-expression:
logical-or-expression logical-or-expression => implication-expression

It groups right-to-left. When evaluated, both operands are contextually converted to bool and
the result is true when either both operand are true or the first operand is false. Like the && and
|| operators, the => guarantees left-to-right evaluation, and the second operand is not evaluated
if the first operand is false. Examples include the symmetric and transitive properties of equality
(as given in the EqualityComparable concept).

a == b => b == a;
a == b && b == c => a == c;

The syntax of the logical equivalence <=> operator is:

equivalence-expression:
implication-expression
equivalence-expression <=> implication-expression

It groups left-to-right. When evaluated, both operators are contextually converted to bool and
the result is true only when both of its operands are true. For example:

a != b <=> !(a == b);
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It is not intended that the implication and equiavalence operators be overloaded. They are
meant to define primitive relations Boolean expressions.

To accommodate the new operands, we modify the specification of the conditional opera-
tor:

conditional-expression:
equivalence-expression
equivalence-expression ? expression : assignment-expression

Because concept-ids are evaluated as boolean expressions, we can use them as arguments in an
implication. For example, the axiom of the Writable concept includes the following statement:

Readable<Out> && Same<ValueType<Out>, T> =>
is_valid(*o = value) => (*o = value, eq(*o, other));

This axiom states that, if the template parameter Out is Readable and its value type is the same
as the type written to Out, writing a value through an output iterator ensures that a subsequent
read will yield an equal value. The Readable and Same contexts locally constrain the syntax of
the second operand—it lets write the expression eq(*o, other).

Alias declarations allow us to simplify some requirements by creating type aliases. For ex-
ample:

axiom (T t, U u) {
using C = CommonType<T, U>;
t + u == C{t} + C{u};

}

Here, we have introduced C so we don’t have to write the longer CommonType<T, U>.
Axioms can be either independent concept clauses, or they can be embedded in requirement

clauses. The choice has no effect on the meaning of the program. For examples, axioms about
subtraction might be written as:

concept X<Number T> =
requires (T a) {
T { a – a };
axiom { a – a == T{0}; }

} &&
axiom (T a, T b) {
a – b == a + –b;

};

Throughout this report, we have written axioms near to the syntax they describe.

A.1.7 Constrained Templates

One of the main objectives of a concept language is the ability to constrain template argu-
ments of generic algorithms. We extend the syntax of template declarations to allow specifying
constraints:

template-declaration:
template < template-parameter-list > requires-clauseopt declaration

requires-clause:
requires logical-and-expression

We extend template-declaration template declarations with an optional requires-clause (indicated
by the requires keyword). The requires clause is a conjunction of expressions (usually concept-ids).
Note that the expression must be a constant expression whose result is convertible to bool.

We also allow the same shorthand syntax for constraints that we used in concepts definitions.
For example, the two following declarations are equivalent:
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template<SomeConcept T1, AnotherConcept<T1> T2>
f(T1 a, T2 b);

template<typename T1, typename T2>
requires SomeConcept<T1> && AnotherConcept<T2, T1>
f(T1 a, T2 b);

Because concepts can and often are defined in terms of other concepts, one can write con-
straints in different ways. Our design does not preclude redundancy in constraints, and, in fact,
our convention requires it in some cases. We have chosen to avoid “naked” template parameters
in signatures by specifying the “strongest” (most specific) concept for every template parameter
where possible. For example, in §2.3.1 we write:

template<RandomAccessIterator I, Relation<ValueType<I>> R>
requires Sortable<I, R>
void nth_element(I first, I nth, I last, R comp);

Sortable already requires Relation for the R parameter, and, strictly speaking, the requirement
Relation<ValueType<I>> R is not necessary, but we prefer it to typename R.

A.2 Grammar Summary
In this section we list all the productions of the grammar in one place for easy reference and
comprehension.

declaration:
block-declaration
function-definition
template-declaration
...
concept-definition

concept-definition:
concept concept-name < template-parameter-list > = concept-body ;

concept-name:
identifier

concept-id:
concept-name < template-argument-list >

template-parameter:
...
constrained-template-parameter

constrained-template-parameter:
concept-id ...opt identifier constrained-default-argumentopt concept-name ...opt identifier
constrained-default-argumentopt

constrained-default-argument:
= type-id
= assignment-expression
= id-expression

concept-body:
concept-requirement-seq

concept-requirement-seq:
concept-requirement && concept-requirement-seq
concept-requirement

concept-requirement:
constant-expression
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concept-id
requires-block
axiom-block

requires-block:
requires identifieropt(opt parameter-declaration-listopt)opt{ requirement-seq }

requirement-stmt-seq:
requirement-stmt
requirement-stmt-seq requirement-stmt

requirement-stmt:
valid-expr-requirement ;
assoc-type-requirement ;
axiom-block

valid-expr-requirement:
expression
type-id { expression }
type-id = { expression }
type-id == { expression }

associated-type-requirement:
simple-template-id ;

axiom-block:
axiom identifieropt( parameter-declaration-listopt) { axiom-seq }

axiom-seq:
axiom-seq axiom
axiom

axiom:
expression-statement
alias-declaration

implication-expression:
logical-or-expression logical-or-expression => implication-expression

equivalence-expression:
implication-expression
equivalence-expression <=> implication-expression

conditional-expression:
equivalence-expression
equivalence-expression ? expression : assignment-expression

template-declaration:
template < template-parameter-list > requires-clauseopt declaration

requires-clause:
requires logical-and-expression
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Appendix B Preconditions and Postconditions
This appendix describes the preconditions and postconditions of the algorithms in the STL.
Obviously, C++ does not provide sufficient notation to support the task so we have taken some
liberties to extend C++ in ways that will. The language features included in this section are
purely speculative; we do not mean to include them as part of the C++ concept proposal. We
include them here in order to be precise about the meaning of the algorithms in Section §2.

The preconditions and postconditions for the STL algorithms are heavily motivated by the
Elements of Programming book by Stepanov and McJones. Many of the preconditions in that
book were stated as properties, which define the mathematical properties of objects using exis-
tential and universal quantification, implication, logical equivalence, etc.

Much of that syntax is already used in the axioms defined by concepts. In order to express
these properties in a C++-like language, we allow axioms to be defined outside of concepts. In
particular we introduce some additional notation to express universal and existential quantifica-
tion.

Throughout this appendix, we refer to algorithms and supporting data structures that are
not defined in the STL. We do so to simplify the specification of many pre- and post-conditions.
Prototype implementations of these supplemental algorithms and data structures can be found
in the Origin library Sutton (2011).

B.1 Property Library
The property library defines a number of basic properties used throughout this appendix to
specify preconditions and postconditions.

B.1.1 Iterator Ranges

In particular, it defines the meaning of weak ranges, counted ranges, and bounded ranges and
the validity of operations on iterators in those ranges.

A weak range is defined by an iterator that can be incremented n times. It is described by
the following property:

template<WeaklyIncrementable I>
property is_weak_range(I first, DistanceType<I> n)
{
for all(DistanceType<I> i)
(0 <= i && i <= n) => is_valid(next(first, i));

}

This is similar any other function template except that a) it is introduced by the keyword
property, and b) it has no specified result type. The result of a property is always bool.

The for all construct is the universal quantifier, ∀ (the identifier all is assumed to be contextual
keyword). The quantifier introduces a variable i that ranges over all values of DistanceType<I>.
Like a usual for loop, the quantifier has a nested statement describing the property to be satisfied:
an implication in this case. The is_valid predicate is the same as used to specify iterator axioms.
Here, is_valid asserts the validity of its expression argument. The result of a quantifier is a bool
value, which is hypothetically true when the property is satisfied for all values of i.

Like a concept’s axioms, properties are not intended to be evaluated at runtime. Whereas
axioms are quantified over their parameters and assumed to be true for all values (applicable)
values of their corresponding types, a property describes a constraint on specific objects, namely
the arguments to which it is applied. In total, the axiom states that advancing from first to each
value of i in the specified range must not result in undefined behavior. For example, if we could
write:
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int A[] = {0, 1, 2, 3 }
// is_weak_range(a, 1); // is true
// is_weak_range(a, 10); // is false

Note that if i is a valid iterator (i.e. points to an object), then is_weak_range(i, 1) is true. You
can always increment a valid iterator at least once.

A counted range is a weak range that has no loops in the orbit of its increment operator.
The specification of this property is:

template<WeaklyIncrementable I>
property is_counted_range(I first, DistanceType<I> n)
{
weak_range(first, n) &&
for all(DistanceType<I> i)
for all(DistanceType<I> j)
(0 <= i && i < j && j <= n) => next(first, i) != next(first, j);

}

Because quantifiers are expressions returning bool, they can be used in Boolean expressions.
This means that they can also be mixed with more conventional predicates like is_sorted.

A bounded range is a counted range over the distance from first to last.

template<WeaklyIncrementable I>
requires EqualityComparable<I>
property is_bounded_range(I first, I last)
{
for some(DistanceType<I> n)
is_counted_range(first, n) && next(first, n) == last;

}

The quantifier for some is the existential quantifier, ∃.
A readable_range is a weak, counted, or bounded range where dereferencing is a valid opera-

tion. We commonly refer to readable ranges as input ranges.

template<WeakInputIterator I>
property is_readable_range(I first, DistanceType<I> n)
{
is_weak_range(first, n) &&
for all(I i : range(first, n))
is_valid(*i);

}

template<InputIterator I>
property is_readable_range(I first, I last)
{
is_bounded_range(first, last) &&
for all(I i : range(first, last))
is_valid(*i);

}

We have overloaded the property based on the input types of the algorithm. The first overload
states the readability for weak ranges and the second for bounded ranges. If an algorithm requires
a readable counted range, then the preconditions should state an additional requirement on the
is_counted_range. This design is slightly different than that used in the EoP book. Because
counted ranges are not frequently used preconditions, we have tried to simplify the properties
for weak and bounded ranges.

The quantifiers in these axioms are bound to specific values. The range function returns a
range object over which the variable is quantified. The two overloads of range are:
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1. range(first, n) — returns the counted range [first, first + n).

2. range(first, last) — returns the bounded range [first, last).

This is not intended to be a hypothetical facility. The implementation of range and its corre-
sponding range types are straightforward and can be found in Origin.

The readable property establish the validity of the dereferencing operator for iterators in the
given ranges. Specifically, this says that the iterators in these ranges are readable everywhere
except the limit. That is, for example, if first == last, the *first is not a valid operation.

A movable range and writable range are sequence of iterators to which a value can be moved
or assigned, respectively. These are more generally referred to as output ranges. There are two
definitions for each:

template<WeaklyIncrementable I, typename T>
requires Writable<T, I>
property is_movable_range(I first, DistanceType<I> n, T x)
{
is_weak_range(first, n) &&
for all(auto i : range(first, n)
is_valid(*i = move(x));

}

template<WeaklyIncrementable I, typename T>
requires EqualityComparable<I> && Writable<T, I>
property is_movable_range(I first, I last, T x)
{
is_bounded_range(first, last) &&
for(I i : range(first, last))
is_valid(*i = move(x));

}

template<WeaklyIncrementable I, typename T>
requires Writable<T, I>
property is_writeable_range(I first, DistanceType<I> n, T x)
{
is_movable_range(first, n) &&
for all(auto i : range(first, n)
is_valid(*i = x);

}

template<WeaklyIncrementable I, typename T>
requires EqualityComparable<I> && Writable<T, I>
property is_writable_range(I first, I last, T x)
{
is_movable_range(first, last) &&
for(I i : range(first, last))
is_valid(*i = x);

}

Here, we state the move or assignment in terms of an actual object, x, that is being assigned.
This is necessarily different from the similar definitions in the EoP book where value writable
iterators have a built-in notion of value type. Again, we override the predicate for weak and
bounded ranges. Algorithms requiring counted writable ranges will use the overload for weak
ranges and state a second requirement of is_counted_range.

We define permutable ranges as ranges whose values can be exchanged and written to (or
overwritten).
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template<Permutable I>
property is_permutable_range(I first, DistanceType<I> n)
{
is_readable_range(first, n) && is_movable_range(first, n, *first);

}

template<Permutable I>
property is_permutable_range(I first, I last)
{
is_readable_range(first, last) && is_movable_range(first, last, *first);

}

It is often useful to assert that an iterator can be found within a range. There are two
properties used throughout this report to ensure that:

template<WeaklyIncrementable I>
requires EqualityComparable<I>
property in_range(I i, I first, I last)
{
is_bounded_range(first, i) && is_bounded_range(i, last);

}

template<WeaklyIncrementable I>
requires EqualityComparable<I>
property in_closed_range(I i, I first, I last)
{
in_range(first, last, i) || i == last;

}

The in_range property can be used to ensure that the iterator i can be found in [first, last). The
in_closed_range property ensures that i is in the closed range [first, last].

B.1.2 Relations

There are a number of properties that can be associated with Relations.
A relation is reflexive if, for all a, a is related to itself.

template<typename R>
property reflexive(R r)
{
for all(DomainType<R> a) r(a, a);

}

This property is unconstrained in order to simplify its usage. We want to write, reflexive(r) in
order to assert the property. The DomainType alias is just a placeholder for the relation’s domain
type (which not actually be deducable—R could be polymorphic). The intent is to document
the requirement rather than implement a testable program.

The opposite of a reflexive relation is an irreflexive relation. For every a, a is not related to
itself.

template<typename R>
property irreflexive(R r)
{
for all(DomainType<R> a) !r(a, a);

}

A relation is symmetric if, for all a and b, a is related to b then b is also related to a.
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template<typename R>
property symmetric(R r)
{
for all(DomainType<R> a, b) r(a, b) => r(b, a);

}

As a shorthand, we allow multiple quantified variables of the same type to be introduced in a
single for all declaration. This is only allowed when the variables range over all values of the
type.

The opposite of a symmetric relation is an asymmetric relation. For all a and b, if a is related
to b, then b is not related to a.

template<typename R>
property asymmetric(R r)
{
for all(DomainType<R> a, b) r(a, b) => !r(b, a);

}

A relation is transitive if, for all a, b, and c, if a is related to b, and b is related to c, then a
is also related to c.

template<typename R>
property transitive(R r)
{
for all(DomainType<R> a, b, c) r(a, b) && r(b, c) => r(a, c);

}

Meaningful relations can be constructed from these basic properties. An equivalence relation
is reflexive, symmetric, and transitive.

template<typename R>
property equivalence_relation(R r)
{
reflexive(r) && symmetric(r) && transitive(r);

}

A strict weak ordering is a Relation that generalizes a total ordering. Formally, we can define
the property as:

template<typename R>
property strict_weak_ordering(R r)
{
irreflexive(r) && asymmetric(r) && transitive(r)
&& equivalence_relation(symmetric_complement(r));

}

The symmetric_complement function returns a function object that evaluates the expression:

!r(a, b) && !r(b, a)

for all a and b in the domain of r.

B.2 Non-Modifying Sequential Algorithms
This section describes the preconditions and postconditions of all of the non-modifying STL
algorithms. We explain new syntax and properties as needed.
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B.2.1 All of

template<InputIterator I, Predicate<ValueType<I>> P>
bool all_of(I first, I last, P pred);

Requires: is_readable_range(first, last)

Ensures: for all(I i : range(first, last)) pred(*i).

Complexity: pred is applied at most last – first times.

B.2.2 Any of

template<InputIterator I, Predicate<ValueType<I>> P>
bool any_of(I first, I last, P pred);

Requires: is_readable_range(first, last)

Ensures: for some(I i : range(first, last)) pred(*i).

Complexity: pred is applied at most last – first times.

B.2.3 None of

template<InputIterator I, Predicate<ValueType<I>> P>
bool none_of(I first, I last, P pred);

Requires: is_readable_range(first, last)

Ensures: for all(I i : range(first, last)) !pred(*i).

Complexity: pred is applied at most last – first times.

B.2.4 For Each

template<InputIterator I, Semiregular F>
requires Function<F, ValueType<I>>
F for_each(I first, I last, F f)

Requires: is_readable_range(first, last)

Ensures: Let result = for_each(first, last, f) where

• first == last => eq(result, f), otherwise

• eq(result, (f(*first), for_each(first + 1, last, f))).

Complexity: f is applied exactly last – first times.

B.2.5 Find

template<InputIterator I, EqualityComparable<ValueType<I>> T>
I find(I first, I last, const T& value)

template<InputIterator I, Predicate<ValueType<I>> P>
I find_if(I first, I last, P pred)

template<InputIterator I, Predicate<ValueType<I>> P>
I find_if_not(I first, I last, P pred)
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Requires: is_readable_range(first, last)

Ensures: For find, let i = find(first, last, value) where

• in_closed_range(i, first, last), and

• none_equal(first, i, value), and

• i != last => *i == value.

Ensures: For find_if, let i = find_if(first, last, pred) where

• in_closed_range(i, first, last), and

• none_of(first, i, pred), and

• i != last => pred(*i) == true.

Ensures: For find_if_not, let i = find_if_not(first, last, pred) where

• in_closed_range(i, first, last), and

• all_of(first, i, pred), and

• i != last => pred(*i) == false.

Complexity: The == operator or corresponding pred function is applied at most last – first times.

The none_equal algorithm is not present in the STL. It is equivalent to writing:

none_of(first, last, [&](const ValueType<I>& x) {return x == value;});

We find it easier to write pre- and post-conditions in terms of other algorithms. We also assume
the existence of all_equal and any_equal, having similar definitions.

B.2.6 Find First

template<InputIterator I1, ForwardIterator I2>
requires EqualityComparable<ValueType<I1>, ValueType<I2>>
I1 find_first_of(I1 first1, I1 last1, I2 first2, I2 last2);

template<InputIterator I1,
ForwardIterator I2,
Predicate<P, ValueType<I1>, ValueType<I2>> P>

I1 find_first_of(I1 first1, I1 last1, I2 first2, I2 last2, P pred)

Requires:

• is_readable_range(first1, last1), and

• is_readable_range(first2, last2).

Ensures: For the first overload, let i = find_first_of(first1, last1, first2, last2) where

• in_closed_range(i, first1, last1), and

• for all(I1 j : range(first1, i)) none_equal(first2, last2, *j), and

• i != last1 => any_equal(first2, last2, *i).
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For the second overload Let i = find_first_of(first1, last1, first2, last2, pred) where

• in_closed_range(i, first1, last1), and

• for all(I1 j : range(first1, i)) none_of(first2, last2, bind(pred, *j, _1)), and

• i != last1 => any_of(first2, last2, bind(pred, *i, _1)).

Complexity: The operator == or corresponding pred is applied at most (last1 – first1) * (last2 –
first2) times.

The specification of the second overload relies on the bind function. We are currying an
argument of the binary pred to make it a viable argument for any_of and none_of.

B.2.7 Adjacent Find

template<ForwardIterator I>
requires EqualityComparable<ValueType<I>>
I adjacent_find(I first, I last)

template<ForwardIterator I, Relation<ValueType<I>> R>
I adjacent_find(I first, I last, R comp);

Requires: is_readable_range(first, last)

Ensures: For the first overload, let i = adjacent_find(first, last) where

• in_closed_range(i, first, last). Furthermore,

• first == last => i == last, or

• none_adjacent(first, i), and

• i != last => i + 1 != last && *i == *(i + 1).

Ensures: For the second overload, let i = adjacent_find(first, last, comp) where

• in_closed_range(i, first, last). Furthermore,

• first == last => i == last, or

• none_adjacent(first, i, comp), and

• i != last => i + 1 != last && comp(*i, *(i + 1)).

Complexity: When first != last, exactly min((i –first) + 1, (last – first) – 1) applications of == or
the corresponding comp relation. Otherwise, no operations are performed.

The none_adjacent function is an auxillary predicate that returns true if and only if last –
first < 2 or there are no iterators i and j in [first, last) with j == i + 1 and j != last where *i == *j.

B.2.8 Count

template<InputIterator I, EqualityComparable T>
requires EqualityComparable<ValueType<I>, T>
DistanceType<I> count(I first, I last, const T& value)

template<InputIterator I, Semiregular P>
requires Predicate<P, ValueType<I>>
DistanceType<I> count_if(I first, I last, P pred)
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Requires: is_readable_range(first, last)

Ensures: For count, returns the number of elements in [first, last) that are equal to value. That
is, count returns the cardinality of the multiset {i ∈ [first, last) : ∗i == value}.
Ensures: For count_if, returns the number of elements in [first, last) that are satisfy pred. That
is, count_if returns the cardinality of the multiset, {i ∈ [first, last) : pred(∗i)}.
Complexity: Exactly last – first applications of == or the corresponding pred.

B.2.9 Equal and Mismatch

template<InputIterator I1, WeakInputIterator I2>
requires EqualityComparable<ValueType<I1>, ValueType<I2>>
bool equal(I1 first1, I1 last1, I2 first2)

template<InputIterator I1,
WeakInputIterator I2,
Predicate<ValueType<I1>, ValueType<I2>> P>

bool equal(I1 first1, I1 last1, I2 first2, P pred);

Requires:

• is_readable_range(first1, last1), and

• is_readable_range(first2, last1 – first1).

Ensures: For the first overload, for all(I i : range(first1, last1)) *i == *(first2 + (i – first1)).

Ensures: For the second overload, for all(I i : range(first1, last1)) pred(*i, *(first2 + (i – first1))).

Complexity: At most last1 – first1 applications of == or the corresponding pred function.

template<InputIterator I1, WeakInputIterator I2>
requires EqualityComparable<ValueType<I1>, ValueType<I2>>
pair<I1, I2> mismatch(I1 first1, I1 last1, I2 first2)

template<InputIterator I1,
WeakInputIterator I2,
Predicate<ValueType<I1>, ValueType<I2>> P>

pair<I1, I2> mismatch(I1 first1, I1 last1, I2 first2, P pred)

Requires:

• is_readable_range(first1, last1), and

• is_readable_range(first2, last1 – first1).

Ensures: For the first overload, let p = mismatch(first1, last1, first2) where

• in_closed_range(p.first, first1, last1), and

• in_closed_range(p.second, first2, first2 + (last1 – first1)), and

• equal(first1, p.first, first2), and

• p.first != last1 => *p.first != *p.second.
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Ensures: For the second overload, let p = mismatch(first1, last1, first2, pred) where

• in_closed_range(p.first, first1, last1), and

• in_closed_range(p.second, first2, first2 + (last1 – first1)), and

• equal(first1, p.first, first2, pred), and

• p.first != last1 => pred(*p.first, *p.second).

Complexity: At most last1 – first1 applications of == or the corresponding pred relation.

B.2.10 Is Permutation

template<ForwardIterator I1, ForwardIterator I2>
requires EqualityComparable<ValueType<I1>, ValueType<I2>>
bool is_permutation(I1 first1, I1 last1, I2 first2);

template<ForwardIterator I1, ForwardIterator I2, Relation<ValueType<I1>, ValueType<I2>> R>
bool is_permutation(I1 first1, I1 last1, I2 first2, R comp);

Requires: Both overloads require

• is_readable_range(first1, last1), and

• is_readable_range(first2, last2 – first2).

The second overload also requires equivalence_relation(comp)

Ensures: For the first overload, for some(auto r : permutations(first1, last1)) equal(begin(r), end(r),
first2).

Ensures: For the second overload, for some(auto r : permutations(first1, last1, comp)) equal(begin(r),
end(r), first2, comp).

Complexity: If [first1, last1) is equal to [first2, last2) using the equal algorithm, then then exactly
distance(first1, last1) applications of == or the corresponding comp relation. Otherwise, O(\∈)
applications where n has the value distance(first1, last1).

The function permutations returns an iterable range over all the permutations of the given
sequence. This is not intended to by a hypothetical function; the next_permutation algorithm
can be used to construct an iterator over permutations of a sequence. An implementation can
be found in Origin.

B.2.11 Search

template<ForwardIterator I1, ForwardIterator I2>
requires EqualityComparable<ValueType<I1>, ValueType<I2>>
I1 search(I1 first1, I1 last1, I2 first2, I2 last2);

template<ForwardIterator I1, ForwardIterator I2, Semiregular P>
requires Predicate<P, ValueType<I1>, ValueType<I2>>
I1 search(I1 first1, I1 last1, I2 first2, I2 last2, P pred)

Requires:

• is_readable_range(first1, last1), and
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• is_readable_range(first2, last2).

Ensures: For the first overload, let i = search(first1, last1, first2, last2) where,

• in_closed_range(i, first1, last1), and

• if i != last then

– last1 – i >= last2 – first2, and
– for all(I1 j : range(first1, i)) !equal(first2, last2, j), and
– equal(first2, last2, i),

• otherwise there are no sub-sequences of [first1, last1) equal to [first2, last2).

Ensures: For the second overload, let i = search(first1, last1, first2, last2, pred) where,

• in_closed_range(i, first1, last1), and

• if i != last then

– last1 – i >= last2 – first2, and
– for all(I1 j : range(first1, i)) !equal(first2, last2, j, pred), and
– equal(first2, last2, i, pred),

• otherwise there are no subsequences of [first1, last1) equivalent to [first2, last2) under pred.

Complexity: At most last1 – first1 * last2 – first2 applications of == or the corresponding pred
function.

template<ForwardIterator I1, ForwardIterator I2>
requires EqualityComparable<ValueType<I1>, ValueType<I2>>
I1 find_end(I1 first1, I1 last1, I2 first2, I2 last2)

template<ForwardIterator I1, ForwardIterator I2, Semiregular P>
requires Predicate<P, ValueType<I1>, ValueType<I2>>
I1 find_end(I1 first1, I1 last1, I2 first2, I2 last2, P pred)

Requires:

• is_readable_range(first1, last1), and

• is_readable_range(first2, last2).

Ensures: For the first overload, let i = find_end(first1, last1, first2, last2) where

• in_closed_range(i, first1, last1), and

• if i != last then

– last1 – i >= last2 – first2, and
– for all(I1 j : range(i + 1, last1)) !equal(first2, last2, j), and
– equal(first2, last2, i),
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• otherwise there are no subsequences of [first1, last1) equal to [first2, last2)

Ensures: For the second overload, i = find_end(first1, last1, first2, last2, pred) where

• in_closed_range(i, first1, last1), and

• if i != last then

– last1 – i >= last2 – first2, and

– for all(I1 j : range(i + 1, last1)) !equal(first2, last2, j, pred), and

– equal(first2, last2, i, pred),

• otherwise there are no subsequences of [first1, last1) equivalent to [first2, last2) under pred.

Complexity: At most last1 – first1 * last2 – first2 applications of == or the corresponding pred
function.

template<ForwardIterator I, EqualityComparable T>
requires EqualityComparable<ValueType<I>, T>
I search_n(I first, I last, DistanceType<I> count, const T& value);

template<ForwardIterator I, Semiregular T, Semiregular P>
requires Predicate<P, ValueType<I>, T>
I search_n(I first, I last, DistanceType<I> count, const T& value, P pred);

Requires: is_readable_range(first, last2).

Ensures: For the first overload, let i = search_n(first, last, count, value) where

• in_closed_range(i, first, last), and

• if i != last then

– n <= last – i, and

– for all(I j : range(first, i)) !all_equal(j, j + n, value), and

– all_equal(i, i + n, value),

• otherwise there are no sub-sequences of [first, last) whose values are all equal to value.

Ensures: For the second overload, let i = search_n(first, last, count, value, pred) where

• in_closed_range(i, first, last), and

• if i != last then

– n <= last – i, and

– for all(I j : range(first, i) !all_of(j, j + n, bind(pred, _1, value)), and

– all_of(i, i + n, bind(pred, _1, value)),

• otherwise there are no subsequences of [first, last) whose values are all equal to value.

Complexity: At most last – first applications of == or the corresponding pred function.
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B.3 Mutating Sequence Algortihms

Postconditions on output iterators are only meaningful when they are Readable and the value
types of the input and output iterators EqualityComparable. If those conditions are not met, then
we cannot formally specify the behavior of the algorithms.

B.3.1 Copy

template<InputIterator I, WeaklyIncrementable Out>
requires IndirectlyCopyable<I, Out>
Out copy(I first, I last, Out result);

Requires:

• is_readable_range(first, last), and

• is_writable_range(result, last – first, *first), and

• not_overlapped_forward(first, last, result)result + (last - first)

Ensures: Let i = copy(first, last, result) where

• i == result + (last – first), and

• equal(result, i, first).

Complexity: Exactly last – first copies.

The precondition of copy is that elements of the output range must not overlap the elements
of the input range. The standard says simply that result must not be in the range [first, last),
but this is very imprecise and leads to obvious questions. Namely, what does in range mean?
Borrowing from EoP, we can construct a much more precise meaning of the requirement.

template<InputIterator I, WeaklyIncrementable O>
property not_overlapped_forward(I first1, I last1, O first2, O last2)
{
is_readable_range(first1, last1) && is_readable_range(first2, last2) =>
for all(I1 i : range(first1, last1))
for all(I2 o : range(first2, last2))
&*i == &*o => distance(first2, i) <= distance(first2, o);

}

This property guarantees that the algorithm does not read from an iterator after its value has
been assigned. Note that we can only establish the property if the iter is a readable range.
Furthermore, we can’t write the Readable requirement as part of the template requirements
because that would potentially make the property unsatisfiable for non-Readable output iterators.
The precondition is vacuously true if you can’t read from Out.

It may seem like a sensible thing to require that the output range must not contain cycles;
that it is, it must be a counted range and not just a weak range. However, there are a number
of use cases for cyclic, or seemingly cyclic output ranges, especially when there is no intent to
read from the output range. We could, for example, think of an ostream_iterator as referring to
a single element and each increment simply cycles to the same position: a kind of trivial state
machine.

The postcondition can only be effectively evaluated for a subset of viable output iterators.
In particular, the postcondition can only be verified when Out is a ForwardIterator. If Out is,
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say, an ostream_iterator, we could not verify any of those properties without querying the state
of the output stream.

template<WeakInputIterator I, WeaklyIncrementable Out>
requires IndirectlyCopyable<I, Out>
Out copy_n(I first, DistanceType<I> n, Out result);

Requires:

• is_readable_range(first, n), and

• is_writable_range(result, n, *first), and

• not_overlapped_forward(first, n, result).

Ensures: Let i = copy_n(first, n, result) where

• i == result + n, and

• equal(result, i, first).

Complexity: Exactly n copies.

The not_overlapped_forward requirement is an overload of the previous definition for weak
ranges. It is defined as:

template<WeakInputIterator I, WeaklyIncrementable O>
axiom not_overlapped_forward(I first1, DistanceType<I> n, O first2)
{
is_readable_range(first1, n) && is_readable_range(first2, n) =>
for all(I i : range(first1, n))
for all(O o : range(first2, n))
&*i == &*o => distance(first1, i) <= distance(first2, o);

}

template<InputIterator I, WeaklyIncrementable Out, Semiregular P>
requires IndirectlyCopyable<I, Out> && Predicate<P, ValueType<I>>
Out copy_if(I first, I last, Out result, P pred);

Requires:

• is_readable_range(first, last)

• is_writable_range(first, count_if(first, last, pred), *first)

• not_overlapped_forward(first, last, result)result + count_if(first, last, p)

Ensures: Let i = copy_if(first, last, result, pred) where

• i == result + count_if(first, last, pred), and

• for all(I i : range(first, last) *i == *find_nth_if(first, last, pred).
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Complexity: Exactly count_if(first, last, pred) copies.

The find_nth_if algorithm is an auxiliary function that returns the nth iterator i in [first, last)
that satisfies pred(*i).

template<BidirectionalIterator I, BidirectionalIterator Out>
requires IndirectlyCopyable<I, Out>
Out copy_backward(I first, I last, Out result);

Requires:

• is_readable_range(first, last), and

• is_writable_range(result – (last – first), result, *first), and

• not_overlapped_backward(first, last, result)result + (last - first).

Ensures: Let i = copy_backward(first, last, result) where

• i == result – (last – first), and

• equal(i, result, first) == true.

Complexity: Exactly last – first copies.

The not_overlapped_backward predicate defines the precondition for the copy_backward algo-
rithm. It is similar to not_overlapped_forward:

template<InputIterator I, WeaklyIncrementable O>
property not_overlapped_backward(I first1, I last1, O first2, O last2)
{
is_readable_range(first1, last1) && is_readable_range(first2, last2) =>
for all(I i : range(first1, last1))
for all(O o : range(first2, last2))
&*i == &*o => distance(i, last1) <= distance(o, last2);

}

B.3.2 Move

template<InputIterator I, WeaklyIncrementable Out>
requires IndirectlyMovable<I, Out>
Out move(I first, I last,Out result);

Requires:

• is_readable_range(first, last), and

• is_movable_range(result, last – first, *first), and

• not_overlapped_forward(first, last, result)result + (last - first)

Ensures: Let i = move(first, last, result) where

• i == result + (last – first), and
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• [result, i) has the values originally in [first, last), and

• the elements of [first, last) are partially formed.

Complexity: Exactly last – first moves.

template<BidirectionalIterator I, BidirectionalIterator Out>
requires IndirectlyMovable<I, Out>
Out move_backward(I first, I last, Out result);

Requires:

• is_readable_range(first, last), and

• is_writable_range(result – (last – first), result, *first), and

• not_overlapped_backward(first, last, result)result + (last - first).

Ensures: Let i = move_backward(first, last, result) where

• i == result – (last – first), and

• [i, result) has the values originally in [first, last), and

• The elements of [first, last) are partially formed.

Complexity: Exactly last – first copies.

B.3.3 Swap

template<InputIterator I1, WeakInputIterator I2>
requires IndirectlySwappable<I1, I2>
I2 swap_ranges(I1 first1, I1 last1, I2 first2);

Requires:

• is_permutable_range(first1, last1), and

• is_permutable_range(first2, last1 – first1)

• not_overlapped_forward(first1, last1, first2).

Ensures: Let last2 = swap_ranges(first1, last1, first2) where

• last2 – first2 == last1 – first1, and

• [first1, last1) has the values originally in [first2, last2), and

• [first2, last2) has the values originally in [first1, last1).

Complexity: Exactly last1 – first1 swaps.
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template<Readable I1, Readable I2>
requires IndirectlySwappable<I1, I2>
void iter_swap(I1 i, I2 j);

Requires:

• is_valid(*i = move(*j))

• is_valid(*j = move(*i))

Ensures: The values pointed at by *i and *j are exchanged.

Complexity: Constant.

B.3.4 Transform

template<InputIterator I, WeaklyIncrementable Out, Function<ValueType<I> F>
requires Writable<ResultType<F, ValueType<I>>, Out>
Out transform(I first, I last, Out result, F f);

Requires:

• is_readable_range(first, last), and

• is_writable_range(result, last – first, f(*first))

Ensures: Let result_last = transform(first, last, result, f) where

• result_last == result + (last – first), and

• for all(DistanceType<I> i : range(0, last – first)) *(result + i) == f(*(first + i))

Complexity: f is applied exactly last – first times.

template<InputIterator I1,
InputIterator I2,
WeaklyIncrementable Out,
Function<ValueType<I>, ValueType<I2>> F>

requires Writable<ResultType<F, ValueType<I1>, ValueType<I2>>, Out>
Out transform(I1 first1, I1 last1, I2 first2, Out result, F f);

Requires:

• is_readable_range(first1, last1), and

• is_readable_range(first2, last1 – first1), and

• is_writable_range(result, last1 – first1, f(*first1, *first2)).

Ensures: Let result_last = transform(first1, last1, first2, result, f) where

• result_last == result + (last1 – first1), and

• for all(DistanceType<I> i : range(0, last1 – first1)) *(result + i) == f(*(first1 + i), *(first2 + i))

Complexity: f is applied exactly last – first times.
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B.3.5 Replace

template<InputIterator I, Semiregular T>
requires Writable<T, I> && EqualityComparable<ValueType<I>, T>
void replace(I first, I last, const T& old_value, const T& new_value);

template<InputIterator I, Semiregular P, Semiregular T>
requires Writable<T, I> && Predicate<P, ValueType<I>>
void replace_if(I first, I last, P pred, const T& new_value);

Requires: is_mutable_rangefirstlast.

Ensures: For the first overload, for all(DistanceType<I> i : range(0, last – first)) *(first + i) ==
(v[i] == old_value ? new_value : v[i]) where v = vector<ValueType<I>>{first, last} is copy of the
original values in [first, last).

Ensures: For the second overload, for all(DistanceType<I> i : range(0, last – first)) *(first + i) ==
(pred(v[i]) ? new_value : v[i]) where v = vector<ValueType<I>>{first, last} is a copy of the original
values in [first, last).

Complexity: Exactly last – first applications of operator == or the corresponding pred function
and count(first, last, old_value) (or count_if(first, last, pred)) assignments.

template<InputIterator I, WeaklyIncrementable Out, Semiregular T>
requires IndirectlyCopyable<I, Out> && EqualityComparable<ValueType<I>, T> && Writable<T, Out>
Out replace_copy(I first, I last, Out result, const T& old_value, const T& new_value);

template<InputIterator I, WeaklyIncrementable Out, Semiregular P, Semiregular T>
requires IndirectlyCopyable<I, Out> && Predicate<P, ValueType<I>>&& Writable<T, Out>
Out replace_copy_if(I first, I last, Out result, P pred, const T& new_value);

Requires:

• is_readable_range(first, last), and

• is_writable_range(result, last – first, *first).

Ensures: For the first overload, let last_result = replace_copy(first, last, result, old_value, new_value)
where

• last_result == result + (last – first), and

• for all(DistanceType<I> i : range(0, last – first)) *(result + i) == (*(first + i) == old_value ? new_value
: *(first + i)).

Ensures: For the second overload, let last_result = replace_copy(first, last, result, pred, new_value)
where

• last_result == result + (last – first), and

• for all(DistanceType<I> n : range(0, last – first)) *(result + i) == (pred(*(first + i), old_value)
? new_value : *(first + i)).

Complexity: Exactly last – first applications of == or the corresponding pred function and count(first,
last, old_value) (or count_iffirstlastpred) assignments.
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B.3.6 Fill

template<WeaklyIncrementable Out, Semiregular T>
requires EqualityComparable<Out> && Writable<T, Out>
void fill(Out first, Out last, const T& value);

Requires: is_writable_range(first, last, value).

Ensures: all_equal(first, last, value).

Complexity: Exactly last – first assignments.

template<WeaklyIncrementable Out, Semiregular T>
requires Writable<T, Out>
Out fill_n(Out first, DistanceType<Out> n, const T& value);

Requires: is_writable_range(first, n, value).

Ensures: Let last = fill_n(first, n, value) where

• last – first == n, and

• all_equal(first, n, value).

Complexity: Exactly n assignments.

B.3.7 Generate

template<WeaklyIncrementable Out, Function F>
requires EqualityComparable<Out> && Writable<ResultType<F>, Out>
F generate(Out first, Out last, F gen);

Requires: is_writable_range(first, last, gen()).

Ensures: generate(first, last, gen) is equivalent to:

if (first == last) {
return move(gen);

} else {
*first = gen();
return move(generate(++first, last, gen));

}

Complexity: Exactly last – first applications of f.

template<WeaklyIncrementable Out, Function<> F>
requires Writable<ResultType<F>, Out>
std::pair<Out, F> generate_n(Out first, DistanceType<Out> n, F gen);

Requires: is_writable_range(first, n, gen()).

Ensures: generate(first, n, gen) is equivalent to:
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if (n == 0) {
return move(gen);

} else {
*first = gen();
return move(generate(++first, n, gen));

}

Complexity: Exactly n applications of f.

B.3.8 Remove

template<ForwardIterator I, EqualityComparable<ValueType<I>> T>
I remove(I first, I last, const T& value);

template<ForwardIterator I, Semiregular P>
requires Predicate<P, ValueType<I>> && Permutable<I>
I remove_if(I first, I last, P pred);

Requires: is_mutable_range(first, last).

Ensures: For the first overload, let i = remove(first, last, value) where find(first, i, value) == i.

Ensures: For the second overload, let i = remove_if(first, last, pred) where find_if(first, i, pred) ==
i.

Complexity: Exactly last – first applications of == or the corresponding pred function.

template<InputIterator I, WeaklyIncrementable Out, EqualityComparable T>
requires EqualityComparable<ValueType<I>, T> && IndirectlyCopyable<I, Out>
Out remove_copy(I first, I last, Out result, const T& value);

template<InputIterator I, WeaklyIncrementableOut, Semiregular P>
requires Predicate<P, ValueType<I>> && IndirectlyCopyable<I, Out>
Out remove_copy_if(I first, I last, Out result, P pred);

Requires:

• is_readable_range(first, last), and

• is_writable_range(result, last – first, *first).

Ensures: For the first overload, let last_result = remove_copy(first, last, result, value) where,

• last_result – result == count_not_equal(first, last, value), and

• findif(result, last_result, value) == last_result.

Ensures: For the second overload, let last_result = remove_copy_if(first, last, result, pred) where,

• last_result – result == count_if_not(first, last, pred), and

• find_if(result, last_result, pred) == last_result.

Complexity: Exactly last – first applications of == or the corresponding pred function and count_not_equal(first,
last, value) (or count_if_not(first, last, pred) copies.

The count_not_equal and count_if_not algorithms are auxilliary functions that returns the
number of elements that are not equal to value or do not satisfy pred. This is equivalent to the
difference between last – first and the value returned by count_not_equal or count_if_not.
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B.3.9 Unique

template<ForwardIterator I>
requires EqualityComparable<ValueType<I>> && Permutable<I>
I unique(I first, I last);

template<ForwardIterator I, Semiregular R>
requires Relation<R, ValueType<I>> && IndirectlyCopyable<I, I>
I unique(I first, I last, R comp);

Requires: is_mutable_range(first, last).

Ensures: For the first overload, let i = unique(first, last) where

• in_closed_rangeifirstlast, and

• adjacent_find(first, i) == i.

Ensures: For the second overload, let i = unique(first, last, comp) where

• in_closed_range(i, first, last), and

• adjacent_find(first, i, comp) == i.

Complexity: Exactly last – first – 1 applications of == or the corresponding comp relation.

template<InputIterator I, WeaklyIncrementable Out>
requires EqualityComparable<ValueType<I>> && IndirectlyCopyable<I, Out>
Out unique_copy(I first, I last, Out result);

template<InputIterator I, WeaklyIncrementable Out, Semiregular R>
requires Relation<R, ValueType<I>> && IndirectlyCopyable<I, Out>
Out unique_copy(I first, I last, Out result, R comp);

Requires:

• is_readable_range(first, last), and

• is_writable_range(result, last – first, *first).

Ensures: Let last_result = unique_copy(first, last, result) where

• is_bounded_rangeresultlast_result, and

• adjacent_find(result, last_result) == last_result.

Complexity: Exactly last – first – 1 applications of == or the corresponding comp relation.

B.3.10 Reverse

template<BidirectionalIterator I>
requires Permutable<I>
void reverse(I first, I last);
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Requires: is_mutable_range(first, last).

Ensures: for all(DistanceType<I> i : range(0, last – first)) *(first + i) == v[v.size() – i – 1] where
vector<ValueType<I>> v = {first, last} is a copy of the original values of [first, last).

Complexity: Exactly (last – first) / 2 swaps.

template<BidirectionalIterator I, WeaklyIncrementableOut>
requires IndirectlyCopyable<I, Out>
Out reverse_copy(I first, I last, Out result);

Requires:

• is_readable_range(first, last), and

• is_writable_range(result, last – first, *first).

Ensures: Let last_result = reverse_copy(first, last, result) where

• last_result == result + (last – first), and

• for all(DistanceType<I> i : range(0, last – first)) *(result + i) == *(first – i – 1)

Complexity: Exactly last – first copies.

B.3.11 Rotate

template<ForwardIterator I>
requires Permutable<I>
I rotate(I first, I middle, I last);

Requires:

• is_mutable_range(first, last), and

• in_closed_range(middle, first, last)

Ensures: Let vector<ValueType<I>> v = {first, last} be a copy of the original values in [first, last),
and let i = rotate(first, last, middle) where

• i == first + (last – middle), and

• for all(DistanceType<I> n : range(0, last – first)) v[n] == *(first + (n + (last – middle)) % (last
– first)).

Complexity: At most last – first swaps.

template<ForwardIterator I, WeaklyIncrementableOut>
requires IndirectlyCopyable<I, Out>
Out rotate_copy(I first, I middle, I last, Out result);

Requires:
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• is_readable_range(first, last), and

• in_closed_range(middle, first, last)

• is_writable_range(result, last – first, *first), and

Ensures: Let last_result = rotate_copy(first, middle, last, result) where

• last_result == result + (last – first), and

• for all(DistanceType<I> n : range(0, last – first)) *(result + n) == *(first + (n + (last – middle))
% (last – first)).

Complexity: Exactly last – first copies.

B.3.12 Random Shuffle

template<RandomAccessIterator I>
requires Permutable<I>
void random_shuffle(I first, I last);

template<RandomAccessIterator I, Semiregular Gen>
requires Permutable<I> && RandomNumberGenerator<Gen, DistanceType<I>>
void random_shuffle(I first, I last, Gen&& rand);

template<RandomAccessIterator I, UniformRandomNumberGenerator Gen>
requires Permutable<I> && Convertible<ResultType<Gen>>
void shuffle(I first, I last, Gen&& g);

Requires: is_mutable_range(first, last).

Ensures: for some(auto&& r : permutations(first, last)) equal(begin(r), end(r), first).

Complexity: Exactly last – first – 1 swaps.

B.3.13 Partitions

template<InputIterator I, Semiregular P>
requires Predicate<P, ValueType<I>>
bool is_partitioned(I first, I last, P pred);

Requires: is_readable_range(first, last)

Ensures: Returns true if and only if

• first == last, or

• none_of(find_if_not(first, last, pred), last, pred).

Complexity: At most last – first applications of pred.

template<ForwardIterator I, Predicate<ValueType<I>> P>
requires Permutable<I>
I partition(I first, I last, P pred);

template<ForwardIterator I, Predicate<ValueType<I>> P>
requires Permutable<I>
I stable_partition(I first, I last, P pred);
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Requires: is_permutable_range(first, last).

Ensures: Let i = partition(first, last, pred) where all_of(first, i, pred) is true and none_of(i, last,
pred) is true. In the second overload, the partitioning is stable (the relative position of equal
objects is preserved).

Complexity: For the first overload, at most last – first applications of pred.

Complexity: For the second overload, at most last – first * log(last – first) swaps and exactly
last – first applications of pred. The number of swaps is linear if enough there is enough extra
memory.

template<InputIterator I,
WeaklyIncrementableOut1,
WeaklyIncrementableOut2,
Predicate<ValueType<I>> P>

requires IndirectlyCopyable<I, Out1> && IndirectlyCopyable<I, Out2>
pair<Out1, Out2> partition_copy(I first, I last, Out1 out_true, Out2 out_false, P pred);

Requires:

• is_readable_range(first, last), and

• is_writable_range(out_true, count_if(first, last, pred), *first), and

• is_writable_range(out_false, count_if_not(first, last, pred), *first).

Ensures: Let p = partition_copy(first, last, out_true, out_false, pred) where all_of(out_true, p.first,
pred) is true and none_of(out_false, p.second, pred) is true.

Complexity: Exactly last – first copies and applications of pred.

template<ForwardIterator I, Semiregular P>
requires Predicate<P, ValueType<I>>
I partition_point(I first, I last, P pred);

Requires:

• is_readable_range(first, last), and

• is_partitioned(first, last, pred).

Ensures: Let i = partition_point(first, last, pred) where all_of(first, i, pred) is true and none_of(i,
last, pred) is true.

Complexity: O(log(last – first)) applications of pred.

B.4 Sorting and Related Algorithms

B.4.1 Sort
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template<ForwardIterator I>
requires Sortable<I>
void sort(I first, I last);

template<ForwardIterator I>
requires Sortable<I>
void stable_sort(I first, I last);

template<ForwardIterator I, Semiregular R>
requires Sortable<I, R>
void sort(I first, I last, R comp);

template<ForwardIterator I, Semiregular R>
requires Sortable<I, R>
void stable_sort(I first, I last, R comp);

Requires: is_permutable_range(first, last). The third and fourth overloads also require strict_weak_ordering(comp).

Ensures: is_sorted(first, last) for the first two overlaods or is_sorted(first, last, comp) for the third
and fourth. The stable_ algorithms also guarantee that the sorting is stable (the relative position
of equal objects is preserved).

Complexity: For the unstable sort algorithms, O(n log n) applications of < or the corresponding
comp relation where n is last – first.

Complexity: For the stable_sort algorithms at most n log2 n applications of < where n is last –
first, n log n applications if there is sufficient memory.

template<RandomAccessIterator I>
requires Sortable<I>
void partial_sort(I first, I middle, I last);

template<RandomAccessIterator I, Semiregular R>
requires Sortable<I, R>
void partial_sort(I first, I middle, I last, R comp);

Requires:

• is_permutable_range(first, last), and

• in_range(first, last, middle).

• The second overload also requires strict_weak_ordering(comp).

Ensures: is_sorted(first, middle) or is_sorted(first, middle, comp) for the second overload.

Complexity: Approximately (last – first) * log(middle – first) applications of < or the correspond-
inmg comp relation.

template<InputIterator I1, RandomAccessIterator I2>
requires IndirectlyCopyable<I1, I2> && Sortable<I2>
I2 partial_sort_copy(I1 first, I1 last, I2 result_first, I2 result_last);

template<InputIterator I1, RandomAccessIterator I2, Semiregular R>
requires IndirectlyCopyable<I1, I2> && Sortable<I2, R>
I2 partial_sort_copy(I1 first, I1 last, I2 result_first, I2 result_last, R comp);
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Requires:

• is_readable_range(first, last), and

• is_writable_range(result_first, result_last, *first).

• The second overload also requires strict_weak_ordering(comp).

Ensures: Let n = min(last – first, result_last – result_first) where is_sorted(result_first, result_first
+ n) (or is_sorted(result_first, result_first + n, comp) for the second overload).

Complexity: Approximately (last – first) * log(n) applications of < or the corresponding comp
relation.

template<ForwardIterator I>
requires TotallyOrdered<ValueType<I>>
bool is_sorted(I first, I last);

template<ForwardIterator I, Relation<ValueType<I>> R>
bool is_sorted(I first, I last, R comp);

Requires: is_readable_range(first, last)

Ensures: Returns true if and only if

• last – first < 2, or

• for all(DistanceType<I> i : range(0, last – first – 1))

– for the first overload, !(*(first + i + 1) < *(first + i)).

– for the second overload, !comp(*(first + i + 1), *(first + i)).

Complexity: At most last – first applications of < or the corresponding comp relation.

template<ForwardIterator I>
requires TotallyOrdered<ValueType<I>>
I is_sorted_until(I first, I last);

template<ForwardIterator I, Relation<ValueType<I>> R>
I is_sorted_until(I first, I last, R comp);

Requires: is_readable_range(first, last). The second overload also requires strict_weak_ordering(comp).

Ensures: Let i = is_sorted_until(first, last) where is_sorted(first, i) (or is_sorted(first, i, comp)
for the second overload) is true.

Complexity: At most last – first applications of < or the corresponding comp relation.
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B.4.2 Nth Element

template<RandomAccessIterator I>
requires Sortable<I>
void nth_element(I first, I middle, I last);

template<RandomAccessIterator I, Semiregular R>
requires Sortable<I, R>
void nth_element(I first, I middle, I last, R comp);

Requires:

• is_mutable_range(first, last), and

• in_range(first, last, middle).

• The second overload also requires strict_weak_ordering(comp)

Ensures: Let vector<ValueType<I>> v = {first, last}, and sort(v.begin(), v.end()) (or sort(v.begin(),
v.end(), comp) for the second overload) such that

• *middle == v[middle – first], and

• for all(I i : range(first, middle)) for all(I j : range(middle, last))

– for the first overload, !(*i > *j)

– for the second overload, !comp(*i, *j).

Complexity: Linear on average.

B.4.3 Binary Search

template<ForwardIterator I, TotallyOrdered T>
requires TotallyOrdered<VauleType<I>, T>
I lower_bound(I first, I last, const T& value);

template<ForwardIterator I, Relation<ValueType<I>> R>
I lower_bound(I first, I last, const ValueType<I>& value, R comp);

Requires:

• is_readable_range(first, last), and

• is_sorted(first, last) or is_sorted(first, last, comp).

• The second overload also requires strict_weak_ordering(comp).

Ensures: For the first overload, let i = lower_bound(first, last, value) where

• in_closed_range(i, first, last), and

• for all(I j : range(first, i)) *j < value, and

• *i != last => !(*i < value).

Ensures: For the second overload, let i = lower_bound(first, last, value, comp) where
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• in_closed_range(i, first, last), and

• for all(I j : range(first, i)) comp(*j, value), and

• i != last => !comp(*i, value).

Complexity: At most log(last – first) +O(1) applications of < or the corresponding comp predi-
cate.

template<ForwardIterator I, TotallyOrdered T>
requires TotallyOrdered<ValueType<I>, T>
I upper_bound(I first, I last, const T& value);

template<ForwardIterator I, Relation<ValueType<I>> R>
I upper_bound(I first, I last, const ValueType<I>& value, R comp);

Requires:

• is_readable_range(first, last), and

• is_sorted(first, last) or is_sorted(first, last, .)

• The second overload also requires strict_weak_ordering(comp).

Ensures: For the first overload, let i = upper_bound(first, last, value) where

• in_closed_range(i, first, last), and

• for all(I j : range(first, i)) !(value < *j), and

• i != last => *i < value.

Ensures: For the second overload, let i = upper_bound(first, last, value, comp) where

• in_closed_range(i, first, last), and

• for all(I j : range(first, i)) !comp(value, *j), and

• i != last => comp(*i, value).

Complexity: At most log(last – first) +O(1) applications of < or the corresponding comp predi-
cate.

template<ForwardIterator I, TotallyOrdered T>
requires TotallyOrdered<ValueType<I>, T>
pair<I, I> equal_range(I first, I last, const T& value);

template<ForwardIterator I, Relation<ValueType<I>> R>
pair<I, I> equal_range(I first, I last, const ValueType<I>& value, R comp);

Requires:
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• is_readable_range(first, last), and

• is_sorted(first, last) or is_sorted(first, last, comp).

• The second overload also requires strict_weak_ordering(comp).

Ensures: For the first overload, let p = equal_range(first, last, value) where

• p.first == lower_bound(first, last, value), and

• p.second == upper_bound(first, last, value), and

• all_equal(p.first, p.second, value).

Ensures: For the second overload, let p = equal_range(first, last, value, comp) where

• p.first == lower_bound(first, last, value, comp), and

• p.second == upper_bound(first, last, value, comp), and

• all_if(p.first, p.second, symmetric_complement(comp)).

Complexity: At most 2 * log(last – first) +O(1) applications of < or the corresponding comp
predicate.

template<ForwardIterator I, TotallyOrdered<ValueType<I>> T>
bool binary_search(I first, I last, const T& value);

template<ForwardIterator I, Semiregular R>
requires Relation<R, ValueType<I>>
bool binary_search(I first, I last, const ValueType<I>& value, R comp);

Requires:

• is_readable_range(first, last), and

• is_sorted(first, last) or is_sorted(first, last, comp).

• The second overload also requires strict_weak_ordering(comp).

Ensures: Returns true if and only if, when p = equal_range(first, last, value), p.first != p.second
(or p = equal_range(first, last, comp) for the second overload).

Complexity: At most log(last – first) +O(1) applications of < or the corresponding comp predi-
cate.

B.4.4 Merge

template<InputIterator I1, InputIterator I2, WeaklyIncrementableOut>
requires Mergeable<I1, I2, Out>
Out merge(I1 first1, I1 last1, I2 first2, I2 last2, Out result);

template<InputIterator I1,
InputIterator I2,
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WeaklyIncrementable Out,
Relation<ValueType<I1>, ValueType<I2> R>

requires Mergeable<I1, I2, Out, R>
Out merge(I1 first1, I1 last1, I2 first2, I2 last2, Out result, R comp);

Requires: can_merge_ranges(first1, last1, first2, last2, result) or can_merge_ranges(first1, last1, first2,
last2, result, comp) for the second overload. The second overload also requires strict_weak_ordering(comp).

Ensures: For the first overload, let result_last = merge(first1, last1, first2, last2, out) where

• includes(result, result_last, first1, last1) == true, and

• includes(result, result_last, first2, last2) == true.

Ensures: For the second overload, let result_last = merge(first1, last1, first2, last2, out, comp)
where

• includes(result, result_last, first1, last1, comp) == true, and

• includes(result, result_last, first2, last2, comp) == true.

Complexity: At most (last1 – first1) + (last2 – first2) – 1 applications of < or the corresponding
comp relation.

The can_merge_ranges predicate is defined as:

template<InputIterator I1, InputIterator I2, WeaklyIncrementableOut>
requires Mergeable<I1, I2, Out>
property can_merge_ranges(I1 first1, I1 last1, I2 first2, I2 last2, Out result)
{
is_readable_range(first1, last1) && is_sorted(first1, last1) &&
is_readable_range(first2, last2) && is_sorted(first2, last2) &&
not_overlapped(first1, last1, first2) &&
is_writable_range(result, (last1 – first1) + (last2 – first2), *first1) &&;
is_writable_range(result, (last1 – first1) + (last2 – first2), *first2);

}

A corresponding overload for relations can be easily derived.

template<ForwardIterator I>
requires Sortable<I>
void inplace_merge(I first, I middle, I last);

template<ForwardIterator I, Semiregular R>
requires Sortable<I, R>
void inplace_merge(I first, I middle, I last, R comp);

Requires:

• is_permutable_range(first, last), and

• in_range(first, last, middle), and

• is_sorted(first, middle), and

• is_sorted(middle, last).
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• The second overload also requires strict_weak_ordering(comp).

Ensures: For the first overload, inplace_merge(first, middle, last) is equivalent to the following
program:

vector<ValueType<I>> v(last – first);
auto v_last = merge(first, middle, middle, last, v.begin());
copy(v.begin(), v_last, first);

Ensures: For the second overload, inplace_merge(first, middle, last, comp) is equivalent to the
following program:

vector<ValueType<I>> v(last – first);
merge(first, middle, middle, last, v.begin(), comp);
copy(v.begin(), v.end(), first);

Complexity: With enough memory available, at most last – first applications of < or the corre-
sponding comp relation. Otherwise O(n log n) applications where n is last – first.

B.4.5 Set Operations

template<InputIterator I1, InputIterator I2>
requires TotallyOrdered<ValueType<I1>, ValueType<I2>>
bool includes(I1 first1, I1 last1, I2 first2, I2 last2);

template<InputIterator I1, InputIterator I2, Relation<ValueType<I1>, ValueType<I2>> R>
bool includes(I1 first1, I1 last1, I2 first2, I2 last2, R comp);

Requires:

• is_sorted(first1, last1), and

• is_sorted(first1, last1).

• The second overload also requires strict_weak_ordering(comp).

Ensures: Returns true if and only if every element in [first2, last2) can be found in [first1, last1).

Complexity: At most 2 * ((last1 – first1) + (last2 – first2)) – 1 applications of < or the corre-
sponding comp relation.

template<InputIterator I1, InputIterator I2, WeaklyIncrementable Out>
requires Mergeable<I1, I2, Out>
Out set_union(I1 first1, I1 last1, I2 first2, I2 last2, Out result);

template<InputIterator I1,
InputIterator I2,
WeaklyIncrementable Out,
Relation<ValueType<I1>, ValueType<I2>> R>

requires Mergeable<I1, I2, Out, R>
Out set_union(I1 first1, I1 last1, I2 first2, I2 last2, Out result, R comp);

Requires: can_merge_ranges(first1, last1, first2, last2, result) or can_merge_ranges(first1, last1, first2,
last2, result, comp) for the second overload.

Ensures: For the first overload, let result_last = set_union(first1, last1, first2, last2, result) where

109



• is_sorted(result, result_last), and

• for all(Out i : range(result, result_last)) find(first1, last1, *i) != last1 || find(first2, last2, *i)
!= last.

Ensures: For the second overload, let result_last = set_union(first1, last1, first2, last2, result, comp)
where

• is_sorted(result, result_last, comp), and

• for all(Out i : range(result, result_last)) find(first1, last1, *i) != last1 || find(first2, last2, *i)
!= last.

Complexity: At most 2 * ((last1 – first1) + (last2 – first2)) – 1 applications of < or the corre-
sponding pred comp.

For both overloads, if [first1, last1) contains m equal elements and [first2, last2) contains n
elements equal to those in the first range, then all m elements from the first range are copied
into the output range (in order) and max(n – m, 0) elements from the second range are copied
(in order).

template<InputIterator I1, InputIterator I2, WeaklyIncrementable Out>
requires Mergeable<I1, I2, Out>
Out set_intersection(I1 first1, I1 last1, I2 first2, I2 last2, Out result);

template<InputIterator I1,
InputIterator I2,
WeaklyIncrementable Out,
Relation<ValueType<I1>, ValueType<I2>> R>

requires Mergeable<I1, I2, Out, R>
Out set_intersection(I1 first1, I1 last1, I2 first2, I2 last2, Out result, R comp);

Requires: can_merge_ranges(first1, last1, first2, last2, result) or can_merge_ranges(first1, last1, first2,
last2, result, comp) for the second overload.

Ensures: For the first overload, let result_last = set_intersection(first1, last1, first2, last2, result)
where

• is_sorted(result, result_last), and

• for all(Out i : range(result, result_last)) find(first1, last1, *i) != last1 && find(first2, last2, *i)
!= last.

Ensures: For the second overload, let result_last = set_intersection(first1, last1, first2, last2, result,
comp) where

• is_sorted(result, result_last, comp), and

• for all(Out i : range(result, result_last)) find(first1, last1, *i) != last1 && find(first2, last2, *i)
!= last.

Complexity: At most 2 * ((last1 – first1) + (last2 – first2)) – 1 applications of < or the corre-
sponding comp relation.

For both overloads, if [first1, last1) contains m elements that are equivalent to each other and
[first2, last2) contains n elements that are equivalent to those in the first range, only the first
min(m, n) elements are copied from the first range to the output range (in order).
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template<InputIterator I1, InputIterator I2, WeaklyIncrementable Out>
requires Mergeable<I1, I2, Out>
Out set_difference(I1 first1, I1 last1, I2 first2, I2 last2, Out result);

template<InputIterator I1,
InputIterator I2,
WeaklyIncrementable Out,
Relation<ValueType<I1>, ValueType<I2>> R>

requires Mergeable<I1, I2, Out, R>
Out set_difference(I1 first1, I1 last1, I2 first2, I2 last2, Out result, R comp);

Requires: can_merge_ranges(first1, last1, first2, last2, result) or can_merge_ranges(first1, last1, first2,
last2, result, comp) for the second overload.

Ensures: For the first overload, let result_last = set_difference(first1, last1, first2, last2, result)
where

• is_sorted(result, result_last), and

• for all(Out i : range(result, result_last)) find(first1, last1, *i) != last1 && find(first2, last2, *i)
== last.

Ensures: For the second overload, let result_last = set_difference(first1, last1, first2, last2, result,
comp) where

• is_sorted(result, result_last, comp), and

• for all(Out i : range(result, result_last)) find(first1, last1, *i) != last1 && find(first2, last2, *i)
== last.

Complexity: At most 2 * ((last1 – first1) + (last2 – first2)) – 1 applications of < or the corre-
sponding comp relation.

For both overloads, if [first1, last1) contains m elements that are equivalent to each other
and [first2, last2) contains n elements that are equivalent to those in the first range, the last
max(m – n, 0) elements from the first range are copied to the output range.

template<InputIterator I1, InputIterator I2, WeaklyIncrementable Out>
requires Mergeable<I1, I2, Out>
Out set_symmetric_difference(I1 first1, I1 last1, I2 first2, I2 last2, Out result);

template<InputIterator I1,
InputIterator I2,
WeaklyIncrementable Out,
Relation<ValueType<I1>, ValueType<I2>> R>

Out set_symmetric_difference(I1 first1, I1 last1, I2 first2, I2 last2, Out result, R comp);

Requires: can_merge_ranges(first1, last1, first2, last2, result) or can_merge_ranges(first1, last1, first2,
last2, result, comp) for the second overload.

Ensures: Let result_last = set_symmetric_difference(first1, last1, first2, last2, result) where
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• is_sorted(result, result_last), and

• for all(Out i : range(result, result_last)) find(first1, last1, *i) != last1 <=> find(first2, last2, *i)
== last.

Ensures: Let result_last = set_symmetric_difference(first1, last1, first2, last2, result, comp) where

• is_sorted(result, result_last, comp), and

• for all(Out i : range(result, result_last)) find(first1, last1, *i) != last1 <=> find(first2, last2, *i)
== last.

Complexity: At most 2 * ((last1 – first1) + (last2 – first2)) – 1 applications of < or the corre-
sponding comp relation.

For both overloads, if [first1, last1) contains m elements that are equivalent to each other and
[first2, last2) contains n elements that are equivalent to those in the first range, then abs(m – n)
of those elements shall be copied to the output range. The elements copied are the last m – n of
these elements from [first1, last1) if m > n, and the last n – m of these elements from [first2, last2)
if m < n.

B.4.6 Heap Operations

template<RandomAccessIterator I>
requires Sortable<I>
void push_heap(I first, I last);

template<RandomAccessIterator I, Relation<ValueType<I>> R>
requires Sortable<I, R>
void push_heap(I first, I last, R comp);

Requires:

• first != last, and

• is_permutable_range(first, last), and

• is_heap(first, last – 1) or is_heap(first, last – 1, comp) for the second overload.

Ensures: is_heap(first, last) is true or, for the second overload, is_heap(first, last, comp) is true.

Complexity: At most log(last – first) applications of < or the corresponding comp relation.

template<RandomAccessIterator I>
requires Sortable<I>
void pop_heap(I first, I last);

template<RandomAccessIterator I, Relation<ValueType<I>> R>
requires Sortable<I, R>
void pop_heap(I first, I last, R comp);

Requires:

• first != last, and
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• is_permutable_range(first, last), and

• is_heap(first, last) or is_heap(first, last, comp) for the second overload.

Ensures: Let x = *first be the original value referenced by first such that, after calling pop_heap(first,
last) (or pop_heap(first, last, comp)).

• x == *(last – 1), and

• is_heap(first, last – 1) is true or is_heap(first, last – 1, comp) for the second overload.

Complexity: At most 2 * log(last – first) applications of < or the corresponding comp relation.

template<RandomAccessIterator I>
requires Sortable<I>
void make_heap(I first, I last);

template<RandomAccessIterator I, Relation<ValueType<I>> R>
requires Sortable<I, R>
void make_heap(I first, I last, R comp);

Requires: is_permutable_range(first, last). The second overload also requires strict_weak_ordering(comp).

Ensures: is_heap(first, last) is true or is_heap(first, last, comp) for the second overload.

Complexity: At most 3 * last – first applications of < or the corresponding comp relation.

template<RandomAccessIterator I>
requires Sortable<I>
void sort_heap(I first, I last);

template<RandomAccessIterator I, Relation<ValueType<I>> R>
requires Sortable<I, R>
void sort_heap(I first, I last, R comp);

Requires:

• is_permutable_range(first, last), and

• is_heap(first, last) or is_heap(first, last, comp).

• The second overload also requires strict_weak_ordering(comp).

Ensures: is_sorted(first, last) is true or is_sorted(first, last, comp) for the second overload.

Complexity: At most O(n log n) applications < or the corresponding comp relation where n is
last – first.
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template<ForwardIterator I>
requires TotallyOrdered<ValueType<I>>
bool is_heap(I first, I last);

template<ForwardIterator I, Relation<ValueType<I>> R>
bool is_heap(I first, I last, R comp);

Requires: is_readable_range(first, last). The second overload also requires strict_weak_ordering(comp).

Ensures: for all(DistanceType<I> i : range(0, last – first)) is_heap_ordered(first, last, i). For the
second overload, the corresponding predicate is is_heap_ordered(first, last, i, comp).

Complexity: Linear.

The is_heap_ordered evaluates the relation between a node in the heap and its children.
Because the C++ standard does not specify the arity of the heap, we cannot write a “naked”
formula to define the relationship. The predicate has the following signatures:

template<ForwardIterator I>
requires TotallyOrdered<ValueType<I>>
bool is_heap_ordered(I first, I last, DistanceType<I> n);

template<ForwardIterator I, Relation<ValueType<I>> R>
bool is_heap_ordered(I first, I last, DistanceType<I> n, R comp);

The operation returns true if and only if the ith element of [first, last) is not less than its children
(if any). That is, for all children c of element i, it must be that !(*(first + i) < *(first + c)). The
number of children and their offsets depend on the implementation of the heap (binary, ternary,
etc.). The second overload replaces the < with a corresponding strict weak order.

template<ForwardIterator I>
requires TotallyOrdered<ValueType<I>>
I is_heap_until(I first, I last);

template<ForwardIterator I, Semiregular R>
requires Relation<R, ValueType<I>>
I is_heap_until(I first, I last, R comp);

Requires: is_readable_range(first, last). The second overload also requires strict_weak_ordering(comp).

Ensures: For the first overload, let i = is_heap_until(first, last) where

• in_closed_range(i, first, last), and

• for all(I j : range(first, i)) is_heap(first, j), and

• i != last => !is_heap(first, i + 1).

Ensures: For the second overload, let i = is_heap_until(first, last, comp) where

• in_closed_range(i, first, last), and

• for all(I j : range(first, i)) is_heap(first, j, comp), and

• i != last => !is_heap(first, i + 1, comp).

Complexity: Linear.
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B.4.7 Minimum and Maximum

template<TotallyOrdered T>
const T& min(const T& a, const T& b);

template<Semiregular T, Semiregular R>
requires Relation<R, T>
const T& min(const T& a, const T& b, R comp);

Requires: The second overload requires strict_weak_ordering(comp)a.

Ensures: For the first overload, let x = min(a, b)) where x <= a && x <= b.

Ensures: For the second overload, let x = min(a, b, comp) where !comp(a, x) && !comp(b, x).

Complexity: Exactly one application of < of comp.

template<Semiregular T>
requires TotallyOrdered<T>
const T& min(initializer_list<T> t);

template<Semiregular T, Relation<T> R>
const T& min(initializer_list<T> t, R comp);

Requires: The second overload requires strict_weak_ordering(comp).

Ensures: Equivalent to *min_element(t.begin(), t.end()) or *min_element(t.begin(), t.end()) for
the second overload.

Complexity: Exactly t.size() – 1 applications of < or the corresponding comp relation.

template<TotallyOrdered T>
const T& max(const T& a, const T& b);

template<Semiregular T, Relation<T> R>
const T& max(const T& a, const T& b, R comp);

Requires: The second overload requires strict_weak_ordering(comp).

Ensures: For the first overload, x = min(a, b)) where x >= a && x >= b.

Ensures: For the second overload, let x = min(a, b)) such that !comp(x, a) && !comp(x, b).

Complexity: Exactly one application of <.

template<Semiregular T>
requires TotallyOrdered<T>
T max(initializer_list<T> t);

template<Semiregular T, Relation<T> R>
T max(initializer_list<T> t, R comp);

Requires: The second overload requires strict_weak_ordering(comp).
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Ensures: Equivalent to *max_elemnt(t.begin(), t.end()) or *max_element(t.begin(), t.end()) for
the second overload.

Complexity: Exactly t.size() – 1 applications of < or the corresponding comp relation.

template<TotallyOrdered T>
pair<const T&, const T&> minmax(const T& a, const T& b);

template<Semiregular T, Relation<T> R>
pair<const T&, const T&> minmax(const T& a, const T& b, R comp);

Requires: The second overload requires strict_weak_ordering(comp).

Ensures: For the first overload, let p = minmax(a, b) where p.first == min(a, b) && p.second ==
max(a, b).

Ensures: For the second overload, let p = minmax(a, b, comp) where p.first == min(a, b, comp)
&& p.second == max(a, b, comp).

Complexity: Exactly one application of < or comp.

template<TotallyOrdered T>
pair<const T&, const T&> minmax(initializer_list<T> t);

template<Semiregular T, Relation<T> R>
pair<const T&, const T&> minmax(initializer_list<T> t, R comp);

Requires: The second overload requires strict_weak_ordering(comp).

Ensures: For the first overload, let p = minmax(t) where p.first == min(t) and p.second == max(t).

Ensures: For the second overload, let p = minmax(t, comp) where p.first == min(t, comp) and
p.second == max(t, comp).

Complexity: Exactly t.size() – 1 applications of comp or the corresponding comp relation.

template<ForwardIterator I>
requires TotallyOrdered<ValueType<I>>
I min_element(I first, I last);

template<ForwardIterator I, Relation<ValueType<I>> R>
I min_element(I first, I last, R comp);

Requires: is_readable_range(first, last). The second overload also requries strict_weak_orderingcomp.

Ensures: For the first overload, i = min_element(first, last) where

• in_range(i, first, last), and

• for all(I j : range(first, last)) min(*i, *j) == *i.

Ensures: For the second overload, i = min_element(first, last, comp) where
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• in_range(i, first, last), and

• for all(I j : range(first, last)) min(*i, *j, comp) == *i.

Complexity: Exactly max((last – first) – 1, 0) applications of operator < or the corresponding
comp relation.

template<ForwardIterator I>
requires TotallyOrdered<ValueType<I>>
I max_element(I first, I last);

template<ForwardIterator I, Relation<ValueType<I>> R>
I max_element(I first, I last, R comp);

Requires: is_readable_range(first, last). The second overload also requries strict_weak_orderingcomp.

Ensures: For the first overload, i = max_element(first, last) where

• in_range(i, first, last), and

• for all(I j : range(first, last)) max(*i, *j) == *i.

Ensures: For the second overload, i = max_element(first, last, comp) where

• in_range(i, first, last), and

• for all(I j : range(first, last)) max(*i, *j, comp) == *i.

Complexity: Exactly max((last – first) – 1, 0) applications of operator < or the corresponding
comp relation.

template<ForwardIterator I>
requires TotallyOrdered<ValueType<I>>
pair<I, I> minmax_element(I first, I last);

template<ForwardIterator I, Relation<ValueType<I>> R>
pair<I, I> minmax_element(I first, I last, R comp);

Requires: is_readable_range(first, last). The second overload also requries strict_weak_orderingcomp.

Ensures: For the first overload, p = minmax_element(first, last) where

• in_range(p.first, first, last), and

• in_range(p.second, first, last), and

• p.first == min_element(first, last) && p.second == max_element(first, last).

Ensures: For the first overload, p = minmax_element(first, last, comp) where

• in_range(p.first, first, last), and

• in_range(p.second, first, last), and p.first == min_element(first, last, comp) && p.second ==
max_element(first, last, comp).

Complexity: Exactly max((last – first) – 1, 0) applications of operator < or the corresponding
comp relation.
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B.4.8 Lexicographical Comparison

template<InputIterator I1, InputIterator I2>
requires TotallyOrdered<ValueType<I1>, ValueType<I2>>
bool lexicographical_compare(I1 first1, I1 last1, I2 first2, I2 last2);

template<InputIterator I1, InputIterator I2, Relation<ValueType<I1>, ValueType<I2>> R>
bool lexicographical_compare(I1 first1, I1 last1, I2 first2, I2 last2, R comp);

Requires:

• is_readable_range(first1, last1), and

• is_readable_range(first2, last2), and

• the second overload also requires strict_weak_ordering(comp).

Ensures: The first overload returns true if and only if

• for all(DistanceType<I1> i : range(0, min(last1 – first1, last2 – first2))) *(first1 + i) < *(first2
+ i), and

• (last1 – first1) < (last2 –first2).

Ensures: The second overload returns true if and only if

• for all(DistanceType<I1> i : range(0, min(last1 – first1, last2 – first2))) comp(*(first1 + i), *(first2
+ i)), and

• (last1 – first1) < (last2 –first2).

Complexity: At most 2 * min(last1 – first1, last2 – first2) applications of < or the corresponding
comp relation.

B.4.9 Permutations

template<BidirectionalIterator I>
requires Sortable<I>
bool next_permutation(I first, I last);

template<BidirectionalIterator I, Relation<ValueType<I>> R>
requires Sortable<I, R>
bool next_permutation(I first, I last, R comp);

Requires:

• is_permutable_range(first, last)

• The second overload also requires strict_weak_ordering(comp).

Ensures: For the first overload, let vector<ValueType<I>> v{first, last} and b = next_permutation(first,
last). If b is true, then is_permutation(first, last, v.begin()) is true and lexicographical_compare(v.begin(),
v.end(), first, i)s true. If b is false, then is_sorted(first, last) is true.

Ensures: For the second overload, let vector<ValueType<I>> v{first, last} and b = next_permutation(first,
last, comp). If b is true, then is_permutation(first, last, v.begin(), symmetric_complement<R>(comp))
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is true and lexicographical_compare(v.begin(), v.end(), first, last, comp) is true. If b is false, then
is_sorted(first, last, comp) is true.

Complexity: At most (last – first) / 2 swaps.

The symmetric_complement function object used in the specification of the second overload,
evaluates the expression !comp(a, b) && !comp(b, a). It determines if the two sequences are
permutations with the respect to the equivalence relation defined by the strict weak ordering
comp.

template<BidirectionalIterator I>
requires Sortable<I>
bool prev_permutation(I first, I last);

template<BidirectionalIterator I, Semiregular R>
requires Sortable<I, R>
bool prev_permutation(I first, I last, R comp)

Requires:

• is_permutable_range(first, last)

• The second overload also requires strict_weak_ordering(comp).

Ensures: For the first overload, let vector<ValueType<I>> v{first, last} and b = next_permutation(first,
last). If b is true, then is_permutation(first, last, v.begin()) is true and lexicographical_compare(first,
last, v.begin(), i)s true. If b is false, then is_sorted(first, last) is true.

Ensures: For the second overload, let vector<ValueType<I>> v{first, last} and b = next_permutation(first,
last, comp). If b is true, then is_permutation(first, last, v.begin(), symmetric_complement<R>(comp))
is true and lexicographical_compare(first, last, v.begin(), v.end(), comp) is true. If b is false, then
is_sorted(first, last, comp) is true.

Complexity: At most (last – first) / 2 swaps.
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Appendix C Concept Summary

This appendix includes diagrams relating the concept structure and an index relating each con-
cept to its uses.

C.1 Concept Diagrams

The following diagrams show the relationships between the concepts described in the technical
report. The edges between concepts do not indicate the exact requirements, but rather subsets
of individual syntactic requirements. The intent is to capture the relationship between abstrac-
tions rather than the actual requirements. For example, we could draw Incrementable as having
arrows to both WeaklyIncrementable and EqualityComparable. Instead we opt to draw connections
between WeaklyIncrementable and Regular. If a type is Incrementable, then it is guaranteed to be
both WeaklyIncrementable and Regular.

These diagrams omit edges that represent requirements to related type. For exampleWeakInputIterator
requires its ValueType to be Integral; that relationship is not shown.

EqualityComparable<T1, T2>

EqualityComparable<T>

TotallyOrdered<T1, T2>

TotallyOrdered<T>

Regular<T>

Semiregular<T>

Operations

Predicates

UnaryOperation<Op, T>

RegularFunction<F, Args...>

BinaryOperation<Op, T>

BinaryOperation<Op, T1, T2>

Predicate<P, Args...>

Relation<P, T>

Relation<P, T1, T2>

Function<F, Args...>
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Read and Write

Increment

Semiregular<T> Regular<T>

Readable<I>MoveWritable<T, Out>

Writable<T, Out> IndirectlyMovable<I, Out>

IndirectlyCopyable<I, Out>

WeaklyIncrementable<I>

Incrementable<I>

Readable<I>WeaklyIncrementable<I> Incrementable<I>

WeakInputIterator<I>

InputIterator<I>

EqualityComparable<T>

ForwardIterator<I>

BidirectionalIterator<I>

RandomAccessIterator<I>

TotallyOrdered<T>
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Permutable<I>

ForwardIterator<I> IndirectlyMovable<I, Out>

Permutable<I1, I2>Sortable<I>

TotallyOrdered<T>

Sortable<I, R>

Relation<R, T>

Mergeable<I1, I2, Out>

InputIterator<I> IndirectlyCopyable<I, Out> TotallyOrdered<T1, T2>

Mergeable<I1, I2, Out, R>

Relation<R, T1, T2>

C.2 Concept Cross-reference

The concept index relates each concept to its uses in the technical report. Each concept listed
in the appendix is used by each of the algorithms and concepts underneath it.

adjacent_find, 18
adjacent_find (relation), 18
all_of, 13
any_of, 15

BidirectionalIterator, 64
copy_backward, 23
move_backward, 23
next_permutation, 38
next_permutation (relation), 38
prev_permutation, 38
prev_permutation (relation), 39
RandomAccessIterator, 65
reverse, 28
reverse_copy, 28

binary_search, 33
binary_search (relation), 33
BinaryOperation, 59

BinaryOperation (cross–type), 59
BinaryOperation (cross–type), 59

Common, 45

BinaryOperation (cross–type), 59
EqualityComparable (cross–type), 51
Relation (cross–type), 58

Convertible, 44
BinaryOperation, 59
Predicate, 58
RandomNumberGenerator, 69
UnaryOperation, 59

copy, 22
copy_backward, 23
copy_if, 23
copy_n, 23
count_if, 18
count_if (predicate), 19

Derived, 44
BidirectionalIterator, 65
ForwardIterator, 64
InputIterator, 64
RandomAccessIterator, 65
WeakInputIterator, 64

equal, 19
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equal (predicate), 19
equal_range, 32
equal_range (relation), 33
EqualityComparable, 49

adjacent_find, 18
EqualityComparable (cross–type), 51
fill, 25
generate, 26
InputIterator, 64
Regular, 54
TotallyOrdered, 55
unique, 27
unique_copy, 27

EqualityComparable (cross–type), 51
count_if, 19
equal, 19
find, 16
find_end, 21
find_first_of, 17
is_permutation, 19
mismatch, 19
remove, 26
remove_copy, 27
replace, 25
replace_copy, 25
search, 20
search_n, 21
TotallyOrdered (cross–type), 55

fill, 25
fill_n, 25
find, 16
find_end, 21
find_end (predicate), 21
find_first_of, 17
find_first_of (predicate), 17
find_if, 17
find_if_not, 17
for_each, 15
ForwardIterator, 64

adjacent_find, 18
adjacent_find (relation), 18
BidirectionalIterator, 65
binary_search, 33
binary_search (relation), 33
equal_range, 33
equal_range (relation), 33
find_end, 21
find_end (predicate), 21
find_first_of, 17
find_first_of (predicate), 17
inplace_merge, 33

inplace_merge (relation), 34
is_heap, 35
is_heap (relation), 35
is_heap_until, 35
is_heap_until (relation), 35
is_permutation, 19
is_permutation (relation), 19
is_sorted, 29
is_sorted (relation), 29
is_sorted_until, 29
is_sorted_until (relation), 29
lower_bound, 32
lower_bound (relation), 32
max_element, 38
max_element (relation), 38
min_element, 37
min_element (relation), 37
minmax_element, 38
minmax_element (relation), 38
partition, 29
partition_point, 29
Permutable, 67
remove, 26
remove_if, 26
rotate, 28
rotate_copy, 28
search, 20
search (predicate), 21
search_n, 21
search_n (predicate), 21
sort, 30
sort (relation), 30
Sortable, 68
Sortable (relation), 68
stable_partition, 29
stable_sort, 31
stable_sort (relation), 31
unique, 27
unique (relation), 27
upper_bound, 32
uppper_bound (relation), 32

Function, 56
for_each, 15
generate, 26
generate_n, 26
RandomNumberGenerator, 69
RegularFunction, 58
transform (binary), 24
transform (unary), 24
UniformRandomNumberGenerator, 69

generate, 26
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generate_n, 26

includes, 34
includes (relation), 34
Incrementable, 63

ForwardIterator, 64
merge, 33
merge (relation), 33
partition_copy, 29
reverse_copy, 28
rotate_copy, 28

IndirectlyCopyable, 62
copy, 22
copy_backward, 23
copy_if, 23
copy_n, 23
Mergeable, 67
Mergeable (relation), 68
partial_sort, 31
partial_sort_copy (relation), 31
partition_copy, 29
remove_copy, 27
remove_copy_if, 27
replace_copy, 25
replace_copy_if, 25
reverse_copy, 28
rotate_copy, 28
unique_copy, 27
unique_copy (relation), 27

IndirectlyMovable
iter_swap, 24
move, 23
move_backward, 23
Permutable, 67
swap_ranges, 24

IndirectMovable, 62
inplace_merge, 33
inplace_merge (relation), 34
InputIterator, 64

all_of, 13
any_of, 15
copy, 22
copy_if, 23
count_if, 19
count_if (predicate), 19
equal, 19
equal (predicate), 19
find, 16
find_first_of, 17
find_first_of (predicate), 17
find_if, 17
find_if_not, 17

for_each, 15
ForwardIterator, 64
includes, 34
includes (relation), 34
is_partition, 29
lexicographical_compare (relation), 38
merge, 33
merge (relation), 33
Mergeable, 67
Mergeable (relation), 68
mismatch, 19
mismatch (predicate), 19
move, 23
none_of, 15
partial_sort, 31
partial_sort_copy (relation), 31
partition_copy, 29
remove_copy, 27
remove_copy_if, 27
replace, 25
replace_copy, 25
replace_copy_if, 25
replace_if, 25
set_difference, 34
set_difference (relation), 35
set_intersection, 34
set_intersection (relation), 35
set_symmetric_difference, 34
set_symmetric_difference (relation), 35
set_union, 34
set_union (relation), 35
swap_ranges, 24
transform (binary), 24
transform (unary), 24
unique_copy, 27
unique_copy (relation), 27

Integral, 48
RandomNumberGenerator, 69
WeaklyIncrementable, 62

is_heap, 35
is_heap (relation), 35
is_heap_until, 35
is_heap_until (relation), 35
is_partition, 28
is_permutation, 19
is_permutation (relation), 19
is_sorted, 29
is_sorted (relation), 29
is_sorted_until, 29
is_sorted_until (relation), 29
iter_swap, 24
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lexicographical_compare, 38
lexicographical_compare (relation), 38
lower_bound, 32
lower_bound (relation), 32

make_heap, 36
make_heap (relation), 36
max, 37
max (initializer list), 37
max (initializer list, relation), 37
max (relation), 37
max_element, 37
max_element (relation), 38
merge, 33
merge (relation), 33
Mergeable, 67

merge, 33
set_difference, 34
set_intersection, 34
set_symmetric_difference, 34
set_union, 34

Mergeable (cross–type)
set_difference (relation), 35
set_intersection (relation), 35
set_symmetric_difference (relation), 35
set_union (relation), 35

Mergeable (relation), 68
merge (relation), 33

min, 36
min (initializer list), 36
min (initializer list, relation), 37
min (relation), 36
min_element, 37
min_element (relation), 37
minmax, 37
minmax (initializer list), 37
minmax (initializer list, relation), 37
minmax (relation), 37
minmax_element, 38
minmax_element (relation), 38
mismatch, 19
mismatch (predicate), 19
move, 23
move_backward, 23
MoveWritable, 61

IndirectMovable, 62

next_permutation, 38
next_permutation (relation), 38
none_of, 15
nth_element, 31
nth_element (relation), 32

partial_sort, 31
partial_sort (relation), 31
partial_sort_copy (relation), 31
partition, 29
partition_copy, 29
partition_point, 29
Permutable, 67

partition, 29
random_shuffle, 28
random_shuffle (generator), 28
remove, 26
remove_if, 26
reverse, 28
rotate, 28
shuffle, 28
Sortable, 68
Sortable (relation), 68
stable_partition, 29
unique, 27

Permutable<I>
unique (relation), 27

pop_heap, 36
pop_heap (relation), 36
Predicate, 58

all_of, 13
any_of, 15
copy_if, 23
count_if (predicate), 19
equal (predicate), 19
find_end (predicate), 21
find_first_of (predicate), 17
find_if, 17
find_if_not, 17
is_partition, 29
mismatch (predicate), 19
none_of, 15
partition, 29
partition_copy, 29
partition_point, 29
Relation, 58
remove_copy_if, 27
remove_if, 26
replace_copy_if, 25
replace_if, 25
search (predicate), 21
search_n (predicate), 21
stable_partition, 29

prev_permutation, 38
prev_permutation (relation), 38
push_heap, 35, 36

random_shuffle, 28
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random_shuffle (generator), 28
RandomAccessIterator, 65

make_heap (relation), 36
nth_element, 32
nth_element (relation), 32
partial_sort, 31
partial_sort (relation), 31
partial_sort_copy (relation), 31
pop_heap, 36
pop_heap (relation), 36
push_heap, 36
random_shuffle, 28
random_shuffle (generator), 28
shuffle, 28
sort_heap (relation), 36

RandomNumberGenerator, 69
random_shuffle (generator), 28

Readable, 60
IndirectlyCopyable, 62
IndirectMovable, 62
iter_swap, 24
MoveWritable, 61
WeakInputIterator, 64
Writable, 62

Regular, 54
Incrementable, 63

RegularFunction, 58
BinaryOperation, 59
Predicate, 58
UnaryOperation, 59

Relation, 58
adjacent_find (relation), 18
binary_search (relation), 33
equal_range (relation), 33
inplace_merge (relation), 34
is_heap (relation), 35
is_heap_until (relation), 35
is_sorted (relation), 29
is_sorted_until (relation), 29
lower_bound (relation), 32
make_heap (relation), 36
max (initializer list, relation), 37
max (relation), 37
max_element (relation), 38
min (initializer list, relation), 37
min (relation), 36
min_element (relation), 37
minmax (initializer list, relation), 37
minmax (relation), 37
minmax_element (relation), 38
next_permutation (relation), 38
nth_element (relation), 32

partial_sort (relation), 31
partial_sort_copy (relation), 31
pop_heap (relation), 36
prev_permutation (relation), 39
push_heap, 36
Relation (cross–type), 58
sort (relation), 30
sort_heap (relation), 36
Sortable (relation), 68
stable_sort (relation), 31
unique (relation), 27
unique_copy (relation), 27
uppper_bound (relation), 32

Relation (cross–type), 58
includes (relation), 34
is_permutation (relation), 19
lexicographical_compare (relation), 38
merge (relation), 33
Mergeable (relation), 68
set_difference (relation), 35
set_intersection (relation), 35
set_symmetric_difference (relation), 35
set_union (relation), 35

remove, 26
remove_copy, 26
remove_copy_if, 27
remove_if, 26
replace, 25
replace_copy, 25
replace_copy_if, 25
replace_if, 25
reverse, 28
reverse_copy, 28
rotate, 28
rotate_copy, 28

Same, 44
MoveWritable, 61
Writable, 62

search, 20
search (predicate), 21
search_n, 21
search_n (predicate), 21
Semiregular, 52

IndirectlyCopyable, 62
IndirectMovable, 62
iter_swap, 24
MoveWritable, 61
Permutable, 67
Readable, 60
Regular, 54
swap_ranges, 24
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WeaklyIncrementable, 62
Writable, 61

set_difference, 34
set_difference (relation), 35
set_intersection, 34
set_intersection (relation), 35
set_symmetric_difference, 34
set_symmetric_difference (relation), 35
set_union, 34
set_union (relation), 34
shuffle, 28
SignedIntegral, 48

RandomAccessIterator, 65
sort, 30
sort (relation), 30
sort_heap, 36
sort_heap (relation), 36
Sortable, 68

inplace_merge, 33
next_permutation, 38
nth_element, 32
partial_sort, 31
pop_heap, 36
prev_permutation, 38
push_heap, 36
sort, 30

Sortable (relation), 68
inplace_merge (relation), 34
make_heap (relation), 36
next_permutation (relation), 38
nth_element (relation), 32
partial_sort (relation), 31
partial_sort_copy (relation), 31
pop_heap (relation), 36
prev_permutation (relation), 39
push_heap, 36
sort (relation), 30
sort_heap (relation), 36
stable_sort (relation), 31

stable_partition, 29
stable_sort, 31
stable_sort (relation), 31
swap_ranges, 24

TotallyOrdered, 55
is_heap, 35
is_heap_until, 35
is_sorted, 29
is_sorted_until, 29
max, 37
max (initializer list), 37
max_element, 38

min, 36
min (initializer list), 37
min_element, 37
minmax, 37
minmax (initializer list), 37
minmax_element, 38
RandomAccessIterator, 65
Sortable, 68
TotallyOrdered (cross–type), 55

TotallyOrdered (cross–type), 55
binary_search, 33
equal_range, 33
includes, 34
lower_bound, 32
Mergeable, 67
partial_sort, 31
partial_sort_copy (relation), 31
upper_bound, 32

transform (binary), 24
transform (unary), 24

UnaryOperation, 59
UniformRandomNumberGenerator, 69

shuffle, 28
unique, 27
unique (relation), 27
unique_copy, 27
unique_copy (relation), 27
UnsignedIntegral, 48

UniformRandomNumberGenerator, 69
upper_bound, 32
uppper_bound (relation), 32

WeakInputIterator, 64
copy_n, 23
equal, 19
equal (predicate), 19
InputIterator, 64
mismatch, 19
mismatch (predicate), 19
swap_ranges, 24

WeaklyIncrementable, 62
copy, 22
copy_if, 23
copy_n, 23
fill, 25
fill_n, 26
generate, 26
generate_n, 26
Incrementable, 63
Mergeable, 67
Mergeable (relation), 68

127



move, 23
remove_copy, 27
remove_copy_if, 27
replace_copy, 25
replace_copy_if, 25
set_difference, 34
set_difference (relation), 35
set_intersection, 34
set_intersection (relation), 35
set_symmetric_difference, 34
set_symmetric_difference (relation), 35
set_union, 34
set_union (relation), 35
transform (binary), 24
transform (unary), 24

unique_copy, 27
unique_copy (relation), 27
WeakInputIterator, 64

Writable, 61
fill, 25
fill_n, 26
generate, 26
generate_n, 26
IndirectlyCopyable, 62
replace, 25
replace_copy, 25
replace_copy_if, 25
replace_if, 25
transform (binary), 24
transform (unary), 24

128



Appendix D Alternative Designs

The design presented in this report prioritizes the representation of general ideas over exact
requirements (§1.3). We think that concepts in this report represent sound descriptions of the
basic ideas in the STL and serve as a good starting point for the discussion of requirements for
a standard library. At the same time, we recognize that our design is not wholly compatible
with the existing C++11 standard, and it constrains algorithms more than strictly necessary.
The exact balance between the clarity of design and the exactness of requirements has to be the
subject of a careful discussion that we hope this report will inspire.

D.1 Decomposing Semiregular

In this section we give an alternative design that decomposes the Semiregular concept intoMovable
and Copyable requirements. The Semiregular concept is required in a few places where tempo-
raries are expected to be created. This has the effect of inducing copy and default construction
requirements where they are not strictly required by the algorithm. This decomposition allows us
to use the value-oriented STL algorithms with non-regular types such as non-copyable resources
(e.g. using reverse with a range of unique_ptrs).

The Movable concept describes move semantics: types that can be both move constructed
and assigned.

concept Movable<typename T> =
requires object (T a) {
T* == {&a};
axiom { &a == addressof(a); }

a.~T();
noexcept(a.~T());

} &&
requires initialization (T a, T b, T c) {
// Move construction
T{move(a)};
axiom { eq(a, b) => eq(T{move(a)}, b); }

// Move assignment
T& == {a = move(b)};
axiom { eq(b, c) => eq(a = move(b), c); }

// Allocation
T* == new T{move(a)};
delete new T{move(a)};

};

In addition to expressing the requirements of move semantics, the Movable concept also captures
the basic object requirements, which include the ability to take an object’s address and destru-
tion. The axioms of move formalize the standard requirement (C++ Standard, utility.arg.requirements
(tables 20, 22)) that the result of move construction or assignment produces results in an object
that is equal to the source object prior to the move.

The reason that we require both construction and assignment is that regular types can be
used to construct variables. That means that we can both initialize an object and assign values
to it. We do not expect the pairing of these requirements to have any significant impact on
existing or future programs since these operations are frequently provided together.
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The Copyable concept represents the analogous copy semantics: types that can be copy
constructed and copy assigned.

concept Copyable<Movable T> =
requires initialization (T a, T b, T c) {
// Copy construction
T{a};
axiom { eq(T{a}, a); }

// Copy assignment
T& == {a = b};
axiom { eq(a = b, b); }

} &&
requires allocation () {
T* == { new T{a}; };
delete new T{a};

};
};

The Copyable concept “inherits” a number of requirements from the Movable concept. In essence,
a Copyable type is a Semiregular type that may not be default constructible. The allocation
requirements have been adapted accordingly; the concept does not permit the allocation of an
array of T objects.

It is not strictly necessary for the Copyable concept to require Movable. We could have written
the concepts to be completely independent. However, that leads to restatements of many basic
requirements (e.g. destruction).

Given these new concepts, we can simply define Semiregular as being Copyable and default
constructible:

concept Semiregular<Copyable T> =
requires DefaultConstructible {
T{};

} &&
requires Allocatable() {
T* == { new T };
delete[] new T[1];

};

The definition is equivalent to how Semiregular is defined in our design, but the two additional
concepts allow more fine-grained specifications of requirements for algorithms.

The only other concept affected by the design change is Permutable. Its new definition is:

concept Permutable<ForwardIterator I> =
Movable<ValueType<I>> &&
IndirectlyMovable<I, I>;

We have simply replaced the previous Semiregular concept with Movable. This change impacts
every algorithm that requires Permutable, including all of the Sortable algorithms.

The new design requires changes to three algorithms: iter_swap, swap_Ranges, and sort. As
with the Permutable concept, we replace the Semiregular requirement with Movable for iter_swap
and swap_Ranges. Their definitions become:

template<Readable I1, Readable I2>
requires IndirectlyMovable<I2, I1> && IndirectlyMovable<I1, I2>

&& Movable<ValueType<I1>> && MovableValueType<I2>>
void iter_swap(I1 i, I2 j);
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template<InputIterator I1, WeakInputIterator I2>
requires IndirectlyMovable<I2, I1> && IndirectlyMovable<I1, I2>

&& Movable<ValueType<I1>> && MovableValueType<I2>>
I2 swap_ranges(I1 first1, I1 last1, I2 first2);

For the sort algorithm, we modify the signature to include a Regular requirement on the
iterator argument’s ValueType.

template<ForwardIterator I>
requires Regular<ValueType<I>> && Sortable<I>
void sort(I first, I last);

template<ForwardIterator I, Relation<ValueType<I>> R>
requires Regular<ValueType<I>> && Sortable<I, R>
void sort(I first, I last, R comp);

Recall that the quicksort algorithm requires us to make a copy of the pivot element (Hoare,
1969). We require Regular instead of Copyable because the ValueType is already required to be
Movable (through Permutable) and EqualityComparable (through TotallyOrdered). We think that
stating the strongest requirement communicates the intent more effectively than stating the least
redundant requirement.

Note that the Movable concept does not require default construction. It is not difficult to
conceive of algorithms that require both move semantics and default construction (i.e. any algo-
rithm that declares uninitialized temporaries). We could extend the design by adding concepts
for MoveSemiregular and MoveRegular that add default construction and equality comparison,
respectively.

Despite the fact that we have added more concepts, we feel that this alternative is still well-
within the ideals set forth in the introduction (§1). The Copyable and Movable concepts represent
reasonably general ideas: types that can be copied or moved, respectively. We do not think that
further fragmentation of these requirements would preserve the originally stated design ideals.

We recognize that these concepts could be further decomposed into smaller and smaller
units. For example, we could easily see factoring out shared “object requirements” for the
Copyable, Movable, and Function concepts. However, each subsequent refactoring yields concepts
with less coherent meaning (if any). Any design resulting from this recursive fragmentation of
requirements would fail to meet the design ideals stated in §1.3. We think that each step in
breaking up larger semantic concepts into smaller language-specific ones should be taken with
utmost care.

D.2 Cross-type Concepts

Cross-type concepts generalize a corresponding specific concept over different types. For example,
the cross-type EqualityComparable concept describes the required syntax of comparing different
types for equality and justifies the semantics of those operations by describing them in relation
to the CommonType of its arguments.

There are some cases where the additional common type requirements are impractical. For
example, the Boost Graph Library (Siek et al., 2001) defines a generic isomorphism algorithm
on different graph types. Unfortunately, we could not encapsulate the algorithm as a Relation
on different graph types because BGL graph types do not share a common type. Even though
all graph data structures are obviously embedded in the same mathematical universe, there is
no type to which both an adjacency list and adjacency matrix can be converted in order to
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describe the semantics of relations on those different graphs. In these cases, the common type
requirements are too restrictive; it even prevents us from using otherwise viable overloads.

An alternative approach to specifying cross-type operators and function objects is to relax the
common type requirements by conditionally requiring them as part of the concept’s semantics.
Consider an alternative definition of EqualityComparable:

concept EqualityComparable<EqualityComparable T1, EqualityComparable T2> =
requires (T1 a, T2 b) {
bool { a == b };
bool { b == a };

axiom {
if (Common<T1, T2> && EqualityComparable<CommonType<T1, T2>>) {
a == b <=> C{a} == C{b};
b == a <=> C{b} == C{a};

}
};

By moving the common type requirements into the axiom, we guarantee that the concept will
be satisfied if there are available overloads for T1 and T2, regardless of the relationship between
those types. We can only guarantee the meaning of the operation when T1 and T2 satisfy
the additional requirements in the concept’s axiom. Note that the semantics of Writable and
MoveWritable are predicated in a similar manner.

Effectively, this definition makes the common type requirements “required to test” instead of
“required to compile”. That is, if the programmer wants to check the behavior of their operator
against the common type, they will need to supply the necessary overloads.

The TotallyOrdered, Relation, and BinaryOperation could be modified in similar ways, although
the impact on Relation and BinaryOperation may be significant §3.4. The current definition of
Relation, for example, may require a programmer to write up to 12 overloads of operator() in
extreme cases.

1. Two overloads for T1

2. Two overloads for T2

3. Two symmetric overloads for T1 and T2

4. Two overloads for CommonType<T1, T2>

5. Two symmetric overloads for T1 and CommonType<T1, T2>

6. Two symmetric overloads for T2 and CommonType<T1, T2>

The last 6 overloads would only be necessary if the CommonType of T1 and T2 was different
than either T1 or T2, and the cross-type overloads (3, 5, and 6) would only need to be provided
to avoid expensive conversions.

While this approach to defining cross-type concepts does reduce the burden of working with
different types, it also means that programmers may instantiate algorithms over operations that
have no sound mathematical meaning. This allows, for example, the use of == for employees
and strings when the appropriate overloads are given. This is a trade-off, and one that we think
fits within the C++ philosophy: don’t make programmers pay for the features they don’t use.
Obviously, we would encourage programmers to write sound and verifiable code, but for the sake
of compatibility, we can consider a design that relaxes the strictness of those requirements.
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